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Abstract

In this paper we investigate the exponential stability of impul-sive control for neural networks with time-varying delay
by using a Lyapunov-Krasovskii functional. One numerical example is given to demonstrate theeffectiveness of the
obtained results.
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Introduction

Neural networks has been used in various fields, such as pattern recognition, signal processing and other fields [1-2]. In
recent years, time delays has been occurred frequently. Therefore, some authors pay more attention to neural networks
with time-varying delay [3-6] , such as

x′(t) = −Cx(t) +Af(x(t)) +Bf(x(t− d(t))), (1)

where x(.) = [x1(.), x2(.), ..., xn(.)]T ∈ Rn is the neuron state vector; f(x(.)) = [f1(x(.)),

vspace5mmf2(x(.)), ..., fn(x(.))]T ∈ Rn denotes the neuron activation function; C = diag(c1, c2, ..., cn) is a diagonal
matrix with ci > 0; and A and B are the connection weight matrix and the delayed connection weight matrix.
respectively, the time delay d(t) is a time-varying differentiable function .

Impulsive control which reduces the control cost is an effective and ideal control technique [7-9]. Impulsive effect
exists widely in many evolutionary processes. The paper investigates a delayed neural networks with impulses, which
is neither purely continuous-time nor purely discrete-time ones.

In this paper, we consider the system (1) subjected to certain impulsive state displacements at fixed moments of
time: {

x
′
(t) = −Cx(t) +Af(x(t)) +Bf(x(t− d(t))), t 6= tk,

x(t+) = Rx(t), t = tk,
(2)

where R is positive definite block-diagonal matrix. xj(t
−
k ) = xj(tk), which mean xj(t) is left continuous at each tk.

The moments of impulsive satisfy t1 < t2 < · · · < tk < tk+1 < ... and lim
k→+∞

tk =∞.

The paper constructs a new Lyapunov-Krasovskii functional (LKF) firstly. Then, we can obtain the LKF which is
non-increasing . And a stability condition is established by integral inequality. What’s different from the exists is that
we are going to consider the impulsive differential equations. Finally, a numerical example is given to demonstrate
the effectiveness of the obtained results.

2. Preliminaries

In this paper, we assume that the time delay d(t) is a time-varying differentiable function that satisfies

0 ≤ d(t) ≤ h, d′(t) ≤ µ, (3),
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where h and µ are constants.
In addition, it is assumed that each neuron activation function fj(.) satisfies the following condition

0 ≤ fj(xj)

xj
≤ Lj , fj(0) = 0,∀xj 6= 0, j = 1, 2, .., n. (4)

Definition 1The system (2) is said to be exponentially stable if there exist constants k > 0 and M ≥ 1 such that

||x(t)|| ≤Mφe−kt, (5)

where φ = sup
−h≤θ≤0

||x(θ)||, k is called the exponential convergence rate.

Lemma 1[3]For any vector a, b ∈ Rn, the inequality

2aT b ≤ aTXa+ bTX−1b (6)

holds, in which X is any positive matrix (i. e, X > 0).
Lemma 2[3] Suppose that (4) holds, then∫ u

v

[fj(s)− fj(v)]ds ≤ [u− v][fj(u)− fj(v)], j = 1, 2, ..., n. (7)

Lemma 3[4] Assume that (4) holds, then we have∫ u

v

[fj(s)− fj(v)]ds ≥ 1

2Lj
[fj(u)− fj(v)]2, j = 1, 2, ..., n. (8)

3. Main results

Theorem 1.The system (2) with (4) and a time-varying delay satisfying condition (3) is exponential stable and have
the exponential convergence rate k, if there exist P = PT > 0,M = MT > 0,W = WT > 0, N = NT > 0, D =
diag(d1, d2, ..., dn) ≥ 0, such that the following matrix is feasible

Γ1 =


Θ1

Θ2

Θ3

Θ4

 < 0,

Γ2 =

[
Θ5

Θ6

]
< 0,

where
Θ1 = 2kP − 2PC + 2PAL+ P 2 + 4kLD + e2khM + hN ,

Θ2 = −2DCL−1 + 2DA+D2 + e2khW ,

Θ3 = (µ− 1)M ,Θ4 = 2BTB + (µ− 1)W ,

Θ5 = RTPR− P + 2RTLDR,Θ6 = −DL−1,

L = diag(L1, L2, ..., Ln).
Proof.Construct the following Lyapunov-Krasovskii functional

