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ABSTRACT 349 WORDS   26 
Importance The causal direction and magnitude of the association between telomere length 27 

and incidence of cancer and non-neoplastic diseases is uncertain, due to the susceptibility of 28 

observational studies to confounding and reverse causation. 29 

Objective To conduct a Mendelian randomization study, using germline genetic variants as 30 

instrumental variables, to appraise the causal relevance of telomere length for risk of cancer 31 

and non-neoplastic diseases.  32 

Data Sources Genome-wide association studies (GWAS) published up to January 15 2015.  33 

Study Selection GWAS of non-communicable diseases that assayed germline genetic 34 

variation and did not select cohort or control participants on the basis of pre-existing diseases. 35 

Of 163 GWAS of non-communicable diseases identified, summary data from 103 were 36 

available. 37 

Data Extraction Summary association statistics for single nucleotide polymorphisms (SNPs) 38 

that are strongly associated with telomere length in the general population.     39 

Main Outcomes Odds ratios (ORs) for disease per standard deviation (SD) higher telomere 40 

length due to germline genetic variation. 41 

Results Summary data were available for 35 cancers and 48 non-neoplastic diseases, 42 

corresponding to 420,081 cases (median 2,526 per disease) and 1,093,105 controls (median 43 

6,789 per disease). Increased telomere length due to germline genetic variation was generally 44 

associated with increased risk for site-specific cancers. The strongest associations were 45 

observed for (ORs per 1-SD change in genetically increased telomere length): glioma 5.27  46 

(3.15-8.81), serous low-malignant-potential ovarian cancer 4.35 (2.39-7.94), lung 47 

adenocarcinoma 3.19 (2.40-4.22), neuroblastoma 2.98 (1.92-4.62), bladder cancer 2.19 (1.32-48 

3.66), melanoma 1.87 (1.55-2.26), testicular cancer 1.76 (1.02-3.04), kidney cancer 1.55 49 
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(1.08-2.23) and endometrial cancer 1.31 (1.07-1.61). Associations were stronger for rarer 50 

cancers and at tissue sites with lower rates of stem cell division (P<0.05). There was 51 

generally little evidence of association between genetically increased telomere length and risk 52 

of psychiatric, autoimmune, inflammatory, diabetic and other non-neoplastic diseases, except 53 

for coronary heart disease (0.78 [0.67-0.90]), abdominal aortic aneurysm (0.63 [0.49-0.81]), 54 

celiac disease (0.42 [0.28-0.61]) and interstitial lung disease (0.09 [0.05- 0.15]).  55 

Conclusions It is likely that longer telomeres increase risk for several cancers but reduce risk 56 

for some non-neoplastic diseases, including cardiovascular diseases.   57 

 58 

 59 

 60 

 61 

 62 

 63 

 64 

 65 

 66 

 67 

 68 

 69 

 70 
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INTRODUCTION 71 

 72 

At the ends of chromosomes, telomeres are DNA-protein structures that protect the genome 73 

from damage, shorten progressively over time in most somatic tissues1 and are proposed 74 

physiological markers of ageing.2,3 Shorter leukocyte telomeres are correlated with older age, 75 

male sex and other known risk factors for non-communicable diseases4–6 and are generally 76 

associated with higher risk for cardiovascular diseases7,8, type 2 diabetes9 and non-vascular 77 

non-neoplastic causes of mortality.8 Whether these associations are causal, however, is 78 

unknown. Telomere length has also been implicated in risk of cancer but the direction and 79 

magnitude of the association is uncertain and contradictory across observational studies.10–14 80 

The uncertainty reflects the considerable difficulty of designing observational studies of 81 

telomere length and cancer incidence that are robust to reverse causation, confounding and 82 

measurement error. 83 

The aim of the present report was to conduct a Mendelian randomization study, using 84 

germline genetic variants as instrumental variables for telomere length, to help clarify the 85 

nature of the association between telomere length and risk of cancer and non-neoplastic 86 

diseases. The approach, which mimics the random allocation of individuals to the placebo 87 

and intervention arms of a randomized controlled trial, allowed us to: (1) estimate the 88 

direction and broad magnitude of the association of telomere length with risk of multiple 89 

cancer and non-neoplastic diseases; (2) appraise the evidence for causality in the estimated 90 

etiological associations; (3) investigate potential sources of heterogeneity in findings for site-91 

specific cancers; and (4) compare genetic estimates to findings based on directly measured 92 

telomere length in prospective observational studies.  93 

 94 
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METHODS 95 

 96 

Study design 97 

The design of our study, illustrated in Figure S1, had three key components: 1) the 98 

identification of genetic variants to serve as instruments for telomere length; 2) the 99 

acquisition of summary data for the genetic instruments from genome wide association 100 

studies (GWASs) of diseases and risk factors for non-communicable diseases; and 3) the 101 

classification of diseases and risk factors into primary or secondary outcomes based on a 102 

priori statistical power. As a first step, we searched the GWAS catalog15,16 on the 15 January 103 

