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ABSTRACT 

Recent fate-mapping studies in mice have provided substantial evidence that mature adult 

hepatocytes are a major source of new hepatocytes following liver injury. In other systems, 

integrin αvβ8 has a major role in activating transforming growth factor beta (TGFβ), a 

potent inhibitor of hepatocyte proliferation. We hypothesized that depletion of hepatocyte 

integrin αvβ8 would increase hepatocyte proliferation and accelerate liver regeneration 

following injury. Using Itgb8
flox/flox

;Alb-Cre mice to deplete hepatocyte αvβ8, following 

partial hepatectomy, hepatocyte proliferation and liver-to-body weight ratio were 

significantly increased in Itgb8
flox/flox

;Alb-Cre mice compared to control. Antibody-mediated 

blockade of hepatocyte αvβ8 in vitro, with assessment of TGFβ signaling pathways by qPCR 

array, supported the hypothesis that integrin αvβ8 inhibition alters hepatocyte TGFβ 

signaling towards a pro-regenerative phenotype. A diethylnitrosamine-induced model of 

hepatocellular carcinoma, employed to examine the possibility that this pro-proliferative 

phenotype might be oncogenic, revealed no difference in either tumor number or size 

between Itgb8
flox/flox

;Alb-Cre and control mice. Immunohistochemistry for integrin αvβ8 in 

healthy and injured human liver demonstrated that human hepatocytes express integrin 

αvβ8. Depletion of hepatocyte integrin αvβ8 results in increased hepatocyte proliferation 

and accelerated liver regeneration following partial hepatectomy in mice. These data 

demonstrate that targeting integrin αvβ8 may represent a promising therapeutic strategy to 

drive liver regeneration in patients with a broad range of liver diseases. 
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INTRODUCTION 

 

Although the liver has a unique ability to regenerate, in many cases of liver disease this 

regenerative capacity is overwhelmed. A successful pro-regenerative therapy for the liver 

could have widespread application, reducing the need for transplantation in both acute and 

chronic liver failure, and potentially allowing more patients with primary or metastatic liver 

cancer to be treated successfully. Recent fate-mapping studies in mice have provided strong 

evidence that, in most murine models of liver injury and regeneration, restoration of liver 

mass occurs predominantly through self-duplication of hepatocytes.1,2 Hence, identifying 

targets that promote proliferation and expansion of the pre-existent hepatocyte population 

represents an attractive therapeutic approach to drive liver regeneration. 

 

Transforming growth factor beta (TGFβ) has pleiotropic roles in liver disease. In addition to 

its role as a major pro-inflammatory cytokine,3 TGFβ is also a potent repressor of 

hepatocyte proliferation.4-7 Therefore, in principle, TGFβ inhibition appears an attractive 

therapeutic strategy to promote hepatocyte proliferation and liver regeneration. An ideal 

therapy would target TGFβ with precision, allowing hepatocytes to escape the mito-

inhibitory effects of TGFβ, while not abrogating the positive effects of TGFβ on extracellular 

matrix production and vascular remodeling during the regenerative process.8,9 Furthermore, 

pan-TGFβ blockade may result in a number of unwanted, off-target effects, such as 

induction of autoimmunity and hepatocarcinogenesis.10-12 Therefore, a more nuanced, 

selective approach targeting the TGFβ pathway to promote liver regeneration is required. 
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TGFβ is predominantly stored within the extracellular matrix in a latent state, and much of 

the regulation of TGFβ function results from precise, temporally and spatially restricted, 

extracellular activation of this latent complex.13 The αv integrins, transmembrane 

heterodimeric proteins comprising an αv subunit and one of the five β subunits, bind to an 

arginine-glycine-aspartate (RGD) motif present on the tip of an exposed loop within the 

latency-associated peptide that maintains TGFβ in an inactive state.14 All five αv integrins 

have been shown to interact with the RGD motif present in the latency-associated 

peptide.15-19 This integrin-RGD interaction, in the presence of mechanical force supplied by 

the integrin-expressing cell, enables the release of the active TGFβ homodimer.20 

 

Inhibition of myofibroblast αv integrins in mice reduces fibrosis in multiple organs via a 

reduction in TGFβ activation.21 Furthermore, combined global knockout of integrins αvβ6 

and αvβ8 phenocopies the developmental effects of loss of TGFβ-1 and -3.22 In the liver, 

expression of integrin αvβ6 appears restricted to activated cholangiocytes, transitional 

hepatocytes, and oval cells during biliary and portal fibrosis.23,24 Conversely, αvβ8 

expression by hepatic cell types has not been well-characterized. Integrin αvβ8 has been 

shown to play an important role in TGFβ activation in other systems, including dendritic 

cells,25-27 regulatory T cells,28 neuroepithelium,29 and in fibroinflammatory airway disease.30 

Further, integrin αvβ8 inhibits proliferation of lung epithelium via TGFβ activation.31 

Therefore, given the important role of αvβ8 in mediating TGFβ activation in other organ 

systems and pathologies, we investigated the role of hepatocyte integrin αvβ8 in the 

context of liver regeneration. We hypothesized that depletion of integrin αvβ8 from 

hepatocytes would reduce local activation of TGFβ and result in increased hepatocyte 

proliferation and accelerated liver regeneration following liver injury. 
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MATERIALS AND METHODS 

 

Mice 

Albumin-Cre (Alb-Cre) mice32 were obtained from the Jackson Laboratory (Bar Harbor, ME), 

crossed with Itgb8
flox/flox mice33 obtained from L. Reichardt, and the resulting Itgb8

flox/flox
;Alb-

Cre mice were maintained on a C57BL/6 background. Pdgfrb-Cre mice (also on a C57BL/6 

background) were obtained from R. Adams.34 Mice used for all experiments were 8- to 16-

week–old and were housed under specific pathogen–free conditions in the Animal Barrier 

Facility of the University of California, San Francisco, or the University of Edinburgh, UK. 

