
MathLAB Journal Vol 2 No 1 (2019) http://purkh.com/index.php/mathlab

Analysis of Qualitative Behavior of Fifth Order Difference Equations

Marwa M. Alzubaidi1,2, and E. M. Elsayed2,3

1Department of Mathematics, The University College of Duba,University of Tabuk, Tabuk, Saudi Arabia.

2King Abdulaziz University, Faculty of Science, Department of Mathematics, P.O. Box 80203,

Jeddah 21589, Saudi Arabia.

3Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.

e-mail: mmialzubaidi@hotmail.com., emmelsayed@yahoo.com.

Abstract

The main aim of this paper is to investigate the stability, global attractivity and periodic nature of the solutions of
the difference equations

xn+1 = axn−1 ±
bxn−1xn−2

cxn−2 ± dxn−4
, n = 0, 1, 2, ...,

where the initial conditions x−4, x−3 , x−2, x−1 and x0 are arbitrary positive real numbers and a, b, c, d are constants.
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1 Introduction

Recently, studying the qualitative behavior of difference equations and systems is a topic of a great interest. Appli-
cations of discrete dynamical systems and difference equations have appeared recently in many areas such as ecology,
population dynamics, statistical problems, number theory, geometry,genetics in biology,and psychology. Although dif-
ference equations come into view simple in form,it is quite difficult to know thoroughly the behaviour of their solutions
because some model for the development of the basic theory of the global behavior of difference equations come from
the results of rational difference equations. More results on the qualitative behaivor of difference equations can be
obtained in [9-21].

Almatrafi et al. [1] has explored the stability, boundedness and other properties of the following difference equation

xn+1 = axn +
bx2n + cxnxn−1 + dx2n−1
αx2n + βxnxn−1 + γx2n−1

.

In [2], Abo-Zeid studied the global behavior of higher order rational difference equation

xn+1 =
Axn−k

B − C
k∏
i=0

xn−i

.

Andruch [3] has got the solution of the difference equation

xn+1 =
αxn

b+ cxnxn−1
.

Din and Elsayed [4] investigated the stability analysis of ecological model

xn+1 = α+ βxn + γxn−1e
−yn , yn−1 = δ + εyn + ζyn−1e

−xn .

Elabbasy et al. [5] studied the difference equation
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xn+1 =
αxn−k

β + γ

k∏
i=0

xn−i

.

In [6] Elsayed and Abdul Khaliq studied the global attractivity and periodicity behavior of difference equation

xn+1 = axn−1 +
bxn−k + cxn−s
d+ exn−t

.

Gibbons et al. [7] investigated the qualitative behavior of solution of the difference equation

xn+1 =
α+ βxn−1
α+ xn

.

Hamza et al. [8] studied the asymptotic stability of the nonnegative equilibrium point of the difference equation

xn+1 =
Axn−1

B + C

k∏
i=l

xn−2i

.

In this paper, we investigated the dynamics and the form of the solutions of some nonlinear difference equations of
order five as follows:

xn+1 = axn−1 ±
bxn−1xn−2

cxn−2 ± dxn−4
, n = 0, 1, 2, ...,

with initial conditions x−4, x−3 , x−2, x−1 and x0 are arbitrary positive real numbers and a, b, c, d are constants.

Here, we will review some of the definitions and theorems used in solving special cases of difference equations.

Definition 1.1. Let I be some interval of real numbers and let

F : Ik+1 → I,

be a continuously differentiable function. Then for every set of initial condition x−k, x−k+1, ..., x0 ∈ I, the difference
equation

xn+1 = F (xn, xn−1, xn−2, ..., xn−k), n = 0, 1, ..., (1)

has a unique solution {xn}∞n=−k.

Definition 1.2. A point x ∈ I is called an equilibrium point of Eq.(1) if

x = F (x),

that is,

xn = x for all n ≥ −k.

is a solution of Eq.(1), or equivalently, x is a fixed point of F.

Definition 1.3. A sequence {xn}∞n=−k is said to be periodic with period p if xn+p = xn for all n ≥ −k.

Definition 1.4. (Fibonacci sequence)

The sequence {Fm}∞m=0 = {1, 1, 2, 3, 5, 8, ...} that is Fm = Fm−1+Fm−2, m ≥ 0, F−2 = −1, F−1 = 1 is called Fibonacci
sequence.

Definition 1.5. (Stability)

Let x∗ be an equilibrium point of Eq.(1).

(i) The equilibrium point x of Eq.(1) is called locally stable if for every ε > 0, there exists
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δ > 0 such that for all {xn}∞n=−k is a solution of Eq.(1) with

|x−k − x|+ |x1−k − x|+ ...+ |x0 − x| < δ,

then

|xn − x| < ε for all n ≥ 0.

