Weak Insertion of a Contra-Baire-1 (Baire-.5) Function

MAJID MIRMIRAN
Department of Mathematics, University of Isfahan Isfahan 81746-73441, Iran. mirmir@sci.ui.ac.ir

Abstract

A sufficient condition in terms of lower cut sets are given for the weak insertion of a Baire-. 5 function between two comparable real-valued functions on the topological spaces that Fo-kernel of sets are Fo-sets.

Indexing terms/Keywords: Weak insertion, Strong binary relation, Baire-. 5 function, kernel-sets, Lower cut set.

Subject Classification: MSC (2010): 26A15, 54C30. Supporting Agencies: University of Isfahan and Centre of Excellence for Mathematics (University of Isfahan). Language: English

Date of Submission: 2018-02-03 Date of Acceptance: 2018-04-10

Date of Publication: 2018-04-30

Volume: 01 Issue: 01 Journal: MATLAB Journal Website: https://purkh.com

This work is licensed under a Creative Commons Attribution 4.0 International License.
J. Dontchev in [5] introduced a new class of mappings called contra-continuity. A good number of researchers have also initiated different types of contra-continuous like mappings in the papers $[1,3,7,8,9,11,12,19]$.

Results of Kaťetov [13,14] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [2], are used in order to give a necessary and sufficient condition

1 Introduction

A generalized class of closed sets was considered by Maki in 1986 [16]. He investigated the sets that can be represented as union of closed sets and called them V -sets. Complements of V -sets, i.e., sets that are intersection of open sets are called Λ-sets [16].

Recall that a real-valued function f defined on a topological space X is called A-continuous [20] if the preimage of every open subset of R belongs to A, where A is a collection of subsets of X. Most of the definitions of function used throughout this paper are consequences of the definition of A-continuity. However, for unknown concepts the reader may refer to [4, 10]. In the recent literature many topologists had focused their research in the direction of investigating different types of generalized continuity. for the insertion of a Baire-. 5 function between two comparable real-valued functions on the topological spaces that F σ-kernel of sets are F σ-sets.

A real-valued function f defined on a topological space X is called contraBaire- 1 (Baire-.5) if the preimage of every open subset of R is a $G \delta$-set in X [21].

If g and f are real-valued functions defined on a space X, we write $g \leq f$ in case $g(x) \leq f(x)$ for all x in X.
The following definitions are modifications of conditions considered in [15].
A property P defined relative to a real-valued function on a topological space is a $\mathrm{B}-.5$-property provided that any constant function has property P and provided that the sum of a function with property P and any Baire. 5 function also has property P. If $P 1$ and $P 2$ are $B-.5$-properties, the following terminology is used: A space X has the weak $B-.5$-insertion property for ($\mathrm{P} 1, \mathrm{P} 2$) iff for any functions g and f on X such that $g \leq f, g$ has property P1 and f has property P 2 , then there exists a Baire -.5 function h such that $\mathrm{g} \leq \mathrm{h} \leq \mathrm{f}$.

In this paper, for a topological space that Fo-kernel of sets are Fo-sets, is given a sufficient condition for the weak B - . 5 -insertion property. Also several insertion theorems are obtained as corollaries of these results.

2 The Main Result

Before giving a sufficient condition for insertability of a Baire-. 5 function, the necessary definitions and terminology are stated.

Definition 2.1. Let A be a subset of a topological space (X, τ). We define the subsets $A \wedge$ and A as follows:
$A^{\wedge}=\cap\{O: O \supseteq A, O \in(X, \tau)\}$ and $A^{V}=U\left\{F: F \subseteq A, F^{c} \in(X, \tau)\right\}$.
$\ln [6,17,18], A^{\wedge}$ is called the kernel of A.
We define the subsets $G \delta(A)$ and $F \sigma(A)$ as follows:

$$
G \delta(A)=\cup\{O: O \subseteq A, O i s G \delta-\text { set }\} \text { and }
$$

$F \sigma(A)=\cap\{F: F \supseteq A, F$ isF σ set $\}$.
$\mathrm{F} \sigma(\mathrm{A})$ is called the $\mathrm{F} \sigma$ - kernel of A .
The following first two definitions are modifications of conditions considered in [13, 14].
Definition 2.2. If ρ is a binary relation in a set S then ρ^{-}is defined as follows: $x \rho^{-} y$ if and only if ypv implies $x \rho v$ and $u \rho x$ implies upy for any u and v in S.

