

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Association Between Telomere Length and Risk of Cancer and **Non-Neoplastic Diseases**

Citation for published version:

Citation for published version: Haycock, PC, Burgess, S, Nounu, A, Zheng, J, Okoli, GN, Bowden, J, Wade, KH, Timpson, NJ, Evans, DM, Willeit, P, Aviv, A, Gaunt, TR, Hemani, G, Mangino, M, Ellis, HP, Kurian, KM, Pooley, KA, Eeles, RA, Lee, JE, Fang, S, Chen, WV, Law, MH, Bowdler, LM, Iles, MM, Yang, Q, Worrall, BB, Markus, HS, Hung, RJ, Amos, CI, Spurdle, AB, Thompson, DJ, O'Mara, TA, Wolpin, B, Amundadottir, L, Stolzenberg-Solomon, R, Trichopoulou, A, Onland-Moret, NC, Lund, E, Duell, EJ, Canzian, F, Severi, G, Overvad, K, Gunter, MJ, Tumino, R, Svenson, U, van Rij, A, Baas, AF, Bown, MJ, Albagha, O, Ralston, SH & Telomeres Mendelian Randomization Collaboration 2017, 'Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases: A Mendelian Randomization Study', *JAMA Oncology*. https://doi.org/10.1001/jamaoncol.2016.5945

Digital Object Identifier (DOI):

10.1001/jamaoncol.2016.5945

Link: Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: JAMA Oncology

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

1	Mendelian random	ization study of the association between telomere length and risk of								
2	cancer and non-neo	plastic diseases								
3										
4	The Telomeres Mendelian Randomization Collaboration									
5										
6										
7										
8	Correspondence:	Philip Haycock								
9		MRC Integrative Epidemiology Unit								
10		University of Bristol								
11		Bristol								
12		UK								
13										
14		philip.haycock@bristol.ac.uk								
15		Tel: +44 1173 310 088								
16	2995 words [word li	mit 3000]								
17	3 figures, 2 tables, 1	32 references; 7 supplementary figures / 6 supplementary tables								
18										
19										
20										
21										
22										
23										
24										
25										

26 ABSTRACT 349 WORDS

Importance The causal direction and magnitude of the association between telomere length
and incidence of cancer and non-neoplastic diseases is uncertain, due to the susceptibility of
observational studies to confounding and reverse causation.

Objective To conduct a Mendelian randomization study, using germline genetic variants as
 instrumental variables, to appraise the causal relevance of telomere length for risk of cancer
 and non-neoplastic diseases.

Data Sources Genome-wide association studies (GWAS) published up to January 15 2015.

Study Selection GWAS of non-communicable diseases that assayed germline genetic
variation and did not select cohort or control participants on the basis of pre-existing diseases.
Of 163 GWAS of non-communicable diseases identified, summary data from 103 were
available.

Data Extraction Summary association statistics for single nucleotide polymorphisms (SNPs)
 that are strongly associated with telomere length in the general population.

40 Main Outcomes Odds ratios (ORs) for disease per standard deviation (SD) higher telomere
41 length due to germline genetic variation.

42 Results Summary data were available for 35 cancers and 48 non-neoplastic diseases, corresponding to 420,081 cases (median 2,526 per disease) and 1,093,105 controls (median 43 6,789 per disease). Increased telomere length due to germline genetic variation was generally 44 45 associated with increased risk for site-specific cancers. The strongest associations were observed for (ORs per 1-SD change in genetically increased telomere length): glioma 5.27 46 (3.15-8.81), serous low-malignant-potential ovarian cancer 4.35 (2.39-7.94), lung 47 48 adenocarcinoma 3.19 (2.40-4.22), neuroblastoma 2.98 (1.92-4.62), bladder cancer 2.19 (1.32-49 3.66), melanoma 1.87 (1.55-2.26), testicular cancer 1.76 (1.02-3.04), kidney cancer 1.55

50	(1.08-2.23) and endometrial cancer 1.31 (1.07-1.61). Associations were stronger for rarer
51	cancers and at tissue sites with lower rates of stem cell division (P< 0.05). There was
52	generally little evidence of association between genetically increased telomere length and risk
53	of psychiatric, autoimmune, inflammatory, diabetic and other non-neoplastic diseases, except
54	for coronary heart disease (0.78 [0.67-0.90]), abdominal aortic aneurysm (0.63 [0.49-0.81]),
55	celiac disease (0.42 [0.28-0.61]) and interstitial lung disease (0.09 [0.05- 0.15]).
56	Conclusions It is likely that longer telomeres increase risk for several cancers but reduce risk
57	for some non-neoplastic diseases, including cardiovascular diseases.
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	
69	
70	

71 INTRODUCTION

72

73 At the ends of chromosomes, telomeres are DNA-protein structures that protect the genome from damage, shorten progressively over time in most somatic tissues¹ and are proposed 74 physiological markers of ageing.^{2,3} Shorter leukocyte telomeres are correlated with older age, 75 male sex and other known risk factors for non-communicable diseases⁴⁻⁶ and are generally 76 associated with higher risk for cardiovascular diseases^{7,8}, type 2 diabetes⁹ and non-vascular 77 non-neoplastic causes of mortality.⁸ Whether these associations are causal, however, is 78 unknown. Telomere length has also been implicated in risk of cancer but the direction and 79 magnitude of the association is uncertain and contradictory across observational studies.¹⁰⁻¹⁴ 80 The uncertainty reflects the considerable difficulty of designing observational studies of 81 82 telomere length and cancer incidence that are robust to reverse causation, confounding and 83 measurement error.

84 The aim of the present report was to conduct a Mendelian randomization study, using 85 germline genetic variants as instrumental variables for telomere length, to help clarify the nature of the association between telomere length and risk of cancer and non-neoplastic 86 87 diseases. The approach, which mimics the random allocation of individuals to the placebo 88 and intervention arms of a randomized controlled trial, allowed us to: (1) estimate the 89 direction and broad magnitude of the association of telomere length with risk of multiple cancer and non-neoplastic diseases; (2) appraise the evidence for causality in the estimated 90 etiological associations; (3) investigate potential sources of heterogeneity in findings for site-91 specific cancers; and (4) compare genetic estimates to findings based on directly measured 92 93 telomere length in prospective observational studies.

95 METHODS

96

97 Study design

The design of our study, illustrated in Figure S1, had three key components: 1) the 98 99 identification of genetic variants to serve as instruments for telomere length; 2) the 100 acquisition of summary data for the genetic instruments from genome wide association 101 studies (GWASs) of diseases and risk factors for non-communicable diseases; and 3) the 102 classification of diseases and risk factors into primary or secondary outcomes based on a *priori* statistical power. As a first step, we searched the GWAS catalog^{15,16} on the 15 January 103 104 2015, to identify single nucleotide polymorphisms (SNPs) associated with telomere length. 105 To supplement the list with additional potential instruments, we also searched the original study reports curated by the GWAS catalog (using a P-value threshold of 5×10^{-8}).^{17–25} We 106 acquired summary data for all SNPs identified by our search from a meta-analysis of GWASs 107 of telomere length, involving 9,190 participants of European ancestry.¹⁸ 108 The second key component of our design strategy involved the acquisition of summary data, 109 110 corresponding to the selected genetic instruments for telomere length, from GWASs of noncommunicable diseases and risk factors (Fig. S1). As part of this step, we invited principal 111 investigators of non-communicable disease studies curated by the GWAS catalog^{15,26} to share 112 summary data for our study (see Fig. S1 for further details). We also downloaded summary 113 114 data for diseases and risk factors from publically available sources, including study-specific websites, dbGAP, ImmunoBase and the GWAS catalog (Fig. S1). 115 The third key component of our design strategy was the classification of diseases and risk 116 117 factors into either primary or secondary outcomes, which we defined on the basis of a priori

118 statistical power to detect associations with telomere length. Primary outcomes were defined

119	as diseases with sufficient cases and controls for >50% statistical power and secondary
120	outcomes defined as diseases with $<50\%$ statistical power to detect odds ratios ≥ 2.0 per
121	standard deviation (SD) change in genetically increased telomere length (alpha assumed to be
122	0.01). All risk factors were defined as secondary outcomes. Risk factors with <50% statistical
123	power were excluded.
124	
125	Further details on our design strategy can be found in the supplement.
126	
127	Comparison with prospective observational studies
128	We searched PubMed for prospective observational studies of the association between
129	telomere length and disease (see Tables S3 and S4 for details of the search strategy and
130	inclusion criteria). Study-specific relative risks for disease per unit change or quantile
131	comparison of telomere length were transformed to a SD scale using previously described
132	methods. ²⁷ Hazard ratios, risk ratios and odds ratios were assumed to approximate the same
133	measure of relative risk. Where multiple independent studies of the same disease were

identified, these were combined by fixed effects meta-analysis, unless there was strong

evidence of between-study heterogeneity ($P_{Cochran's Q} \le 0.001$), in which case they were kept

136 separate.

137

138 *Statistical analysis*

139 We combined summary data across SNPs into a single instrument, using maximum

140 likelihood to estimate the slope of the relationship between β_{GD} and β_{GP} and a variance-

141 covariance matrix to make allowance for linkage disequilibrium between SNPs,²⁸ where β_{GD}

142 is the change in disease log odds or risk factor levels per copy of the effect allele and β_{GP} is

the SD change in telomere length per copy of the effect allele (see supplementary methods

144	for technical details). The slope from this approach can be interpreted as the log odds ratio for
145	binary outcomes, or the unit change for continuous risk factors, per SD change in genetically
146	increased telomere length. P-values for heterogeneity amongst SNPs, in the estimated
147	associations of genetically increased telomere length with disease and risk factors, were
148	estimated by likelihood ratio tests. ²⁸ Associations between genetically increased telomere
149	length and continuous risk factors were transformed into SD units. For five secondary disease
150	outcomes where only a single SNP was available for analysis, we estimated associations
151	using the Wald ratio: β_{GD}/β_{GP} , with standard errors approximated by the delta method. ²⁹
152	Inference of causality in the estimated etiological associations between telomere length and
153	disease depends on satisfaction of Mendelian randomization assumptions (Fig. S7; see Table
154	S6 for a glossary of terms). ^{30,31} The assumptions are: 1) the selected SNPs are associated with
155	telomere length; 2) the selected SNPs are not associated with confounders; and 3) the selected
156	SNPs are associated with disease exclusively through their effect on telomere length. If these
157	assumptions are satisfied, the selected SNPs are valid instrumental variables and their
158	association with disease can be interpreted as a causal effect of telomere length. We modeled
159	the impact of violations of these assumptions through two sets of sensitivity analyses: a
160	weighted median function ³² and MR-Egger regression ³⁰ (see supplementary methods for
161	technical details). We restricted our sensitivity analyses to diseases showing the strongest
162	evidence of association with genetically increased telomere length (defined as
163	$P_{Bonferroni} \leq 0.05$).

164

We used meta-regression to appraise potential sources of heterogeneity in our findings for cancer. The association of genetically increased telomere length with the log odds of cancer was regressed on cancer incidence, survival time and median age-at-diagnosis, downloaded from the National Cancer Institute Surveillance, Epidemiology, and End Results (SEER) 169 Program,³³ and tissue-specific rates of stem cell division from Tomasetti and Vogelstein.³⁴ As

the downloaded cancer characteristics from SEER correspond to the United States

population, 77% of which was of white ancestry in 2015^{35} , the meta-regression analyses

172 excluded genetic studies conducted in East Asian populations.

173

174 All analyses were performed in R version $3.1.2^{36}$ and Stata release 13.1 (StataCorp, College 175 Station, TX). P-values were two-sided and evidence of association was declared at P<0.05. 176 Where indicated, Bonferroni corrections were used to make allowance for multiple testing, 177 although this is likely to be overly conservative given the non-independence of many of the 178 outcomes tested.

179

180 **RESULTS**

181

We selected 16 SNPs as instruments for telomere length (Fig. S1 & Table 1). The selected 182 183 SNPs correspond to 10 independent genomic regions that collectively account for 2-3% of 184 the variance in leukocyte telomere length, which is equivalent to an F statistic of ~ 18 . This 185 indicates that the genetic instrument, constructed from these 10 independent genomic regions, is strongly associated with telomere length (details in supplementary discussion).³⁷ Summary 186 187 data for the genetic instruments were available for 83 non-communicable diseases, 188 corresponding to 420,081 cases (median 2,526 per disease) and 1,093,105 controls (median 189 6,789 per disease), and 44 risk factors (Fig. S1, Table 2 and Table S1). The median number 190 of SNPs available across diseases was 11 (min=1, max=13) and across risk factors was 12 191 (min=11, max=13). Of the 83 diseases, 56 were classified as primary outcomes and 27 as 192 secondary outcomes (Table 2, Fig. S1 and Table S1). For 9 of the 83 non-communicable 193 diseases, additional summary data were available from 10 independent studies for replication

analyses, corresponding to 40,465 cases (median 1,416 per disease) and 52,306 controls
(median 3,537 per disease) (Table S1).

196	The results from primary analyses of non-communicable diseases are presented in Figure 1;
197	results from secondary analyses of risk factors and diseases with low a priori power are
198	presented in the supplement (Fig. S2, S5 and S6). Genetically increased telomere length was
199	associated with higher odds of disease for 9 of 22 primary cancers (P<0.05), including (odds
200	ratio [95% confidence interval]): glioma (5.27 [3.15-8.81]), endometrial cancer (1.31 [1.07-
201	1.61]), kidney cancer (1.55 [1.08-2.23]), testicular germ cell cancer (1.76 [1.02-3.04]),
202	melanoma (1.87 [1.55-2.26]), bladder cancer (2.19 [1.32-3.66]), neuroblastoma (2.98 [1.92-
203	4.62]), lung adenocarcinoma (3.19 [2.40-4.22]) and serous low-malignancy-potential (LMP)
204	ovarian cancer (4.35 [2.39-7.94]) (Fig. 1). The associations were, however, highly variable
205	across cancer types, varying from an odds ratio of 0.86 (0.50-1.48) for head and neck cancer
206	to 5.27 (3.15-8.81) for glioma. Substantial variability was also observed within tissue sites.
207	For example, the odds ratio for lung adenocarcinoma was 3.19 (2.40-4.22) compared to 1.07
208	(0.82-1.39) for squamous cell lung cancer. For serous LMP ovarian cancer the odds ratio was
209	4.35 (2.39-7.94) compared to odds ratios of 1.21 (0.87-1.68) for endometrioid ovarian cancer,
210	1.12 (0.94-1.34) for serous invasive ovarian cancer, 1.04 (0.66-1.63) for clear cell ovarian
211	cancer and 1.04 (0.73-1.47) for mucinous ovarian cancer. The strongest evidence of
212	association was observed for glioma, lung adenocarcinoma, neuroblastoma and serous LMP
213	ovarian cancer (P _{Bonferroni} <0.05). Results for glioma and bladder cancer showed evidence for
214	replication in independent datasets (independent datasets were not available for other
215	cancers) (Fig. S3).
216	Genetically increased telomere length was associated with reduced odds of disease for 6 of 32

217 primary non-neoplastic diseases (P<0.05), including coronary heart disease (0.78 [0.67-0.9]),

abdominal aortic aneurysm (0.63 [0.49-0.81]), Alzheimer's disease (0.84 [0.71-0.98]), celiac

219	disease (0.42 [0.28-0.61]), interstitial lung disease (0.09 [0.05-0.15]) and type 1 diabetes
220	(0.71 [0.51-0.98]) (P<0.05) (Figure 1). The strongest evidence of association was observed
221	for coronary heart disease ($P_{Bonferroni}=0.05$) and abdominal aortic aneurysm, celiac disease and
222	interstitial lung disease ($P_{Bonferroni} < 0.05$). The associations with coronary heart disease and
223	interstitial lung disease showed evidence for replication in independent datasets (Fig. S3).
224	
225	Our genetic findings were generally similar in direction and magnitude to estimates based on
226	observational prospective studies of leukocyte telomere length and disease (Figure 3). Our
227	genetic estimates for lung adenocarcinoma, melanoma, kidney cancer and glioma, were,
228	however, stronger in comparison to observational estimates.
229	
230	In sensitivity analyses, we appraised the potential impact of confounding by pleiotropic
231	pathways on our results. Associations estimated by the weighted median and MR-Egger were
232	broadly similar to the main results for glioma, lung adenocarcinoma, serous LMP ovarian
233	cancer, neuroblastoma, abdominal aortic aneurysm, coronary heart disease and interstitial
234	lung disease (Fig. S4). In the second set of sensitivity analyses, implemented by MR-Egger
235	regression, we found little evidence for the presence of pleiotropy ($P_{intercept} \ge 0.27$) (Fig. S4).
236	The MR-Egger analyses were, however, generally underpowered, as reflected by the wide
237	confidence intervals in the estimated odds ratios.
238	
239	In meta-regression analyses, we observed that genetically increased telomere length tended to
240	be more strongly associated with rarer cancers (P=0.02) and cancers at tissue-sites with lower
241	rates of stem cell division (P=0.02) (Figure 2). The associations showed little evidence of
242	varying by percentage survival five years after diagnosis or median age-at-diagnosis (P≥37).

244 DISCUSSION

245

In this report we show that genetically increased telomere length is associated with 246 increased risk of several cancers and with reduced risk of some non-neoplastic diseases. Given the random distribution of genotypes in the general population with respect to 247 248 lifestyle and other environmental factors, as well as the fixed nature of germline 249 genotypes, these results should be less susceptible to confounding and reverse causation 250 in comparison to observational studies. Our results are therefore compatible with 251 causality. On the other hand, our results could reflect violations of Mendelian 252 randomization assumptions, such as confounding by pleiotropy, population stratification or ancestry.³⁸ Although we cannot entirely rule out this possibility, the majority of our 253 254 results persisted in sensitivity analyses that made allowance for violations of Mendelian 255 randomization assumptions. Confounding by population stratification or ancestry is also 256 unlikely, given the adjustments made for ancestry in the disease GWASs (see 257 supplementary discussion).

258

259 Comparison with previous studies

260 Our findings for cancer are generally contradictory to those based on retrospective studies, which tend to report increased risk for cancer in individuals with shorter telomeres.^{11,12,39–42} 261 The contradictory findings may reflect reverse causation in the retrospective studies, whereby 262 263 shorter telomeres arise as a result of disease, or of confounding effects, e.g. due to cases 264 being slightly older than controls even in age-matched analyses. Our findings for cancer are 265 generally more consistent with those based on prospective observational studies, which tend 266 to report weak or null associations of longer leukocyte telomeres with overall and sitespecific risk of cancer, ^{10–13,41,43–62} with some exceptions.⁶³ Our results are also similar to 267 268 previously reported Mendelian randomization studies of telomere length and risk of

melanoma, lung cancer, chronic lymphocytic leukemia and glioma.^{64–67} The shape of the 269 270 association with cancer may not, however, be linear over the entire telomere length 271 distribution. For example, individuals with dyskeratosis congenita, a disease caused by 272 germline loss-of-function mutations in the telomerase component genes TERC and TERT, 273 have chronically short telomeres and are at increased risk of some cancers, particularly acute myeloid leukemia and squamous cell carcinomas arising at sites of leukoplakia,^{68,69} 274 275 presumably due to increased susceptibility to genome instability and chromosomal end-toend fusions.⁷⁰ Our results should therefore be interpreted as reflecting the average association 276 277 at the population level and may not be generalizable to the extreme ends of the telomere 278 length distribution.

279

280 Mechanisms of association

Our cancer findings are compatible with known biology.⁷⁰ By limiting the proliferative 281 282 potential of cells, telomere shortening may serve as a tumour suppressor; and individuals with 283 longer telomeres may be more likely to acquire somatic mutations owing to increased proliferative potential.⁷⁰ Rates of cell division are, however, highly variable amongst tissues³⁴ 284 285 and thus the relative gain in cell proliferative potential, conferred by having longer telomeres, 286 may also be highly variable across tissues. This could explain the ~6-fold variation in odds 287 ratios observed across cancer types in the present study, as well as the tendency of our results 288 to be stronger at tissue sites with lower rates of stem cell division. For example, the 289 association was strongest for glioma (OR=5.27) and comparatively weak for colorectal 290 cancer (OR=1.09) and the rates of stem cell division in the tissues giving rise to these cancers 291 differ by several orders of magnitude. In neural stem cells, which give rise to gliomas, the 292 number of divisions is ~ 270 million and for colorectal stem cells is ~ 1.2 trillion over the average lifetime of an individual.³⁴ The observation that genetically increased telomere 293

294	length was more strongly associated with rarer cancers potentially reflects the same
295	mechanism, since rarer cancers also tend to show lower rates of stem cell division. ³⁴ For
296	example, the incidence of glioma is 0.4 and for colorectal cancer is 42.4 per 100,000 per year
297	in the United States. ³³
298	The inverse associations observed for some non-neoplastic diseases may reflect the impact of
299	telomere shortening on tissue degeneration and an evolutionary trade-off for greater
300	resistance to cancer at the cost of greater susceptibility to degenerative diseases, particularly
301	cardiovascular diseases. ^{71,72}
302	

303 Study limitations

304 Our study is subject to some limitations, in addition to the Mendelian randomization 305 assumptions already considered above. First, our method assumes that the magnitude of the 306 association between SNPs and telomere length is consistent across tissues. Second, our study 307 assumed a linear shape of association between telomere length and disease risk, whereas the shape could be "J" or "U" shaped.^{44,57,68} Third, our results assume that the samples used to 308 define the genetic instrument for telomere length¹⁸ and the various samples used to estimate 309 310 the SNP-disease associations are representative of the same general population, practically defined as being of similar ethnicity, age and sex distribution.⁷³ This assumption would, for 311 example, not apply in the case of the SNP-disease associations derived from East Asian or 312 pediatric populations. Generally speaking, violation of the aforementioned assumptions could 313 bias the magnitude of the association between genetically increased telomere length and 314 315 disease; but would be unlikely to increase the likelihood of false positives (i.e. incorrectly inferring an association when none exists).⁷⁴ Our results should therefore remain informative 316 317 for the direction and broad magnitude of the average association at the population level, even

318	in the presence of such violations. Fourth, we cannot rule out chance in explaining some of
319	the weaker findings. Fifth, our results may not be fully representative of non-communicable
320	diseases (since not all studies shared data and our analyses were underpowered for the
321	secondary disease outcomes). The diseases represented in our primary analyses probably
322	account for >60% of all causes of death in American adults. ⁷⁵
323	
324	Clinical relevance of findings
325	Our findings suggest that potential clinical applications of telomere length, e.g. as a tool for
326	risk prediction or as an intervention target for disease prevention, may have to consider a
327	trade-off in risk between cancer and non-neoplastic diseases. For example, a number of
328	companies have been established that offer telomere length measurement services to the
329	public (via a requesting physician), under the claim that shorter telomeres are a general
330	indicator of poorer health status and older biological age and that such information can be
331	used to motivate healthy lifestyle choices in individuals. However, the conflicting direction of
332	association between telomere length and risk of cancer and non-neoplastic diseases, indicated
333	by our findings, suggests that such services to the general public may be premature.

334

Conclusion 335

336 It is likely that longer telomeres increase risk for several cancers but reduce risk for some 337 non-neoplastic diseases, including cardiovascular diseases. Further research is required to 338 resolve whether telomere length is a useful predictor of risk that can help guide therapeutic interventions, to clarify the shape of any dose-response relationships and to characterise the 339 340 nature of the association in population subgroups.

343

Philip Haycock¹; Stephen Burgess²; Aayah Nounu¹; Jie Zheng¹; George N Okoli³; Jack 344 Bowden^{1,4}; Kaitlin Wade¹; Nicholas Timpson¹; David M. Evans^{1,5}; Peter Willeit^{2,6}; Abraham 345 Aviv⁷; Tom R. Gaunt¹; Gibran Hemani¹; Massimo Mangino^{8,9}; Hayley Patricia Ellis¹⁰; 346 Kathreena Mary Kurian¹⁰; Karen Pooley¹¹ on behalf of the BCAC and OCAC consortia; 347 Rosalind Eeles¹² on behalf of the PRACTICAL consortium; Jeffrey E Lee¹³; Shenying 348 Fang¹³; Wei Chen¹³; Matthew H Law¹⁴, Lisa M Bowdler¹⁵ and Mark M Iles¹⁶ on behalf of the 349 Melanoma meta-analysis consortium; Qiong Yang¹⁷, Bradford B. Worrall¹⁸ and Hugh 350 Stephen Markus¹⁹ on behalf of the METASTROKE project of the ISGC; Rayjean J. Hung^{20,21} 351 and Chris I Amos²² on behalf of the ILCCO consortium; Amanda Spurdle²³, Deborah J 352 Thompson²⁴ and Tracy O'Mara²³ on behalf of the ECAC consortium; Brian Wolpin²⁵, Laufey 353 Amundadottir²⁶ and Rachael Stolzenberg-Solomon²⁷ on behalf of the PanScan consortium; 354 Antonia Trichopoulou^{29,30}, Charlotte Onland-Moret³¹, Eiliv Lund³², Eric J Duell³³, Federico 355 Canzian³⁴, Gianluca Severi^{35,36,37,38}, Kim Overvad³⁹, Marc J Gunter⁴⁰, Rosario Tumino⁴¹ and 356 Ulrika Svenson⁴² on behalf of EPIC; Andre van Rij⁴³, Annette F Baas⁴⁴, Matthew J Bown⁴⁵, 357 Nilesh J Samani⁴⁵, Paul IW de Bakker⁴⁴, Femke NG van t'Hof⁴⁴, Gerard Tromp^{46,47}, Gregory 358 T Jones⁴³, Helena Kuivaniemi^{46,47} and James R Elmore⁴⁸ on behalf of the Aneurysm 359 Consortium; Mattias Johansson⁴⁹; James Mckay⁴⁹; Ghislaine Scelo⁴⁹; Robert Carreras-360 Torres⁴⁹; Valerie Gaborieau⁴⁹; Paul Brennan⁴⁹; Paige M. Bracci⁵⁰, Rachel E Neale¹⁵, Sara H 361 Olson⁵¹, Steven Gallinger²⁰, Donghui Li⁵², Gloria M. Petersen⁵⁴, Harvey Risch⁵⁵, and Alison 362 P. Klein⁵⁶ on behalf of PanC⁴; Jiali Han^{57,58}; Christian C. Abnet⁵⁹; Neal D. Freedman⁵⁹; Philip 363 R. Taylor⁵⁹; John M Maris⁶⁰; Katja K Aben^{61,62}; Lambertus A Kiemeney⁶¹; Sita H 364 Vermeulen⁶¹; John K Wiencke^{63,64}; Kyle M Walsh^{63,64}; Margaret Wrensch^{63,64}; Terri Rice⁶³; 365 Clare Turnbull⁶⁵; Kevin Litchfield⁶⁶; Lavinia Paternoster¹ and Marie Standl⁶⁷ on behalf of the 366 EAGLE consortium; Gonçalo R Abecasis⁶⁸; John Paul SanGiovanni⁶⁹; Lars G Fritsche⁶⁸; 367 Yong Li⁷⁰ and Vladan Mijatovic⁷¹ on behalf of the CKDGen consortium; Yadav Sapkota¹⁵; 368 Siew-Kee Low⁷²; Krina T Zondervan^{73,74}; Grant W Montgomery¹⁵; Dale R. Nyholt^{75,15}; 369 David A van Heel⁷⁶; Karen Hunt⁷⁶; Dan E. Arking⁷⁷, Foram N. Ashar⁷⁷ and Nona 370 Sotoodehnia⁷⁸ on behalf of the CHARGE-Sudden Cardiac Arrest Working Group; Daniel 371 Woo⁷⁹; Jonathan Rosand⁸⁰; Mary Comeau⁸¹; W. Mark Brown⁸²; Edwin K. Silverman⁸³, John 372 E Hokanson⁸⁴ and Michael Cho⁸³ on behalf of COPDGene; Jennie Hui^{85,86,87,88}, Manuel 373 Ferreira¹⁵ and Philip J. Thompson⁸⁹ on behalf of the AAGC consortium; Alanna C. 374

Morrison⁹⁰, Janine F Felix⁹¹ and Nicholas L Smith⁹² on behalf of the CHARGE-Heart Failure 375 Working Group; Angela M Christiano⁹³; Lynn Petukhova⁹⁴; Regina C. Betz⁹⁵; Xing Fan⁹⁶; 376 Xuejun Zhang⁹⁶; Caihong Zhu⁹⁶; Carl Langefeld⁹⁷; Susan D. Thompson⁹⁸; Feijie Wang⁹⁹; Xu 377 Lin^{99,100}; David A. Schwartz¹⁰¹; Tasha Fingerlin¹⁰²; Jerome I. Rotter^{103,104}, Mary Frances 378 Cotch¹⁰⁵ and Richard A Jensen on behalf of the CHARGE-Eye Working Group^{106,107}: 379 Matthias Munz¹⁰⁸, Henrik Dommisch¹⁰⁸ and Arne S Schaefer¹⁰⁸ on behalf of the European 380 Periodontitis Genetics Group; Fang Han¹⁰⁹; Hanna M Ollila¹¹⁰; Ryan P. Hillary¹¹⁰; Omar 381 Albagha¹¹¹; Stuart H. Ralston¹¹²; Chenjie Zeng¹¹³; Wei Zheng¹¹³; Xiao-Ou Shu¹¹³; Andre 382 Reis¹¹⁴; Steffen Uebe¹¹⁴; Ulrike Hüffmeier¹¹⁴; Yoshiya Kawamura¹¹⁵, Takeshi Otowa¹¹⁶,¹¹⁷ 383 and Tsukasa Sasaki¹¹⁸ on behalf of the Japanese Collaboration Team for GWAS of Panic 384 Disorder; Martin Lloyd Hibberd¹¹⁹; Michael Levin¹²⁰; Sonia Davila¹²¹; Gang Xiel^{22,20}; 385 Katherine Siminovitch^{122,20}; Jin-Xin Bei¹²³; Yi-Xin Zeng^{123,124}; Asta Försti^{125,126}; Bowang 386 Chen¹²⁵; Stefano Landi¹²⁷; Andre Franke¹²⁸; Annegret Fischer^{128,129}; David Ellinghaus¹²⁸; 387 Carlos Flores^{130,131}; Imre Noth¹³²; Shwu-Fan Ma¹³²; Jia Nee Foo¹³³; Jianjun Liu¹³³; Jong-Won 388 Kim¹³⁴; David G. Cox¹³⁵; Olivier Delattre¹³⁶; Olivier Mirabeau¹³⁶; Christine F. Skibola¹³⁷; 389 Clara S. Tang¹³⁸; Merce Garcia-Barcelo¹³⁸; Kai-Ping Chang¹³⁹; Wen-Hui Su¹⁴⁰; Yu-Sun 390 Chang¹⁴¹; Nicholas G Martin¹⁵; Scott Gordon¹⁵; Tracey Wade¹⁴²; Chaeyoung Lee¹⁴³; 391 Michiaki Kubo¹⁴⁴; Pei-Chieng Cha¹⁴⁵; Yusuke Nakamura¹⁴⁶; Daniel Levy¹⁴⁷; Masayuki 392 Kimura⁷; Shih-Jen Hwang¹⁴⁷; Steven Hunt¹⁴⁸; Tim Spector⁸; Nicole Soranzo¹⁴⁹; Ani W 393 Manichaikul¹⁵⁰; R Graham Barr¹⁵¹; Bratati Kahali¹⁵², Elizabeth Speliotes¹⁵² and Laura M 394 Yerges-Armstrong¹⁵³ on behalf of the GOLD Consortium; Ching-Yu Cheng^{154,155,156}, Jost B. 395 Jonas^{157,158} and Tien Yin Wong^{154,155,156} on behalf of the SEED consortium; Isabella Fogh¹⁵⁹, 396 Kuang Lin¹⁵⁹ and John F. Powell¹⁵⁹ on behalf of the SLAGEN and ALSGEN consortia; 397 Kenneth Rice¹⁶⁰ on behalf of the ICBP; Caroline Relton¹; Richard M Martin^{1,3,161}; George 398 Davey Smith¹ 399

- ¹ MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- ² Department of Public Health and Primary Care, University of Cambridge
- ³ School of Social and Community Medicine, University of Bristol, Bristol, UK
- ⁴ MRC Biostatistics Unit, Cambridge, UK.
- ⁵ University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
- ⁶ Department of Neurology, Innsbruck Medical University, Austria
- ⁷ Center of Human Development and Aging, Department of Pediatrics, New Jersey Medical School, Rutgers, The State University of New Jersey
- ⁸ Department of Twin Research and Genetic Epidemiology, King's College London, London UK
- ⁹ NIHR Biomedical Research Centre at Guy's and St. Thomas' Foundation Trust, London, UK
- ¹⁰ Brain Tumour Research Group, Institute of Clinical Neuroscience, Learning and Research Building, Southmead Hospital, University of Bristol
- ¹¹ Strangeways Research Laboratory, University of Cambridge, Cambridge, UK
- ¹² The Institute of Cancer Research, London, UK
- ¹³ Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.
- ¹⁴ Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- ¹⁵ QIMR Berghofer Medical Research Institute, Brisbane, Australia
- ¹⁶ Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
- ¹⁷ Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America and the Framingham Heart Study, Framingham, Massachusetts, United States of America
- ¹⁸ Departments of Neurology and Public Health Sciences University of Virginia Charlottesville, Virginia 22908
- ¹⁹ Department of Clinical Neurosciences, University of Cambridge, UK
- ²⁰ Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
- ²¹ Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, 60 Murray St. Rm L5-215, Box 18, Toronto, ON M5T 3L9, Canada
- ²² Geisel School of Medicine, Dartmouth College
- ²³ Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
- ²⁴ Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK.
- ²⁵ Dana-Farber Cancer Institute
- ²⁶ Laboratory of Translational Genomics, Division of Cancer Epidemiology & Genetics, National Cancer Institute
- ²⁷ Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS.
- ²⁹ Hellenic Health Foundation, Athens, Greece
- ³⁰ WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Dept. of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, Greece
- ³¹ Dept of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht
- ³² Institute of community medicine, UiT The Artcic University of Norway
- ³³ Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), Avda Gran Via 199-203, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- ³⁴ Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- ³⁵ Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France
- ³⁶ Gustave Roussy, F-94805, Villejuif, France
- ³⁷ Human Genetics Foundation (HuGeF), Torino, Italy

- ³⁸ Cancer Council Victoria and University of Melbourne, Australia
- ³⁹ Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus, Denmark
- ⁴⁰ School of Public Health, Imperial College London, London W2 1PG
- ⁴¹ Cancer Registry, Azienda Ospedaliera "Civile M.P.Arezzo", via Dante 109, Ragusa, IT
- ⁴² Department of Medical Biosciences, Umea University, Umea, Sweden
- ⁴³ Surgery Department, University of Otago, Dunedin, New Zealand
- ⁴⁴ Department of Medical Genetics, Center for Molecular Medicine and Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
- ⁴⁵ The Department of Cardiovascular Sciences and the NIHR Leicester Cardiovascular Biomedical Research Unit, University of Leicester, Leicester, LE2 7LX, UK.
- ⁴⁶ Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
- ⁴⁷ The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA, USA
- ⁴⁸ Department of Vascular and Endovascular Surgery, Geisinger Health System, Danville, PA 17822, USA
- ⁴⁹ Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
- ⁵⁰ Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
- ⁵¹ Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
- ⁵² Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- ⁵⁴ Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
- ⁵⁵ Yale School of Public Health & Yale School of Medicine & Yale Cancer Center, 60 College St., PO Box 208034, New Haven, CT 06520-8034
- ⁵⁶ Departments of Oncology, Pathology and Epidemiology, Johns Hopkins School of Medicine, Baltimore Maryland 21231
- ⁵⁷ Department of Epidemiology, Fairbanks School of Public Health, Indiana University
- ⁵⁸ Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA
- ⁵⁹ Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville MD USA
- ⁶⁰ Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania
- ⁶¹ Radboud university medical center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
- ⁶² Netherlands Comprehensive Cancer Organization, Utrecht, The Netherlands
- ⁶³ Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- ⁶⁴ Institute of Human Genetics, University of California, San Francisco, San Francisco, CA
- ⁶⁵ William Harvey Research Institute, Queen Mary University, London, UK
- ⁶⁶ Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- ⁶⁷ Institute of Epidemiology I, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
- ⁶⁸ Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
- ⁶⁹ National Eye Institute, Division of Epidemiology and Clinical Research Clinical Trials Branch National Institutes of Health, Bethesda, USA
- ⁷⁰ Department of Internal Medicine IV, University Hospital Freiburg
- ⁷¹ Department of Life and Reproduction Sciences, University of Verona
- ⁷² Laboratory of Statistical Analysis, Centre for Integrative Medical Sciences, The Institute of Physical and Chemical Research (RIKEN], Yokohama, Japan

