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Abstract. The main objective of this paper is to estimate non-parametrically
the the estimator for the regression function operator when the observations

are linked with a single-index. The functional stationary ergodic data with

missing at random (MAR) are considered. In particular, we construct the
kernel type estimator of the regression operator, some asymptotic properties

such as the convergence rate in probability as well as the asymptotic normality

of the estimator are established under some mild conditions respectively. As
an application, the asymptotic (1 − ζ) confidence interval of the regression

operator is also presented for 0 < ζ < 1.

1. Introduction

The focal point of this article is to study a nonparametric regression model in the
case where the variable of interest Y (called response variable) is a scalar response
variable and the explanatory variable X is of functional nature which takes values
in some abstract infinite dimensional space (H, < ·, θ >), and is linked with a
single-index θ.

Let us consider the following functional nonparametric regression model:

(1.1) Y = r(θ, X) + ε

where r(θ, .) is an unknown smooth functional regression operator from H to R,
and ε is the random error with E(ε) = 0 and 0 < V ar(ε) < ∞.

Compared with the classical nonparametric regression model,

Y = r(X) + ε,

that the explanatory variable is a real or finite dimensional case, where the explana-
tory variables X are often curves or surfaces, is widely applied in many fields such
as in medicine, economics, environmetrics, chemometrics and others, The reason
is that the data we observed or collected in these fields are exceptionally high-
dimensional or even functional.

Let’s not that the classical model was widely studied in Ferraty and Vieu (2000),
Ferraty and Vieu (2002, 2003, 2004) and Ferraty et al. (2006), and the references
therein, in the case that the samples are observed completely.

However, in many practical works such as sampling survey, pharmaceutical trac-
ing test and reliability test and so on, some pairs of observations may be incom-
plete, which is often called the case of missing data. Many examples of missing data
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and its statistical inferences for regression model can be found in statistical litera-
ture when explanatory variables are of finite dimensionality ( Cheng (1994), Little
and Rubin (2002), Nittner (2003), Tsiatis (2006), Liang et al. (2007), Efromovich
(2011a,b)) and references therein for details. When explanatory variables are in the
case of infinite dimensionality or it is of functional nature, only very few literature
was reported to investigate the statistical properties of functional nonparametric
regression model for missing data.

Recently, Ferraty et al. (2013) first proposed to estimate the mean of a scalar
response based on an i.i.d. functional sample in which explanatory variables are
observed for every subject, while the response variables are missing at random by
happenstance for some of them. It generalized the results in Cheng (1994) to the
case where the explanatory variables are of functional nature.

The single-index models are becoming increasingly popular because of their im-
portance in several areas of science such as econometrics, biostatistics, medicine,
financial econometric and so on. The single-index model, a special case of projec-
tion pursuit regression, has proven to be a very efficient way of coping with the high
dimensional problem in nonparametric regression. Hardle et al. (1993), Hristache
et al. (2001). Delecroix et al. (2003) have studied the estimation of the single-index
approach of regression function and established some asymptotic properties. The
first work in the fixed functional single-model was given by Ferraty et al. (2003),
where authors obtained almost complete convergence (with the rate) of the regres-
sion function in the i.i.d. case. Their results have been extended to dependent
case by Ait Saidi et al. (2005). Ait Saidi et al. (2008) studied the case where the
functional single-index is unknown. The authors have proposed for this parameter
an estimator, based on the the cross-validation procedure.

The goal of this paper is establish a nonparametric estimation on functional non-
parametric regression model (1.1). At first an estimator of the regression operator
in the functional single index, and of a scalar response and the functional covariate
which are assumed to be sampled from a stationary and ergodic process is con-
structed. Meanwhile, the response variables are MAR but not the covariates are
missing. Then, the asymptotic properties of the estimator are obtained under some
mild conditions. To the best of our knowledge, the estimation of the nonparametric
regression operator in the functional single index structure combining missing data
and stationary ergodic processes with functional nature has not been studied in the
statistical literature.