Genotyping of all mice was performed by PCR. Sample size was determined statistically prior 

to experimentation. Age- and sex-matched littermate controls were used for all 

experiments. Investigators were blinded to mouse genotype and experimental order was 

decided randomly. All experimental animal procedures were approved by the Institutional 

Animal Care and Use Committee of the University of California, San Francisco, or performed 

in accordance with the UK Home Office regulations. 

 

Two-thirds partial hepatectomy 

Two-thirds of the liver was surgically removed under isoflurane anesthesia as previously 

described.35 All surgeries were performed in the first half of the day. To label proliferating 

hepatocytes, 5-bromo-2-deoxyuridine (BrdU (Roche), Sigma-Aldrich, Gillingham, UK) was 

injected two hours prior to liver harvest (100 mg/kg intraperitoneally). Mice and livers were 

weighed at harvest to calculate liver-to-body weight ratio. 
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Hepatocarcinogenesis model 

Male mice were injected with diethylnitrosamine (DEN, Sigma-Aldrich) at 12  to 14 days (25 

mg/kg intraperitoneally). Mice were sacrificed at 40 weeks, and macroscopic tumors 

counted and measured. 

 

Liver biochemistry 

Whole blood was collected immediately post mortem, allowed to clot, and serum obtained 

by centrifugation (9391g for 5 minutes twice). Samples were frozen at -20 °C pending 

analysis. Serum albumin, total bilirubin, alanine transaminase (ALT), and alkaline 

phosphatase (ALP) measurements were determined using commercial kits (Alpha 

Laboratories, Eastleigh, UK [albumin, bilirubin, ALT]; Randox Laboratories, Crumlin, County 

Antrim, UK [ALP]) adapted for use on a Cobas Fara centrifugal analyzer (Roche Diagnostics, 

Welwyn Garden City, UK). 

 

Immunohistochemistry 

Liver samples were fixed overnight at room temperature in either methacarn (60% 

methanol, 30% chloroform, 10% acetic acid), for BrdU immunohistochemistry (IHC), or 10% 

neutral buffered formalin. Samples were then paraffin-embedded prior to sectioning. 

BrdU IHC: endogenous peroxidases were quenched with 0.3% H2O2 in methanol, followed 

by consecutive 10-minute incubation steps with 0.1% trypsin (Sigma-Aldrich, T7168), warm 

1.8M HCl, and 0.1M sodium tetraborate decahydrate (Sigma-Aldrich, S9640). Blocking and 

subsequent incubation steps utilized the Mouse on Mouse Elite Peroxidase Kit (Vector 

Laboratories, Peterborough, UK, PK2200). Primary antibody was mouse anti-BrdU (Dako, 

Agilent Technologies, Cheadle, UK, M0744 – 1:40). Detection was performed using the Elite 
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Vectastain ABC kit (Vector, PK7100) and DAB (Dako, K3468), before counterstaining, 

dehydration, and mounting. For each liver sample, approximately 3,000 hepatocytes were 

counted to calculate the percentage of proliferating hepatocytes. 

 

GR1 (neutrophil)/F4/80 (Kupffer cell)/PDGFRβ (hepatic stellate cell (HSC)) IHC: antigen 

retrieval was performed with Tris-EDTA (PDGFRβ only), endogenous peroxidases were 

quenched with 3% H2O2, Avidin/Biotin block was applied (Vector, SP-2001) before blocking 

with 20% goat serum (GR1/PDGFRβ) or rabbit serum (F4/80). Primary antibodies were 

applied for two hours at room temperature (PDGFRβ, Abcam, Cambridge, UK, ab32570 – 

1:500) or overnight at 4 °C (GR1, R&D, Abingdon, UK, Mab 1037 – 1:750; F4/80, Abcam, 

ab6640 – 1:200). Secondary antibody (PDGFRβ – biotinylated goat anti-rabbit (Vector, BA-

1000 – 1:1000); GR1 – biotinylated goat anti-rat (Vector, BA-9401 – 1:1000); F4/80 – 

biotinylated rabbit anti-rat (Vector, BA-4001 – 1:200)) was applied for 30 minutes at room 

temperature. Detection was performed using the Elite Vectastain ABC kit and DAB, before 

counterstaining, dehydration, and mounting. For each sample, 10 sequential fields were 

acquired at x20 magnification and percentage positive staining calculated using FIJI.36 

 

β8 integrin subunit/Cleaved Caspase-3 IHC: antigen retrieval was performed with Tris-EDTA 

(β8 integrin subunit) or sodium citrate (cleaved caspase-3), endogenous peroxidases were 

quenched with 3% H2O2, before blocking with 20% horse serum. Primary antibody (β8 

integrin subunit, Abcam, ab80673 – 1:500; Cleaved Caspase-3, Cell Signaling Technology, 

Leiden, The Netherlands, 9664 – 1:1000) was applied overnight at 4 °C. Detection was 

performed using the ImmPRESS Polymerized Reporter Enzyme Staining System (Vector, 

MP7401) and DAB, before counterstaining, dehydration, and mounting. 
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Hematoxylin and eosin staining: sections were baked at 55 oC overnight, before de-waxing 

and rehydration. Slides were then placed in Harris Hematoxylin (Thermo Fisher Scientific, 

Paisley, UK) for five minutes. After washing, slides were placed in 1% acid alcohol for five 

seconds, followed by Scott’s tap water for two minutes. Slides were then transferred to 

Eosin Y solution (Thermo Fisher Scientific) for two minutes, followed by washing, 

dehydration, and mounting. For quantification of mitotic figures, a minimum of 1,000 

hepatocytes were counted per sample. 

 

No image processing was performed prior to quantitative analysis. Images presented in 

figures were contrast-enhanced by adjusting intensity minima and maxima. Images to be 

compared were processed identically and in a manner that preserved the visibility of dim 

and bright structures in the original image. 