- ⁷³ Genetic and Genomic Epidemiology Unit, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- ⁷⁴ Nuffield Department of Obstetrics and Gynecology, University of Oxford, John Radcliffe Hospital, Oxford, UK
- ⁷⁵ Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- ⁷⁶ Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
- ⁷⁷ McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
- ⁷⁸ Division of Cardiology and Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington 98101
- ⁷⁹ University of Cincinnati College of Medicin, Department of Neurology, Cincinnati, OH, USA 45267
- ⁸⁰ Massachusetts General Hospital, Neurology, Center for Human Genetic Research, MA, USA
- ⁸¹ Center for Public Health Genomics, Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157
- ⁸² Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157
- ⁸³ Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115
- ⁸³ Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, 02115
- ⁸⁴ Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- ⁸⁵ Busselton Population Medical Research Institute Inc, Sir Charles Gairdner Hospital, Perth, Australia
- ⁸⁶ PathWest Laboratory Medicine of Western Australia (WA), Perth, Australia
- ⁸⁷ School of Pathology and Laboratory Medicine, University of WA, Perth, Australia
- ⁸⁸ School of Population Health, University of WA, Perth, Australia
- ⁸⁹ The Lung Health Clinic and Institute for Respiratory Health, University of Western Australia, Perth, Australia
- ⁹⁰ Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030 USA
- ⁹¹ Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- ⁹² Department of Epidemiology, University of Washington, Seattle WA 98101 USA
- ⁹³ Departments of Dermatology and Genetics & Development, Columbia University, New York, NY, US
- ⁹⁴ Departments of Dermatology and Epidemiology, Columbia University, New York, NY, US
- ⁹⁵ Institute of Human Genetics, University of Bonn, Bonn D-53127, Germany
- ⁹⁶ Institute of Dermatology & Department of Dermatology, First Affiliated Hospital of Anhui Medical University
- ⁹⁷ Director, Center for Public Health Genomics, Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157
- ⁹⁸ Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- ⁹⁹ Institute for Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai, 200031, PR China
- ¹⁰⁰ Key Laboratory of Nutrition and Metabolism, Chinese Academy of Sciences, Shanghai, 200031, PR China
- ¹⁰¹ University of Colorado, 12631 East 17th Avenue, B178, Aurora, CO 80045
- ¹⁰² Department of Biomedical Research, National Jewish Health Hospital
- ¹⁰³ Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center
- ¹⁰⁴ Departments of Pediatrics and Medicine, 1124 W. Carson Street, Harbor-UCLA Medical Center, Torrance, CA 90502

- ¹⁰⁵ Epidemiology Branch, Division of Epidemiology and Clinical Applications, NIH Intramural Research Program, National Eye Institute, National Institutes of Health, Clinical Research Center 3A2521,
- ¹⁰⁶ Cardiovascular Health Research Unit, University of Washington, Seattle, Washington, USA
- ¹⁰⁷ Department of Medicine, University of Washington, Seattle, Washington, USA
- ¹⁰⁸ Charité University Medicine Berlin, CC 03, Institute of Dental, Oral and Maxillary Medicine, Dept. of Periodontology and Synoptic Dentistry, Aßmannshauser Str. 4-6, 14197 Berlin, Germany
- ¹⁰⁹ Department of Pulmonary Medicine, Peking University People's Hospital, 100044 Beijing, China
- ¹¹⁰ Stanford University, Center for Sleep Sciences, Palo Alto, CA, USA
- ¹¹¹ Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
- ¹¹² Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- ¹¹³ Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- ¹¹⁴ Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- ¹¹⁵ Department of Psychiatry, Shonan Kamakura General Hospital, Kanagawa, Japan
- ¹¹⁶ Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- ¹¹⁷ Graduate School of Clinical Psychology, Teikyo Heisei University Major of Professional Clinical Psychology, Tokyo, Japan
- ¹¹⁸ Department of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan
- ¹¹⁹ Infectious Diseases, Genome Institute of Singapore, Singapore
- ¹²⁰ Division of Infectious diseases, Department of medicine, Imperial College London, UK
- ¹²¹ Human genetics, Genome Institute of Singapore, Singapore
- ¹²² Departments of Medicine, Immunology, Molecular Genetics, University of Toronto
- ¹²³ Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine Guangzhou 510060, P. R. China
- ¹²⁴ Peking Union Medical College, Beijing 100730, P.R. China
- ¹²⁵ Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- ¹²⁶ Center for Primary Health Care Research, Clinical Research Center, Lund University, Malmö, Sweden
- ¹²⁷ Department of Biology, University of Pisa, Pisa, Italy
- ¹²⁸ Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany.
- ¹²⁹ University Hospital Schleswig-Holstein, Kiel, Germany
- ¹³⁰ Research Unit, Hospital Universitario N.S. de Candelaria, Tenerife, Spain
- ¹³¹ CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- ¹³² Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Ave., Chicago IL 60637-6076
- ¹³³ Human Genetics, Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore
- ¹³⁴ Dept. of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan, University School of Medicine, Ilwon-dong 50, Gangnam-gu, Seoul, Korea, 135-710
- ¹³⁵ Cancer Research Center of Lyon, INSERM U1052, Lyon, France
- ¹³⁶ Inserm U830, Institut Curie, PSL University, 26 rue d'Ulm, 75248 Paris Cedex 05 France, France.
- ¹³⁷ Department of Epidemiology, University of Alabama at Birmingham. 1665 University Boulevard, Birmingham, AL 35294-0022, USA
- ¹³⁸ Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
- ¹³⁹ Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital at Lin-Kou, Taoyuan, Taiwan,
- ¹⁴⁰ Department of Biomedical Sciences, Graduate Institute of Biomedical Sciences, College of Medicine, Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan

- ¹⁴¹ Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- ¹⁴² School of Psychology, Flinders University
- ¹⁴³ School of Systems Biomedical Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 156-743, Korea
- ¹⁴⁴ RIKEN Center for Integrative Medical Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, JAPAN
- ¹⁴⁵ Division of Molecular Brain Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunokichou, Chuo-ku, Kobe 650-0017, Japan
- ¹⁴⁶ Center for Personalized Therapeutics, The University of Chicago, 900E 57th Street, Chicago IL 60637 USA
- ¹⁴⁷ The NHLBI's Framingham Heart Study, Framingham, MA, Population Sciences Branch of the National Heart, Lung, and Blood Institute, Bethesda, MD.
- ¹⁴⁸ Department of Genetic Medicine, Weill Cornell Medicine in Qatar, Doha, Qatar
- ¹⁴⁹ Human Genetics, Wellcome Trust Sanger Institute, Genome Campus, Hinxton Cambridge
- ¹⁵⁰ Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA USA
- ¹⁵¹ Department of Medicine and Department of Epidemiology, Columbia University Medical Center, New York, NY 10032, USA
- ¹⁵² Department of Internal Medicine, Division of Gastroenterology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- ¹⁵³ Department of Medicine, University of Maryland, Baltimore, MD 21201, USA
- ¹⁵⁴ Singapore Eye Research Institute, Singapore National Eye Center, Singapore 168751, Singapore
- ¹⁵⁵ Department of Ophthalmology, National University of Singapore and National University Health System, Singapore
- ¹⁵⁶ Duke-National University of Singapore Graduate Medical School, Singapore
- ¹⁵⁷ Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Lab, Beijing, China
- ¹⁵⁸ Department of Ophthalmology, Medical Faculty Mannheim of the Ruprecht-Karls-University Heidelberg, Mannheim, Germany
- ¹⁵⁹ Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- ¹⁶⁰ Dept of Biostatistics, University of Washington, Seattle, USA
- ¹⁶¹ University of Bristol / University Hospitals Bristol NHS Foundation Trust National Institute for Health Research Bristol Nutrition Biomedical Research Unit, Bristol, UK
- 400
- 401 Affiliations of the Telomeres Mendelian Randomization Collaboration
- 402

403 Acknowledgements

- 404 This work was supported by CRUK grant number C18281/A19169 (the Integrative Cancer
- 405 Epidemiology Programme). Dr Haycock is supported by CRUK Population Research
- 406 Postdoctoral Fellowship C52724/A20138. The MRC Integrative Epidemiology Unit is
- 407 supported by grants MC UU 12013/1 and MC UU 12013/2. Dr Martin is supported by the

408 National Institute for Health Research (NIHR), the Bristol Nutritional Biomedical Research409 Unit and the University of Bristol.

410

411 We gratefully acknowledge all the studies and databases that made GWAS summary data 412 available (see supplementary materials for detailed acknowledgements): AC (the aneurysm 413 consortium), ALSGEN (the International Consortium on Amyotrophic Lateral Sclerosis 414 Genetics), AMD Gene (Age-related Macular Degeneration Gene Consortium), BCAC 415 (Breast Cancer Association Consortium), C4D (Coronary Artery Disease Genetics 416 Consortium), CARDIoGRAM (Coronary ARtery DIsease Genome wide Replication and 417 Meta-analysis), CHARGE-HF (Cohorts for Heart and Aging Research in Genomic 418 Epidemiology Consortium – Heart Failure Working Group), COPDGene (The Genetic 419 Epidemiology of Chronic Obstructive Pulmonary Disease), CORECT (ColoRectal 420 Transdisciplinary Study), CKDGen (Chronic Kidney Disease Genetics consortium), dbGAP 421 (database of Genotypes and Phenotypes), **DIAGRAM** (DIAbetes Genetics Replication And 422 Meta-analysis), EAGLE (EArly Genetics & Lifecourse Epidemiology Eczema Consortium, 423 excluding 23andMe), ECAC (Endometrial Cancer Association Consortium), EGG (Early Growth Genetics Consortium), EPG (European Periodontitis Genetics Group), GABRIEL 424 425 (A Multidisciplinary Study to Identify the Genetic and Environmental Causes of Asthma in 426 the European Community), GCAN (Genetic Consortium for Anorexia Nervosa), GECCO 427 (Genetics and Epidemiology of Colorectal Cancer Consortium), GIANT (Genetic Investigation of ANthropometric Traits), GLGC (Global Lipids Genetics Consortium), 428 429 GUGC (Global Urate and Gout consortium), ICBP (International Consortium for Blood 430 Pressure), IGAP (International Genomics of Alzheimer's Project), HPFS (Health 431 Professionals Follow-Up Study), JCTGPD (Japanese Collaboration Team for GWAS of Panic Disorder), ILCCO (International Lung Cancer Consortium), ImmunoBase (genetic 432

433 database of immunologically related human diseases), IMSGC (International Multiple 434 Sclerosis Genetic Consortium), IIBDGC (International Inflammatory Bowel Disease Genetics Consortium); KIDRISK (Kidney cancer consortium), MAGIC (Meta-Analyses of 435 Glucose and Insulin-related traits Consortium), MC (the melanoma meta-analysis 436 437 consortium), MESA (Multi-Ethnic Study of Atherosclerosis), METASTROKE/ISGC (METASTROKE project of the International Stroke Genetics Consortium), NBCS (Nijmegen 438 439 Bladder Cancer Study), NHGRI-EBI GWAS catalog (National Human Genome Research Institute and European Bioinformatics Institute Catalog of published genome-wide 440 441 association studies), NHS (Nurses' Health Study), OCAC (Ovarian Cancer Association 442 Consortium), PanScan (Pancreatic Cancer Cohort Consortium), PGC (Psychiatric Genomics 443 Consortium), PRACTICAL (Prostate Cancer Association Group to Investigate Cancer 444 Associated Alterations in the Genome), SEEDS (the Singapore Epidemiology of Eye 445 Diseases Study), SLAGEN (Italian Consortium for the Genetics of Ayotrophic Lateral 446 Sclerosis), SSGAC (Social Science Genetics Association Consortium), TAG (Tobacco and 447 Genetics Consortium), **T1Dbase** (type 1 diabetes database), **TICG** (Tourette International 448 Collaborative-Genetics); TSAICG (Tourette Syndrome Association International Consortium 449 for Genetics).

- 450 We gratefully acknowledge the assistance and contributions of Dr Julia Gumy, Ms Lisa
- 451 Wright, Dr Georg B. Ehret (ICBP), Dr Louise V. Wain (ICBP), Dr Caroline Fox (CKDGen),
- 452 Dr Stephan Ripke (IIBDGC), Dr Jimmy Liu (IIBDGC), Dr Carl Anderson (IIBDGC) and Dr
- 453 Jeremiah Scharf (TSAICG and TICG).

SNPs	Chr	Pos	Gene	EA	OA	EAF*	Beta*	SE*	P-value*	Phet*	No. studies*	Sample	Discovery p-value	% variance	Discovery study
rs11125529	2	54248729	ACYP2	A	C	0.16	0.065	0.012	0.000606	0.313	6	9177	8 00E-10	0.080	Codd ²¹
rs6772228	3	58390292	PXK	Т	A	0.87	0.041	0.014	0.049721	0.77	6	8630	3.91E-10	0.200	Poolev ¹⁷
rs12696304	3	169763483	TERC	C	G	0.74	0.090	0.011	5.41E-08	0.651	6	9012	4.00E-14	0.319	Codd ²²
rs10936599	3	169774313	TERC	C	Т	0.76	0.100	0.011	1.76E-09	0.087	6	9190	3.00E-31	0.319	Codd ²¹
rs1317082	3	169779797	TERC	A	G	0.71	0.097	0.011	4.57E-09	0.029	6	9176	1.00E-08	0.319	Mangino ¹⁸
rs10936601	3	169810661	TERC	С	Т	0.74	0.087	0.011	8.64E-08	0.433	6	9150	4.00E-15	0.319	Poolev ¹⁷
rs7675998	4	163086668	NAF1	G	А	0.80	0.048	0.012	0.008912	0.077	6	9161	4.35E-16	0.190	Codd ²¹
rs2736100	5	1286401	TERT	С	А	0.52	0.085	0.013	2.14E-05	0.54	4	5756	4.38E-19	0.310	Codd ²¹
rs9419958	10	103916188	OBFC1	Т	С	0.13	0.129	0.013	5.26E-11	0.028	6	9190	9.00E-11	0.171	Mangino ¹⁸
rs9420907	10	103916707	OBFC1	С	А	0.14	0.142	0.014	1.14E-11	0.181	6	9190	7.00E-11	0.171	Codd ²¹
rs4387287	10	103918139	OBFC1	А	С	0.14	0.120	0.013	1.40E-09	0.044	6	8541	2.00E-11	0.171	Levy ²⁵
rs3027234	17	8232774	CTC1	С	Т	0.83	0.103	0.012	2.75E-08	0.266	6	9108	2.00E-08	0.292	Mangino ¹⁸
rs8105767	19	22032639	ZNF208	G	А	0.25	0.064	0.011	0.000169	0.412	6	9096	1.11E-09	0.090	Codd ²¹
rs412658	19	22176638	ZNF676	Т	С	0.35	0.086	0.010	1.83E-08	0.568	6	9156	1.00E-08	0.484	Mangino ¹⁸
rs6028466	20	39500359	DHX35	А	G	0.17	0.058	0.013	0.003972	0.533	6	9190	2.57E-08†	0.041	Mangino ¹⁸ & Gu
rs755017	20	63790269	ZBTB46	G	А	0.17	0.019	0.0129	0.339611	0.757	5	8026	6.71E-09	0.090	Codd ²¹

 Table 1. Single nucleotide polymorphisms associated with telomere length

*Summary data from Mangino et al¹⁸; Chr, chromosome; pos, base-pair position (GRCh38.p3); EA, effect allele, OA, other allele, Beta, standard deviation change in telomere length per copy of the effect allele; SE, standard error; EAF - effect allele frequency; Phet - p value for between-study heterogeneity in association between SNP and telomere length; †from a meta-analysis of Mangino¹⁸ and Gu²⁰ performed in the present study.

Table 2.	Study	characteristics	for primary	non-communicable diseases
----------	-------	-----------------	-------------	---------------------------

	No.	No.	No.	Statistical		
	cases	controls	SNPs	power	Pop.	Study / First author
Cancer						76
Bladder cancer	1601	1819	10	0.62	EUR	$NBCS^{70}$
Breast cancer	48155	43612	13	1.00	EUR	$BCAC^{17,77}$
Estrogen receptor –ve	7465	42175	13	1.00	EUR	BCAC ^{17,77}
Estrogen receptor +ve	27074	41749	13	1.00	EUR	BCAC ^{17,77}
Colorectal cancer	14537	16922	9	1.00	EUR	CORECT/GECCO ^{64,78}
Endometrial cancer	6608	37925	12	1.00	EUR	ECAC
Esophageal SCC	1942	2111	11	0.64	EA	Abnet ⁸¹
Glioma	1130	6300	12	0.72	EUR	Wrensch ⁸² & Walsh ⁶⁶
Head & neck cancer	2082	3477	12	1.00	EUR	McKay et al ⁶³
Kidney cancer	2461	5081	12	0.99	EUR	KIDRISK ⁸⁴
Lung cancer	11348	15861	13	1.00	EUR	ILCCO ⁸⁵
Adenocarcinoma	3442	14894	13	1.00	EUR	ILCCO ⁸⁵
Squamous cell carcinoma	3275	15038	13	1.00	EUR	ILCCO ⁸⁵
Skin cancer						24
Melanoma	12814	23203	13	1.00	EUR	MC ⁸⁶
Basal cell carcinoma	3361	11518	13	1.00	EUR	NHS/HPFS ⁸⁷
Neuroblastoma	2101	4202	12	0.87	EUR	Diskin ⁸⁸
Ovarian cancer	15397	30816	13	1.00	EUR	$OCAC^{17,89}$
Clear cell	1016	30816	13	0.76	EUR	$OCAC^{17,89}$
Endometriod	2154	30816	13	0.98	EUR	OCAC ^{17,89}
Mucinous	1643	30816	13	0.94	EUR	OCAC ^{17,89}
Serous invasive	9608	30816	13	1.00	EUR	OCAC ^{17,89}
Serous LMP	972	30816	13	0.73	EUR	OCAC ^{17,89}
Pancreatic cancer	5105	8739	12	1.00	EUR	PanScan (incl. EPIC) ⁹⁰
Prostate cancer	22297	22323	11	1.00	EUR	PRACTICAL ^{91,92}
Testicular germ cell cancer	986	4946	11	0.52	EUR	Turnbull ⁹³ & Rapley ⁹⁴
Autoimmune/inflammatory dis	seases					
Alopecia areata	2332	5233	7	0.60	EUR	Betz ⁹⁵
Atopic dermatitis	10788	30047	13	1.00	EUR	EAGLE ⁹⁶
Celiac disease	4533	10750	3	0.82	EUR	Dubois ⁹⁷
Inflammatory bowel disease	1000	10720	5	0.02	Lon	Ducon
Crohn's disease	5956	14927	11	1.00	EUR	IIBDGC ⁹⁸
Ulcerative colitis	6968	20464	12	1.00	EUR	IIBDGC ⁹⁸
Iuvenile idionathic arthritis	1866	14786	11	0.87	EUR	Thompson ⁹⁹ ⁺
	1000	• • • • •		1.00	Een	
Multiple sclerosis	14498	24091	3	1.00	EUR	IMSGC ¹⁰⁰
Aggressive periodontitis	888	6789	13	0.63	EUR	Schaefer ¹⁰¹
Rheumatoid arthritis	5538	20163	11	1.00	EUR	Stahl ¹⁰²
Cardiovascular diseases						102 108
Abdominal aortic aneurysm	4972	99858	13	1.00	EUR	$AC^{105-108}$
Coronary heart disease	22233	64762	13	1.00	EUR	CARDIoGRAM
Heart failure	2526	20926	13	0.99	EUR	CHARGE-HF ¹¹⁰
Hemorrhagic stroke	2963	5503	12	0.96	EUR	METASTROKE/ISGC ¹¹¹
Ischemic stroke	12389	62004	13	1.00	EUR	METASTROKE/ISGC ^{112,113}
large vessel disease	2167	62004	13	0.99	EUR	METASTROKE/ISGC ^{112,113}
small vessel disease	1894	62004	13	0.97	EUR	METASTROKE/ISGC ¹¹²
cardioembolic	2365	62004	13	0.99	EUR	METASTROKE/ISGC ¹¹²
Sudden cardiac arrest	3954	21200	13	1.00	EUR	Unpublished
Diabetes						
Type 1 diabetes	7514	9045	6	0.95	EUR	T1DBase ¹¹⁴¹¹⁵
Type 2 diabetes	10415	53655	11	1.00	EUR	DIAGRAM ¹¹⁶
Eye disease						

AMD	7473	51177	13	1.00	EUR	AMD Gene ¹¹⁷
Retinopathy	1122	18289	12	0.75	EUR	Jensen ¹¹⁸
Lung diseases						
Asthma	13034	20638	4	1.00	EUR	Ferreira/GABRIEL ^{119,120}
COPD	2812	2534	12	0.85	EUR	COPDGene ¹²¹
Interstitial lung disease	1616	4683	9	0.60	EUR	Fingerlin ¹²²
Neurological / psychiatric dise	ases					
ALS	6100	7125	12	1.00	EUR	SLAGEN/ALSGEN ¹²³
Alzheimer's disease	17008	37154	12	1.00	EUR	IGAP ¹²⁴
Anorexia nervosa	2907	14860	9	0.93	EUR	GCAN ¹²⁵
Autism	4949	5314	7	0.82	EUR	PGC ¹²⁶
Bipolar disorder	7481	9250	9	1.00	EUR	PGC ¹²⁷
Major depressive disorder	9240	9519	8	0.99	EUR	PGC ¹²⁸
Schizophrenia	35476	46839	12	1.00	EUR	PGC ¹²⁹
Tourette syndrome	1177	4955	13	0.74	EUR	TICG/TSAICG ¹³⁰
Other						
Chronic kidney disease	5807	56430	13	1.00	EUR	CKDGen ¹³¹
Endometriosis	4604	9393	11	1.00	Mix	Nyholt ¹³²

Study acronyms: AC, the aneurysm consortium; ALSGEN, the International Consortium on Amyotrophic Lateral Sclerosis Genetics; AMD Gene, Age-related Macular Degeneration Gene Consortium; BCAC, Breast Cancer Association Consortium; CARDIoGRAM, Coronary ARtery DIsease Genome wide Replication and Meta-analysis; CHARGE-HF, Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium - Heart Failure Working Group; COPDGene, The Genetic Epidemiology of Chronic Obstructive Pulmonary Disease; CKDGen, Chronic Kidney Disease Genetics consortium; CORECT, ColoRectal Transdisciplinary Study; DIAGRAM, DIAbetes Genetics Replication And Meta-analysis; EAGLE, EArly Genetics & Lifecourse Epidemiology Eczema Consortium (excluding 23andMe); ECAC, Endometrial Cancer Association Consortium; EPIC, European Prospective Investigation into Cancer and Nutrition study; GABRIEL, Multidisciplinary Study to Identify the Genetic and Environmental Causes of Asthma in the European Community; GCAN, Genetic Consortium for Anorexia Nervosa; GECCO, Genetics and Epidemiology of Colorectal Cancer Consortium; IGAP, International Genomics of Alzheimer's Project; HPFS, Health Professionals Follow-Up Study; ILCCO, International Lung Cancer Consortium; IMSGC, International Multiple Sclerosis Genetic Consortium; IIBDGC, International Inflammatory Bowel Disease Genetics Consortium; KIDRISK, Kidney cancer consortium; MC, the melanoma meta-analysis consortium; METASTROKE/ISGC, METASTROKE project of the International Stroke Genetics Consortium; NBCS, Nijmegen Bladder Cancer Study; NHS, Nurses' Health Study; OCAC, Ovarian Cancer Association Consortium; PanScan, Pancreatic Cancer Cohort Consortium; PGC, Psychiatric Genomics Consortium; PRACTICAL, Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome; SLAGEN, Italian Consortium for the Genetics of Ayotrophic Lateral Sclerosis; T1DBase, type 1 diabetes database; TICG (Tourette International Collaborative-Genetics); TSAICG (Tourette Syndrome Association International Consortium for Genetics);. Abbreviations: ALS, amyotrophic lateral sclerosis; AMD, age-related macular degeneration; COPD, chronic obstructive pulmonary disease; EUR, European; EA, East Asian; LMP, low malignant potential; No., number; Pop., population; SCC, squamous cell carcinoma; SNP, single nucleotide polymorphism; -ve, negative; +ve, positive; †plus previously unpublished data.

Figure 1. The association between genetically increased telomere length and odds of primary non-communicable diseases

Legend to Figure 1

*P value for association between genetically increased telomere length and disease from maximum likelihood; the effect estimate for heart failure is a hazard ratio (all others are odds ratios); P_{het} , P-value for heterogeneity amongst SNPs within the instrument; COPD, chronic obstructive pulmonary disease; SNP, single nucleotide polymorphism; CI, confidence interval; LMP, low malignancy potential; ER, estrogen receptor; -VE, negative; +VE, positive.

Figure 2. The association between genetically increased telomere length and odds of cancer as a function of selected characteristics

Legend to Figure 2

The plotted data show how the strength of the relationship between genetically increased telomere length and cancer varies by the selected characteristic. The R² statistic indicates how much of the variation between cancers can be explained by the selected characteristic. P-values are from meta-regression models. Circle sizes are proportional to the inverse of the variance of the log odds ratio. The hashed line indicates the null of no association between telomere length and cancer (i.e. an odds ratio of 1). Data for percentage survival 5 years after diagnosis, cancer incidence and median age-at-diagnosis was downloaded from the Surveillance, Epidemiology, and End Results Program.³³ Data for average lifetime number of stem cell divisions was downloaded from Tomasetti and Vogelstein.³⁴ Not all cancers had information available for the selected characteristics (hence the number of cancers varies across the subplots). Information was available for 9 cancers for tissue-specific rates of stem cell division, 13 cancers for percentage surviving 5 years post-diagnosis, 17 cancers for cancer incidence and 13 cancers for median age-at-diagnosis. SD, standard deviation; OR, Odds ratio.

Figure 3. Comparison of genetic and prospective observational studies[†] of the association between telomere length and disease

Legend to Figure 3

*from fixed-effects meta-analysis of independent observational studies described in Table S3; [†]search strategy and characteristics for observational studies are described in Tables S3 and S4; ‡CCHS and CGPS; +PLCO, ATBC & SWHS (acronyms explained in Table S3); CI, confidence interval

454 **REFERENCES**

- Blackburn EH, Epel ES, Lin J. Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science (80-)
 2015;350(6265):1193–8.
- 458 2. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of
 459 aging. Cell 2013;153(6):1194–217.
- 460 3. Samani NJ, van der Harst P. Biological ageing and cardiovascular disease. Heart
 461 2008;94(5):537–9.
- 462 4. Weischer M, Bojesen SE, Nordestgaard BG. Telomere shortening unrelated to smoking, body weight, physical activity, and alcohol intake: 4,576 general population 463 individuals with repeat measurements 10 years apart. PLoS 464 Genet 2014;10(3):e1004191. 465
- 466 5. Houben JMJ, Moonen HJJ, van Schooten FJ, Hageman GJ. Telomere length
 467 assessment: biomarker of chronic oxidative stress? Free Radic Biol Med
 468 2008;44(3):235–46.
- 469 6. Marchesi V. Risk factors: Short telomeres: association with cancer survival and risk.
 470 Nat Rev Clin Oncol 2013;10(5):247.
- 471 7. Haycock PC, Heydon EE, Kaptoge S, Butterworth a. S, Thompson A, Willeit P.
 472 Leucocyte telomere length and risk of cardiovascular disease: systematic review and 473 meta-analysis. BMJ 2014;349(jul08 3):g4227–g4227.
- 8. Rode L, Nordestgaard BG, Bojesen SE. Peripheral blood leukocyte telomere length
 and mortality among 64,637 individuals from the general population. J Natl Cancer
 Inst 2015;107(6):djv074.
- 477 9. Zhao J, Miao K, Wang H, Ding H, Wang DW. Association between telomere length
 478 and type 2 diabetes mellitus: a meta-analysis. PLoS One 2013;8(11):e79993.
- Weischer M, Nordestgaard BG, Cawthon RM, Freiberg JJ, Tybjærg-Hansen A,
 Bojesen SE. Short telomere length, cancer survival, and cancer risk in 47102
 individuals. J Natl Cancer Inst 2013;105(7):459–68.
- 482 11. Ma H, Zhou Z, Wei S, et al. Shortened telomere length is associated with increased
 483 risk of cancer: a meta-analysis. PLoS One 2011;6(6):e20466.
- Wentzensen IM, Mirabello L, Pfeiffer RM, Savage SA. The association of telomere
 length and cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev
 2011;20(6):1238–50.
- Pooley KA, Sandhu MS, Tyrer J, et al. Telomere length in prospective and retrospective cancer case-control studies. Cancer Res 2010;70(8):3170–6.
- Hou L, Joyce BT, Gao T, et al. Blood Telomere Length Attrition and Cancer
 Development in the Normative Aging Study Cohort. EBioMedicine 2015;2(6):591–6.
- 491 15. Welter D, MacArthur J, Morales J, et al. The NHGRI GWAS Catalog, a curated
 492 resource of SNP-trait associations. Nucleic Acids Res 2014;42(Database
 493 issue):D1001-6.

- 494 16. Burdett T, Hall P, Hastings E, et al. The NHGRI-EBI Catalog of published genome495 wide association studies [Internet]. [cited 2015 Jan 15];Available from:
 496 www.ebi.ac.uk/gwas
- Pooley KA, Bojesen SE, Weischer M, et al. A genome-wide association scan (GWAS)
 for mean telomere length within the COGS project: identified loci show little
 association with hormone-related cancer risk. Hum Mol Genet 2013;22(24):5056–64.
- 18. Mangino M, Hwang S-J, Spector TD, et al. Genome-wide meta-analysis points to
 CTC1 and ZNF676 as genes regulating telomere homeostasis in humans. Hum Mol
 Genet 2012;21(24):5385–94.
- Prescott J, Kraft P, Chasman DI, et al. Genome-wide association study of relative telomere length. PLoS One 2011;6(5):e19635.
- 505 20. Gu J, Chen M, Shete S, et al. A genome-wide association study identifies a locus on 506 chromosome 14q21 as a predictor of leukocyte telomere length and as a marker of 507 susceptibility for bladder cancer. Cancer Prev Res (Phila) 2011;4(4):514–21.
- Codd V, Nelson CP, Albrecht E, et al. Identification of seven loci affecting mean
 telomere length and their association with disease. Nat Genet 2013;45(4):422–7.
- 510 22. Codd V, Mangino M, van der Harst P, et al. Common variants near TERC are associated with mean telomere length. Nat Genet 2010;42(3):197–9.
- Liu Y, Cao L, Li Z, et al. A genome-wide association study identifies a locus on TERT
 for mean telomere length in Han Chinese. PLoS One 2014;9(1):e85043.
- Saxena R, Bjonnes A, Prescott J, et al. Genome-wide association study identifies
 variants in casein kinase II (CSNK2A2) to be associated with leukocyte telomere
 length in a Punjabi Sikh diabetic cohort. Circ Cardiovasc Genet 2014;7(3):287–95.
- Levy D, Neuhausen SL, Hunt SC, et al. Genome-wide association identifies OBFC1 as
 a locus involved in human leukocyte telomere biology. Proc Natl Acad Sci U S A
 2010;107(20):9293–8.
- 520 26. Hindorff LA LA, MacArthur J, Morales J, et al. A catalog of published genome-wide
 521 association studies [Internet]. [cited 2015 Jan 15];Available from:
 522 www.genome.gov/gwastudies
- 523 27. Chene G, Thompson SG. Methods for Summarizing the Risk Associations of
 524 Quantitative Variables in Epidemiologic Studies in a Consistent Form. Am J
 525 Epidemiol 1996;144(6):610-21.
- Burgess S, Scott RA, Timpson NJ, Davey Smith G, Thompson SG, EPIC-InterAct
 Consortium. Using published data in Mendelian randomization: a blueprint for
 efficient identification of causal risk factors. Eur J Epidemiol 2015;30(7):543–52.
- 529 29. Thomas DC, Lawlor DA, Thompson JR. Re: Estimation of bias in nongenetic
 530 observational studies using "Mendelian triangulation" by Bautista et al. Ann
 531 Epidemiol 2007;17(7):511–3.
- 30. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid
 instruments: effect estimation and bias detection through Egger regression. Int J
 Epidemiol 2015;44(2):512–25.