2. The model and the estimates

2.1. The functional nonparametric framework.

2.1.1. The estimators. The kernel estimator rn(θ, x) of r(θ, x) is presented as fol-
lows:

(2.1) r̃n(θ, x) =

n∑
i=1

YiK
(
h−1

K (< x−Xi, θ >)
)

n∑
i=1

K
(
h−1

K (< x−Xi, θ >)
) ,

where K is a kernel function, hK = hK,n a sequence of positive real numbers.
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(2.2) r̂n(θ, x) =

n∑
i=1

δiYiK
(
h−1

K (< x−Xi, θ >)
)

n∑
i=1

δiK
(
h−1

K (< x−Xi, θ >)
) =

r̂n,2(θ, x)
r̂n,1(θ, x)

With

(2.3) r̂n,j(θ, x) =
1

n E(K1(θ, x))

n∑
i=1

δiY
j−1
i Ki(θ, x)

Let

(2.4) rn,j(θ, x) =
1

n E(K1(θ, x))

n∑
i=1

E(δiY
j−1
i Ki(θ, x)/Fi−1), j = 1, 2,

(2.5) Cn(θ, x) =
rn,2(θ, x)
rn,1(θ, x)

and

(2.6) Bn(θ, x) = Cn(θ, x)− rn(θ, x)

then

(2.7) r̂n(θ, x)− Cn(θ, x) =
Qn(θ, x) + Rn(θ, x)

r̂n,1(θ, x)

where

(2.8) Qn(θ, x) = (r̂n,2(θ, x)− r̄n,2(θ, x))− r(θ, x)(r̂n,1(θ, x)− r̄n,1(θ, x))

and

(2.9) Rn(θ, x) = −Bn(θ, x)(r̂n,1(θ, x)− r̄n,1(θ, x))

Our results are stated under some mild assumptions we gather below for easy
references. Throughout the paper, when no confusion will be possible, we will
denote by C, C0 some positive generic constants whose values are allowed to change.

(A1) Assumptions on the kernel function K
K is a nonnegative bounded kernel function with support [0, 1], and the derivativeK ′

exists on [0, 1] with K ′(t) < 0 for all t ∈ [0, 1] and |
∫ 1

0
(Kj)′(t)dt| < ∞ , for j = 1, 2.

(A2) Assumptions on the stationary ergodic nature
For x∈ H ,there exist a sequence of nonnegative bounded random functions

(fi,1)i≥1 , a sequence of random functions (gi,x,θ)i≥1 1, a deterministic nonnegative
bounded function f1 and a nonnegative real function φθ(·) tending to zero, as its
argument tends to 0, such that

(i) Fx,θ(t) = φθ(t)f1(θ, x) + ◦(φθ(t)) as t → 0.

(ii) For any i ∈ N, F
Fi−1
x,θ (t) = φθ(t)fi,1(θ, x)+gi,x,θ(t) with gi,x,θ = ◦a.s(φ(t)) as

t → 0,
gi,x,θ(t)

φθ(t) almost surely bounded and n−1
∑n

i=1 gj
i,x,θ(t) = oa.s(φ

j
θ(t))

asn →∞ for j = 1, 2.

(iii) n−1
∑n

i=1 f j
i,1(θ, x) → f j

1 (θ, x) almost surely as n →∞ for j = 1, 2.
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(iv) There exists a nondecreasing bounded function τ0 such that, uniformly in
t ∈ [0, 1], φθ(ht)

φθ(h) = τ0 + o(1),as h ↓ 0.and
∫ 1

0
(Kj)′τ0(t)dt < ∞ for j ≥ 1.

(A3) Assumptions on the conditional moments

(i) The conditional mean of Yi given the σ-field gi−1 depends only on Xi, i.e,
for any i ≥ 1, E(Yi|gi−1) = E(Yi|Xi) = r(Xi), a.s.

(ii) For any i ≥ 1, E[(Yi − r(XI))2|gi−1] = E[(Yi − r(XI))2|Xi] = V (Xi),a.s.

(A4) Local smoothness and continuous conditions

(i) ∃β > 0 and a constant C > 0 such that |r(u) − r(v)| ≤ Cd(u, v)β for all
(u, v) ∈ H ×H

(ii) V (·) and P (·) are continuous in a neighborhood of x respectively, that is as
h → 0

sup
u:<x−u,θ>≤h

|V (u)− V (θ, x)| = o(1),

sup
u:<x−u,θ>≤h

|p(u)− p(θ, x)| = o(1).

