Operational representations for the quadruple hypergeometric function Fg((f )

Maged G. Bin-Saad, Jihad A. Younis
Department of Mathematics, Aden University, Aden, Khormaksar, P.O.Box 6014,Yemen
mgbinsaad@Yahoo.com, jihadalsaggaf@gmail.com
Abstract

Based upon the classical derivative and integral operators we introduce a new symbolic operational
representations for the hypergeometric function of four variables Fs((f). By means of these symbolic

operational representations number of generating functions involving the hypergeometric function FS(;) are

then found. Some special cases of the main result here are also considered.
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1.Introduction

Operational representations and relations involving one and more variables hypergeometric series have
been given considerable in the literature, see for example, Chen and Srivastava [1], Goyal, Jain and Gaur ([2],
[3]) Kalla ([4], [5] ), Kalla and Saxena ([6] and [7]), Kant and Koul [8]. In [9], Exton introduced twenty one

complete quadruple hypergeometric series, which he denoted by symbols Kl, KZ,. . Kzl- In [10], eighty

three complete quadruple hypergeometric series given by F® F® ..., Fg(;) were defined by Sharma and

Parihar. Very recently, Bin-Saad et al. [11] introduced five new quadruple hypergeometric functions different
from the Exton’s list of 21 hypergeometric functions of four variables and the Sharma and Parihar’s list of 83

hypergeometric functions of four variables whose names are X", X X ® X X O,

Each quadruple hypergeometric function is of the form

0 m N 5p ,,q
X9 = SAmnpqlY y
() m%&} pqhmn!mqr

where A(m,n, p,q) is a certain sequence of complex parameters and there are twelve parameters in each
function X “(.). Here, for an example, we choose the Sharma and Parihar function F3(é) among their eighty
three functions
4 . .
Fio)(a,,8,,8,,8,,8,,8,,8,,85C,,C,,C,,Cy; X, Y, Z2,U)
_ i (a“l)m+n (aZ)p+q(a3)m+n (a4)p (aS)q X" yn ANTE (1.1)

m,n,p,q=0 (Cl)m+p (CZ )n (C3)q m!n! p ! q ! ’
where (a)n denotes the Pochhammer symbol given by
I'@+n
(Qn=—%E5l=aGH4)(a+n—D(neN::ﬂzsw})mm(@0:1

In this work we will deal with operational definitions ruled by the operators D, and D;l where D,

denoted the derivative operator and D;l defines the inverse of the derivative. It is evident that D;l is
essentially an integral operator and the lower limit has assumed to be zero. The following two formulas are
well-known consequences of the derivative operator DX and the integral operator D;l (see, Ross [12]):

r(+1)

Dm A — A-m ’

X T T —m+1) 42
D—m A F(ﬂ""l) A+m ’ (1.3)

X=X
F@+m+ﬂ
meNuU{0}, 1eC—-{-1,-2,..}.
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Based on the operational relations (1.2) and (1.3) we have

Dm D_m {aa+m—l ﬂb—l}:aa—l b+m-1 % (1.4)

m

We have organized the rest of this paper in the following way: Section 2 establish symbolic representations
for the quadruple series F30 Section 3 deals with special cases of the results of Section 2. The aim of Section

4 is to use the symbolic operational representations obtained in Section 2 to derive a number of generating
functions for the Sharma and Parihar function Fs((f) .

2. Operational Representations

Theorem 2.1. Let Re(ai ) >0, (i =1 2,3 4, 5) and Re(ci ) >0, (i =1 2, 3), then

(-x[p, A'Dje, |-y [D, 5D ] ) * -2 D, B'Dja, |-u D, A;'D ey | )
x{a3 a4—1 ﬂl o1 c2—1 1} 2.1

:a': a4_1 /81 o Cz_l tx I:3(0 (ai,ai,az,az,a3,a3,a4,a5;cl,cz,cl,c3;x, y,z,u),

(l_ X [Dagﬂl_l D/;11(Z3]_ y [Da?,ﬂz_l Dzal] )_al (1_ z [Dazﬂl_l D/}faz] )—a4
X (1_ u [D ﬂe,_lD_laz] )_as X { oy e B B §3_1} 2.2)

_ a-l cll ,—1 ncs—1 4 . .
=ay’ aa s ><Fs(o)(ai,ai,az,az,a3,a3,a4,a5,cl,cz,cl,cg,x,y,z,u).

Proof. Denote, for convenience, the left-hand side of assertion (2.1) by € . Then as a consequence of the
binomial theorem, it is easily seen that :

_ 3 (80)un (8 )puq X"y"2PU% LD B
. miniplq!
x D, ™PD,"D,?