- 535 31. VanderWeele TJ, Tchetgen Tchetgen EJ, Cornelis M, Kraft P. Methodological
 536 challenges in mendelian randomization. Epidemiology 2014;25(3):427–35.
- 32. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in
 Mendelian randomization with some invalid instruments using a weighted median
 estimator. Genet Epidemiol
- 540 33. National Cancer Institute. Surveillance, Epidemiology, and End Results Program
 541 [Internet]. [cited 2015 Aug 1];Available from: www.seer.cancer.gov
- 542 34. Tomasetti C, Vogelstein B. Variation in cancer risk among tissues can be explained by
 543 the number of stem cell divisions. Science 2015;347(6217):78–81.
- 544 35. U.S. Census Bureau [Internet]. [cited 2016 Jul 11]; Available from: U.S. Census
 545 Bureau
- 546 36. R Core Team. A language and environment for statistical computing. 2013;
- 547 37. Burgess S, Thompson SG. Bias in causal estimates from Mendelian randomization
 548 studies with weak instruments. Stat Med 2011;30(11):1312–23.
- 549 38. Davey Smith G, Ebrahim S. What can mendelian randomisation tell us about modifiable behavioural and environmental exposures? BMJ Br Med J 2005;330(7499):1076–9.
- Anic GM, Sondak VK, Messina JL, et al. Telomere length and risk of melanoma,
 squamous cell carcinoma, and basal cell carcinoma. Cancer Epidemiol
 2013;37(4):434–9.
- Pellatt AJ, Wolff RK, Torres-Mejia G, et al. Telomere length, telomere-related genes,
 and breast cancer risk: the breast cancer health disparities study. Genes Chromosomes
 Cancer 2013;52(7):595–609.
- 41. Caini S, Raimondi S, Johansson H, et al. Telomere length and the risk of cutaneous
 melanoma and non-melanoma skin cancer: a review of the literature and meta-analysis.
 J Dermatol Sci 2015;80(3):168–74.
- 561 42. Sanchez-Espiridion B, Chen M, Chang JY, et al. Telomere length in peripheral blood
 562 leukocytes and lung cancer risk: a large case-control study in Caucasians. Cancer Res
 563 2014;74(9):2476–86.
- 564 43. Campa D, Mergarten B, De Vivo I, et al. Leukocyte telomere length in relation to
 565 pancreatic cancer risk: a prospective study. Cancer Epidemiol Biomarkers Prev
 566 2014;23(11):2447-54.
- 567 44. Cui Y, Cai Q, Qu S, et al. Association of leukocyte telomere length with colorectal cancer risk: nested case-control findings from the Shanghai Women's Health Study.
 569 Cancer Epidemiol Biomarkers Prev 2012;21(10):1807–13.
- 570 45. De Vivo I, Prescott J, Wong JYY, Kraft P, Hankinson SE, Hunter DJ. A prospective
 571 study of relative telomere length and postmenopausal breast cancer risk. Cancer
 572 Epidemiol Biomarkers Prev 2009;18(4):1152–6.
- 46. Han J, Qureshi AA, Prescott J, et al. A prospective study of telomere length and the risk of skin cancer. J Invest Dermatol 2009;129(2):415–21.
- 575 47. Hofmann JN, Lan Q, Cawthon R, et al. A prospective study of leukocyte telomere

576 577		length and risk of renal cell carcinoma. Cancer Epidemiol Biomarkers Prev 2013;22(5):997–1000.
578 579	48.	Julin B, Shui I, Heaphy CM, et al. Circulating leukocyte telomere length and risk of overall and aggressive prostate cancer. Br J Cancer 2015;112(4):769–76.
580 581 582	49.	Kim S, Sandler DP, Carswell G, et al. Telomere length in peripheral blood and breast cancer risk in a prospective case-cohort analysis: results from the Sister Study. Cancer Causes Control 2011;22(7):1061–6.
583 584 585	50.	Lan Q, Cawthon R, Shen M, et al. A prospective study of telomere length measured by monochrome multiplex quantitative PCR and risk of non-Hodgkin lymphoma. Clin Cancer Res 2009;15(23):7429–33.
586 587 588	51.	Lee I-M, Lin J, Castonguay AJ, Barton NS, Buring JE, Zee RYL. Mean leukocyte telomere length and risk of incident colorectal carcinoma in women: a prospective, nested case-control study. Clin Chem Lab Med 2010;48(2):259–62.
589 590 591	52.	Liang G, Qureshi AA, Guo Q, De Vivo I, Han J. No association between telomere length in peripheral blood leukocytes and the risk of nonmelanoma skin cancer. Cancer Epidemiol Biomarkers Prev 2011;20(5):1043–5.
592 593 594	53.	Lynch SM, Major JM, Cawthon R, et al. A prospective analysis of telomere length and pancreatic cancer in the alpha-tocopherol beta-carotene cancer (ATBC) prevention study. Int J Cancer 2013;133(11):2672–80.
595 596 597	54.	McGrath M, Wong JYY, Michaud D, Hunter DJ, De Vivo I. Telomere length, cigarette smoking, and bladder cancer risk in men and women. Cancer Epidemiol Biomarkers Prev 2007;16(4):815–9.
598 599	55.	Nan H, Du M, De Vivo I, et al. Shorter telomeres associate with a reduced risk of melanoma development. Cancer Res 2011;71(21):6758–63.
600 601 602	56.	Prescott J, McGrath M, Lee I-M, Buring JE, De Vivo I. Telomere length and genetic analyses in population-based studies of endometrial cancer risk. Cancer 2010;116(18):4275–82.
603 604 605	57.	Qu S, Wen W, Shu X-O, et al. Association of leukocyte telomere length with breast cancer risk: nested case-control findings from the Shanghai Women's Health Study. Am J Epidemiol 2013;177(7):617–24.
606 607	58.	Risques RA, Vaughan TL, Li X, et al. Leukocyte telomere length predicts cancer risk in Barrett's esophagus. Cancer Epidemiol Biomarkers Prev 2007;16(12):2649–55.
608 609 610	59.	Seow WJ, Cawthon RM, Purdue MP, et al. Telomere length in white blood cell DNA and lung cancer: a pooled analysis of three prospective cohorts. Cancer Res 2014;74(15):4090–8.
611 612 613	60.	Shen M, Cawthon R, Rothman N, et al. A prospective study of telomere length measured by monochrome multiplex quantitative PCR and risk of lung cancer. Lung Cancer 2011;73(2):133–7.
614 615	61.	Walcott F, Rajaraman P, Gadalla SM, et al. Telomere length and risk of glioma. Cancer Epidemiol 2013;37(6):935–8.
616	62.	Zee RYL, Castonguay AJ, Barton NS, Buring JE. Mean telomere length and risk of

- 617 incident colorectal carcinoma: a prospective, nested case-control approach. Cancer
 618 Epidemiol Biomarkers Prev 2009;18(8):2280–2.
- 619 63. Willeit P, Willeit J, Mayr A, et al. Telomere length and risk of incident cancer and cancer mortality. Jama 2010;304(1538–3598 (Electronic)):69–75.
- 621 64. Zhang C, Doherty J a., Burgess S, et al. Genetic determinants of telomere length and
 622 risk of common cancers: a Mendelian randomization study. Hum Mol Genet
 623 2015;24(18):5356–66.
- 624 65. Iles MM, Bishop DT, Taylor JC, et al. The effect on melanoma risk of genes
 625 previously associated with telomere length. J Natl Cancer Inst 2014;106(10).
- 626 66. Walsh KM, Codd V, Rice T, et al. Longer genotypically-estimated leukocyte telomere
 627 length is associated with increased adult glioma risk. Oncotarget 2015;6(40):42468–
 628 77.
- 629 67. Ojha J, Codd V, Nelson CP, et al. Genetic Variation Associated with Longer Telomere
 630 Length Increases Risk of Chronic Lymphocytic Leukemia. Cancer Epidemiol
 631 Biomarkers Prev 2016;25(7):1043–9.
- 632 68. Armanios M, Blackburn EH. The telomere syndromes. Nat Rev Genet
 633 2012;13(10):693-704.
- 634 69. Armanios M. Syndromes of telomere shortening. Annu Rev Genomics Hum Genet
 635 2009;10(46):45-61.
- 636 70. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell
 637 2011;144(5):646–74.
- 638 71. Blasco MA. Telomere length, stem cells and aging. Nat Chem Biol 2007;3(10):640–9.
- 539 72. Stone RC, Horvath K, Kark JD, Susser E, Tishkoff SA, Aviv A. Telomere Length and
 the Cancer-Atherosclerosis Trade-Off. PLoS Genet 2016;12(7):e1006144.
- 641 73. Pierce BL, Burgess S. Efficient design for Mendelian randomization studies:
 642 subsample and 2-sample instrumental variable estimators. Am J Epidemiol
 643 2013;178(7):1177–84.
- Burgess S, Butterworth AS, Thompson JR. Beyond Mendelian randomization: how to
 interpret evidence of shared genetic predictors. J Clin Epidemiol 2015;1–9.
- 646 75. Centers for Disease Control and Prevention [Internet]. [cited 2016 Jul 14];Available
 647 from: http://www.cdc.gov/nchs/fastats/deaths.htm
- Rafnar T, Sulem P, Thorleifsson G, et al. Genome-wide association study yields variants at 20p12.2 that associate with urinary bladder cancer. Hum Mol Genet 2014;23(20):5545–57.
- Michailidou K, Hall P, Gonzalez-Neira A, et al. Large-scale genotyping identifies 41
 new loci associated with breast cancer risk. Nat Genet 2013;45(4):353–61, 361-2.
- 653 78. Schumacher FR, Schmit SL, Jiao S, et al. Genome-wide association study of colorectal
 654 cancer identifies six new susceptibility loci. Nat Commun 2015;6:7138.
- 655 79. Spurdle AB, Thompson DJ, Ahmed S, et al. Genome-wide association study identifies
 656 a common variant associated with risk of endometrial cancer. Nat Genet

657 2011;43(5):451–4.

- 80. Painter JN, O'Mara TA, Batra J, et al. Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk. Hum Mol Genet 2015;24(5):1478–92.
- 81. Abnet CC, Freedman ND, Hu N, et al. A shared susceptibility locus in PLCE1 at
 10q23 for gastric adenocarcinoma and esophageal squamous cell carcinoma. Nat
 Genet 2010;42(9):764–7.
- 82. Wrensch M, Jenkins RB, Chang JS, et al. Variants in the CDKN2B and RTEL1
 regions are associated with high-grade glioma susceptibility. Nat Genet
 2009;41(8):905–8.
- McKay JD, Truong T, Gaborieau V, et al. A genome-wide association study of upper
 aerodigestive tract cancers conducted within the INHANCE consortium. PLoS Genet
 2011;7(3):e1001333.
- 84. Purdue MP, Johansson M, Zelenika D, et al. Genome-wide association study of renal
 cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3. Nat Genet
 2010;43(1):60-5.
- 85. Wang Y, McKay JD, Rafnar T, et al. Rare variants of large effect in BRCA2 and
 674 CHEK2 affect risk of lung cancer. Nat Genet 2014;46(7).
- 86. Law MH, Bishop DT, Lee JE, et al. Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma. Nat Genet 2015;47(9):987–95.
- 87. Zhang M, Song F, Liang L, et al. Genome-wide association studies identify several new loci associated with pigmentation traits and skin cancer risk in European Americans. Hum Mol Genet 2013;22(14):2948–59.
- Biskin SJ, Capasso M, Schnepp RW, et al. Common variation at 6q16 within HACE1
 and LIN28B influences susceptibility to neuroblastoma. Nat Genet 2012;44(10):1126–
 30.
- 89. Pharoah PDP, Tsai Y-Y, Ramus SJ, et al. GWAS meta-analysis and replication
 identifies three new susceptibility loci for ovarian cancer. Nat Genet 2013;45(4):362–
 70, 370-2.
- Wolpin BM, Rizzato C, Kraft P, et al. Genome-wide association study identifies
 multiple susceptibility loci for pancreatic cancer. Nat Genet 2014;46(9):994–1000.
- Eeles RA, Olama AA Al, Benlloch S, et al. Identification of 23 new prostate cancer
 susceptibility loci using the iCOGS custom genotyping array. Nat Genet
 2013;45(4):385–91, 391-2.
- Al Olama AA, Kote-Jarai Z, Berndt SI, et al. A meta-analysis of 87,040 individuals
 identifies 23 new susceptibility loci for prostate cancer. Nat Genet 2014;46(10):1103–
 9.
- 694 93. Turnbull C, Rapley E a, Seal S, et al. Variants near DMRT1, TERT and ATF7IP are associated with testicular germ cell cancer. Nat Genet 2010;42(7):604–7.
- 696 94. Rapley EA, Turnbull C, Al Olama AA, et al. A genome-wide association study of
 697 testicular germ cell tumor. Nat Genet 2009;41(7):807–10.

- Betz RC, Petukhova L, Ripke S, et al. Genome-wide meta-analysis in alopecia areata
 resolves HLA associations and reveals two new susceptibility loci. Nat Commun
 2015;6:5966.
- For Proceeding of the second second
- 97. Dubois PC a, Trynka G, Franke L, et al. Multiple common variants for celiac disease
 influencing immune gene expression. Nat Genet 2010;42(4):295–302.
- 508 98. Liu JZ, van Sommeren S, Huang H, et al. Association analyses identify 38
 509 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk
 510 across populations. Nat Genet 2015;47(9):979–86.
- 711 99. Thompson SD, Marion MC, Sudman M, et al. Genome-wide association analysis of juvenile idiopathic arthritis identifies a new susceptibility locus at chromosomal region 3q13. Arthritis Rheum 2012;64(8):2781–91.
- 100. Beecham AH, Patsopoulos NA, Xifara DK, et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet 2013;45(11):1353–60.
- 101. Schaefer AS, Richter GM, Nothnagel M, et al. A genome-wide association study identifies GLT6D1 as a susceptibility locus for periodontitis. Hum Mol Genet 2010;19(3):553–62.
- 102. Stahl EA, Raychaudhuri S, Remmers EF, et al. Genome-wide association study metaanalysis identifies seven new rheumatoid arthritis risk loci. Nat Genet 2010;42(6):508–
 14.
- Bown MJ, Jones GT, Harrison SC, et al. Abdominal aortic aneurysm is associated with
 a variant in low-density lipoprotein receptor-related protein 1. Am J Hum Genet
 2011;89(5):619–27.
- 104. Gretarsdottir S, Baas AF, Thorleifsson G, et al. Genome-wide association study
 identifies a sequence variant within the DAB2IP gene conferring susceptibility to
 abdominal aortic aneurysm. Nat Genet 2010;42(8):692–7.
- Jones GT, Bown MJ, Gretarsdottir S, et al. A sequence variant associated with sortilin1 (SORT1) on 1p13.3 is independently associated with abdominal aortic aneurysm.
 Hum Mol Genet 2013;22(14):2941–7.
- 106. Harrison SC, Smith AJP, Jones GT, et al. Interleukin-6 receptor pathways in abdominal aortic aneurysm. Eur Heart J 2013;34(48):3707–16.
- 107. Elmore JR, Obmann MA, Kuivaniemi H, et al. Identification of a genetic variant associated with abdominal aortic aneurysms on chromosome 3p12.3 by genome wide association. J Vasc Surg 2009;49(6):1525–31.
- 108. Borthwick K, Smelser D, Bock J, et al. Ephenotyping for Abdominal Aortic Aneurysm
 in the Electronic Medical Records and Genomics (eMERGE) Network: Algorithm
 Development and Konstanz Information Miner Workflow. Int J Biomed Data Min
 2015;4(1).
- 109. Schunkert H, König IR, Kathiresan S, et al. Large-scale association analysis identifies
 13 new susceptibility loci for coronary artery disease. Nat Genet 2011;43(4):333–8.
- Smith NL, Felix JF, Morrison AC, et al. Association of genome-wide variation with
 the risk of incident heart failure in adults of European and African ancestry: a
 prospective meta-analysis from the cohorts for heart and aging research in genomic
 epidemiology (CHARGE) consortium. Circ Cardiovasc Genet 2010;3(3):256–66.
- 111. Woo D, Falcone GJ, Devan WJ, et al. Meta-analysis of genome-wide association
 studies identifies 1q22 as a susceptibility locus for intracerebral hemorrhage. Am J
 Hum Genet 2014;94(4):511–21.
- Malik R, Freilinger T, Winsvold BS, et al. Shared genetic basis for migraine and ischemic stroke: A genome-wide analysis of common variants. Neurology 2015;84(21):2132–45.
- Traylor M, Farrall M, Holliday EG, et al. Genetic risk factors for ischaemic stroke and
 its subtypes (the METASTROKE collaboration): a meta-analysis of genome-wide
 association studies. Lancet Neurol 2012;11(11):951–62.
- Barrett JC, Clayton DG, Concannon P, et al. Genome-wide association study and
 meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet
 2009;41(6):703–7.
- Burren OS, Adlem EC, Achuthan P, Christensen M, Coulson RMR, Todd JA.
 T1DBase: update 2011, organization and presentation of large-scale data sets for type
 1 diabetes research. Nucleic Acids Res 2011;39(Database):D997–1001.
- Morris ADPDPA, Voight BFB, Teslovich TMT, et al. Large-scale association analysis
 provides insights into the genetic architecture and pathophysiology of type 2 diabetes.
 Nat Genet 2012;44(9):981–90.
- Fritsche LG, Chen W, Schu M, et al. Seven new loci associated with age-related
 macular degeneration. Nat Genet 2013;45(4):433–9, 439-2.
- Jensen RA, Sim X, Li X, et al. Genome-wide association study of retinopathy in
 individuals without diabetes. PLoS One 2013;8(2):e54232.
- 119. Moffatt MF, Kabesch M, Liang L, et al. Genetic variants regulating ORMDL3
 expression contribute to the risk of childhood asthma. Nature 2007;448(7152):470–3.
- Ferreira MAR, Matheson MC, Duffy DL, et al. Identification of IL6R and chromosome 11q13.5 as risk loci for asthma. Lancet (London, England) 2011;378(9795):1006–14.
- 121. Cho MH, McDonald M-LN, Zhou X, et al. Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis. Lancet Respir Med 2014;2(3):214–25.
- Fingerlin TE, Murphy E, Zhang W, et al. Genome-wide association study identifies
 multiple susceptibility loci for pulmonary fibrosis. Nat Genet 2013;45(6):613–20.
- Fogh I, Ratti A, Gellera C, et al. A genome-wide association meta-analysis identifies a novel locus at 17q11.2 associated with sporadic amyotrophic lateral sclerosis. Hum Mol Genet 2014;23(8):2220–31.

- 124. Lambert JC, Ibrahim-Verbaas CA, Harold D, et al. Meta-analysis of 74,046 individuals
 identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet
 2013;45(12):1452–8.
- Boraska V, Franklin CS, Floyd JAB, et al. A genome-wide association study of
 anorexia nervosa. Mol Psychiatry 2014;19(10):1085–94.
- 126. Smoller JW, Hospital MG. Identification of risk loci with shared effects on five major
 psychiatric disorders: a genome-wide analysis. Lancet 2013;381(9875):1371–9.
- 127. Sklar P, Ripke S, Scott LJ, et al. Large-scale genome-wide association analysis of
 bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet
 2011;43(10):977-83.
- Ripke S, Wray NR, Lewis CM, et al. A mega-analysis of genome-wide association
 studies for major depressive disorder. Mol Psychiatry 2013;18(4):497–511.
- Ripke S, Neale BM, Corvin A, et al. Biological insights from 108 schizophreniaassociated genetic loci. Nature 2014;511(7510):421–7.
- 130. Scharf JM, Yu D, Mathews CA, et al. Genome-wide association study of Tourette's syndrome. Mol Psychiatry 2013;18(6):721–8.
- 131. Köttgen A, Pattaro C, Böger C a, et al. New loci associated with kidney function and chronic kidney disease. Nat Genet 2010;42(5):376–84.
- Nyholt DR, Low S-K, Anderson CA, et al. Genome-wide association meta-analysis
 identifies new endometriosis risk loci. Nat Genet 2012;44(12):1355–9.

	Tumor/disease	No. of	No. of
	subtype	cases	SNPs
Cancer	51		
Glioma	-	1130	12
Ovarian cancer	Serous LMP	972	13
Lung cancer	Adenocarcinoma	3442	13
Neuroblastoma	-	2101	12
Bladder cancer	-	1601	10
Skin cancer	Melanoma	12814	13
Testicular germ cell cancer	-	985	11
Kidney cancer	-	2461	12
Endometrial cancer	-	6607	12
Skin cancer	Basal cell carcinoma	3361	13
Ovarian cancer	Endometriod	2154	13
Breast cancer	ER-ve	7465	13
Ovarian cancer	Serous invasive	9608	13
Prostate cancer	-	22297	11
Colorectal cancer	-	14537	9
Lung cancer	Squamous cell carcinoma	3275	13
Breast cancer	ER+	27074	13
Ovarian cancer	Clear cell	1016	13
Ovarian cancer	Mucinous	1643	13
Esophageal cancer	Squamous cell carcinoma	1942	8
Pancreatic cancer	Adenocarcinoma	5105	12
Head & neck cancer	-	2082	12

Cardiovascular diseases

Heart failure	-	2526	13
Ischemic stroke	Small vessel disease	1894	13
Sudden cardiac arrest	-	3954	13
Intracerebral stroke	-	5503	12
Ischemic stroke	Cardioembolic	2365	13
Coronary heart disease	-	22233	13
Ischemic stroke	Large vessel disease	2167	13
Abdominal aortic aneurysm	-	4972	13
5			

Neurological / psychiatric diseases

Anorexia Nervosa	-	2907	9
Bipolar disorder	-	7481	9
Amyotrophic lateral sclerosis	-	6100	12
Tourette syndrome	-	1177	13
Major depressive disorder	-	9240	8
Autism	-	4949	7
Schizophrenia	-	9379	12
Alzheimer's disease	-	17008	12

Autoimmune/inflammatory diseases

Alopecia areata	-	2332	7
Inflammatory bowel disease	Crohn's disease	5956	11
Periodontitis	-	888	13
Atopic dermatitis	-	10788	13
Inflammatory bowel disease	Ulcerative colitis	6968	12
Multiple sclerosis	-	14498	3
Rheumatoid arthritis	-	5538	11
Juvenile idiopathic arthritis	-	1866	11
Celiac disease	-	4533	3

Other diseases

Retinopathy	-	1126	12
Age-related macular d	egeneration	7473	13
Type 2 diabetes	-	10415	11
Endometriosis	-	4604	11
Chronic kidney diseas	e -	5807	13
COPD	-	2812	12
Asthma	-	13034	4
Type 1 diabetes	-	7514	6
Interstitial lung diseas	e -	1616	9
_			

	No. of	Odds ratio (95% CI) p	er standard deviation
	cases	increase in telomere length	
Cancer			U
Breast cancer Genetic study Observational study*	48155 1716	•	1.08 (0.99, 1.19) 1.02 (0.99, 1.05)
Prostate cancer Genetic study Observational study*	22297 1340	*	1.12 (0.96, 1.30) 1.07 (1.01, 1.14)
Ovarian cancer Genetic study Observational study	15397 96	↓	1.09 (0.94, 1.27) 1.13 (0.98, 1.32)
Colorectal cancer Genetic study Observational study*	14537 1447	+	1.09 (0.91, 1.31) 1.04 (0.97, 1.11)
Lung cancer Genetic study Observational study [‡] Observational study ⁺	11348 522 847	→ →-	1.71 (1.44, 2.04) 0.94 (0.87, 1.02) 1.28 (1.12, 1.46)
Endometrial cancer Genetic study Observational study*	6608 382		1.31 (1.07, 1.61) 1.06 (0.95, 1.19)
Pancreatic cancer Genetic study Observational study*	5105 648		0.86 (0.56, 1.32) 1.05 (0.95, 1.17)
Lung adenocarcinoma Genetic study Observational study	3442 288	→	- 3.19 (2.40, 4.22) 1.44 (1.14, 1.82)
Skin basal cell carcinoma Genetic study Observational study	3361 363	_	1.22 (0.90, 1.65) 0.96 (0.85, 1.09)
Lung squamous cell carcinoma Genetic study	3275	_ _	1.07 (0.82, 1.39)

Supplementary material

2	Mendelian random	nization study of the association between telomere length and risk of cancer
3	and non-neoplastic	e diseases
4		
5	The Telomeres Men	delian Randomization Collaboration
6		
7	Correspondence:	Philip Haycock
8		MRC Integrative Epidemiology Unit
9		University of Bristol
10		Bristol
11		UK
12		
13		philip.haycock@bristol.ac.uk
14		Tel: +44 1173 310 088
15		
16		
17		
18		
19	7 supplementary fig	ures / 6 supplementary tables
20		
21		
22		
23		
24		
25		
26		
27		

28 Contents

29	SUPPLEMENTARY METHODS	4
30	Additional details on the design strategy	4
31	Identification of genetic instruments for telomere length	4
32	Acquisition of summary data from disease and risk factor studies	5
33	Power calculations	5
34	Estimating the association between genetically increased telomere length and outcome traits	6
35	Likelihood approach	7
36	The weighted median approach ¹⁴	8
37	The MR-Egger approach	8
38	SUPPLEMENTARY RESULTS	9
39	SUPPLEMENTARY DISCUSSION	10
40	Mechanisms of association between SNPs and telomere length	10
41	Bias from sample overlap and strength of the association between SNPs and telomere length	10
42	Misconceptions about Mendelian randomization	10
43	Potential for confounding by population stratification, ancestry and age	11
44	Associations with non-neoplastic diseases	12
45 46	Supplementary Table S1. Study characteristics for secondary non-communicable diseases and diseases from independent studies for replication analyses	13
47	Supplementary Table S2. Study characteristics of 44 risk factors for non-communicable diseases	14
48 49	Supplementary Table S3. Selected prospective observational studies of the association between leukocy telomere length and disease	/te 16
50 51	Supplementary Table S4. PubMed search strategy for prospective observational studies of association between telomere length* and disease	19
52	Supplementary Table S6. Glossary of terms	20
53	Supplementary Figure S1. Study design	21
54 55	Supplementary Figure S3. Replication of association between genetically increased telomere length and odds of non-communicable diseases in independent datasets	ł 23
56 57	Supplementary Figure S4. Sensitivity analyses of association between genetically increased telomere length and odds of non-communicable diseases	24
58 59	Supplementary Figure S5. Association between genetically increased telomere length and risk factors for non-communicable diseases	or 25
60	Supplementary Figure S6. Association between genetically increased telomere length and smoking	26
61	Supplementary Figure S7. Causal diagram illustrating the assumptions of Mendelian randomization	27
62	ACKNOWLEDGEMENTS OF THE CONTRIBUTING STUDIES AND CONSORTIA	28
63	Amyotrophic lateral sclerosis GWAS consortium	28
64	The Aneurysm Consortium	29
65	Australian Asthma Genetics Consortium	32

66 67	Coronary ARtery DIsease Genome wide Replication and Meta-analysis (CARDIoGRAM) consortium The Coronary Artery Disease (C4D) Genetics consortium	and 33
68 69	The Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) – Heart Failure Working Group	34
70	CHARGE - Sudden Cardiac Arrest Working Group	34
71	The Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPDGene)	35
72	Early Growth Genetics (EGG) Consortium	38
73	The EArly Genetics and Lifecourse Epidemiology (EAGLE) consortium	38
74	Endometrial Cancer Association Consortium (ECAC)	47
75	Glioma GWAS	49
76	Endometriosis GWA meta-analysis	50
77	European Periodontitis Genetics Group (EPG)	52
78	The International Genomics of Alzheimer's Project (IGAP)	55
79	The Japanese Collaboration Team for GWAS of Panic Disorder	56
80	Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC)	57
81	Melanoma meta-analysis consortium (MC)	57
82	The Multi-Ethnic Study of Atherosclerosis (MESA)	69
83	The Nurses' Health Study (NHS) and the Health Professionals Follow-Up Study (HPFS)	70
84	GWAS of non-alcoholic fatty liver disease (hepatic steatosis)	70
85	Pancreatic cancer case-control consortium (PanC4)	70
86	Pancreatic Cancer Cohort Consortium (PanScan)	71
87	The European Prospective Investigation into Cancer and Nutrition (EPIC) study	71
88	The PRACTICAL Consortium	72
89	Sarcoidosis GWAS	75
90	The Singapore Epidemiology of Eye Diseases Study (SEED)	75
91	Acknowledgements of studies that contributed to the GWAS meta-analysis of telomere length ⁴	76
92	The Framingham Heart Study	76
93	TwinsUK	76
94	References	77

96

97 SUPPLEMENTARY METHODS

98

99 Additional details on the design strategy

100

101 Identification of genetic instruments for telomere length

102 To identify genetic variants to serve as instruments for telomere length, we searched the genomewide association study (GWAS) catalog^{1,2} on the 15 January 2015, to identify reported single 103 nucleotide polymorphisms (SNPs) associated with telomere length. To supplement the list with 104 additional potential instruments, we also searched the original study reports curated by the GWAS 105 catalog.³⁻¹¹ We included all 'telomere length' SNPs in the GWAS catalog as potential proxies, 106 regardless of their reported P-value, but used a P-value threshold of $(5x10)^8$ (the conventional 107 threshold for declaring association in GWAS) for SNPs identified from original study reports (if 108 109 these were not already curated by the GWAS catalog). We acquired summary data for all SNPs 110 identified by the above strategy from a meta-analysis of six GWASs of leukocyte telomere length, conducted in 9,190 participants of European ancestry.⁴ Telomere length in the six studies was 111 measured by Southern blotting. GWAS analyses in the 6 studies were adjusted for age, sex, body 112 mass index and smoking history. The genomic control inflation factor (λ_{GC}) ranged from 0.995 to 113 1.076 across the six studies, indicating little evidence for confounding by population stratification.⁴ 114 The following summary data were acquired for each SNP from each of the six studies: the 115 regression coefficient (beta) and its standard error, where the beta reflects the change in telomere 116 length (in base pair units) per copy of the effect allele; the effect allele; the non-effect allele; and 117 effect allele frequency. We combined the effect estimates from the six separate studies by fixed 118 119 effects meta-analysis. We then excluded SNPs if they lacked strong evidence of association with telomere length. We defined strong evidence of association as a P value $<5x10^{-8}$ in: i) the discovery 120 stage of at least one published GWAS of telomere length³⁻¹⁰ or ii) a meta-analysis of summary data 121

from Mangino et al⁴ and other GWASs of telomere length,^{3,5-10} with any overlapping studies excluded from Mangino et al.⁴ We also excluded SNPs with a minor allele frequency <0.05 or showing strong evidence of between-study heterogeneity in associations with telomere length (P \leq 0.001).

126

127 Acquisition of summary data from disease and risk factor studies

128 We extracted the following summary data for each genetic instrument for telomere length from 129 GWASs of diseases and risk factors: the regression coefficient (beta) and its standard error, the effect allele, the non-effect allele and effect allele frequency. For binary traits, the beta 130 corresponded to the log odds ratio per copy of the effect allele. For quantitative traits, the beta 131 corresponded to the unit change in the trait per copy of the effect allele. We harmonized the 132 summary data for diseases and risk factors so that the effect allele reflected the allele associated 133 with longer telomeres. When SNPs were palindromic, i.e. A/T or G/C, we used information on 134 135 allele frequency to resolve strand ambiguity. We also requested the following metrics of SNP 136 genotype quality: P-values for Hardy-Weinberg equilibrium (HWE), imputation quality scores and P-values for between-study heterogeneity. We also estimated the percentage overlap in participants 137 amongst the telomere length and disease and risk factor GWASs. When reported, statistics on 138 139 between-study heterogeneity, Hardy-Weinberg equilibrium and imputation quality were used to 140 exclude low quality SNPs from disease and risk factor studies, using the following criteria: strong evidence of between-study heterogeneity in the SNP-phenotype association (P≤0.001), Hardy-141 Weinberg disequilibrium (P ≤ 0.001) or imputation quality metric (info or r²) ≤ 0.90 . 142

143

144 *Power calculations*

Power calculations for disease outcomes were implemented using the method described by Burgess¹² and assumed an odds ratio of ≥ 2.0 per standard deviation higher telomere length and an alpha of 0.01. Power calculations for risk factors for non-communicable diseases were similar, except that a ≥ 0.5 standard deviation change in quantitative risk factors and an odds ratio of ≥ 1.5 for binary risk factors was assumed for each standard deviation change in telomere length. When more than one study was available for the same outcome trait, priority was given to the study with the higher statistical power. Power calculations took into account the variance explained in telomere length by each SNP, inferred from published reports,^{3–10} and the sample size available for each outcome.

154

155 Estimating the association between genetically increased telomere length and outcome traits

We employed three general approaches for estimating the association between genetically increased telomere length and outcome traits. Our main results are based on a likelihood-approach.¹³ Sensitivity analyses were based on two approaches: the weighted median¹⁴ and MR-Egger regression.¹⁵ The technical details of these approaches are described below.

160

161 Prior to calculating the associations of genetically increased telomere length with diseases and risk factors, we estimated the pairwise r^2 for all telomere-associated SNPs residing on the same 162 chromosome using PLINK¹⁶ and 1000 Genomes phase 3 data for European samples.¹⁷ SNPs 163 residing on separate chromosomes or separated by more than 50 megabases on the same 164 165 chromosome were assumed to be in linkage equilibrium. The genetic instruments for telomere length were pruned so that no SNP pair had an $r^{2}>0.9$ (strong linkage disequilibrium), using the 166 'indep' command in PLINK.¹⁶ The base pair position and chromosome id for each SNP, in 167 GCRCh38 format, was extracted from Ensembl through the R biomart package.¹⁸⁻²⁰ Linkage 168 disequilibrium between the remaining SNPs was taken into account using a variance-covariance 169 matrix (described below). For analyses in which SNP-disease associations were derived from East 170 Asian populations, genetic instruments were further pruned so that no SNP pair had an r²>0.1 171 (because the variance-covariance matrix used to model the correlation between SNPs was based on 172 a European population). 173

175 Likelihood approach

174

We combined summary data across SNPs into a single instrument, using maximum likelihood to estimate the slope of the relationship between β_{GD} and β_{GP} and a variance-covariance matrix to make allowance for linkage disequilibrium between SNPs, where β_{GD} is the change in the outcome trait per copy of the effect allele and β_{GP} is the standard deviation change in telomere length per copy of the effect allele.¹³ The standard deviation of telomere length corresponds to approximately 650 base pairs.⁴ The variance-covariance matrix was estimated using 1000 Genomes phase 3 data for Europeans.¹³ The model that is fitted is:

$$\begin{pmatrix} \boldsymbol{\beta}_{GP} \\ \boldsymbol{\beta}_{GD} \end{pmatrix} \sim N_{2K} \left(\begin{pmatrix} \boldsymbol{\xi} \\ \boldsymbol{\beta}_{IV} \boldsymbol{\xi} \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma}_{PP} & \boldsymbol{\Sigma}_{PD} \\ \boldsymbol{\Sigma}_{DP} & \boldsymbol{\Sigma}_{DD} \end{pmatrix} \right)$$

where β_{GP} is a vector of the SNP-telomere-length associations, β_{GD} is a vector of the SNP-disease 183 associations, β_{IV} is the causal effect parameter, K is the number of SNPs, Σ_{PP} is a variance-184 covariance matrix with elements $(\Sigma_{PP})_{ij} = se(\beta_{GPi})se(\beta_{GPj})\rho_{ij}$ where $se(\beta_{GPi})$ is the standard 185 186 error of the SNP-telomere-length association for the *i*th genetic variant, and ρ_{ij} is the correlation 187 between the *i*th and *j*th variants due to linkage disequilibrium. Components of Σ_{DD} are similarly defined as $(\Sigma_{DD})_{ij} = se(\beta_{GDi})se(\beta_{GDj})\rho_{ij}$, and $\Sigma_{PD} = \Sigma_{DP} = 0$ due to the two-sample setting 188 (sensitivity analyses in a previous study¹³ suggested results were robust to some correlation between 189 190 the gene-phenotype and gene-outcome associations that may arise due to sample overlap). The slope estimated by maximum likelihood can be interpreted as the log odds ratio for disease per 191 standard deviation change in genetically increased telomere length. The slope can further be 192 193 interpreted as the causal effect of telomere length on disease if Mendelian randomization assumptions hold. The assumptions are: the SNPs are associated with telomere length (IV1); the 194 SNPs are independent of confounders (IV2); and the SNPs are independent of disease adjusted for 195 telomere length and confounders (IV3). See Supplementary Figure S7 for further details of the 196 Mendelian randomization assumptions and Supplementary Table S6 for a glossary of terms. 197

199 The weighted median $approach^{14}$

198

200 Let $\hat{\beta}_{(1)}, \dots, \hat{\beta}_{(J)}$ represent the J causal effect estimates ordered from smallest $(\hat{\beta}_{(1)})$ to largest $(\hat{\beta}_{(J)})$. 201 Now define

202
$$w_{(j)}^* = \frac{w_j}{S_J}$$
, where $S_J = \sum_j w_j$,

- 203 where w_j is the inverse variance of $\hat{\beta}_{(j)}$,
- and equate $\hat{\beta}_{(j)}$ with a quantile, $p_{(j)}^{w}$, defined as

205
$$p_{(j)}^{w} = \frac{100}{S_{j}} \left(S_{(j)} - \frac{w_{(j)}}{2} \right).$$

 $p_{(j)}^{w}$ represents the quantile from the weighted empirical distribution function of the ordered 206 estimates $\hat{\beta}_{(1)}, \dots, \hat{\beta}_{(J)}$. The weighted median estimate, $\hat{\beta}_{WM}$ is defined as the 50th percentile of this 207 weighted distribution. Typically the 50th percentile will lie between two estimates ($\hat{\beta}_{(l)}$ and $\hat{\beta}_{(m)}$, 208 say), in which case $\hat{\beta}_{_{MM}}$ is found by linear interpolation. $\hat{\beta}_{_{MM}}$ is a consistent estimate for β provided 209 that at least 50% of the 'weight' making up S_J comes from genetic variants that are valid 210 instruments. In other words, the weighted median function provides a valid estimate of the causal 211 effect of telomere length on disease if at least half of the genetic information comes from valid 212 instruments (assumptions illustrated in Supplementary Figure S7; glossary of terms in 213 Supplementary Table S6).¹⁴ 214

- 215
- 216 The MR-Egger approach

The MR-Egger method¹⁵ performs a weighted linear regression of the SNP-disease coefficients on
the SNP-exposure coefficients (where exposure in this study is telomere length):

219
$$\frac{\hat{\Gamma}_{j}}{\sigma_{y_{j}}} = \frac{\beta_{0E}}{\sigma_{y_{j}}} + \beta_{1E} \frac{\hat{\gamma}_{j}}{\sigma_{y_{j}}}$$

220 where Γ corresponds to the SNP-disease coefficients, γ corresponds to the SNP-exposure

coefficients and σ_{yj} is the standard error of $\hat{\Gamma}_j$. If all SNPs are valid instruments, then $\beta_{0E} = 0$. The

value of β_{0E} can be interpreted as an estimate of the average pleiotropic effect across the SNPs. An intercept term that differs from zero is indicative of overall directional pleiotropy. The MR-Egger

estimate for β , $\hat{\beta}_{1E}$, is consistent even if *all* SNPs are invalid, provided that

Across all SNPs, the magnitude of the SNP-exposure associations are independent of their
 pleiotropic effects (also known as the InSIDE [Instrument Strength Independent of Direct
 Effect] assumption)

• The number of SNPs, J, grows large (i.e. tends to infinity).

See Supplementary Figure S7 for further details on the assumptions and Supplementary Table S6for a glossary of terms.

231 SUPPLEMENTARY RESULTS

In analyses of secondary cancer outcomes, genetically increased telomere length was associated 232 233 with thyroid cancer, chronic lymphocytic leukemia and multiple myeloma (P < 0.05) (Supplementary 234 Figure S2). In analyses of secondary non-neoplastic diseases, genetically increased telomere length 235 was associated with reduced odds of panic disorder (P<0.05) (Supplementary Figure S2). In 236 secondary analyses of 44 risk factors for non-communicable diseases (Supplementary Table S2), 237 genetically increased telomere length was associated with increased pulse pressure, systolic blood 238 pressure, diastolic blood pressure, mean arterial pressure, triglycerides, uric acid and education and 239 with decreased HDL cholesterol, mean corpuscular haemoglobin and mean corpuscular volume 240 (P<0.05) (Supplementary Figure S5). There was some evidence for an association between 241 genetically increased telomere length and ever smoking status (P=0.03, Supplementary Figure S6) 242 but this association is unlikely to be reliable given that the SNP-telomere-length associations were adjusted for smoking history; the association may therefore reflect collider bias.²¹ 243

244

246 SUPPLEMENTARY DISCUSSION

247 Mechanisms of association between SNPs and telomere length

The mechanisms of the underlying associations between the selected SNPs and telomere length are generally unknown. Some of the SNPs are located in or near the *TERC* or *TERT* genes, suggesting that the mechanism could involve the telomerase enzyme, as well as the *OBFC1* and *CTC1* genes, which have known roles in regulation of telomere length biology (Table 1). OBFC1 is an enzyme involved in initiating DNA replication and is involved in the telomere-associated CST complex.²² *CTC1* encodes a component of the CST complex, which plays a role in protecting telomeres from degradation.