Definition 2.3. A binary relation ρ in the power set $P(X)$ of a topological space X is called a strong binary relation in $P(X)$ in case ρ satisfies each of the following conditions:

1) If Ai $\rho B j$ for any $i \in\{1, \ldots, m\}$ and for any $j \in\{1, \ldots, n\}$, then there exists a set C in $P(X)$ such that $A i \rho C$ and $C \rho B j$ for any $i \in\{1, \ldots, m\} a n d$ any $j \in\{1, \ldots, n\}$.
2) If $A \subseteq B$, then $A \rho^{-} B$.
3) If $A \rho B$, then $F \sigma(A) \subseteq B$ and $A \subseteq G \delta(B)$.

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [2] as follows:
Definition 2.4. If f is a real-valued function defined on a space X and if $\{x \in X: f(x)<l\} \subseteq A(f, I) \subseteq\{x \in X: f(x) \leq I\}$ for a real number I, then $A(f, I)$ is a lower indefinite cut set in the domain of f at the level I.

We now give the following main results:
Theorem 2.1. Let g and f be real-valued functions on the topological space X, that Fo-kernel of sets in X are Fo- sets, with $g \leq f$. If there exists a strong binary relation ρ on the power set of X and if there exist lower indefinite cut sets $A(f, t)$ and $A(g, t)$ in the domain of f and g at the level t for each rational number t such that if $\mathrm{t} 1<\mathrm{t} 2$ then $\mathrm{A}(\mathrm{f}, \mathrm{t} 1) \rho \mathrm{A}(\mathrm{g}, \mathrm{t} 2)$, then there exists a Baire- .5 function h defined on X such that $\mathrm{g} \leq \mathrm{h} \leq \mathrm{f}$.

Proof. Let g and f be real-valued functions defined on the X such that $g \leq f$. By hypothesis there exists a strong binary relation ρ on the power set of X and there exist lower indefinite cut sets $A(f, t)$ and $A(g, t)$ in the domain of f and g at the level t for each rational number t such that if $t 1<t 2$ then $A(f, t 1) \rho A(g, t 2)$.

Define functions F and G mapping the rational numbers Qinto the power set of X by $F(t)=A(f, t)$ and $G(t)=$ $A(g, t)$. If $t 1$ and $t 2$ are any elements of Q with $t 1<t 2$, then $F(t 1) \rho^{-} F(t 2), G(t 1) \rho G(t 2)$, and $F(t 1) \rho G(t 2)$. By Lemmas 1 and 2 of [14] it follows that there exists a function H mapping Q into the power set of X such that if t1 and t2 are any rational numbers with
$\mathrm{t} 1<\mathrm{t} 2$, then $\mathrm{F}(\mathrm{t} 1) \rho \mathrm{H}(\mathrm{t} 2), \mathrm{H}(\mathrm{t} 1) \rho \mathrm{H}(\mathrm{t} 2)$ and $\mathrm{H}(\mathrm{t} 1) \rho \mathrm{G}(\mathrm{t} 2)$.
For any x in X, let $h(x)=\inf \{t \in Q: x \in H(t)\}$.
We first verify that $g \leq h \leq f$: If x is in $H(t)$ then x is in $G\left(t^{\prime}\right)$ for any $t^{\prime}>t$; since x in $G\left(t^{\prime}\right)=A\left(g, t^{\prime}\right)$ implies that $g(x)$ $\leq t^{\prime}$, it follows that $g(x) \leq t$. Hence $g \leq h$. If x is not in $H(t)$, then x is not in $F\left(t^{\prime}\right)$ for any $t^{\prime}<t$; since x is not in F $\left(t^{\prime}\right)=A\left(f, t^{\prime}\right)$ implies that $f(x)>t^{\prime}$, it follows that $f(x) \geq t$. Hence $h \leq f$.

Also, for any rational numbers $t 1$ and $t 2$ with $t 1<t 2$, we have $h^{-1}(\mathrm{t} 1, \mathrm{t} 2)=\mathrm{G} \delta(\mathrm{H}(\mathrm{t} 2)) \backslash \mathrm{Fo}(\mathrm{H}(\mathrm{t} 1))$. Hence $\mathrm{h}^{-1}(\mathrm{t} 1, \mathrm{t} 2)$ is a G δ-set in X, i.e., h is a Baire-. 5 function on X. •

The above proof used the technique of theorem 1 of [13].