2015, to identify single nucleotide polymorphisms (SNPs) associated with telomere length. 104 

To supplement the list with additional potential instruments, we also searched the original 105 

study reports curated by the GWAS catalog (using a P-value threshold of 5x10-8).17–25 We 106 

acquired summary data for all SNPs identified by our search from a meta-analysis of GWASs 107 

of telomere length, involving 9,190 participants of European ancestry.18  108 

The second key component of our design strategy involved the acquisition of summary data, 109 

corresponding to the selected genetic instruments for telomere length, from GWASs of non-110 

communicable diseases and risk factors (Fig. S1). As part of this step, we invited principal 111 

investigators of non-communicable disease studies curated by the GWAS catalog15,26 to share 112 

summary data for our study (see Fig. S1 for further details). We also downloaded summary 113 

data for diseases and risk factors from publically available sources, including study-specific 114 

websites, dbGAP, ImmunoBase and the GWAS catalog (Fig. S1).  115 

The third key component of our design strategy was the classification of diseases and risk 116 

factors into either primary or secondary outcomes, which we defined on the basis of a priori 117 

statistical power to detect associations with telomere length. Primary outcomes were defined 118 



 6

as diseases with sufficient cases and controls for >50% statistical power and secondary 119 

outcomes defined as diseases with <50% statistical power to detect odds ratios ≥2.0 per 120 

standard deviation (SD) change in genetically increased telomere length (alpha assumed to be 121 

0.01). All risk factors were defined as secondary outcomes. Risk factors with <50% statistical 122 

power were excluded.  123 

 124 

Further details on our design strategy can be found in the supplement.  125 

 126 

Comparison with prospective observational studies 127 

We searched PubMed for prospective observational studies of the association between 128 

telomere length and disease (see Tables S3 and S4 for details of the search strategy and 129 

inclusion criteria). Study-specific relative risks for disease per unit change or quantile 130 

comparison of telomere length were transformed to a SD scale using previously described 131 

methods.27 Hazard ratios, risk ratios and odds ratios were assumed to approximate the same 132 

measure of relative risk. Where multiple independent studies of the same disease were 133 

identified, these were combined by fixed effects meta-analysis, unless there was strong 134 

evidence of between-study heterogeneity (PCochran’s Q<0.001), in which case they were kept 135 

separate.  136 

 137 

Statistical analysis 138 

We combined summary data across SNPs into a single instrument, using maximum 139 

likelihood to estimate the slope of the relationship between βGD and βGP and a variance-140 

covariance matrix to make allowance for linkage disequilibrium between SNPs,28 where βGD 141 

is the change in disease log odds or risk factor levels per copy of the effect allele and βGP is 142 

the SD change in telomere length per copy of the effect allele (see supplementary methods 143 
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for technical details). The slope from this approach can be interpreted as the log odds ratio for 144 

binary outcomes, or the unit change for continuous risk factors, per SD change in genetically 145 

increased telomere length. P-values for heterogeneity amongst SNPs, in the estimated 146 

associations of genetically increased telomere length with disease and risk factors, were 147 

estimated by likelihood ratio tests.28 Associations between genetically increased telomere 148 

length and continuous risk factors were transformed into SD units. For five secondary disease 149 

outcomes where only a single SNP was available for analysis, we estimated associations 150 

using the Wald ratio: βGD/βGP, with standard errors approximated by the delta method.29  151 

Inference of causality in the estimated etiological associations between telomere length and 152 

disease depends on satisfaction of Mendelian randomization assumptions (Fig. S7; see Table 153 

S6 for a glossary of terms).30,31 The assumptions are: 1) the selected SNPs are associated with 154 

telomere length; 2) the selected SNPs are not associated with confounders; and 3) the selected 155 

SNPs are associated with disease exclusively through their effect on telomere length. If these 156 

assumptions are satisfied, the selected SNPs are valid instrumental variables and their 157 

association with disease can be interpreted as a causal effect of telomere length. We modeled 158 

the impact of violations of these assumptions through two sets of sensitivity analyses: a 159 

weighted median function32 and MR-Egger regression30 (see supplementary methods for 160 

technical details). We restricted our sensitivity analyses to diseases showing the strongest 161 

evidence of association with genetically increased telomere length (defined as 162 