 

Primary mouse hepatocyte isolation 

Primary mouse hepatocytes were isolated by retrograde perfusion of the liver with Liver 

Perfusion Medium (Thermo Fisher Scientific), followed by Liver Digest Medium (Thermo 

Fisher Scientific) at 37 °C. When hepatocytes were visually dispersed within the liver 

capsule, the liver was removed to a sterile dish and minced with scissors to release the 

crude cell isolate. The cells were then suspended in DMEM/F-12 (Thermo Fisher Scientific) 

and pelleted twice. Hepatocytes were purified from the washed pellets by resuspension in 

culture medium and centrifugation through 50% equilibrated Percoll (GE Healthcare Life 

Sciences, Little Chalfont, UK). 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 10

 

Standard primary hepatocyte culture 

Primary hepatocytes were isolated as described above, resuspended in low-serum medium 

(DMEM (Thermo Fisher Scientific), 2.5% Fetal Bovine Serum (Thermo Fisher Scientific), 2% L-

Glutamine (Thermo Fisher Scientific), 1% Penicillin Streptomycin (Thermo Fisher Scientific)), 

and plated onto collagen-coated wells (Collagen Type I, Millipore, Watford, UK) in a 6-well 

plate at a density of 500,000 cells per well. Either β8 integrin subunit blocking antibody26 or 

non-binding control antibody were added at 20µg/mL and samples were incubated for 24 

hours at 37 ºC in 5% CO2. Wells were then washed with PBS and cells lyzed as described 

below. 

 

RT-qPCR 

RNA was isolated from whole mouse liver, primary hepatocytes, or liver sinusoidal 

endothelial cells using an RNeasy Mini Kit (whole liver, hepatocytes) or RNeasy Plus Micro 

Kit (liver sinusoidal endothelial cells) (Qiagen, Manchester, UK). cDNA transcription and 

qPCR were performed using a SYBR-GreenER Two-Step qRT-PCR kit (Invitrogen, Thermo 

Fisher Scientific) or QuantiTect Reverse Transcription and SYBR Green PCR Kits (Qiagen). 

Samples were amplified on an ABI 7900HT thermocycler (Applied Biosystems, Thermo Fisher 

Scientific) and normalized to Actb and/or Gapdh expression. Primers used were as follows: 

Actb forward: 5’-TGTTACCAACTGGGACGACA-3’, reverse: 5’-GGGGTGTTGAAGGTCTCAAA-3’; 

Itgb8 forward: 5’-CTGAAGAAATACCCCGTGGA-3’, reverse: 5’-ATGGGGAGGCATACAGTCT-3’. 

Quantitect Primer Assays (Qiagen, 249990) were used for the following genes:  Ccna2 

(QT00102151); Ccnb1 (QT00152040); Ccnd1 (QT00154595); Ccne1 (QT00103495); Cdkn1a 

(QT00137053); Cdkn1b (QT01058708); Gapdh (QT01658692); and Plat (QT00133630). 
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To assess TGFβ signaling, a custom RT2 Profiler PCR array (Qiagen, 330171) was designed 

containing primer sequences for the genes shown in Supplementary Table S1. RNA was 

isolated following primary hepatocyte culture as described above and reversed transcribed 

using the RT2 First Strand Kit (Qiagen, 330401). qPCR was performed using RT2 SYBR Green 

ROX qPCR Mastermix (Qiagen, 330522) on an ABI 7900HT thermocycler (Applied 

Biosystems), normalized to Actb and Gapdh expression. 

 

Hepatocyte adhesion assay 

Adhesion was assessed using a colorimetric ECM Cell Adhesion Array Kit (Millipore, 

ECM540) according to the manufacturer’s instructions. Primary mouse hepatocytes were 

isolated as described above, plated in triplicate at 50,000 cells per well, and incubated for 

two hours at 37 °C in 5% CO2. Absorbance was measured at 570nm using a Synergy HT 

microplate reader (BioTek, Swindon, UK). Relative absorbance was calculated by 

standardizing to absorbance in the Collagen I well, prior to calculation of mean relative 

absorbance for each extracellular matrix protein for each sample. 

 

Hepatocyte proliferation assay 

Primary mouse hepatocytes were isolated as above and plated at 10,000 cells per well in 24-

well plates (Primaria, Corning, St David’s Park, UK, 353847) in DMEM/F-12 supplemented 

with 15mM HEPES (Sigma-Aldrich, H3375), 10% Fetal Bovine Serum, 1% Insulin-Transferrin-

Selenium (Thermo Fisher Scientific, 41400-045), and 1% Penicillin Streptomycin. Cells were 

allowed to adhere for four hours before washing with PBS. Cells were then cultured for 48 

hours in a low-serum version of the plating medium, containing only 0.5% Fetal Bovine 
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Serum. The β8 integrin subunit blocking antibody or non-binding control antibody were 

added at 20µg/mL. Growth factors (Thermo Fisher Scientific, hepatocyte growth factor 

(HGF), PHG0254, epidermal growth factor (EGF), PMG8044) were added at 40ng/mL. 

Culture medium, antibodies, and growth factors were refreshed at 24 hours, at which time 

10µM EdU (5-ethynyl-2'-deoxyuridine, Thermo Fisher Scientific, C10640) was added. After 

the 48-hour culture period, cells were washed with PBS-BSA (PBS supplemented with 1% 

Bovine Serum Albumin (Sigma-Aldrich, A8806)) and then fixed using 4% paraformaldehyde 

in PBS for 15 minutes at room temperature. 

 

Proliferating hepatocytes were detected using the Click-iT Plus EdU Alexa Fluor 647 Imaging 

Kit (Thermo Fisher Scientific, C10640). Briefly, fixed cells were washed with PBS-BSA and 

incubated in 0.5% Triton X-100 (Sigma-Aldrich, T8787) in PBS for 20 minutes at room 

temperature. Following washing, the Click-iT Plus reaction cocktail was added and cells 

incubated for 30 minutes at room temperature and protected from light. The cells were 

washed again and then incubated in 5µg/mL Hoechst 33342 for 30 minutes at room 

temperature and protected from light. Finally, cells were washed with PBS and imaged. 