(iii) ∃δ > 0: E|Y1|2+δ < ∞, and let W 2+δ(u) = E
(
|
(
Y1 − r(θ, x)

)
|2+δ|X1 = u

)
be continuous in a neighborhood of (θ, x) for u ∈ H

3. Asymptotic properties

In this section, we show some asymptotic properties of the estimator r̂n(θ, x) for
the regression operator in the model (2.1) based on the functional stationary er-
godic data with MAR. More precisely, Theorem (3.1) shows the convergence rate
in probability of the estimator. The asymptotic distribution of the estimator is
presented in Theorem (3.2).

Theorem 3.1. Under assumptions (A1)-(A4)(i),

(a) If

(3.1)
nφθ(h)

loglog(n)
→∞, asn →∞

for any x ∈ H such thatf1(θ, x) > 0 ,then we have

(3.2)
(

nφθ(h)
loglog(n)

) 1
2

(r̂n(θ, x)− Cn(θ, x))
p−→ 0.

(b) In addition, if

(3.3)
nφθ(h)h2β

loglog(n)
→ 0.asn →∞,

where is satisfied in (A4)(i),then we have

(3.4)
(

nφθ(h)
loglog(n)

) 1
2

(r̂n(θ, x)− r(θ, x))
p−→ 0

where
p−→means the convergence in probability.

Theorem 3.2. Under assumptions (A1)-(A4),
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(a) If

(3.5) nφθ(h) →∞, asn →∞,

for any x∈ H such that f1(θ, x) > 0, then we have

(3.6)
√

nφθ(h)(r̂n(θ, x)− Cn(θ, x)) D−→ N(0, σ2(θ, x))

where D−→ means the convergence in distribution and σ2(θ, x) = M2
M2

1

V (θ,x)
P (θ,x)f1(θ,x)

with Mj = Kj(1)−
∫ 1

0
(Kj)′(u)τ0(u)du for j = 1, 2.

(b) In addition ,if

(3.7) hβ
(
nφθ(h)

) 1
2 → 0, asn →∞,

where β is specified in (A4)(i),then we have

(3.8)
√

nφθ(h)(r̂n(x, θ)− r(x, θ)) D−→ N(0, σ2(x))

3.1. Remarks on the assumptions. Similar to the discussions in Laib and Louani
(2010, 2011), (A1), (A4)(i) are the quite usual conditions on the kernel function
and regression operator for nonparametric functional data analysis. (A2) shows the
ergodic nature of the data and the small ball techniques used in this paper. As-
sumption (A3) on condition moment shows the Markovian nature of the functional
stationary ergodic data. (A4)(ii) and (A4)(iii) stand as local continuous conditions,
which is necessary to establish the main results and make the results concise in this
paper.
It is worth being noted that the results in our work extend the complete data in Laib
and Louani (2010, 2011) to MAR case. On the other hand, as for the asymptotic
normality, we also solve the second important open issue in MAR modeling proposed
by Ferraty et al. (2013). In fact, the limiting variance in Theorem 3.2 contains the
unknown function operator f1(·), V (·), P (·) and unknown parameter Mj for j = 1, 2.
respectively. Meanwhile, the normalization depends on the function φθ(·)which is
also not identifiable explicitly. Therefore, we have to estimate them respectively
so as to obtain asymptotic confidence interval of r(θ, x) in practice. First, the
estimator of the conditional variance V (θ, x) can be defined as:

Vn(θ, x) =

n∑
i=1

(δiYi − r̂n(θ, x))2K
(

< x−Xi, θ >

h

)
n∑

i=1

δiK

(
< x−Xi, θ >

h

)

=

n∑
i=1

δiY
2
i K

(
< x−Xi, θ >

h

)
n∑

i=1

δiK

(
< x−Xi, θ >

h

) −
(
r̂n(θ, x)

)2

= ĝn(θ, x)−
(
r̂n(θ, x)

)2
.(3.9)

Second, by the assumptions (A2)(i) and (A2)(iv), the estimator of τ0(x)is defined
as
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τn(u) =
Fθ,x,n(uh)
Fθ,x,n(h)

,

where

Fθ,x,n(u) =
1
n

n∑
i=1

1{<x−Xi,θ>≤u}.

Can be used to estimate φθ(h)). Therefore, for a given kernel K, the estimator
of M1 and M2, namely M1,n and M2,n respectively, is obtained by replacing τ0 with
τn in their respective expressions. Finally, the estimator of P(x) is denoted by

(3.10) Pn(θ, x) =

n∑
i=1

δiK

(
< x−Xi, θ >

h

)
n∑

i=1

K

(
< x−Xi, θ >

h

)
Then, the following Corollary is obtained immediately.