PBonferroni≤0.05). 163 

  164 

We used meta-regression to appraise potential sources of heterogeneity in our findings for 165 

cancer. The association of genetically increased telomere length with the log odds of cancer 166 

was regressed on cancer incidence, survival time and median age-at-diagnosis, downloaded 167 

from the National Cancer Institute Surveillance, Epidemiology, and End Results (SEER) 168 
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Program,33 and tissue-specific rates of stem cell division from Tomasetti and Vogelstein.34 As 169 

the downloaded cancer characteristics from SEER correspond to the United States 170 

population, 77% of which was of white ancestry in 201535, the meta-regression analyses 171 

excluded genetic studies conducted in East Asian populations. 172 

 173 

All analyses were performed in R version 3.1.236 and Stata release 13.1 (StataCorp, College 174 

Station, TX). P-values were two-sided and evidence of association was declared at P<0.05. 175 

Where indicated, Bonferroni corrections were used to make allowance for multiple testing, 176 

although this is likely to be overly conservative given the non-independence of many of the 177 

outcomes tested.  178 

 179 

RESULTS  180 

 181 

We selected 16 SNPs as instruments for telomere length (Fig. S1 & Table 1). The selected 182 

SNPs correspond to 10 independent genomic regions that collectively account for 2-3% of 183 

the variance in leukocyte telomere length, which is equivalent to an F statistic of ~18. This 184 

indicates that the genetic instrument, constructed from these 10 independent genomic regions, 185 

is strongly associated with telomere length (details in supplementary discussion).37 Summary 186 

data for the genetic instruments were available for 83 non-communicable diseases, 187 

corresponding to 420,081 cases (median 2,526 per disease) and 1,093,105 controls (median 188 

6,789 per disease), and 44 risk factors (Fig. S1, Table 2 and Table S1). The median number 189 

of SNPs available across diseases was 11 (min=1, max=13) and across risk factors was 12 190 

(min=11, max=13). Of the 83 diseases, 56 were classified as primary outcomes and 27 as 191 

secondary outcomes (Table 2, Fig. S1 and Table S1). For 9 of the 83 non-communicable 192 

diseases, additional summary data were available from 10 independent studies for replication 193 
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analyses, corresponding to 40,465 cases (median 1,416 per disease) and 52,306 controls 194 

(median 3,537 per disease)  (Table S1).  195 

The results from primary analyses of non-communicable diseases are presented in Figure 1; 196 

results from secondary analyses of risk factors and diseases with low a priori power are 197 

presented in the supplement (Fig. S2, S5 and S6). Genetically increased telomere length was 198 

associated with higher odds of disease for 9 of 22 primary cancers (P<0.05), including (odds 199 

ratio [95% confidence interval]): glioma (5.27 [3.15-8.81]), endometrial cancer (1.31 [1.07-200 

1.61]), kidney cancer (1.55 [1.08-2.23]), testicular germ cell cancer (1.76 [1.02-3.04]), 201 

melanoma (1.87 [1.55-2.26]), bladder cancer (2.19 [1.32-3.66]), neuroblastoma (2.98 [1.92-202 

4.62]), lung adenocarcinoma (3.19 [2.40-4.22]) and serous low-malignancy-potential (LMP) 203 

ovarian cancer (4.35 [2.39-7.94]) (Fig. 1). The associations were, however, highly variable 204 

across cancer types, varying from an odds ratio of 0.86 (0.50-1.48) for head and neck cancer 205 

to 5.27 (3.15-8.81) for glioma. Substantial variability was also observed within tissue sites. 206 

For example, the odds ratio for lung adenocarcinoma was 3.19 (2.40-4.22) compared to 1.07 207 

(0.82-1.39) for squamous cell lung cancer. For serous LMP ovarian cancer the odds ratio was 208 

4.35 (2.39-7.94) compared to odds ratios of 1.21 (0.87-1.68) for endometrioid ovarian cancer, 209 

1.12 (0.94-1.34) for serous invasive ovarian cancer, 1.04 (0.66-1.63) for clear cell ovarian 210 

cancer and 1.04 (0.73-1.47) for mucinous ovarian cancer. The strongest evidence of 211 

association was observed for glioma, lung adenocarcinoma, neuroblastoma and serous LMP 212 

ovarian cancer (PBonferroni<0.05). Results for glioma and bladder cancer showed evidence for 213 

replication in independent datasets (independent datasets were not available for other 214 

cancers) (Fig. S3). 215 

Genetically increased telomere length was associated with reduced odds of disease for 6 of 32 216 

primary non-neoplastic diseases (P<0.05), including coronary heart disease (0.78 [0.67-0.9]), 217 

abdominal aortic aneurysm (0.63 [0.49-0.81]), Alzheimer's disease (0.84 [0.71-0.98]), celiac 218 