Imaging was performed using an LSM780 confocal microscope system (Carl Zeiss Ltd, 

Cambridge, UK). Tiled images were acquired, with three non-overlapping areas of 18µm2 

imaged per well. Imaris (version 8.4.1, Bitplane AG, Zurich, Switzerland) was used to identify 

the total (Hoechst-positive) nuclei number and the number of EdU-positive nuclei, and the 

percentage of proliferating nuclei was calculated. 

 

Whole liver microarray 
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Sample preparation, labeling, and array hybridizations were performed using the Agilent GE 

4x44 Mouse microarray platform (Agilent Technologies (Palo Alto, CA); 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL7202; last accessed 13th 

September 2018). Total RNA quality was assessed using a Pico Chip on an Agilent 2100 

Bioanalyzer, and RNA was amplified and labeled with Cy3-CTP using the Agilent low RNA 

input fluorescent linear amplification kits, following the manufacturer’s protocol. Labeled 

cRNA was assessed using the Nanodrop ND-100 (Nanodrop Technologies, Inc., Wilmington 

DE), and equal amounts of Cy3-labeled target were hybridized to Agilent whole mouse 

genome 4x44K Ink-jet arrays (Agilent Technologies, G4122F). Hybridizations were 

performed for 14 hours, according to the manufacturer’s protocol. Arrays were scanned 

using the Agilent microarray scanner and raw signal intensities were extracted with Agilent 

Feature Extraction v10.5 software. Raw data are accessible at the Gene Expression Omnibus 

repository (http://www.ncbi.nlm.nih.gov/geo; accession no. GSE111591; last accessed 13th 

September, 2018). 

 

Human liver tissue 

De-identified sections of uninjured and fibrotic human liver tissue were provided by the 

Lothian NRS Bioresource with approval from Tissue Governance. Samples of 

acetaminophen-injured human liver tissue were obtained as part of the Pathophysiology of 

Acute Liver Injury study. This study was approved by the Scotland A Research Ethics 

Committee and NHS Lothian Research and Development. 

 

Statistics 
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The statistical significance of differences between groups was calculated with a 2-tailed 

Student’s t test or Mann Whitney test as appropriate. Differences with a P-value of less than 

0.05 were considered statistically significant. PCR data obtained for individual genes were 

log-transformed prior to analysis and a Bonferroni correction was applied to account for 

multiple testing. PCR array data were standardized as previously reported,37 to identify 

genes in test samples with a 95% confidence interval for standardized relative fold change 

that did not overlap 1 (the value assigned to the fold change for the same gene in control 

samples). 

 

For microarray analysis, differential gene expression was examined with the R package 

limma (version 3.32.7).38 Quality control was performed by identifying outliers in the log2 

intensity between arrays and comparison of multidimensional scaling of distances between 

microarray expression profiles. Background correction was conducted according to the 

normexp method and the data were normalized using the quantile normalization 

method.39,40 A two-way ANOVA linear model was fitted to the comparison to estimate the 

mean M values and calculate moderated t-statistic, B statistic, false discovery rate, and P-

value for each gene for the comparison of interest. Adjusted P-values were produced by the 

method proposed by Holm.41 Gene Ontology (GO) analysis was performed with the R 

package topGO (version 2.28.0),42 and the elim algorithm, combined with the Fisher exact 

test, was used to calculate the enrichment scores for each of the GO terms. 

 

RESULTS 
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Depletion of hepatocyte integrin αvβ8 leads to increased hepatocyte proliferation and 

accelerated liver regeneration 

To deplete integrin αvβ8 in hepatocytes, Itgb8
flox/flox

;Alb-Cre mice were generated.32,33 

Primary hepatocytes were isolated from Itgb8
flox/flox

;Alb-Cre mice and Cre-negative 

littermate controls. Quantitative PCR for Itgb8 confirmed expression in control hepatocytes 

and successful depletion in hepatocytes isolated from Itgb8
flox/flox

;Alb-Cre mice (Fig 1A). 

Assessment of hepatocyte proliferation following two-thirds partial hepatectomy showed 

significantly increased proliferation in Itgb8
flox/flox

;Alb-Cre mice at 36, 48, and 72 hours 

following liver injury compared to controls (Fig 1B,C). This increased hepatocyte 

proliferation was not followed by an increase in hepatocyte apoptosis at day five post 

partial hepatectomy, when liver regeneration was nearing completion in the Itgb8
flox/flox

;Alb-

Cre mouse (Supplemental Fig S1). Interestingly, the proportion of hepatocyte mitoses 

(identified morphologically) was decreased in Itgb8
flox/flox

;Alb-Cre mice at 72 hours following 

liver injury compared to controls (Fig 1D). However, liver-to-body weight ratio was 

significantly increased in Itgb8
flox/flox

;Alb-Cre mice at 72 and 96 hours after partial 

hepatectomy, demonstrating that the increase in hepatocyte proliferation in Itgb8
flox/flox

;Alb-

Cre mice detected by BrdU immunohistochemistry resulted in accelerated restoration of 

liver mass compared to control (Fig 1E). 

 

Depletion of hepatocyte integrin αvβ8 does not alter baseline hepatocyte proliferation or 

subsequent inflammatory phenotype 

As integrin αvβ8 is able to activate TGFβ, a well-characterized suppressor of epithelial 

proliferation, it was assessed whether genetic depletion of hepatocyte αvβ8 alters baseline 

hepatocyte proliferation or liver-to-body weight ratio. Hepatocyte BrdU incorporation and 
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mitoses, and liver-to-body weight ratio was measured in uninjured Itgb8
flox/flox

;Alb-Cre mice 

and controls (Fig 1B, D, E), and no difference was found in any of these variables between 

groups. Furthermore, there was no difference in baseline liver biochemistry, hepatic 

morphology, or resident non-parenchymal cell populations (Kupffer cells and HSCs) between 

uninjured Itgb8
flox/flox

;Alb-Cre mice and controls (Fig 1F-H, Supplemental Fig S2). Following 

partial hepatectomy, there was also no difference in hepatic inflammation (Kupffer cells or 

neutrophils), or HSC immunostaining (Fig 2A-C). This suggests that the increased liver 

regeneration observed following partial hepatectomy in Itgb8
flox/flox

;Alb-Cre mice was not 

due to differences in degree of initial injury or the subsequent inflammatory response. 

