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Abstract 

It is known that voting is a widely used method in social choice theory. In the present paper we consider some 

concepts of distribution of voting powers between the player and the process of manipulation in weighted 

voting games. The aim is to show some basic problems in social choice theory by studying the decision 

powers of players and the three processes of manipulation in weighted voting games: by merging of two 

players into a single player, by players splitting into a number of smaller units, and by annexation of a part or 

all of the voting weights of another player. 

Indexing terms/Keywords: weighted voting game, decision power, manipulation, merge, split, annex 

Introduction 

The modern notion of a simple game was introduced by John von Neumann and Oscar Morgenstern in their 

monumental book “Theory of Games and Economic Behavior” in 1944 [25]. Previous works on this problem 

were fragmentary and did not attract much attention. The book of Von Neumann and Morgenstern provided 

some new important developments such as the consideration of information sets and the introduction of 

formal definitions and decision rules. According to this book a simple game is a conflict in which the only 

objective is winning and the only rule is an algorithm to decide which coalitions of players are winning. 

It is known that voting is a widely used method for social decision making. In particular, voting power of the 

players and manipulation have been studied intensely in social choice theory and theory of games, starting 

with the classical works of Gibbard [9], Satterthwaite [17], and Shapley and Shubik [18]. The problem of 

coalitional manipulation was first explicitly introduced by Conitzer, Sandholm and Lang in [6] where the 

authors initiated its analysis from a computational perspective. 

We start our study with a consideration of key terms, definitions, and notations. Let N  be a nonempty finite 

set of players (individuals or agents) in weighted voting game (or committee) G  and every subset NS   is 

referred to as a coalition. The set N  is called the grand coalition and   is called the empty coalition. We 

denote the collection of all coalitions by 
N2  and the number of players of coalition 

NS 2  by S . Let us 

label the players by n,,...2,1 , 2= Nn . 

The aim of this paper is to discuss two basic problems in weighted voting games: (i) the distributions of decision 

power of players and (ii) the three processes of manipulation in weighted voting games, that is, by merging of 

two players into a single player, by players splitting into a number of smaller units, and by annexation of a part 

or all of the voting weights of another player. 

A simple game in characteristic-function form is a pair ),( vNG =  where },...,2,1{ nN =  is a set of players 

and }1,0{2: →Nv  is the characteristic function which satisfies the following three conditions: 

(1) 0)( =v . 
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(2) 1)( =Nv . 

(3)   is monotonic, i.e. if NTS  , then )()( TvSv  . 

Thus, we formalize the idea of coalition decision making. It follows that the characteristic function v  for a 

coalition NS   indicates the value of S . This means that for each coalition NS   we have either 

0)( =Sv  or 1)( =Sv . 

Two simple games ),( 111 vNG =  and ),( 222 vNG =  in characteristic-function forms are called equal when 

21 NN =  and 21 vv = .  

In this paper we will consider a special class of simple games called weighted voting games with dichotomous 

voting rule - acceptance ("yes") or rejection ("no"). These games have been found to be well-suited to model 

economic or political bodies that exercise some kind of control. A weighted voting game is one type of simple 

cooperative game and it is a formalization model of coalition decision making in which decisions are made by 

vote [16]. 

The basic formal framework of this study is as follows. A weighted voting game ),( vN  is described by 

],...,,;[ 21 nwwwqG =  where q  is positive and nwww ,...,, 21  are nonnegative integer numbers such that 

= =

n

k kwq
1

. By convention, we take ji ww   when ji  . For more information see [15] and [23]. This 

game has the following properties: 

(1)  q1 . 

(2) 2= Nn  is the number of players. 

(3) 0iw  is the number of votes of player Ni  and 11 w . 

(4) nwww  ...21 . 

(5) q  is the needed quota so that a coalition can win. 

(6) the symbol ],...,,;[ 21 nwwwq  represents the weighted voting game G  defined by 










=









qw

qw
Sv

Sk k

Sk k

,0

,1
)( , where NS  . 

Of course, if 0=iw  for Ni , then player i  is powerless, i.e. it is a dummy or null player. 

Two weighted voting games ],...,,;[ 11
2

1
111 mwwwqG =  and ],...,,;[ 22

2
2
122 nwwwqG =  are equal when nm = , 

21 qq =  and 
21
ii ww =  for all players Ni . 

For any weighted voting game G , the form ],...,,;[ 21 nwwwq  is often called a weighted representation of 

game G . Obviously, one weighted voting game has many representations. For example, the following two 

weighted voting games ]2,49,49;51[1 =G  and ]1,1,1;2[2 =G  represent the same voting rule, i.e. they 

have the same characteristic function and each coalition of two or three players is winning. 
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2. Preliminaries 

We continue our study with a consideration of three basic types of coalitions - winning, losing and blocking. 

For any coalition NS   in game G , S  is winning if 1)( =Sv , S  is losing if 0)( =Sv , and S  is blocking if 

S  and SN \  are both losing coalitions. The collections of all winning, all losing and all blocking coalitions in 

game G  are denoted by )(GW , )(GL  and )(GB , respectively. If game G  is known, we simply write W , L  

and B . 

Of course, any simple game has winning and losing coalitions and this game is determined by the set of all 

winning (or losing) coalitions. We also get that WN  and L ; therefore, W  and L  are nonempty, 

=LW  , 
NLW 2= , LB   and =BW   . Observe that a coalition having a winning sub-coalition 

is also winning, a sub-coalition of a losing coalition is also losing, and the complement of a blocking coalition 

is also blocking. It is easy to show that B  can be either empty or nonempty. From L , B  and 

LB   it follows that BL \  is nonempty. Sometimes, coalitions of BL \  are called strictly losing. 