 10

disease (0.42 [0.28-0.61]), interstitial lung disease (0.09 [0.05-0.15]) and type 1 diabetes 219 

(0.71 [0.51-0.98]) (P<0.05) (Figure 1). The strongest evidence of association was observed 220 

for coronary heart disease (PBonferroni=0.05) and abdominal aortic aneurysm, celiac disease and 221 

interstitial lung disease (PBonferroni<0.05). The associations with coronary heart disease and 222 

interstitial lung disease showed evidence for replication in independent datasets (Fig. S3).  223 

 224 

Our genetic findings were generally similar in direction and magnitude to estimates based on 225 

observational prospective studies of leukocyte telomere length and disease (Figure 3). Our 226 

genetic estimates for lung adenocarcinoma, melanoma, kidney cancer and glioma, were, 227 

however, stronger in comparison to observational estimates.  228 

 229 

In sensitivity analyses, we appraised the potential impact of confounding by pleiotropic 230 

pathways on our results. Associations estimated by the weighted median and MR-Egger were 231 

broadly similar to the main results for glioma, lung adenocarcinoma, serous LMP ovarian 232 

cancer, neuroblastoma, abdominal aortic aneurysm, coronary heart disease and interstitial 233 

lung disease (Fig. S4). In the second set of sensitivity analyses, implemented by MR-Egger 234 

regression, we found little evidence for the presence of pleiotropy (Pintercept≥0.27) (Fig. S4). 235 

The MR-Egger analyses were, however, generally underpowered, as reflected by the wide 236 

confidence intervals in the estimated odds ratios.  237 

 238 

In meta-regression analyses, we observed that genetically increased telomere length tended to 239 

be more strongly associated with rarer cancers (P=0.02) and cancers at tissue-sites with lower 240 

rates of stem cell division (P=0.02) (Figure 2). The associations showed little evidence of 241 

varying by percentage survival five years after diagnosis or median age-at-diagnosis (P≥37). 242 

 243 
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DISCUSSION 244 

In this report we show that genetically increased telomere length is associated with 245 

increased risk of several cancers and with reduced risk of some non-neoplastic diseases. 246 

Given the random distribution of genotypes in the general population with respect to 247 

lifestyle and other environmental factors, as well as the fixed nature of germline 248 

genotypes, these results should be less susceptible to confounding and reverse causation 249 

in comparison to observational studies. Our results are therefore compatible with 250 

causality. On the other hand, our results could reflect violations of Mendelian 251 

randomization assumptions, such as confounding by pleiotropy, population stratification 252 

or ancestry.38 Although we cannot entirely rule out this possibility, the majority of our 253 

results persisted in sensitivity analyses that made allowance for violations of Mendelian 254 

randomization assumptions. Confounding by population stratification or ancestry is also 255 

unlikely, given the adjustments made for ancestry in the disease GWASs (see 256 

supplementary discussion).  257 

 258 

Comparison with previous studies 259 

Our findings for cancer are generally contradictory to those based on retrospective studies, 260 

which tend to report increased risk for cancer in individuals with shorter telomeres.11,12,39–42 261 

The contradictory findings may reflect reverse causation in the retrospective studies, whereby 262 

shorter telomeres arise as a result of disease, or of confounding effects, e.g. due to cases 263 

being slightly older than controls even in age-matched analyses. Our findings for cancer are 264 

generally more consistent with those based on prospective observational studies, which tend 265 

to report weak or null associations of longer leukocyte telomeres with overall and site-266 

specific risk of cancer,10–13,41,43–62 with some exceptions.63 Our results are also similar to 267 

previously reported Mendelian randomization studies of telomere length and risk of 268 
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melanoma, lung cancer, chronic lymphocytic leukemia and glioma.64–67 The shape of the 269 

association with cancer may not, however, be linear over the entire telomere length 270 

distribution. For example, individuals with dyskeratosis congenita, a disease caused by 271 

germline loss-of-function mutations in the telomerase component genes TERC and TERT, 272 

have chronically short telomeres and are at increased risk of some cancers, particularly acute 273 

myeloid leukemia and squamous cell carcinomas arising at sites of leukoplakia,68,69 274 