V (x(t)) = V1(x(t)) + V2(x(t)) + V3(x(t)),

V1(x(t)) = e2ktxT (t)Px(t) + 2
n∑
j=1

dje
2kt
∫ xj

0
fj(s)ds,
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V2(x(t)) = e2kh
∫ t
t−d(t) e

2ks[xT (s)Mx(s) + fT (x(s))Wf(x(s))]ds,

V3(x(t)) =
∫ 0

−h
∫ t
t+θ

e2ksxT (s)Nx(s)dsdθ,

where P = PT > 0,M = MT > 0,W = WT > 0, N = NT > 0, D = diag(d1, d2, ..., dn) ≥ 0 are to be determined.
Firstly, we define the following vector

η1(t) = [xT (t) fT (x(t)) xT (t− d(t)) fT (x(t− d(t)))],

η2(t) = [xT (t) fT (x(t))].

For t 6= tk, by using Lemma 1 and 2, calculating the derivative of Vi(x(t))(i = 1, 2, 3) along the trajectories of the
system (2) yields.

V
′

1 (x(t)) = 2ke2ktxT (t)Px(t) + 2e2ktxT (t)Px
′
(t) + 4

n∑
j=1

kdje
2kt

∫ xj

0

fj(s)ds

+2

n∑
j=1

dje
2ktfj(xj(t))x

′

j(t)

≤ 2ke2ktxT (t)Px(t) + 2e2ktxT (t)Px
′
(t) + 4ke2ktfT (x(t))Dx(t)

+2e2ktfT (x(t))Dx
′
(t)

≤ 2ke2ktxT (t)Px(t)− 2e2ktxT (t)PCx(t) + 2e2ktxT (t)PALx(t)

+e2ktxT (t)P 2x(t) + e2ktfT (x(t− d(t)))BTBf(x(t− d(t)))

+4ke2ktxT (t)LDx(t)− 2e2ktfT (x(t)DCL−1f(x(t))

+2e2ktfT (x(t))DAf(x(t)) + e2ktfT (x(t))D2f(x(t))

+e2ktfT (x(t− d(t)))BTBf(x(t− d(t)))

= e2kt[xT (t)(2kP − 2PC + 2PAL+ P 2 + 4kLD)x(t)

+fT (x(t))(−2DCL−1 + 2DA+D2)f(x(t))

+fT (x(t− d(t))(2BTB)f(x(t− d(t)))].

V
′

2 (x(t)) = e2khe2kt(xT (t)Mx(t) + fT (x(t)Wf(x(t)))− e2khe2k(t−d(t))

(1−d
′
(t))[xT (t−d(t))Mx(t−d(t))+fT (x(t−d(t))Wf(x(t−d(t)))]

≤ e2kt[xT (t)e2khMx(t) + fT (x(t))e2khWf(x(t)) + xT (t− d(t))

(µ− 1)Mx(t− d(t)) + fT (x(t− d(t))(µ− 1)Wf(x(t− d(t)))].

V
′

3 (x(t)) = he2ktxT (t)Nx(t)−
∫ t

t−h
e2ksxT (s)Nx(s)ds ≤ e2ktxT (t)hNx(t).

From the previous expression, we can get

V
′
(x(t)) ≤ e2kt[xT (t)(2kP − 2PC + 2PAL+ P 2 + 4kLD + e2khM + hN)x(t)

+fT (x(t))(−2DCL−1+2DA+D2+e2khW )f(x(t))+xT (t−d(t))(µ−1)

Mx(t− d(t)) + fT (x(t− d(t))(2BTB + (µ− 1)W )f(x(t− d(t)))]

= e2ktη1(t)Γ1η
T (t).

From Γ1 < 0 , we have V
′
(x(t)) < 0.