First, for any player Ni , the collection of all winning coalitions including i  is denoted by 
iW+  and the 

collection of all winning coalitions excluding i  is denoted by 
iW− . Clearly, if 

iWS − , then 
iWiS +}{ ; 

therefore, we obtain the inequality 
ii WW +−  . We also have that =−+

ii WW  , WWW ii =−+   and 

ii WWW +− 
2

1
. 

Next, for any player Ni , the collection of all losing coalitions including i  is denoted by 
iL+  and the 

collection of all losing coalitions excluding i  is denoted by 
iL− , =−+

ii LL   and LLL ii =−+  . From 

iLS +  it follows that 
iLiS −}{\ ; therefore, we get that 

ii LLL −+ 
2

1
. 

Finally, for any player Ni , the collection of all blocking coalitions including i  is denoted by 
iB+  and the 

collection of all blocking coalitions excluding i  is denoted by 
iB− . In this case we obtain =−+

ii BB   and 

BBB ii =−+  . 

For any coalition WS , S  is called a minimal winning coalition if }{\ iS  is not winning for all Si . The 

collection of all minimal winning coalitions is denoted by MW  for a known game or )(GMW  for any game 

G . For any player Ni , the collection of all minimal winning coalitions including i  is denoted by 
iMW+  

and the collection of all minimal winning coalitions excluding i  is denoted by 
iMW− . 

It is easy to prove that MW  and W  are finite sets, WMW   and MW  is nonempty. Clearly, we have that 

=−+
ii MWMW  , MWMWMW ii =−+  , 

ii WMW ++   and 
ii WMW −−   for all Ni . 

Thus, a simple game ),( vN  can alternatively be defined in winning-set form as ),( WN  or ),( MWN . There 

are the extensive winning or the extensive minimal winning form, respectively. 

For any coalition LS , S  is called a maximal losing coalition if }{iS   is not losing for all SNi \ . The 

collection of all maximal losing coalitions is denoted by ML . For any player Ni , the collection of all 
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maximal losing coalitions including i  is denoted by 
iML+  and the collection of all maximal losing coalitions 

excluding i  is denoted by 
iML− . 

By analogy, ML  and L  are finite sets, LML   and ML  is nonempty, and =−+
ii MLML  , 

MLMLML ii =−+  , 
ii LML ++   and 

ii LML −−   for all Ni . 

The set of minimal winning coalitions determines a simple game uniquely. When )()( 21 GMWGMW =  we 

call that games 
1G  and 

2G  are equivalent. The same applies to the set of maximal losing coalitions. 

A player who does not belong to any minimal winning coalition is called a dummy, i.e. player Ni  is a 

dummy if Si  for all MWS . A player who belongs to all minimal winning coalitions is called a veto 

player or vetoer, i.e. player Ni  has the capacity to veto if Si  for all MWS . A player Ni  is a 

dictator if }{i  is a winning coalition. 

In voting power theory, a dummy player has no decision power, a veto player can block every decision and a 

dictator has all of the decision power. Formally, for any player Ni , i  being a dictator is equivalent to 

MWi }{ , i  being a veto player is equivalent to  MWS
Si


  (or  WS

Si


 ) and i  being a dummy is 

equivalent to  MWS
Si


 . 

For any player Ni , it is easy to show that =+
iMW  is equivalent to player i  being a dummy and 

MWMW i =+  (or WW i =+ ) is equivalent to player i  being a veto player. 

Now we will consider three examples. 

Example 1. The voting method of the Security Council of the United Nations, formed by 5 permanent (USA, 

UK, France, Russia and China) and 10 temporary members, is a game in which each one of the permanent 

member has 7 votes and each one of the temporary member has only one vote, the established quota is 39 

votes, and there are 45 total votes. We observe that any coalition which does not include all of the 5 

permanent members has at most 381074 =+  votes, which is an inferior number to the fixed quota. As a 

result this coalition is not winning. Hence, each one of the permanent members has the capacity to veto any 

proposal. For more information see [13] and [24]. 

Example 2. The Bulgarian Parliament with 240 seats uses two different rules: a simple majority by quota 121 

(more than 
2

1 ) and a qualified majority by quota 161 (more than 
3

2 ). The Finish Parliament with 200 seats 

uses three different rules: a simple majority by quota 101 (more than 
2

1 ), a qualified majority by quota 134 

(more than 
3

2 ), and in some special cases by quota 167 (more than 
6

5 ) [13]. 

Example 3. The U. S. Congress has a nonvoting delegate who represents the District of Columbia; therefore, 

this delegate is a dummy. Note that in principle a player can be assigned weight zero, but in practice this 

player would be silly, because it would be a dummy. However, a player having positive weight can also be a 

dummy. In fact, this was the case with Luxembourg as a member of the European Union Council of Ministers 

during the period 1958-1972, when its weight was one but it was a dummy [19]. 

In the following example we illustrate that there exists a simple game that is not a weighted voting game [10]. 
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Example 4. Consider simple game G  given by }5,4,3,2,1{=N  and }}5,4{},3,2,1{{=MW . Let us assume 

that there exist quota q  and weights 54321 ,,,, wwwww  such that G  is a weighted voting game. This means 

that qwww ++ 321  and qww + 54 . As a result we obtain 43421 wwqwwwq +−++ ; therefore, we 

have that 43 ww  . Thus, we find that W}5,3{ , but L}5{},3{ . It follows that MW}5,3{ . This leads to 

a contradiction; therefore, G  is not a weighted voting game. 