Corollary 3.1. Under assumption (A1)-(A4), let K ′ and (K2)′ be integral func-
tions and

(3.11) nFx,θ(h) −→∞, hβ
(
nFθ,x(h)

)2−→ 0, as n →∞

for any x ∈ H such that f1(θ, x) > 0 ,then we have

(3.12)
M1,n√
M2,n

√
nFx,θ(h)
Vn(θ, x), θ

(
r̂n(θ, x)− r(θ, x)

) D−→ N (0, 1)

thus, by (3.12),the asymptotic (1−ζ) confidence interval for the regression function
operator r(x) is given by

r̂n(θ, x)± µ ζ
2

√
M2,n

M1,n

√
Vn(θ, x)

nFθ,x(h)Pn(θ, x)
,

where µ ζ
2
is the upper ζ

2 quantile of the Normal distribution N (0, 1).

4. Proofs of some lemmas and main results

In this section, we first present some lemmas and their proofs which are necessary
to establish our main results.

Lemma 4.1. Assume that assumptions (A1) and (A2)(i)(ii)(iv) hold true. For
any real numbers 1 ≤ j ≤ 2+ δ and 1 ≤ k ≤ 2+ δ with δ > 0 , as n →∞ , we have

(i) 1
φθ(h)E

[
Kj

i (θ, x)|Fi−1

]
= Mjfi,1(θ, x) + Oa.s

(
giθ,x(θ,x)

φθ(h)

)
.

(ii) 1
φθ(h)E

[
Kj

i (θ, x)
]
= Mjf1(θ, x) + o(1).

(iii) 1
φk

θ

(
E(Kj

1(θ, x))
)k= Mk

1 fk
1 (θ, x) + o(1).

Proof of Lemme 4.1. See the proof of Lemma 1 in Laib and Louani (2010). �
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Lemma 4.2. Under the assumptions (A1)-(A2) and the condition (3.5), for any
(θ, x) ∈ H ×× such thatf1(θ, x) > 0 we have

(4.1) r̂n,1(θ, x) P−→ P (θ, x), asn →∞.

Proof of Lemme 4.2. By (2.3) we have the decomposition as follows

(4.2) r̂n,1(θ, x) = Rn,1(θ, x) + r̄n,1(θ, x).

where

Rn,1(θ, x) =
1

nE(K1(θ, x))

n∑
i=1

(
δiKi(θ, x)− E

[
δiKi(θ, x)|Fi−1

])
and

r̄n,1(θ, x) =
1

nE
(
K1(θ, x)

) n∑
i=1

E
[
δiKi(θ, x)|Fi−1

]
First, we need to establish

(4.3) r̄n,1(θ, x) P−→ P (θ, x), asn →∞.

By the properties of conditional expectation and the mechanism of MAR, com-
bining the assumptions (A2)(ii)(iii), (A3) and the continuous property of p(θ, x)
with Lemma (4.1), we have

r̄n,1(θ, x) = 1

nE
(
K1(θ,x)

) n∑
i=1

E
[
E[(δiKi(θ, x)|Fi−1]|gi−1

]
=

1
nE

(
K1(θ, x)

) n∑
i=1

E
[
P (θ, x) + o(1)δi(θ, x)|Fi−1

]
=

(
P (θ, x) + o(1)

) 1
nE

(
K1(θ, x)

) n∑
i=1

E[Ki(θ, x)|Fi−1]

=
(
P (θ, x) + o(1)

) 1
nE

(
K1(θ, x)

) n∑
i=1

(
φθ(h)M1fi1(θ, x) + 0a.s

(
giθ,x

))
=

(
P (θ, x) + o(1)

) φθ(h)
E

(
K1(θ, x)

)(
1
n

n∑
i=1

M1fi1(θ, x) +
1
n

n∑
i=1

Oa.s

(
giθ,x(h)
φθ(h)

))
=

(
P (θ, x) + o(1)

) 1
M1f1(θ, x) + o(1)

(
M1

(
f1(θ, x) + o(1)

)
+Oa.s(1)

)
→ P (θ, x)a.s, asn →∞

Second, we will prove that

(4.4) Rn,1(θ, x) P−→ 0as n →∞

On the one hand, we denote ηn.i(θ, x) = δiKi(θ, x)− E
(
δiKi(θ, x)|Fi−1

)
.

