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Abstract. In the optimization literature, Geometric Programming
problems play a very important role rather than primary in engi-
neering designs. The geometric programming problem is a noncon-
vex optimization problem that has received the attention of many
researchers in the recent decades. Our main focus in this issue is
to solve a Fractional Geometric Programming (FGP) problem via
linearization technique [1]. Linearizing separately both the numera-
tor and denominator of the fractional geometric programming prob-
lem in the objective function, causes the problem to be reduced to a
Fractional Linear Programming problem (FLPP) and then the trans-
formed linearized FGP is solved by Charnes and Cooper method
which in fact gives a lower bound solution to the problem. To il-
lustrate the accuracy of the final solution in this approach, we will
compare our result with the LINGO software solution of the initial
FGP problem and we shall see a close solution to the globally op-
timum. A numerical example is given in the end to illustrate the
methodology and efficiency of the proposed approach.

Keywords: Fractional programming, Geometric Programming, Lin-
earization technique.
2010 Mathematics Subject Classification: 90C32, 49M20, 86.

1. Introduction

We generally call Fractional Programming , a fractional geometric pro-
gramming problem(FGPP), if the numerator or denominator or both of
them in the objective function as well as the constraints are geomet-
ric program. The posynomial fractional programming (PFP) problems
are very important and usually arises from the summation minimization
of several quotient terms, which are composed of posynomial terms ap-
pearing in the objective function. A fractional geometric programming
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problem(FGPP) is usually denoted as follows:
min F (x) = G0(x)

G1(x)

s.t
Gi (x) ≤ δi i = 2, ...,m

x ∈ Ω

Ω ≡
{
x : 0 ≤ xj ≤ xj ≤ x̄j < ∞, j = 1, ..., n

}
Where

Gi (x) =

Ti∑
t=1

αit

Jit∏
j=1

x
γitj
j ∀i = 0, 1, ...,m.

And Ti, Jit are subset of natural numbers sets. αit are nonzero real
constant coefficients and γitj are real constant exponents.The geometric
programming and fractional programming problems are usually consid-
erd in class of nonlinear programming problems. So far we have seen
many different algorithms for solving and analysing GP and FP and in
most of them a linear fractional programming problem is being opti-
mized by solving a related linear programming problem. In the recent
years we have seen many useful results on solving geometric programming
problems by different investigators. Ching-Ter Chang [10] investigated
posynomial fractional programming problems In which, he considered
the summation minimization of several quotient terms, which are com-
posed of posynomial terms appearing in the objective function and finally
a linear programming relaxation was derived for the problem based on
piecewise linearization techniques, which first convert a posynomial term
into the sum of absolute terms; these absolute terms are then linearized
by some linearization techniques. In this paper the proposed approach
even after relaxation could reach a solution as close as possible to a
global optimum. A global optimization using linear relaxation for gen-
eralized geometric programming is recently discussed by Shaojian Qu
and et all [11] in which many local optimal solution methods have been
developed for solving generalized geometric programming (GGP).They
considered the global minimum of (GGP) problems by utilizing an ex-
ponential variable transformation and the inherent property of the ex-
ponential function and some other techniques that initial nonlinear and
nonconvex (GGP) problem is reduced to a sequence of linear program-
ming problems. Geometric programming problems with negative degrees
of difficulty are of great concern. S.B. Sinha, et al in [9] they proposed
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two methods to solve posynomial geometric programs with negative de-
grees of difficulty. We deal with Such a case ,when a primal program
has a number of variables equal or slightly greater than the number of
terms appear in the model. Problem of Posynomial parametric geometric
programming with interval valued coefficient is discussed by Mahapatra
and Mandal [12] in which they proposed a parametric functional form
of an interval number by solving directly the objective function of geo-
metric programming without transferring to dual form. Zahmatkesh and
Cao[17] proposed a method to solve global optimization of fractional
posynomial geometric programming problems under fuzziness in which
they used trapezoidal fuzzy number in the objective function.The prob-
lem of posynomial geometric programming with parametric uncertainty
is discussed by Shiang-Tai Liu [13]. He developed a procedure to derive
the lower and upper bounds of the objective of the posynomial geomet-
ric programming problem when the cost and constraint parameters are
uncertain and the imprecise parameters were represented by ranges, in-
stead of single values and finally an imprecise geometric program was
transformed to a family of conventional geometric programs to calculate
the objective value. The problem of a profit maximization is considerd
by Li,Yiming,Ying-Chien Chen [4]. When quantity discount is involved
in profit maximization is the work of Liu, Shiang-Tai [5]. Multi-objective
marketing planning inventory model is discussed by Islam and Sahidul
[3]. Wu,Yan-Kuen discussed the problem of optimizing a geometric pro-
gramming with single-term exponent subject to max-min fuzzy relational
equation constraints [2]. A good work on linearization is done by Shajian
Qu and etal [6] in which they considered the problem of a global opti-
mization using linear relaxation for generalized geometric programming.
A very recent research on geometric programming problems is done by
Saraj and Bazikar [8] in which they have investigated the problem of lin-
ear multi-objective geometric programming problem via reference point
approach. The problem of multi objective geometric programming prob-
lem with ϵ-constraint method is a recent work done by Ojha and Biswal
[14] in which they have used ϵ-constraint method to find the non-linear
solution of the multi-objective programming problems. An interesting
paper in generalized geometric programming problem is due to Jung-Fa
Tsi and et.al [15]. In their paper they have proposed a technique for
treating non-positive variables with integer powers in general geometric
programming problems by means of variable transformation. In 2010,
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A.K Ojha and A.K Das [16] investigated the problem of multi objective
geometric programming with cost coefficient as continuous function and
solved with mean method.
The present article is organized as follows. In section 2, we construct
a linear relaxation to obtain a lower bound function[1] for the objective
and constraint functions to transform the FGP to a LFP. In section 3,
we use Charnes and Cooper method [7] to solve the transformed linear
fractional programming problem. A numerical example is provided in
section 4 to implement and clear the complexity of the analysis for our
proposed approach. Finally a brief conclusion is given in the end.