255

Bias from sample overlap and strength of the association between SNPs and telomere length

The selected genetic instruments for telomere length correspond to 10 independent genomic loci 257 258 and collectively account for 2-3% of the variance in leukocyte telomere length. The corresponding F statistic is around 18, which means that bias due to weak instruments is unlikely to be substantial 259 even if there were considerable overlap amongst the telomere length and disease and risk factor 260 GWASs.²³ The estimated overlap in participants amongst the telomere length and outcome GWASs 261 was less than 11% for all diseases and risk factors, except for hepatic steatosis, for which overlap 262 was around 51%, indicating that the vast majority of our results should be robust to weak 263 264 instrument bias.

265

266 Misconceptions about Mendelian randomization

A common misconception about Mendelian randomization studies is that genetic instruments should explain a substantial proportion of the variation in target exposures (e.g. telomere length in this study) in order to provide robust inferences about exposure-disease associations. However, if the genetic instruments are valid (i.e. conform to Mendelian randomization assumptions,

Supplementary Figure S7), the variation explained by the instrument only affects statistical power 271 272 and does not generally affect validity of the causal inference. In this sense, genotype assignment in a Mendelian randomization study is analogous to treatment assignment in a randomized controlled 273 trial, e.g. of blood pressure lowering drugs.²⁴ Although experimental interventions to reduce blood 274 275 pressure may only explain a small fraction of the total variation in blood pressure in a typical RCT, 276 we can still make causal inferences about blood pressure as a whole (and not just the proportion of 277 variation in blood pressure due to the experimental intervention). Moreover, the aim of Mendelian randomization studies is to make inferences at the population level and not the individual level (for 278 which genetic proxies of substantial explanatory power would be required).²⁴ If Mendelian 279 randomization assumptions were violated, however, then the limited variation explained by our 280 genetic instruments might not behave in similar manner to other sources of variation in telomere 281 length, which would undermine our ability to draw causal inferences. See the above section 282 'Estimating the association between genetically increased telomere length and outcome traits' and 283 284 Supplementary Figure S7 for details on the assumptions. See Supplementary Table S6 for an explanation of Mendelian randomization terminology. See Haycock et al²⁵ and Davey Smith and 285 Hemani²⁶ for reviews on Mendelian randomization. 286

287

288 Potential for confounding by population stratification, ancestry and age

It is unlikely that confounding by population stratification, ancestry or age (an important 289 290 confounder of observational studies of telomere length) can account for our results. The 15 primary 291 diseases showing some evidence of association with telomere length (defined as a P value<0.05) were 100% European, on the basis of self reported ancestry or genetic analyses (individuals 292 showing genetic evidence of non-European ancestry were excluded).^{3,27–44} In addition, these studies 293 all made some allowance for population stratification in their analyses: 12 adjusted for principal 294 component scores of genetic variation in their models or applied genomic control corrections to 295 their results; and 3 concluded there was little evidence for population stratification, on the basis of 296

visual inspection of Quantile-Quantile plots of GWAS results (i.e. lambdas for genomic inflation were close to 1). The GWAS we used to defined genetic instruments for telomere length⁴ also adjusted for principal component scores; and lambdas for genomic inflation were close to 1. Since our MR analyses will have inherited any adjustments made in the original analyses, it is therefore unlikely that confounding by ancestry or population stratification can explain our results.

Confounding by age is also unlikely, given the random distribution of genotypes in the general population with respect to lifestyle and other environmental factors, as well as the fixed nature of germline genotypes. Consistent with this expectation, we did not observe an association between subject age and their genetically predicted telomere length values in our previous studies.^{44,45}

306

307 Associations with non-neoplastic diseases

The inverse associations observed for coronary heart disease, abdominal aortic aneurysm, celiac disease and interstitial lung disease are compatible with findings based on observational and Mendelian randomization studies of telomere length as well as dyskeratosis congenita (a congenital disease characterized by chronically short telomeres).^{46–50}

- 312
- 313
- 314
- 315
- 316
- 317
- 318
- 319

Supplementary Table S1. Study characteristics for secondary non-communicable diseases and diseases from independent studies for replication analyses

	No.	No.	No.	Statistical		
	cases	controls	SNPs	power	Pop.	First author /database
Cancer						
Chronic lymphocytic leukemia	2883	8350	1	0.22	EUR	Speedy/GWAS cat. ⁵¹
Chronic myeloid leukemia	201	497	8	0.07	EA	Kim ⁵²
Ewing's sarcoma	401	684	4	0.06	EUR	Postel-Vinay ⁵³
Follicular lymphoma	212	748	3	0.04	EUR	Conde ⁵⁴
Gallbladder cancer	41	866	2	0.01	EA	Cha ⁵⁵
Gastric cancer						
Cardia adenocarcinoma	1126	2111	11	0.47	EA	Abnet ⁵⁶
Noncardia adenocarcinoma	632	2111	11	0.29	EA	Abnet ⁵⁶
Multiple myeloma	4692	10990	1	0.37	EUR	Chubb/GWAS cat.57
Nasopharyngeal carcinoma	1583	1894	2	0.17	EA	Bei ⁵⁸
B-cell Non-Hodgkin lymphoma	253	1438	10	0.13	EA	Tan ⁵⁹
Skin squamous cell carcinoma	449	11518	13	0.34	EUR	Zhang ⁶⁰
Thyroid cancer	649	431	12	0.16	EUR	Kohler ⁶¹
Upper gastrointestinal cancers	3523	2100	2	0.28	EA	Li/dbGAP ⁶²
Autoimmune/inflammatory diseas	es					
Inflammatory psoriatic arthritis	609	990	13	0.29	EUR	Huffmeier ⁶³
Kawasaki disease	405	6252	11	0.26	EUR	Khor ⁶⁴
Narcolepsy	1188	1985	9	0.46	EA	Han ⁶⁵
Psoriasis	1139	1132	9	0.34	EA	Zhang ⁶⁶
Sarcoidosis	564	1575	9	0.16	EUR	Fischer ⁶⁷
Systemic lupus erythematosus	1311	1783	4	0.20	EUR	Hom/dbGAP ⁶⁸
Vitiligo	1117	1429	2	0.12	EA	Quan ⁶⁹
Wegener's granulomatosis	459	1503	10	0.20	EUR	Xie ⁷⁰
Neurological / psychiatric diseases						
Bulimia nervosa	151	2291	8	0.07	EUR	Wade ⁷¹
Panic disorder	718	1717	8	0.28	EA	JCTGPD ⁷²
Parkinson's disease	1713	3978	4	0.35	EUR	Simón-Sánchez/dbGAP73

Other						
Hirschsprung's disease	173	615	6	0.04	EA	Tang ⁷⁴
Paget's disease	741	2699	12	0.43	EUR	Albagha ⁷⁵
Vascular dementia	84	200	8	0.03	EA	Kim ⁷⁶
Independent disease studies for	replicatio	1 analyses				
Bladder cancer	7712	13125	1	0.56	EUR	Figueroa/GWAS cat.77
Colorectal cancer	728	3282	9	0.39	EA	Zhang ⁷⁸
Coronary heart disease	15399	15050	4	1.00	Mix	$C4D^{79}$
Glioma	1854	4955	1	0.12	EUR	GliomaScan/GWAS cat.80
Interstitial lung disease†	542	542	11	0.15	EUR	Noth ⁸¹
Interstitial lung disease‡	242	1469	1	0.02	EA	Mushiroda/GWAS cat.82
Pancreatic cancer	4164	3792	10	0.90	EUR	PanC4 ⁸³
Multiple sclerosis	978	883	4	0.11	EUR	Baranzini/dbGAP ⁸⁴
Nasopharyngeal carcinoma	277	285	2	0.03	EA	Tse ⁸⁵
Type 2 diabetes	8569	8923	10	1.00	EA	Li ⁸⁶
	21	1				

Type 2 diductes overlapped with cases from Fingerlin et al³¹ and 77% of cases had idiopathic pulmonary fibrosis; ‡all cases had idiopathic pulmonary fibrosis.
Study/database acronyms: C4D, Coronary Artery Disease Genetics Consortium; dbGAP, summary data downloaded from the database of Genotypes and Phenotypes; GWAS cat., data downloaded from the National Human Genome Research Institute/European Bioinformatics Institute Catalog of published genome wide association studies; JCTGPD, Japanese Collaboration Team for GWAS of Panic Disorder. Abbreviations: EUR, European; EA, East Asian; No., number; Pop., population; SNP, single nucleotide polymorphism.

Supplementary	Table S2. Stu	dy characteristics	of 44 risk f	factors for non-	communicable diseases
---------------	---------------	--------------------	--------------	------------------	-----------------------

•• •							First
	Sample			No. of	Stat.		author /
	size	SD	Units	SNPs	power	Pop.	study
Anthropometric							
Birth length	22557	2.0	cm	12	1.00	EUR	EGG ⁸⁷
Birth weight	26836	547.5	g	12	1.00	EUR	EGG ⁸⁸
Body mass index	241253	4.8	kg/m ²	13	1.00	EUR	GIANT ⁸⁹
Childhood obesity	13848	NA	log _e odds	12	0.78	EUR	EGG^{90}
Head circumference	10705	1.5	cm	13	1.00	EUR	EGG^{91}
Height	253288	0.1	m	13	1.00	EUR	GIANT ⁹²
Hip circumference	224459	8.5	cm	13	1.00	EUR	GIANT ⁹³
Waist circumference	224459	12.5	cm	13	1.00	EUR	GIANT ⁹³
Waist-to-hip ratio	224459	0.1	ratio	13	1.00	EUR	GIANT ⁹³
Smoking behaviors							
Age of smoking initiation	47961	0.3	log _e years	13	1.00	EUR	TAG ⁹⁴
Cigarettes smoked per day	68028	11.7	CPD	13	1.00	EUR	TAG ⁹⁴
Ever smoker	74035	NA	log _e odds	13	1.00	EUR	TAG ⁹⁴
Ex smoker	41969	NA	log _e odds	13	1.00	EUR	TAG ⁹⁴
Blood pressure							
Diastolic blood pressure	66466	10.7	mm Hg	12	1.00	EUR	ICBP ⁹⁵
Mean arterial pressure	27803	12.8	mm Hg	13	1.00	EUR	ICBP ⁹⁶
Pulse pressure	70903	13.5	mm Hg	13	1.00	EUR	ICBP ⁹⁶
Systolic blood pressure	66473	18.2	mm Hg	12	1.00	EUR	ICBP ⁹⁵
Education			-				
College completion	95427	NA	log _e odds	13	1.00	EUR	SSGAC ⁹⁷
Years of educational attainment	126559	1.2	years	13	1.00	EUR	SSGAC ⁹⁷
Glycemic							
2 hr glucose	15234	1.27	mmol/L	11	1.00	EUR	MAGIC ⁹⁸
Beta-cell function (HOMA-B)	46186	0.96	log _e HOMA	12	1.00	EUR	MAGIC ⁹⁹
Fasting glucose	46186	0.73	mmol/L	12	1.00	EUR	MAGIC ⁹⁹
Fasting insulin	38238	0.79	log _e pmol/L	12	1.00	EUR	MAGIC ⁹⁹
							14

Fasting proinsulin Gycated hemoglobin (HbA1c) Insulin resistance (HOMA-IR)	10701 46368 46186	0.81 0.53 0.67	log _e pmol/L % log_HOMA	12 12 12	$1.00 \\ 1.00 \\ 1.00$	EUR EUR FUR	MAGIC ⁹⁹ MAGIC ¹⁰⁰ MAGIC ⁹⁹
Hemotological	40100	0.07	loge Hown	12	1.00	LOK	white
Hemoglobin	54287	1.3	g/dL	12	1.00	EUR	van der Harst ¹⁰¹
Mean cell hemoglobin	45969	1.99	pg	12	1.00	EUR	Van der Harst ¹⁰¹
Mean cell hemoglobin concentration	49632	1.01	g/dL	12	1.00	EUR	Harst ¹⁰¹
Mean cell volume	51277	5.2	fl	12	1.00	EUR	Harst ¹⁰¹ van der
Packed cell volume	46848	5.9	%	12	1.00	EUR	Harst ¹⁰¹ van der
Red blood cell count Lipids	47873	0.5	10 ¹² /L	12	1.00	EUR	Harst ¹⁰¹
HDL cholesterol LDL cholesterol Total cholesterol Triglycerides	103019 97562 103266 99050	15.51 38.67 41.75 90.72	mg/dL mg/dL mg/dL mg/dL	11 11 11 11	1.00 1.00 1.00 1.00	EUR EUR EUR EUR	$\begin{array}{c} \mathrm{GLGC}^{102} \\ \mathrm{GLGC}^{102} \\ \mathrm{GLGC}^{102} \\ \mathrm{GLGC}^{102} \end{array}$
Renal function							CKDGen ¹⁰
Microalbuminuria	30482	NA	log _e odds	13	0.82	EUR	CKDGen ¹⁰
Serum creatinine	67093	0.24	$log_eml/min/1.73m^2$	13	1.00	EUR	CKDGen ¹⁰
Serum cystatin	20957	0.23	$log_eml/min/1.73m^2$	13	1.00	EUR	3 CKDGen ¹⁰
Urinary albumin-to-creatinine ratio Other	31580	1.0	log _e mg/g	13	1.00	EUR	3
Grade of nuclear cataract	7140	0.8	grade	11	1.00	ASN	SEEDS ¹⁰⁴ Speliotes ¹⁰
Hepatic steatosis	7176	5.6	Hounsfield units	12	1.00	EUR	5 5
Percent emphysema Uric acid	42742	0.71 1.3	$\log_{e} \% + 1$ mg/dL	12 12	1.00 1.00	ME EUR	GUGC ¹⁰⁷

 Unic acid
 42/42
 1.5
 mg/dL
 12
 1.00
 EUK
 GUGC

 Study acronyms: CKDGen, chronic kidney disease genetics consortium; EGG, Early Growth Genetics Consortium; GIANT, Genetic Investigation of ANthropometric Traits; GUGC, Global Urate and Gout consortium; TAG, Tobacco and Genetics Consortium; ICBP, International Consortium for Blood Pressure; SSGAC, Social Science Genetics Association Consortium; MAGIC, Meta-Analyses of Glucose and Insulin-related traits Consortium; MESA, Multi-Ethnic Study of Atherosclerosis; GLGC, Global Lipids Genetics Consortium; SEEDS, the Singapore Epidemiology of Eye Diseases Study.

 Abbreviations:
 ASN, Asian; Con., concentration; EUR, European population; ME, multi-ethnic; SD - standard deviation; log_e, natural log; Stat., statistical

11	·		1 1						-	U			
				No. of					RR (95%				
				controls	No.	RR (95% CI)	Scale of RR		CI) per SD				
Cohort / first				/ cohort	of	as reported by	reported by	Conversion	increase in				Search
author	Disease	Year	Design	size	cases	study	study	factor§	TL	Adjusted [*]	Pop.	Phet	strategy†
Cancer outco	mes												
NHS, HPFS ¹⁰⁸	Bladder cancer	2007	NCC	192	184	1.88 (1.05 to 3.36)	shortest vs. longest quartile	2.54	1.28 (1.02 to 1.61)	++	EUR	NA	2
CCHS, CGPS ¹⁰⁹	Breast cancer	2013	PC	24588	574	0.99 (0.95 to 1.03)	per 1000 bp (1.29 SD) decrease	-1.29	1.01 (0.98 to 1.04)	+++++	EUR		1
SWHS ¹¹⁰	Breast cancer	2013	NCC	695	601	1.77 (1.02 to 3.06)	shortest vs. longest quintile	2.80	1.23 (1.01 to 1.49)	++	EA	0.17	2
Sister Study ¹¹¹	Breast cancer	2011	Case- cohort	735	342	0.93 (0.64 to 1.35)	shortest vs. longest quartile	-2.54	1.03 (0.89 to 1.19)	+	EUR (92%)	0.17	1
EPIC ¹¹²	Breast cancer	2010	NCC	420	199	1.58 (0.75 to 3.31)	shortest vs. longest quartile	2.54	1.2 (0.89 to 1.6)	+	EUR		1
WHS ¹¹³	Colorectal cancer	2010	NCC	357	134	0.94 (0.65 to 1.38)	per unit (1.30 SD) decrease	-1.30	1.05 (0.78 to 1.4)	+++++	EUR		3
PHS ¹¹⁴	Colorectal cancer	2009	NCC	306	191	0.8 (0.55 to 1.16)	per unit (1.72 SD) decrease	-1.72	1.14 (0.92 to 1.41)	++++	EUR		3
CCHS, CGPS ¹⁰⁹	Colorectal cancer	2013	РС	46748	496	0.97 (0.88 to 1.07)	per 1000 bp (1.29 SD) decrease	-1.29	1.02 (0.95 to 1.1)	++++	EUR	0.47	1
SWHS ¹¹⁵	Colorectal cancer	2012	NCC	549	441	1.61 (0.94 to 2.75)	longest vs. 3rd shortest quintile	1.40	1.4 (0.96 to 2.06)	+	EA		1
EPIC ¹¹²	Colorectal cancer	2010	NCC	406	185	1.13 (0.54 to 2.36)	shortest vs. longest quartile	-2.54	0.95 (0.71 to 1.27)	+	EUR		1
NHS ¹¹⁶	Endometrial cancer	2010	NCC	791	279	1.2 (0.73 to 1.96)	shortest vs. longest quartile	-2.54	0.93 (0.77 to 1.13)	+++++	EUR	0.11	2
CCHS, CGPS ¹⁰⁹	Endometrial cancer	2013	PC	25262	103	0.85 (0.71 to 1.02)	per 1000 bp (1.29 SD)	-1.29	1.13 (0.99 to 1.31)	+++++	EUR		1

Supplementary Table S3. Selected prospective observational studies of the association between leukocyte telomere length and disease

PLCO ¹¹⁷	Glioma	2013	NCC	198	101	1.26 (0.69 to 2.29)	shortest vs. longest tertile	-2.18	0.9 (0.68 to 1.18)	++	EUR	NA	1
CCHS, CGPS ¹⁰⁹	Head & neck cancer	2013	PC	47036	76	1.17 (0.9 to 1.53)	per 1000 bp (1.29 SD) decrease	-1.29	0.89 (0.72 to 1.09)	++++	EUR	NA	1
CCHS, CGPS ¹⁰⁹	Kidney cancer	2013	PC	47063	59	1.04 (0.78 to 1.39)	per 1000 bp (1.29 SD) decrease	-1.29	0.97 (0.77 to 1.21)	++++	EUR	NA	1
PLCO ¹¹⁸	Kidney cancer	2013	NCC	410	209	0.8 (0.5 to 1.5)	longest vs. shortest quartile	2.54	0.92 (0.74 to 1.14)	+++	EUR (89.5%)	NA	1
PLCO, ATBC, SWHS ¹¹⁹	Lung adenocarcinoma	2014	NCC	288	288	2.52 (1.38 to 4.6)	longest vs. shortest quartile	2.54	1.44 (1.14 to 1.82)	++	EUR (75%)	NA	1
CCHS, CGPS ¹⁰⁹	Lung cancer	2013	PC	47035	522	1.08 (0.98 to 1.2)	per 1000 bp (1.29 SD) decrease	-1.29	0.94 (0.87 to 1.02)	++++	EUR	-0.001	1
PLCO, ATBC, SWHS ¹¹⁹	Lung cancer	2014	NCC	847	847	1.86 (1.33 to 2.62)	longest vs. shortest quartile	2.54	1.28 (1.12 to 1.46)	++	EUR (75%)	<0.001	1
PLCO, ATBC, SWHS ¹¹⁹	Lung SCC	2014	NCC	163	163	1.14 (0.53 to 2.45)	longest vs. shortest quartile	2.54	1.05 (0.78 to 1.42)	++	EUR (75%)	NA	1
CCHS, CGPS ¹⁰⁹	Melanoma	2013	PC	46805	177	0.89 (0.77 to 1.03)	per 1000 bp (1.29 SD) decrease	-1.29	1.09 (0.98 to 1.23)	++++	EUR	0.02	1
WHI, HPFS, NHS ¹²⁰	Melanoma	2011	NCC	579	557	0.43 (0.27 to 0.7)	shortest vs. longest quartile	-2.54	1.39 (1.16 to 1.68)	+	EUR	0.03	2
CCHS, CGPS ¹⁰⁹	Ovarian cancer	2013	PC	25367	96	0.85 (0.7 to 1.03)	per 1000 bp (1.29 SD) decrease	-1.29	1.13 (0.98 to 1.32)	+++++	EUR	NA	1
CCHS, CGPS ¹⁰⁹	Pancreatic cancer	2013	PC	47091	124	1.14 (0.93 to 1.41)	per 1000 bp (1.29 SD) decrease	-1.29	0.9 (0.77 to 1.06)	++++	EUR		1
ATBC ¹²¹	Pancreatic cancer	2013	NCC	660	193	1.58 (1.02 to 2.46)	longest vs. shortest quartile	2.54	1.2 (1.01 to 1.42)	++	EUR	0.05	1

decrease

EPIC ¹²²	Pancreatic cancer	2014	NCC	331	331	1.38 (0.8 to 2.41)	longest vs. shortest quartile	2.54	1.13 (0.91 to 1.41)	+	EUR		1
CCHS, CGPS ¹⁰⁹	Prostate cancer	2013	PC	21387	418	0.94 (0.85 to 1.04)	per 1000 bp (1.29 SD) decrease	-1.29	1.05 (0.97 to 1.13)	++++	EUR	0.37	1
HPFS ¹²³	Prostate cancer	2015	NCC	935	922	1.11 (1.01 to 1.22)	per SD increase	1.00	1.11 (1.01 to 1.22)	++++	EUR		1
NHS ¹²⁴	Skin BCC	2011	NCC	1683	363	0.91 (0.66 to 1.25)	longest vs. shortest quartile	2.54	0.96 (0.85 to 1.09)	+	EUR	NA	1
CCHS, CGPS ¹⁰⁹	Testicular cancer	2013	PC	21568	10	1.09 (0.57 to 2.09)	per 1000 bp (1.29 SD) decrease	-1.29	0.94 (0.56 to 1.55)	++++	EUR	NA	1
Non-neoplasti	c diseases												
Haycock ¹²⁵	Coronary heart disease	2014	MA	27352	2272	1.4 (1.15 to 1.7)	shortest vs. longest tertile	-2.18	0.86 (0.78 to 0.94)	*	EUR	NA	4
Haycock ^{#125}	Ischemic stroke	2014	MA	5300	824	1.14 (0.85 to 1.54)	shortest vs. longest tertile	-2.18	0.94 (0.82 to 1.08)	*	EUR	NA	4
Bruneck, SHFS, WHI ¹²⁶	Type 2 diabetes	2014	MA	6991	2011	1.31 (1.07 to 1.6)	shortest vs. longest quartile	-2.54	0.9 (0.83 to 0.97)	**	Mix	NA	4

[†]Search strategy used to identify the study (see Table S4 for details). ^{II}Meta-analysis of 11 prospective studies; [#]Meta-analysis of 6 prospective studies (90% of cases were ischemic stroke, 10% were unclassified cerebrovascular disease); [§]To convert reported log RR to log RR per SD increase in telomere length; [‡]Adjustment for confounders: ⁺adjusted for age and sex; ⁺⁺⁺⁺plus snoking; ⁺⁺⁺⁺plus body mass index; ⁺⁺⁺⁺⁺plus alcohol and/or physical activity; ⁺⁺⁺⁺⁺plus hormone replacement therapy, menopause and/or parity; ^{*}most studies adjusted for age, sex and non-lipid vascular risk factors; ^{**}adjusted for age, sex and body mass index; ⁺⁺⁺⁺⁺plus shown are studies; **NC**C, nested case-control study; **PC**, prospective cohort; **Phet**, p value for heterogeneity between studies; **Pop**, population; **RR**, relative risk; **SD**, standard deviation; **SCC**, squamous cell carcinoma; **v**, versus; **TL**, telomere length. **Study acronyms: ATBC**, Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study; **CCHS**, Copenhagen City Heart Study; **CGPS**, Copenhagen General Population Study; **EPIC**, European Prospective Investigation into Cancer and Nutrition study; **HPFS**, Health Professionals Follow-Up Study; **NHS**, Nurses Health Study; **PHS**, Physicians' Health Study; **PLCO**, Prostate, Lung, Colorectal, and Ovarian; **SHFS**, Strong Heart Family Study; the Sister Study: **SWHS**, Shanahai Women's Health Initiative; **WHS**, Women's Health Study

Search		No. of studies	No. meeting inclusion	Reasons for further	No. of studies
strategy	Search terms or meta-analysis	identified	criteria	exclusions	included
Inclusion cri	teria: prospective study of primary cancer outcome and telomere length [†]				
Strategy 1	25 February 2015: cancer[TIAB] AND telomere length[TIAB] AND (meta analysis[TIAB] OR prospective[TIAB] OR meta-analysis[TIAB])	54	11	NA	11^{+}
Strategy 2	25 March 2015: telomere length[Title/Abstract] AND (retrospective[Title/Abstract] OR case- control[Title/Abstract] OR case control[Title/Abstract] OR meta-analysis[Title/Abstract] OR meta analysis[Title/Abstract] OR prospective[Title/Abstract] OR cohort[Title/Abstract] OR cross- sectional[Title/Abstract] OR prospective[Title/Abstract] OR cohort[Title/Abstract] OR cross- sectional[Title/Abstract] OR breast cancer[Title/Abstract] OR chronic myeloid leukemia[Title/Abstract] OR esophageal adenocarcinoma[Title/Abstract] OR endometrial cancer[Title/Abstract] OR gaptile/Abstract] OR glioma[Title/Abstract] OR head cancer[Title/Abstract] OR melanoma[Title/Abstract] OR glioma[Title/Abstract] OR head cancer[Title/Abstract] OR melanoma[Title/Abstract] OR nasopharyngeal carcinoma[Title/Abstract] OR neuroblastoma[Title/Abstract] OR non-melanoma skin cancer[Title/Abstract] OR basal cell carcinoma[Title/Abstract] OR squamous cell carcinoma[Title/Abstract] OR nasopharyngeal carcinoma[Title/Abstract] OR neuroblastoma[Title/Abstract] OR non-melanoma skin cancer[Title/Abstract] OR basal cell carcinoma[Title/Abstract] OR prostate cancer[Title/Abstract] OR varian cancer[Title/Abstract] OR pancreatic cancer[Title/Abstract] OR prostate cancer[Title/Abstract] OR testicular germ cell cancer[Title/Abstract] OR Wilm's tumour[Title/Abstract] OR Bladder cancer[Title/Abstract] OR Breast cancer[Title/Abstract] OR Multiple myeloma[Title/Abstract] OR Lung adenocarcinoma[Title/Abstract] OR Lung squamous cell cancer[Title/Abstract] OR cancer[Title/Abstract] OR Lung squamous cell cancer[Title/Abstract] OR cancer[Title/Abstract] OR setosarcoma[Title/Abstract] OR Lung squamous cell cancer[Title/Abstract] OR cancer[Title/Abstract] OR bewereana] title/Abstract] OR leukaemia[Title/Abstract] OR Ewing sarcoma[Title/Abstract] OR leukemia[Title/Abstract] OR leukaemia[Title/Abstract] OR Ewing sarcoma[Title/Abstract] OR	209	17	13 duplicates	4
Strategy 3	Ma et al ¹²⁷ (2011) and Wentzensen et al ¹²⁸ (2011)	48	10	8 duplicates	2
Inclusion cri	teria: prospective study of primary disease outcome and telomere length ⁺			aupinoutos	
Strategy 4	8 January 2016: (meta-analysis OR "meta analysis") AND "telomere length"	42	7	2 did not report relative risks [§] ; 3 duplicates	2

Supplementary Table S4. PubMed search strategy for prospective observational studies of association between telomere length* and disease

*all identified eligible studies were studies of leukocyte telomere length; [†]1 study reported findings for 2 primary cancer outcomes and 1 study reported findings for 11 primary cancer outcomes; ^{||}1 meta-analysis reported findings for 2 primary non-neoplastic diseases; [†]primary outcomes were diseases where a priori statistical power was >50% to detect associations with telomere length (see supplementary text for technical details); see table S1 for a list of the primary disease outcomes; [§]relative risks were defined as odds ratios, hazard ratios and risk ratios

Formatted: Numbering: Continuous

Supplementary Table S6. Glossary of terms

Mendelian randomization	A technique to appraise causality in observational studies using
	genetic variants as 'unconfounded' instruments for risk factors or
	modifiable exposures of interest.
Instrumental variable	A 'proxy' variable used in place of the hypothesized risk factor
	or exposure in a Mendelian randomization analysis. A valid
	instrumental variable is associated with the exposure of interest
	but is not associated with confounders; and is associated with the
	outcome (e.g. disease) exclusively via its effect on the
	hypothesized exposure (see Supplementary Figure S7 for an
	illustration of these assumptions).
Reverse causation	When the outcome causes variation in the hypothesized exposure
	and not vice versa.
Confounding	When the association between exposure and outcome is not due
	to a causal relationship between the two variables but arises as a
	result of the separate effects of a third variable (the confounder)
	on the exposure and the outcome. Mendelian randomization
	studies are less susceptible to confounding in comparison to
	observational studies (but confounding by pleiotropy or
	population stratification is possible).
Pleiotropy	Occurs when a genetic variant is associated with multiple traits or
	phenotypes. Vertical pleiotropy occurs when the phenotypes are
	on the same causal pathway (and is less problematic for
	Mendelian randomization studies). Horizontal pleiotropy occurs
	if the phenotypes are associated with the genetic variant via
	separate pathways and can introduce confounding into a
	Mendelian randomization analysis. Sensitivity analyses, such as
	MR-Egger, the weighted median, scatter plots and funnel plots,
	can be used to test and, in some instances, adjust for pleiotropy.
Collider bias	The phenomenon by which statistical adjustment for a variable,
	M (known as the collider), that is a downstream consequence of
	both the exposure X and the outcome Y, induces an association
	between X and Y that was not previously present, and therefore
	leads to bias. In MR, if published genetic associations with the
	exposure and/or outcome are adjusted for a collider, this may
	lead to collider bias.
Weak instrument bias	Occurs when the instrument is only weakly associated with the
	exposure. Can introduce confounding into a Mendelian
	randomization analysis when the exposure and outcome data
	come from the same sample. When exposure and outcome data
	come from separate samples, as in two-sample Mendelian
	randomization, bias is towards the null. An F statistic > 10 , for
	the association between the instrument and exposure, is
	sometimes used as a threshold for defining strong instruments,
	although weak instrument bias varies continuously with the
	strength of the F statistic.

+We searched the GWAS catalog in January 2015 for studies of non-communicable diseases that did not select controls on the basis of pre-existing conditions. Of the 1493 studies in the GWAS catalog with unique PubMed reference numbers, we classified 773 as disease studies (the excluded nondisease studies were typically studies of risk factors for disease, biomarkers or response to treatments). A further 103 studies were excluded for the following reasons: studies of infectious diseases, studies of congenital abnormalities, studies of (not-cause specific) mortality, studies nested within disease populations and studies using pooled DNA samples. Of the 670 remaining noncommunicable disease studies, 130 were identified for correspondence. Our objective was to obtain the single largest available study for each non-communicable disease, so as to avoid unnecessary correspondence with duplicate studies and to avoid including studies with overlapping samples. *Primary outcomes were diseases with sufficient cases and controls for >50% power and secondary outcomes were diseases with <50% power to detect odds ratios ≥ 2.0 per standard deviation change in genetically increased telomere length (alpha assumed to be 0.01). All risk factors were classified as secondary outcomes. GWAS, genome-wide association study; GWAS Cat., NHGRI-EBI GWAS catalogue; SNP, single nucleotide polymorphism; NHGRI, National Human Genome Research Institute; EBI, European Bioinformatics Institute

	No. of	No. of		Odds	ratio (95	% CI) pe	er standa	ard dev	iation c	hange		D#	D
Concor	Cases	SNPS		1	n genetic	cally inci	reased t	elomer	e length	l		P*	P _{het}
Multiple mysleme	4602	1			1			•			10.02 (2.84.26.12)	2 46-10-6	NIA
Chronic lymphosytic leukemia	2882	1									10.02(3.64, 20.13) 10.02(2.56, 28.21)	1.00×10-5	NA
Thuroid concer	2005	12								_	10.02(5.50, 28.21)	00157	0.0622
Chronic myaloid laukamia	201	6									3.58(1.05, 5.50)	16122	0.0023
Ewing's sarcoma	401	4				`	·	_			2.38(0.08, 9.72) 2 11 (0.67, 6.62)	10005	0.3378
Lunner costrointestingl concers	2522	2					_	_			1.11(0.07, 0.02)	22022	0.13977
Gastric noncardia adenocarcinoma	632	8									1.43 (0.03, 2.30)	36307	0.5248
Gallbladder cancer	41	2									1.41(0.07, 2.90) 1 34 (0.03 52 74)	87565	0.033334
Nasonharungeal carcinoma	1583	2					-				1.34(0.03, 32.74) 1.28(0.59, 2.76)	53478	0.11005
Follicular lymphoma	212	2									1.28(0.39, 2.70) 1.22(0.28, 5.35)	70420	0.744
P coll Non Hodskin lymphome	212	\$					_				1.22(0.28, 5.33) 1.10(0.42, 2.20)	74404	0.744
Gostria cardia adenacarainama	1126	0		-							1.19(0.43, 3.30) 1.16(0.64, 2.12)	62416	0.43713
Skin squamous call corainoma	1120	12									1.10(0.04, 2.12)	24762	0.02882
Skin squamous cen carcinoma	449	15				_					0.05 (0.51, 1.50)	.24702	0.02882
Neurological / psychiatric dis	seases												
Parkinson's disease	1713	4				_					1.05 (0.62, 1.77)	.86652	0.39261
Bulimia nervosa	151	8			•						0.94 (0.88, 1.01)	.11517	0.56954
Panic disorder	718	6		•	_						0.28 (0.11, 0.72)	.00794	0.50155
Autoimmune/inflammatory of	liseases												
Kawasaki disease	405	11			- F						2.04 (1.00, 4.16)	.04916	0.89977
Vitiligo	1117	2			-						1.64 (0.68, 3.93)	.26749	0.29428
Systemic lupus erythematosus	1311	4			- +	-	-				1.59 (0.88, 2.88)	.12437	0.85408
Inflammatory psoriatic arthritis	609	13			-	•	_				1.42 (0.64, 3.12)	.38811	0.60414
Narcolepsy	1188	7									1.01 (0.53, 1.92)	.98459	0.47427
Psoriasis	1139	7									0.97 (0.46, 2.04)	.93998	0.92607
Wegener's granulomatosis	492	10									0.77 (0.27, 2.17)	.61922	7e-05
Sarcoidosis	564	9			•	-					0.50 (0.21, 1.23)	.1315	0.43903
Other													
Hirschsprung's disease	173	4									1.81 (0.33, 9.78)	.49239	0.05912
Vascular dementia	84	7				.					1.72 (0.25, 12.04)	.58566	0.18275
Paget's disease	741	12									0.96 (0.54, 1.71)	.89502	0.68681
					1								
						I							
			.06 .12	.25	.5 1	2	4	8	16				

336 Supplementary Figure S2. Association between genetically increased telomere length and odds of secondary non-communicable diseases

*P value for association between genetically increased telomere length and disease from maximum likelihood; Phet, P value for heterogeneity amongst SNPs within the genetic risk score; SNP, single nucleotide polymorphism; CI, confidence interval

Formatted: Numbering: Continuous

Disease/	No. of	No. of	Odds ratio (9	5% CI) per standard deviati	on change		
Study	cases	SNPs	in genet	tically increased telomere le	ength	P*	P _{het}
Coronary heart dis	ease						
CARDIoGRAM†	22233	13	+		0.78 (0.67, 0.90)	0.0009	0.244
C4D	15399	4	-		0.70 (0.56, 0.88)	.0023	0.066
Colorectal cancer							
CORECT/GECCO	14537	9			1.09 (0.91, 1.31)	0.3436	0.016
Zhang et al	728	7		—	1.29 (0.64, 2.59)	.4738	0.269
Multiple sclerosis							
IMSGC†	14498	3			0.98 (0.70, 1.36)	0.8885	0.145
Baranzini et ai	978	4		—	1.09 (0.47, 2.55)	.8444	0.462
Type 2 diabetes							
DIAGRAM†	10415	11	T.		1.00 (0.84, 1.20)	0.9837	0.681
Li et al	8569	8	T	-	1.28 (0.77, 2.11)	.3407	0.843
Bladder cancer	1601	10		•		0.000	0.254
NBCST	7712	10		—	2.19 (1.32, 3.66)	0.0026	0.254
rigueroa et al	//12	1			5.21 (2.48, 10.94)	1.00x10	NA
Pancreatic cancer							
PanScan†	5105	12	-+		0.86 (0.56, 1.32)	0.5009	0.001
PanC4	4164	11			0.74 (0.53, 1.02)	0.0657	0.043
Glioma							
Walsh et al†	1130	12		—	5.27 (3.15, 8.81)	2.45x10-10	0.013
GliomaScan	1854	1			▶ 21.55 (3.82, 121.47)	0.0005	NA
nterstitial lung dis	ease						
Fingerlin et al†	1616	9			0.09 (0.05, 0.15)	2.02x10 ⁻¹⁹	0.001
Noth et al+	542	11	→		0.30 (0.12, 0.77)	0.0120	0.183
Vasopharyngeal ca	rcinoma						
Bei et al†	1583	2		—	1.28 (0.59, 2.76)	0.5348	0.120
Tse et al	277	2			5.04 (0.36, 71.44)	0.2315	0.165

Formatted: Numbering: Continuous

Supplementary Figure S3. Replication of association between genetically increased telomere

*P value for association between genetically increased telomere length and disease from maximum likelihood. †Primary or secondary study from Fig. 1 or Fig. S2. *Noth et al⁸¹: $\leq 17\%$ of the cases overlapped with cases from Fingerlin et al³¹ and 77% of cases had idiopathic pulmonary fibrosis; ‡An inverse association was also observed in Mushiroda et al⁸². Phet, p value for heterogeneity amongst SNPs in the genetic risk score (NA when only a Investe association was also observed in infusitional et al. Phet, p value for neurogeneity annotast sives in the genetic risk score (vA when only a single SNP available); SNP, single nucleotide polymorphism; CI, confidence interval. Study abbreviations: C4D, Coronary Artery Disease Genetics Consortium; CARDIoGRAM, Coronary Artery Disease Genome wide Replication and Meta-analysis; CORECT, ColoRectal Transdisciplinary Study; GECCO, Genetics and Epidemiology of Colorectal Cancer Consortium; IMSGC, International Multiple Sclerosis Genetic Consortium; NBCS, Nijmegen Bladder Cancer Study; IMSGC, International Multiple Sclerosis Genetic Consortium;

Supplementary Figure S4. Sensitivity analyses of association between genetically increased telomere length and odds of non-communicable diseases

2	-	-
- 3	Э	1

LMP, low malignancy potential; CI, confidence interval. The P_{intercept} from MR-Egger regression tests the null hypothesis that the intercept is zero and can be interpreted as a statistical test for the presence of directional (bias inducing) pleiotropy; the smaller the P_{intercept} value the stronger the evidence for directional pleiotropy.