Then,(ηn.i, 1 ≤ i ≤ n) forms a triangular array of martingale differences with
respect to the σ − field Fi−1 and

Rn,1(θ, x) =
1

nE
(
K1(θ, x)

) n∑
i=1

ηn,i(θ, x).
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On the other hand, by Burkholders inequality of martingale differences (Hall and
Heyde, 1980), we have, as n →∞

P
(
|Rn,1(θ, x)| > ε

)
= P

(∣∣∣∣ n∑
i=1

ηn.i(θ, x)
∣∣∣∣> εnE

(
K1(θ, x)

))
≤ C0

Eη2
n.i(θ, x)

ε2n
(
E(K1(θ, x)

)
< C0

E
(
δ1K

2
1 (θ, x)

)
ε2nE(K2

1 (θ, x))
→ 0,

which means that (4.4) is correct. Finally, (4.1) follows from (4.2) to (4.4).
�

Lemma 4.3. Under the assumptions (A1)-(A2), (A3)(i), (A4)(i) and the condition
(3.5), for any for any x ∈ H such that f1(θ, x) > 0, we have

(4.5) Bn(θ, x) = 0p(hβ)

and

(4.6)
√

nφθ(h)Rn(θ, x) P−→ 0, asn →∞
Proof of Lemme 4.3. First, by (2.5) and (2.6), we have

Bn(θ, x) =
r̄n,2(θ, x)− r(θ, x)r̄n,1(θ, x)

r̄n,1
:=

¯Bn(θ, x)
r̄n,1(θ, x)

Then by (4.3), we need to show that

(4.7) Bn(θ, x) = r̄n,2(θ, x)− r(θ, x)r̄n,1(θ, x) = 0a.s(hβ)

In fact, by the assumptions (A3)(i) and (A4)(i), similar to the proof of Lemma
(4.2), it follows that

|Bn(θ, x)| =
∣∣∣∣ 1
nE

(
K1(θ, x)

) n∑
i=1

E
[(

Yi − r(θ, x)
)
δiKi(θ, x)|Fi−1

]∣∣∣∣
=

∣∣∣∣ 1
nE

(
K1(θ, x)

) n∑
i=1

E

[
E

[
(Yi − r(θ, x))δiKi(θ, x)|gi−1

]
|Fi−1

]∣∣∣∣
=

∣∣∣∣ 1
nE

(
K1(θ, x)

) n∑
i=1

E

[
E

[
(Yi − r(θ, x))δiKi(θ, x)|Xi

]
|Fi−1

]∣∣∣∣
=

∣∣∣∣ 1
nE

(
K1(θ, x)

) n∑
i=1

E
[
(r(θ, Xi)− r(θ, x))P (Xi)Ki(θ, x)|Xi

]
|Fi−1

∣∣∣∣
≤ sup

u∈B(θ,x,h)

|r(u)− r(θ, x)|.
∣∣∣∣ 1
nE

(
K1(θ, x)

) n∑
i=1

E

(
P (Xi)Ki(θ, x)|Fi−1

)∣∣∣∣
= Oa.s(hβ).

Thus, (4.5) follows from (4.3) and (4.7).
Finally, in order to establish (4.6), observe that

r̂n,1(θ, x)− r̄n,1(θ, x) =
1

nE
(
K1(θ, x)

) n∑
i=1

ηn.i(θ, x)
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is a summation of a martingale difference ηn.i, 1 ≤ i ≤ n. Following the same steps
as that in Laib and Louani (2010), if we establish that

(4.8)
√

nφθ(h)
(
r̂n,1(θ, x)− r̄n,1(θ, x)

) D−→ N(0, ρ2(θ, x)),

where ρ(θ, x) = M2
M2

1

P (θ,x)
f1(θ,x) ,then by (4.8), (4.5) and (2.9), (4.6) is follows.

In fact, the proof of (4.8) is similar to that of Lemma (4.4) which establishes the
asymptotic normality of Qn(θ, x). �

Lemma 4.4. Under the assumptions (A1)-(A4) and the condition (3.5), for any
(θ, x) ∈ H such that f1(θ, x) > 0, we have

(4.9)
√

nφθ(h)Qn(θ, x) D−→ N(0, σ2
0(θ, x)).

where

σ2
0 =

M2

M2
1

P (θ, x)V (θ, x)
f1(θ, x)

.