Now, let us analyze the sum )\()( SNvSv +  for NS  . Clearly, 1)(0  Sv  imply inequalities 

2)\()(0 + SNvSv . 

A weighted voting game G  is called proper if 1)\()( + SNvSv  for all NS  . 

Note that a weighted voting game being proper is equivalent to the complement of a winning coalition is not 

winning. This means that in a proper game both coalitions S  and SN \  cannot be winning. In this context, if 

S  is winning, then SN \  is losing, but the converse statement is not always true. 

Clearly, the following statements are true: 

(1) A proper game may have only one dictator and if there is a dictator, then player 1 is the only dictator and 

the only veto player, all other players are dummies and there is no blocking coalition. Note that a proper game 

with two or more veto players does not have a dictator. 

(2) An improper game may have at least one pair of non-intersecting winning coalitions. In particular, an 

improper game may have more than one dictator. 

In what follows, we will only study proper games. 

A proper game G  is called decisive (or strong) if 1)\()( =+ SNvSv  for all NS  . 

It is easy to prove that a proper game being decisive (or strong) is equivalent to it having no blocking 

coalition. For any coalition NS   in a decisive game, S  being winning is equivalent to SN \  being losing. 

If a proper game has a dictator, then this game is decisive, but the converse statement is not true. 

Note that the set of all winning coalitions and the set of all minimal winning coalitions in weighted voting 

game ],...,,;[ 21 nwwwq  are the same as the set of all winning coalitions and the set of all minimal winning 

coalitions in weighted voting game ],...,,;[ 21 nwwwq   for every positive integer number  . As a result 

we obtain that weighted voting game ],...,,;[ 21 nwwwqG =  is equivalent to game 

],...,,;[ 21 nwwwqG  = . For integer number 1 , the two distinct representations ],...,,;[ 21 nwwwq  

and ],...,,;[ 21 nwwwq   are equivalent. It follows that the number of representations of a weighted 

voting game is infinitive. This means that G  and G  are equal as two simple games. 

For any proper game G , a pair of players Nji ,  is called symmetric (or i  and j  are symmetric) if 

}){(}){( jSviSv  =  for all coalitions },{\ jiNS . Proper game G  is symmetric if every pair of players 

is symmetric. 

Of course, if ji ww = , then players i  and j  are symmetric, but the converse statement is not true. For 

example, see game ]10,11,13,14;30[=G . The players of G  have different weights but every pair of players 

are symmetric. Hence, symmetric does not imply that all players have equal weights, but symmetric implies 

that all players are granted equal impact on collective decisions. 
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It is interesting to note that game ]10,11,13,14;30[  is equivalent to game ]1,1,1,1;3[  and game 

]1,1,1,1;3[  is symmetric. It is easy to prove that if 1G  and 2G  are equivalent games and 1G  is symmetric, 

then 2G  is also symmetric because the set of all minimal winning coalitions of game 1G  is equal to the set of 

all minimal winning coalitions of game 2G . 

Consider proper game ],,;[ 321 wwwqG =  and let us assume that W}3,2{ . For example, let us consider 

game ]4,6,7;9[=G . It is easy to prove that }}3,2{},3,1{},2,1{{=MW . Game G  has representation 

]1,1,1;2[ ; therefore, game G  is symmetric and all players have equal decision power. 

Consider a pair of symmetric players Nji , . It follows that if NSi   and Sj , then 

}){\}{()( ijSvSv = . Now, it is easy to see that 
ji WW ++ = , 

ji LL ++ =  and 
ji BB ++ = . 

It is easy to see that the player’s ability to influence the outcome of a weighted voting game is related to the 

player’s weight, but it is not always directly proportional to the decision power of this player. For example, let 

us consider a game with 4 players, player 1 has 58 votes, player 2 has 25 votes, player 3 has 10 votes, player 4 

has 7 votes and the quota is 55. We may think that player 1 has 58 % of the decision power, players 2, 3 and 4 

have 25 %, 10% and 7 %, respectively. But this is not true because player 1 has 100 % of the power, and 

players 2, 3 and 4 are powerless or they are dummies. Sometimes, a player may want the voting body not to 

make a decision, i.e. he/she wants to block decision-making. In our example, if the quota is 80, then player 2 

can block every decision, i.e. player 2 has capacity to veto. Note that players 3 and 4 do not have the capacity 

to veto. But, if the quota is 85, then a coalition of players 3 and 4 may block decision-making; therefore, this 

coalition is blocking. 

For Ni  and 
iWS + , player i  is called a negative swing member of S  (critical or pivotal) if }{\ iS  is not 

winning. For any player Ni , the collection of all winning coalitions including i  as a negative swing number 

is denoted by 
i
sW . For Ni  and 

iLS − , player i  is called a positive swing member of S  (critical or pivotal) 

if }{iS   is not losing. For any player Ni , the collection of all losing coalitions including i  as a positive 

swing number is denoted by 
i
sL . 

It is often said that 
i
sW  and 

i
sL  are the number of swings of player Ni . 

Note that each member of a minimal winning coalition is a negative swing player, each member of a maximal 

losing coalition is a positive swing player, a winning coalition may have a negative swing member and a losing 

coalition may have a positive swing member. 

It is easy to show that each positive swing for player Ni  corresponds to a pair of coalitions 

( ) ii WLiSS +− }{,   such that S  is losing and }{iS   is winning, and each negative swing for player 

Ni  corresponds to a pair of coalitions ( ) ii WLSiS +− },{\  such that }{\ iS  is losing and S  is winning. 