(ii) The equilibrium point x of Eq.(1) is called locally asymptotically stable if it is locally stable, and if there
exists γ > 0 such that if {xn}∞n=−k is a solution of Eq.(1) with

|x−k − x|+ |x−k+1 − x|+ ...+ |x0 − x| < γ,

then

lim
n→→∞

xn = x.

(iii) The equilibrium point x of Eq.(1) is called a global attractor if for every solution {xn}∞n=−k of Eq.(1) we have

lim
n→→∞

xn = x

(iv) The equilibrium point x of Eq.(1) is called globally asymptotically stable if it is locally stable and global
attractor of Eq.(1).

(v) The equilibrium point x of Eq.(1) is called unstable if x is not locally stable.

Linearized Stability Analysis

Suppose that the function F is continuously differentiable in some open neighborhood of an equilibrium point x∗. Let

pi =
∂F

∂ui
(x, x, ..., x) for i = 0, 1, ..., k,

denote the partial derivatives of F (u0, u1, ....uk) evaluated at the equilibrium x of Eq.(1).
Then the equation

yn+1 = p0yn + p1yn−1 + ...+ pkyn−k , n = 0, 1, ..., (2)

is called the linearized equation associated of Eq.(1) about the equilibrium point x and the equation

λk+1 − p0λk − ...− pk−1λ− pk = 0, (3)

is called the characteristic equation of Eq.(2) about x.

The following result known as the Linear Stability Theorem is very useful in determining the local stability character
of the equilibrium point x of Eq.(1).

Theorem A. [33] Assume that p0, p2, ..., pk are real numbers such that

|p0|+ |p1|+ ...+ |pk| < 1,

or

k∑
i=1

|pi| < 1.

Then all roots of Eq.(3) lie inside the unit disk.

Theorem B [29]: Let g : [p, q]
k+1 → [p, q] be a continuous function, where p and q are real numbers with p < q, and

consider the following equation:
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xn+1 = g(xn, xn−1, ...xn−k) n = 0, 1, 2... . (4)

Suppose that g satisfies the following conditions:

(a) g(x1, x2, ..., xk+1) is non-increasing in one component (for example xσ) for each xr(r 6= σ) in [α, β], and is non-
increasing in the remaining components for each xσ ∈ [α, β];

(b) If (m,M) ∈ [α, β]× [α, β] is a solution of the system

M = g(m,m, ...,m,M,m, ...m,m) and m = g(M,M, ...,M,m,M, ...,M,M),

then
m = M.

Then Eq.(4) has a unique equilibrium x ∈ [α, β] and every solution of Eq.(4) converges to x.

2 Dynamics of the Equation xn+1 = axn−1 +
bxn−1xn−2
cxn−2+dxn−4

In this section, we study the some qualitative behavior properties for the recursive equation in the form:

xn+1 = axn−1 +
bxn−1xn−2

cxn−2 + dxn−4
, (5)

where the initial values x−4, x−3, x−2, x−1 and x0 are arbitrary positive real numbers. Also, a, b, c, d are
constants.

2.1 Local Stability of the Equilibrium Point

In this part we obtain the local stability character of the solution of Eq.(5) when a, b, c and d are positive real
numbers.

Equation (5) has a unique equilibrium point and is given by

x = ax+
bx2

cx+ dx
,

or

x2(1− a)(c+ d) = bx,

if (1− a)(c+ d) 6= b, then the unique equilibrium point is x = 0.

Let f : (0,∞)3 → (0,∞) be a function defined by

F (u, v, w) = au+
buv

cv + dw
.

Then it follows that,

Fu(u, v, w) = a+
bv

cv + dw
, Fv(u, v, w) =

bduw

(cv + dw)
2 , Fw(u, v, w) =

−bduv
(cv + dw)

2 ,

we see that

Fu(x, x, x) = a+
b

c+ d
, Fv(x, x, x) =

bd

(c+ d)
2 , Fw(x, x, x) =

−bd
(c+ d)2

.

The linearized equation about x is

yn+1 −
(
a+

b

c+ d

)
yn−1 −

(
bd

(c+ d)
2

)
yn−2 −

(
−bd

(c+ d)2

)
yn−4 = 0. (6)

Theorem 1. Suppose that
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b (c+ 3d) < (1− a) (c+ d)
2
.

Then the equilibrium point of Eq.(5) is locally asymptotically stable.

Proof. It is following by Theorem A that Eq.(6) is asymptotically stable if∣∣∣∣a+
b

c+ d

∣∣∣∣+

∣∣∣∣∣ bd

(c+ d)
2

∣∣∣∣∣+

∣∣∣∣ −bd(c+ d)2

∣∣∣∣ < 1,

or

bc+ 3bd

(c+ d)
2 < 1,

and

b (c+ 3d) < (1− a)(c+ d)2.

The proof is complete.

