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Abstract

The identities of Choi, Lee, and Srivastava imply a formula proposed by Wilf. We show that these identities are
immediate consequences of the well-known product formulas for the sine function and the cosine function. Moreover,
we prove a generalization.
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1 Introduction

Herbert S. Wilf [1] proposed in the problem section of The American Mathematical Monthly to prove the identity

cosh
(π

2

)
=
π

2
eγ
∞∏
k=1

e−1/k
(

1 +
1

k
+

1

2k2

)
, (1)

where γ denotes the Euler–Mascheroni constant. In the following there appeared several proofs ([2], cf. [3, 4]). Chen
and Paris [5, Theorem 1] gave explicit expressions for infinite products of the form
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where p1, · · · , pm ∈ C and m is any positive integer (see also [6]). Choi, Lee, and Srivastava [7] derived the following
generalization
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Recently, C. Hernández-Aguilar, J. López-Bonilla, and R. López-Vázquez [8], proved the latter identities [8, Eqs. (3)
and (2)] using a certain relation involving an infinite product and the gamma function [8, Eq. (4)]. In this note we
show that these identities are immediate consequences of the well-known product formulas
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for the sine function and the cosine function, respectively. Moreover, we derive the following generalization.

Theorem 1 For r ∈ N and z ∈ C, the hyperbolic functions possess the representations
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In the special case r = 1 the formulas reduce to the identities (2), which are valid also in the cases z = ±i and
z = ±i/2, respectively. For z = 1/2, we obtain
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Wilf’s formula (1) is the special case r = 1.

2 Proof of Theorem 1

The product representation (3) of sine implies
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with positive reals γn tending to limn→∞ γn = γ. Hence,
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The limit letting n→∞ leads to the first formula of the theorem.
Analogously, the product representation (3) of cosine implies
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As above we conclude that
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as n→∞, since it is well-known (see, e.g., [9, (6.1.46)]), that
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This completes the proof.

Conclusion

The above note presents a generalization of the identities by Choi, Lee, and Srivastava. We show that these identities
are immediate consequences of the well-known product formulas for the sine function and the cosine function. They
imply a formula proposed by Herbert S. Wilf.
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[2] J. López-Bonilla, R. López-Vázquez, On an identity of Wilf for the Euler-Mascheroni’s constant, Prespacetime
Journal 9 (2018), 516–518.

[3] Junesang Choi, Tae Young Seo, Evaluation of some infinite series, Indian J. Pure Appl. Math. 28 (1997) 791–796.

[4] Chao-Ping Chen, Junesang Choi, Two infinite product formulas with two parameters, Integral Transforms and
Special Functions 24 (2013), 357–363.
doi.org/10.1080/10652469.2012.693081

[5] Chao-Ping Chen and Richard B. Paris, Generalizations of two infinite product formulas, Integral Transforms Spec.
Funct. 25 (2014), 547–551.
http://dx.doi.org/10.1080/10652469.2014.885965

[6] Chao-Ping Chen and Richard B. Paris, On the asymptotics of products related to generalizations of the Wilf and
Mortini problems, Integral Transforms Spec. Funct. 27 (2015), 281–288.
doi.org/10.1080/10652469.2015.1118627

[7] Junesang Choi, Jungseob Lee, H. M. Srivastava, A generalization of Wilf’s formula, Kodai Math. J. 26 (2003),
44–48.
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