In the first case we say that i  is a swing player for the pair ( )}{, iSS  , but in the second case we say that 

that i  is a swing player for the pair ( )SiS },{\ . 

It is easy to show that if a weighted voting game has a dictator, then he/she is the only swing player in this 

game. 
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Theorem 1 [4]. For any proper game 
i
s

i
s LW =  for all Ni . 

It is important to note that in the proof of the above statement the authors construct a one-to-one mapping 
i
s

i
si LWm →:  such that coalition 

i
sWS   only corresponds to coalition 

i
sLiS }{\  and conversely, coalition 

i
sLiS }{\  only corresponds to coalition 

i
sWS  . 

3. Two Voting Paradoxes 

Weighted voting games are mathematical abstractions of real voting systems. In this section we will describe 

two paradoxes in real voting systems. In principle a player can be assigned weight zero, but in practice this 

player would be silly, because it would be a dummy. However, a player having a positive weight can also be a 

dummy. Note that the possibility of dummy players in a real voting systems is a big problem from a 

democratic point of view. 

3.1. The Voting Paradox of Luxembourg 

In this subsection we will see that Luxembourg was a powerless country as a member of the European Union 

Council of Ministers during the period 1958-1973. 

Let us consider the Council of Ministers during the above period from a mathematical point of view. The 

decision rule is a weighted voting game ]1,2,2,4,4,4;12[58 =L . In this game the players are Germany, 

France, Italy, Belgium, Netherlands and Luxembourg, respectively. 

Note that the total sum of the weights is 17 and the quota is 12, i.e. 6=n , 17=  and 12=q . It is easy to 

show that this game is proper, see also [13], [20] and [24]. 

The number of winning coalitions is 14 and they are: {1,2,3,4,5,6}, {1,2,3,4,5}, {1,2,3,4,6}, {1,2,3,5,6}, {1,2,3,4}, 

{1,2,3,5}, {1,2,3,6}, {1,2,4,5,6}, {1,3,4,5,6}, {2,3,4,5,6}, {1,2,3}, {1,2,4,5}, {1,3,4,5} and {2,3,4,5}. The number of minimal 

winning coalitions is 4 and they are: {1,2,3}, {1,2,4,5}, {1,3,4,5} and {2,3,4,5}. As a result we decide that player 6 is 

a dummy. So player 6 or Luxembourg formally was never able to make any difference in the voting process 

and was a dummy during the period 1958-1973 [19]. 

Obviously, game ]1,2,2,4,4,4;12[58 =L  has no dictator, has no veto player and has a dummy player. 

We also get that this game has at least one blocking coalition. Hence, this game is not decisive. For example, 

coalition }4,1{  is blocking and coalition }6,5,4{  is losing but not blocking. 

Clearly, players 1, 2 and 3 are symmetric, and players 4 and 5 are symmetric because they have equal weights, 

respectively. 

These notes allow us to discuss the case when a player has positive weight and is a dummy. 

Let us consider a proper game ],,...,,;[ 121 nn wwwwq −  when 3n  and 0nw . Then, 0iw  for all Ni . 

Theorem 2. Let Nji ,  and ji  . The following statements are true. 

(a) If player i  is not a dummy and player j  is a dummy, then ji ww  . 

(b) If player i  is a dummy and ji ww  , then player j  is also a dummy. 
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Proof. (a) Let us denote }:{ SkMWSMWk =  for Nk . It is easy to show that iMW  is not empty 

and jMW  is empty. 

If MWMWS i  , then qw
Sk k  

. For }{\ iST =  it follows that qww iTk k + 
 and 

qw
Tk k  

, i.e. T  is a losing coalition. It is known that player j  is a dummy; therefore, Sj  and Tj . 

Let us now consider the coalition }{ jTP = . There are two cases: 

Case 1. Let P  be a losing coalition. In this case we have qww jTk k + 
. 

Case 2. Let P  be a winning coalition. From the condition j  is a dummy it follows that }{\ jPT =  is a 

winning coalition too. This leads to a contradiction. 

Finally, we obtain qww jTk k + 
. 

From the inequalities qww iTk k + 
 and qww jTk k + 

 we get ji ww  . 

(b) Let us assume that player j  is not a dummy. From player i  being a dummy and part (a) it follows that 

ji ww  . This leads to a contradiction with the condition ji ww  ; therefore, player j  is a dummy. 

The theorem is proven. 

3.2. The Voting Paradox of Nassau Country 

In this subsection we will study Nassau Country, New York, which is a region on Long Island. The government 

of Nassau Country took the form of a Board of Supervisors in 1958 for the period 1958-1964 and in 1964 for 

the period 1964-1970, one representative for each of various municipalities, who casts a block of votes [14] 

[20]. 

There are two special weighted voting games used at various times by Nassau Country. We will discuss these 

two voting games. 

3.2.1. The First Voting Game 

The first decision rule in 1958 was a weighted voting game ]1,1,3,7,9,9;16[58 =N . In this game the 

players were Hempstead 1, Hempstead 2, North Hempstead, Oyster Bay, Long Beach and Glen Cove, 

respectively. In game 58N , the total sum of the weights was 30 and the quota was 16, i.e. 6=n , 30=  and 

16=q . As a result we find that game 58N  is proper. It is easy to show that this game has no blocking 

coalition; therefore, it is decisive. 

The number of minimal winning coalitions is 3 and they are: {1,2}, {1,3} and {2,3}. As a result we see that Oyster 

Bay, Long Beach and Glen Cove (players 4, 5 and 6) are dummies. See Theorem 2. 