Proof of Lemme 4.4. Let’s denote

ζni =
(φ(h)

n

) 1
2 δi(Yi − r(θ, x))

Ki(θ, x)
E

(
K1(θ, x)

)
and

ξni = ζni − E[ζ2
ni|Fi−1].

It is easy to see that

(4.10)
(
nφθ(h)

)2
Qn(θ, x) =

n∑
i=1

ξni.

Thus the ξni, 1 ≤ i ≤ n forms a triangular array of stationary martingale differ-
ences with respect to the σ−field Fi−1. Similar to the proof of Lemma 2.4 in Laib
and Louani (2010), we apply the central limit theorem for discrete-time arrays of
real-valued martingales (Hall and Heyde, 1980) to obtain the asymptotic normality
of Qn(θ, x). Therefore, we have to establish the following statements:

(a)
∑n

i=1 E[ξni|Fi−1]
P−→ σ2

0(θ, x)

(b) nE
[
ξ2
niI[|ξni|>ε]

]
= o(1)for∀ε > 0.

proof of part (a) Observe that

(4.11)
∣∣∣∣ n∑

i=1

E
[
ζ2
ni|Fi−1

]
−

n∑
1

E
[
ξ2
ni|Fi−1

]∣∣∣∣≤ n∑
1

(
E

[
ζni|Fi−1

])2

By (A4)(i), the continuous condition of P (θ, x) and Lemma 4.1, we obtain that

∣∣E[ζni|Fi−1]
∣∣ =

(φθ(h)
n

) 1
2

E
(
K1(θ, x)

) ∣∣∣∣E[
(r(Xi)− r(θ, x))P (Xi)Ki(θ, x)|Fi−1

]∣∣∣∣
≤

(φθ(h)
n

) 1
2

E
(
K1(θ, x)

) sup
u∈B(θ,x,h)

∣∣r(u)− r(θ, x)
∣∣E(

Ki(θ, x)|Fi−1

)
hβ

(
o(1) + P (θ, x)

)
≤ C

(
φθ(h)

n

) 1
2
(

fi1(θ, x)
f1(θ, x)

+ Oa.s

(gi(θ,x)

φn(h)

))
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Thus, by (A2)(ii) and (A2)(iii), we have
n∑

i=1

(
E[ζni|Fi−1]

) 1
2≤ Oa.s

(
h2βφθ(h)

)( 1
f2
1 (θ, x)

1
n

n∑
i=1

f2
i1(θ, x) + Oa.s(1)

)(
o(1) +

P (θ, x)
)2

.
Hence, the statement (a) follows if we show that

(4.12)
n∑

i=1

E[ζ2
niFi−1]

P−→ σ2
0(θ, x)

To establish (4.12), we have the decomposition as follows
(4.13)

n∑
i=1

E[ζ2
ni|Fi−1] =

φθ(h)

n
(
EKi(θ, x)

)2

n∑
i=1

E
[(

Yi−r(θ, x)
)2

δiK
2
i (θ, x)|Fi−1

]
= J1n +J2n,

where

J1n =
φθ(h)

n
(
EK1(θ, x)

)2

n∑
i=1

E
[(

Yi − r(Xi)
)2

δiK
2
i (θ, x)|Fi−1

]
and

J2n =
φθ(h)

n
(
EK1(θ, x)

)2

n∑
i=1

E
[(

r(Xi)− r((θ, x)
)2

δiK
2
i (θ, x)|Fi−1

]
Thus, by the properties of conditional expectation, we obtain that

J1n =
φθ(h)

n
(
EK1(θ, x)

)2

n∑
i=1

E

[
E

[(
Yi − r(Xi)

)2
δiK

2
i (θ, x)|gi−1

]
|Fi−1

]

=
φθ(h)

n
(
EK1(θ, x)

)2

n∑
i=1

E

[
K2

i (θ, x)E
[(

Yi − r(Xi)
)2

δi|Xi

]
|Fi−1

]

=
φθ(h)

n
(
EK1(θ, x)