	Sample size	No. of SNPs	Standard deviation or log odds [†] change (95% CI) in risk factor per standard deviation change in genetically increased telomere ler	gth	P*	P _{het}
Anthropometric traits Height Body mass index Waist circumference Hip circumference Waist-to-hip ratio Birth weight Childhood obesity† Head circumference	247695 241253 158648 149224 148662 22657 13848 10705	13 13 13 13 13 12 12 12 12 13		$\begin{array}{c} 0.02 \ (-0.01, 0.05) \\ -0.01 \ (-0.04, 0.03) \\ 0.01 \ (-0.04, 0.05) \\ -0.00 \ (-0.05, 0.04) \\ 0.02 \ (-0.02, 0.06) \\ 0.00 \ (-0.08, 0.08) \\ -0.05 \ (-0.15, 0.04) \\ 0.016 \ (-0.10, 0.43) \\ -0.06 \ (-0.20, 0.09) \end{array}$	$\begin{array}{c} 0.2477\\ 0.6054\\ 0.7911\\ 0.8472\\ 0.3158\\ 0.9708\\ 0.2753\\ 0.2286\\ 0.4416\end{array}$	<0.0001 0.1109 0.1302 0.1708 0.2823 0.6970 0.9138 0.2111 0.2177
Education Years of educational attainment College completion†	126559 126559	13 13	*	0.04 (0.01, 0.07) 0.12 (0.02, 0.21)	0.0142 0.0215	0.4718 0.1764
Lipids Total cholesterol HDL cholesterol Triglycerides LDL cholesterol	103266 103019 99050 97562	11 11 11 11		-0.00 (-0.05, 0.05) -0.08 (-0.13, -0.04) 0.07 (0.03, 0.12) 0.00 (-0.05, 0.05)	0.9899 0.0005 0.0012 0.9985	0.0037 0.2924 0.4907 0.0294
Blood pressure Pulse pressure Systolic blood pressure Diastolic blood pressure Mean arterial pressure	70903 66473 66466 27803	13 12 12 13		0.06 (0.01, 0.10) 0.09 (0.04, 0.15) 0.10 (0.04, 0.16) 0.09 (0.04, 0.13)	0.0148 0.0014 0.0008 0.0005	0.1526 0.2368 0.6963 0.2146
Renal function Serum creatinine Urinary albumin-to-creatinine ratio Microalbuminuria† Serum cystatin	67093 31580 30482 20957	13 13 13 13		0.02 (-0.03, 0.07) 0.09 (-0.00, 0.19) 0.20 (-0.06, 0.46) 0.02 (-0.07, 0.12)	0.4843 0.0546 0.1308 0.6247	0.2522 0.2306 0.5607 0.4767
Hemotological traits Hemoglobin Mean cell volume Mean eell hemoglobin concentration Red blood cell count Packed cell volume Mean cell hemoglobin	54287 51277 49632 47873 46848 45969	12 12 12 12 12 12 12		-0.01 (-0.05, 0.04) -0.09 (-0.14, -0.04) -0.01 (-0.03, 0.01) 0.03 (-0.01, 0.08) -0.00 (-0.03, 0.03) -0.23 (-0.34, -0.12)	0.7553 0.0009 0.3332 0.1626 0.8309 <0.0001	0.6636 0.0062 0.1728 0.4471 0.4526 0.0160
Clycemic traits Gycated hemoglobin (HbA1c) Fasted glucose Fasted insulin Insulin resistance (HOMA-IR) Beta-cell function (HOMA-B) 2hr glucose Fasted proinsulin	46368 46186 46186 46186 46186 15234 10701	12 12 12 12 12 12 11 12		$\begin{array}{c} -0.01 \ (-0.07, \ 0.05) \\ 0.01 \ (-0.04, \ 0.06) \\ -0.05 \ (-0.10, \ 0.00) \\ -0.05 \ (-0.10, \ 0.00) \\ -0.03 \ (-0.06, \ 0.01) \\ -0.12 \ (-0.27, \ 0.02) \\ 0.06 \ (-0.03, \ 0.15) \end{array}$	0.7766 0.6798 0.0586 0.1259 0.1779 0.1016 0.2139	0.3652 0.2955 0.1910 0.2511 0.0165 0.9574 0.8945
Other traits Uric acid Percent emphysema Hepatic steatosis Grade of nuclear cataract	42742 7914 7176 7140	12 12 12 8		0.02 (0.00, 0.03) 0.09 (-0.04, 0.23) 0.11 (-0.08, 0.29) -0.00 (-0.15, 0.14)	0.0341 0.1826 0.2651 0.9572	0.0015 0.5247 0.8700 0.1934

362 Supplementary Figure S5. Association between genetically increased telomere length and risk factors for non-communicable diseases

*P value for association between genetically increased telomere length and risk factor from maximum likelihood; P_{het} , p value for heterogeneity amongst SNPs within the genetic risk score; SNP, single nucleotide polymorphism; CI, confidence interval; HbA1c, hemoglobin A1c; HOMA-B, homeostatic model assessment β -cell function; IR, insulin resistance; \uparrow for binary risk factors results reflect the log odds ratio for the risk factor, all other results reflect the standard deviation change in the risk factor

Formatted: Numbering: Continuous

363 Supplementary Figure S6. Association between genetically increased telomere length and smoking

*P value for association between genetically increased telomere length and risk factor from maximum likelihood; P_{het}, P value for heterogeneity amongst SNPs within the genetic risk score; SNP, single nucleotide polymorphism; CI, confidence interval; †for binary risk factors results reflect the log odds ratio for the risk factor, all other results reflect the standard deviation change in the risk factor

364

366 Supplementary Figure S7. Causal diagram illustrating the assumptions of Mendelian

368 a)

α,

371

a) Key assumptions of Mendelian randomization. G_j is associated with X (IV1); G_i is independent
 of confounders (IV2); G_j is independent of Y given X and U (IV3). The weighted median approach

assumes that IV1-IV3 hold for genetic variants making up at least 50% of the weight in the

analysis; MR-Egger relaxes assumption IV3 (see InSIDE assumption below).

b) Assumptions underlying the MR-Egger approach. IV3 is replaced with the InSIDE assumption
 (Instrument Strength Independent of Direct Effect): the strength of the pleiotropic effect (ai) does

(Instrument Strength Independent of Direct Effect): the strength of the pleiotropic effect (α j) does not correlate with the strength of the G-X association (γ j). Under the InSIDE assumption, MR-

Egger can consistently estimate the causal effect of X on Y, represented by the parameter β in (b).

384

385

- 386
- 387
- 388

389

³⁷² IV, instrumental variable assumption; G_j , single nucleotide polymorphism j; X, telomere length; Y, 373 outcome (disease or risk factor); U, confounder; α , G-Y association not mediated by telomere 374 length (often described as a horizontal pleiotropic or direct effect); γ , SNP-telomere-length 375 association.

352 Mention Eleventities of the contrade into stobiles hite consonting	392	ACKNOWLEDGEMENTS OF THE CONTRIBUTING STUDIES AND CONSOF	TIA
--	-----	---	-----

393

394 Amyotrophic lateral sclerosis GWAS consortium

- Isabella Fogh¹, Kuang Lin¹, John F. Powell¹, the SLAGEN Consortium, Vincenzo Silani², the
 ALSGEN consortium, Orla Hardiman³, Robert H. Brown⁴, Ammar Al-Chalabi¹, Jan H. Veldink⁵.
- 397
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute,
 Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United
 Kingdom
- 2. Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano,Milano, Italy
- 3. Population Genetics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin,
 Republic of Ireland
- 405 4. Department of Neurology, University of Massachusetts Medical School, Worcester,
 406 Massachusetts, United States of America
- 407 5. Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical
- 408 Center Utrecht, The Netherlands
- 409
- 410 Funding/Support
- 411 I. Fogh was supported by funds from Motor Neurone Disease Association of Great Britain and
- 412 Northern Ireland (grant n.905-793, 6058).
- 413 J.Powell, A.Al-Chalabi and I.Fogh received salary support from the National Institute for Health
- 414 Research (NIHR) Dementia Biomedical Research Unit at South London and Maudsley NHS
- 415 Foundation Trust and King's College London. The UK National DNA Bank for MND Research was
- 416 funded by the Motor Neurone Disease Association (grant 3/3), the Wellcome Trust (grant

417 070122/A/02/Z) and the NIHR Dementias and Neurodegenerative Diseases Research Network
418 (DeNDRoN).

- 419 V. Silani was supported by Agenzia Italiana per la Ricerca sulla SLA-AriSLA (grant NOVALS
- 420 2012 cofinanced with the contribution of 5 x 1000, Healthcare Research support of the Ministry of
- 421 Health), the Italian Ministry of Health (Grant ALS-FTD, Ric. Finalizzata 2009 no.276) and
- 422 Associazione Amici "Centro Dino Ferrari".
- 423 J.H. Veldink was supported by the Netherlands Organisation for Health Research and Development.
- 424

425 The Aneurysm Consortium

426 *GWAS data on abdominal aortic aneurysm (AAA) studies*

All known studies with AAA genome-wide genotyping were invited to join the International
Aneurysm Consortium. All studies agreed to participate in the meta-GWAS, with cohort case
control descriptions and inclusion/exclusion criteria having been previously reported.^{28,129,130} All
AAA cases shared a common definition of infra-renal aortic diameter >30 mm.

431

432 Descriptions of AAA cohorts

In the present report, the Aneurysm Consortium consists of the original Aneurysm Consortium plus
the NZ AAA Genetics Study (two separate cohorts), the Geisinger Vascular Clinic AAA study, the
Iceland study and the Netherlands study.

Original Aneurysm Consortium (1846 cases and 5605 controls): The original Aneurysm Consortium recruited cases of AAA from centres across the United Kingdom and Western Australia. Cases were defined as an infra-renal aortic diameter \geq 30 mm proven on ultrasound or computerized tomography (CT) scan. Controls were taken from the WTCCC2 common control group^{28,131} and were therefore unscreened for AAA.

NZ AAA Genetics Study (with two separate cohorts: set 1 with 608 cases and 612 controls; set 2
with 397 cases and 384 controls): The Vascular Research Consortium of New Zealand recruited

New Zealand men and women with a proven history of AAA (infra-renal aortic diameter ≥ 30 mm proven on ultrasound or CT scan). Approximately 80% had undergone surgical AAA repair (typically AAA's > 50-55 mm in diameter). The vast majority of cases (>97%) were of Anglo-European ancestry. The control group underwent an abdominal ultrasound scan to exclude (>25 mm) concurrent abdominal aortic aneurysm and Anglo-European ancestry was required for inclusion. Controls were also screened for peripheral artery disease (PAD; using ankle brachial index), carotid artery disease (ultrasound) and other cardiovascular risk factors.

450

Geisinger Vascular Clinic AAA Study, Pennsylvania, USA: AAA patients (n=724) were enrolled 451 through the Department of Vascular Surgery at Geisinger Medical Center, Danville, PA. Details of 452 this case-control set have been reported previously, and the samples have been used in previous 453 association studies.^{129,132} To identify cases and controls from the electronic medical records, an 454 ePhenotyping algorithm was developed²⁹. AAA cases were defined as infrarenal aortic diameter \geq 455 30 mm as revealed by abdominal imaging. Approximately 20% of individuals with AAA had a 456 457 family history of AAA. A control group (n=1231) was obtained through the Geisinger MyCode® 458 Project, a cohort of Geisinger Clinic patients recruited for genomic studies. The MyCode® controls 459 were matched for age distribution and sex to the Geisinger Vascular Clinic AAA cases. Based on 460 electronic medical records, controls had no ICD-9 codes for AAA in their records, but they were not screened by ultrasonography for AAA. Both cases and controls from the Geisinger Clinic were 461 of European descent. The eMERGE Network Imputed GWAS for 41 Phenotypes (the dbGaP 462 eMERGE Phase 1 and 2 Merged data Submission) accession number is: phs000888.v1.p1 which 463 464 includes the Geisinger AAA data.

465

466 Iceland, deCODE Genetics: Icelandic individuals with AAA (defined as infra-renal aortic diameter 467 \geq 30 mm) were recruited from a registry of individuals who were admitted at Landspitali University 468 Hospital, in Reykjavik, Iceland, 1980 – 2006. AAA patients were either followed up or treated by intervention for emergency repair of symptomatic or ruptured AAA or for an elective repair by surgery or endovascular intervention. In total, whole genome data from 557 subjects with AAA, enrolled as part of the CVD genetics program at deCODE, were included in the metaGWAS. The Icelandic controls used (n=89,235) were selected from among individuals who have participated in various GWA studies and who were recruited as part of genetic programs at deCODE. Individuals with known cardiovascular disease were excluded as controls¹²⁹ but controls were unscreened for AAA.

476

The Netherlands: The AAA sample set from Utrecht was recruited in 2007-2009 from eight centres in The Netherland¹²⁹, mainly when individuals visited their vascular surgeon in the polyclinic or, in rare cases, during hospital admission for elective or emergency AAA surgery. An AAA was defined as an infrarenal aorta \geq 30 mm. The sample set (n=840) comprised 89.9% males, with a mean AAA diameter of 58.4 mm, 61.7% had received surgery, of which 8.1 % was after rupture. The Dutch controls (n=2791) used in the AAA GWAS were recruited as part of the Nijmegen Biomedical Study and the Nijmegen Bladder Cancer Study (see http://dceg.cancer.gov/icbc/membership.html).

484

485 Meta-analysis of AAA GWASs

Data from the six cohorts detailed above, comprising 4972 AAA cases and 99,858 controls, that 486 were genotyped with a variety of genome-wide SNP arrays. All cohorts underwent quality control 487 filtering using the manufacturers' array-specific guidelines but with consistently applied inclusion 488 criteria of SNP or sample call rates >95% and Hardy-Weinberg equilibrium P>5x10⁻⁵ in 489 controls.^{28,129,130,132} Each cohort then underwent imputation (Impute 2.2) to a shared reference panel 490 from the 1000 Genomes project (Phase I integrated variant set release (v3), March 2012, NCBI 491 492 build 37(hg19 Following imputation SNPs were quality controlled by quality score (Q>0.9) and minor allele frequency (MAF>0.05 in controls) filtering, resulting in a common set of 5331120 493 SNPs across all discovery phase participants. 494
The metaGWAS analysis was conducted using the METAL software package¹³³ on the BCISNPmax database platform (version 3.5, BCI Platforms, Espoo, Finland). METAL was implemented using the sample size scheme with weighting for each cohort being two times the case number. The analysis was adjusted for genomic inflation (λ) in each cohort.

499

500 Acknowledgements on AAA GWAS studies:

501 Data provided by the original Aneurysm Consortium was funded by the Wellcome Trust (award 502 number 084695) and made use of data generated by the WTCCC. A full list of the investigators who contributed to the generation of the data is available from www.wtccc.org.uk. Funding for the 503 WTCCC project was provided by the Wellcome Trust under award 076113 and 085475. Funding 504 for the New Zealand project was provided by the Health Research Council of New Zealand (08-75, 505 14-155). The Geisinger sample collection was funded in part by the Pennsylvania Commonwealth 506 Universal Research Enhancement program, the Geisinger Clinical Research Fund, the American 507 508 Heart Association, and the Ben Franklin Technology Development Fund of Pennsylvania. The 509 generation and management of GWAS genotype data for the Rotterdam Study (control samples for the Dutch GWAS) is supported by the Netherlands Organization of Scientific Research NWO 510 Investments (nr. 175.010.2005.011, 911-03-012). This study is funded by the Research Institute for 511 512 Diseases in the Elderly (014-93-015; RIDE2), the Netherlands Genomics Initiative (NGI)/NWO project nr. 050-060-810. 513

514 515

516 Australian Asthma Genetics Consortium

David L. Duffy^a, Dale R. Nyholt^a, John Beilby^{b-d}, Svetlana Baltic,^e Loren Price^e, Faang Cheah^e,
Desiree Mészáros^f, Scott D. Gordon^a, Melissa C. Southey^g, Margaret J. Wright^a, James Markos^h, Li
P. Chung^e, Anjali K. Henders^a, Graham Gilesⁱ, Suzanna Temple^e, John Whitfield^a, Brad Shelton^e,
Chalermchai Mitrpant^e, Minh Bui, PhD,^j Mark Jenkins^j, Haydn Walters^f, Michael J. Abramson^k,

- 521 Michael Hunter^{1,d}, Bill Musk ^{1,d,m,n}, Peter Le Souëf,^o Shyamali C. Dharmage^j, Grant W.
- 522 Montgomery,^a Alan James,^{c,m,d}, Nicholas G. Martin^a, Melanie C. Mathesonj
- 523
- ^aQIMR Berghofer Medical Research, Brisbane, Australia.
- ^b PathWest Laboratory Medicine of Western Australia (WA), Nedlands, Australia.
- ^c School of Pathology and Laboratory Medicine, The University of WA, Nedlands, Australia.
- ^d Busselton Population Medical Research Foundation, Sir Charles Gairdner Hospital, Perth,
 Australia.
- ^e Institute of Respiratory Health, University of WA, Perth, Australia.
- ^f Menzies Research Institute, Hobart, Australia.
- ^g Department of Pathology, The University of Melbourne, Melbourne, Australia.
- ⁵³² ^h Launceston General Hospital, Launceston, Australia.
- ⁱ Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, Australia.
- 534 ^j Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, University of
- 535 Melbourne, Melbourne, Australia.
- ^k Department of Epidemiology & Preventive Medicine, Monash University, Melbourne, Australia
- ¹ School of Population Health, The University of WA, Nedlands, Australia
- ^m School of Medicine and Pharmacology, University of Western Australia, Nedlands, Australia
- ⁿ Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Australia
- ⁶ School of Paediatrics and Child Health, Princess Margaret Hospital for Children, Perth, Australia
- 541

542 Coronary ARtery DIsease Genome wide Replication and Meta-analysis (CARDIoGRAM)

543 consortium and The Coronary Artery Disease (C4D) Genetics consortium

- 544 We thank the CARDIoGRAM and C4D consortia for making summary data available to the
- 545 research community. Data on coronary artery disease / myocardial infarction have been contributed
- 546 by CARDIoGRAMplusC4D investigators and have been downloaded from

547	www.CARDIOGRAMPLUSC4D.ORG. The investigators within CARDIoGRAM and C4D did not
548	participate in the analysis, writing or interpretation of this report.
549	
550	The Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) – Heart
551	Failure Working Group
552	For a full list of CHARGE - Heart Failure working group members contributing to this work and
553	for CHARGE – Heart Failure acknowledgements please see PMID 20445134.
554	
555	CHARGE - Sudden Cardiac Arrest Working Group
556	Aravinda Chakravarti ¹ , Anna Moes ¹ , Dan E. Arking ¹ , Foram N. Ashar ¹ , Georg Ehret ¹ , Josef
557	Coresh ² , Man Li ² , Ronald Prineas ³ , Angel Mak ⁴ , Pui-Yan Kwok ⁴ , Catherine O. Johnson ⁵ , Nona
558	Sotoodehnia ⁵ , David S. Siscovick ⁶ , Oscar H. Franco ⁷ , Thomas Lumley ⁸ , Florence Dumaso ⁹ , Xavier
559	Jouven ⁹ , Martina Muller-Nurasyid ¹⁰ , Stefan Kaab ¹⁰ , Barbara M. McKnight ⁵ , Bruce M. Psaty ⁵ ,
560	Jennifer A. Brody ⁵ , Jerome I. Rotter ¹¹ , Ken Rice ⁵ , Rozenn N. Lemaitre ⁵ , Christopher J.
561	O'Donnell ¹² , Christopher Newton-Cheh ¹³ , Shih-Jen Hwang ¹² , Heikki Huikuri ¹⁴ , Marja-Leena
562	Kortelainen ¹⁴ , M Juhani Junttila ¹⁴ , Jean-Claude Tardif ¹⁵ , John D. Rioux ¹⁵ , Philippe Goyette ¹⁵ ,
563	Christine M. Albert ¹⁶ , Martin VanDenBurgh ¹⁶ , Sara Pulit ¹⁷ , Andre G Uitterlinden ² , Albert
564	Hofman ² ,Bruno H Stricker ² ,Mark Eijgelsheim ²
565	
566	1. Institute of Genetic Medicine, Johns Hopkins, Baltimore, USA, 21205
567	2. Department of Epidemiology, Johns Hopkins University, Baltimore, USA, 21205
568	3. Public Health Sciences, Wake Forest University, Winston-Salem, USA, 27157
569	4. Cardiovascular Research Institute and Institute for Human Genetics, University of California,
570	San Francisco, San Francisco, USA,
571	5. Cardiovascular Health Research Unit, Department of Biostatistics, University of

572 Washington,Seattle,USA,98101

- 573 6. New York Academy of Medicine, New York, USA,
- 574 7. Department of Epidemiology, Erasmus MC, Erasmus, The Netherlands,
- 575 8. Department of Statistics, University of Auckland, Auckland, NZ,
- 576 9. Paris sudden Death Expertise Center, University Paris Sorbonne cité, Paris, France,
- 577 10. Department of Medicine I ,Ludwig-Maximilians University,Munich,Germany,
- 578 11. Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical
- 579 Research Institute, Departments of Pediatrics and Medicine, Harbor-UCLA Medical Center, Los
- 580 Angeles,USA
- 581 12. NHLBI Framingham Heart Study, Boston, USA,
- 582 13. Center for Human Genetic Research & Cardiovascular Research Center, Massachusetts General
- 583 Hospital,Boston,USA,
- 584 14. Internal Medicine, University of Oulu, Oulu, Finland,
- 585 15. Montreal Heart Intitute, University of Montreal, Quebec, Canada,
- 586 16. Divisions of Preventive Medicine and Cardiovascular Medicine, Department of
- 587 Medicine, Brigham and Women's Hospital, Boston, USA,
- 588 17. Department of Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands,
- 589

590 The Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPDGene)

The COPDGene project was supported by Award Number R01HL089897 and Award Number R01HL089856 from the National Heart, Lung, And Blood Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Heart, Lung, And Blood Institute or the National Institutes of Health. The COPDGene project is also supported by the COPD Foundation through contributions made to an Industry Advisory Board comprised of AstraZeneca, Boehringer Ingelheim, Novartis, Pfizer, Siemens, Sunovion, and GlaxoSmithKline. 598 *COPDGene Administrative Core*: James Crapo, MD (PI), Edwin Silverman, MD, PhD (PI), Barry
599 Make, MD, Elizabeth Regan, MD, PhD

600

COPDGene Genetic Analysis Core: Terri Beaty, PhD, Nan Laird, PhD, Christoph Lange, PhD,
Michael Cho, MD, Stephanie Santorico, PhD, John Hokanson, MPH, PhD, Dawn DeMeo, MD,
MPH, Nadia Hansel, MD, MPH, Craig Hersh, MD, MPH, Peter Castaldi, MD, MSc, Merry-Lynn
McDonald, PhD, Emily Wan, MD, Megan Hardin, MD, Jacqueline Hetmanski, MS, Margaret
Parker, MS, Marilyn Foreman, MD, Brian Hobbs, MD, Robert Busch, MD, Adel El-Boueiz, MD,
Peter Castaldi, MD, Megan Hardin, MD, Dandi Qiao, PhD, Elizabeth Regan, MD, Eitan HalperStromberg, Ferdouse Begum, Sungho Won, Sharon Lutz, PhD

608 COPDGene Imaging Core: David A Lynch, MB, Harvey O Coxson, PhD, MeiLan K Han, MD,

609 MS, MD, Eric A Hoffman, PhD, Stephen Humphries MS, Francine L Jacobson, MD, Philip F Judy,

610 PhD, Ella A Kazerooni, MD, John D Newell, Jr., MD, Elizabeth Regan, MD, James C Ross, PhD,

611 Raul San Jose Estepar, PhD, Berend C Stoel, PhD, Juerg Tschirren, PhD, Eva van Rikxoort, PhD,

612 Bram van Ginneken, PhD, George Washko, MD, Carla G Wilson, MS, Mustafa Al Qaisi, MD,

- 613 Teresa Gray, Alex Kluiber, Tanya Mann, Jered Sieren, Douglas Stinson, Joyce Schroeder, MD,
- 614 Edwin Van Beek, MD, PhD
- 615 COPDGene PFT QA Core, Salt Lake City, UT: Robert Jensen, PhD
- 616 COPDGene Data Coordinating Center and Biostatistics, National Jewish Health, Denver, CO:
- 617 Douglas Everett, PhD, Anna Faino, MS, Matt Strand, PhD, Carla Wilson, MS
- 618 COPDGene Epidemiology Core, University of Colorado Anschutz Medical Campus, Aurora, CO:
- 619 John E. Hokanson, MPH, PhD, Gregory Kinney, MPH, PhD, Sharon Lutz, PhD, Kendra Young
- 620 PhD, Katherine Pratte, MSPH, Lindsey Duca, MS
- 621
- 622 COPDGene Clinical Centers
- 623 Ann Arbor VA: Jeffrey L. Curtis, MD, Carlos H. Martinez, MD, MPH, Perry G. Pernicano, MD

- 624 Baylor College of Medicine, Houston, TX: Nicola Hanania, MD, MS, Philip Alapat, MD, Venkata
- 625 Bandi, MD, Mustafa Atik, MD, Aladin Boriek, PhD, Kalpatha Guntupalli, MD, Elizabeth Guy,
- 626 MD, Amit Parulekar, MD, Arun Nachiappan, MD
- 627 Brigham and Women's Hospital, Boston, MA: Dawn DeMeo, MD, MPH, Craig Hersh, MD, MPH,
- 628 George Washko, MD, Francine Jacobson, MD, MPH
- 629 Columbia University, New York, NY: R. Graham Barr, MD, DrPH, Byron Thomashow, MD, John
- Austin, MD, Belinda D'Souza, MD, Gregory D.N. Pearson, MD, Anna Rozenshtein, MD, MPH,FACR
- 632 Duke University Medical Center, Durham, NC: Neil MacIntyre, Jr., MD, Lacey Washington, MD,
- 633 H. Page McAdams, MD
- Health Partners Research Foundation, Minneapolis, MN: Charlene McEvoy, MD, MPH, Joseph
 Tashjian, MD
- 636 Johns Hopkins University, Baltimore, MD: Robert Wise, MD, Nadia Hansel, MD, MPH, Robert
- 637 Brown, MD, Karen Horton, MD, Nirupama Putcha, MD, MHS,
- 638 Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, CA:
- 639 Richard Casaburi, PhD, MD, Alessandra Adami, PhD, Janos Porszasz, MD, PhD, Hans Fischer,
- 640 MD, PhD, Matthew Budoff, MD, Harry Rossiter, PhD
- 641 Michael E. DeBakey VAMC, Houston, TX: Amir Sharafkhaneh, MD, PhD, Charlie Lan, DO
- 642 Minneapolis VA: Christine Wendt, MD, Brian Bell, MD
- 643 Morehouse School of Medicine, Atlanta, GA: Marilyn Foreman, MD, MS, Gloria Westney, MD,
- 644 MS, Eugene Berkowitz, MD, PhD
- 645 National Jewish Health, Denver, CO: Russell Bowler, MD, PhD, David Lynch, MD
- 646 Reliant Medical Group, Worcester, MA: Richard Rosiello, MD, David Pace, MD
- 647 Temple University, Philadelphia, PA: Gerard Criner, MD, David Ciccolella, MD, Francis Cordova,
- 648 MD, Chandra Dass, MD, Gilbert D'Alonzo, DO, Parag Desai, MD, Michael Jacobs, PharmD,
- 649 Steven Kelsen, MD, PhD, Victor Kim, MD, A. James Mamary, MD, Nathaniel Marchetti, DO,

- Aditi Satti, MD, Kartik Shenoy, MD, Robert M. Steiner, MD, Alex Swift, MD, Irene Swift, MD,
- 651 Maria Elena Vega-Sanchez, MD
- 652 University of Alabama, Birmingham, AL: Mark Dransfield, MD, William Bailey, MD, J. Michael
- 653 Wells, MD, Surya Bhatt, MD, Hrudaya Nath, MD
- 654 University of California, San Diego, CA: Joe Ramsdell, MD, Paul Friedman, MD, Xavier Soler,
- 655 MD, PhD, Andrew Yen, MD
- *University of Iowa, Iowa City, IA*: Alejandro Cornellas, MD, John Newell, Jr., MD, Brad
 Thompson, MD
- *University of Michigan, Ann Arbor, MI*: MeiLan Han, MD, Ella Kazerooni, MD, Carlos Martinez,
 MD
- 660 University of Minnesota, Minneapolis, MN: Joanne Billings, MD, Tadashi Allen, MD
- 661 University of Pittsburgh, Pittsburgh, PA: Frank Sciurba, MD, Divay Chandra, MD, MSc, Joel
- 662 Weissfeld, MD, MPH, Carl Fuhrman, MD, Jessica Bon, MD
- 663 University of Texas Health Science Center at San Antonio, San Antonio, TX: Antonio Anzueto, MD,
- 664 Sandra Adams, MD, Diego Maselli-Caceres, MD, Mario E. Ruiz, MD
- 665

666 Early Growth Genetics (EGG) Consortium

- 667 Summary data on birth anthropometrics has been contributed by the EGG Consortium and has been
- 668 downloaded from www.egg-consortium.org. The investigators within the EGG did not participate in
- the analysis, writing or interpretation of this paper.
- 670

671 The EArly Genetics and Lifecourse Epidemiology (EAGLE) consortium

- 672 Lavinia Paternoster^{1, 2, 112}, Marie Standl^{3, 112}, Johannes Waage⁴, Hansjörg Baurecht⁵, Melanie
- 673 Hotze⁵, David P Strachan⁶, John A Curtin⁷, Klaus Bønnelykke⁴, Chao Tian⁸, Atsushi
- 674 Takahashi⁹, Jorge Esparza-Gordillo^{10, 11}, Alexessander Couto Alves¹², Jacob P Thyssen¹³,
- 675 Herman T den Dekker^{14, 15, 16}, Manuel A Ferreira¹⁷, Elisabeth Altmaier^{18, 19, 20}, Patrick MA