Note that the number of all winning coalitions is 3284
3

3

2

3

1

3

0

3

3

3

2

3
==








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


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
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

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+


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


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
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
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










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






+








, i.e. 

32=W  and 3=MW . 

In this game players 1, 2 and 3 are symmetric, but they do not have equal weights. Players 4, 5 and 6 do not 

have equal weights and they are symmetric too. 
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3.2.2. The Second Voting Game 

The second decision rule in 1964 was a weighted voting game ]2,2,21,28,31,31;58[64 =N . In this game 

the players were Hempstead 1, Hempstead 2, Oyster Bay, North Hempstead, Long Beach and Glen Cove, 

respectively. In game 64N , the total sum of the weights was 115 and the quota was 58, i.e. 6=n , 115=  

and 58=q . It is easy to show that this game is also decisive. 

The number of all winning coalitions is also 32. The number of minimal winning coalitions is also 3 and they 

are: {1,2}, {1,3} and {2,3}. As a result we see that North Hempstead, Long Beach and Glen Cove (players 4, 5 and 

6) are dummies. See also Theorem 2. 

As in game 58N , we see in game 64N  that players 1, 2 and 3 are symmetric, they do not have equal 

weights, players 4, 5 and 6 are also symmetric and they do not have equal weights. 

4. Distribution of Decision Power between the Players 

The concept of decision power of the players in weighted voting games is well-known. For example, let us 

consider a game ]11,27,62;51[=G . We may be tempted to say that player 1 has 62 % of the decision 

power, players 2 and 3 have 27 % and 11 %, respectively. But this is not true because player 1 has 100 % of the 

power, and players 2 and 3 are powerless, i.e. player 1 is a dictator and players 2 and 3 are dummies. 

Weighted voting games use mathematical models to analyze the distribution of decision power of the players. 

This distribution of decision power is central in economics and political science. 

The proportional index ),...,,( 21 n  is the trivial power index given by 


 i
i

w
=  for player Ni . This 

measure is popularly known as Gamson’s Law or Gamson’s Index [8]. 

There are two most widely used measures of voting power in the weighted voting games - the Shapley-Shubik 

power index and the Banzhaf power index. The Shapley-Shubik power index in a voting situation depends on 

the number of orderings in which each player can affect a positive swing. The Banzhaf power index depends 

on the number of ways in which each player can affect a negative swing. 

The Shapley-Shubik power index was introduced by the mathematician Lloyd Shapley and the economist 

Martin Shubik in 1954 [18]. For player Ni  this index is defined by 

 

−−
=

WiSLSi
n

sns
}{, !

)!1(!


 , 

where Ss = . If we assume that all !n  orderings are equiprobable, then i  is the probability of player i  being 

a positive swing member in a winning coalition, that is, }{iS   is a winning and S  is a losing coalition. 

In classical theory, a negative swing for player Ni  corresponds to a pair of coalitions ( )SiS },{  such that 

}{iS   is winning and S  is losing, i.e. Si , 1}){( =iSv   and 0)( =Sv . It is easy to show that 

}){\()( iSvSv −  is always either zero or one for all NS   and all Ni . If NS   and Si , then 

0}){\()( =− iSvSv . If NS   and Si , then 1}){\()( =− iSvSv  (when S  is wining and }{\ iS  is 

losing) or 0}){\()( =− iSvSv  (when S  and }{\ iS  are wining or S  and }{\ iS  are losing). 

It follows two equivalent forms of the Shapley-Shubik index and they are defined as 
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( ) ( )}){\()(
!

)!()!1(
}){\()(

!

)!()!1(
,

iSvSv
n

sns
iSvSv

n

sns
SiNSNSi −

−−
=−

−−
=  

 . 

The Shapley-Shubik index is the vector ),...,,( 21 n =


 and it has the normalization property, i.e. 

 =
=

n

i i1
1 . 

The Banzhaf power index was introduced by the American jurist and law professor John Banzhaf III in 1965 [1]. 

The absolute Banzhaf index concerns the number of times each player Ni  could change a coalition from 

losing to winning and it requires that we know the number of negative swings for each player i . For each 

player Ni , the absolute Banzhaf index is denoted by i  and it equals the number of negative swings for 

this player, i.e. ( ) ( ) i
sSiNSNSi WiSvSviSvSv =−=−=   ,

}){\()(}){\()(  for all Ni . 

The normalized Banzhaf power index is the vector ),...,,( 21 n =


, given by 

 =

=
n

k k

i
i

1



  for ni ,...,2,1= . 

The Banzhaf index is similar of the Penrose-Banzhaf (or Banzhaf-Coleman) index which is defined by 

111 222

}){\()(
−− −

==
−

= n

i

n

i
s

NS ni

WiSvSv
b


 for Ni . The Banzhaf index was originally created in 1946 by 

Leonel Penrose, but was reintroduced by John Banzhaf in 1965. 

In [4] and [11] it is proven that for any player Ni , 
iii

s
i
si WWLW −+ −=== . 

Example 5. Consider a weighted voting game ]1,1,3,3;7[ . The collections of all wining and all minimal 

wining coalitions are }}4,3,2,1{},4,2,1{},3,2,1{{=W  and }}4,2,1{},3,2,1{{=MW , respectively. The swings 

of player 1 correspond to three pairs of coalitions })3,2,1{},3,2({ , })4,2,1{},4,2({  and })4,3,2,1{},4,3,2({ , 

i.e. we get that 31 = . Similarly, we obtain 32 = , 13 =  and 14 = . 