2. linear relaxation technique

The proposed strategy for generating linear programming relaxation
is to underestimate every nonlinear function Gi(x)(i = 0, 1, ...m). Let

Ωj ≡ {xj : xj ≤ xj ≤ xj}, we use L
Ωj

itj(xj), U
Ωj

itj (xj) to denote the nonneg-

ative lower and upper bound of linear approximate functions x
γitj
j over Ωj

for j ∈ Jit. l
Ωj

itj (xj) is to denote the straight line through points (xj, x
γitj
j )

and (xj, x
γitj
j ) , l

∗Ωj

itj (xj) to denote the straight line that is tangent to xγitj

at (x∗
itj, x

∗
itj

γitj) where x∗
itj =

[
γitj(x̄j−xj)
x̄
γitj
itj −x

γitj
itj

] 1

(1−γitj)

, as γitj ̸= 1.

l
Ωj

itj (xj) = x
γitj
j +

x̄
γitj
j − x

γitj
j

x̄j − xj

(
xj − xj

)

l
∗Ωj

itj (xj) = x∗
itj

γitj +
x̄
γitj
j − x

γitj
j

x̄j − xj

(
xj − x∗

itj

)
We need to introduce the following two straigth lines l̃

Ωj

itj (xj) and l̂
Ωj

itj (xj)

,where l̃
Ωj

itj (xj) passes through the point (xj, 0) and is tangent to x
γitj
j at

the point
(
x̃itj, x̃

γitj
itj

)
,and l̂

Ωj

itj (xj) passes through the point (xj, 0) and is

tangent to x
γitj
j at the point

(
x̂itj, x̂

γitj
itj

)
, where:
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x̃itj =

(
γitj

γitj − 1

)
xj, (as γitj > 1 )

l̃
Ωj

itj (xj) = γitjx̃
γitj−1
itj

(
xj − xj

)
, as γitj > 1.

and

x̂itj =

(
γitj

γitj − 1

)
x̄j, (as γitj < 0 )

l̂
Ωj

itj (xj) = γitjx̂
γitj−1
itj (xj − x̄j) , as γitj < 0.