{ ag+m+n-1 a4+p -1

m+nM P (A
Da3 Dw4 Da5

X

ag+q-1 -1 pC,-1 c3—1}
s 1 P2 P3 -

Upon using (1.4) and considering the definition (1.1), we are led finally to right-hand side the assertion (2.1).
The proof of the assertion (2.2) runs parallel to that of the assertion (2.1) then we skip the details.
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3. Special Cases
Here we consider some special cases of our results in previous section.
Substituting X =0in (2.1), we have
-1n-1 —% 1~-1 11 -2,
(l_ y [Dagﬂz D a3]) (1_ z I:Da4ﬂl Dﬁla4]_u [Dasﬂa Dﬁ30‘5])
x{a?*% assl o ;3-1}

:05; 131 o Cz_l b x 2F1(a1’as;cz;y)xFz(azia4’a5;cl’c3;z’u)1

(3.1)

Which, Z=U=0 yields the symbolic operational representation for the Gaussian hypergeometric series , F1
[13]. Another interesting special case of this last result (3.1) when y =0 yields the operational representation

for Appell's series F2 (see [14, p. 41]).

Again, if we take y=0 in (22) and U=0in (21), and simplifying, we obtain the operational
representations for Lauricella's hypergeometric series [14].

Formula (2.2), with Z=U =0, yields the operational representation for Appell's series F4 (see [14, p. 41]).
4. Generating Functions

Theorem 4.1. The following generating functions for Fs(; ) in (1.1) holds true:

ep(t(L-x| D, A'D)la, |+y|D, B;'Dja, ] )+v(-2[D, A'D;la,]-u D, B;'Djias]))

_ — _ _ _ 4.1
X{CZ3 C!j‘l 1a56\5 ! ZI.Cl ' 2C2 ' 3(:3 l} ( )
_ _ . _ tk Vr
—(13 (Zj" 1(156‘5 ! 1 - 2Cz ! ;3 ! E F3(0)(—k,—k,—r,—r,as,as,a4,a5 ;Cl’CZ'Cl’CS;X’ y,Z,u),

o kir!

exp(ti-x[D, ﬂl’lD’l%] y[D..5:'D,ta, ] )-2|D, f'Dte, |-u D, £;'D)las]))

% { R TR ol g } 4.2)
= aX g el ge gt i il ) (—k,—k,~k,—k,a;,a;,a,,a; ;C,,C,,C;,Cs; X, Y, Z,U),
k=0
exp(t 1-x[D, 4'D, ‘e, |+ y[D, :'D,a;] )+v (1-2[D, A'D,'a, | )+ w(l-u[D, A;'D,'a,]))
% {agz -1 a3—lﬁcl—1 cz—lﬁ;3—1}
_azaz -1 as—lﬂl -1 02—1 03—1 4.3)

= thvtw
x Z WIrist 30( k,—k,a,,a,,a;,a;,~r,—S;C,,C,,C;,Cqi X, ¥, Z,U),
o klrls
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)

exp(t 1-x[D, ‘D, e, |+ y[D, B;'D,'a, | )1~ 2|D, B'Da, | )+v 1-u[D, 4;'D}a,]))

y {a;z a a3—118101 A cz—lﬂscs—l}

— azaz -1 a3_lﬂcl 11302*11363—1 (4.4)
0 tk r

x> F9(-k,—k,a,,a,,a,,8,,—k,~T;C,,C,,C;,Ci X, Y, Z,U),
oo kirl

exp(t(L-x[D, A'Dja, |+ y[D, B,'Djas ] )+v(L-2D, B'D,a, ] )L-u[D, B:'D}le,]))
% {a;z 1 a3—1181c1 c2—1ﬂ3c3—1}

_ a;iz -1 ag)—lch1 1ﬂc2—1ﬂc3—1 4.5)
0 tk r
x> F9(-k,—k,a,,a,,a,,8,,—F,—T;C,,C,,C,,Cs; X, ¥, Z,U),

oo kir!

ooltl1-x[0, 507 y10, 507 o 21D, 4105 -l D)
{a;z 10[;3 ol—l ;2—1 3(’:3—1}

_ a-1_a;-1 pc-1 pc,-1 pe-1 4.6
=a, a3 B B (4.6)

XZ

(—k,—k,a,,a,,a,,a;,—k,—k;c,,C,,C;,C5; X, ¥, Z,U).

k r
Y
Proof of (4.1).In (2.1), let @, = —k and a, =TI, by multiplying both the sides by — i it is easily seen that

k! r
(t@-x[D, A'D e ]-y[D, A'D ] ) ) (v-z[p, A'Dja,]-u[D, A'Dja]) )
k! r!
{ oy’ 10‘&4 o 1clilﬂzcrlﬂ3ca_l}

k r
a;-1 1 po poyd oyl L
=a; a, 0‘5&3 By By %
k'ir!

F9(-k,~k,—r—r,,a,,a,,8,,a,;C,,C,,C;,Csi X, Y, Z,U),

and then taking the double sum of both sides we get

¢ li-np, a0y o, 0p])) ¢ bl-2lo. pDja]-ulo, a0 )
k!

0 r=0 r!
a3-1 _a,-1 _as-1 pc-1 pc,-1 (:3—1}
{ Q" ay 05" P P Ps

4 e ol et pond o EEVT
= oy a e BT B B x 30( k,—k,-r,—1,a;,a;,8,,85;C;,C,,Cy,Cs; Xyzu)
oo k!r!
Using the following exponential expansion:
k!
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then, after some simplification, we obtain relation (4.1). A similar argument will establish the other identities
(4.2) to (4.6). For their details, we leave to the interested reader.
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