It is important to note that the Shapley-Shubik power index and the Banzhaf power index are monotonic with 

respect to the weights when we are evaluating the power, i.e. for Nji , , ji  =  and ji  =  when 

ji ww = , and ji    and ji    when ji ww  . We also get that for any proper game, player Ni  

being a dummy is equivalent to 0== ii  , see also [19]. Thus it follows that player Ni  being a dummy is 

equivalent to i  not being a swing player. 

Coleman considered two different power indices of the players in a game, see also [2] and [5]. For any player 

Ni , they are defined as follows. 

(a) The preventive power index 
W

W
P

i
s

i = . 

(b) The initiative power index 
L

L
I

i
s

i = . 
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It is easy to show that 10  iP  and 10  iI  for all Ni . 

For any player Ni , both indices iP  and iI  achieve their lower bound of 0 if and only if player i  is a 

dummy; index iP  achieves its upper bound of 1 if and only if i  is a veto player; and index iI  achieves its 

upper bound of 1 if and only if player i  is a dictator [2] [3]. 

It is natural to postulate that player i  being a dummy is equivalent to 0== i
s

i
s LW  (or player i  is never a 

swing player), that player i  being a vetoer is equivalent to WW i
s = , and player i  being a dictator is 

equivalent to LLi
s = . 

In [7], the authors prove that for any non-dummy player Ni  the Penrose-Banzhaf index ib  is the harmonic 

mean of the two Coleman indices iP  and iI , i.e. 

iii IPb

112
+= . It is important to point out that the Coleman 

power indexes are monotonic with respect to the weights when we are evaluating the power, i.e. for two 

different players Nji , , ji PP =  and ji II =  when ji ww =  and ji PP   and ji II   when ji ww  . 

5. Methods of Manipulation 

Weighted voting games are cooperative games; therefore, analyses of manipulation are natural. The study of 

methods of manipulation also has practical applications. Manipulation is a change or influence on the 

weighted voting game that changes the decision power of the players within the legal rules. It particular, 

decision rules in voting games can be manipulated by coalitions merging into single players and players 

splitting into a number of smaller units [12]. Decision rules can also be manipulated by annexation of a part or 

all of the weights of other players. 

Now we will study three cases of manipulations – merging, splitting and annexation. 

First, we will focus our attention on manipulation by merging, that is, two or more different players merge into 

a single player. Consider a proper weighted voting game ],...,,;[ 21 nwwwqG = . We construct a new game 

],...,,;[ 21 nwwwqG =  such that nn  , each players i  in game G  is a fixed coalition of one or more 

players in game G  and its weight iw   is the sum of the weights of this fixed coalition. The quota and the total 

sum of the weights remain the same. We denote the set of all players in games G  and G  by N  and N  , 

respectively. Game G  is called a derivative game of the original game G . For more information see [21]. 

Example 6. Let ]1,1,3,4;5[=G  be an original game. For the derivative game G , let the coalition of players 

2 and 4 in game G  be a new player in game G  (players 2 and 4 merge into a single player and it is player 

2 ) and the other players remain the same. Thus, we get the derivative game ]1,4,4;5[=G . 

Example 7. Let ]1,1,2,4,4,7,8;17[=G  be an original game where 7=n , 17=q  and 27= . For the 

derivative game G , let players 2, 3 and 5 in game G  as a coalition be a new player in G  and the other 

players be the same. So we get ]1,1,4,8,13;17[=G  where 5=m , 17=q , 27= , }5,3,2{1 = , }1{2 = , 

}4{3 = , }6{4 =  and }7{5 = . The sum of the Banzhaf power indices of players 2, 3 and 5 in game G  is 

4851,0532 =++   but this index of player 1  in game G  is 6000,01 = . As a result we obtain 

1532 ++  . 
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Example 8. Let ]1,3,4,5,5,8,9;30[=G  be an original game where 7=n , 30=q  and 35= . For the 

derivative game G , let players 1, 2 and 3 in game G  as a coalition be a new player in G  and the other 

players be the same. In this case we get ]1,3,4,5,22;30[=G  where 5=m , 30=q , 35= , }3,2,1{1 = , 

}4{2 = , }5{3 = , }6{4 =  and }7{5 = . Here the sum of the Banzhaf power indices of players 1, 2 and 3 in 

game G  is 5789,0321 =++   but this index of player 1  in game G  is 3684,01 = . Now we obtain 

1321 ++  . 

Theorem 3 [22]. Transform game G  to game G  by merging of two different players i  and j  into player i , 

and the other players remain the same. The following statements are true. 

(a) iji =+  2 , )(2)()( GWGWGW i
s

j
s

i
s

=+


 and )(2)()( GLGLGL i
s

j
s

i
s

=+


. 

(b) If player j  is a dummy in game G , then ii =  2 , )(2)( GWGW i
s

i
s

=


 and )(2)( GLGL i
s

i
s

=


 

(c) Players i  and j  being dummies in game G  is equivalent to player i  being a dummy in game G . 

(d) If ji ww = , then ii ww =2 , ii = , )()( GWGW i
s

i
s

=


 and )()( GLGL i
s

i
s

=


. 

(e) If jik ,  and player k  in game G  transforms to player k  in game G , then kk  , 

)()( GWGW k
s

k
s




 and )()( GLGL k

s

k

s



. 

(f) If player i  is a dummy in game G , then 0==+ iji  . 

(g) If player i  is not a dummy in game G , then iji +  2 . 

(h) If ij ww   and player i  is not a dummy in game G , then ij   . 