presumably due to increased susceptibility to genome instability and chromosomal end-to-275 

end fusions.70 Our results should therefore be interpreted as reflecting the average association 276 

at the population level and may not be generalizable to the extreme ends of the telomere 277 

length distribution.  278 

 279 

Mechanisms of association 280 

Our cancer findings are compatible with known biology.70 By limiting the proliferative 281 

potential of cells, telomere shortening may serve as a tumour suppressor; and individuals with 282 

longer telomeres may be more likely to acquire somatic mutations owing to increased 283 

proliferative potential.70 Rates of cell division are, however, highly variable amongst tissues34 284 

and thus the relative gain in cell proliferative potential, conferred by having longer telomeres, 285 

may also be highly variable across tissues. This could explain the ~6-fold variation in odds 286 

ratios observed across cancer types in the present study, as well as the tendency of our results 287 

to be stronger at tissue sites with lower rates of stem cell division. For example, the 288 

association was strongest for glioma (OR=5.27) and comparatively weak for colorectal 289 

cancer (OR=1.09) and the rates of stem cell division in the tissues giving rise to these cancers 290 

differ by several orders of magnitude. In neural stem cells, which give rise to gliomas, the 291 

number of divisions is ~270 million and for colorectal stem cells is ~1.2 trillion over the 292 

average lifetime of an individual.34 The observation that genetically increased telomere   293 
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length was more strongly associated with rarer cancers potentially reflects the same 294 

mechanism, since rarer cancers also tend to show lower rates of stem cell division.34 For 295 

example, the incidence of glioma is 0.4 and for colorectal cancer is 42.4 per 100,000 per year 296 

in the United States.33  297 

The inverse associations observed for some non-neoplastic diseases may reflect the impact of 298 

telomere shortening on tissue degeneration and an evolutionary trade-off for greater 299 

resistance to cancer at the cost of greater susceptibility to degenerative diseases, particularly 300 

cardiovascular diseases.71,72  301 

 302 

Study limitations 303 

Our study is subject to some limitations, in addition to the Mendelian randomization 304 

assumptions already considered above. First, our method assumes that the magnitude of the 305 

association between SNPs and telomere length is consistent across tissues. Second, our study 306 

assumed a linear shape of association between telomere length and disease risk, whereas the 307 

shape could be “J” or “U” shaped.44,57,68 Third, our results assume that the samples used to 308 

define the genetic instrument for telomere length18 and the various samples used to estimate 309 

the SNP-disease associations are representative of the same general population, practically 310 

defined as being of similar ethnicity, age and sex distribution.73 This assumption would, for 311 

example, not apply in the case of the SNP-disease associations derived from East Asian or 312 

pediatric populations. Generally speaking, violation of the aforementioned assumptions could 313 

bias the magnitude of the association between genetically increased telomere length and 314 

disease; but would be unlikely to increase the likelihood of false positives (i.e. incorrectly 315 

inferring an association when none exists).74 Our results should therefore remain informative 316 

for the direction and broad magnitude of the average association at the population level, even 317 
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in the presence of such violations. Fourth, we cannot rule out chance in explaining some of 318 

the weaker findings. Fifth, our results may not be fully representative of non-communicable 319 

diseases (since not all studies shared data and our analyses were underpowered for the 320 

secondary disease outcomes). The diseases represented in our primary analyses probably 321 

account for >60% of all causes of death in American adults.75  322 

 323 

Clinical relevance of findings 324 

Our findings suggest that potential clinical applications of telomere length, e.g. as a tool for 325 

risk prediction or as an intervention target for disease prevention, may have to consider a 326 

trade-off in risk between cancer and non-neoplastic diseases. For example, a number of 327 

companies have been established that offer telomere length measurement services to the 328 

public (via a requesting physician), under the claim that shorter telomeres are a general 329 

indicator of poorer health status and older biological age and that such information can be 330 

used to motivate healthy lifestyle choices in individuals. However, the conflicting direction of 331 

association between telomere length and risk of cancer and non-neoplastic diseases, indicated 332 

by our findings, suggests that such services to the general public may be premature.   333 

 334 

Conclusion 335 

It is likely that longer telomeres increase risk for several cancers but reduce risk for some 336 

non-neoplastic diseases, including cardiovascular diseases. Further research is required to 337 

resolve whether telomere length is a useful predictor of risk that can help guide therapeutic 338 

interventions, to clarify the shape of any dose-response relationships and to characterise the 339 

nature of the association in population subgroups. 340 

 341 
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Table 1. Single nucleotide polymorphisms associated with telomere length  

*Summary data from Mangino et al18; Chr, chromosome; pos, base-pair position (GRCh38.p3); EA, effect allele, OA, other allele, Beta, standard deviation change in telomere length per 
copy of the effect allele; SE, standard error; EAF - effect allele frequency; Phet - p value for between-study heterogeneity in association between SNP and telomere length; †from a meta-
analysis of Mangino18 and Gu20 performed in the present study. 