)2

n∑
i=1

E
[
V (Xi)P (Xi)K2

i (θ, x)|Fi−1

]
Then, by A2(ii) and smoothness conditions (A4) as well as Lemma (4.1), we

have that

J1n =
φθ(h)

n
(
EK1(θ, x)

)2

n∑
i=1

E

[(
o(1) + V (θ, x)

)(
o(1) + P (θ, x)

)
K2

i |Fi−1

]

=
φθ(h)

n
(
EK1(θ, x)

)2

n∑
i=1

(
o(1) + V (θ, x)

)(
o(1) + P (θ, x)

)(
M2φθ(h)fi1(θ, x) + Oas(gi(θ,x)(h))

)
→ M2V (θ, x)P (θ, x)

M2
1 fi1(θ, x)

=: σ2
0(θ, x)(4.14)

Similarly, by the assumptions (A2)(ii)(iii) and (A4)(i) together with Lemma ??
again, it follows that

J2n = O(h2β)
φθ(h)

n
(
EK1(θ, x)

)2

n∑
i=1

E
[
δiK

2
i (θ, x)|Fi−1

]
≤ O(h2β)

(
M2

M2
1

1
f1(θ, x)

+ 0a.s(1)
)
−→ 0 a.s n →∞(4.15)

Finally, by (4.13)-(4.15), (4.12) is valid.



ASYMPTOTIC PROPERTIES FOR REGRESSION FUNCTION WITH MISSING AT RANDOM11

Proof of part (b).
The proof of this part is also similar to that in Laib and Louani (2010). In fact,

by the definition of ξni, we have nEξ2
niI[|ξni| > ε] ≤ 4nE

[
ζ2
niI[|ζni| > ε

2

]
, where IA

is an indicator function of a set A. Let a > 1 and b > 1 such that 1
a + 1

b = 1. By
Hölder and Markov inequalities, one can write, for all ε > 0,

(4.16) E

[
ζ2
niI

(
|ζni|> ε

2

)]
≤ E|ζni|2a

( ε
2 )

2a
b

Taking C0 a positive constant and 2a = 2 + δ (with δ as in (A4)(iii)), by the
local continuous condition, we can obtain

4nE
[
ζ2
niI[|ζni| > ε

2

]
≤ C0

(
φθ(h)

n

) 2+δ
2

n(
E
(
K1(θ,x)

))2+δ E

([
|Yi−r(Xi|

)2
δiK

2
i (θ, x)

]2+δ
)

≤ C0

(
φθ(h)

n

) 2+δ
2

n(
E
(
K1(θ,x)

))2+δ E

(
E

[
|Yi − r(Xi)|2+δδi

(
Ki(θ, x)

)2+δ|Xi

])
≤ C0

(
φθ(h)

n

) 2+δ
2

n(
E
(
K1(θ,x)

))2+δ E
[(

K1(θ, x)
)2+δ

P (Xi)W 2+δ(Xi)
]

= C0

(
φθ(h)

n

) 2+δ
2

n(
E
(
K1(θ,x)

))2+δ E

[(
K1(θ, x)

)2+δ(
P (θ, x)+o(1)

)(
W 2+δ(θ, x)+o(1)

)]
≤ C0

(
φθ(h)

n

) 2+δ
2 nE

(
K1(θ,x)

)2+δ(
E(K1(θ,x))

)2+δ

(
P (θ, x)W 2+δ(θ, x) + o(1)

)
Thus, by Lemma 2.1, it follows that

4nE
[
ζ2
niI[|ζni| >

ε

2
]

≤ C0

(
nφθ(h)

)− δ
2

M2+δf1(θ, x) + o(1)
M2+δ

1 f2+δ
1 (θ, x) + o(1)

(
P (θ, x)W 2+δ(θ, x) + o(1)

)
= O

(
nφθ(h)

)− δ
2

Finally, by (3.5), the proof of part (b) is completed. Then, (4.9) is valid.
�

Proof of Theorem 3.1. First, we present the proof of (3.2). By Lemma 4.4, it follows

that
(
nφθ(h)

) 1
2 Qn(θ, x) = Op(1), which leads to

(4.17)
(

nφθ(h)
loglogn

) 1
2

Qn(θ, x) = 0p(1)

On the other hand, by Lemma 4.3, we have

(4.18)
(

nφθ(h)
loglogn

) 1
2

Rn(θ, x) = Op(1)

Thus, by Lemma 4.2 and (2.7), (3.2) is valid.
Second, we give the proof of (3.4). Note the fact that

(4.19) r̂n(θ, x)− r(θ, x) = r̂n(θ, x)− Cn(θ, x) + Bn(θ, x)

Hence, by (4.19) together with (2.2), (2.3) and (3.5), (3.4) follows.
�
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Proof of Theorem 3.2. On the one hand, (3.6) follows directly from (2.7), (4.1),
(4.6), (4.9) and the Slulsky Theorem. On the other hand, by (3.6), (3.7), (4.5),
(4.19) and the Slulsky Theorem again, (3.8) is also obtained.