676	Sleiman ^{21, 22} , Feng Li Xiao ²³ , Juan R Gonzalez ²⁴ , Ingo Marenholz ^{10, 11} , Birgit Kalb ^{10, 25} , Maria
677	Pino-Yanes ^{26, 27, 28} , Cheng-Jian Xu ^{29, 30} , Lisbeth Carstensen ³¹ , Maria M Groen-Blokhuis ³² ,
678	Cristina Venturini ³³ , Craig E Pennell ³⁴ , Sheila J Barton ³⁵ , Albert M Levin ³⁶ , Ivan Curjuric ^{37, 38} ,
679	Mariona Bustamante ^{24, 39, 40, 41} , Eskil Kreiner-Møller ⁴ , Gabrielle A Lockett ⁴² , Jonas Bacelis ⁴³ ,
680	Supinda Bunyavanich ⁴⁴ , Rachel A Myers ⁴⁵ , Anja Matanovic ^{10, 11} , Ashish Kumar ^{37, 38, 46, 47} , Joyce
681	Y Tung ⁸ , Tomomitsu Hirota ⁴⁸ , Michiaki Kubo ⁴⁹ , Wendy L McArdle ² , A J Henderson ² , John P
682	Kemp ^{1, 2, 50} , Jie Zheng ^{1, 2} , George Davey Smith ^{1, 2} , Franz Rüschendorf ¹⁰ , Anja Bauerfeind ¹⁰ , Min
683	Ae Lee-Kirsch ⁵¹ , Andreas Arnold ⁵² , Georg Homuth ⁵³ , Carsten O Schmidt ⁵⁴ , Elisabeth
684	Mangold ⁵⁵ , Sven Cichon ^{55, 56, 57, 58} , ⁵⁹ , Thomas Keil ^{60, 61} , Elke Rodríguez ⁵ , Annette Peters ^{19, 62} ,
685	Andre Franke ⁶³ , Wolfgang Lieb ⁶⁴ , Natalija Novak ⁶⁵ , Regina Fölster-Holst ⁵ , Momoko
686	Horikoshi ⁴⁷ , Juha Pekkanen ^{66, 67} , Sylvain Sebert ^{68, 69} , Lise L Husemoen ⁷⁰ , Niels Grarup ⁷¹ , Johan
687	C de Jongste ¹⁴ , Fernando Rivadeneira ^{15, 16, 72} , Albert Hofman ¹⁵ , Vincent WV Jaddoe ^{14, 15, 16} ,
688	Suzanne GMA Pasmans ⁷³ , Niels J Elbert ^{16,73} , André G Uitterlinden ^{15,72} , Guy B Marks ⁷⁴ , Philip J
689	Thompson ^{75, 76} , Melanie C Matheson ⁷⁷ , Colin F Robertson ⁷⁸ , Australian Asthma Genetics
690	Consortium (AAGC) ⁷⁹ , Janina S Ried ²⁰ , Jin Li ²¹ , Xian Bo Zuo ²³ , Xiao Dong Zheng ²³ , Xian
690 691	Consortium (AAGC) ⁷⁹ , Janina S Ried ²⁰ , Jin Li ²¹ , Xian Bo Zuo ²³ , Xiao Dong Zheng ²³ , Xian Yong Yin ²³ , Liang Dan Sun ²³ , Maeve A McAleer ^{80, 81} , Grainne M O'Regan ⁸¹ , Caoimhe MR
690 691 692	Consortium (AAGC) ⁷⁹ , Janina S Ried ²⁰ , Jin Li ²¹ , Xian Bo Zuo ²³ , Xiao Dong Zheng ²³ , Xian Yong Yin ²³ , Liang Dan Sun ²³ , Maeve A McAleer ^{80, 81} , Grainne M O'Regan ⁸¹ , Caoimhe MR Fahy ⁸² , Linda E Campbell ⁸³ , Milan Macek ⁸⁴ , Michael Kurek ⁸⁵ , Donglei Hu ²⁶ , Celeste Eng ²⁶ ,
690 691 692 693	Consortium (AAGC) ⁷⁹ , Janina S Ried ²⁰ , Jin Li ²¹ , Xian Bo Zuo ²³ , Xiao Dong Zheng ²³ , Xian Yong Yin ²³ , Liang Dan Sun ²³ , Maeve A McAleer ^{80, 81} , Grainne M O'Regan ⁸¹ , Caoimhe MR Fahy ⁸² , Linda E Campbell ⁸³ , Milan Macek ⁸⁴ , Michael Kurek ⁸⁵ , Donglei Hu ²⁶ , Celeste Eng ²⁶ , Dirkje S Postma ²⁹ , Bjarke Feenstra ³¹ , Frank Geller ³¹ , Jouke Jan Hottenga ³² , Christel M
690 691 692 693 694	Consortium (AAGC) ⁷⁹ , Janina S Ried ²⁰ , Jin Li ²¹ , Xian Bo Zuo ²³ , Xiao Dong Zheng ²³ , Xian Yong Yin ²³ , Liang Dan Sun ²³ , Maeve A McAleer ^{80, 81} , Grainne M O'Regan ⁸¹ , Caoimhe MR Fahy ⁸² , Linda E Campbell ⁸³ , Milan Macek ⁸⁴ , Michael Kurek ⁸⁵ , Donglei Hu ²⁶ , Celeste Eng ²⁶ , Dirkje S Postma ²⁹ , Bjarke Feenstra ³¹ , Frank Geller ³¹ , Jouke Jan Hottenga ³² , Christel M Middeldorp ³² , Pirro Hysi ³³ , Veronique Bataille ³³ , Tim Spector ³³ , Carla MT Tiesler ^{3, 86} , Elisabeth
 690 691 692 693 694 695 	Consortium (AAGC) ⁷⁹ , Janina S Ried ²⁰ , Jin Li ²¹ , Xian Bo Zuo ²³ , Xiao Dong Zheng ²³ , Xian Yong Yin ²³ , Liang Dan Sun ²³ , Maeve A McAleer ^{80, 81} , Grainne M O'Regan ⁸¹ , Caoimhe MR Fahy ⁸² , Linda E Campbell ⁸³ , Milan Macek ⁸⁴ , Michael Kurek ⁸⁵ , Donglei Hu ²⁶ , Celeste Eng ²⁶ , Dirkje S Postma ²⁹ , Bjarke Feenstra ³¹ , Frank Geller ³¹ , Jouke Jan Hottenga ³² , Christel M Middeldorp ³² , Pirro Hysi ³³ , Veronique Bataille ³³ , Tim Spector ³³ , Carla MT Tiesler ^{3, 86} , Elisabeth Thiering ^{3, 86} , Badri Pahukasahasram ⁸⁷ , James J Yang ⁸⁸ , Medea Imboden ^{37, 38} , Scott Huntsman ²⁶ ,
 690 691 692 693 694 695 696 	Consortium (AAGC) ⁷⁹ , Janina S Ried ²⁰ , Jin Li ²¹ , Xian Bo Zuo ²³ , Xiao Dong Zheng ²³ , Xian Yong Yin ²³ , Liang Dan Sun ²³ , Maeve A McAleer ^{80, 81} , Grainne M O'Regan ⁸¹ , Caoimhe MR Fahy ⁸² , Linda E Campbell ⁸³ , Milan Macek ⁸⁴ , Michael Kurek ⁸⁵ , Donglei Hu ²⁶ , Celeste Eng ²⁶ , Dirkje S Postma ²⁹ , Bjarke Feenstra ³¹ , Frank Geller ³¹ , Jouke Jan Hottenga ³² , Christel M Middeldorp ³² , Pirro Hysi ³³ , Veronique Bataille ³³ , Tim Spector ³³ , Carla MT Tiesler ^{3, 86} , Elisabeth Thiering ^{3, 86} , Badri Pahukasahasram ⁸⁷ , James J Yang ⁸⁸ , Medea Imboden ^{37, 38} , Scott Huntsman ²⁶ , Natàlia Vilor-Tejedor ^{24, 40, 41} , Caroline L Relton ^{1, 89} , Ronny Myhre ⁹⁰ , Wenche Nystad ⁹⁰ , Adnan
 690 691 692 693 694 695 696 697 	Consortium (AAGC) ⁷⁹ , Janina S Ried ²⁰ , Jin Li ²¹ , Xian Bo Zuo ²³ , Xiao Dong Zheng ²³ , Xian Yong Yin ²³ , Liang Dan Sun ²³ , Maeve A McAleer ^{80, 81} , Grainne M O'Regan ⁸¹ , Caoimhe MR Fahy ⁸² , Linda E Campbell ⁸³ , Milan Macek ⁸⁴ , Michael Kurek ⁸⁵ , Donglei Hu ²⁶ , Celeste Eng ²⁶ , Dirkje S Postma ²⁹ , Bjarke Feenstra ³¹ , Frank Geller ³¹ , Jouke Jan Hottenga ³² , Christel M Middeldorp ³² , Pirro Hysi ³³ , Veronique Bataille ³³ , Tim Spector ³³ , Carla MT Tiesler ^{3, 86} , Elisabeth Thiering ^{3, 86} , Badri Pahukasahasram ⁸⁷ , James J Yang ⁸⁸ , Medea Imboden ^{37, 38} , Scott Huntsman ²⁶ , Natàlia Vilor-Tejedor ^{24, 40, 41} , Caroline L Relton ^{1, 89} , Ronny Myhre ⁹⁰ , Wenche Nystad ⁹⁰ , Adnan Custovic ⁷ , Scott T Weiss ⁹¹ , Deborah A Meyers ⁹² , Cilla Söderhäll ^{93, 94} , Erik Melén ^{46, 95} , Carole
 690 691 692 693 694 695 696 697 698 	Consortium (AAGC) ⁷⁹ , Janina S Ried ²⁰ , Jin Li ²¹ , Xian Bo Zuo ²³ , Xiao Dong Zheng ²³ , Xian Yong Yin ²³ , Liang Dan Sun ²³ , Maeve A McAleer ^{80, 81} , Grainne M O'Regan ⁸¹ , Caoimhe MR Fahy ⁸² , Linda E Campbell ⁸³ , Milan Macek ⁸⁴ , Michael Kurek ⁸⁵ , Donglei Hu ²⁶ , Celeste Eng ²⁶ , Dirkje S Postma ²⁹ , Bjarke Feenstra ³¹ , Frank Geller ³¹ , Jouke Jan Hottenga ³² , Christel M Middeldorp ³² , Pirro Hysi ³³ , Veronique Bataille ³³ , Tim Spector ³³ , Carla MT Tiesler ^{3, 86} , Elisabeth Thiering ^{3, 86} , Badri Pahukasahasram ⁸⁷ , James J Yang ⁸⁸ , Medea Imboden ^{37, 38} , Scott Huntsman ²⁶ , Natàlia Vilor-Tejedor ^{24, 40, 41} , Caroline L Relton ^{1, 89} , Ronny Myhre ⁹⁰ , Wenche Nystad ⁹⁰ , Adnan Custovic ⁷ , Scott T Weiss ⁹¹ , Deborah A Meyers ⁹² , Cilla Söderhäll ^{93, 94} , Erik Melén ^{46, 95} , Carole Ober ⁴⁵ , Benjamin A Raby ⁹¹ , Angela Simpson ⁷ , Bo Jacobsson ^{43, 90} , John W Holloway ^{42, 96} , Hans
 690 691 692 693 694 695 696 697 698 699 699 	Consortium (AAGC) ⁷⁹ , Janina S Ried ²⁰ , Jin Li ²¹ , Xian Bo Zuo ²³ , Xiao Dong Zheng ²³ , Xian Yong Yin ²³ , Liang Dan Sun ²³ , Maeve A McAleer ^{80, 81} , Grainne M O'Regan ⁸¹ , Caoimhe MR Fahy ⁸² , Linda E Campbell ⁸³ , Milan Macek ⁸⁴ , Michael Kurek ⁸⁵ , Donglei Hu ²⁶ , Celeste Eng ²⁶ , Dirkje S Postma ²⁹ , Bjarke Feenstra ³¹ , Frank Geller ³¹ , Jouke Jan Hottenga ³² , Christel M Middeldorp ³² , Pirro Hysi ³³ , Veronique Bataille ³³ , Tim Spector ³³ , Carla MT Tiesler ^{3, 86} , Elisabeth Thiering ^{3, 86} , Badri Pahukasahasram ⁸⁷ , James J Yang ⁸⁸ , Medea Imboden ^{37, 38} , Scott Huntsman ²⁶ , Natàlia Vilor-Tejedor ^{24, 40, 41} , Caroline L Relton ^{1, 89} , Ronny Myhre ⁹⁰ , Wenche Nystad ⁹⁰ , Adnan Custovic ⁷ , Scott T Weiss ⁹¹ , Deborah A Meyers ⁹² , Cilla Söderhäll ^{93, 94} , Erik Melén ^{46, 95} , Carole Ober ⁴⁵ , Benjamin A Raby ⁹¹ , Angela Simpson ⁷ , Bo Jacobsson ^{43, 90} , John W Holloway ^{42, 96} , Hans Bisgaard ⁴ , Jordi Sunyer ^{24, 40, 41, 97} , Nicole M Probst-Hensch ^{37, 38} , L Keoki Williams ^{87, 98} , Keith M
 690 691 692 693 694 695 696 697 698 699 700 	Consortium (AAGC) ⁷⁹ , Janina S Ried ²⁰ , Jin Li ²¹ , Xian Bo Zuo ²³ , Xiao Dong Zheng ²³ , Xian Yong Yin ²³ , Liang Dan Sun ²³ , Maeve A McAleer ^{80, 81} , Grainne M O'Regan ⁸¹ , Caoimhe MR Fahy ⁸² , Linda E Campbell ⁸³ , Milan Macek ⁸⁴ , Michael Kurek ⁸⁵ , Donglei Hu ²⁶ , Celeste Eng ²⁶ , Dirkje S Postma ²⁹ , Bjarke Feenstra ³¹ , Frank Geller ³¹ , Jouke Jan Hottenga ³² , Christel M Middeldorp ³² , Pirro Hysi ³³ , Veronique Bataille ³³ , Tim Spector ³³ , Carla MT Tiesler ^{3, 86} , Elisabeth Thiering ^{3, 86} , Badri Pahukasahasram ⁸⁷ , James J Yang ⁸⁸ , Medea Imboden ^{37, 38} , Scott Huntsman ²⁶ , Natàlia Vilor-Tejedor ^{24, 40, 41} , Caroline L Relton ^{1, 89} , Ronny Myhre ⁹⁰ , Wenche Nystad ⁹⁰ , Adnan Custovic ⁷ , Scott T Weiss ⁹¹ , Deborah A Meyers ⁹² , Cilla Söderhäll ^{93, 94} , Erik Melén ^{46, 95} , Carole Ober ⁴⁵ , Benjamin A Raby ⁹¹ , Angela Simpson ⁷ , Bo Jacobsson ^{43, 90} , John W Holloway ^{42, 96} , Hans Bisgaard ⁴ , Jordi Sunyer ^{24, 40, 41, 97} , Nicole M Probst-Hensch ^{37, 38} , L Keoki Williams ^{87, 98} , Keith M Godfrey ^{35, 99} , Carol A Wang ³⁴ , Dorret I Boomsma ^{32, 100} , Mads Melbye ^{31, 101, 102} , Gerard H

- 702 Zhang ²³, Hakon Hakonarson ^{21, 22}, Christian Gieger ^{18, 19, 20}, Esteban G Burchard ^{26, 106}, Nicholas G
- 703 Martin¹⁷, Liesbeth Duijts^{14, 15, 16}, Allan Linneberg^{70, 101, 107}, Marjo-Riitta Jarvelin^{69, 108, 109, 110},
- 704 Markus M Noethen ^{55, 56}, Susanne Lau ²⁵, Norbert Hübner ¹⁰, Young-Ae Lee ^{10, 11}, Mayumi
- 705 Tamari ⁴⁸, David A Hinds ⁸, Daniel Glass ³³, Sara J Brown ^{83, 111}, Joachim Heinrich ³, David M
- Figure 2016 Evans ^{1, 2, 50, 113}, Stephan Weidinger ^{5, 113} for the EArly Genetics & Lifecourse Epidemiology
- 707 (EAGLE) eczema consortium 114 .
- 708
- 1 Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol,
 UK.
- 711 2 School of Social and Community Medicine, University of Bristol, Bristol, UK.
- 712 3 Institute of Epidemiology I, Helmholtz Zentrum München German Research Center for
- 713 Environmental Health, Neuherberg, Germany.
- 4 Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte
- 715 Hospital, University of Copenhagen, Copenhagen, Denmark.
- 5 Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-
- 717 Holstein, Campus Kiel, Kiel, Germany.
- 718 6 Population Health Research Institute, St George's, University of London, London, UK.
- 719 7 Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester
- 720 Academic Health Science Centre, The University of Manchester and University Hospital of South
- 721 Manchester National Health Service (NHS) Foundation Trust, Manchester, United Kingdom.
- 722 8 23andMe, Inc., Mountain View, CA, USA.
- 9 Laboratory for Statistical Analysis, Center for Integrative Medical Sciences, Institute of Physical
- and Chemical Research (RIKEN), Yokohama, Japan.
- 10 Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany.
- 726 11 Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité -
- 727 Universitätsmedizin Berlin, Berlin, Germany.

- 12 Department of Epidemiology and Biostatistics, School of Public Health, Imperial College
- 729 London, London, UK.
- 13 National Allergy Research Centre, Department of Dermatology and Allergology, Herlev and
- 731 Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.
- 14 Department of Pediatrics, Erasmus MC, Rotterdam, the Netherlands.
- 15 Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands.
- 16 The Generation R Study Group, Erasmus MC, Rotterdam, the Netherlands.
- 735 17 QIMR Berghofer Medical Research Institute, Brisbane, Australia.
- 18 Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research
- 737 Center for Environmental Health, Neuherberg, Germany.
- 19 Institute of Epidemiology II, Helmholtz Zentrum München German Research Center for
- 739 Environmental Health, Neuherberg, Germany.
- 740 20 Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for
- 741 Environmental Health, Neuherberg, Germany.
- 742 21 The Center for Applied Genomics, The Children's Hospital of Philadelphia, PA, USA.
- 743 22 Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania,
- 744 Philadelphia, PA, USA.
- 745 23 Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.
- 746 24 Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.
- 747 25 Pediatric Pneumology and Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany.
- 748 26 Department of Medicine, University of California, San Francisco, CA, USA.
- 749 27 Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Instituto de
- 750 Salud Carlos III, Madrid, Spain.
- 751 28 Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife,
- 752 Spain.

- 753 29 University of Groningen, University Medical Center Groningen, Department of Pulmonology,
- 754 Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands.
- 755 30 University of Groningen, University Medical Center Groningen, Department of Genetics,
- 756 Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands.
- 757 31 Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.
- 32 Dept Biological Psychology, Netherlands Twin Register, VU University, Amsterdam, theNetherlands.
- 760 33 KCL Department of Twin Research and Genetic Epidemiology, King's College London,
- 761 London, UK.
- 762 34 School of Women's and Infants' Health, The University of Western Australia (UWA), Perth,
- 763 Australia.
- 35 Medical Research Council (MRC) Lifecourse Epidemiology Unit, University of Southampton,
 Southampton, UK.
- 766 36 Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA.
- 767 37 Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute,
- 768 Basel, Switzerland.
- 769 38 University of Basel, Basel, Switzerland.
- 770 39 Centre for Genomic Regulation (CRG), Barcelona, Spain.
- 40 Pompeu Fabra University (UPF), Barcelona, Spain.
- 41 Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP),
- 773 Barcelona, Spain.
- 42 Human Development and Health, Faculty of Medicine, University of Southampton,
- 775 Southampton, UK.
- 43 Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy,
- 777 Sahlgrenska University Hosptial, Gothenburg, Sweden.

44 Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New

779 York, NY, USA.

- 780 45 Department of Human Genetics, University of Chicago, Chicago, IL, USA.
- 781 46 Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
- 782 47 Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
- 783 48 Laboratory for Respiratory and Allergic Diseases, Center for Integrative Medical Sciences,
- 784 Institute of Physical and Chemical Research (RIKEN), Yokohama, Japan.
- 785 49 Laboratory for Genotyping Development, Center for Integrative Medical Sciences, Institute of
- 786 Physical and Chemical Research (RIKEN), Yokohama, Japan.
- 50 University of Queensland Diamantina Institute, Translational Research Institute, University of
- 788 Queensland, Brisbane, Australia.
- 789 51 Klinik für Kinder- und Jugendmedizin, Technical University Dresden, Dresden, Germany.
- 52 Clinic and Polyclinic of Dermatology, University Medicine Greifswald, Greifswald, Germany.
- 791 53 Department of Functional Genomics, Interfaculty Institute for Genetics and Functional
- 792 Genomics, University Medicine and Ernst-Moritz-Arndt-University Greifswald, Greifswald,
- 793 Germany.
- 54 Institute for Community Medicine, Study of Health in Pomerania/KEF, University Medicine
- 795 Greifswald, Greifswald, Germany.
- 796 55 Institute of Human Genetics, University of Bonn, Bonn, Germany.
- 56 Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany.
- 798 57 Division of Medical Genetics, University Hospital Basel, Basel, Switzerland.
- 799 58 Department of Biomedicine, University of Basel, Basel, Switzerland.
- 59 Institute of Neuroscience and Medicine (INM-1), Structural and Functional Organisation of the
- 801 Brain, Genomic Imaging, Research Centre Jülich, Jülich, Germany.
- 802 60 Institute of Social Medicine, Epidemiology and Health Economics, Charité -
- 803 Universitätsmedizin Berlin, Berlin, Germany.

- 61 Institute of Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, Germany.
- 805 62 Deutsches Forschungszentrum für Herz-Kreislauferkrankungen (DZHK) (German Research
- 806 Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany.
- 63 Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany.
- 808 64 Institute of Epidemiology, Christian-Albrechts University Kiel, Kiel, Germany.
- 809 65 Department of Dermatology and Allergy, University of Bonn Medical Center, Bonn, Germany.
- 810 66 Unit of Living Environment and Health, National Institute for Health and Welfare, Kuopio,
- 811 Finland.
- 812 67 Department of Public Health, University of Helsinki, Helsinki, Finland.
- 813 68 Center for Life-course and Systems Epidemiology, Faculty of Medicine, University of Oulu,
- 814 Finland.
- 815 69 Biocenter Oulu, University of Oulu, Finland.
- 816 70 Research Centre for Prevention and Health, Capital Region of Denmark, Copenhagen, Denmark.
- 71 The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and
- 818 Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- 819 72 Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands.
- 820 73 Department of Dermatology, Erasmus MC, Rotterdam, the Netherlands.
- 821 74 Woolcock Institute of Medical Research, University of Sydney, Sydney, Australia.
- 822 75 Lung Institute of Western Australia, QE II Medical Centre Nedlands , Western Australia,
- 823 Australia.
- 824 76 School of Medicine and Pharmacology, University of Western Australia, Perth, Australia.
- 825 77 Melbourne School of Population and Global Health, University of Melbourne, Melbourne,
- 826 Australia.
- 827 78 Murdoch Children's Research Institute, Melbourne, Australia.
- 828 79 A full list of consortium members is provided in Supplementary Note 1, page 4.
- 829 80 National Children's Research Centre, Crumlin, Dublin, Ireland.

- 830 81 Our Lady's Children's Hospital, Crumlin, Dublin, Ireland.
- 831 82 Clinical Medicine, Trinity College Dublin, Dublin, Ireland.
- 832 83 Centre for Dermatology and Genetic Medicine, University of Dundee, Dundee, UK.
- 833 84 Department of Biology and Medical Genetics, University Hospital Motol and 2nd Faculty of
- 834 Medicine of Charles University, Prague, Czech Republic.
- 85 Department of Clinical Allergology, Pomeranian, Pomeranian Medical University, Szczecin,86 Poland.
- 837 86 Ludwig-Maximilians-University of Munich, Dr. von Hauner Children's Hospital, Division of
- 838 Metabolic Diseases and Nutritional Medicine, Munich, Germany.
- 839 87 Center for Health Policy and Health Services Research, Henry Ford Health System, Detroit, MI,
- 840 USA.
- 841 88 School of Nursing, University of Michigan, Ann Arbor, MI, USA.
- 842 89 Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.
- 843 90 Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway.
- 91 Channing Division of Network Medicine, Brigham & Women's Hospital and Harvard Medical
- 845 School, Boston, MA, USA.
- 846 92 Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine,
- 847 Winston-Salem, NC, USA.
- 848 93 Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.
- 849 94 Center for Innovative Medicine (CIMED), Karolinska Institutet, Stockholm, Sweden.
- 850 95 Sachs' Children's Hospital, Stockholm, Sweden.
- 851 96 Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton,
- 852 Southampton, UK.
- 853 97 Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.
- 98 Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA.

- 855 99 National Institute for Health Research (NIHR) Southampton Biomedical Research Centre,
- 856 University of Southampton and University Hospital Southampton National Health Service (NHS)
- 857 Foundation Trust, Southampton, UK.
- 858 100 Institute for Health and Care Research (EMGO), VU University, Amsterdam, the Netherlands.
- 859 101 Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of
- 860 Copenhagen, Copenhagen, Denmark.
- 861 102 Department of Medicine, Stanford School of Medicine, Stanford, California, USA.
- 862 103 University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital,
- 863 Department of Pediatric Pulmonology and Pediatric Allergology, Groningen Research Institute for
- 864 Asthma and COPD (GRIAC), Groningen, the Netherlands.
- 865 104 Respiratory Epidemiology, Occupational Medicine and Public Health; National Heart and Lung
- 866 Institute; Imperial College; London, UK.
- 105 Medical Research Council-Public Health England Centre for Environment and Health, School
- 868 of Public Health, Imperial College London, London, UK.
- 869 106 Department of Bioengineering and Therapeutic Sciences, University of California, San
- 870 Francisco, CA, USA.
- 871 107 Department of Clinical Experimental Research, Rigshospitalet, Glostrup, Denmark.
- 872 108 Department of Epidemiology and Biostatistics, Medical Research Council (MRC) Health
- 873 Protection Agency (HPE) Centre for Environment and Health, School of Public Health, Imperial
- 874 College London, London, UK.
- 875 109 Center for Life Course Epidemiology, Faculty of Medicine, University of Oulu, Oulu, Finland.
- 876 110 Unit of Primary Care, Oulu University Hospital,
- 877 Oulu, Finland.
- 878 111 Department of Dermatology, Ninewells Hospital and Medical School, Dundee, UK.
- 879 112 These authors contributed equally to this work.
- 880 113 These authors jointly directed this work.

881 114 All authors.

882 L.Paternoster is supported by an MRC Population Health Scientist Fellowship (MR/J012165/1).

883

884 Endometrial Cancer Association Consortium (ECAC)

Amanda B Spurdle¹, Tracy A O'Mara¹, Jodie N Painter¹, The Australian National Endometrial 885 Cancer Study Group (ANECS)¹, Mark McEvoy², John Attia^{2, 3}, Elizabeth G Holliday^{2, 3}, Rodney J 886 Scott³⁻⁶, Deborah J Thompson⁷, Douglas F Easton^{7, 8}, Alison M Dunning⁸, Paul D P Pharoah⁸, Mitul 887 Shah⁸, Shahana Ahmed⁸, Catherine S Healey⁸, Ian Tomlinson⁹, Timothy HT Cheng⁹, Lynn Martin⁹, 888 Maggie Gorman⁹, Shirley Hodgson¹⁰, National Study of Endometrial Cancer Genetics Group 889 (NSECG)⁹, Peter A Fasching^{11, 12}, Alexander Hein¹², Matthias W Beckmann¹², Arif B Ekici¹³, 890 Matthias Rübner¹², Per Hall¹⁴, Kamila Czene¹⁴, Jingmei Li¹⁴, Hatef Darabi¹⁴, Thilo Dörk¹⁵, Ingo 891 Runnebaum¹⁶, Matthias Dürst¹⁶, Peter Hillemanns¹⁷, Diether Lambrechts^{18, 19}, Frederic Amant²⁰, 892 Stefanie Schrauwen²⁰, Jeroen Depreeuw¹⁸⁻²⁰, Ellen L Goode²¹, Sean C Dowdy²², Stacey J 893 Winham²¹, Brooke L Fridley²³, Helga B Salvesen^{24, 25}, Henrica MJ Werner^{24, 25}, Tormund S 894 Njølstad^{24, 25}, Jone Trovik^{24, 25}, Katie Ashton^{3, 5, 6}, Tony Proietto²⁶, Geoffrey Otton²⁶, Emma Tham²⁷, 895 Miriam Mints²⁸, RENDOCAS²⁷ 896

897

¹ Department of Genetics and Computational Biology, OIMR Berghofer Medical Research Institute, 898 Brisbane, QLD, 4006, Australia.² Centre for Clinical Epidemiology and Biostatistics, School of 899 Medicine and Public Health, University of Newcastle, NSW, 2305, Australia.³ Hunter Medical 900 Research Institute, John Hunter Hospital, Newcastle, NSW, 2305, Australia, ⁴ Hunter Area 901 Pathology Service, John Hunter Hospital, Newcastle, NSW, 2305, Australia.⁵ Centre for 902 Information Based Medicine, University of Newcastle, NSW, 2308, Australia.⁶ School of 903 904 Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, 2308, Australia.⁷ Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, 905 University of Cambridge, Cambridge, CB1 8RN, UK.⁸ Centre for Cancer Genetic Epidemiology, 906

Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK. ⁹ Wellcome Trust
Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK. ¹⁰ Department of
Clinical Genetics, St George's, University of London, London, SW17 0RE, UK. ¹¹ University of
California at Los Angeles, Department of Medicine, Division of Hematology/Oncology, David
Geffen School of Medicine, Los Angeles, CA, 90095, USA.

¹² Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander 912 University Erlangen-Nuremberg, Erlangen, 91054, Germany.¹³ Institute of Human Genetics, 913 University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, 914 91054, Germany.¹⁴ Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 915 Stockholm, SE-171 77, Sweden.¹⁵ Hannover Medical School, Gynaecology Research Unit, 916 Hannover, 30625, Germany.¹⁶ Department of Gynaecology, Jena University Hospital - Friedrich 917 Schiller University, Jena, 07743, Germany.¹⁷ Hannover Medical School, Clinics of Gynaecology 918 and Obstetrics, Hannover, 30625, Germany.¹⁸ Vesalius Research Center, Leuven, 3000, Belgium. 919 ¹⁹ Laboratory for Translational Genetics, Department of Oncology, University Hospitals Leuven, 920 Leuven, 3000, Belgium.²⁰ Department of Obstetrics and Gynecology, Division of Gynecologic 921 Oncology, University Hospitals, KU Leuven - University of Leuven, 3000, Belgium.²¹ Department 922 of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA.²² Department of 923 Obstetrics and Gynecology, Division of Gynecologic Oncology, Mayo Clinic, Rochester, MN, 924 55905, USA.²³ Department of Biostatistics, University of Kansas Medical Center, Kansas City, 925 KS, 66160, USA.²⁴ Centre for Cancerbiomarkers, Department of Clinical Science, The University 926 927 of Bergen, 5020, Norway.

²⁵ Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, 5021,
Norway.

²⁶ School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, 2308,
Australia.

²⁷ Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, SE-171 77,
Sweden. ²⁸ Department of Women's and Children's Health, Karolinska Institutet, Karolinska
University Hospital, Stockholm, SE-171 77, Sweden.

935

936 Glioma GWAS

937

938 Work at University of California, San Francisco was supported by the National Institutes of Health R01CA52689, P50CA097257, R01CA126831, R01CA139020 939 (grant numbers and R25CA112355), as well as the National Brain Tumor Foundation, the Stanley D. Lewis and 940 Virginia S. Lewis Endowed Chair in Brain Tumor Research, the Robert Magnin Newman Endowed 941 Chair in Neuro-oncology, and by donations from families and friends of John Berardi, Helen 942 Glaser, Elvera Olsen, Raymond E. Cooper, and William Martinusen. 943

944

945 The collection of cancer incidence data used in this study was supported by the California 946 Department of Public Health as part of the statewide cancer reporting program mandated by California Health and Safety Code Section 103885; the National Cancer Institute's Surveillance, 947 Epidemiology and End Results Program under contract HHSN261201000140C awarded to the 948 Cancer Prevention Institute of California, contract HHSN261201000035C awarded to the 949 University of Southern California, and contract HHSN261201000034C awarded to the Public 950 Health Institute; and the Centers for Disease Control and Prevention's National Program of Cancer 951 952 Registries, under agreement # U58DP003862-01 awarded to the California Department of Public Health. The ideas and opinions expressed herein are those of the author(s) and endorsement by the 953 State of California Department of Public Health, the National Cancer Institute, and the Centers for 954 955 Disease Control and Prevention or their Contractors and Subcontractors is not intended nor should be inferred. 956

The results published here are in whole or part based upon data generated by The Cancer Genome Atlas managed by the NCI and NHGRI. Information about TCGA can be found athttp://cancergenome.nih.gov

961

962 Endometriosis GWA meta-analysis

- 963 Dale R Nyholt^{1,16}, Siew-Kee Low^{2,16}, Carl A Anderson³, Jodie N Painter¹, Satoko Uno^{2,4}, Andrew P
- 964 Morris⁵, Stuart MacGregor¹, Scott D Gordon¹, Anjali K Henders¹, Nicholas G Martin¹, John
- 965 Attia^{6,7}, Elizabeth G Holliday^{6,7}, Mark McEvoy^{6,8,9}, Rodney J Scott^{7,10,11}, Stephen H Kennedy¹²,
- 966 Susan A Treloar¹³, Stacey A Missmer¹⁴, Sosuke Adachi¹⁵, Kenichi Tanaka¹⁵, Yusuke Nakamura²,
- 967 Krina T Zondervan^{5,12,17}, Hitoshi Zembutsu^{2,17} & Grant W Montgomery^{1,17}
- 968
- ¹Queensland Institute of Medical Research, Brisbane, Queensland, Australia. ²Laboratory of
- 970 Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo,
- 971 Tokyo, Japan.
- ³Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
- ⁴First Department of Surgery, Sapporo Medical University, School of Medicine, Sapporo, Japan.
- ⁵Genetic and Genomic Epidemiology Unit, Wellcome Trust Centre for Human Genetics, University
 of Oxford, Oxford, UK.
- ⁶Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health,
- 977 University of Newcastle, Newcastle, New South Wales, Australia.
- ⁷Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical
- 979 Research Institute, Newcastle, New South Wales, Australia.
- ⁸School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales,
- 981 Australia.

982	⁹ Public Health Research Program, Hunter Medical Research Institute, Newcastle, New South
983	Wales, Australia.
984	¹⁰ School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South
985	Wales, Australia.
986	¹¹ Division of Genetics, Hunter Area Pathology Service, Newcastle, New South Wales, Australia.
987	¹² Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe
988	Hospital, Oxford, UK.
989	¹³ Centre for Military and Veterans' Health, University of Queensland, Mayne Medical School,
990	Brisbane, Queensland, Australia.
991	¹⁴ Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's
992	Hospital and Harvard Medical School, Boston, Massachusetts, USA. ¹⁵ Department of Obstetrics
993	and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata,
994	Japan.
995	¹⁶ These authors contributed equally to this work. ¹⁷ These authors jointly directed this work.
996	
997	Funding
998	QIMR: The QIMR study was supported by grants from the National Health and Medical Research
999	Council (NHMRC) of Australia (241944, 339462, 389927, 389875, 389891, 389892, 389938,
1000	443036, 442915, 442981, 496610, 496739, 552485 and 552498), the Cooperative Research Centre
1001	for Discovery of Genes for Common Human Diseases (CRC), Cerylid Biosciences (Melbourne) and
1002	donations from N. Hawkins and S. Hawkins. D.R.N. was supported by the NHMRC Fellowship
1003	(339462 and 613674) and Australian Research Council (ARC) Future Fellowship (FT0991022)
1004	schemes. S.M. was supported by NHMRC Career Development Awards (496674 and 613705).
1005	E.G.H. (631096) and G.W.M. (339446 and 619667) were supported by the NHMRC Fellowship
1006	scheme. The HCS was funded by the University of Newcastle, the Gladys M Brawn Fellowship

scheme and the Vincent Fairfax Family Foundation in Australia. OX: The work presented here was

1008	supported by a grant from the Wellcome Trust (WT084766/Z/08/Z) and makes use of Wellcome
1009	Trust Case Control Consortium 2 (WTCCC2) control data generated by the WTCCC. A full list of
1010	the investigators who contributed to the generation of these data is available at the Wellcome Trust
1011	website (http://www.wtccc.org.uk/). Funding for the WTCCC project was provided by the
1012	Wellcome Trust under awards 076113 and 085475. C.A.A. was supported by a grant from the
1013	Wellcome Trust (098051). A.P.M. was supported by a Wellcome Trust Senior Research
1014	Fellowship. S.H.K. is supported by the Oxford Partnership Comprehensive Biomedical Research
1015	Centre, with funding from the Department of Health National Institute for Health Research (NIHR)
1016	Biomedical Research Centres funding scheme. K.T.Z. is supported by a Wellcome Trust Research
1017	Career Development Fellowship (WT085235/Z/08/Z). BBJ: We thank the members of the Rotary
1018	Club of Osaka-Midosuji District 2660 Rotary International in Japan for supporting our study. This
1019	work was conducted as part of the BioBank Japan Project that was supported by the Ministry of
1020	Education, Culture, Sports, Science and Technology of the Japanese government.

1022 European Periodontitis Genetics Group (EPG)

1023 The GWAS of aggressive periodontitis (AgP) was supported by a research grant of the Deutsche Forschungsgemeinschaft DFG (GZ: SCHA 1582/3-1). The cohort case description has been 1024 previously reported in Schaefer A.S. et al. Genetic evidence for PLASMINOGEN as a shared 1025 1026 genetic risk factor of coronary artery disease and periodontitis. Circ Cardiovasc Genet 8, 159-67 (2015). The investigators who contributed to the generation of this case sample are: Henrik 1027 Dommisch¹, Christian Graetz², Inga Harks³, Yvonne Jockel-Schneider⁴, Jörg Eberhardt⁵, Joerg 1028 Meyle⁶, Peter Eickholz⁷, Mathias Folwaczny⁸, Barbara Noack⁹, Wolfgang Lieb¹⁰, Christof Doerfer², 1029 Corinna Bruckmann¹¹, Søren Jepsen¹² 1030 1031 Author affiliations

- 1032 ¹Charité University Medicine Berlin, Institute of Dental, Oral and Maxillary Medicine,
- 1033 Department of Periodontology, Berlin, Germany

- ²Department of Operative Dentistry and Periodontology, University Medical Center Schleswig Holstein, Kiel, Germany
- ³Center of Periodontology, Operative and Preventive Dentistry, University Medical Center Münster,
 Germany
- ⁴Department of Periodontology, Clinic of Preventive Dentistry and Periodontology, University
- 1039 Medical Center of the Julius-Maximilians-University, Würzburg, Germany
- ⁵Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover
 Medical School, Hannover, Germany
- ⁶Department of Periodontology, University Medical Center Giessen and Marburg, Germany
- ⁷Department of Periodontology, Centre for Dental, Oral, and Maxillofacial Medicine (Carolinum),
- 1044 Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
- ⁸Department of Preventive Dentistry and Periodontology, University of Munic, Germany
- 1046 ⁹Center of Periodontology, Operative and Preventive Dentistry, Clinic of Preventive Dentistry,
- 1047 University Medical Center Carl Gustav Carus der Technischen Universität Dresden, Germany
- ¹⁰Biobank popgen, University Medical Center Schleswig-Holstein, Campus Kiel, Germany
- 1049 ¹¹Department of Conservative Dentistry and Periodontology, Clinic of Dentistry, Bernhard Gottlieb
- 1050 University, Vienna, Austria
- ¹²Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn,
 Germany
- 1053
- 1054 Genotyping of the AgP cases was performed on an IScan system with HumanOmni BeadChips
- 1055 (Illumina) at the Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel,
- 1056 Germany. We specially thank Andre Franke and Stefan Schreiber.
- 1057 The aggressive periodontitis control sample consists of three independent studies:
- 1058 1. The Heinz-Nixdorff-Recall (HNR) was described in Schmermund, A., et al. Assessment of
- 1059 clinically silent atherosclerotic disease and established and novel risk factors for predicting

- 1060 myocardial infarction and cardiac death in healthy middle-aged subjects: rationale and design of the
- 1061 Heinz Nixdorf RECALL Study. Risk Factors, Evaluation of Coronary Calcium and Lifestyle. Am
- 1062 *Heart J* 144, 212-18 (2002). The HNR study was supported by the Heinz Nixdorf Foundation
- 1063 (Germany). Additionally, the study was funded by the German Ministry of Education and Science
- and the German Research Council (DFG; Project SI 236/8-1, SI236/9-1, ER 155/6-1). The
- 1065 genotyping of the Illumina HumanOmni-1 Quad BeadChips of the HNR subjects was financed by
- 1066 the German Centre for Neurodegenerative Disorders (DZNE), Bonn. We are extremely grateful to
- 1067 all investigators who contributed to the generation of this dataset.
- 1068 The HNR study is represented by Per Hoffmann^{1,2} and Bastian Krone³
- 1069 Authors Affiliations
- ¹Institute of Human Genetics, University of Bonn, Germany
- ²Human Genomics Research Group, Department of Biomedicine, University Hospital of Basel,
- 1072 Switzerland
- ³Bastian Krone, Institute of Medical Informatics, Biometry and Epidemiology, University Clinic
 Essen, Germany.
- 1075 2. The Dortmund Health Study (DOGS) is described in Berger, K. et. al. DHS: The Dortmund
- 1076 health study. Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz 55, 816-21 (2012).
- 1077 DOGS is supported by the German Migraine & Headache Society (DMKG) and by unrestricted
- 1078 grants of equal share from Almirall, Astra Zeneca, Berlin Chemie, Boehringer, Boots Health Care,
- 1079 Glaxo-Smith-Kline, Janssen Cilag, McNeil Pharma, MSD Sharp & Dohme and Pfizer to the
- 1080 University of Muenster (collection of sociodemographic and clinical data). Blood collection in the
- 1081 Dortmund Health Study was done through funds from the Institute of Epidemiology and Social
- 1082 Medicine University of Muenster.
- 1083 DOGS is represented by Klaus Berger¹ and Jürgen Wellmann¹
- 1084 Authors Affiliations
- ¹Institute of Epidemiology and Social Medicine, University Münster, Germany.