2.2 Global Attractor of the Equilibrium Point of Eq.(5)

Theorem 2. The equilibrium point x of Eq.(5) is global attractor if (1− a) (c+ d) 6= b.

Proof. Let p, q are real numbers and suppose that g : [p, q]
3 → [p, q] be function defined by g(u, v, w) = au+

buv

cv + dw
,

then we can easily see that the function g(u, v, w) increasing in u, v and decreasing in w.

Suppose that (m,M) is a solution of the system

M = g (M,M,m) and m = g (m,m,M) .

Then from Eq. (5) , we see that

M = aM +
bM2

cM + dm
, m = am+

bm2

cm+ dM
,

or

M2c(1− a) +Mmd(1− a) = bM2, m2c(1− a) +Mmd(1− a) = bm2.

Subtracting we have

(M2 −m2) {c(1− a)− b} = 0, c(1− a) 6= b.

Then

M = m.

Therefore by Theorem B that x is a global attractor of Eq.(5) and then the proof is complete.

2.3 Boundedness of Solution of Eq.(5)

Theorem 3. Every solution of Eq.(5) is bounded if

(
a+

b

c

)
< 1.

Proof. Let {xn}∞n=−4 be a solution of Eq.(5). Then from Eq.(5) we see that

xn+1 = axn−1 +
bxn−1xn−2

cxn−2 + dxn−4
≤ axn−1 +

bxn−1xn−2
cxn−2

=

(
a+

b

c

)
xn−1.

Then if

(
a+

b

c

)
< 1, we get

xn+1 ≤ xn−1, for all n ≥ 0.

Then the sequence {xn}∞n=1 is decreasing and so are bounded from above by M = max{x−4, x−3, x−2, x−1, x0}.
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2.4 Solutions of the Equation xn+1 = xn−1 +
xn−1xn−2

xn−2+xn−4

In this part, we obtain the solution of the recursive equation in the form:

xn+1 = xn−1 +
xn−1xn−2
xn−2 + xn−4

, (7)

where the initial values x−4, x−3, x−2, x−1 and x0 are arbitrary non zero real numbers.

Theorem 4. Let {xn}∞n=−4 be a solution of difference equation (7). Then for n = 0, 1, ...

x6n−4 = s

n−1∏
i=0

(F4i+3k + F4i+2p) (F4i+1r + F4is) (F4i+1h+ F4ir)

(F4i+2k + F4i+1p) (F4ir + F4i−1s) (F4ih+ F4i−1r)
,

x6n−3 = p

n−1∏
i=0

(F4i+1k + F4ip) (F4i+3r + F4i+2s) (F4i+3h+ F4i+2r)

(F4ik + F4i−1p) (F4i+2r + F4i+1s) (F4i+2h+ F4i+1r)
,

x6n−2 = r

n−1∏
i=0

(F4i+3k + F4i+2p) (F4i+5r + F4i+4s) (F4i+1h+ F4ir)

(F4i+2k + F4i+1p) (F4i+4r + F4i+3s) (F4ih+ F4i−1r)
,

x6n−1 = k

n−1∏
i=0

(F4i+5k + F4i+4p) (F4i+3r + F4i+2s) (F4i+3h+ F4i+2r)

(F4i+4k + F4i+3p) (F4i+2r + F4i+1s) (F4i+2h+ F4i−+1r)
,

x6n = h

n−1∏
i=0

(F4i+3k + F4i+2p) (F4i+5r + F4i+4s) (F4i+5h+ F4i+4r)

(F4i+2k + F4i+1p) (F4i+4r + F4i+3s) (F4i+4h+ F4i+3r)
,

x6n+1 =
k (2r − s)
r + s

n−1∏
i=0

(F4i+5k + F4i+4p) (F4i+7r + F4i+6s) (F4i+3h+ F4i+2r)

(F4i+4k + F4i+3p) (F4i+6r + F4i+5s) (F4i+2h+ F4i+1r)
,

where x−4 = s, x−3 = p, x−2 = r, x−1 = k and x0 = h.

Proof. For n = 0, the result holds. Now, assume that n > 0 and that our assumption holds for n− 1. That is,

x6n−9 = p

n−2∏
i=0

(F4i+1k + F4ip) (F4i+3r + F4i+2s) (F4i+3h+ F4i+2r)

(F4ik + F4i−1p) (F4i+2r + F4i+1s) (F4i+2h+ F4i+1r)
,

x6n−8 = r

n−2∏
i=0

(F4i+3k + F4i+2p) (F4i+5r + F4i+4s) (F4i+1h+ F4ir)

(F4i+2k + F4i+1p) (F4i+4r + F4i+3s) (F4ih+ F4i−1r)
,

x6n−7 = k

n−2∏
i=0

(F4i+5k + F4i+4p) (F4i+3r + F4i+2s) (F4i+3h+ F4i+2r)

