-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Edinburgh Research Explorer

Edinburgh Research Explorer

Chromar, a language of parameterised objects

Citation for published version:
Honorato Zimmer, R, Millar, AJ, Plotkin, GD & Zardilis, A 2017, 'Chromar, a language of parameterised
objects’, Theoretical Computer Science. https://doi.org/10.1016/j.tcs.2017.07.034

Digital Object Identifier (DOI):
10.1016/j.tcs.2017.07.034

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Version created as part of publication process; publisher's layout; not normally made publicly available

Published In:
Theoretical Computer Science

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN ACCESS

Download date: 11. May. 2020

https://core.ac.uk/display/322480027?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.tcs.2017.07.034
https://doi.org/10.1016/j.tcs.2017.07.034
https://www.research.ed.ac.uk/portal/en/publications/chromar-a-language-of-parameterised-objects(6404b1fa-c8dc-4261-a70f-2c98fd7f50f6).html

Accepted Manuscript ——

eoretical
Chromar, a language of parameterised objects Omputer Science

Algorithms, automata, complexity
and games

Ricardo Honorato-Zimmer, Andrew J. Millar, Gordon D. Plotkin, Argyris Zardilis {
PII: S0304-3975(17)30599-6

DOI: http://dx.doi.org/10.1016/j.tcs.2017.07.034

Reference: TCS 11278

To appear in: Theoretical Computer Science

Received date: 31 March 2017
Revised date: 22 June 2017
Accepted date: 31 July 2017

Please cite this article in press as: R. Honorato-Zimmer et al., Chromar, a language of parameterised objects, Theoret. Comput. Sci. (2017),
http://dx.doi.org/10.1016/j.tcs.2017.07.034

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing
this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is
published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.tcs.2017.07.034

Chromar, a language of parameterised objects

Ricardo Honorato-Zimmer?®, Andrew J. Millar?, Gordon D. Plotkin®, Argyris Zardilis®*

@School of Informatics
University of Edinburgh
Edinburgh, U.K.
bSynthSys and School of Biological Sciences
University of Edinburgh
Edinburgh, U.K.

Abstract

Modelling in biology becomes necessary when systems are complex. However, the more complex the systems,
the harder models become to read and write. The most common ways of writing models are by writing
reactions on discrete, typed objects (e.g., molecules of different species), or by writing rate equations for
the populations of such species. One problem with such approaches is that the number of species is often
so large that the model cannot be realistically enumerated. Another problem is that the number of species
and reactions is fixed, whereas biology often grows new compartments, which means new species and new
reactions.

Here we develop a modelling language Chromar that provides an extension to the representation of
reactions in which agents carry attributes with associated types (for example, Leaf agents all have a mass
attribute). Dynamics are given by stochastic rules defined on groups of agents — for example all agents of a
specific type — which means that enumerating the dynamics of each agent is not necessary. This compact
representation addresses the first problem. Having such a more compact representation can also help make
models a tool for knowledge representation and exchange instead of just simulation. Further, if we think of
agents as the analogue of species in reactions, then creating a new agent of some type effectively creates new
species, thereby addressing the second problem.

We have also developed an embedding of Chromar in the programming language Haskell and we demon-
strate its applicability via two examples. Embedding Chromar in a general purpose programming language
such as Haskell eases some of the constraints of modelling languages while still maintaining the naturalness
of a domain-specific language.

Keywords: rule-based modelling, stochastic, representation, systems biology

1. Introduction

The notation we use to describe parts of the natural or artificial world can act as a tool for thinking
about it. The characteristics that a notation for a specific domain should have in order to be a good tool for
thought have been succinctly listed by Kenneth Iverson: “ease of expression of common constructs in the
domain, suggestivity, ability to subordinate detail, economy, and amenability to formal proofs” [1]. Many
excellent notations have been invented for biological models, some more general and some more domain
specific. Nonetheless some specific models are hard to write in existing notations in a way that satisfies
the above criteria. To illustrate the problem, consider modelling a growing array of cells, each having a
concentration of some molecule X which diffuses between the cells, and which is produced and destroyed.
The most common way to write such systems is by writing reactions on the types (species) of molecules

*Corresponding author
Email address: A.Zardilis@sms.ed.ac.uk (Argyris Zardilis)

Preprint submitted to Theoretical Computer Science August 3, 2017

10

15

20

25

30

involved or writing the corresponding rate equations for the populations of the species. In our case we could
write the following reactions for the molecules of X in each cell, where X; is an X molecule in the first cell,
X5 is an X molecule in the second cell, with the diffusion occurring at rate d, and so on:

X, 4 X,
X, 4 X,

There are two problems with the above description. The first is that it is not very compact. It grows with
the number of cells since we have to write the diffusion reaction for every pair of cells in both directions and
production/destruction reactions for every cell. The second is that it is impossible to describe the creation
of new cells because we need to create a new X-species for the new cell and new reactions, but the notation
provides no way to express such a possibility.

Ideally, there would be some notation that allows us to formally represent the above system in a way

that satisfies our intuition, for example writing a generic diffusion reaction X; 4, Xi+1, a generic production
reaction @ % X;, and a generic destruction reaction, together with some way of generating new species. Our
principal contribution is a notation that allows us to write such systems in a natural way, thereby solving the
two main problems we noted, viz enabling compactness of representation for larger systems and providing a
dynamic state-space. Specifically, our main contributions are as follows.

e We define Chromar, a rule-based notation with stochastic semantics (Sections 3 and 4) yielding a
Continuous Time Markov chain (CTMC). The main entities in the notation are agents with attributes
that are defined at the type level, so that every agent of that type has these attributes. For the above
diffusion model we could have for example a type X(n : Int) with attribute n for the position of the X
molecule in the array. Agents are instantiations of this type with concrete values for the attribute like
X(n = 1) for a molecule in the first cell, X(n = 2) for a molecule in the second cell and so on. The
states of the CTMC are multisets of agents. For example {|X(n = 1), X(n = 2),X(n = 2)[} would be a
state corresponding to one X molecule in the first cell, and two in the second.

The rules describe how agents are added to or removed from states at a more abstract level than
individual agents. This is done by using patterns on the rule left-hand sides specifying the group of
agents for which the dynamics are defined. In our example we could define a rule that applies on
all agents of our X type (X(n = 1), X(n = 2) etc.). As each rule corresponds to multiple concrete
reactions, this leads to a more compact representation of the model if we make our species correspond
to attributes of some type. For example, in our case we could have Cell(pos : Int, X : Int), then when
we create new Cell agents we are creating new species that will automatically be picked up by the Cell
rules. This helps us solve the second problem.

We also define two extra features of Chromar: (i) Fluents — the incorporation of deterministically
changing time-dependent values. These are important for modelling dynamics in a changing environ-
ment, and (ii) Observables — values calculated from a global view of the system. These are important
in cases where a coarse-grained view of the system is needed. This may be because we cannot acquire
atomistic data, or because we do not wish to model everything at the same level of detail. Observables

35

40

50

55

60

Leaf2

Leaf1

Leaf3

. new Leaf
a .
[.

A

< /
-y

Leaf4

A

Figure 1: Our simple plant development model. All the interactions, that in this case are transfer of carbon, happen between
the central Cell object that represents the molecular state of the entire plant and the Leaf objects, which act as carbon sinks.
The carbon that goes to the leaves is either used for growth, in which case it is transformed into new material (increase of
mass), or to maintain the already existing Leaf by fuelling its life sustaining processes. New leaves are also created, forming
new sinks and increasing competition for carbon between the leaves, but also increasing the production of carbon by providing
new green areas for photosynthesis.

also give us a flexible way to observe the state of the system that can be used to report the results of
model simulations, as we often need time series of some observable on the state of the system rather
than time series of the state itself. We refer to this nonconcrete version of the language as abstract
Chromar.

e We then define a concrete realisation of Chromar as an embedded Domain Specific Language (DSL)
inside Haskell, a functional programming language (Section 6)[2]. The embedding means that we can
use any valid Haskell expression where expressions are expected, for example in the rate expressions
and in the right-hand sides of rules. Agent types, Fluents, and Observables are defined directly as
Haskell expressions but rules are defined using abstract Chromar syntax via quotation [3]. The code
for the language and simulator along with installation instructions is available online at: https://
github.com/azardilis/coloured-petri-nets/releases/tag/v0.2

e We show the expressivity of our abstract notation as well as the advantages of having an embedding
in a general purpose programming language via two examples (Sections 2 and 7).

2. An example: Plant growth

We will now give an overview of our notation using an example from plant development. The example
considers a very abstract view of plant development that has enough details to demonstrate the main features
of our notation. Our model is inspired by the Framework Model (FM) of Chew et al. [4], a modular
whole-plant model that connects traditional plant biology representations of molecular processes with and
representations of organ and whole-plant development processes.

The above-ground part of an Arabidopsis plant has a simple architecture before flowering: a collection
of leaves arranged in a circle. Each leaf photosynthesises, creating the main currency, carbon; uses some
carbon for maintenance and some for growth; and transfers any remaining carbon to the other leaves. The
FM represents the Arabidopsis rosette (collection of leaves) with no preference in the transfer, thus we have
an all-to-all communication. Similarly to the FM, in our model all the molecular processes reside in a central
plant ‘cell’ which allows us to keep the leaves as carbon sinks and track their growth, while avoiding the
per-leaf molecular processes and their communication (see Figure 1).