 

 

SNPs Chr Pos Gene EA OA EAF* Beta* SE* P-value* Phet* 
No. 

studies* 
Sample 
size* 

Discovery 
p-value 

% variance 
explained Discovery study 

rs11125529 2 54248729 ACYP2 A C 0.16 0.065 0.012 0.000606 0.313 6 9177 8.00E-10 0.080 Codd21 
rs6772228 3 58390292 PXK T A 0.87 0.041 0.014 0.049721 0.77 6 8630 3.91E-10 0.200 Pooley17 
rs12696304 3 169763483 TERC C G 0.74 0.090 0.011 5.41E-08 0.651 6 9012 4.00E-14 0.319 Codd22 
rs10936599 3 169774313 TERC C T 0.76 0.100 0.011 1.76E-09 0.087 6 9190 3.00E-31 0.319 Codd21 
rs1317082 3 169779797 TERC A G 0.71 0.097 0.011 4.57E-09 0.029 6 9176 1.00E-08 0.319 Mangino18 
rs10936601 3 169810661 TERC C T 0.74 0.087 0.011 8.64E-08 0.433 6 9150 4.00E-15 0.319 Pooley17 
rs7675998 4 163086668 NAF1 G A 0.80 0.048 0.012 0.008912 0.077 6 9161 4.35E-16 0.190 Codd21 
rs2736100 5 1286401 TERT C A 0.52 0.085 0.013 2.14E-05 0.54 4 5756 4.38E-19 0.310 Codd21 
rs9419958 10 103916188 OBFC1 T C 0.13 0.129 0.013 5.26E-11 0.028 6 9190 9.00E-11 0.171 Mangino18 
rs9420907 10 103916707 OBFC1 C A 0.14 0.142 0.014 1.14E-11 0.181 6 9190 7.00E-11 0.171 Codd21 
rs4387287 10 103918139 OBFC1 A C 0.14 0.120 0.013 1.40E-09 0.044 6 8541 2.00E-11 0.171 Levy25 
rs3027234 17 8232774 CTC1 C T 0.83 0.103 0.012 2.75E-08 0.266 6 9108 2.00E-08 0.292 Mangino18 
rs8105767 19 22032639 ZNF208 G A 0.25 0.064 0.011 0.000169 0.412 6 9096 1.11E-09 0.090 Codd21 
rs412658 19 22176638 ZNF676 T C 0.35 0.086 0.010 1.83E-08 0.568 6 9156 1.00E-08 0.484 Mangino18 
rs6028466 20 39500359 DHX35 A G 0.17 0.058 0.013 0.003972 0.533 6 9190 2.57E-08† 0.041 Mangino18 & Gu
rs755017 20 63790269 ZBTB46 G A 0.17 0.019 0.0129 0.339611 0.757 5 8026 6.71E-09 0.090 Codd21 
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Table 2. Study characteristics for primary non-communicable diseases  

  
No. 

cases 
No. 

controls 
No.  

SNPs 
Statistical 

power Pop. Study / First author 
Cancer   

Bladder cancer 1601 1819 10 0.62 EUR NBCS76 
Breast cancer  48155 43612  13  1.00  EUR  BCAC17,77  

Estrogen receptor –ve 7465 42175 13 1.00 EUR BCAC17,77 
Estrogen receptor +ve 27074 41749 13 1.00 EUR BCAC17,77 

Colorectal cancer 14537 16922 9 1.00 EUR CORECT/GECCO64,78

Endometrial cancer 6608 37925 12 1.00 EUR ECAC79,80 
Esophageal SCC 1942 2111 11 0.64 EA Abnet81 
Glioma 1130 6300 12 0.72 EUR Wrensch82 & Walsh66  
Head & neck cancer 2082 3477 12 1.00 EUR McKay et al83 
Kidney cancer 2461 5081 12 0.99 EUR KIDRISK84 
Lung cancer 11348 15861 13 1.00 EUR  ILCCO85  

Adenocarcinoma 3442 14894 13 1.00 EUR ILCCO85 
Squamous cell carcinoma 3275 15038 13 1.00 EUR ILCCO85 