(F4i+4k + F4i+3p) (F4i+2r + F4i+1s) (F4i+2h+ F4i−+1r)
,

x6n−6 = h

n−2∏
i=0

(F4i+3k + F4i+2p) (F4i+5r + F4i+4s) (F4i+5h+ F4i+4r)

(F4i+2k + F4i+1p) (F4i+4r + F4i+3s) (F4i+4h+ F4i+3r)
,

x6n−5 =
k (2r + s)

r + s

n−2∏
i=0

(F4i+5k + F4i+4p) (F4i+7r + F4i+6s) (F4i+3h+ F4i+2r)

(F4i+4k + F4i+3p) (F4i+6r + F4i+5s) (F4i+2h+ F4i+1r)
.

Now, it follows from Eq. (7) that
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x6n−4 = x6n−6 +
x6n−6x6n−7
x6n−7 + x6n−9

= x6n−6

(
1 +

x6n−7
x6n−7 + x6n−9

)

= x6n−6


1 +

k

n−2∏
i=0

(F4i+5k+F4i+4p)(F4i+3r+F4i+2s)(F4i+3h+F4i+2r)
(F4i+4k+F4i+3p)(F4i+2r+F4i+1s)(F4i+2h+F4i−+1r)

k

n−2∏
i=0

(F4i+5k+F4i+4p)(F4i+3r+F4i+2s)(F4i+3h+F4i+2r)
(F4i+4k+F4i+3p)(F4i+2r+F4i+1s)(F4i+2h+F4i−+1r)

+p

n−2∏
i=0

(F4i+1k+F4ip)(F4i+3r+F4i+2s)(F4i+3h+F4i+2r)
(F4ik+F4i−1p)(F4i+2r+F4i+1s)(F4i+2h+F4i+1r)



= x6n−6

1 +

k

n−2∏
i=0

(F4i+5k+F4i+4p)
(F4i+4k+F4i+3p)

k

n−2∏
i=0

(F4i+5k+F4i+4p)
(F4i+4k+F4i+3p)

+ p

n−2∏
i=0

(F4i+1k+F4ip)
(F4ik+F4i−1p)



= x6n−6

1 +
k

k + p

n−2∏
i=0

(F4i+1k+F4ip)
(F4i+5k+F4i+4p)

(F4i+4k+F4i+3p)
(F4ik+F4i−1p)


= x6n−6

(
1 +

1

1 + F4n−4k+F4n−5p
F4n−3k+F4n−4p

)
= x6n−6

(
1 +

F4n−3k + F4n−4p

F4n−2k + F4n−3p

)
= x6n−6

(
F4n−1k + F4n−2p

F4n−2k + F4n−3p

)
= h

n−2∏
i=0

(F4i+3k+F4i+2p)(F4i+5r+F4i+4s)(F4i+5h+F4i+4r)
(F4i+2k+F4i+1p)(F4i+4r+F4i+3s)(F4i+4h+F4i+3r)

(
F4n−1k+F4n−2p
F4n−2k+F4n−3p

)
,

Consequently, we have

x6n−4 = s

n−1∏
i=0

(F4i+3k + F4i+2p) (F4i+1r + F4is) (F4i+1h+ F4ir)

(F4i+2k + F4i+1p) (F4ir + F4i−1s) (F4ih+ F4i−1r)
.

Similarly,
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x6n−3 = x6n−5 +
x6n−5x6n−6
x6n−6 + x6n−8

= x6n−5

(
1 +

x6n−6
x6n−6 + x6n−8

)

= x6n−5

1 +

h

n−2∏
i=0

(F4i+5h+F4i+4r)
(F4i+4h+F4i+3r)

h

n−2∏
i=0

(F4i+5h+F4i+4r)
(F4i+4h+F4i+3r)

+ r

n−2∏
i=0

(F4i+1h+F4ir)
(F4ih+F4i−1r)



= x6n−5

1 +
h

h+ r

n−2∏
i=0

(F4i+1h+F4ir)
(F4i+5h+F4i+4r)

(F4i+4h+F4i+3r)
(F4ih+F4i−1r)


= x6n−5

(
1 +

1

1 + F4n−4h+F4n−5r
F4n−3h+F4n−4r

)

= x6n−5

(
1 +

F4n−3h+ F4n−4r

F4n−2h+ F4n−3r

)
= x6n−5

(
F4n−1h+ F4n−2r

F4n−2h+ F4n−3r

)
=
k (2r + s)

r + s

n−2∏
i=0

(F4i+5k+F4i+4p)(F4i+7r+F4i+6s)(F4i+3h+F4i+2r)
(F4i+4k+F4i+3p)(F4i+6r+F4i+5s)(F4i+2h+F4i+1r)

(
F4n−1h+F4n−2r
F4n−2h+F4n−3r

)
Then

x6n−3 = p

n−1∏
i=0

(F4i+1k + F4ip) (F4i+3r + F4i+2s) (F4i+3h+ F4i+2r)

(F4ik + F4i−1p) (F4i+2r + F4i+1s) (F4i+2h+ F4i+1r)
.