1086	3. The FOCUS (Food chain plus) control sample is described in Muller, N., et al. IL-6 blockade by
1087	monoclonal antibodies inhibits apolipoprotein (a) expression and lipoprotein (a) synthesis in
1088	humans. J Lipid Res 56, 1034-42 (2015). FOCUS was supported by the Federal Ministry of
1089	Education and Research BMBF (FKZ 0315540A). FOCUS is represented by Matthias Laudes ¹
1090	¹ Clinic of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany

1092 The International Genomics of Alzheimer's Project (IGAP)

We thank the International Genomics of Alzheimer's Project (IGAP) for providing summary results 1093 1094 data for these analyses. The investigators within IGAP contributed to the design and 1095 implementation of IGAP and/or provided data but did not participate in analysis or writing of this report. IGAP was made possible by the generous participation of the control subjects, the patients, 1096 1097 and their families. The i-Select chips was funded by the French National Foundation on 1098 Alzheimer's disease and related disorders. EADI was supported by the LABEX (laboratory of 1099 excellence program investment for the future) DISTALZ grant, Inserm, Institut Pasteur de Lille, 1100 Université de Lille 2 and the Lille University Hospital. GERAD was supported by the Medical 1101 Research Council (Grant n° 503480), Alzheimer's Research UK (Grant n° 503176), the Wellcome 1102 Trust (Grant n° 082604/2/07/Z) and German Federal Ministry of Education and Research (BMBF): Competence Network Dementia (CND) grant nº 01GI0102, 01GI0711, 01GI0420. CHARGE was 1103 1104 partly supported by the NIH/NIA grant R01 AG033193 and the NIA AG081220 and AGES contract N01-AG-12100, the NHLBI grant R01 HL105756, the Icelandic Heart Association, and 1105 the Erasmus Medical Center and Erasmus University. ADGC was supported by the NIH/NIA 1106 1107 grants: U01 AG032984, U24 AG021886, U01 AG016976, and the Alzheimer's Association grant 1108 ADGC-10-196728.

1109

1111	International Genomics of Alzheimer's Project (IGAP) is a large two-stage study based upon
1112	genome-wide association studies (GWAS) on individuals of European ancestry. In stage 1, IGAP
1113	used genotyped and imputed data on 7,055,881 single nucleotide polymorphisms (SNPs) to meta-
1114	analyse four previously-published GWAS datasets consisting of 17,008 Alzheimer's disease cases
1115	and 37,154 controls (The European Alzheimer's disease Initiative - EADI the Alzheimer Disease
1116	Genetics Consortium - ADGC The Cohorts for Heart and Aging Research in Genomic
1117	Epidemiology consortium - CHARGE The Genetic and Environmental Risk in AD consortium -
1118	GERAD). In stage 2, 11,632 SNPs were genotyped and tested for association in an independent set
1119	of 8,572 Alzheimer's disease cases and 11,312 controls. Finally, a meta-analysis was performed
1120	combining results from stages 1 & 2.

1122 The Japanese Collaboration Team for GWAS of Panic Disorder

- 1123 Tsukasa Sasaki¹, Yoshiya Kawamura², Takeshi Otowa^{3,4,} Mamoru Tochigi⁵, Fumichika
- 1124 Nishimura⁴, Hisashi Tanii, Katsushi Tokunaga⁷, Hisanobu Kaiya⁸, Yuji Okazaki⁹
- 1125
- 1126 1 Department of Physical and Health Education, Graduate School of Education, The University of
- 1127 Tokyo, Japan
- 1128 2 Department of Psychiatry, Shonan Kamakura General Hospital, Kanagawa, Japan
- 1129 3 Major of Professional Clinical Psychology, Graduate School of Clinical Psychology, Teikyo
- 1130 Heisei University, Tokyo, Japan
- 1131 4 Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Japan
- 1132 5 Department of Psychiatry, Teikyo University School of Medicine, Tokyo, Japan
- 1133 6 Department of Psychiatry, Graduate School of Medicine, Mie University, Tsu, Japan
- 1134 7 Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Japan
- 1135 8 Anxiety Disorder Research Center, Warakukai Medical Cooporation, Tokyo, Japan
- 1136 9 Metropolitan Matsuzawa Hospital, Tokyo, Japan

1138 Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC)

Data on glycaemic traits have been contributed by MAGIC investigators and have been downloaded
from www.magicinvestigators.org. The investigators within MAGIC did not participate in the

analysis, writing or interpretation of this paper.

1142

1143 Melanoma meta-analysis consortium (MC)

Matthew H. Law¹, D. Timothy Bishop², Jeffrey E. Lee³, Myriam Brossard^{4,5,66}, Nicholas G. 1144 Martin⁶, Eric K. Moses⁷, Fengju Song⁸, Jennifer H. Barrett², Rajiv Kumar⁹, Douglas F. Easton¹⁰, 1145 Paul D. P. Pharoah¹¹, Anthony J. Swerdlow^{12,13}, Katerina P. Kypreou¹⁴, Lisa Bowdler⁴², Leanne 1146 Wallace⁴², Anjali Henders⁴², John C. Taylor², Mark Harland², Juliette Randerson-Moor², Lars A. 1147 Akslen^{15,16}, Per A. Andresen¹⁷, Marie-Françoise Avril¹⁸, Esther Azizi^{19,20}, Giovanna Bianchi 1148 Scarrà^{21,22}, Kevin M. Brown²³, Tadeusz Debniak²⁴, David L. Duffy⁶, David E. Elder²⁵, Shenying 1149 Fang³, Eitan Friedman²⁰, Pilar Galan²⁶, Paola Ghiorzo^{21,22}, Elizabeth M. Gillanders²⁷, Alisa M. 1150 Goldstein²³, Nelleke A. Gruis²⁸, Johan Hansson²⁹, Per Helsing³⁰, Marko Hočevar³¹, Veronica 1151 Höiom²⁹, Christian Ingvar³², Peter A. Kanetsky³³, Wei V. Chen³⁴, GenoMEL Consortium³⁵, Essen-1152 Heidelberg Investigators³⁵, The SDH Study Group³⁵, Q-MEGA and QTWIN Investigators³⁵, AMFS 1153 Investigators³⁵, ATHENS Melanoma Study Group³⁵, Maria Teresa Landi²³, Julie Lang³⁶, G. Mark 1154 Lathrop³⁷, Jan Lubiński²⁴, Rona M. Mackie^{38,39}, Graham J. Mann⁴⁰, Anders Molven^{16,41}, Grant W. 1155 Montgomery⁴², Srdjan Novaković⁴³, Håkan Olsson^{44,45}, Susana Puig^{46,47}, Joan Anton Puig-1156 Butille^{46,47}, Abrar A. Qureshi⁴⁸, Graham L. Radford-Smith^{49,50,51}, Nienke van der Stoep⁵², Remco 1157 van Doorn²⁸, David C. Whiteman⁵³, Jamie E. Craig⁵⁴, Dirk Schadendorf^{55,56}, Lisa A. Simms⁴⁹, 1158 Kathryn P. Burdon⁵⁷, Dale R. Nyholt^{58,42}, Karen A. Pooley¹⁰, Nicholas Orr⁵⁹, Alexander J. 1159 Stratigos¹⁴, Anne E. Cust⁶⁰, Sarah V. Ward⁷, Nicholas K. Hayward⁶¹, Jiali Han^{62,63}, Hans-Joachim 1160 Schulze⁶⁴, Alison M. Dunning¹¹, Julia A. Newton Bishop², Florence Demenais⁶⁶, Christopher I. 1161 Amos^{65,66}, Stuart MacGregor^{1,67}, Mark M. Iles^{2,67} 1162

¹Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia

- 1163
- ² Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of
- 1166 Leeds, Leeds, UK
- ³ Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center,
 Houston, Texas, USA
- ⁴ Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-946, Genetic
- 1170 Variation and Human Diseases Unit, Paris, France
- ⁵ Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- ⁶Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- 1173 ⁷ Centre for Genetic Origins of Health and Disease, Faculty of Medicine, Dentistry and Health
- 1174 Sciences, The University of Western Australia, Western Australia, Australia
- 1175 ⁸ Departments of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and
- 1176 Therapy, Tianjin, National Clinical Research Center of Cancer, Tianjin Medical University Cancer
- 1177 Institute and Hospital, Tianjin, P. R. China
- ⁹ Division of Molecular Genetic Epidemiology, German Cancer Research Center, Im Neuenheimer
- 1179 Feld 580, Heidelberg Germany
- ¹⁰ Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care,
- 1181 University of Cambridge, Cambridge, UK
- ¹¹ Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge,
 Cambridge, UK
- 1184 ¹² Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- ¹³ Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
- ¹⁴ Department of Dermatology, University of Athens School of Medicine, Andreas Sygros Hospital,
- 1187 Athens, Greece

1188 ¹⁵ Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen,

1189 Bergen, Norway

- ¹⁶ Department of Pathology, Haukeland University Hospital, Bergen, Norway
- 1191 ¹⁷ Department of Pathology, Molecular Pathology, Oslo University Hospital, Rikshospitalet, Oslo,
- 1192 Norway
- ¹⁸ Assistance Publique–Hôpitaux de Paris, Hôpital Cochin, Service de Dermatologie, Université
 Paris Descartes, Paris, France
- ¹⁹ Department of Dermatology, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine,
 Tel Aviv, Israel
- ²⁰ Oncogenetics Unit, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv
 University, Tel Aviv, Israel
- ²¹ Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- 1200 ²² Laboratory of Genetics of Rare Cancers, Istituto di ricovero e cura a carattere scientifico Azienda
- 1201 Ospedaliera Universitaria (IRCCS AOU) San Martino-IST Istituto Nazionale per la Ricerca sul
- 1202 Cancro, Genoa, Italy
- ²³ Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of
 Health, Bethesda, Maryland, USA
- 1205 ²⁴ International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
- ²⁵ Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the
 University of Pennsylvania, Philadelphia, Pennsylvania, USA
- ²⁶ Université Paris 13, Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Centre de
 Recherche en Epidémiologie et Statistiques, Institut National de la Santé et de la Recherche
 Médicale (INSERM U1153), Institut National de la Recherche Agronomique (INRA U1125),
 Conservatoire National des Arts et Métiers, Communauté d'Université Sorbonne Paris Cité, F-
- 1212 93017 Bobigny, France

- 1213 ²⁷ Inherited Disease Research Branch, National Human Genome Research Institute, National
- 1214 Institutes of Health, Baltimore, Maryland, USA
- 1215 ²⁸ Department of Dermatology, Leiden University Medical Centre, Leiden, The Netherlands
- 1216 ²⁹ Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital,
- 1217 Stockholm, Sweden
- ³⁰ Department of Dermatology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- ³¹ Department of Surgical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- 1220 ³² Department of Surgery, Clinical Sciences, Lund University, Lund, Sweden
- 1221 ³³ Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute,

1222 Tampa, Florida, USA

- ³⁴ Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas,
- 1224 USA
- ³⁵ A full list of members and affiliations appears in the Supplementary Note.
- ³⁶Department of Medical Genetics, University of Glasgow, Glasgow, UK
- 1227 ³⁷McGill University and Genome Quebec Innovation Centre, Montreal, Canada
- 1228 ³⁸ Department of Public Health, University of Glasgow, Glasgow UK
- ³⁹ Department of Medical Genetics, University of Glasgow, Glasgow, UK
- ⁴⁰Centre for Cancer Research, University of Sydney at Westmead, Millennium Institute for Medical
- 1231 Research and Melanoma Institute Australia, Sydney, Australia
- ⁴¹ Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen,
 Norway
- ⁴² Molecular Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- ⁴³ Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- ⁴⁴ Department of Oncology/Pathology, Clinical Sciences, Lund University, Lund; Sweden
- ⁴⁵ Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden

- 1238 ⁴⁶ Melanoma Unit, Dermatology Department & Biochemistry and Molecular Genetics Departments,
- Hospital Clinic, Institut de Investigacó Biomèdica August Pi Suñe, Universitat de Barcelona,
 Barcelona, Spain
- ⁴⁷ Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras, Instituto de Salud
 Carlos III, Barcelona, Spain
- ⁴⁸ Department of Dermatology, The Warren Alpert Medical School of Brown University, Rhode
 Island, USA
- ⁴⁹ Inflammatory Bowel Diseases, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- ⁵⁰ Department of Gastroenterology and Hepatology, Royal Brisbane & Women's Hospital,
- 1247 Brisbane, Australia
- 1248 ⁵¹ University of Queensland School of Medicine, Herston Campus, Brisbane, Australia
- 1249 ⁵² Department of Clinical Genetics, Center of Human and Clinical Genetics, Leiden University
- 1250 Medical Center, Leiden, The Netherlands
- 1251 ⁵³ Cancer Control Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- 1252 ⁵⁴ Department of Ophthalmology, Flinders University, Adelaide, Australia
- 1253 ⁵⁵ Department of Dermatology, University Hospital Essen, Essen, Germany
- 1254 ⁵⁶German Consortium Translational Cancer Research (DKTK), Heidelberg, Germany
- 1255 ⁵⁷ Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- ⁵⁸ Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane,
- 1257 Queensland, Australia
- ⁵⁹ Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
- ⁶⁰ Cancer Epidemiology and Services Research, Sydney School of Public Health, The University of
- 1260 Sydney, Australia
- 1261 ⁶¹ Oncogenomics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- 1262 ⁶² Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University,
- 1263 Indianapolis, Indiana, USA

1264	⁶³ Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana, USA
1265	⁶⁴ Department of Dermatology, Fachklinik Hornheide, Institute for Tumors of the Skin at the
1266	University of Münster, Münster, Germany
1267	⁶⁵ Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College,
1268	Hanover, New Hampshire, USA
1269	⁶⁶ These authors contributed equally to this work
1270	⁶⁷ These authors jointly supervised this work
1271	
1272	The melanoma meta-analysis consortium was supported by CRUK Programme grants
1273	(C588/A19167 C8197/A10123, C8197/A10865), NIH grant (R01CA083115, R01CA001833) NIH
1274	NCI (CA88363, CA83115, CA122838, CA87969, CA055075, CA100264, CA133996 and
1275	CA49449), the NHMRC (200071, 241944, 339462, 380385, 389927, 389875, 389891, 389892,
1276	389938, 443036, 442915, 442981, 496610, 496675, 496739, 552485, 552498, 66946, 107359,
1277	211172, 402761, 535074, 1023911).
1278	

1279 *Groups contributing to the melanoma meta-analysis*

1280

1281 GenoMEL Consortium

1282 Australian Melanoma Family Study: see below.

Barcelona: Paula Aguilera, Beatriz Alejo, Celia Badenas, Abel Caño, Cristina Carrera, Francisco
Cuellar, Mireia Dominguez, Daniel Gabriel, Pol Gimenez-Xavier, Pablo Iglesias, Josep Malvehy,
Rosa Marti-Laborda, Montse Mila, Zighe Ogbah, Miriam Potrony, Joan-Anton Puig Butille, Susana
Puig, Gemma Tell and Other members of the Melanoma Unit: Llúcia Alós, Ana Arance, Pedro
Arguís, Antonio Bennassar, Oscar Chirife, Carlos Conill, Ramon Rull, Marcelo Sánchez, Sergi
Vidal-Sicart, Antonio Vilalta.

1289 Brisbane: See Q-MEGA authorship below.

1290 *Emilia-Romagna:* Maria Teresa Landi, Donato Calista, Giorgio Landi, Paola Minghetti, Fabio
1291 Arcangeli, Pier Alberto Bertazzi.

Genoa: Department of Internal Medicine and Medical Specialties, Laboratory of Genetics of Rare
Cancers, University of Genoa/ IRCCS AOU San Martino-IST Istituto Nazioanle epr la Ricerca sul
Cancro: Giovanna Bianchi Scarrà, Paola Ghiorzo, Lorenza Pastorino, William Bruno, Virginia
Andreotti, Claudia Martinuzzi, Linda Battistuzzi, Paola Origone. Medical Oncology Unit, IRCCS
AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa :Paola Queirolo.

1297 *Glasgow:* Rona Mackie, Julie Lang.

Leeds: Julia A Newton Bishop, Paul Affleck, Jennifer H Barrett, D Timothy Bishop, Jane Harrison,
Mark M Iles, Juliette Randerson-Moor, Mark Harland, John C Taylor, Linda Whittaker, Kairen
Kukalizch, Susan Leake, Birute Karpavicius, Sue Haynes, Tricia Mack, May Chan, Yvonne Taylor,
John Davies, Paul King.

1302 Leiden: Department of Dermatology, Leiden University Medical Centre: Nelleke A Gruis, Frans A 1303 van Nieuwpoort, Coby Out, Clasine van der Drift, Wilma Bergman, Nicole Kukutsch, Jan Nico 1304 Bouwes Bavinck. Department of Clinical Genetics, Centre of Human and Clinical Genetics, Leiden 1305 University Medical Centre: Bert Bakker, Nienke van der Stoep, Jeanet ter Huurne. Department of 1306 Dermatology, HAGA Hospital, The Hague: Han van der Rhee. Department of Dermatology, Reinier 1307 de Graaf Groep, Delft: Marcel Bekkenk. Department of Dermatology, Sint Franciscus Gasthuis, 1308 Rotterdam: Dyon Snels, Marinus van Praag. Department of Dermatology, Ghent University 1309 Hospital, Ghent, Belgium: Lieve Brochez and colleagues. Department of Dermatology, St. Radboud 1310 University Medical Centre, Nijmegen: Rianne Gerritsen and colleagues. Department of Dermatology, Rijnland Hospital, Leiderdorp: Marianne Crijns and colleagues. Dutch patient 1311 organisation, Stichting Melanoom, Purmerend. The Netherlands Foundation for the detection of 1312 1313 Hereditary Tumors, Leiden: Hans Vasen. ServiceXS: Wilbert van Workum, Bart Janssen, Marjolein 1314 Janssen and Suzanne Mulder

1315 Lund: Lund Melanoma Study Group: Håkan Olsson, Christian Ingvar, Göran Jönsson, Åke Borg,
1316 Anna Måsbäck, Lotta Lundgren, Katja Baeckenhorn, Kari Nielsen, Anita Schmidt Casslén.

1317 Norway: Oslo University Hospital: Per Helsing, Per Arne Andresen, Helge Rootwelt. University of
1318 Bergen: Lars A. Akslen, Anders Molven.

1319 Paris (MELARISK study): Florence Demenais, Marie-Françoise Avril, Brigitte Bressac-de 1320 Paillerets, Eve Maubec, Myriam Brossard, Amaury Vaysse, Hamida Mohamdi, Patricia Jeannin, 1321 Valérie Chaudru, Nicolas Chateigner, Eve Corda, Fabienne Lesueur, Mahaut de Lichy and the 1322 French Family Study Group including the following oncogeneticists and Dermatologists: Pascale Andry-Benzaquen, Bertrand Bachollet, Frédéric Bérard, Pascaline Berthet, Françoise Boitier, 1323 Valérie Bonadona, Jean-Louis Bonafé, Jean-Marie Bonnetblanc, Frédéric Cambazard, Olivier 1324 1325 Caron, Frédéric Caux, Jacqueline Chevrant-Breton, Agnès Chompret (deceased), Stéphane Dalle, 1326 Liliane Demange, Olivier Dereure, Martin-Xavier Doré, Marie-Sylvie Doutre, Catherine Dugast, 1327 Laurence Faivre, Florent Grange, Philippe Humbert, Pascal Joly, Delphine Kerob, Christine Lasset, 1328 Marie Thérèse Leccia, Gilbert Lenoir, Dominique Leroux, Julien Levang, Dan Lipsker, Sandrine 1329 Mansard, Ludovic Martin, Tanguy Martin-Denavit, Christine Mateus, Jean-Loïc Michel, Patrice 1330 Morel, Laurence Olivier-Faivre, Jean-Luc Perrot, Caroline Robert, Sandra Ronger-Savle, Bruno 1331 Sassolas, Pierre Souteyrand, Dominique Stoppa-Lyonnet, Luc Thomas, Pierre Vabres, Eva 1332 Wierzbicka.

1333 *Philadelphia:* David Elder, Peter Kanetsky, Jillian Knorr, Michael Ming, Nandita Mitra, Althea1334 Ruffin, Patricia Van Belle

Poland: Tadeusz Dębniak, Jan Lubiński, Aneta Mirecka, Sławomir Ertmański. Slovenia: Srdjan
Novakovic, Marko Hocevar, Barbara Peric, Petra Cerkovnik. Stockholm: Veronica Höiom, Johan
Hansson. Sydney: Graham J. Mann, Richard F. Kefford, Helen Schmid, Elizabeth A. Holland

Tel Aviv: Esther Azizi, Gilli Galore-Haskel, Eitan Friedman, Orna Baron-Epel, Alon Scope, Felix
Pavlotsky, Emanuel Yakobson, Irit Cohen-Manheim, Yael Laitman, Roni Milgrom, Iris Shimoni,
Evgeniya Kozlovaa.

1341	Austra	lian 1	Mel	lanoma	Famil	y S	Stud	y inv	estigat	tors
------	--------	--------	-----	--------	-------	-----	------	-------	---------	------

1342 Anne E. Cust¹, Helen Schmid², Elizabeth A. Holland², Joanne F. Aitken³, Bruce K. Armstrong¹,

- 1343 Graham G. Giles^{3,4}, Richard F. Kefford², John L. Hopper⁵ Mark A. Jenkins⁵, Graham J. Mann²
- Cancer Epidemiology and Services Research, Sydney School of Public Health, The
 University of Sydney, Australia
- 1346 2) Centre for Cancer Research, University of Sydney at Westmead Millennium Institute for
 1347 Medical Research and Melanoma Institute Australia, Sydney, Australia
- 1348 3) Viertel Centre for Research in Cancer Control, Cancer Council Queensland, Spring Hill,1349 Brisbane, Australia
- 1350 4) Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
- 1351 5) Centre for Molecular, Environmental, Genetic and Analytic (MEGA) Epidemiology,
- 1352 Melbourne School of Population Health, University of Melbourne, Melbourne, Australia
- 1353
- 1354 IBD investigators
- 1355 Lisa Simms¹, Grant W. Montgomery², Peter Visscher³
- 1356 1) Inflammatory Bowel Diseases Laboratory, QIMR Berghofer Medical Research Institute,
- 1357 Brisbane, Australia

1358 2) Molecular Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia

3) The Queensland Brain Institute, The University of Queensland, QBI Building, St Lucia,Queensland 4071, Australia.

1361

1362 *Q-MEGA and QTWIN investigators*

- 1363 The Queensland study of Melanoma: Environmental and Genetic Associations (Q- MEGA)
- 1364 Principal Investigators are: Nicholas G. Martin¹, Grant W. Montgomery¹, David Duffy¹, David C.
- 1365 Whiteman¹, Matthew H. Law¹, Stuart MacGregor¹, Nicholas K. Hayward¹. The Australian Cancer

- 1366 Study (ACS) Principal Investigators are: David C. Whiteman¹, Penny Webb¹, Adele Green¹, Peter
- 1367 Parsons¹, David Purdie¹, Nicholas K.Hayward¹.
- 1368 QTWIN: Zhen Zhao¹, Joanne F Aitken², Anjali K.Henders¹, Mitchell Stark¹, David L. Duffy¹,
- 1369 Jodie N. Painter¹
- 1370 1 QIMR Berghofer, Brisbane, QLD 4029, Australia
- 1371 2 Viertel Centre for Research in Cancer Control, Cancer Council Queensland, Spring Hill,1372 Brisbane, Australia
- 1373
- 1374 The SDH Study Group
- 1375 Study of Digestive Health (SDH) Team
- 1376 Chief Investigators
- 1377 David Whiteman, Adele Green, Nicholas Hayward, Peter Parsons, Sandra Pavey, David Purdie,
- 1378 Penny Webb (Queensland Institute of Medical Research)
- 1379 David Gotley, Mark Smithers (University of Queensland / Princess Alexandra Hospital)
- 1380 Paul Drew, Glyn Jamieson (University of Adelaide)
- 1381 Paul Drew, David Watson (Flinders University of South Australia)
- 1382 Andrew Clouston (Mayne Pathology)
- 1383
- 1384 Research Staff
- 1385 D Nancarrow
- 1386 D Hussey
- 1387 E Smith
- 1388 G Mayne
- 1389
- 1390 Project Manager S O'Brien (QIMR)
- 1391 Data Manager T Sadkowsky (QIMR)

1392	
1393	Research Nurses
1394	QLD-
1395	A McMurtrie, L Terry, M Connard, L Jackman, S Perry, M Davis
1396	
1397	SA-
1398	D Roffe, M Martin, L Smith
1399	
1400	Clinical Collaborators
1401	QLD-
1402	A Clouston (Envoi Pathology)
1403	I Brown (S&N Pathology)
1404	N Walker (QML Pathology)
1405	SA-
1406	Justin Bessell (Flinders Medical Centre)
1407	William Tam (Royal Adelaide Hospital)
1408	Andrew Ruskowicz (Institute of Medical and Veterinary Science)
1409	
1410	Essen-Heidelberg investigators
1411	Rajiv Kumar (<u>r.kumar@dkfz.de</u>)
1412	Division of Molecular Genetic Epidemiology, German Cancer Research Center, Im Neuenheimer
1413	Feld 580, 69120 Heidelberg Germany
1414	Dirk Schadendorf (<u>Dirk.Schadendorf@uk-essen.de</u>)
1415	Department of Dermatology, University Hospital Essen, 45122 Essen, Germany
1416	and
1417	German Consortium Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
- 1418 Hans-Joachim Schulze(<u>Schulze@fachklinik-hornheide.de</u>)
- 1419 Department of Dermatology, Fachklinik Hornheide, Institute for Tumors of the Skin at the
- 1420 University of Münster, Germany
- 1421 Kari Hemminki (<u>k.hemminki@dkfz.de</u>)
- 1422 Division of Molecular Genetic Epidemiology, German Cancer Research Center, Im Neuenheimer
- 1423 Feld 580, 69120 Heidelberg, Germany
- 1424 Antje Sucker (antje.sucker@uk-essen.de)
- 1425 Department of Dermatology, University Hospital Essen, 45122 Essen, Germany, German
- 1426 Consortium Translational Cancer Research, 69120 Heidelberg, Germany
- 1427 Thomas Vogt (thomas.vogt@uks.eu)
- 1428 University Hospital Saarland, Department of Dermatology, Venerology and Allergology, Building
- 1429 18, Kirrberger Straße, D 66424 Homburg/Saar, Germany
- 1430 Johan Hansson (johan.hansson@ki.se)
- 1431 Department of Oncology Pathology, Karolinska Institutet, Karolinska University Hospital, Solna S
- 1432 171 76, Stockholm, Sweden.
- 1433 Ralf Gutzmer (<u>Gutzmer.Ralf@mh-hannover.de</u>)
- 1434 Department of Dermatology and Allergy, Skin Cancer Center Hannover, Hannover Medical School,
- 1435 Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- 1436 Helen Gogas (<u>hgogas@hol.gr</u>)
- 1437 1st Department of Medicine, University of Athens Medical School, Laiko Hospital,
- 1438 PO 14120, 11510, Athens, Greece
- 1439 Dave Hoon (<u>hoon@jwci.org</u>)
- 1440 John Wayne Cancer Institute, 2200 Santa Monica Blvd, Santa Monica, CA 90404, USA
- 1441 Eduardo Nagore (eduardo nagore@ono.com)
- 1442 Department of Dermatology, Instituto Valenciano de Oncologia, Valencia 46009, Spain
- 1443 John Kirkwood (<u>kirkwoodjm@upmc.edu</u>)

- 1444 Dermatology & Translational Science, Melanoma and Skin Cancer Program, 5117 Centre Avenue,
- 1445 Suite 1.32, Pittsburgh, PA 15213, USA
- 1446 Benjamin Weide (<u>benjamin.weide@med.uni-tuebingen.de</u>)
- 1447 Department of Dermatology, University Medical Center, Liebermeisterstr. 25, 72076 Tübingen,
- 1448 Germany
- 1449 Piotr Rutkowski (<u>rutkowskip@coi.waw.pl</u>)
- 1450 Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Memorial
- 1451 Cancer Center and Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland
- 1452 Selma Ugurel (<u>Selma.Ugurel@uk-essen.de</u>)
- 1453 Department of Dermatology, University Hospital Essen, 45122 Essen, Germany, German
- 1454 Consortium Translational Cancer Research, 69120 Heidelberg, Germany
- 1455 ATHENS Melanoma Study Group investigators
- 1456 Katerina Kypreou, Fani Karagianni, Kyriaki Antonopoulou, Dorothea Polydorou, Vasiliki Hasapi,
- 1457 Michaela Plaka, Nelli Gousetti, Othon Papadopoulos, Christina Antoniou, Alexander Stratigos
- 1458 (Department of Dermatology, Andreas Sygros Hospital, Athens, Greece)
- 1459 Helen Gogas (Department of Internal Medicine, Laikon Hospital, University of Athens, Athens,
- 1460 Greece)
- 1461 Vangelis Evangelou (Department of Epidemiology, University of Ioannina, Ioannina, Greece)
- 1462

1463 The Multi-Ethnic Study of Atherosclerosis (MESA)

- 1464 The MESA and the MESA SHARe project are conducted and supported by the National Heart,
- 1465 Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support for MESA
- 1466 is provided by contracts N01-HC-95159, N01-HC-95160, N01-HC-95161, N01-HC-95162, N01-
- 1467 HC-95163, N01-HC-95164, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168,
- 1468 N01-HC-95169, UL1-TR-001079, UL1-TR-000040, and DK063491. Funding for SHARe
- 1469 genotyping was provided by NHLBI Contract N02-HL-64278. Genotyping was performed at

1470	Affymetrix (Santa Clara, California, USA) and the Broad Institute of Harvard and MIT (Boston,
1471	Massachusetts, USA) using the Affymetrix Genome-Wide Human SNP Array 6.0. Funding support
1472	for the Lung CT dataset was provided by grants R01-HL077612 and RC1-HL100543.NIH
1473	Intramural award ZIAEY00403 supported the collection of eye-related data in MESA.
1474	
1475	The Nurses' Health Study (NHS) and the Health Professionals Follow-Up Study (HPFS)
1476	We would like to thank the participants and staff of the Nurses' Health Study, the Health
1477	Professionals Follow-Up Study for their valuable contributions as well as the following state cancer
1478	registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD,
1479	MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. The
1480	authors assume full responsibility for analyses and interpretation of these data. This work was
1481	supported by NIH R01 CA49449, P01 CA87969, UM1 CA186107, and UM1 CA167552.
1482	
1483	GWAS of non-alcoholic fatty liver disease (hepatic steatosis)
1484	Bratati Kahali and Elizabeth K Speliotes were supported by the Doris Duke Medical Foundation,
1485	NIH grant R01DK106621-01, the University of Michigan Internal Medicine Department, Division
1486	of Gastroenterology, the University of Michigan Biological Sciences Scholars Program and The
1487	Central Society for Clinical Research.
1488	
1489	Pancreatic cancer case-control consortium (PanC4)

The Mayo Clinic Molecular Epidemiology of Pancreatic Cancer study was supported by the Mayo
Clinic SPORE in Pancreatic Cancer (P50CA102701). The Yale University study was supported by
grant number 5R01CA098870 from the NCI. The work at Johns Hopkins University was supported
by NCI Grants P50CA62924 and R01CA97075 and the Lustgarten Foundation for Pancreatic
Cancer Research. The Pancreas Tumor Registry at Memorial Sloan Kettering Cancer Center was
supported by NIH P30CA008748 and the Goldstein Fund for Prevention, Control and Population

1496	Research. The work at MD Anderson was supported by NIH Grant R01CA98380. The UCSF
1497	study was supported in part by NCI Grants CA59706, CA108370, CA109767, CA89726, and
1498	CA98889 and by the Rombauer Pancreatic Cancer Research Fund. The University of Toronto
1499	study was supported by NIH Grant R01CA97075, the Lustgarten Foundation for Pancreatic Cancer
1500	Research, and the Ontario Cancer Research Network.

1502 Pancreatic Cancer Cohort Consortium (PanScan)

PanScan is the NCI cohort consortium genome-wide association study for pancreatic cancer. This
research was supported by the Intramural Research Program of the National Institutes of Health,
Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of
Health, Department of Health and Human Services.

1507

1508 The European Prospective Investigation into Cancer and Nutrition (EPIC) study

1509 The coordination of EPIC is financially supported by the European Commission (DG-SANCO) 1510 andthe International Agency for Research on Cancer. The national cohorts are supported by the Health Research Fund (FIS) of the Spanish Ministry of Health, Regional Governments of Andalucía, 1511 Asturias, Basque Country, Murcia (no.6236), Navarra and the Catalan Institute of Oncology, La 1512 1513 Caixa (BM 06-130), Red Temática de Investigación Cooperativa en Cáncer (RD12/0036/0018; RD06/0020/0091; Spain); Danish Cancer Society (Denmark); Ligue contre le Cancer, Institut 1514 1515 Gustave Roussy, Mutuelle Générale de l'Education Nationale, Institut National de la Santé et de la 1516 Recherche Médicale (INSERM; France); Deutsche Krebshilfe, Deutsches Krebsforschungszentrum (DKFZ) and Federal Ministry of Education and Research (Germany); the Hellenic Health 1517 Foundation (Greece); Associazione Italiana per la Ricerca sul Cancro (AIRC) and National 1518 1519 Research Council (Italy); Dutch Ministry of Public Health, Welfare, and Sports (VWS), Netherlands Cancer Registry (NKR), LK Research Funds, Dutch Prevention Funds, Dutch ZON 1520

1521 (Zorg Onderzoek Nederland), World Cancer Research Fund (WCRF), and Statistics Netherlands

1522 (The Netherlands); Nordic Center of Excellence in Food, Nutrition, and Health Helga (Norway);

Swedish Cancer Society, Swedish Scientific Council and Regional Government of Skane and
Vasterbotten (Sweden); Cancer Research UK (C570/A16491, R.C. Travis; 14136, K.T. Khaw) and
Medical Research Council (G1000143, K.T. Khaw; United Kingdom).