 

Depletion of HSC integrin αvβ8 does not lead to increased hepatocyte proliferation 

Integrin αvβ8 is also expressed on HSCs.21 As HSCs have been shown to play an important 

regulatory role in liver regeneration,43,44 mice in which integrin αvβ8 had been depleted 

from HSCs (Itgb8
flox/flox

;Pdgfrb-Cre) were used to examine the role of HSC integrin αvβ8 

during liver regeneration. Following two-thirds partial hepatectomy, there was no 

significant difference in hepatocyte proliferation between Itgb8
flox/flox

;Pdgfrb-Cre mice and 

controls (Fig 2D). Liver sinusoidal endothelial cells have also been shown to play a key role in 

liver regeneration.45-47 However, integrin αvβ8 expression was not observed in liver 

sinusoidal endothelial cells by qPCR. 

 

Assessment of hepatic cell cycle genes following depletion of hepatocyte integrin αvβ8 

and partial hepatectomy 

To examine whether depletion of hepatocyte integrin αvβ8 might have a direct effect on the 

cell cycle, the expression of genes with key roles in cell cycle regulation was measured at 
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multiple time points following partial hepatectomy. Overall, partial hepatectomy resulted in 

expected changes in gene expression in whole liver from both Itgb8
flox/flox

;Alb-Cre mice and 

controls (Fig 3A, B, Supplemental Fig S3). There was a trend towards increased expression of 

Ccna2 and Ccnb1 in Itgb8
flox/flox

;Alb-Cre mice compared to controls; however, this did not 

reach statistical significance at any time point (Fig 3A, B). Analysis of other cell cycle–related 

genes (Ccnd1, Ccne1, Cdkn1a, Cdkn1b) showed no difference between Itgb8
flox/flox

;Alb-Cre 

mice and controls (Supplemental Fig S3). 

 

Depletion of integrin αvβ8 on hepatocytes does not alter adhesion to multiple matrix 

proteins present in normal and regenerating liver 

Integrin αvβ8 binds extracellular matrix ligands such as vitronectin, fibronectin, collagen IV, 

and fibronectin.48,49 To test whether depletion of integrin αvβ8 on hepatocytes alters 

adhesion to cell matrix proteins present in normal and regenerating liver, an in vitro cell 

adhesion assay with multiple different matrix substrates was used. No difference was found 

in adhesion between Itgb8
flox/flox

;Alb-Cre and control hepatocytes across all seven matrix 

proteins tested (Fig 3C), suggesting that altered hepatocyte adhesion is not responsible for 

the pro-regenerative phenotype observed in Itgb8
flox/flox

;Alb-Cre mice. 

 

Inhibition of integrin αvβ8 modulates TGFβ-responsive genes in hepatocytes 

Integrin αvβ8 has previously been shown to play a key role in the activation of latent 

TGFβ,25-31 a potent inhibitor of hepatocyte proliferation.5-7 Therefore, we hypothesized that 

depletion of hepatocyte integrin αvβ8 might promote hepatocyte proliferation through 

modulation of TGFβ signaling pathways. The time course of hepatic Itgb8 expression 

following partial hepatectomy supports a role for integrin αvβ8 as a suppressor of 
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hepatocyte proliferation during liver regeneration (Fig 3D). Hepatic Itgb8 expression falls 

markedly in the 24 hours immediately following partial hepatectomy, and this down-

regulation appears to be permissive for hepatocyte proliferation. As the liver approaches 

full restoration of its functional mass at five days post partial hepatectomy, hepatocyte 

Itgb8 expression peaks at 10 times baseline expression, consistent with a role for integrin 

αvβ8 as a brake on hepatocyte proliferation (Fig 3D). 

 

Detecting the modulation of TGFβ activation in the hepatocyte regenerative niche is very 

challenging, as it is not possible to measure the levels of active TGFβ in tissue directly. 

Therefore, an experiment was designed to examine how inhibition of integrin αvβ8 might 

modulate TGFβ-responsive genes in primary mouse hepatocytes (Fig 3E). Firstly, a custom 

qPCR array was designed, containing 87 genes either shown to be responsive to TGFβ 

signaling in hepatocytes50 or comprising components of the TGFβ pathway (Supplemental 

Table S1). Primary murine hepatocytes were isolated from wild-type mice and plated onto 

collagen in the presence of either a β8 integrin subunit blocking antibody or a non-binding 

control antibody.26 After incubation for 24 hours, hepatocytes were lyzed, RNA was 

extracted, and gene expression quantified using the custom qPCR array. Data were then 

standardized as previously described by Willems et al37 Following culture with β8 integrin 

subunit blocking antibody, 20 genes in the qPCR array were found to have a detectable 

change in expression with a 95% confidence interval which did not overlap control values 

(Fig 3F). Of these, 12 genes showed greater than 10% up- or down-regulation when 

compared to controls, with 10 out of 12 responding as predicted. Plat, encoding tissue 

plasminogen activator (tPA), showed the greatest up-regulation. Hepatocyte expression of 

Plat has been shown to decrease in the presence of TGFβ,50 whereas expression increased 
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three-fold in wild-type hepatocytes treated with β8 integrin subunit blocking antibody. 