Similarly, other relations can be obtain and thus, the proof has been proved.

3 Dynamics of the Equation xn+1 = axn−1 +
bxn−1xn−2
cxn−2−dxn−4

In this part, we examine the following equation

xn+1 = axn−1 +
bxn−1xn−2

cxn−2 − dxn−4
, (8)

where the initial conditions x−4, x−3, x−2, x−1 and x0 are arbitrary positive real numbers and a, b, c, d are
constants.

3.1 Local Stability of the Equilibrium Point

In this part we obtain the local stability character of the solution of Eq.(8) when a, b, c and d are positive real
numbers.

Equation (8) has a unique equilibrium point and is given by

x = ax+
bx2

cx− dx
,

or

x2(1− a)(c− d) = bx,
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if (1− a)(c− d) 6= b, then the unique equilibrium point is x = 0.

Let F : (0,∞)3 → (0,∞) be a function defined by

F (u, v, w) = au+
buv

cv − dw
.

Then it follows that,

Fu(u, v, w) = a+
bv

cv − dw
, Fv(u, v, w) =

−bduw
(cv − dw)

2 , Fw(u, v, w) =
bduv

(cv − dw)
2 ,

we see that

Fu(x, x, x) = a+
b

c− d
, Fv(x, x, x) =

−bd
(c− d)

2 , Fw(x, x, x) =
bd

(c− d)2
.

The linearized equation about x is

yn+1 −
(
a+

b

c− d

)
yn−1 −

(
−bd

(c− d)
2

)
yn−2 −

(
bd

(c− d)2

)
yn−4 = 0. (9)

Theorem 5. Suppose that
b (c+ d) < (1− a)(c− d)2, when c > d.

b (3d− c) < (1− a)(d− c)2, when c < d.

Then the equilibrium point of Eq.(8) is locally asymptotically stable.

Proof. It is followed by Theorem A that Eq.(9) is asymptotically stable if∣∣∣∣a+
b

c− d

∣∣∣∣+

∣∣∣∣∣ −bd(c− d)
2

∣∣∣∣∣+

∣∣∣∣ bd

(c− d)2

∣∣∣∣ < 1,

or ∣∣∣∣a+
b

c− d

∣∣∣∣+

∣∣∣∣ 2bd

(c− d)2

∣∣∣∣ < 1,

and when c > d, we see that

b

c− d
+

2bd

(c− d)2
< 1− a ⇒ b (c+ d) < (1− a)(c− d)2.

and when c < d, we see that

b

d− c
+

2bd

(d− c)2
< 1− a ⇒ b (3d− c) < (1− a)(d− c)2.

The proof is completed.

3.2 Global Attractor of the Equilibrium Point of Eq.(8)

Theorem 6. The equilibrium point x of Eq.(8) is global attractor if (1− a) (c− d) 6= b.

Proof. Let p.q are real numbers and suppose that g : [p, q]
3 → [p, q] be function defined by g(u, v, w) = au+ buv

cv−dw ,
then we can easily see that the function g(u, v, w) has two cases

(i) The function g(u, v, w) increasing in u,w and decreasing in v.
Suppose that (m,M) is a solution of the system

M = g (M,m,M) and m = g (m,M,m) .

Then from Eq.(8) , we see that

148

http://purkh.com/index.php/mathlab


MathLAB Journal Vol 2 No 1 (2019) http://purkh.com/index.php/mathlab

M = aM +
bMm

cm− dM
, m = am+

bmM

cM − dm
,

or

Mmc(1− a)−M2d(1− a) = bMm, Mmc(1− a)−m2d(1− a) = bmM.

Subtracting we have

d(1− a)(M2 −m2) = 0, d(1− a) 6= 0.

Then

M = m.

(ii) The function g(u, v, w) increasing in w and decreasing in u, v. Suppose that (m,M) is a solution of the system

M = g (m,m,M) and m = g (M,M,m) .

Then from Eq.(8), we see that

M = am+
bm2

cm− dM
, m = aM +

bM2

cM − dm
,

or

Mm(c+ ad)−M2d−m2ac = bm2, Mm(c+ ad)−m2d−M2ac = bM2.

Subtracting we have (
m2 −M2

)
(d− (ac+ b)) = 0, d− (ac+ b) 6= 0

Then

M = m.

Therefore by Theorem B that x is a global attractor of Eq.(8) and then the proof is complete.