The processes that affect growth are as follows: we think of carbon assimilation per leaf as increasing the
carbon concentration of the central Cell depending on the photosynthesis level of a leaf (which will depend
on its size); we think of maintenance respiration as the central Cell giving some carbon to a leaf; and we
think of growth respiration as the central Cell giving some carbon to a leaf and the leaf mass increasing. We

65

70

75

80

85

will also have new leaf creation. There are interesting dynamics here such as the interaction between growth
and assimilation: the more we grow, the more the leaves can photosynthesise, and the more carbon can go
to the central Cell.

Since agents are the main entities in our language, let us consider what types of agents we should have
to model the above system, given the above discussion. We will need:

e a Leaf type with attributes for mass and time of appearance: Leaf(age : int, mass : real),

e a Cell type that represents our main plant ‘cell’ with an attribute, carbon, to keep the current carbon
level: Cell(carbon : real) (there will only be one object of this type at any one point), and

e a Ros type that represents the entire Rosette with an attribute, n, to keep the current number of leaves:
Ros(n : int) (there will also only be one object of Ros type at any point)

We will use the current number of leaves relative to the index of a particular leaf as a proxy for the leaf’s
age.

For the carbon assimilation from one particular leaf we need to increase the carbon concentration of the
central Cell. The bigger the leaf the ‘faster’ it contributes to the production of carbon:

Leaf(age = i, mass = m), Cell(carbon = ¢) EAGON Leaf(age = i,mass = m), Cell(carbon = ¢+ 1)

We can read this rule as saying that for any two Leaf and Cell agents, the Leaf agent remains the same
and the Cell agent increases its carbon content by one. Note that we assign the values of the attributes
of the the Leaf and Cell agents in the left-hand side of the rule to the variables i, m and ¢, so that we
can refer to them in the right-hand side of the rule and the rate expression. If we were to write this in a
traditional reaction notation we would have to write a reaction for every possible Leaf agent which leads to
the compactness problem we have noted earlier (indeed, there would be infinitely many such possibilities).
The implicit ‘for-all’ in the pattern on the left-hand side allows the rule to be applied to new leaves when
they are created. For example if the state of the system has two leaves, the central cell, and the rosette
agent:

{Leaf(age = 1, mass = 10), Leaf(age = 2, mass = 5), Cell(carbon = 20), Ros(n = 2)[}

then the rule is applicable to the two substates {{Leaf(age = 1,mass = 10),Cell(carbon = 20)[} and
{Leaf(age = 2, mass = 5), Cell(carbon = 20)]}.

For maintenance respiration, the central Cell agent gives some carbon to a Leaf agent, with the amount
of carbon needed for maintenance depending on the size of the Leaf:

Leaf(age = ¢, mass = m), Cell(carbon = ¢) om), Leaf(age = i, mass = m), Cell(carbon = ¢ — 1) [¢ > 1]

Note the use of the condition ¢ > 1 to make sure that the carbon levels do not become negative.
Next, Leaf growth depends on the mass of the leaf, its age (there is a limit on how much a leaf can grow
so older leaves stop growing at some point), and the amount of carbon available:

Ros(n = n), Leaf(mass = m, age = i), Cell(carbon = ¢) M)

Ros(n = n), Leaf(mass = m + 1,age = i), Cell(carbon = ¢ — 1) [c > 1]
Finally, for leaf creation we have:
Ros(n = n) LR Ros(n =n + 1), Leaf(age = n + 1, mass = 0)
Fluents and Observables There are two problems with the above definition:

(i) The dynamics operate in a static natural environment making the model very detached from reality.
For example our plants photosynthesise all the time whereas in reality they only do that during the
day, and

90

95

100

105

(ii) We have two representations of the same process at two different levels of abstraction that have to be
kept consistent with each other by the user. Specifically, we keep track of the number of leaves as an
attribute of the Ros agent type that is just a function of the Leaves part of the system.

We next introduce two new notational features that solve these problems.

2.1. Fluents

To solve the first problem we introduce deterministically changing time-dependent values we call Fluents.
These can be constructed through a combination of a small set of primitives and general expressions, taken
from the Functional Reactive Programming (FRP) library in [5] (our Fluents are usually called Behaviours
in FRP). For example we could write a fluent for light, which is a function from time to the Booleans, and
another one for temperature that depends on light:

light = repeatEvery 24.0 (True when (6 < time < 18) else False)
temp = 21.0 when light else 16.0

The assimilation rule can then be written as follows:

Leaf(age=1, mass=m), Cell(carbon=c) Jmtemp), Leaf(age=14, mass=m), Cell(carbon=c + 1) [light]

Very often in Biology we have empirical relationships of various quantities with time. Fluents can be used
to encode these as well. Such empirical relationships do not provide any mechanistic insight but they can
be useful when we either do not have data or do not want to model more mechanistically using rules.

2.2. Observables

To solve the second problem, we introduce functions on the state of the system called observables.
Observables can be constructed using database-inspired select and aggregate operations: we think of
our state as a kind of database where we have a collection of agents rather than the more usual (and
very similar) collection of records. The select operation specifies a part of the state, and the aggregate
opereation specifies a combining function for ‘folding’ a collection of agents into a single value. For example,
to count the number of leafs in a state, we could write:

nl = select Leaf ; aggregate count 0

where we first select anything that matches a Leaf pattern and then count the results by adding 1 for every
Leaf starting from 0. The aggregation uses a simple count function A [n — n + 1 which, given a Leaf [,
increases the running count n by 1. Whenever an observable is used, one obtains its ‘fresh’ value, even when
the underlying state has changed (e.g., by creating new leaves, in this case). For example our Leaf growth
rule now becomes:

Leaf (mass =m, age=1), Cell(carbon=c) Alal=éimic)

Leaf(mass=m + 1,age=1), Cell(carbon=c—1) [¢ > 1]
where we use our observable directly in the rule rate. There is no need to use the Ros agent any more as its
only purpose was to keep track of the number of leaves.

Note that observables, like fluents, can be used to model parts of the system in cases where there is
not enough knowledge about a process, or no desire to model at a more mechanistic level. In this case, for
example, the leaves must have some mechanism for knowing their age but it is not central to our model so
we use global knowledge via observables to abstract away from such details.

110

115

120

125

130

135

140

3. Abstract syntax of Chromar

In the previous section we gave some examples illustrating how the language works. Here we define the
abstract syntax of the language. Regarding notation, we write a for a possibly empty sequence of objects,
whose typical elements are given by mathematical expressions a. We write a.i for the ith element of the
sequence and |a| for its length, and use commas for the composition of sequences. We assume we have a
countable set of names N ranged over by n,,ny,id where n, will be used for agent names, ny for attribute
names, and id for variables. For generality we assume that Chromar is parameterised by a set of expressions
E (an expression language) ranged over by e, e,, e. and a set of attribute types (base types) B D {bool, real}
ranged over by b. We will use e, as syntactic convenience for condition expressions and e, for rate expressions.
We further have agent types ny : b that are sequences of typed attribute names. The set 1" is the union of

base types and agent types ranged over by t (types, Figure 2). We will refer to Chromar where no choice is
made about the expression language E and set of types T as abstract Chromar to distinguish it from any
concrete realisation of the language, for example the Haskell embedding (described in Section 6) where we
fix the set of expressions and set of types to be the set of Haskell expression and types respectively.

A base type environment I' = id : b is a sequence of variable type bindings, and an agent type environment
A = id : at is a sequence of agent type bindings we require that the variables in environments are distinct.
We write T'[I”] for the new base type environment produced by extending or overriding I with new type
bindings I".

Regarding the expression language, £, we assume we have:

— A function FI : E — Py(N) that returns the finite set of free variables occurring in an expression.

— Typing rules of the form I' - e : b that assign unique types for expressions in some base type environ-
ments.

The full syntax and typing rules for Chromar are given in Figure 2. We next go through the various syntactic
constructs and explain their syntax and typing rules.

3.1. Agent declarations

Agent declarations define the sequence of typed attributes that all agents with some name n, should
have (agent decl, Figure 2). Using the model of the previous section as an example we had a Leaf type with
attributes mass of type real and age of type int, that could be declared with:

agent Leaf(mass : real, age : int)

We use the sequence of typed attributes ny : b as the agent type. The typing rule (T-INTRO) produces a
new such type binding associating the agent name to the agent type.

3.2. Agent expressions

Agent expressions have a name and a finite sequence of attribute expressions (agent exprs, Figure 2).
Agent expressions have a dual role: they are used in the left-hand side of rules as a way of binding values to
variables and on the right-hand side of rules as a way of expressing the change in the left-hand side agents.
We therefore have two distinct syntactic classes, one for each use:

(i) left-hand side binding agent expressions, a;, where all attribute expressions are of the form ny = id
(bind the value of an ny to variable name id) and

(ii) right-hand side agent expressions, a,, where all attribute expressions are of the form ny = e where the
expression e indicates the change in the attribute values.