When t = tk(k = 1, 2, ...), by using Lemmas 2 and 3 , we can obtain

V1(x(t+k ))− V1(x(tk)) = e2kt
+
k xT (t+k )Px(t+k ) + 2

n∑
j=1

dje
2kt+

k

∫ x+
j

0

fj(s)ds

−e2ktkxT (tk)Px(tk)− 2

n∑
j=1

dje
2ktk

∫ xj

0

fj(s)ds
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≤ e2ktkxT (tk)(RTPR− P )x(tk) + 2e2ktkfT (x(t+k ))Dx(t+k )

−e2ktkfT (x(tk))DL−1f(x(tk))

= e2ktk[xT(tk)(RTPR−P+2RTLDR)x(tk)−fT(x(tk))DL−1f(x(tk))],

V2(x(t+k ))− V2(x(tk)) = e2kh
∫ t+

k

t+
k
−d(t+

k
)

e2ks(xT (s)Mx(s) + fT (x(s))Wf(x(s)))ds

−e2kh
∫ tk

tk−d(tk)
e2ks(xT (s)Mx(s) + fT (x(s))Wf(x(s)))ds

= 0,

V3(x(t+k ))− V3(x(tk)) =

∫ 0

−h

∫ t+
k

t+
k
+θ

e2ksxT (s)Nx(s)dsdθ −
∫ 0

−h

∫ tk

tk+θ

e2ksxT (s)Nx(s)dsdθ

= 0,

then, we can obtain

V (x(t+k ))− V (x(tk)) ≤ e2ktk [xT (tk)(RTPR−P+2RTLDR)x(tk)−fT(x(tk))DL−1f(x(tk))]

= e2ktkη2(tk)Γ2η
T
2 (tk),

Γ2 < 0 implies V (x(t+k )) ≤ V (x(tk)).

It follows from V
′
(x(t)) < 0 and V (x(t+k )) ≤ V (x(tk)) that V (x(t)) ≤ V (x(0)) for any t ≥ 0.

However, from Lemma 2 we have

V (x(0)) = xT (0)Px(0) + 2

n∑
j=1

dj

∫ xj

0

fj(s)ds+ e2kh
∫ 0

−d(0)
e2ks[xT (t)Mx(t)

+fT (x(t))Wf(x(t))]ds+

∫ 0

−h

∫ 0

θ

e2ksxT (t)Nx(t)dsdθ

≤ λmax(P )||φ||2 + 2

n∑
j=1

djxj(0)fj(xj(0)) + e2khλmax(M)

∫ 0

−d(0)
xT (s)x(s)ds

+e2khλmax(W )

∫ 0

−d(0)
fT (x(s))f(x(s))ds+ λmax(N)

∫ 0

−h

∫ 0

θ

xT (s)x(s)dsdθ

≤ λmax(P )||φ||2 + 2λmax(DL)||φ||2 + he2khλmax(M)||φ||2

+he2khλmax(W )λmax(L2)||φ||2 + h2λmax(N)||φ||2

= Λ||φ||2,

where
Λ = λmax(P ) + 2λmax(DL) + he2khλmax(M) + he2khλmax(W )λmax(L2) + h2λmax(N),

φ = sup
−h≤θ≤0

||x(θ)||.

On the other hand, we get
V (x(t)) ≥ e2ktxT (t)Px(t) ≥ e2ktλmin(P )||x(t)||2.

Therefore

||x(t)|| ≤

√
Λ

λmin(P )
||φ||e−kt,

which shows that system (2) is exponentially stable and has the exponential convergence rate k. The proof is com-
pleted.
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4. Examples

Consider the following neural networks system{
x

′
(t) = −Cx(t) +Af(x(t)) +Bf(x(t− d(t))), t 6= tk

x(t+) = Rx(t), t = tk,

where

A =

[
−1 1

2
1
2 −1

]
, C = diag( 2, 3 ),

B =

[
1
2

1
2

1
2 − 1

2

]
, L1 = L2 = 1,

R =

[
1
2

1
2

]
.

.
Then we can construct a LKF. Let

M =

[
1 1

2
1
2

1
2

]
, P = D = diag( 1, 1 ),

N =

[
1
2

1
4

1
4

1
4

]
, k =

1

8
,

W =

[
8
3 1
1 8

3

]
, µ =

1

4
.

It follows from Γ1 < 0 and Γ2 < 0 that the all conditions of Theorem 1 are satisfied, so the neural networks system is
exponential stability.

Conclusions

We investigate the impulsive neural networks with time-varying delay. By constructing a new Lyapunov-Krasovskii
functional (LKF) , a exponential stability condition is established, which extend some previous results. One numerical
example is given to demonstrate the effectiveness of the obtained results.
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