3.3 Solutions of the Equation xn+1 = xn−1 +
xn−1xn−2

xn−2−xn−4

Theorem 7. Suppose {xn}∞n=−4 be a solution of difference equation xn+1 = xn−1+ xn−1xn−2

xn−2−xn−4
with x−4 6= x−2, x−3 6=

x−1, x0 6= x−2. Then for n = 0, 1, ...

x6n−4 =
(F2n+1k − F2n−1p) (F2nr − F2n−2s) (F2nh− F2n−2r)

r (k − p)
,

x6n−3 =
(F2nk − F2n−2p) (F2n+1r − F2n−1s) (F2n+1h− F2n−1r)

(r − s) (h− r)
,

x6n−2 =
(F2n+1k − F2n−1p) (F2n+2r − F2ns) (F2nh− F2n−2r)

r (k − p)
,

x6n−1 =
(F2n+2k − F2np) (F2n+1r − F2n−1s) (F2n+1h− F2n−1r)

(r − s) (h− r)
,

x6n =
(F2n+1k − F2n−1p) (F2n+2r − F2ns) (F2n+2h− F2nr)

r (k − p)
,

x6n+1 =
(F2n+2k − F2np) (F2n+3r − F2n+1s) (F2n+1h− F2n−1r)

(r − s) (h− r)
,

where x−4 = s, x−3 = p, x−2 = r, x−1 = k and x0 = h.

Proof. For n = 0 the result holds. Now assume that n > 0 and that assumption holds for n− 1. That is,
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x6n−9 =
(F2n−2k − F2n−4p) (F2n−1r − F2n−3s) (F2n−1h− F2n−3r)

(r − s) (h− r)
,

x6n−8 =
(F2n−1k − F2n−3p) (F2nr − F2n−2s) (F2n−2h− F2n−4r)

r (k − p)
,

x6n−7 =
(F2nk − F2n−2p) (F2n−1r − F2n−3s) (F2n−1h− F2n−3r)

(r − s) (h− r)
,

x6n−6 =
(F2n−1k − F2n−3p) (F2nr − F2n−2s) (F2nh− F2n−2r)

r (k − p)
,

x6n−5 =
(F2nk − F2n−2p) (F2n+1r − F2n−1s) (F2n−1h− F2n−3r)

(r − s) (h− r)

Now, it follows from Eq. (8) that

x6n−4 = x6n−6 +
x6n−6x6n−7
x6n−7 − x6n−9

= x6n−6

(
1 +

x6n−7
x6n−7 − x6n−9

)

= x6n−6

1 +


(F2nk−F2n−2p)(F2n−1r−F2n−3s)(F2n−1h−F2n−3r)

(r−s)(h−r)
(F2nk−F2n−2p)(F2n−1r−F2n−3s)(F2n−1h−F2n−3r)

(r−s)(h−r)
− (F2n−2k−F2n−4p)(F2n−1r−F2n−3s)(F2n−1h−F2n−3r)

(r−s)(h−r)




= x6n−6

(
1 +

F2nk − F2n−2p

F2nk − F2n−2p− (F2n−2k − F2n−4p)

)
= x6n−6

(
1 +

F2nk − F2n−2p

F2n−1k − F2n−3p

)
= (F2n−1k−F2n−3p)(F2nr−F2n−2s)(F2nh−F2n−2r)

r(k−p)

(
F2n+1k − F2n−1p

F2n−1k − F2n−3p

)
,

Consequently, we have

x6n−4 =
(F2n+1k − F2n−1p) (F2nr − F2n−2s) (F2nh− F2n−2r)

r (k − p)
.

Also, from Eq. (8) we see that

x6n−3 = x6n−5 +
x6n−5x6n−6
x6n−6 − x6n−8

= x6n−5

(
1 +

x6n−6
x6n−6 − x6n−8

)

= x6n−5

1 +
(F2n−1k−F2n−3p)(F2nr−F2n−2s)(F2nh−F2n−2r)

r(k−p)

(F2n−1k−F2n−3p)(F2nr−F2n−2s)(F2nh−F2n−2r)
r(k−p)

− (F2n−1k−F2n−3p)(F2nr−F2n−2s)(F2n−2h−F2n−4r)
r(k−p)


= x6n−5

(
1 +

F2nh− F2n−2r

F2nh− F2n−2r − (F2n−2h− F2n−4r)

)
= x6n−5

(
1 +

F2nh− F2n−2r

F2n−1h− F2n−3r

)
= (F2nk−F2n−2p)(F2n+1r−F2n−1s)(F2n−1h−F2n−3r)

(r−s)(h−r)

(
F2n+1h− F2n−1r

F2n−1h− F2n−3r

)
,

therefore
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x6n−3 =
(F2nk − F2n−2p) (F2n+1r − F2n−1s) (F2n+1h− F2n−1r)

(r − s) (h− r)
Similarly, other relations can be obtain and thus, the proof has been proved.