2.1.First-stage relaxation :

If αit > 0, then

L
Ωj

itj (xj) =



l
∗Ωj

itj (xj) when γitj > 1 & l
∗Ωj

itj

(
xj

)
≥ 0

l̃
Ωj

itj (xj) when γitj > 1 & l
∗Ωj

itj

(
xj

)
< 0

xj when γitj = 1

l
Ωj

itj (xj) when 0 < γitj < 1

l
∗Ωj

itj (xj) when γitj < 0 & l
∗Ωj

itj (x̄j) ≥ 0

l̂
Ωj

itj (xj) when γitj < 0 & l
∗Ωj

itj (x̄j) < 0
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If αit < 0, then

U
Ωj

itj (xj) =



l
Ωj

itj (xj) when γitj > 1 or γitj < 0

l
∗Ωj

itj (xj) when 0 < γitj < 1

xj when γitj = 1

Therefore we can get a lower bounded function for the αit

Jit∏
j=1

x
γitj
j as

αit

Jit∏
j=1

x
γitj
j ≥ G

R(Ω)
it (x)

when

G
R(Ω)
it (x) ≡


αit

Jit∏
j=1

L
Ωj

itj (xj) if αit > 0

αit

Jit∏
j=1

U
Ωj

itj (xj) if αit < 0

∀i, t.

Over all we have the terms t ∈ Ti for each i = 0, 1, ....,m ,
Ti∑
t=1

G
R(Ω)
it (x) as

G
R(Ω)
i (x) and Gi (x) ≥ G

R(Ω)
i (x) , ∀x ∈ Ω , i = 0, 1, ...m .Therefore

the first linear relaxation programming problem (FLR) can be obtained
as follows

FLR (Ω) :


min

G
R(Ω)
0 (x)

G
R(Ω)
1 (x)

s.t

G
R(Ω)
i (x) ≤ δi i = 2, ...,m
x ∈ Ω

2.2.Second-stage relaxation :

Theorm1. The function l (y) =
p∏

j=1

yj has lower and upper bounded

linear functions q11(y) , q12(y) and q21(y) , q22(y) over R = {y ∈ Rp :
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β
j
≤ yj ≤ βj, j = 1, 2, ..., p} .



q11 (y) =
p∑

j=1

 p∏
i=1
i̸=j

β
i

 yj − (p− 1)
p∏

j=1

β
j

q12 (y) =
p∑

j=1

 p∏
i=1
i̸=j

β̄i

 yj − (p− 1)
p∏

j=1

β̄j

q21 (y) =
p∑

j=1

(
j−1∏
i=1

β̄i

)(
p∏

i=j+1

β
i

)
yj −

p−1∑
j=1

(
j∏

i=1

β̄i

)(
p∏

i=j+1

β
i

)

q22 (y) =
p∑

j=1

(
j−1∏
i=1

β
i

)(
p∏

i=j+1

β̄i

)
yj −

p−1∑
j=1

(
j∏

i=1

β
i

)(
p∏

i=j+1

β̄i

)

and l(y) = q11(y) for all y ∈ {β} ∪ N1 where N1 denotes the set of all

extreme points of R adjacent to β , l(y) = q12(y) for all y ∈ {β} ∪ N2

where N2 denotes the set of all extreme points of R adjacent to β .

For proof ,see Ref [1].

Now ,if L
Ωj

itj (xj) is increasing over
[
xj , x̄j

]
, then let Litj = L

Ωj

itj

(
xj

)
,L̄itj = L

Ωj

itj (x̄j) otherwise ,let Litj = L
Ωj

itj (x̄j) , L̄itj = L
Ωj

itj

(
xj

)
.If U

Ωj

itj (xj)

is increasing over
[
xj , x̄j

]
,then let U itj = U

Ωj

itj

(
xj

)
,Ūitj = U

Ωj

itj (x̄j)

,otherwise ,let U itj = U
Ωj

itj (x̄j) , Ūitj = U
Ωj

itj

(
xj

)
. Then

G
R(Ω)
it (x) ≥ Ḡ

R(Ω)
it (x) , ∀x ∈ Ω , i = 0, 1, ...m.