Increased expression of Plat was not observed when hepatocytes from Itgb8
flox/flox

;Alb-Cre 

mice were treated with β8 integrin subunit blocking antibody, suggesting the observed 

response is specific to β8 integrin subunit inhibition (Supplemental Fig S4). Conversely, 

hepatocyte expression of the TGFβ-responsive gene Hmox1 (heme oxygenase 1) was down-

regulated in the presence of β8 integrin subunit blocking antibody. These data demonstrate 

that inhibition of integrin αvβ8 modulates TGFβ-responsive genes in hepatocytes, 

suggesting a possible mechanism through which integrin αvβ8 depletion promotes 

hepatocyte proliferation. 

 

Inhibition of hepatocyte integrin αvβ8 does not alter the proliferative response to 

mitogenic growth factors 

Hepatocyte growth factor (HGF) and epidermal growth factor (EGF) are key drivers of liver 

regeneration.8 To investigate whether integrin αvβ8 might have a role in regulating the 

hepatocyte response to these direct mitogens, the effect of β8 integrin subunit inhibition 

during in vitro proliferation of primary hepatocytes in response to EGF and HGF was 

examined. A robust increase in hepatocyte proliferation was achieved with addition of 

either, or both, EGF and HGF, compared to standard culture medium (Fig 3G). However, 

inhibition of integrin αvβ8 had no effect on the degree of in vitro hepatocyte proliferation. 

This suggests that the accelerated liver regeneration observed following hepatocyte integrin 

αvβ8 depletion does not occur via modulation of HGF or EGF downstream signaling 

pathways. 

 

Microarray analysis of whole liver from control and Itgb8
flox/flox

;Alb-Cre mice 
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To explore further the potential mechanisms by which inhibition of integrin αvβ8 increases 

hepatocyte proliferation and accelerates liver regeneration, global gene expression changes 

were examined by microarray analysis of whole liver. Samples were obtained from control 

and Itgb8
flox/flox

;Alb-Cre mice prior to, and at 24 hours post, partial hepatectomy. From 

26,136 transcripts, 1,080 showed statistically significant differential expression following 

partial hepatectomy. Three-hundred and thirty of these occurred only in the Itgb8
flox/flox

;Alb-

Cre mouse (Fig 4A). Gene ontology (GO) analysis was performed on the differentially 

expressed genes. The dominant GO terms enriched in genes up-regulated exclusively in 

Itgb8
flox/flox

;Alb-Cre mice following partial hepatectomy are shown in Figure 4B. The majority 

of these terms relate to cytoskeletal organization and cellular adhesion. Similarly, the 

dominant GO terms enriched in genes down-regulated exclusively in Itgb8
flox/flox

;Alb-Cre 

mice following partial hepatectomy are shown in Figure 4C. These terms were relatively 

non-specific, relating to a range of intracellular metabolic processes. 

 

Given the increased hepatocyte proliferation observed following partial hepatectomy in 

Itgb8
flox/flox

;Alb-Cre mice, changes in expression of genes known to regulate the cell cycle 

were specifically studied. However, when comparing post partial hepatectomy samples 

from Itgb8
flox/flox

;Alb-Cre mice and controls, no significant difference in the expression of cell 

cycle genes was detected by microarray. This mirrors the findings of both our examination 

of cell cycle gene expression in whole liver pre and post partial hepatectomy (Fig 3A, B and 

Supplemental Fig S3) and the qPCR array in cultured hepatocytes treated with β8 integrin 

subunit blocking antibody, in which no consistent changes in gene expression were noted in 

the 10 cell-cycle and proliferation genes included in the array (Supplemental Table S1). 
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Depletion of hepatocyte integrin αvβ8 does not increase tumor formation in a mouse 

model of HCC 

 In addition to promoting hepatocyte proliferation, disruption of TGFβ signaling can 

accelerate the development of HCC in mice following DEN administration.12 As depletion of 

integrin αvβ8 on hepatocytes increased hepatocyte proliferation and accelerated liver 

regeneration following injury, and blockade of hepatocyte integrin αvβ8 in vitro modulated 

TGFβ-responsive genes, the possibility that this pro-proliferative phenotype might increase 

the risk of HCC development was also assessed. Itgb8
flox/flox

;Alb-Cre and control mice were 

injected with DEN at 12 to 14 days of age to induce HCC (Fig 5A). Following sacrifice at forty 

weeks, the number and size of tumors in each liver was quantified (Fig 5B). There was no 

difference in either tumor number or median tumor size between Itgb8
flox/flox

;Alb-Cre and 

control mice (Fig 5C, D). This demonstrates that depletion of hepatocyte integrin αvβ8 does 

not predispose to increased tumor formation in this mouse model of HCC. 

 

Human hepatocytes express integrin αvβ8 and represent a viable therapeutic target to 

promote liver regeneration in patients with liver disease 

To assess the potential utility of integrin αvβ8 as a therapeutic target to promote 

hepatocyte proliferation and liver regeneration in patients with liver disease, the expression 

of integrin αvβ8 was assessed in samples of human liver. Uninjured liver tissue and tissue 

obtained from patients with acute liver failure secondary to acetaminophen overdose or 

from patients with cirrhosis was stained for the β8 integrin subunit. Widespread expression 

in hepatocytes was detected in all samples, demonstrating that integrin αvβ8 is a viable 

potential therapeutic target in patients with a broad range of liver diseases (Fig 5E). 
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DISCUSSION 

 

We show that depletion of hepatocyte integrin αvβ8 leads to increased hepatocyte 

proliferation and accelerated liver regeneration following partial hepatectomy in mice. The 

time course of hepatic Itgb8 expression following partial hepatectomy, namely a rapid 

down-regulation followed by rebound up-regulation as the liver returns to its normal size, is 

consistent with a role for integrin αvβ8 as a brake on hepatocyte proliferation. This anti-

proliferative role for integrin αvβ8 appears to be mediated via TGFβ, rather than altered 

hepatocyte adhesion, since blocking integrin αvβ8 on hepatocytes alters TGFβ-responsive 

gene expression. Importantly, the augmentation in hepatocyte proliferation in 

Itgb8
flox/flox

;Alb-Cre mice was not accompanied by increased susceptibility to hepatocellular 

tumor formation. Finally, human hepatocytes also express integrin αvβ8 in both acute and 

chronic liver disease, and therefore integrin αvβ8 represents a viable therapeutic target to 

promote liver regeneration in patients with a broad range of liver diseases. 