145

150

155

160

165

Syntax Typing rules
aq = agent n,(ny:b) agent decl - agent ng(ny :b): (ng :ny:b) (T-INTRO)
(all nys distinct)
ar = ng(ny =id) left agent expr At ng(ny =id) : (id:b) (T-L-AGENT)
ng : (ny :b) € A, all ids distinct
I'ke:b
(T-R-AGENT)
ar = ng(ny=e) right agent expr [|AFng(ng =e)
(ng : (ny:b) € A)
Ata T
I'Mke:real T[IV]|[AFa, T[] F e : bool
o= a5 ay e rule expr TIAFa =5 a, e
Fag: A I'AFa, I'AkFr
.. S — (T-MODEL)
m = ag; init (a,); model def I' - ag; init (a,);

Figure 2: Abstract syntax of Chromar with corresponding typing rules for each syntactic construct

The typing rule (T-L-AGENT) introduces new type bindings in the environment for the variables in the
left agent expressions according to the agent type. Specifically if we have an agent type in the environment
ng : (1 : b1,...,nk : b) and a left agent expression n,(nq :idy, ..., ng : idy), each n; : id; in the interface of
the left agent expression produces a type binding, id; : b; according to the agent type resulting in bindings
for the entire expression (id; : by, ..., id} : bg). In Figure 2 we use a shorthand notation where we show the
typing for a typical element of each sequence in the rule and then underline for the natural extension to the
entire sequence. The typing rule (T-R-AGENT) makes sure that all expressions assigned to attribute names
have the correct type according to the agent type. If we have an agent type binding n, : (n1 : b1, ..., ng : bg),
the expression of each element, n; : e;, of the interface of a right agent expression with name n, should have
type b; in a base type environment I'. Again we use the shorthand sequence notation indicating the rule
for typical elements of each sequence and then underline for the extension to the entire sequence. A further
restriction implied by the typing rules is that agent expressions should define their interface fully, which
means that they should define all the attributes indicated by their type.

3.3. Rule expressions

Rules, as we have seen from the examples, have a left-hand side (lhs) consisting of a sequence of bind-
ing agent expressions, q;, a right-hand side (rhs) consisting of a sequence of agent expressions, a,, a rate
expression e, and a condition expression e. (rule expr, Figure 2). The typing rule (T-RULE) first makes
sure that the left-hand side agent expressions are well typed (i.e., that agents bind variables to all their
attributes). Each left agent expression produces bindings for its variables and in A - g; : T', the environment
T" is the concatenation of the sequences of bindings produced by each element of the sequence. Then, in the
environment extended with the type bindings produced by the lhs, we check that the rest of the rule is well
formed. We need the extended type environment since ids on the rule lhs may appear in the rhs, rate and
condition expressions.

(T-RULE)

170

175

180

185

190

195

200

205

210

3.4. Model definition

A full Chromar model is just a sequence of definitions. We have a sequence of agent declarations, aq
followed by the initial state definition, which is just a sequence of right agent expressions, and finally a
sequence of rule expressions (model def, Figure 2). The typing rule (T-MODEL) constructs new agent type
bindings for all the agent declarations in the model where A is the concatenation of agent type bindings
produced by each agent declaration in the sequence. Then in a type environment extended with the defined
agent types, the rule checks the initial state definition and the sequence of rules.

3.5. Syntactic extensions

Missing attributes We can relax the constraint of having to specify the full interfaces of agents in
rules by defining a correspondence between left and right-hand sides of rules. The interface of any agent
expressions on the left-hand side of rules with incomplete interfaces is filled with bindings to fresh names
(ids) for the attribute names missing in the expression compared to the attribute names in its agent type.
For example given an agent type A(a : int,b : int), an incomplete left agent expression A(a = x) becomes
A(a = x,b = y), where y is a fresh identifier (i.e., one not occurring anywhere else in the lhs). For every
ap.i in the left-hand side we establish a positional correspondence to a,.i in the right-hand side, if it exists.
Then after the left-hand side agent expressions are completed, we complete the corresponding right-hand
side expressions with the same fresh name bindings, if needed. Any right hand side agent expressions that
do not have a corresponding lhs item need to be fully defined. Continuing with our example, the rule
Ala=z) = A(a =z + 1) is completed to A(a = z,b=y) = Ala = z,b =y).

Attribute conditional expressions A common pattern to establishing a relation between agents is
to use condition expressions to restrict the applicability of rules. Consider an agent type A(a : int). If we
want a rule A(...),A(...) — ... to be applicable to only a subset of (A(...),A(...)) pairs in the state
we add a condition expression on the attributes values of the As to restrict the applicability of the rule:
Ala = x),A(a = y) — ... [y = f(x)]. A syntactic extension that makes writing these conditions more
readable allows writing conditions directly inside agent lhs expressions. In our example, instead of binding
to y in the second lhs item and then putting the condition at the end, we can write the condition directly
inside the agent making the lhs A(a = x), A(a = f(x)). This is just syntactic sugar as any rule lhs with
conditional expressions can be rewritten as a binding-only lhs, plus a conditional expression. Any conditional
expression in a rule lhs is rewritten as a binding to a fresh identifier and an equality condition on the fresh
identifier taking us back to the form of our original rules.

4. Semantics of Chromar

For each base type constant b € B we assume we have an associated set of values Vy,, including Voo =
B (= {t, ff}) for bool and V,¢a1 = R for real. We have V = [J,. 5 Vi, the union of these sets of values ranged
over by v. A value environment o = idy : v1,...,id, : v, with v{,...,v, € V is a sequence of variable value
bindings, where the variables are required to be distinct. We will sometimes treat value environments as
functions with finite domain; for example to get the value of id; in ¢ we may write o(id;). We say that
o =1idy : v1,...,idy, : v, is a [-environment for a base type environment I' = idy : by, ...,id, : b, if each
id; : v; in o has an entry for that id; in " of the correct type, i.e., o(id;) € Vy,. For each T'-environment o,
base type b, and expression e such that I' - e : b, the expression has an evaluation [e]r (o) € V}, (below, we
often omit the environment subscripts on evaluation functions).

Regarding notation we write {a; — by, as — b, ...} for finite partial maps, from A to B, with ay, as, ...

distinct elements of A and by, be,... in B. For two such functions o and ¢’ we write o[o’] for the partial
function produced by using o’ to extend or overwrite the vaues produced by o. We write {|ai,...,a,[} for
the (finite) multiset of elements of a set A whose elements, counting repetitions, are a;,...,a,, and take

such multisets to be functions from A to N counting multiplicities (and so zero for all but finitely many
arguments). We write M S(a) for the multiset corresponding to the sequence a. We write m < m’ for the
submultiset relation; this takes multiplicities into account and is defined pointwise. Finally, we write M[A]
for the set of all finite multisets over a set A and S[A] for the set of all finite sequences over A.

215

220

225

230

235

4.1. Agents

Agent values are structures with a name and a finite partial map from attribute names to base values,
(ng, {ny — v}). We write Av for the set of agent values, ranged over by av. We define the set of states,
ranged over by s, to be M[Av], the set of all finite multisets of agent values

To evaluate sequences of left agent expressions as multisets of agent values, suppose we have a typing
A F ng(ny=1id) : T' of a sequence of left agents. Then, I' is determined by A, and gives basic types
for all the ids in the left agent expression, and so, for any I'-environment o we may define the evaluation
[na(ng =id)]a(o) € M[Av] of the left agent sequence as follows:

[na(ns = id)]alo) = MS(na(ny = o(id))

Similarly to evaluate sequences of right agent expressions to multisets of agent values, suppose that we
have a typing I'| A F n,(ny = e) of a right agent expression. Then for any I'-environment o we define its

evaluation [ng(ny = e)[r a(o) in M[Av] as follows:

[na(ny = e)lr,alo) = MS(na(ny = [eJr(0))

4.2. Rules

Rules induce (stochastic) reactions, and we discuss those first. Reactions are structures p = [£, 1 with
I,r € M[Av] and k a positive real number. We will assume that these names also act as accessors for the
parts of the reaction structure, so for a reaction p, I(p) returns its left-hand side and so on. We can apply
the reaction p to a multiset of agent values s if I(p) < s, when we obtain a new multiset s — I(p) + (p),
which we write as p e s.

Reactions give rise to stochastic matrices on M[Av]. A stochastic matriz on a set of states S is a rate
function @ : S x S — R with @ zero on all but finitely many entries of any row. Note that the sum of two
stochastic matrices is also a stochastic matrix, as is the zero matrix. Stochastic matrices encode the rate at
which reactions occur in different states.

The rate at which a reaction p occurs in a state s depends on the number of ways in which {(p) occurs
in s. We define the multiplicity of a submultiset m of another (finite) multiset m’ as the number of distinct
times m appears as a submultiset of m’, defined as:

zeX

Consider for example multisets m = {la,a,b]} and m’ = {a1,as,as, b} where we label the a’s in m’ to
distinguish them. The multiplicity of m in m/ is three as m appears as a submultiset of m’ in three distinct
ways:

N(m7m/) = |{{|a17 az, b‘}v {|a17 as, b‘}> {|a27 as, b‘}}l

With these preliminaries our of the way, we can define the semantics of rules as stochastic matrices (given
suitable environments). Suppose that we are given a rule typing I'| A F a; RN ar [ec]. Then we further have
At a; : TV for a unique I'V. We also have T e, : real, T|A & a,, and T F e, : bool, where I' = I'[I"'].