3 Applications

Definition 3.1. A real-valued function f defined on a space X is called contra-upper semi-Baire-. 5 (resp. contralower semi-Baire-.5) if $f^{-1}(-\infty, t)\left(\right.$ resp. $\left.f^{-1}(t,+\infty)\right)$ is a G -set for any real number t.

The abbreviations usc, Isc, cusB. 5 and clsB. 5 are used for upper semicontinuous, lower semicontinuous, contraupper semi-Baire-.5, and contra-lower semi-Baire-.5, respectively.

Remark 1. [13, 14]. A space X has the weak c-insertion property for (usc, Isc) if and only if X is normal.
Before stating the consequences of theorem 2.1, we suppose that X is a topological space that Fo-kernel of sets are Fo-sets.

Corollary 3.1. For each pair of disjoint Fo-sets F1,F2, there are two $G \delta$-sets $G 1$ and $G 2$ such that $F 1 \subseteq G 1, F 2 \subseteq$ $G 2$ and $G 1 \cap G 2=\varnothing$ if and only if X has the weak $B-.5$-insertion property for (cusB - .5, clsB - .5).

Proof. Let g and f be real-valued functions defined on the X, such that f is $\operatorname{lsB} 1, g$ is usB1, and $g \leq f$.If a binary relation ρ is defined by $A \rho B$ in case $F \sigma(A) \subseteq G \delta(B)$, then by hypothesis ρ is a strong binary relation in the power set of X. If $t 1$ and $t 2$ are any elements of Q with $t 1<t 2$, then

$$
A(f, t 1) \subseteq\{x \in X: f(x) \leq t 1\} \subseteq\{x \in X: g(x)<t 2\} \subseteq A(g, t 2) ;
$$

since $\{x \in X: f(x) \leq t 1\}$ is a F σ-set and since $\{x \in X: g(x)<t 2\}$ is a $G \delta$-set, it follows that $F \sigma(A(f, t 1)) \subseteq G \delta(A(g$, $\mathrm{t} 2)$). Hence $\mathrm{t} 1<\mathrm{t} 2$ implies that $\mathrm{A}(\mathrm{f}, \mathrm{t} 1) \rho \mathrm{A}(\mathrm{g}, \mathrm{t} 2)$. The proof follows from Theorem 2. 1.

On the other hand, let F1 and F2 are disjoint Fo-sets. Set $f=\chi$ F1 c and
$g=\chi F_{2}$, then f is clsB $-.5, g$ is cusB -.5 , and $g \leq f$. Thus there exists Baire-. 5 function h such that $g \leq h \leq f$. Set
$G 1=\{x \in X: h(x)<1 / 2\}$ and
$G 2=\{x \in X: h(x)>1 / 2\}$, then $G 1$ and $G 2$ are disjoint $G \delta$-sets such that $F 1 \subseteq G 1$ and $F 2 \subseteq G 2$.
Remark 2. [22]. A space X has the weak c-insertion property for (lsc, usc) if and only if X is extremally disconnected.

Corollary 3.2. For every G of $G \delta$-set, $F \sigma(G)$ is a $G \delta$-set if and only if X has the weak $B-.5$-insertion property for (clsB - .5, cusB - .5).

Before giving the proof of this corollary, the necessary lemma is stated.
Lemma 3.1. The following conditions on the space X are equivalent:
(i) For every G of $G \delta$-set we have $\mathrm{F} \sigma(\mathrm{G})$ is a $\mathrm{G} \delta$-set.
(ii) For each pair of disjoint $G \delta$-sets as $G 1$ and $G 2$ we have $F \sigma(G 1) \cap F \sigma(G 2)=\varnothing$.

The proof of lemma 3.1 is a direct consequence of the definition Fo-kernel sets. We now give the proof of corollary 3.2.

Proof. Let g and f be real-valued functions defined on the X, such that f is clsB $-.5, g$ is cusB -.5 , and $f \leq g$.If a binary relation ρ is defined by $A \rho B$ in case $F \sigma(A) \subseteq G \subseteq F \sigma(G) \subseteq G \delta(B)$ for some $G \delta$-set g in X, then by hypothesis and lemma 3.1ρ is a strong binary relation in the power set of X. If $t 1$ and $t 2$ are any elements of Q with t 1 < t 2 , then

$$
\begin{gathered}
A(g, t 1)=\{x \in X: g(x)<t 1\} \subseteq\{x \in X: f(x) \leq t 2\} ; \\
=A(f, t 2) ;
\end{gathered}
$$

since $\{x \in X: g(x)<t 1\}$ is a $G \delta$-set and since $\{x \in X: f(x) \leq t 2\}$ is a Fo-set, by hypothesis it follows that $A(g, t 1)$ $\rho A(f, t 2)$. The proof follows from Theorem 2.1.