When | Jit |> 1 ,
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Ḡ
R(Ω)
it (x) =



αit

 Jit∑
j=1

 Jit∏
k=1
k ̸=j

Litk

L
Ωj

itj (xj)− (|Jit | − 1)
Jit∏
k=1

Litk

 if αit > 0

αit

 Jit∑
j=1

 Jit∏
k=1
k<j

Ūitk

 Jit∏
k=1
k>j

U itk

U
Ωj

itj (xj)

−
Jit−{max Jit}∑

j=1

 Jit∏
k=1
k≤j

Ūitk

 Jit∏
k=1
k>j

U itk

 if αit < 0

and when | Jit |= 1,

Ḡ
R(Ω)
it (x) =


L
Ωj

itj (xj) if αit > 0

U
Ωj

itj (xj) if αit < 0

∀i, t.

and

G̃
R(Ω)
i (x) =

Ti∑
t=1

Ḡ
R(Ω)
it (x) , ∀t ∈ Ti, j ∈ Jit , i = 0, 1, ..m.

Thus the second linear relaxation programming problem (SLR) over Ω
can be described as follows:

SLR(Ω) :


min F̃R(Ω) =

G̃
R(Ω)
0 (x)

G̃
R(Ω)
1 (x)

s.t

G̃
R(Ω)
i (x) ≤ δi i = 2, ...,m

x ∈ Ω

For demonstrating the behaviour of the optimal objective function value,
the following relation is always true.

V[SLR(Ω)] ≤ V[FLR(Ω)] ≤ V[FGP(Ω)].
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Where V[MOGP(Ω)] stands for the primal objective function value ,
V[FLR(Ω)] the value of objective function in the first-stage of linear re-
laxation, where as V[SLR(Ω)] represents the value of objective function
in the second-stage of the linear relaxation problem. As we know the
main struture in the development of a solution procedure for solving
the problem of (FGP) is the construction of lower bounds for this prob-
lem.Therefore a linear programming relaxation problem can be solved to
obtain a lower bound for the solution of problem.

3. Generalize problem

Consider the following FGP

 min F (x) = G0(x)
G1(x)

s.t
Gi (x) ≤ 1 i = 2, ..,m

Where

Gi (x) =
Ti∑
t=1

αit

Tit∏
j=1

x
γitj
j , i = 0, 1, ..,m

then

FLR (Ω) :



min FR(x) (x) =
G

R(x)
0 (x)

G
R(x)
1 (x)

=

T0∑
t=1

G
R(x)
0t (x)

T1∑
t=1

G
R(x)
1t (x)

s.t

G
R(x)
i (x) =

Ti∑
t=1

G
R(x)
it (x) ≤ 1 , i = 2, ...,m

x ∈ Ω

where
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G
R(Ω)
i (x) =

Ti∑
t=1

G
R(Ω)
it (x) =

Ti∑
t=1

αit

Jit∏
j=1

L
Ωj

itj (xj)︸ ︷︷ ︸
αit>0

+

Ti∑
t=1

αit

Jit∏
j=1

U
Ωj

itj (xj)︸ ︷︷ ︸
αit<0

, i = 0, 1, ...,m

and

SLR (Ω) :



min F̃R(Ω) (x) =
G̃

R(Ω)
0 (x)

G̃
R(Ω)
1 (x)

=

T0∑
t=1

Ḡ
R(Ω)
0t (x)

T1∑
t=1

Ḡ
R(Ω)
0t (x)

s.t

G̃
R(Ω)
i (x) =

Ti∑
t=1

Ḡ
R(Ω)
it (x) ≤ 1 , i = 2, ...,m

x ∈ Ω

where

Ti∑
t=1

Ḡ
R(Ω)
it (x) =

Ti∑
t=1

αit




Jit∑
j=1

 Jit∏
k=1
k ̸=j

itk

L
Ωj

itj (xj)−

(|Jit | − 1)
Jit∏
k=1

itk

+ L
Ωj

itj (xj)