We first need to define the notion of a rule matching a state and the reaction denoted by a rule. For the
first, we say that a IV-environment m is a match for the rule in a state s = {avy, ..., av,[} if [a;]a(m) is a
submultiset of s. Note that there are only finitely many possible such rule matches. For the second, suppose
we are given a [-environment o and a [-environment o', then we set
s (@) X folr o @) @ =0lo') [erI6(@) > 0, el (@) = 1)

Rla; = a, [el]](0,0") ~ rrA P PEelr

- undefined (otherwise)

240

245

250

255

260

265

Note that this reaction only exists if (the denotation of) the rule rate is positive and (the denotation of) the
rule condition holds. In case the reaction exists and ¢’ is a match for the rule in a state s, we say that the
match is proper of the rule in state s, given o.

We can now define the stochastic matrix associated to the rule, given a I'-environment o:

lar <= a, lecdlralo)(s,s") = SA{le]5@) - u([ai]a(m),s) | m is a match for a; in 5,5 = om],

s’ = Rla; < a, [e]]r,a(o,m) e s}

For example, consider the left-hand expression A(a = z), A(a = y) and state {{A(a = 1), A(a = 2)[}. We
have two distinct matches m; = {x — 1,y — 2} and mg = {z + 2,y — 1}. Next, consider the rule

r= Ala=2),Ala=y) L% Aa=2+y), Ala =y — 1) [g(x,)]

assumed well-typed given the agent type environment A : (a : int) and empty base type environment. Then,
assuming, for example, that f(x,y) denotes 3 in m; and the condition ¢(z,y) holds there, m; yields a
reaction from our rule r, namely:

RIF o m1) = Ala=1),Aa=2) > A(a = 3), A(a = 1)
Assuming, further, that the condition does not hold in ms, for the stochastic matrix of r we will have:

[FI{H{Ala = 1), Ala = 2)}, {|A(a = 3), Ala = D]}) = 3

If, on the other hand, the condition does hold in ms and f(x,y) denotes 3 there, then the stochastic matrix
of r will have value 6. This illustrates the fact that we may count the same reaction several times when
applying a rule.

4.8. Stochastic semantics of models and a simulation algorithm

We now give the semantics of a model in terms of Continuous Time Markov Chains (CTMCs) over our
set of states M[Av]. A CTMC is a tuple (S,Q,I) with S being the set of all states, @ : S xS — R a
stochastic matrix on S, and I € S the initial state.

A Chromar model ag; init (a,); r generates CTMCs as follows. Suppose that I' - ag4; init (a,); . Then,
for a unique A, we have Faq: A, I'|AtF a,, and I'| A+ r. For any I' environment o we now define the
evaluation [ag; init (a,); r[(o)r,a of the model as a CTMC by:

[aa; init (a,); rlr.a(o) = (MIAV], Y [rIra(o), [a]ra(o)

rer

We remark that, in the implementation of Chromar, the I'-environment needed for the semantics of a model,
is supplied by the Haskell context in which the model is defined. We also remark that, with this definition,
the same reaction may be counted more than once as it can occur in two different ways, either when applying
a given rule (a possibility noted above), or when applying two different rules.

If we try to expand Chromar rules to the equivalent reactions for simulation, we may obtain infinitely
many reactions (unless we constrain the types of the attributes in our agent types to be finite). However for a
given state only finitely many of these reactions will apply, so we can still use the normal Stochastic Simulation
Algorithm (SSA) to get sample paths from the CTMC, without constraining the available attribute types.

Specifically our algorithm is the usual SSA, but with an extra step (1) that dynamically creates the
reactions based on the current state of the system. We assume a model and an environment o, as above.
The algorithm starts with state so = [a,]r,a(c) and then iterates the following sequence of steps as many
times as desired.

1. For current state s, generate the multiset of all possible reactions for every rule:

R={R[r;]J(c,m)|i=1,...,|r|, m is a proper match of rule r, in s, given o[}

10

270

275

280

285

290

2. Calculate the total rate kr = > _» R(p) - (u(l(p), s) - k(p)). Halt if this is zero.

pPER

3. Pick the waiting time for the next reaction event from the exponential distribution with cumulative
distribution function F(t) = 1 — e~ F7t,

4. Pick exactly one of the reactions, choosing reaction p € R with probability %‘W.

5. If reaction p is picked then update the state to s’ = p e s.

Note that we take account of the multplicity of reactions here: the same reaction can occur from two
different rules, or from one rule using different matches.

5. Other features

In this section we will define the Fluent and Observables features introduced in the example in Section 2.
The new syntax and typing rules are summarised in Table 3.

5.1. Fluents

Fluents denote continuous functions of time and we borrow a syntax of Behaviours from Reactive pro-
gramming to define them (fluent def, Figure 3). Most of the typing rules are obvious and will be made
clearer when we give the semantics. The only subtlety is the (T-FDECLS) typing rule for a sequence of
fluent declarations. Since fluents can be used inside the definitions of other fluents, we cannot type check
them independently. Therefore the typing rule (T-FDECLS) proceeds in turn checking each fluent in a type
environment that contains type bindings for the previous fluents in the sequence.

Each fluent expression evaluates to a total and continuous function of time and for some fluent f we
define its evaluation [f] : Ry — V. First, we have the trivial time fluent, which is the identity fluent that
gives a function that echoes back the given time:

[time](t) =t

The next conditional fluent constructor, is meant to be used to construct a new fluent as a piece-wise
combination of other fluents. The conditional fluent chooses between two fluents f; and f3 depending on
the evaluation of a third fluent fo. When fo evaluates to true it uses f; otherwise it uses fs:

[£](e)(@) Gf [£2](0)(2))
[f3](o)(t) (otherwise)

The repeatEvery constructor provides a way to write the common motif of repeating behaviour over time:

[repeatEvery e f[(0)(t) = [f](o)(mod(t, [e](v)))

Finally, any expression can be used as a fluent; the expression is ‘lifted’ to a time function:

[fexp e](0)(t) = [e](o)

Note that in most of the examples in this text we use fluents directly in expressions without prepending
the fexp constructor. For example we might write temp > 3 for some already define temp fluent instead of
fexp (temp > 3).

To evaluate a sequence of fluents to a sequence of their values at some time suppose that I' = f; : I'f.
Then for any I'-environment o, I'j-environment oy and a binding for time (¢ : 7) we define an evaluation of
a sequence of fluents:

[f1 when f; else f3](o)(t) =

[fluent n = f, fal (0,05t :7) = (n: fr, [fal(0”))

where f; = [f](o,0f)(7) is a fluent evaluated at an environment o, oy at time 7 and o’ = (o, (of,n : f;),t: 7)
is the environment extended with the evaluation of the current fluent, f. so that its value can be used for
the evaluation of subsequent fluents in the sequence that might be using it.

11

295

Syntax
f o=
time
f1 when f; else f3
repeatEvery ¢ f
fexp e
faun= fluentn=f
0= select n, ; aggregate e e
0q::= oObsn=o
mi= ag; Ja; o init (ar); 7

fluent def:

identity

condition

repeat

fluent expr

fluent decl

obs def

obs decl

model

Typing rules

F time : real (T-TIME)

'Efi:0 '+ f5: bool I'Ffs:b

(T-conD)
I' - fiwhen f> else f3: b

I'te:real FEf:b
I' - repeatEvery e f : b

(T-REPEAT)

I'He:b
———— (T-FExp)
I'-fexpe:b
'Ef:b
(T-FpECL)

IF'-fluentn=/f:(n:0b)

'k fa:(n:b)
'k fa, fa:(n:0),Tn:b]F fq

(T-FDECLS)

Fkep:d IF'key:(np:b—=0 =0
— ~ (T-OBS)
I'| A+ select n, ; aggregate ey es : b
(ng : (ng : b) € A)
T'|AFo:b 0
-ODECL
F|Al—obsn:o:(n:b)()
Faq: A ' fa:Ty I'AkFog:T,
F'NAFa, Iy To] AT
— (T-MODEL)

LIAF ag; fa; 043 init (a,); ¢

Figure 3: Abstract syntax of fluents, observables and corresponding typing rules.

5.2. Observables

Observables consist of a select statement followed by an aggregate statement (obs def, Figure 3). Observ-
ables give us a way to do reflection but in order to be able to do that we need a more powerful expression
language E. Specifically in the expression language we need to be able to express the combining functions
of aggregate statements, which means that the expression language should allow functional abstractions and
have some representation for agents. Consequently the typing rules for the expression language should also

handle both function and agent types.