Skin cancer             
Melanoma 12814 23203 13 1.00 EUR MC86 
Basal cell carcinoma 3361 11518 13 1.00 EUR NHS/HPFS87  

Neuroblastoma 2101 4202 12 0.87 EUR Diskin88 
Ovarian cancer 15397 30816 13 1.00 EUR  OCAC17,89  

Clear cell 1016 30816 13 0.76 EUR OCAC17,89 
Endometriod 2154 30816 13 0.98 EUR OCAC17,89 
Mucinous 1643 30816 13 0.94 EUR OCAC17,89 
Serous invasive 9608 30816 13 1.00 EUR OCAC17,89 
Serous LMP 972 30816 13 0.73 EUR OCAC17,89 

Pancreatic cancer 5105 8739 12 1.00 EUR PanScan (incl. EPIC)90

Prostate cancer 22297 22323 11 1.00 EUR PRACTICAL91,92 
Testicular germ cell cancer 986 4946 11 0.52 EUR Turnbull93 & Rapley94 

Autoimmune/inflammatory diseases  

Alopecia areata 2332 5233 7 0.60 EUR Betz95 
Atopic dermatitis 10788 30047 13 1.00 EUR EAGLE96 
Celiac disease 4533 10750 3 0.82 EUR Dubois97 
Inflammatory bowel disease             

Crohn's disease 5956 14927 11 1.00 EUR IIBDGC98 
Ulcerative colitis 6968 20464 12 1.00 EUR IIBDGC98 

Juvenile idiopathic arthritis 1866 14786 11 0.87 EUR Thompson99† 

Multiple sclerosis 14498 24091 3 1.00 EUR IMSGC100 
Aggressive periodontitis 888 6789 13 0.63 EUR Schaefer101  
Rheumatoid arthritis 5538 20163 11 1.00 EUR Stahl102 

Cardiovascular diseases   
Abdominal aortic aneurysm 4972 99858 13 1.00 EUR AC103–108 
Coronary heart disease 22233 64762 13 1.00 EUR CARDIoGRAM109 
Heart failure 2526 20926 13 0.99 EUR CHARGE-HF110 
Hemorrhagic stroke 2963 5503 12 0.96 EUR METASTROKE/ISGC111  
Ischemic stroke  12389 62004 13 1.00 EUR  METASTROKE/ISGC112,113

large vessel disease 2167 62004 13 0.99 EUR METASTROKE/ISGC112,113

small vessel disease 1894 62004 13 0.97 EUR METASTROKE/ISGC112 
cardioembolic 2365 62004 13 0.99 EUR METASTROKE/ISGC112 

Sudden cardiac arrest 3954 21200 13 1.00 EUR Unpublished 
Diabetes             

Type 1 diabetes 7514 9045 6 0.95 EUR T1DBase114115

Type 2 diabetes 10415 53655 11 1.00 EUR DIAGRAM116

Eye disease             
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AMD 7473 51177 13 1.00 EUR AMD Gene117 
Retinopathy 1122 18289 12 0.75 EUR Jensen118  

Lung diseases             
Asthma 13034 20638 4 1.00 EUR Ferreira/GABRIEL119,120 
COPD 2812 2534 12 0.85 EUR COPDGene121 
Interstitial lung disease 1616 4683 9 0.60 EUR Fingerlin122  

Neurological / psychiatric diseases  
ALS 6100 7125 12 1.00 EUR SLAGEN/ALSGEN123 
Alzheimer's disease 17008 37154 12 1.00 EUR IGAP124 
Anorexia nervosa 2907 14860 9 0.93 EUR GCAN125 
Autism 4949 5314 7 0.82 EUR PGC126 
Bipolar disorder 7481 9250 9 1.00 EUR PGC127 
Major depressive disorder 9240 9519 8 0.99 EUR PGC128 
Schizophrenia 35476 46839 12 1.00 EUR PGC129 
Tourette syndrome 1177 4955 13 0.74 EUR TICG/TSAICG130  