1526

1527 The PRACTICAL Consortium

1528 (http://practical.ccge.medschl.cam.ac.uk/)

Rosalind Eeles ^{1, 2}, Doug Easton ³, Zsofia Kote-Jarai ¹, Ali Amin Al Olama ³, Sara Benlloch ³,
Kenneth Muir ⁴, Graham G. Giles ^{5, 6}, Fredrik Wiklund ⁷, Henrik Gronberg ⁷, Christopher A.
Haiman ⁸, Johanna Schleutker ^{9, 10}, Maren Weischer ¹¹, Ruth C. Travis ¹², David Neal ¹³, Paul
Pharoah ¹⁴, Kay-Tee Khaw ¹⁵, Janet L. Stanford ^{16, 17}, William J. Blot ¹⁸, Stephen Thibodeau ¹⁹,
Christiane Maier ^{20, 21}, Adam S. Kibel ^{22, 23}, Cezary Cybulski ²⁴, Lisa Cannon-Albright ²⁵, Hermann
Brenner ^{26,27}, Jong Park ²⁸, Radka Kaneva ²⁹, Jyotsna Batra ³⁰, Manuel R. Teixeira ³¹, Hardev
Pandha³²

1536

¹ The Institute of Cancer Research, London, SM2 5NG, UK, ² Royal Marsden NHS Foundation 1537 Trust, London, SW3 6JJ, UK, ³ Centre for Cancer Genetic Epidemiology, Department of Public 1538 Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Worts 1539 Causeway, Cambridge, UK, ⁴ University of Warwick, Coventry, UK, ⁵ Cancer Epidemiology 1540 Centre, Cancer Council Victoria, 615 St Kilda Road, Melbourne Victoria, Australia, ⁶ Centre for 1541 Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The 1542 University of Melbourne, Victoria, Australia, ⁷ Department of Medical Epidemiology and 1543 Biostatistics, Karolinska Institute, Stockholm, Sweden, ⁸ Department of Preventive Medicine, Keck 1544 School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los 1545 Angeles, California, USA, ⁹ Department of Medical Biochemistry and Genetics, University of 1546

Turku, Turku, Finland, ¹⁰ Institute of Biomedical Technology/BioMediTech, University of Tampere 1547 and FimLab Laboratories, Tampere, Finland, ¹¹ Department of Clinical Biochemistry, Herlev 1548 Hospital, Copenhagen University Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark, ¹² 1549 1550 Cancer Epidemiology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK, ¹³ Surgical Oncology (Uro-Oncology: S4), University of Cambridge, Box 279, 1551 1552 Addenbrooke's Hospital, Hills Road, Cambridge, UK and Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, UK, ¹⁴ Centre for Cancer Genetic 1553 Epidemiology, Department of Oncology, University of Cambridge, Strangeways Research 1554 Laboratory, Worts Causeway, Cambridge, UK, ¹⁵ Cambridge Institute of Public Health, University 1555 of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0SR, ¹⁶ Division of Public Health 1556 Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA, ¹⁷ Department of 1557 Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA, ¹⁸ 1558 International Epidemiology Institute, 1455 Research Blvd., Suite 550, Rockville, MD 20850, 19 1559 Mayo Clinic, Rochester, Minnesota, USA, ²⁰ Department of Urology, University Hospital Ulm, 1560 Germany, ²¹ Institute of Human Genetics University Hospital Ulm, Germany, ²² Brigham and 1561 Women's Hospital/Dana-Farber Cancer Institute, 45 Francis Street- ASB II-3, Boston, MA 02115, 1562 ²³ Washington University, St Louis, Missouri, ²⁴ International Hereditary Cancer Center, 1563 Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland, ²⁵ 1564 Division of Genetic Epidemiology, Department of Medicine, University of Utah School of 1565 Medicine²⁶ Division of Clinical Epidemiology and Aging Research & Division of Preventive 1566 Oncology, German Cancer Research Center, Heidelberg Germany, ²⁷German Cancer Consortium 1567 (DKTK), German Cancer Research Center (DKFZ), Heidelberg Germany, ²⁸Division of Cancer 1568 Prevention and Control, H. Lee Moffitt Cancer Center, 12902 Magnolia Dr., Tampa, Florida, USA, 1569 ²⁹ Molecular Medicine Center and Department of Medical Chemistry and Biochemistry, Medical 1570 University - Sofia, 2 Zdrave St, 1431, Sofia, Bulgaria, ³⁰ Australian Prostate Cancer Research 1571 Centre-Qld, Institute of Health and Biomedical Innovation and Schools of Life Science and Public 1572

Health, Queensland University of Technology, Brisbane, Australia, ³¹ Department of Genetics,
Portuguese Oncology Institute, Porto, Portugal and Biomedical Sciences Institute (ICBAS), Porto
University, Porto, Portugal, ³²The University of Surrey, Guildford, Surrey, GU2 7XH, UK

1576

1577 *COGS acknowledgement and funding:*

1578 This study would not have been possible without the contributions of the following: Per Hall 1579 (COGS); Douglas F. Easton, Paul Pharoah, Kyriaki Michailidou, Manjeet K. Bolla, Qin Wang 1580 (BCAC), Andrew Berchuck (OCAC), Rosalind A. Eeles, Douglas F. Easton, Ali Amin Al Olama, Zsofia Kote-Jarai, Sara Benlloch (PRACTICAL), Georgia Chenevix-Trench, Antonis Antoniou, 1581 Lesley McGuffog, Fergus Couch and Ken Offit (CIMBA), Joe Dennis, Alison M. Dunning, 1582 Andrew Lee, and Ed Dicks, Craig Luccarini and the staff of the Centre for Genetic Epidemiology 1583 Laboratory, Javier Benitez, Anna Gonzalez-Neira and the staff of the CNIO genotyping unit, 1584 Jacques Simard and Daniel C. Tessier, Francois Bacot, Daniel Vincent, Sylvie LaBoissière and 1585 1586 Frederic Robidoux and the staff of the McGill University and Génome Québec Innovation Centre, 1587 Stig E. Bojesen, Sune F. Nielsen, Borge G. Nordestgaard, and the staff of the Copenhagen DNA laboratory, and Julie M. Cunningham, Sharon A. Windebank, Christopher A. Hilker, Jeffrey Meyer 1588 1589 and the staff of Mayo Clinic Genotyping Core Facility

1590

Funding for the iCOGS infrastructure came from: the European Community's Seventh Framework Programme under grant agreement n° 223175 (HEALTH-F2-2009-223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A 10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692, C8197/A16565), the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112 - the GAME-ON initiative), the Department of Defence (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer ResearchFund.

1600

1601 Sarcoidosis GWAS

This work was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the e:Med research and funding concept (SysInflame grant 01ZX1306A). This project received infrastructure support from the DFG Excellence Cluster No. 306 "Inflammation at Interfaces". Andre Franke receives an endowment professorship by the Foundation for Experimental Medicine (Zuerich, Switzerland).

1607

1608 The Singapore Epidemiology of Eye Diseases Study (SEED)

Jia Yu Koh,¹ Qiao Fan,¹ Wanting Zhao,¹ Blanche Lim,^{1,2} Jacqueline Chua,^{1,3} Paul Mitchell,⁴ Jie Jin
Wang,^{4,5} Yik-Ying Teo,^{6,7} Tien Yin Wong,^{1,2,3} Ching-Yu Cheng^{1,2,3}

1611

1612 1. Singapore Eye Research Institute, Singapore National Eye Center, Singapore

1613 2. Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of

- 1614 Singapore, Singapore
- 1615 3. Duke-NUS Medical School, Singapore
- 1616 4. Department of Ophthalmology, Centre for Vision Research, Westmead Millennium

1617 Institute, University of Sydney, Sydney, New South Wales, Australia

1618 5. Centre for Eye Research Australia (CERA), University of Melbourne, Royal Victorian Eye

- 1619 and Ear Hospital, Melbourne, Victoria, Australia
- 1620 6. Saw Swee Hock School of Public Health, National University Health System, National
- 1621 University of Singapore, Singapore
- 1622 7. Department of Statistics and Applied Probability, National University of Singapore,

1623 Singapore

1625	Acknowledgements of studies that contributed to the GWAS meta-analysis of telomere
1626	length ⁴
1627	The Framingham Heart Study
1628	The Framingham Heart Study is funded by National Institutes of Health contract N01-HC-25195.
1629	The Framingham GWAS component of this project was funded by the Division of Intramural
1630	Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD.
1631	
1632	TwinsUK
1633	The study was funded by the Wellcome Trust; European Community's Seventh Framework
1634	Programme (FP7/2007-2013). The study also receives support from the National Institute for Health
1635	Research (NIHR) BioResource Clinical Research Facility and Biomedical Research Centre based at
1636	Guy's and St Thomas' NHS Foundation Trust and King's College London.
1637	
1638	
1639	
1640	
1641	
1642	
1643	
1644	
1011	
1645	
1646	

References 1647

1648	1.	Welter D, MacArthur J, Morales J, et al. The NHGRI GWAS Catalog, a curated resource of
1649		SNP-trait associations. Nucleic Acids Res 2014;42(Database issue):D1001-6.
1650	2.	Hindorff LA LA, MacArthur J, Morales J, et al. A catalog of published genome-wide
1651		association studies [Internet]. [cited 2015 Jan 15];Available from:
1652		www.genome.gov/gwastudies
1653	3.	Pooley KA, Bojesen SE, Weischer M, et al. A genome-wide association scan (GWAS) for
1654		mean telomere length within the COGS project: identified loci show little association with
1655		hormone-related cancer risk. Hum Mol Genet 2013;22(24):5056–64.
1656	4.	Mangino M, Hwang S-J, Spector TD, et al. Genome-wide meta-analysis points to CTC1 and
1657		ZNF676 as genes regulating telomere homeostasis in humans. Hum Mol Genet
1658		2012;21(24):5385–94.
1659	5.	Prescott J, Kraft P, Chasman DI, et al. Genome-wide association study of relative telomere
1660		length. PLoS One 2011;6(5):e19635.
1661	6.	Gu J, Chen M, Shete S, et al. A genome-wide association study identifies a locus on
1662		chromosome 14q21 as a predictor of leukocyte telomere length and as a marker of
1663		susceptibility for bladder cancer. Cancer Prev Res (Phila) 2011;4(4):514-21.
1664	7.	Codd V, Nelson CP, Albrecht E, et al. Identification of seven loci affecting mean telomere
1665		length and their association with disease. Nat Genet 2013;45(4):422-7.
1666	8.	Codd V, Mangino M, van der Harst P, et al. Common variants near TERC are associated
1667		with mean telomere length. Nat Genet 2010;42(3):197-9.
1668	9.	Liu Y, Cao L, Li Z, et al. A genome-wide association study identifies a locus on TERT for

mean telomere length in Han Chinese. PLoS One 2014;9(1):e85043. 1669

1670	10.	Saxena R, Bjonnes A, Prescott J, et al. Genome-wide association study identifies variants in
1671		casein kinase II (CSNK2A2) to be associated with leukocyte telomere length in a Punjabi
1672		Sikh diabetic cohort. Circ Cardiovasc Genet 2014;7(3):287–95.
1673	11.	Levy D, Neuhausen SL, Hunt SC, et al. Genome-wide association identifies OBFC1 as a
1674		locus involved in human leukocyte telomere biology. Proc Natl Acad Sci U S A
1675		2010;107(20):9293-8.
1676	12.	Burgess S. Sample size and power calculations in Mendelian randomization with a single
1677		instrumental variable and a binary outcome. Int J Epidemiol 2014;43(3):922-9.
1678	13.	Burgess S, Scott RA, Timpson NJ, Davey Smith G, Thompson SG, EPIC-InterAct
1679		Consortium. Using published data in Mendelian randomization : a blueprint for efficient
1680		identification of causal risk factors. Eur J Epidemiol 2015;30(7):543-52.
1681	14.	Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian
1682		randomization with some invalid instruments using a weighted median estimator. Genet
1683		Epidemiol
1684	15.	Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments:
1685		effect estimation and bias detection through Egger regression. Int J Epidemiol
1686		2015;44(2):512–25.
1687	16.	Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association
1688		and population-based linkage analyses. Am J Hum Genet 2007;81(3):559–75.
1689	17.	Abecasis GR, Auton A, Brooks LD, et al. An integrated map of genetic variation from 1,092
1690		human genomes. Nature 2012;491(7422):56-65.
1691	18.	Durinck S, Moreau Y, Kasprzyk A, et al. BioMart and Bioconductor: a powerful link
1692		between biological databases and microarray data analysis. Bioinformatics
1693		2005;21(16):3439–40.

- 1694 19. Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of
- 1695 genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc 2009;4(8):1184–91.
- 1696 20. Kinsella RJ, Kahari A, Haider S, et al. Ensembl BioMarts: a hub for data retrieval across
- taxonomic space. Database 2011;2011:bar030-bar030.
- 1698 21. Aschard H, Vilhjálmsson BJ, Joshi AD, Price AL, Kraft P. Adjusting for heritable covariates
 1699 can bias effect estimates in genome-wide association studies. Am J Hum Genet
 1700 2015;96(2):329–39.
- Miyake Y, Nakamura M, Nabetani A, et al. RPA-like mammalian Ctc1-Stn1-Ten1 complex
 binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway.
 Mol Cell 2009;36(2):193–206.
- Burgess S, Thompson SG. Bias in causal estimates from Mendelian randomization studies
 with weak instruments. Stat Med 2011;30(11):1312–23.
- 1706 24. Davey Smith G. Use of genetic markers and gene-diet interactions for interrogating
- 1707 population-level causal influences of diet on health. Genes Nutr 2011;6(1):27–43.
- 1708 25. Haycock PC, Burgess S, Wade KH, Bowden J, Relton C, Davey Smith G. Best (but off-
- forgotten) practices: the design, analysis, and interpretation of Mendelian randomization
 studies. Am J Clin Nutr 2016;103(4):965–78.
- 1711 26. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference
 1712 in epidemiological studies. Hum Mol Genet 2014;23(R1):R89-98.
- 1713 27. Schunkert H, König IR, Kathiresan S, et al. Large-scale association analysis identifies 13
 1714 new susceptibility loci for coronary artery disease. Nat Genet 2011;43(4):333–8.
- 1715 28. Bown MJ, Jones GT, Harrison SC, et al. Abdominal aortic aneurysm is associated with a
- 1716 variant in low-density lipoprotein receptor-related protein 1. Am J Hum Genet
- 1717 2011;89(5):619–27.

1/18	29.	Borthwick K, Smelser D, Bock J, et al. Ephenotyping for Abdominal Aortic Aneurysm in the
1719		Electronic Medical Records and Genomics (eMERGE) Network: Algorithm Development
1720		and Konstanz Information Miner Workflow. Int J Biomed Data Min 2015;4(1).
1721	30.	Dubois PC a, Trynka G, Franke L, et al. Multiple common variants for celiac disease
1722		influencing immune gene expression. Nat Genet 2010;42(4):295-302.
1723	31.	Fingerlin TE, Murphy E, Zhang W, et al. Genome-wide association study identifies multiple
1724		susceptibility loci for pulmonary fibrosis. Nat Genet 2013;45(6):613-20.
1725	32.	Wang Y, McKay JD, Rafnar T, et al. Rare variants of large effect in BRCA2 and CHEK2
1726		affect risk of lung cancer. Nat Genet 2014;46(7).
1727	33.	Diskin SJ, Capasso M, Schnepp RW, et al. Common variation at 6q16 within HACE1 and
1728		LIN28B influences susceptibility to neuroblastoma. Nat Genet 2012;44(10):1126-30.
1729	34.	Pharoah PDP, Tsai Y-Y, Ramus SJ, et al. GWAS meta-analysis and replication identifies
1730		three new susceptibility loci for ovarian cancer. Nat Genet 2013;45(4):362-70, 370-2.
1731	35.	Spurdle AB, Thompson DJ, Ahmed S, et al. Genome-wide association study identifies a
1732		common variant associated with risk of endometrial cancer. Nat Genet 2011;43(5):451-4.
1733	36.	Painter JN, O'Mara TA, Batra J, et al. Fine-mapping of the HNF1B multicancer locus
1734		identifies candidate variants that mediate endometrial cancer risk. Hum Mol Genet
1735		2015;24(5):1478–92.
1736	37.	Purdue MP, Johansson M, Zelenika D, et al. Genome-wide association study of renal cell
1737		carcinoma identifies two susceptibility loci on 2p21 and 11q13.3. Nat Genet 2010;43(1):60-
1738		5.
1739	38.	Turnbull C, Rapley E a, Seal S, et al. Variants near DMRT1, TERT and ATF7IP are
1740		associated with testicular germ cell cancer. Nat Genet 2010;42(7):604-7.

1741	39.	Rapley EA, Turnbull C, Al Olama AA, et al. A genome-wide association study of testicular
1742		germ cell tumor. Nat Genet 2009;41(7):807–10.

- 1743 40. Amos CI, Wang L-E, Lee JE, et al. Genome-wide association study identifies novel loci
- 1744 predisposing to cutaneous melanoma. Hum Mol Genet 2011;20(24):5012–23.
- 1745 41. Rafnar T, Sulem P, Thorleifsson G, et al. Genome-wide association study yields variants at
- 1746 20p12.2 that associate with urinary bladder cancer. Hum Mol Genet 2014;23(20):5545–57.
- 1747 42. Lambert JC, Ibrahim-Verbaas CA, Harold D, et al. Meta-analysis of 74,046 individuals
- identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet 2013;45(12):1452–8.
- 1749 43. Barrett JC, Clayton DG, Concannon P, et al. Genome-wide association study and meta-
- analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 2009;41(6):703–7.
- 44. Walsh KM, Codd V, Rice T, et al. Longer genotypically-estimated leukocyte telomere length
 is associated with increased adult glioma risk. Oncotarget 2015;6(40):42468–77.
- 1753 45. Ojha J, Codd V, Nelson CP, et al. Genetic Variation Associated with Longer Telomere
- 1754 Length Increases Risk of Chronic Lymphocytic Leukemia. Cancer Epidemiol Biomarkers
 1755 Prev 2016;25(7):1043–9.
- 46. Snetselaar R, van Moorsel CHM, Kazemier KM, et al. Telomere length in interstitial lung
 diseases. Chest 2015;148(4):1011–8.
- Haycock PC, Heydon EE, Kaptoge S, Butterworth a. S, Thompson A, Willeit P. Leucocyte
 telomere length and risk of cardiovascular disease: systematic review and meta-analysis.
 BMJ 2014;349(jul08 3):g4227–g4227.
- 48. Cottliar A, Palumbo M, La Motta G, et al. Telomere length study in celiac disease. Am J
 Gastroenterol 2003;98(12):2727–31.
- 1763 49. Atturu G, Brouilette S, Samani NJ, London NJM, Sayers RD, Bown MJ. Short leukocyte

telomere length is associated with abdominal aortic aneurysm (AAA). Eur J Vasc Endovasc
Surg 2010;39(5):559–64.

- 1766 50. Armanios M. Syndromes of telomere shortening. Annu Rev Genomics Hum Genet
 1767 2009;10(46):45–61.
- 51. Speedy HE, Di Bernardo MC, Sava GP, et al. A genome-wide association study identifies
 multiple susceptibility loci for chronic lymphocytic leukemia. Nat Genet 2014;46(1):56–60.
- 1770 52. Kim DHD, Lee S-T, Won H-H, et al. A genome-wide association study identifies novel loci
- associated with susceptibility to chronic myeloid leukemia. Blood 2011;117(25):6906–11.
- 1772 53. Postel-Vinay S, Véron AS, Tirode F, et al. Common variants near TARDBP and EGR2 are
 1773 associated with susceptibility to Ewing sarcoma. Nat Genet 2012;44(3):323–7.
- 1774 54. Conde L, Halperin E, Akers NK, et al. Genome-wide association study of follicular
 1775 lymphoma identifies a risk locus at 6p21.32. Nat Genet 2010;42(8):661–4.
- 1776 55. Cha P-CC, Zembutsu H, Takahashi A, Kubo M, Kamatani N, Nakamura Y. A genome-wide
 1777 association study identifies SNP in DCC is associated with gallbladder cancer in the Japanese
- 1778 population. J Hum Genet 2012;57(4):235–7.
- 177956.Abnet CC, Freedman ND, Hu N, et al. A shared susceptibility locus in PLCE1 at 10q23 for1780gastric adenocarcinoma and esophageal squamous cell carcinoma. Nat Genet17912010 (2010) 764 7
- 1781 2010;42(9):764–7.
- 1782 57. Chubb D, Weinhold N, Broderick P, et al. Common variation at 3q26.2, 6p21.33, 17p11.2
 1783 and 22q13.1 influences multiple myeloma risk. Nat Genet 2013;45(10):1221–5.
- 1784 58. Bei J-X, Li Y, Jia W-H, et al. A genome-wide association study of nasopharyngeal
- 1785 carcinoma identifies three new susceptibility loci. Nat Genet 2010;42(7):599–603.
- 1786 59. Tan DEK, Foo JN, Bei J-X, et al. Genome-wide association study of B cell non-Hodgkin

- 1787 lymphoma identifies 3q27 as a susceptibility locus in the Chinese population. Nat Genet
 1788 2013;45(7):804–7.
- Chang M, Song F, Liang L, et al. Genome-wide association studies identify several new loci
 associated with pigmentation traits and skin cancer risk in European Americans. Hum Mol
 Genet 2013;22(14):2948–59.
- Köhler A, Chen B, Gemignani F, et al. Genome-wide association study on differentiated
 thyroid cancer. J Clin Endocrinol Metab 2013;98(10):E1674-81.
- Li W-Q, Hu N, Hyland PL, et al. Genetic variants in DNA repair pathway genes and risk of
 esophageal squamous cell carcinoma and gastric adenocarcinoma in a Chinese population.
 Carcinogenesis 2013;34(7):1536–42.
- -
- Hüffmeier U, Uebe S, Ekici AB, et al. Common variants at TRAF3IP2 are associated with
 susceptibility to psoriatic arthritis and psoriasis. Nat Genet 2010;42(11):996–9.
- Khor CC, Davila S, Breunis WB, et al. Genome-wide association study identifies FCGR2A
 as a susceptibility locus for Kawasaki disease. Nat Genet 2011;43(12):1241–6.
- 1801 65. Han F, Faraco J, Dong XS, et al. Genome wide analysis of narcolepsy in China implicates
- novel immune loci and reveals changes in association prior to versus after the 2009 H1N1
 influenza pandemic. PLoS Genet 2013;9(10):e1003880.
- 1804 66. Zhang X-J, Huang W, Yang S, et al. Psoriasis genome-wide association study identifies
 1805 susceptibility variants within LCE gene cluster at 1q21. Nat Genet 2009;41(2):205–10.
- 1806 67. Fischer A, Schmid B, Ellinghaus D, et al. A novel sarcoidosis risk locus for Europeans on
 1807 chromosome 11q13.1. Am J Respir Crit Care Med 2012;186(9):877–85.
- 1808 68. Hom G, Graham RR, Modrek B, et al. Association of Systemic Lupus Erythematosus with
 1809 C8orf13–BLK and ITGAM–ITGAX. N Engl J Med 2008;358(9):900–9.

- 1810 69. Quan C, Ren Y-Q, Xiang L-H, et al. Genome-wide association study for vitiligo identifies
 1811 susceptibility loci at 6q27 and the MHC. Nat Genet 2010;42(7):614–8.
- 1812 70. Xie G, Roshandel D, Sherva R, et al. Association of granulomatosis with polyangiitis
- (Wegener's) with HLA-DPB1*04 and SEMA6A gene variants: evidence from genome-wide
 analysis. Arthritis Rheum 2013;65(9):2457–68.
- 1815 71. Wade TD, Gordon S, Medland S, et al. Genetic variants associated with disordered eating.
 1816 Int J Eat Disord 2013;46(6):594–608.
- 1817 72. Otowa T, Yoshida E, Sugaya N, et al. Genome-wide association study of panic disorder in
 1818 the Japanese population. J Hum Genet 2009;54(2):122–6.
- 1819 73. Simón-Sánchez J, Schulte C, Bras JM, et al. Genome-wide association study reveals genetic
 1820 risk underlying Parkinson's disease. Nat Genet 2009;41(12):1308–12.
- Tang CS, Sribudiani Y, Miao XP, et al. Fine mapping of the 9q31 Hirschsprung's disease
 locus. Hum Genet 2010;127(6):675–83.
- 1823 75. Albagha OME, Wani SE, Visconti MR, et al. Genome-wide association identifies three new
 1824 susceptibility loci for Paget's disease of bone. Nat Genet 2011;43(7):685–9.
- 1825 76. Kim Y, Kong M, Lee C. Association of intronic sequence variant in the gene encoding
 1826 spleen tyrosine kinase with susceptibility to vascular dementia. World J Biol Psychiatry
 1827 2013;14(3):220–6.
- 1828 77. Figueroa JD, Ye Y, Siddiq A, et al. Genome-wide association study identifies multiple loci
 1829 associated with bladder cancer risk. Hum Mol Genet 2014;23(5):1387–98.
- 78. Zhang B, Jia W-H, Matsuda K, et al. Large-scale genetic study in East Asians identifies six
 new loci associated with colorectal cancer risk. Nat Genet 2014;46(6):533–42.
- 1832 79. Coronary Artery Disease (C4D) Genetics Consortium. A genome-wide association study in

- 1833 Europeans and South Asians identifies five new loci for coronary artery disease. Nat Genet 2011;43(4):339-44. 1834
- 80. Rajaraman P, Melin BS, Wang Z, et al. Genome-wide association study of glioma and meta-1835 analysis. Hum Genet 2012;131(12):1877-88. 1836
- 1837 81. Noth I, Zhang Y, Ma S-F, et al. Genetic variants associated with idiopathic pulmonary
- fibrosis susceptibility and mortality: a genome-wide association study. Lancet Respir Med 1838 2013;1(4):309–17. 1839
- 1840 82. Mushiroda T, Wattanapokayakit S, Takahashi a, et al. A genome-wide association study 1841 identifies an association of a common variant in TERT with susceptibility to idiopathic 1842 pulmonary fibrosis. J Med Genet 2008;45(10):654-6.
- 83. Childs EJ, Mocci E, Campa D, et al. Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 1843 associated with susceptibility to pancreatic cancer. Nat Genet 2015;47(8):911-6. 1844
- 84. Baranzini SE, Wang J, Gibson RA, et al. Genome-wide association analysis of susceptibility 1845 and clinical phenotype in multiple sclerosis. Hum Mol Genet 2009;18(4):767-78.
- 85. Tse KP, Su WH, Chang KP, et al. Genome-wide Association Study Reveals Multiple 1847
- Nasopharyngeal Carcinoma-Associated Loci within the HLA Region at Chromosome 1848
- 1849 6p21.3. Am J Hum Genet 2009;85(2):194-203.

- 86. Li H, Gan W, Lu L, et al. A genome-wide association study identifies GRK5 and RASGRP1 1850 as type 2 diabetes loci in Chinese Hans. Diabetes 2013;62(1):291-8. 1851
- 87. van der Valk RJP, Kreiner-Møller E, Kooijman MN, et al. A novel common variant in 1852 1853 DCST2 is associated with length in early life and height in adulthood. Hum Mol Genet 1854 2015;24(4):1155-68.
- 88. Horikoshi M, Yaghootkar H, Mook-Kanamori DO, et al. New loci associated with birth 1855 1856 weight identify genetic links between intrauterine growth and adult height and metabolism.

1857 Nat Genet 2013;45(1):76–82.

- 1858 89. Locke AE, Kahali B, Berndt SI, et al. Genetic studies of body mass index yield new insights
 1859 for obesity biology. Nature 2015;518(7538):197–206.
- 1860 90. Bradfield JP, Taal HR, Timpson NJ, et al. A genome-wide association meta-analysis
 1861 identifies new childhood obesity loci. Nat Genet 2012;44(5):526–31.
- 1862 91. Taal HR, St Pourcain B, Thiering E, et al. Common variants at 12q15 and 12q24 are
 1863 associated with infant head circumference. Nat Genet 2012;44(5):532–8.
- 1864 92. Wood AR, Esko T, Yang J, et al. Defining the role of common variation in the genomic and
- 1865 biological architecture of adult human height. Nat Genet 2014;(November).
- 1866 93. Shungin D, Winkler TW, Croteau-Chonka DC, et al. New genetic loci link adipose and
- insulin biology to body fat distribution. Nature 2015;518(7538):187–96.
- 1868 94. Tobacco and Genetics Consortium. Genome-wide meta-analyses identify multiple loci
- associated with smoking behavior. Nat Genet 2010;42(5):441–7.
- 1870 95. Ehret GB, Munroe PB, Rice KM, et al. Genetic variants in novel pathways influence blood
 1871 pressure and cardiovascular disease risk. Nature 2011;478(7367):103–9.
- 1872 96. Wain L V, Verwoert GC, O'Reilly PF, et al. Genome-wide association study identifies six
 1873 new loci influencing pulse pressure and mean arterial pressure. Nat Genet

1874 2011;43(10):1005–11.

- 1875 97. Rietveld CA, Medland SE, Derringer J, et al. GWAS of 126,559 individuals identifies
- 1876 genetic variants associated with educational attainment. Science 2013;340(6139):1467–71.
- 1877 98. Saxena R, Hivert M-F, Langenberg C, et al. Genetic variation in GIPR influences the glucose
 1878 and insulin responses to an oral glucose challenge. Nat Genet 2010;42(2):142–8.
- 1879 99. Dupuis J, Langenberg C, Prokopenko I, et al. New genetic loci implicated in fasting glucose

- homeostasis and their impact on type 2 diabetes risk. Nat Genet 2010;42(2):105–16.
- 1881 100. Soranzo N, Sanna S, Wheeler E, et al. Common variants at 10 genomic loci influence
- 1882 hemoglobin $A_1(C)$ levels via glycemic and nonglycemic pathways. Diabetes

1883 2010;59(12):3229–39.

- 101. van der Harst P, Zhang W, Mateo Leach I, et al. Seventy-five genetic loci influencing the
 human red blood cell. Nature 2012;492(7429):369–75.
- 102. Willer CJ, Schmidt EM, Sengupta S, et al. Discovery and refinement of loci associated with
 lipid levels. Nat Genet 2013;45(11):1274–83.
- 103. Köttgen A, Pattaro C, Böger C a, et al. New loci associated with kidney function and chronic
 kidney disease. Nat Genet 2010;42(5):376–84.
- 104. Liao J, Su X, Chen P, et al. Meta-analysis of genome-wide association studies in multiethnic
 Asians identifies two loci for age-related nuclear cataract. Hum Mol Genet

1892 2014;23(22):6119–28.

- 1893 105. Speliotes EK, Yerges-Armstrong LM, Wu J, et al. Genome-wide association analysis
 1894 identifies variants associated with nonalcoholic fatty liver disease that have distinct effects
- 1895 on metabolic traits. PLoS Genet 2011;7(3).
- 1896 106. Manichaikul A, Hoffman E a, Smolonska J, et al. Genome-wide study of percent emphysema1897 on computed tomography in the general population. The Multi-Ethnic Study of
- 1898 Atherosclerosis Lung/SNP Health Association Resource Study. Am J Respir Crit Care Med
 1899 2014;189(4):408–18.
- 1900 107. Huffman JE, Albrecht E, Teumer A, et al. Modulation of genetic associations with serum
- urate levels by body-mass-index in humans. PLoS One 2015;10(3):e0119752.
- 1902 108. McGrath M, Wong JYY, Michaud D, Hunter DJ, De Vivo I. Telomere length, cigarette

- smoking, and bladder cancer risk in men and women. Cancer Epidemiol Biomarkers Prev
 2007;16(4):815–9.
- 1905 109. Weischer M, Nordestgaard BG, Cawthon RM, Freiberg JJ, Tybjærg-Hansen A, Bojesen SE.
- Short telomere length, cancer survival, and cancer risk in 47102 individuals. J Natl Cancer
 Inst 2013;105(7):459–68.
- 1908 110. Qu S, Wen W, Shu X-O, et al. Association of leukocyte telomere length with breast cancer
 risk: nested case-control findings from the Shanghai Women's Health Study. Am J
 1910 Epidemiol 2013;177(7):617–24.
- 1911 111. Kim S, Sandler DP, Carswell G, et al. Telomere length in peripheral blood and breast cancer
 1912 risk in a prospective case-cohort analysis: results from the Sister Study. Cancer Causes
 1913 Control 2011;22(7):1061–6.
- 1914 112. Pooley KA, Sandhu MS, Tyrer J, et al. Telomere length in prospective and retrospective
 1915 cancer case-control studies. Cancer Res 2010;70(8):3170–6.

1916 113. Lee I-M, Lin J, Castonguay AJ, Barton NS, Buring JE, Zee RYL. Mean leukocyte telomere

- length and risk of incident colorectal carcinoma in women: a prospective, nested case-control
 study. Clin Chem Lab Med 2010;48(2):259–62.
- 1919 114. Zee RYL, Castonguay AJ, Barton NS, Buring JE. Mean telomere length and risk of incident
 1920 colorectal carcinoma: a prospective, nested case-control approach. Cancer Epidemiol
- 1921 Biomarkers Prev 2009;18(8):2280–2.
- 1922 115. Cui Y, Cai Q, Qu S, et al. Association of leukocyte telomere length with colorectal cancer
- 1923 risk: nested case-control findings from the Shanghai Women's Health Study. Cancer
- 1924 Epidemiol Biomarkers Prev 2012;21(10):1807–13.
- 1925 116. Prescott J, McGrath M, Lee I-M, Buring JE, De Vivo I. Telomere length and genetic
- analyses in population-based studies of endometrial cancer risk. Cancer 2010;116(18):4275–

1927 82.

- 1928 117. Walcott F, Rajaraman P, Gadalla SM, et al. Telomere length and risk of glioma. Cancer
 1929 Epidemiol 2013;37(6):935–8.
- 1930 118. Hofmann JN, Lan Q, Cawthon R, et al. A prospective study of leukocyte telomere length and
 risk of renal cell carcinoma. Cancer Epidemiol Biomarkers Prev 2013;22(5):997–1000.
- 119. Seow WJ, Cawthon RM, Purdue MP, et al. Telomere length in white blood cell DNA and
 lung cancer: a pooled analysis of three prospective cohorts. Cancer Res 2014;74(15):4090–8.
- 1934 120. Nan H, Du M, De Vivo I, et al. Shorter telomeres associate with a reduced risk of melanoma
- 1935 development. Cancer Res 2011;71(21):6758–63.
- 121. Lynch SM, Major JM, Cawthon R, et al. A prospective analysis of telomere length and
 pancreatic cancer in the alpha-tocopherol beta-carotene cancer (ATBC) prevention study. Int
- 1938 J Cancer 2013;133(11):2672–80.
- 122. Campa D, Mergarten B, De Vivo I, et al. Leukocyte telomere length in relation to pancreatic
 cancer risk: a prospective study. Cancer Epidemiol Biomarkers Prev 2014;23(11):2447–54.
- 123. Julin B, Shui I, Heaphy CM, et al. Circulating leukocyte telomere length and risk of overall
 and aggressive prostate cancer. Br J Cancer 2015;112(4):769–76.
- 124. Liang G, Qureshi AA, Guo Q, De Vivo I, Han J. No association between telomere length in
 peripheral blood leukocytes and the risk of nonmelanoma skin cancer. Cancer Epidemiol
 Biomarkers Prev 2011;20(5):1043–5.
- 125. Haycock PC, Heydon EE, Kaptoge S, Butterworth AS, Thompson A, Willeit P. Leucocyte
 telomere length and risk of cardiovascular disease: systematic review and meta-analysis.
 BMJ 2014;349:g4227.
- 1949 126. Willeit P, Raschenberger J, Heydon EE, et al. Leucocyte Telomere Length and Risk of Type

- 2 Diabetes Mellitus: New Prospective Cohort Study and Literature-Based Meta-Analysis.
 PLoS One 2014;9(11):e112483.
- 127. Ma H, Zhou Z, Wei S, et al. Shortened telomere length is associated with increased risk of
 cancer: a meta-analysis. PLoS One 2011;6(6):e20466.
- 128. Wentzensen IM, Mirabello L, Pfeiffer RM, Savage SA. The association of telomere length
 and cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev 2011;20(6):1238–50.
- 1956 129. Gretarsdottir S, Baas AF, Thorleifsson G, et al. Genome-wide association study identifies a

sequence variant within the DAB2IP gene conferring susceptibility to abdominal aorticaneurysm. Nat Genet 2010;42(8):692–7.

- 130. Jones GT, Bown MJ, Gretarsdottir S, et al. A sequence variant associated with sortilin-1
 (SORT1) on 1p13.3 is independently associated with abdominal aortic aneurysm. Hum Mol
 Genet 2013;22(14):2941–7.
- 131. Harrison SC, Smith AJP, Jones GT, et al. Interleukin-6 receptor pathways in abdominal
 aortic aneurysm. Eur Heart J 2013;34(48):3707–16.

1964 132. Elmore JR, Obmann MA, Kuivaniemi H, et al. Identification of a genetic variant associated
with abdominal aortic aneurysms on chromosome 3p12.3 by genome wide association. J
Vasc Surg 2009;49(6):1525–31.

1967 133. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide
1968 association scans. Bioinformatics 2010;26(17):2190–1.