Observables denote functions from states (multiset of agent values) to base values in V. Suppose we are
given a typing rule I'| A F select n, ; aggregate e¢; ey : b'. Then for any I'-environment o we may define

12

300

305

310

315

320

the evaluation [select n, ; aggregate e; es] € M[Av] — V of observable definitions as follows:

[select n, ; aggregate e; es](0) = [aggregate e, ex] (o) o [select n,] (o)
[select ny](c) = A s — plusMap s (A e — if (n, = nm(e)) then{ef}; else {[})
[aggregate e; es])(0) = A s = mFold [e;] (o) [e2] (o) s

The plusMap function is the multiset equivalent of the list concatMap and mfold is the multiset equivalent
of the list fold. The function nm acts as an accessor to the name part of an agent value. To evaluate a
sequence of observable declarations suppose that I'| A = 04 : I',. Then for any I'-environment o we have
evaluation of a sequence of observables:

[obs n=o](c) =X s — n: [o](c)(s)

5.8. Chromar with Fluents and Observables

The definition of the language with the Fluent and Observable features follows from the definition of
the core language in the previous sections. The abstract syntax of a Chromar model is extended with
observable and fluents declarations (model, Figure 3). Since we are allowed to use time-dependent values
inside rules, the transition rates between states are also time-dependent. This means the stochastic matrix
of a rule are also parameterised by time: @ : S x S x Ry — R;. Suppose that we are given a rule typing
ICe Tl |AF ar e a, [ec]. Then we further have At a; : I, ' f4 : Ty, T|AF og : T, T Fe, :real,
T F e. : bool, where I = I'[l #,'6,I"]. Then for any I'-environment o the stochastic matrix of a rule is given
by:

[ar == a, [ec)lra(o)(s,s',t) = S {le-]s@) - p([ai]a(m),s) | m is a match for a; in 5,7 = o[os, Tops, m],

s' = Rlay = ar [ec]lr.a(olof, oons],m) © s}

where 045 = [04](0)(s) is a I'p-environment produced by evaluating all observables at current state s,
or = [fa](o,t: t) is a T j-environment produced by evaluating all fluents at current time ¢. The stochastic
matrix is the same as before with the only difference that the given ¢ environment is extended with the
evaluation of all fluents and observables at state s and time ¢. Note that using fluents means that the
Continuous Time Markov Chain that a Chromar model generates becomes inhomogeneous in time. Therefore
the standard Stochastic Simulation algorithm (SSA) does not apply since it assumes constant propensities
between reactions. In practise, however, many times this discrepancy is not prohibitive and gives very similar
results while avoiding the extra computational cost added by non-homogeneity. There are promising new
methods for simulating CTMCs with time-varying propensities that alleviate some of the computational cost
[6].

Here we use the approximate simulation method where the fluents and therefore all time-varying expres-
sions in rules are only evaluated at the timepoints the usual SSA visits. This keeps their values constant
between reactions at the expense of accuracy. The only change in our algorithm is the reaction generation
step (1.) where the reaction generation happens in an environment extended with the evaluation of all fluents
and observables at state s and time ¢:

R ={R[r;](clof,00s],m) |i=1,....,|r|, m is a proper match of rule r; in s, given o}

where 0¢ and o5, are the environments produced by evaluating all fluents at current time ¢ and observables
at current state s respectively. Since fluents are only sampled according to the discrete time-jumps followed
by the simulation clock that means that in practise we only get a discrete approximation of the continuous
functions denoted by the fluent definitions (see for example Figure 4). The accuracy of the approximation
will depend on the sampling interval and how fast the fluent changes. If, for example, the fluent changes on
a faster timescale than that of the model then the approximation will be poor. In practise, however, usually
the fluents are on the same or slower timescale than that of the model since they are usually used to model

13

325

330

335

340

345

08 |

light

04 |

02 |

0 e TS X KX X X X L X, X ok e HX J
0 & 10 . 15 20 25
time (h)
= Fluent -- Sampled fluent === SSA time

Figure 4: Ideal (solid line) versus practical approximation during simulation (dotted line) of the fluent for the light conditions
in a day: True when (6 < time < 18) else False, where we take True to be 1.0 and False to be 0.0. The fluent definition
denotes a continuous function of time but in practise the function will only be sampled at the time points the SSA visits (red
points). This means that practically we only get a discrete approximation of the fluent.

the context of the model, which means we get acceptable approximations. In the case of boolean fluents (like
our light fluent from Figure 4) similar decisions on how to handle discontinuous changes have to be made in
simulators that support SBML events for example. A common approach there is to have explicit handling of
events in the simulation loop. The stochastic simulation in the ‘iBioSim’ tool, for example, checks the time
of the next event and executes it if it happens before the time of the next reaction (algorithm 7 in [7]). It
should be possible to extend these methods to Fluents of any type and add to our simulation algorithm if
increased accuracy is needed.

5.4. Abstract Chromar

We refer to Chromar (defined in Sections 3, 4, and the current section) where no particular choice is
made regarding the expression language E and set of types T as abstract Chromar. We say that abstract
Chromar is parametric in these. This is in contrast to a particular concrete realisation of Chromar where
we fix the expression language and set of types. Apart from the choice of expression language and types
there is the more practical issue of the implementation of some concrete realisation of the language. In any
implementation of the language (regardless of the choice of expressions and types), eventually all entities of
the language have to become data structures in some programming language in order to set the model in
motion on a computer. At the other extreme, the model definition could be written directly as constructs in
some programming language (embedded DSL). In the following section we describe one concrete realisation
of Chromar where we fix the expression language and set of types to be Haskell expressions and types
respectively. We then describe the particular implementation choice via embedding.

6. Haskell embedding

In this section we will describe the implementation via embedding of one concrete realisation of Chromar
where we fix the expression language E and set of types T to Haskell expressions and types respectively.
In Section 5.4 we outlined the dichotomy between the two extremes of an implementation of any language.
There are advantages and disadvantages to both approaches. Here we choose a middle ground: the model
definition happens directly in programming language syntax except in the case of rules where we allow

14

350

355

360

365

370

their writing using the abstract syntax. This means that we get the convenience of the abstract syntax
while allowing the full flexibility of the general programming language. In particular here we fix the set of
expressions to be any valid Haskell expression and the types to be Haskell types. We will go through the
different entities in Chromar and see how they are represented in Haskell. We will use typeface font for
Haskell code to distinguish from the abstract Chromar syntax.

6.1. Agents

Agent type declarations of the form agent n, = (n; : b) become Haskell types with n, as the name of the
type constructor and a sequence of named, typed fields (records). Sequences of agent declarations, a4, can
be collected in a union type. For example our Leaf and Cell agent declarations from Section 2 are written
thus:

data Agent
= Leaf { age :: Int
, mass :: Double?}
| Cell { carbon :: Double}

where the data keyword introduces a new datatype. Agent values are values of the Agent type, for example
Leaf{age=1, mass=1.5} and Cell{carbon=1.2}. For multisets of Agents we introduce a type Multiset a
= [(a, Int)] that maps agent values to their counts. The multiset type is parametric to an agent type
a. Given a function mset that constructs a multiset from a list (analogous to our M S from Section 4), our
initial state definition becomes:

init = mset [Leaf{age=1,mass=0.2},
Leaf{age=2, mass=0.1},
Cell{carbon=0.5%}]

6.2. Rules (via Quasiquotation)

The conversion of rules from abstract Chromar to Haskell is less straightforward but we can think of
rules as reaction generators: given a state (multiset of agent values) a rule denotes a reaction for each match
to the state. A reaction is naturally defined as a record type parameterised on an agent type:

data Reaction a = Reaction
{ lhs :: Multiset a
, rhs :: Multiset a
, rate :: Double

b

We cannot expect the user to write this rule (reaction generation) function though so we have made an easy
definition of rules close to their abstract Chromar syntax, using Quasi-quotes. Quasi-quotes is a Haskell
language extension that allows the use of special syntax (i.e., non standard Haskell syntax) inside [|

|] brackets as long you provide a quoter, that is a function that takes the string inside the brackets and
produces Haskell abstract syntax. The produced abstract syntax is injected by the Haskell compiler in place
of the quotes. Our quoted rules have the following syntax that is almost the same as the abstract one we
presented earlier:

rq = ng{ny=id} — n,{n’y=e)} Qe, (e.)

For example our growth rule from the plant model example becomes:

growth = [| Leaf{mass=m}, Cell{carbon=c} -->
Leaf{mass=m}, Cell{carbon=c-1} @g m (c >= 1) |]

15

375

380

385

390

395

400

405

This looks very close to our abstract syntax, but with some minor syntactic differences such as the placement
of the rate expression at the end of the rule preceded by the @ symbol. Crucially, being inside a programming
language means that we can use any valid Haskell expression in the places where expressions are expected,
i.e., in the values of fields in the right-hand side of rules, rates, and conditions. A very wide range of
expressions are therefore supported, without further effort.

Rule quoter function The quoter function takes a quoted rule expression and produces a Haskell
function of type Multiset a -> Multiset (Reaction a) where Multiset (Reaction a) is a multiset of
reactions (in fact we are producing the abstract syntax of the rule function so that it can be spliced inside
the rest of the program at compile time). The rule function needs to find all matches (according to the
rule lhs) and then generate a concrete reaction for each. This leads to the two parts of the rule functions
we need to construct: the query part — for finding the matches — and the reaction generation part. For
the query part we use list comprehensions and pattern matching for binding the variables in the rule lhs.
The following example illustrates the translation from quoted rule expression to rule functions. Consider the

agent declaration agent A(a : int) and rule A(a = z), A(a = y) ELG2N A(a = z) [x > y]. For the query part
we make one comprehension generator statement for each element on the left-hand side. The statement for
the first element becomes: (A{a=x}, _) <- s for some state s of type Multiset Agent. Pattern matching
ensures that we only look at A’s in the state and that we also bind the x variable. Note that we ignore the
count of each agent-count pair since we later calculate the multiplicity of the entire lhs inside the state in
the reaction generation part of the comprehension. For each such successful match of the first statement
we continue to the second statement with x bound. The statement for the second element of the rule lhs
is similarly (A{a=y},) <- s. With x and y bound we have our match m (as defined in Section 4.2) and
we produce a reaction if the condition is true in the environment extended with m. The full comprehension
statement is thus:

r :: Multiset Agent -> Multiset (Reaction Agent)

r =\s -> mset

[Reaction
{ lhs = mset [A{a = x}, A{a = y}]
, rhs = mset [A{a = x}]

, rate = (g x) * m (mset [A{a = x}, A{a = y}]) s
3

| (A{a=x3} _)<-s

, (A{a=y}, 0)<s

, X >y]

Function mset creates a multiset from a list. Each rule generates a multiset of reactions, as noted earlier,
since the same reaction can occur from two different matches. Function m is the p function that calculates
the multiplicity of the match (defined in Section 4.3).