On the other hand, Let G1 and G2 are disjoint G δ-sets. Set $f=\chi G 2$
and $g=\chi G 1 c$, then f is cls $B-.5, g$ is cus $B-.5$, and $f \leq g$.
Thus there exists Baire-. 5 function h such that $f \leq h \leq g$. Set $F 1=\{x \in X: h(x) \leq 1 / 3\}$ and $F 2=\{x \in X: h(x) \geq$ $2 / 3\}$ then $F 1$ and $F 2$ are disjoint $F \sigma$-sets such that $G 1 \subseteq F 1$ and $G 2 \subseteq F 2$. Hence $F \sigma(F 1) \cap F \sigma(F 2)=\emptyset$.

Acknowledgement

This research was partially supported by Centre of Excellence for Mathematics (University of Isfahan).

References

[1] A. Al-Omari and M.S. Md Noorani, Some properties of contra-bcontinuous and almost contra-bcontinuous functions, European J. Pure. Appl. Math., 2(2)(2009), 213-230.
[2] F. Brooks, Indefinite cut sets for real functions, Amer. Math. Monthly, 78(1971), 1007-1010
[3] M. Caldas and S. Jafari, Some properties of contra- β-continuous functions, Mem. Fac. Sci. Kochi. Univ., 22(2001), 19-28.
[4] J. Dontchev, The characterization of some peculiar topological space via α - and β-sets, Acta Math. Hungar., 69(1-2)(1995), 67-71.
[5] J. Dontchev, Contra-continuous functions and strongly S-closed space, Intrnat. J. Math. Math. Sci., 19(2)(1996), 303-310.
[6] J. Dontchev, and H. Maki, On sg-closed sets and semi- λ-closed sets, Questions Answers Gen. Topology, 15(2)(1997), 259-266.
[7] E. Ekici, On contra-continuity, Annales Univ. Sci. Bodapest, 47(2004), 127-137.
[8] E. Ekici, New forms of contra-continuity, Carpathian J. Math., 24(1)(2008), 37-45.
[9] A.I. El-Magbrabi, Some properties of contra-continuous mappings, Int. J. General Topol., 3(1-2)(2010), 55-64.
[10] M. Ganster and I. Reilly, A decomposition of continuity, Acta Math. Hungar., 56(3-4)(1990), 299-301.
[11] S. Jafari and T. Noiri, Contra-continuous function between topological spaces, Iranian Int. J. Sci., 2(2001), 153-167.
[12] S. Jafari and T. Noiri, On contra-precontinuous functions, Bull. Malaysian Math. Sc. Soc., 25(2002), 115-128.
[13] M. Katetov, On real-valued functions in topological spaces, Fund. Math., 38(1951), 85-91.
[14] M. Katetov, Correction to, "On real-valued functions in topological spaces", Fund. Math., 40(1953), 203-205.
[15] E. Lane, Insertion of a continuous function, Pacific J. Math., 66(1976), 181-190.
[16] H. Maki, Generalized Λ-sets and the associated closure operator, The special Issue in commemoration of Prof. Kazuada IKEDA's Retirement, (1986), 139-146.
[17] S. N. Maheshwari and R. Prasad, On ROs-spaces, Portugal. Math., 34(1975), 213-217.
[18] M. Mrsevic, On pairwise R and pairwise R1 bitopological spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 30(1986), 141-145.
[19] A.A. Nasef, Some properties of contra-continuous functions, Chaos Solitons Fractals, 24(2005), 471477.
[20] M. Przemski, A decomposition of continuity and α-continuity, Acta Math. Hungar., 61(12)(1993), 93-98.
[21] H. Rosen, Darboux Baire-. 5 functions, Proceedings Of The American Mathematical Society, 110(1)(1990), 285-286.
[22] M.H. Stone, Boundedness properties in function-lattices, Canad. J. Math., 1(1949), 176-189.