�

Proof of Corollary 3.1. First, one can observe that

M1.n√
M1.n

√
nPn(θ,x)F(θ,x).n(h)

Vn(θ,x)

(
r̂n(θ, x)− r(θ, x)

)
= M1.n

M1

√
M2√

M2.n

√
nF(θ,x).n(h)Pn(θ,x)V (θ,x)

P (θ,x)Vn(θ,x)nφθ(h)f1(θ,x) ×
M1√
M2

√
nφθ(h)f1(θ,x)P (θ,x)

V (θ,x)

(
r̂n(θ, x)− r(θ, x)

)
.

By (3.8), we have

M1√
M2

√
P (θ, x)nφθ(h)f1(θ, x)

V (θ, x)
(
r̂n(θ, x)− r(θ, x)

) D−→ N(0, 1), asn →∞

Therefore, we need to establish the following statement

(4.20)
M1.n

M1

√
M2√

M2.n

√
nF(θ,x).n(h)V (θ, x)Pn(θ, x)

P (θ, x)Vn(θ, x)nφθ(h)f1(θ, x)
P−→ 1, as n →∞

Similar to the proof of Corollary 1 in Laib and Louani (2010), we have

(4.21) M1.n
p−→ M1,M2.n

p−→ M2,
F(θ,x).n(h)

φθ(h)f1(θ, x)
, asn →∞

In addition, by (3.1) and (3.4), it follows that

(4.22) r̂n(θ, x)
p−→ r(θ, x), asn →∞

On the other hand, by the same steps as in the proof of Theorem 4.1, we have

(4.23) ĝn(θ, x)
p−→ E(Y 2|X = (θ, x)), asn →∞

Then, by (3.9), we obtain

(4.24) Vn(θ, x)
p−→ V (θ, x), asn →∞

Finally, by Proposition 2 in Laib and Louani (2010), it follows that

(4.25) Pn(θ, x)
p−→ E(δ|X = (θ, x) = p(δ = 1|X = (θ, x) = P (θ, x), asn →∞

Hence, (4.20) follows from (4.21)-(4.25). �
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Application, 22 no. 4 (2000), 331–334.

[33] G. Roussas, Nonparametric estimation of the transition distribution function of a Markov
process, Ann. Math. Statist., 40 (1969), 1386–1400.



14 F. AKKAL ET AL.

[34] M. Samanta, Nonparametric estimation of conditional quantiles, Statist. Proba. Letters., 7

(1989), 407–412.
[35] M. Tanner and W.H. Wong, The estimation of the hazard function from randomly censored

data by the kernel methods, Ann. Statist., 11 (1983), 989–993.

[36] Van Keilegom, I. and Veraverbeke, N. Hazard rate estimation in nonparametric regression

with censored data. Ann. Inst. Statist. Math. Vol. 53 (2001), pp. 730-745.
[37] H. Wang and Y. Zhao, A kernel estimator for conditional t-quantiles for mixing samples and

its strong uniform convergence, (in chinese), J. Math. Appl. (Wuhan), 12 (1999), 123–127.
[38] Y. Zhou and H. Liang, Asymptotic properties for L1 norm kernel estimator of conditional

median under dependence, J. Nonparametr. Stat., 15 (2003), 205–219.

Statistics Laboratory Stochastic Processes, University Djillali LIABES of Sidi Bel

Abbes, Algeria.
E-mail address: fatima.akkal@hotmail.com

Faculty of Exact Sciences Department Maths and Computer Science, Tahri Mohamed

University of Bechar, Algeria.
E-mail address: megnafi3000@yahoo.fr

Laboratory of Mathematics, University Djillali LIABES of Sidi Bel Abbes, Algeria.
E-mail address: rabhi abbes@yahoo.fr