6.3. Fluent and Observable features

Fluents are provided as a combinator library and the implementation follows the abstract semantics
and the definitions in [5]. The Fluent datatype is parametric to the type of values that the time function it
represents returns: data Fluent a = Fluent { at :: Time -> a } with Time just a synonym for Double.
We will say ‘integer fluent’ for a fluent of type Fluent Int, ‘boolean fluent for a fluent of type Fluent Bool
and so on. The fluent constructors become higher-order functions that construct fluents from other fluents:

constant :: a -> Fluent a

time :: Fluent Time

when :: Fluent Bool -> Fluent a -> Fluent (Maybe a)
else :: Fluent (Maybe a) -> Fluent a -> Fluent a
repeatEvery :: Time -> Fluent a -> Fluent a

The condition fluent constructor becomes two functions here that are meant to be used one in prefix form
(when) and one in infix (else) so that they read together in a similar way to the abstract syntax (condition,

16

410

415

420

425

430

435

440

445

Figure 3). Consider for example a fluent defining temperature that changes from 20.0 during the day to 10.0
during the night. The definition becomes:

temp = when day (constant 20.0) ‘else‘ (constant 10.0)

Note that we cannot use value expressions directly as fluents but we can ‘lift’ simple values to fluents using
the constant constructor for example. The same goes for function expressions; in order to use a simple
function between fluents we have to ‘lift* it. For example a lifted integer addition function (*+*) applied to
two integer fluents results in another fluent that at every time ¢ returns the addition of the value of the two
fluents at that time:

f1 x+* f2 = Fluent { at = \t -> (at f1 t) + (at f2 t) }

We generalise lifting of functions by making our fluent type an instance of the Applicative typeclass. In
case we are using fluents the rule functions produced by our rule quoter also take time as an argument so
they have type Time -> Multiset a -> [Reaction al. In order to allow fluents to be used directly inside
expressions in rules, we translate all fluent variables to their interpretation in the quoted rule compilation.
For example if we have a defined fluent temp, the expression temp + 1.0 inside a rule will be compiled to at
temp t + 1.0.

Observables are also given as a library of two functions:

select :: (a->Bool) -> (Multiset a -> Multiset a)
aggregate :: (a->b->b) -> b -> (Multiset a -> b)

These can be composed with normal function composition. For example for the number of leaves observable
from our example we write:

nl = aggregate ((+) . const 1) @ . select isLeaf

where isLeaf is a function of type Agent -> Bool. Note that instead of using Agent names to do the
selection as in the abstract definition of the observables we use a boolean function on the Agent. Similarly
to fluents, in order to be able to use observables directly in rule expressions our rule compilation translates
observables to their interpretation at the current state. For example the observable for the number of leaves
nl becomes nl s.

7. Second example: diffusion in a growing array of cells

We next present another example, that of a growing (one-dimensional) array of cells with a molecule X
diffusing between them. This is a more complicated version of the example given in the introduction where,
instead of growing the array of cells at one end, a cell at any position can divide. To do this, we employ the
Cell type Cell(id : int, nextTo : int, X : int). Apart from its concentration of X molecules, a Cell agent also
keeps some positional information. To fully determine the cell’s position in the array we use its identifier
attribute id, and that of its neighbour (given by its nextTo attribute). We can then define the neighbour
relation using equality between the identifier of one cell and the identifier in the neighbour attribute of
another cell.

In order to be able to give fresh identifiers to cells created by division we also need to know the current
number of cells in the array. We do this using an observable:

ncells = select Cell() ; aggregate count 0

Similarly to our plant example in Section 2, we use a count function that, given a Cell ¢, increases the
running count by 1: Aen —n+ 1.

Turning to the dynamics of the system, diffusion is the transferance of molecules from one cell to another;
we assume a cell’s rate of diffusion to its left neighbour is equal to that to its right neighbour (see Figure 5).
The rule for diffusion to the right is:

Cell(nextTo=p, X=z), Cell(id=p, X=2") 2% Cell(nextTo=p,X=z — 1), Cell(id=p/,X=2" + 1) [z > 0]

17

450

455

460

4 eo—L Diff °

id:a id:b id:c id:a id:b id:c
nextTo:b nextTo: ¢ nextTo: _ nextTo: b nextTo: ¢ nextTo: _

Figure 5: Diffusion rule. Any molecule inside a cell can move to the cell to its right or left with equal probability.

00, G ° O
o0 —_ oo o
id:a id:b id:c id:a id:b id: n+1 id: ¢
nextTo:b nextTo:c nextTo: _ nextTo: b nextTo: nextTo:c nextTo: _
n+1

Figure 6: Growth rule. Here cell b divides creating cell n + 1 (assuming we had n cells before the division), cell b moves to the
left of the new cell. The 5 X molecules of cell b get divided between itself and the newly created cell.

where the rate of diffusion is proportional to the number of molecules, z, following standard mass-action

kinetic rates, with constant of proportionality the diffusion constant k;. Here we are using the syntactic
extension of conditional attribute expressions (Section 3.5) for the id attribute of the second cell in order to
limit our matches, so that the diffusion rule only applies to neighbouring pairs of Cell agents. There is an
evident symmetric rule for diffusion to the left:

Cell(nextTo=p,X=z), Cell(id=p, X=1") LN Cell(nextTo=p, X=xz + 1), Cell(id=p’, X=2"—1) [z’ > 0]

For growth, we create a new cell on the right of the dividing cell and split the X molecules as evenly as
possible between the two cells:

Cell(nextTo = p, X = x) 98),

Cell(nextTo = ncells + 1, X = ceil(x/2)),
Cell(id = ncells + 1, nextTo = p, X = floor(z/2))

The dividing cell gets pushed to the left, keeping its id and changing its neighbour identifier to the identifier
of the new cell. The new cell gets a fresh identifier from our cell counter observable ncells and a neighbour
identifier from the old neighbour of its mother cell (Figure 6). We assume that growth is limited by the
availability of some nutrient S through Monod’s equation:

S

S:mawi
9(8) =g X435

where ¢4, 18 the maximum growth rate. Availability of the nutrient cycles every 5 time units from some
maximum value to zero. We define this as a fluent:

S = repeatEvery 10.0 (Smax when (0.0 < time < 5.0) else 0.0)

It is interesting to compare the behaviour of this system with and without growth. Since we are not
creating new molecules, we expect diffusion to spread the X molecules among the cells. With growth we
expect fewer molecules per cell since the same number of molecules is spread over a larger number of cells
- see Figure 7Ta for the number of X molecules in Cell 1 in one realisation of the process with and without
growth. Since diffusion spreads the molecules among the cells, we expect the variability in the cell contents
to go down with time. It is also interesting to see how fast variability is reduced in the diffusion only versus
the diffusion 4+ growth processes. In Figure 7b we plot how the standard deviation of the cell contents
(number of molecules) is reduced over time in three different cases - diffusion only, diffusion + growth with

18

465

470

475

o)
i) — x1 — sd
— x1_growth - —— sd_growth(0.14)
- —— sd_growth(0.25)
g mi
o
% -
o
3 B E
E
-]
#* K
© -
| — |)
Gl
sl
T T T T T T T T T T T
0 10 20 30 40 50 0 5 10 15 20
time time
(a) (b)

Figure 7: On the left the number of Xs in the first cell with and without growth. We start both processes at 10 cells and in the
growth case we activate the growth rule with gmqe. = 0.14 with a diffusion constant k; = 1. In the beginning when the number
of cells is close the trajectories are close but as the number of cells increases in the growth process, the number of molecules
in the Cell on average is lower than the process without the growth. On the right, we plot the standard deviation of the cell
contents (number of cells) in 3 different cases, diffusion only process, diffusion-+growth at maximum growth rate gmaz = 0.14,
and diffusion+growth at maximum growth rate gmaez = 0.25 all starting again with 10 cells. We can see that the faster the
growth the faster the molecules get spread.

maximum growth rate gmax = 0.14, and diffusion + growth with rate gmax = 0.25. While we cannot compare
the absolute numbers since we have different number of cells in each case, we can see that growth amplifies
the effects of the diffusion, spreading the molecules and reducing variability in cell contents more quickly.