 

Integrin αvβ8 has previously been shown to have a key regulatory role in the activation of 

latent TGFβ.25-31 The inhibitory effect of active TGFβ on hepatocyte proliferation is well-

established, including evidence demonstrating tonic inhibition of hepatocyte proliferation in 

the uninjured liver.5-7 The rapid down-regulation of hepatic Itgb8 expression observed 

following partial hepatectomy is in line with the hypothesis that a reduction in integrin 

αvβ8–mediated activation of TGFβ is permissive for a pro-regenerative environment in the 

liver. Demonstrating subtle changes in activation status of TGFβ within the hepatic 

regenerative niche is very challenging, given the magnitude and localized nature of these 

changes, and also the small amount of remnant tissue present following two-thirds partial 
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hepatectomy. However, inhibition of hepatocyte integrin αvβ8 in vitro, using a β8 integrin 

subunit blocking antibody, resulted in changes in expression of multiple TGFβ-responsive 

genes such as Plat and Hmox1. Tissue plasminogen activator, encoded by Plat, can activate 

HGF51 and has been shown to play a role in liver lobule reorganization following acute 

injury.52 Knockout of tPA in mice worsens injury following bile duct ligation, but this 

phenotype is reversed by administration of HGF.53 These data suggest that the regulatory 

role of integrin αvβ8 during hepatocyte proliferation is, at least in part, mediated via TGFβ 

signaling, and that integrin αvβ8 depletion or inhibition may drive hepatocyte proliferation 

through tPA-mediated activation of HGF. Inhibition of hepatocyte integrin αvβ8 did not alter 

the proliferative response to stimulation with EGF and HGF in vitro, suggesting that the 

accelerated liver regeneration observed following hepatocyte integrin αvβ8 depletion does 

not occur via modulation of HGF or EGF downstream signaling pathways. 

 

Detectable changes in the expression of genes regulating the cell cycle were identified 

following partial hepatectomy, similar to those previously reported,54 but did not differ 

between Itgb8
flox/flox

;Alb-Cre mice and controls. Inhibiting integrin αvβ8 in vitro also had no 

effect on expression of cell cycle genes, as measured by qPCR gene array. This would 

suggest that depletion of integrin αvβ8 on hepatocytes does not appear to change the 

kinetics of cell cycle regulation in the individual cell. Instead, depletion of hepatocyte 

integrin αvβ8 may promote liver regeneration by permitting a greater number of 

hepatocytes to escape the anti-proliferative effects of active TGFβ. The observation of a 

reduction in the proportion of hepatic mitoses in Itgb8
flox/flox

;Alb-Cre mice compared to 

controls at 72 hours post partial hepatectomy is difficult to reconcile with the increase in 

BrdU incorporation and the accelerated restoration of total liver mass. Although no change 
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was detected in cell cycle kinetics, if the overall time in M phase were reduced in 

hepatocytes of Itgb8
flox/flox

;Alb-Cre mice, this could decrease the proportion of mitotic 

hepatocytes at any single point in time. Previous work has demonstrated a strong effect of 

circadian rhythm on hepatocyte entry into M phase following partial hepatectomy in mice, 

an effect not seen when assessing BrdU incorporation.55 However, in this study, partial 

hepatectomy was always performed in the morning and experimental order randomized, so 

this should not account for differences between Itgb8
flox/flox

;Alb-Cre mice and controls. 

 

To screen for additional pathways that might be regulated by integrin αvβ8, gene expression 

was assessed using microarray in whole liver samples from Itgb8
flox/flox

;Alb-Cre mice and 

controls, comparing gene expression in uninjured liver and 24 hours post partial 

hepatectomy. Despite observing a large number of changes in gene expression (330) 

following partial hepatectomy that were restricted to Itgb8
flox/flox

;Alb-Cre mice, there were 

again no differences in expression of genes regulating the cell cycle or proliferation, when 

compared to control mice. The failure to detect changes in expression of genes regulating 

the cell cycle may also reflect limitations in sensitivity, particularly of the microarray 

technique, when applied to whole liver lysates from Itgb8
flox/flox

;Alb-Cre mice and controls. 

Even following partial hepatectomy, only a minority of hepatocytes will be proliferating at 

any one time and the presence of non-parenchymal cell mRNA in the whole liver lysates 

that were analyzed will further reduce the signal-to-noise ratio. 

 

Gene ontology analysis of genes up-regulated only in Itgb8
flox/flox

;Alb-Cre mice following 

partial hepatectomy returned multiple terms relating to cytoskeletal organization and 

extracellular adhesion. Integrins are well-known for their role in extracellular adhesion and 
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their cytoplasmic domains can bind the cytoskeleton.14 However, it has previously been 

suggested that the cytoplasmic domain of the β8 subunit does not bind the cytoskeleton.48 

Furthermore, no difference was found in the ability of hepatocytes isolated from 

Itgb8
flox/flox

;Alb-Cre mice and controls to adhere to multiple extracellular matrix proteins 

found in both normal and regenerating liver. 

 

Targeting of TGFβ pathways has been a major focus of research across several fields, 

particularly in the context of inflammation, wound healing, and oncogenesis. Unfortunately, 

global inhibition of TGFβ signaling can be associated with serious, undesirable effects, 

including excessive inflammation and development of neoplasia.10-12 This is highly likely to 

be due to the pleiotropic, context-dependent functions of TGFβ. Selective targeting of TGFβ 

activation by inhibition of integrin αvβ8 in the hepatic regenerative niche may potentially 

avoid many of the adverse effects noted with pan-TGFβ blockade, while still promoting the 

desired effects on hepatocyte proliferation and liver regeneration. Importantly, these 

results did not demonstrate an increase in either hepatic inflammation or carcinogenesis in 

mice following depletion of hepatocyte integrin αvβ8. 