(i) If player i  is a dictator in game G , then player i  is a dictator in game G  and 1==+ iji  . 

Proof. (a) Let )(GLS i
s




, iji www =+  and let us assume that ij ww  . This means that 

ijiSh h wwwwq +=− 0  and )(}{ GWiS  . 

There are three cases for positive swings of each player i , j  or i . 

Case 1. If jSh h wwq −  
0 , then jSh h wwq  

+  and iSh h wwq  
+ . As a result we see that 

player i  is a swing member of pair }){,( iSS   in game G , and players j  and i  are swing members of 

pair }){,( jSS   and pair }){,( iSS   in game G , respectively. Hence, in this case we have iji =+  2 . 

Case 2. If iSh hj wwqw −  
, then iSh hjSh h wwqww ++  

. Here we get that player i  is a 

swing member of pair }){,( iSS   in game G , and players j  and i  are swing members of pair 

}){},{\}){(( iSjiS   and pair }){,( iSS   in game G , respectively. We also obtain iji =+  2 . 
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Case 3. If iSh hi wwqw 
−  , then ijSh hiSh h wwwqww +++  

. So we have that player i  

is a swing member of pair }){,( iSS   in game G , and players j  and i  are swing members of pair 

}){},{\}){(( iSjiS   and pair }){}),{\}{(( jSijS   in game G , respectively. Here we get 

iji =+  2  too. 

In summary, we obtain iji =+  2 . From )()( GLGW i
s

i
si == , )()( GLGW j

s
j

sj ==  and 

)()( GLGW i
s

i
si

==


  it follows that )(2)()( GWGWGW i
s

j
s

i
s

=+


 and )(2)()( GLGLGL i
s

j
s

i
s

=+


. 

(b) If player j  is a dummy, then )(GW j
s  is empty. According to (a) we get that ii =  2 , 

)(2)( GWGW i
s

i
s

=


 and )(2)( GLGL i
s

i
s

=


. 

(c) This is immediate from (a). 

(d) The proof follows from (a). 

(e) Let us consider a player Nk   in game G  such that ik   and coalition )(GLS k
s




. This means that 

)(GLS k
s ; therefore, we obtain )()( GLGL k

s
k
s




. It also follows that kk   and )()( GWGW k
s

k
s




. 

(f) If player i  is a dummy, then )(GW i
s


 is empty. This means that 0)( =

GW i
s , i.e. 0=i . Thus we find 

that 0== ji  ; therefore, 0==+ iji  . 

(g) If player i  is not a dummy, then 0i . Clearly, we have that 02 =+ iji  , ii   2  and 0i  

or 0j , see (a) and (f). 

Applying now (a) and (e) we calculate that 

i

Nh hi

i

iNh hi

i

jiNh hji

ji

Nh h

ji

ji














+




+




++

+
=

+
=+























2
2

2

2

}{\

}.{\
. 

Finally, we obtain iji +  2 . 

(h) We have that ij   ; therefore, we find that ijij +  22 , i.e. ij   . 

(i) If player i  is a dictator in game G , then the other players in game G  are dummies. These players are 

dummies in game G  too, see (a), (e) and (f). Hence, player i  is a dictator in game G . As a result we obtain 

0=j , 1== ii   and 1==+ iji  . 

The theorem is proven. 
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Now we will consider manipulation by splitting, that is, a player splits into a number of smaller different 

players. Consider a proper weighted voting game ],...,,;[ 21 nwwwqG = . We construct a new game 

],...,,;[ 21 nwwwqG =  such that nn  , each player i  in game G  splits to one or more players in game 

G  and the weight iw  of player i  in game G  is the sum of the weights of the split players in game G . The 

quota and the total sum of the weights remain the same. Game G  is called a derivative game of the original 

game G . In the other words, game G  transforms into game G  by the splitting of player i  into players i  

and j  while the other players remain same, and jii www  += . 

Example 9. Let ]1,4,4;5[=G  be an original game. For the derivative game G , let player 2 in game G  split 

into two players with weights 3 and 1 while the other players remain the same. Thus, we get the derivative 

game ]1,1,3,4;5[=G . 

Example 10. Let ]2,2,2;5[=G  be an original game where 3=n , 5=q  and 6= . For the derivative 

game G , let player 3 with weight 2 split up into two players with weight 1. So in the new game G  players 

3  and 4  will have weight 1. This means that ]1,1,2,2;5[=G  where 4=m , 5=q  and 6= . The 

Banzhaf power index of player 3 in game G  is 313 =  and this index of players 3  and 4  in game G  is 

8143 ==   . As a result we find that 433  +  . 

Example 11. Let ]2,2,2;4[=G  be an original game where 3=n , 4=q  and 6= . For the derivative 

game G , let player 3 with weight 2 split up into two players with weight 1. So in the new game G  players 

3  and 4  will have weight 1. This means that ]1,1,2,2;4[=G  where 4=m , 4=q  and 6= . The 

Banzhaf power index of player 3 in game G  is 313 =  and this index of players 3  and 4  in game G  is 

6143 ==   . As a result we find that 433  +=  . 

Example 12. Let ]2,2,2;6[=G  be an original game where 3=n , 6=q  and 6= . For the derivative 

game G , let player 3 with weight 2 split up into two players with weight 1. So in the new game G  players 

3  and 4  will have weight 1. This means that ]1,1,2,2;6[=G  where 4=m , 6=q  and 6= . The 

Banzhaf power index of player 3 in game G  is 313 =  and this index of players 3  and 4  in game G  is 

4143 ==   . As a result we find that 433  +  . 