We used our observables to extract and compute relevant quantities, such as the number of molecules in
the first cell in the array Cell 1, and the standard deviation of the molecular counts across the array, thus
obtaining a timeseries of observables. For example, to obtain the timeseries of X molecule counts in Cell 1
we use the following observable:

select Cell ; aggregate sumx1 0

where the combining function sumx1 is A ¢ z — if (id ¢) = 1 then = + (X ¢) ; else n. Given a cell ¢, this
function adds the cell’s X contents to the running total z if the cell’s id is equal to 1.

8. Comparison to related work

The idea of extending simple objects with fields to represent some of their attributes has been used
before, for example in Coloured Petri Nets [8] and, in a rule-based setting, in CSMMR [9]. Our notation
is inspired by both of these. One can think of iy as a rule-based version of stochastic coloured petri nets,
where the richer types are first class and not merely a means of translation to a non-coloured version; one
can also think of it as a simpler version of CSMMR, with only colours left. Our embedding in a programming
language increases expressive power, and fits with the availability of rich types.

However, there have been other languages that, while not giving the full power of a programming language,
still allow for complex expressions to appear, e.g., inside rate expressions. For example in React(C) [10] rate
expressions can be build from a subset of a functional programming language with a reflection option to
get access to the full state of the system. This allows conditions to be encoded inside rates by setting the
rates to zero if they are not met. Simulators for other widely used languages like KaSim (the simulator for

19

480

485

490

495

500

505

510

515

520

525

Kappa [11]) and BioNetGen [12] also allow more sophisticated rate expressions than traditional mass-action
kinetic rates.

Our use of database inspired operations for the observables is also new and we have found it very useful in
model building. The declarative nature of our multiset query primitives makes the definition of observables
very intuitive. Similar database-inspired query operations on top of collections are used in LINQ [13] although
the collections are usually taken to be lists not multisets. Buneman’s comprehension syntax [14], a collection
query language similar to practical database query languages, considers other types of collections, including
multisets.

Attributes can be used to encode the binding of species as in the example in the previous section. However,
whenever we use them to encode binding we would probably be better off using a language that represents
binding directly such as Kappa [11] or BioNetGen [12]. However, note that in the dividing cell and diffusion
model of the previous section we use colours in other ways that can’t be easily represented as binding. In
particular, the division of the contents of a cell would be hard to express in Kappa.

From a more practical viewpoint, the issues we identified in the Introduction regarding dynamic creation
of entities and compactness of representation are usually handled by modellers by either writing custom
simulation software or by using a simulation framework. Agent-based modelling (ABM) simulation frame-
works, in particular, share some characteristics with our work. In ABM frameworks the description of the
process/model also happens declaratively through the description of the behaviour of classes of agents (see
for example [15] used in systems biology).

The main difference from our work is that, whereas in ABM systems the main unit of description is the
entire behaviour of each individual agent, in Chromar it is the rule, which can both describe a (possibly
partial) behaviour of an individual agent and a synchronised action of two or more agents. We think this
ability to specify sychronisation makes our models more natural and more easily written in a modular fashion.
This improves readability. and, more practically, makes the resulting models easier to change and combine.

In the next two sections we will focus on comparisons with (i) Coloured Petri Nets, since this is the
most directly comparable formalism, and (ii) Simile, a system (primarily) coming from a different domain
(ecology) and a different paradigm — deterministic instead of stochastic.

8.1. Coloured Petri Nets

The closest formalism to our notation is Coloured Petri Nets. Petri Nets are a graphical network-based
formalism often used to represent reactions. There are two type of entities in the nets: places and transitions.
Places carry a population of tokens and transitions are a way of moving tokens from one place to the other.
The state of the system is just the number of tokens at each place. Coloured Petri Nets (CPNs) are an
extension to Petri Nets that allows distinctions between tokens (colouring of tokens) by allowing them to
have an associated data value adhering to the type (colourset) of their place [8]. For example, if a place has
type Leaf(mass : real, age : int), a token in that place might have value Leaf(mass = 3.0, age = 2).

Our growth transition from the plant growth example in Section 2 would give the network in Figure 8.
We have two coloursets: Leaf which is a product type over age and mass, and carbon. Our initial state has
two tokens in the Leaf place, one with age 1 and mass 10 and another with age 2 and mass 5, and we have
one token of carbon with value 10. A transition removes tokens from its pre-places (places with arcs going
from them to the transition) and moves tokens to its post-places (places with arcs going into them from the
transition). In this case pre and post places are the same, so the effect of the transition is as in our system:
to remove one Leaf and replace it with a Leaf with updated mass, and remove the carbon token and replace
it with a carbon token with an updated value.

The correspondence to our system is straightforward, coloursets are our agent types (records with named
attributes), tokens are our agents, and transitions are our rules. CPN transitions also have predicates that
are the same as our conditions. One difference is that CPNs also allow union types instead of just product
types as in our language. A stochastic version of this CPN formulation has also been used for biological
modelling before, for example for describing planar cell polarity in Drosophila wings [16] (and see [17, 18]
for other examples). In these examples where the stochastic version was used its semantics are just given as
a translation to the corresponding simple stochastic Petri Net.

20

530

535

540

545

550

555

560

565

++

1L, 184+ oor carbon 1°10

1@, 5

growth

Figure 8: The growth rule as a Coloured Petri Net transition.

The problem here is that in many cases the unfolded simple Petri Net has an infinite number of reactions.
This means that in order to do the unfolding at all, the types have to be finite sets, which further means that
real values are not allowed. This is also reflected in the implementation of Coloured Petri Net tools where
one can define a Stochastic Coloured Petri Net but the definition is unfolded before it is run [19]. Here we
have defined the semantics on the coloured stochastic version directly and have a simulation algorithm where
reactions are generated dynamically, instead of being created statically in the beginning. This allows us to
have unbounded types for our attributes, including real numbers. Dynamic creation of reactions already
appears in [20].

We can think of Chromar then as a stochastic rule-based (and therefore textual) language on top of
Coloured Petri Nets. Our embedding in a general purpose programming language is also new, as most Petri
Net tools have a graphical interface for defining the models, although there is a hybrid approach that allows
mixing the graphical definition with programming language constructs (ML language) [21]. While graphical
notations are intuitive for smaller models, we have found that for larger models they become hard to read
whereas text-based approaches like our language produce much more readable representations.

The embedding in Haskell further helps to manage complexity in larger models since we can use Haskell’s
constructs for modularisation (from functions to modules). The ability to use any Haskell expression is also
crucial since we can reuse existing libraries, have access to the full range of language primitives, and we are
able to write any number of functions for the expressions (for rates, rule right-hand sides etc.). This helps
hide some of the complexity from the rules.

8.2. Simile

Simile is another graphical language that has similarities to our approach [22]. Simile is used mainly in
the domains of ecology and agricultural sciences but has also been used in systems biology before (for the
whole-plant model [4] that was the inspiration to our first example in Section 2) to exactly solve the kind of
problems we noted in the Introduction. In Simile there are two levels of definition of a model. At the first
level we have continuous variables with rate equations and at the second level we have discrete objects with
discrete dynamics — adding/removing. The objects are grouped based on their types and their behaviour
is given at the population level. Object relations can also be encoded through conditions to restrict the
dynamics to a subset of the object types. This is similar to our conditional expressions that can also be
used for the same purpose, for example in our Cell file model (section 7) we use a condition to restrict the
diffusion rule to only neighbouring cells (neighbour relation).

In our plant growth example the growth of the leaves in Simile would be written as shown in Figure 9.
We have a population of Leaf objects and a single Biochem object representing what we called Cell in our
rules. Each Leaf in the population has a mass that grows as a continuous variable. In order to define the use
of carbon for growth from the carbon variable in the Biochem object we have to work at the population level
by summing the contribution of each Leaf. The population of Leaf objects also grows (see creation box).

The dynamics of the two types of entities, continuous variables and objects, are not integrated as they are
in our language. In Chromar creating new objects or updating the values at the attributes of objects/agents
work in the same way: by removing and adding objects. The main difference is that an execution of a

21

570

575

580

585

590

595

600

Leaf Biochem

creation carbon /;ruwth

/

growthRos

Figure 9: The growth rule as a Simile model.

Simile model ends up solving a system of ODEs whereas in Chromar we are in a stochastic setting. Again,
the graphical notation of Simile becomes, in our experience, problematic for models with more than a few
variables, thereby requiring further visualisation tools.

9. Discussion and Conclusions

We have defined an extension to the representation of reactions, where we extend simple named species
to agents employing rich types, namely records with named typed attributes. Writing rules on these richer
types yields a more compact representation than one would get by writing reactions on the simpler types
in the traditional reaction setting. Moreover it sometimes helps writing systems that are difficult to write
otherwise by allowing the dynamic creation of objects and therefore their attributes.

On the implementation side, our embedding in Haskell lifts some of the constraints of modelling languages
and we think gets the best of both worlds: it naturally and succinctly captures some elements in our domain
of interest but at the same time when greater expressive power is needed we can turn to the programming
language. This increase in expressive power might come at the expense of the ability to do general analysis
of models since we cannot say much about what is happening in the Haskell exprs inside the rules. There
seems to be a trend though in the direction of mixing domain-specificity and general purpose programming
languages, for example Pedersen et al. [23] allow embedded F# scripts inside LBS-x, and in PySB [24]
Kappa models are defined inside Python. Embedding a domain-specific language inside a programming
language like we did is in some cases better than doing the opposite — embedding a programming language
inside a domain-specific language — because we have fewer constraints on our definitions and more generally
full access to the language for structuring our model definitions.