︸ ︷︷ ︸

αit>0

+

Ti∑
t=1

αit




Jit∑
j=1

 Jit∏
k=1
k<j

Ūitk

 Jit∏
k=1
k>j

itk

U
Ωj

itj (xj)−

Jit−{max Jit}∑
j=1

 Jit∏
k=1
k≤j

Ūitk

 Jit∏
k=1
k>j

itk



+ U
Ωj

itj (xj)


︸ ︷︷ ︸

αit<0

, i = 0, 1, ..,m
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3.1 Charnes and Cooper method for LFP

One of the earliest method to solve LFP was developed by Charnes and
Cooper in[7]. In this method a LFP is converted into a LP by proper
change of variables. The denominator of the fractional objective function
F (x) is taken equal to which by assumption is not equal to zero and it is
also further assumed that it is positive everywhere. If it is negative then
the negative sign is taken to the numerator. Now the LFP is converted
into LP with variables yj and ν by using the following substitutions:

xj

ν
= yj ≥ 0 , 1 ≤ j ≤ n

1
ν
= u ≥ 0

The substitution a0 + a1x1 + ....+ anxn = ν ̸= 0 is taken as a constraint
and it is given as

a1y1 + ....+ anyn + a0u = 1

Then the equivalent LP matrix formation of given LFP is
min z = c0u+ c1y1 + ....+ cnyn
s.t

Dn×nyn×1 − dn×1u ≤ 0
a0u+ a1y1 + ....+ anyn = 1

D =

 d11 · · · d1n
...

. . .
...

dn1 · · · dnn

 , y =

 y1
...
yn

 , d =

 d1
...
dn


The most advantage of the proposed method as we see is to make solvable
a fractional geometric programming in which both the numerator and
denominator of the objective function is geometric program.

4.Numerical expriment

Consider the following example
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min F (x) =
−x1+x1x0.5

2 −x2

4x2
1x

−3
2 +5x−3

1 x2+7x1x2

s.t
−6x1 + 8x2 ≤ 3
3x1 − x2 ≤ 3
0.1 ≤ x1 ≤ 1.5
0.1 ≤ x2 ≤ 1.5

Then by using linear relaxation technique we obtain the second-stage
approximating to the problem as:



min F̃R(Ω) (x) = −0.68x1−0.94x2−0.01
−0.24x1+0.7x2+1.33

s.t
−6x1 + 8x2 ≤ 3
3x1 − x2 ≤ 3
0.1 ≤ x1 ≤ 1.5
0.1 ≤ x2 ≤ 1.5

On using Charnes and Cooper technique, the above LFPP is reduced to
the following LPP.

min z = (−0.68)y1 + (−0.94)y2 + (−0.01)u
s.t

−6y1 + 8y2 − 3u ≤ 0
3y1 − y2 − 3u ≤ 0

(−0.24)y1 + (0.7)y2 + (1.33)u = 1
y1, y2, u ≥ 0

Where the solution of above LP is give by



y1 = 0.74
y2 = 0.74
u = 0.49
x1 = 1.5
x2 = 1.5

z∗ = −1.21

· · · (1)

Now we shall solve the primary FGPP by LINGO software, and we get
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 x1 = 1.1
x2 = 1.2

z∗ = −0.066
· · · (2)

As we see, there is an acceptable convergance regarding the values x1

and x2 while we compare the set of solutions in (1) and (2).

5.conclusion

As we know geometric programming and fractional geometric program-
ming are entirely two different issues in sense of method of solutions which
are hardly non-convex problems. In the present work we have combined
both the problems and have introduced a new problem called Fractional
geometric programming problems (FGPP). In fact such problems are
not easy to solve as such. By employing relaxation technique [1] on both
geometric programming of the numerator and denominator of the FGPP,
we have made solvable and easy the solution of the problem by convert-
ing into a linear fractional programming which can be easily solved by
Charnes and Cooper technique [7]. It is obvious that the linearization
technique. Which is used here is much more convenient in the sense
of computationally compare to convex relaxation, since many conditions
must be taken into account while doing convexification.
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