It is necessary to note that the converse process of manipulation by merging is the process of manipulation by 

splitting. 

In the end, we will discuss manipulation by annexation, that is, a player annexes a part or all of the voting 

weights of other players. Consider a proper weighted voting game ],...,,;[ 21 nwwwqG = . We construct a 

new game ],...,,;[ 21 nwwwqG =  such that nn = , fix two different players i  and j  in game G , player i  

annexes a part or all of the voting weight of player j , i.e. the new weight of player i  is tww ii +=  and the 

new weight of player j  is tww jj −=  for 0 twj . In the other words, player i  takes t  votes from player 

j  and the other players remain the same. Game G  is called a derivative game of the original game G . 

Example 13. Let ]1,2,3,4;6[=G  be an original game. For the derivative game G , let player 1 with weight 

4 in game G  annex one vote of player 3 with weight 2. As a result we get that player 1 has weight 5, player 3 

has weight 1 and the other players remain the same. Thus, we get the derivative game ]1,1,3,5;6[=G . 
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Example 14. Let ]2,3,3,4,4,5,8;18[=G  be an original game where 7=n , 18=q  and 29= . For the 

derivative game G , let player 2 with weight 5 annex 4 votes of player 5. In the new game G  player 1  will 

have weight 945 =+  and player 7  will have weight 044 =− . We also get that 7=m , 18=q , 29= , 

}1{2 = , }3{3 = , }5{4 = , }6{5 =  and }7{6 = , i.e. ]0,2,3,3,4,8,9;18[=G . The Banzhaf power index 

of player 2 in game G  is 1712,02 =  and this index of player 1  in game G  is 3400,01 = . As a result 

we obtain 12    and 07 = . 

Example 15. Let ]3,5,7,8,9,9,9;29[=G  be an original game where 7=n , 29=q  and 50= . For the 

derivative game G , let player 4 with weight 8 annex 3 votes of player 6. In the new game G  player 1  will 

have weight 1138 =+  and player 7  will have weight 033 =− . We also get that 7=m , 29=q , 50= , 

}1{2 = , }2{3 = , }3{4 = , }5{5 =  and }6{6 = , i.e. ]0,5,7,9,9,9,11;29[=G . The Banzhaf power 

index of player 4 in game G  is 1774,04 =  and this index of player 1  in game G  is 2167,01 = . As a 

result we obtain 14    and 07 = . 

Example 16. Let ]1,1,1,2,3,3;9[=G  be an original game where 6=n , 9=q  and 11= . It is known that 

from 32 ww   it follows that 32   . We will consider two cases of annexation. 

Case 1. Player 1 annexes all votes of player 2. So we obtain a new game ]0,1,1,1,2,6;9[=G , the Banzhaf 

power index of player 1  in game G  is 4000,01 =  and this index of player 6  is 06 = . 

Case 2. Player 1 annexes all votes of player 3. In this case we obtain a new game ]0,1,1,1,2,6;9[=G , the 

Banzhaf power index of player 1   in game G   is 4118,01 =  and this index of player 6   is 06 =  . 

Finally, we see that it is possible to have 11     when 32   . 

Theorem 4 [22]. Transform game G  to game G  such that player i  annex },...,2,1{ jwt =  voters of player 

j  and the other players remain the same. The following statements are true. 

(a) )()( GG ii    and )()( GG jj   . 

(b) )()()()( GGGG jjii
−=−  . 

(c) If player j  is a dummy in game G  and 0jw , then player j  is a dummy in game G  and 

)()( GG ii  = . 

(d) Players i  and j  being dummies in game G  is equivalent to these two players i  and j  being dummies in 

game G . 

(e) If player i  is a vetoer in game G , then player i  is a vetoer in game G . 

(f) If player i  is a dictator in game G , then player i  is a dictator in game G . 

Proof. (a) Let )(GLS i
s , i.e. )(GLS i

−  and )(}{ GWiS i
+ . This means that iwSwq − )(0 . From 

iii wtww +=  it follows iwSwq − )(0 ; therefore, )(GLS i  −  and )(}{ GWiS i  + . As a result we 

obtain )(GLS i
s

  and )()( GG ii   . 
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On the analogy of the above, let )(GLS j
s

 , i.e. )(GLS j  −  and )(}{ GWjS j  + . So, 

jj wwSwq − )(0  implies )(GLS j
−  and )(}{ GWjS j

+ . In this case we find that 

)()( GG jj   . 

(b) Let transform game G  to game 1

~
G  by the merging of players i  and j  into player i  and the other 

players be the same. Now, if we transform game G  to game 2

~
G  by the merging of players i  and j  into 

player i  and the other players remain the same, then we obtain 21

~~
GG = . According to Theorem 3(a) we 

obtain )()()
~

(2)
~

(2)()( 21 GGGGGG jiiiji
+===+   . Finally, we get that 

)()()()( GGGG jjii
−=−  . 

(c) Let player j  be a dummy in game G  and 0jw . From (a) and (b) it follows 

0)()()()( −=− GGGG jjii  . This means that player j  is a dummy in game G  and 

)()( GG ii  = . 

(d) The proof follows from (c). 

(e) If player i  is a vetoer in game G , then iwq − . From tww ii +=  and 0t  it follows that player i  is 

a vetoer in game G . 

(f) If player i  is a dictator in game G , then iwq  . Analogy, tww ii +=  and 0t  imply player i  is a 

dictator in game G . 

The theorem is proven. 

Note that one player can consecutively annex a part or all of the voting weights of several players. 
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