In terms of the simulation our implementation is simple and basically follows the steps we presented in
Section 4. One area of improvement could be in the reaction generation step where we currently generate all
the active reactions at every step. In practise we do not need to completely regenerate the reactions at every
step since only a subset of them changes between steps. The performance gains will depend on the efficiency
of calculating the change in the reactions set after a change in the state. Techniques where the matches are
generated only once at the beginning of the simulation and then updated according to state changes were
already used in Kappa [25].

There are various ways our notation could be extended. Our rule left-hand sides are simple and can
only select naturally based on type, which means the only relations we can encode directly are products of
types (we can think of types as sets containing all the objects of that type). This is often unproblematic,
for example in our Plant system (from Section 2) all Leaf objects interact with all Cell (only one in this
case) objects so writing the left-hand at the type level works because the rules are then applicable to exactly
the pairs of objects we want, {(Leafy, Cell), (Leafs, Cell), ... }. In other cases though the relation we want is
some subset of the product of the types. For example in our array of cells example the diffusion rule is not
applicable to all pairs of Cells so writing Cell(...), Cell(...) on the left-hand side gives us more pairs than
we want.

In that case we had to encode the relation through identifiers and the next-to relation pairs were stored
inside our objects. The selection was then restricted using attribute conditional expressions. This works

22

605

610

615

620

625

630

635

640

645

nicely in this simple case but what if we had more complex relations or had more than one relation? For
example in a plant with a more complex architecture and some interaction between the leaves we will need to
know which leaf is connected to which. If we further had a ‘nested-in’ relation between cells and leaves then
tracking the relations would need additional support. Ideally the language would track such relations and
have a special notation for the most common types of relations — for example in Biology the ‘connects-to” and
‘nested-in’ relations seem natural. We could then write rule left-hand sides that say ‘this rule is applicable
to any two leaves that are connected’ or ‘this rules is applicable to any two cells inside the same leaf’. The
‘connects-to’ relation is the main driver of the models in Kappa for example giving a graph-like state to the
system [26] and the ‘nested-in’ relation appears in [27] and [9]. A version of Kappa with richer types like the
ones we have shown here would be very powerful. Another system where both connection and nesting have
been defined is Bigraphs [28]. Stochastic bigraphs in particular are applicable in the biological setting [29].

Our observables could be developed further and made into first-class entities in the language, for example
by making them attributes of types. For instance in our plant growth example we would keep our initial Ros
type and use our observable primitives to define its n attribute instead of defining the observables outside
our agents. First-class observables would work particularly well with an extension for a native representation
of levels (the ‘nested-in’ relation we noted earlier), in which case the idea of the agent attributes at a higher
level being observables of objects at a lower-level would be both intuitive and powerful.

In conclusion, abstract Chromar and its concrete realisation in Haskell give a highly expressive language
that is particularly good for the description of models with a simple structure, like the Plant example in
Section 2 and the Cell file example in Section 7. The main ideas of Chromar like: two levels of dynamics
(attribute and agent levels), flexible system of observation, combination of domain-specific and general
programming languages should carry to other frameworks/languages, for example ones with more natural
descriptions of more complex structure like the ones we described above.

References
[1] K. E. Iverson, Notation as a tool of thought, ACM SIGAPL APL Quote Quad 35 (1-2) (2007) 2-31.

[2] J. Gibbons, Functional programming for domain-specific languages, in: Central European Functional
Programming School, Springer, 2015, pp. 1-28.

[3] G. Mainland, Why it’s nice to be quoted: quasiquoting for haskell, in: Proceedings of the ACM SIG-
PLAN workshop on Haskell workshop, ACM, 2007, pp. 73-82.

[4] Y. H. Chew, B. Wenden, A. Flis, V. Mengin, J. Taylor, C. L. Davey, C. Tindal, H. Thomas, H. J.
Ougham, P. de Reffye, et al., Multiscale digital arabidopsis predicts individual organ and whole-organism
growth, Proceedings of the National Academy of Sciences 111 (39) (2014) E4127-E4136.

[56] Z. Wan, P. Hudak, Functional reactive programming from first principles, in: Acm sigplan notices,
Vol. 35, ACM, 2000, pp. 242-252.

[6] M. Voliotis, P. Thomas, R. Grima, C. G. Bowsher, Stochastic simulation of biomolecular networks in
dynamic environments, PLoS Comput Biol 12 (6) (2016) e1004923.

[7] L. H. Watanabe, C. J. Myers, Hierarchical stochastic simulation algorithm for shml models of genetic
circuits, Frontiers in bioengineering and biotechnology 2.

[8] K. Jensen, Coloured petri nets, in: Petri nets: central models and their properties, Springer, 1987, pp.
248-299.

[9] N. Oury, G. D. Plotkin, Coloured stochastic multilevel multiset rewriting, in: Proceedings of the 9th
International Conference on Computational Methods in Systems Biology, ACM, 2011, pp. 171-181.

[10] M. John, C. Lhoussaine, J. Niehren, C. Versari, Biochemical reaction rules with constraints, in: Euro-
pean Symposium on Programming, Springer, 2011, pp. 338-357.

23

650

655

660

665

670

675

680

685

[11]

[12]

[16]

[17]

[18]

[22]

23]

[24]

[25]

[26]

[27]

[28]

V. Danos, J. Feret, W. Fontana, R. Harmer, J. Krivine, Rule-based modelling, symmetries, refinements,
in: Formal methods in systems biology, Springer, 2008, pp. 103-122.

M. L. Blinov, J. R. Faeder, B. Goldstein, W. S. Hlavacek, Bionetgen: software for rule-based modeling
of signal transduction based on the interactions of molecular domains, Bioinformatics 20 (17) (2004)
3289-3291.

M. Budiu, J. Galenson, G. D. Plotkin, The compiler forest, in: European Symposium on Programming,
Springer, 2013, pp. 21-40.

P. Buneman, L. Libkin, D. Suciu, V. Tannen, L. Wong, Comprehension syntax, ACM Sigmod Record
23 (1) (1994) 87-96.

A. Solovyev, M. Mikheev, L. Zhou, J. Dutta-Moscato, C. Ziraldo, G. An, Y. Vodovotz, Q. Mi, Spark:
a framework for multi-scale agent-based biomedical modeling, in: Proceedings of the 2010 Spring Sim-
ulation Multiconference, Society for Computer Simulation International, 2010, p. 3.

Q. Gao, D. Gilbert, M. Heiner, F. Liu, D. Maccagnola, D. Tree, Multiscale modeling and analysis of
planar cell polarity in the drosophila wing, IEEE/ACM Transactions on Computational Biology and
Bioinformatics (TCBB) 10 (2) (2013) 337-351.

T. Runge, Application of coloured petri nets in systems biology, in: Proceedings of the Fifth Workshop
and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, Citeseer, 2004, pp. 77-96.

D. Gilbert, M. Heiner, F. Liu, N. Saunders, Colouring space-a coloured framework for spatial mod-
elling in systems biology, in: International Conference on Applications and Theory of Petri Nets and
Concurrency, Springer, 2013, pp. 230-249.

M. Heiner, M. Herajy, F. Liu, C. Rohr, M. Schwarick, Snoopy—a unifying petri net tool, in: International
Conference on Application and Theory of Petri Nets and Concurrency, Springer, 2012, pp. 398-407.

L. Paulevé, S. Youssef, M. R. Lakin, A. Phillips, A generic abstract machine for stochastic process
calculi, in: Proceedings of the 8th International Conference on Computational Methods in Systems
Biology, ACM, 2010, pp. 43-54.

K. Jensen, L. M. Kristensen, L. Wells, Coloured petri nets and cpn tools for modelling and validation
of concurrent systems, International Journal on Software Tools for Technology Transfer 9 (3-4) (2007)
213-254.

R. Muetzelfeldt, J. Massheder, The simile visual modelling environment, European Journal of Agronomy
18 (3) (2003) 345-358.

M. Pedersen, A. Phillips, G. D. Plotkin, A high-level language for rule-based modelling, PloS one 10 (6)
(2015) e0114296.

C. F. Lopez, J. L. Muhlich, J. A. Bachman, P. K. Sorger, Programming biological models in python
using pysb, Molecular systems biology 9 (1) (2013) 646.

V. Danos, J. Feret, W. Fontana, J. Krivine, Scalable simulation of cellular signaling networks, in: Asian
Symposium on Programming Languages and Systems, Springer, 2007, pp. 139-157.

V. Danos, J. Feret, W. Fontana, R. Harmer, J. Krivine, Rule-based modelling of cellular signalling, in:
International Conference on Concurrency Theory, Springer, 2007, pp. 17-41.

C. Maus, S. Rybacki, A. M. Uhrmacher, Rule-based multi-level modeling of cell biological systems,
BMC Systems Biology 5 (1) (2011) 1.

R. Milner, Pure bigraphs: Structure and dynamics, Information and computation 204 (1) (2006) 60-122.

24

ACCEPTED MANUSCRIPT

o0 [29] J. Krivine, R. Milner, A. Troina, Stochastic bigraphs, Electronic Notes in Theoretical Computer Science
218 (2008) 73-96.

25