The following cases can be proved by similar way so it will be left to the readers.

4 Dynamics of Solution of xn+1 = axn−1 − bxn−1xn−2
cxn−2+dxn−4

In this section, we get the expressions of the solution of the difference equation in the form:

xn+1 = axn−1 −
bxn−1xn−2

cxn−2 + dxn−4
, n = 0, 1, ..., (10)

where the initial conditions x−4, x−3, x−2, x−1 and x0 are arbitrary real numbers.

4.1 Local Stability of the Equilibrium Point

In this part, we study the local stability character of the solution of Eq.(10) .

Eq.(10) has a unique equilibrium point and is given by x = 0.

Let F : (0,∞)3 → (0,∞) be a function defined by

F (u, v, w) = au− buv

cv + dw
.

Then it follows that,

Fu(u, v, w) = a− bv

cv + dw
, Fv(u, v, w) =

−bduw
(cv + dw)

2 , Fw(u, v, w) =
bduv

(cv + dw)
2 ,

we see that

Fu(x, x, x) = a− b

c+ d
, Fv(x, x, x) =

−bd
(c+ d)

2 , Fw(x, x, x) =
bd

(c+ d)2
.

The linearized equation about x is

yn+1 −
(
a− b

c+ d

)
yn−1 −

(
−bd

(c+ d)
2

)
yn−2 −

(
bd

(c+ d)2

)
yn−4 = 0.

Theorem 8. Suppose that ∣∣∣∣a− b

c+ d

∣∣∣∣+
2bd

(c+ d)
2 < 1.

Then the equilibrium point of Eq.(10) is locally asymptotically stable.

4.2 Global Attractor of the Equilibrium Point of Eq.(10)

Theorem 9. The equilibrium point x of Eq. (10) is global attractor if (1− a) (c+ d) 6= −b.
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4.3 Solutions of the Equation xn+1 = xn−1 − xn−1xn−2

xn−2+xn−4

Theorem 10. Let {xn}∞n=−4 be a solution of the difference equation xn+1 = xn−1 − xn−1xn−2

xn−2+xn−4
. Then for n = 0, 1, ...

x6n−4 = s

n−1∏
i=0

(F2ik + F2i+1p) (F2i−1r + F2is) (F2i−1h+ F2ir)

(F2i+1k + F2i+2p) (F2ir + F2i+1s) (F2ih+ F2i+1r)
,

x6n−3 = p

n−1∏
i=0

(F2i−1k + F2ip) (F2ir + F2i+1s) (F2ih+ F2i+1r)

(F2ik + F2i+1p) (F2i+1r + F2i+2s) (F2i+1h+ F2i+2r)
,

x6n−2 = r

n−1∏
i=0

(F2ik + F2i+1p) (F2i+1r + F2i+2s) (F2i−1h+ F2ir)

(F2i+1k + F2i+2p) (F2i+2r + F2i+3s) (F2ih+ F2i+1r)
,

x6n−1 = k

n−1∏
i=0

(F2i+1k + F2i+2p) (F2ir + F2i+1s) (F2ih+ F2i+1r)

(F2i+2k + F2i+3p) (F2i+1r + F2i+2s) (F2i+1h+ F2i+2r)
,

x6n = h

n−1∏
i=0

(F2ik + F2i+1p) (F2i+1r + F2i+2s) (F2i+1h+ F2i+2r)

(F2i+1k + F2i+2p) (F2i+2r + F2i+3s) (F2i+2h+ F2i+3r)
,

x6n+1 =
ks

(r + s)

n−1∏
i=0

(F2i+1k + F2i+2p) (F2i+2r + F2i+3s) (F2ih+ F2i+1r)

(F2i+2k + F2i+3p) (F2i+3r + F2i+4s) (F2i+1h+ F2i+2r)
.

5 Dynamics of Solution of xn+1 = axn−1 − bxn−1xn−2
cxn−2−dxn−4

In this part, we obtain the form of solution of the following difference equation

xn+1 = axn−1 −
bxn−1xn−2

cxn−2 − dxn−4
, n = 0, 1, ..., (11)

where the initial conditions x−4, x−3, x−2, x−1 and x0 are arbitrary non zero real numbers.

5.1 Local Stability of the Equilibrium Point

In this part, we obtain the local stability character of the solution of Eq. (11). Eq.(11) has a unique equilibrium point
is x = 0.

Let F : (0,∞)3 → (0,∞) be a function defined by

F (u, v, w) = au− buv

cv − dw
,

Then it follows that,

Fu(x, x, x) = a− b

c− d
, Fv(x, x, x) =

bd

(c− d)
2 , Fw(x, x, x) =

−bd
(c− d)2

.

Theorem 11. Suppose that ∣∣∣∣a− b

c− d

∣∣∣∣+
2bd

(c− d)
2 < 1.