 

Human hepatocytes express integrin αvβ8 in uninjured liver, following acute hepatic injury 

secondary to acetaminophen overdose, and also in cirrhosis. Therefore, hepatocyte integrin 

αvβ8 appears to be a viable translational target. There are potentially multiple clinical 

scenarios to which integrin αvβ8 inhibition could be applied. For example, using αvβ8 

inhibition as a pro-regenerative therapy in the setting of acute liver failure may obviate the 

requirement for, or buy more time prior to, liver transplantation. Furthermore, combination 

with anti-fibrotic therapies could permit the restoration of functional, parenchymal liver 
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mass in tandem with a reduction in fibrosis in patients with chronic liver disease. It might 

also allow more patients with primary or metastatic liver cancer to be treated successfully. 

 

In summary, depletion of integrin αvβ8 on murine hepatocytes leads to increased 

hepatocyte proliferation and accelerated liver regeneration. Targeting integrin αvβ8 may 

therefore represent a promising therapeutic strategy to drive liver regeneration in patients 

with a broad range of liver diseases. 
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Figure Legends 

 

Figure 1 Genetic depletion of hepatocyte integrin αvβ8 accelerates liver regeneration. A: 

qPCR of Itgb8 expression in hepatocytes isolated from control and Itgb8
flox/flox

;Alb-Cre (β8-

AlbCre) mice (n=3). B: Quantitation of BrdU+ hepatocyte nuclei in control and β8-AlbCre 

mice after partial hepatectomy (n=3 to 6). C: Representative images from BrdU 

immunostaining of liver sections from control and β8-AlbCre mice at 0 and 48 hours after 

partial hepatectomy. Quantitation of hepatocyte mitoses (D) and liver-to-body weight ratio 

(E) in control and β8-AlbCre mice after partial hepatectomy (n=3 to 6). F: Serum 

biochemistry (total bilirubin, alanine transaminase (ALT), alkaline phosphatase (ALP), 

albumin) from uninjured control and β8-AlbCre mice (n=6). G and H: Quantification and 

representative images from F4/80 (Kupffer cell, G) and PDGFRβ (HSC, H) immunostaining of 

liver tissue from uninjured control and β8-AlbCre mice (n=6). All data presented as mean; 

error bars – SEM. *P < 0.05, **P < 0.01, ****P < 0.0001. Scale bars 100µm. 

 

Figure 2 Depletion of hepatocyte integrin αvβ8 does not alter inflammatory phenotype 

following partial hepatectomy. A-C: Quantification and representative images from F4/80 

(Kupffer cell, A), GR1 (neutrophil, B), and PDGFRβ (HSC, C) immunostaining of liver tissue 

from control and Itgb8
flox/flox

;Alb-Cre (β8-AlbCre) mice at 48 hours post partial hepatectomy 

(n=5). D: Quantitation of BrdU+ hepatocyte nuclei and representative images of BrdU 

immunostaining of liver tissue from control and Itgb8
flox/flox

;Pdgfrb-Cre (β8-PdgfrbCre) mice 

at 48 hours post partial hepatectomy (n=4 and 8). All data presented as mean; error bars – 

SEM. Scale bar 100µm. 
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Figure 3 Investigation of the mechanisms mediating the pro-regenerative effect of 

hepatocyte integrin αvβ8 depletion. A, B: Whole liver expression of cell cycle genes Ccna2 

(A) and Ccnb1 (B) from control and Itgb8
flox/flox

;Alb-Cre (β8-AlbCre) mice following partial 

hepatectomy (n=4 to 6 per time point). C: Isolated hepatocytes from control and β8-AlbCre 

mice (n=4) were tested in a colorimetric extracellular matrix adhesion assay (BSA, bovine 

serum albumin; Col, collagen). D: Whole liver expression of Itgb8 following partial 

hepatectomy (n=3 to 6 per time point). E: Schematic of experimental design to test the 

effect of a β8 integrin subunit blocking antibody on hepatocyte expression of transforming 

groath factor (TGF)-β–responsive genes. F: Fold regulation of genes from the qPCR array 

with a detectable change in hepatocyte expression following culture with β8 integrin 

subunit blocking antibody (n=3). G: Proliferation of primary hepatocytes cultured for 48 

hours with β8 integrin subunit blocking antibody or control antibody in culture medium 

(Control) and with addition of either epidermal growth factor (EGF), hepatocyte growth 

factor (HGF), or both (n=3). All data presented as mean; error bars – SEM. 

 

Figure 4 Microarray analysis of whole liver (uninjured and 24 hours post partial 

hepatectomy) from control and Itgb8
flox/flox

;Alb-Cre (β8-AlbCre) mice. A: Summary of the 

number of transcripts with significant changes in expression following partial hepatectomy 

in β8-AlbCre mice and controls (n = 4 per group per time point). B and C: The top 10 GO 

terms enriched in those genes either up-regulated (B) or down-regulated (C) exclusively in 

β8-AlbCre mice following partial hepatectomy. 
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Figure 5 Depletion of hepatocyte integrin αvβ8 does not increase HCC in mice, whereas 

human hepatocytes express integrin αvβ8 in acute and chronic liver disease. A: Schematic of 

mouse model of HCC (i.p., intraperitoneal). B: Representative images of livers from control 

and Itgb8
flox/flox

;Alb-Cre (β8-AlbCre) mice at harvest. C and D: Quantification of tumor 

number (C) and median tumor size (D) in control and β8-AlbCre mice at 40 weeks 

(horizontal bar indicates mean, n=16 and 14). E: Representative low- and high-power images 

of β8 integrin subunit immunostaining in uninjured human liver tissue (n=5), following 

acetaminophen overdose (n=5), or in cirrhosis (n=6). Scale bars 250µm (upper) and 100µm 

(lower). 
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