Then the equilibrium point is locally asymptotically stable.

5.2 Global Attractor of the Equilibrium Point of Eq.(11)

Theorem 12. The equilibrium point x of Eq.(11) is global attractor if (1− a) (c− d) 6= −b.
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5.3 Solutions of the Equation xn+1 = xn−1 − xn−1xn−2

xn−2−xn−4

Theorem 13. Suppose that {xn}∞n=−4 be a solution of Eq.(11) with (a = b = c = d = 1), x−2 6= x−4 x−1 6= x−3 and
x0 6= x−2. Then every solution of Eq.(11) is periodic with period 36. Moreover {xn}∞n=−4 takes the form

s, p, r, k, h, −−ksr−s ,
−hp
k−p ,

ksr
(r−s)(h−r) ,

−hp
r(k−p) ,

rs(k−p)
(r−s)(h−s) ,

−p(r−s)(h−r)
r(k−p) ,

r2(k−p)
(r−s)(h−r) ,

−k(r−s)(h−r)
r(k−p) , hr(k−p)

(r−s)(h−r) ,
ks(h−r)
r(k−p) ,

−hpr
(r−s)(h−r) ,

−ks
k−p ,

−hp
h−r ,−s,−p,

−r,−k,−h, ks
r−s ,

hp
k−p ,

−krs
(r−s)(h−r) ,

hp(r−s)
r(k−p) ,

−rs(k−p)
(r−s)(h−r) ,

p(r−s)(h−r)
r(k−p) , −r

2(k−p)
(r−s)(h−r) ,

k(r−s)(h−r)
r(k−p) , −hr(k−p)(r−s)(h−r) ,

−ks(h−r)
r(k−p) , hpr

(r−s)(h−r) ,
ks
k−p ,

hp
h−r , s, p, r, k, h, ...

 .

6 Numerical Examples

To verify the results of this paper, we consider some numerical examples as follows.

Example 1. In Figure 1, we take Eq.(5) since a = .1, b = .3, c = .6, d = .5, x−4 = 2, x−3 = .6, x−2 = .7, x−1 = .3
and x0 = 1.9.

n

0 5 10 15 20 25 30

x
(
n
)

0

0.5

1

1.5

2
plot of x(n+1)= =0.1*x(n-1)+((0.3*x(n-1)*x(n-2))/(0.6*x(n-2)+0.5*x(n-4)))

Figure 1.

Example 2. See Figure 2, we suppose for Eq.(5) that a = 2, b = .3, c = .6, d = .5, x−4 = 2, x−3 = .6, x−2 = .7,
x−1 = .3 and x0 = 1.9.
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n

0 5 10 15 20 25 30

x
(
n
)

×104

0

1

2

3

4

5

6
plot of x(n+1)= =2*x(n-1)+((0.3*x(n-1)*x(n-2))/(0.6*x(n-2)+0.5*x(n-4)))

Figure 2.

Example 3. Figure 3 shows the solutions of Eq.(8) where a = .2, b = .3, c = .6, d = .5, x−4 = 2, x−3 = 6, x−2 = .7,
x−1 = 3 and x0 = 1.9.

n

0 5 10 15 20 25 30

x
(
n
)

-2

-1

0

1

2

3

4

5

6
plot of x(n+1)= =0.2*x(n-1)+((0.3*x(n-1)*x(n-2))/(0.6*x(n-2)-0.5*x(n-4)))

Figure 3.

Example 4. Figure 4 shows the behavior of Eq.(10) when we choose a = .2, b = 3, c = 6, d = .5, x−4 = 2, x−3 = 6,
x−2 = .7, x−1 = 3 and x0 = 1.9.
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n
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x
(
n
)
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2

3

4

5

6
plot of x(n+1)= =0.2*x(n-1)-((3*x(n-1)*x(n-2))/(6*x(n-2)+0.5*x(n-4)))

Figure 4.

Example 5. Figure 5 shows the period thirty six solutions of Eq.(11) since a = b = c = d = 1, x−4 = 2, x−3 = .6,
x−2 = .7, x−1 = 3 and x0 = 0.19.

n

0 10 20 30 40 50 60 70 80

x
(
n
)

-8

-6

-4

-2

0

2

4

6

8
plot of x(n+1)= =x(n-1)-((x(n-1)*x(n-2))/(x(n-2)-x(n-4)))

Figure 5.

Example 6. See Figure 6, we suppose for Eq.(11), that a = c = d = 1, b = 2, x−4 = 2, x−3 = .6, x−2 = .7, x−1 = 3
and x0 = 0.19.
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n
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0
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plot of x(n+1)= =x(n-1)-((2*x(n-1)*x(n-2))/(x(n-2)-x(n-4)))

Figure 6.
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