    Other       
Chronic kidney disease 5807 56430 13 1.00 EUR CKDGen131 
Endometriosis 4604 9393 11 1.00 Mix Nyholt132  
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Study acronyms: AC, the aneurysm consortium; ALSGEN, the International Consortium on Amyotrophic Lateral Sclerosis Genetics; AMD Gene, 
Age-related Macular Degeneration Gene Consortium; BCAC, Breast Cancer Association Consortium; CARDIoGRAM, Coronary ARtery DIsease 
Genome wide Replication and Meta-analysis; CHARGE-HF, Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium – Heart 
Failure Working Group; COPDGene, The Genetic Epidemiology of Chronic Obstructive Pulmonary Disease; CKDGen, Chronic Kidney Disease 
Genetics consortium; CORECT, ColoRectal Transdisciplinary Study; DIAGRAM, DIAbetes Genetics Replication And Meta-analysis; EAGLE, EArly 
Genetics & Lifecourse Epidemiology Eczema Consortium (excluding 23andMe); ECAC, Endometrial Cancer Association Consortium; EPIC, 
European Prospective Investigation into Cancer and Nutrition study; GABRIEL, Multidisciplinary Study to Identify the Genetic and Environmental 
Causes of Asthma in the European Community; GCAN, Genetic Consortium for Anorexia Nervosa; GECCO, Genetics and Epidemiology of Colorectal 
Cancer Consortium; IGAP, International Genomics of Alzheimer's Project; HPFS, Health Professionals Follow-Up Study; ILCCO, International Lung 
Cancer Consortium; IMSGC, International Multiple Sclerosis Genetic Consortium; IIBDGC, International Inflammatory Bowel Disease Genetics 
Consortium; KIDRISK, Kidney cancer consortium; MC, the melanoma meta-analysis consortium; METASTROKE/ISGC, METASTROKE project of 
the International Stroke Genetics Consortium; NBCS, Nijmegen Bladder Cancer Study; NHS, Nurses’ Health Study; OCAC, Ovarian Cancer 
Association Consortium; PanScan, Pancreatic Cancer Cohort Consortium; PGC, Psychiatric Genomics Consortium; PRACTICAL, Prostate Cancer 
Association Group to Investigate Cancer Associated Alterations in the Genome; SLAGEN, Italian Consortium for the Genetics of Ayotrophic Lateral 
Sclerosis; T1DBase, type 1 diabetes database; TICG (Tourette International Collaborative-Genetics); TSAICG (Tourette Syndrome Association 
International Consortium for Genetics);. Abbreviations: ALS, amyotrophic lateral sclerosis; AMD, age-related macular degeneration; COPD, chronic 
obstructive pulmonary disease; EUR, European; EA, East Asian; LMP, low malignant potential; No., number; Pop., population; SCC, squamous cell 
carcinoma; SNP, single nucleotide polymorphism; -ve, negative; +ve, positive; †plus previously unpublished data.  
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Figure 1. The association between genetically increased telomere length and odds of 
primary non-communicable diseases 
 
Legend to Figure 1 
 
*P value for association between genetically increased telomere length and disease from maximum likelihood; the effect estimate for heart 
failure is a hazard ratio (all others are odds ratios); Phet, P-value for heterogeneity amongst SNPs within the instrument; COPD, chronic 
obstructive pulmonary disease; SNP, single nucleotide polymorphism; CI, confidence interval; LMP, low malignancy potential; ER, 
estrogen receptor; -VE, negative; +VE, positive.  
 
 
 
 
Figure 2. The association between genetically increased telomere length and odds of cancer 
as a function of selected characteristics  
 
Legend to Figure 2 
 
The plotted data show how the strength of the relationship between genetically increased telomere length and cancer varies by the selected 
characteristic. The R2 statistic indicates how much of the variation between cancers can be explained by the selected characteristic. P-values 
are from meta-regression models. Circle sizes are proportional to the inverse of the variance of the log odds ratio. The hashed line indicates 
the null of no association between telomere length and cancer (i.e. an odds ratio of 1). Data for percentage survival 5 years after diagnosis, 
cancer incidence and median age-at-diagnosis was downloaded from the Surveillance, Epidemiology, and End Results Program.33 Data for 
average lifetime number of stem cell divisions was downloaded from Tomasetti and Vogelstein.34 Not all cancers had information available 
for the selected characteristics (hence the number of cancers varies across the subplots). Information was available for 9 cancers for tissue-
specific rates of stem cell division, 13 cancers for percentage surviving 5 years post-diagnosis, 17 cancers for cancer incidence and 13 
cancers for median age-at-diagnosis. SD, standard deviation; OR, Odds ratio. 
 
 
 
Figure 3. Comparison of genetic and prospective observational studies† of the association 
between telomere length and disease 
 
Legend to Figure 3 
 
*from fixed-effects meta-analysis of independent observational studies described in Table S3; †search strategy and characteristics for 
observational studies are described in Tables S3 and S4; ‡CCHS and CGPS; +PLCO, ATBC & SWHS (acronyms explained in Table S3); 
CI, confidence interval 
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 96 

SUPPLEMENTARY METHODS 97 

 98 

Additional details on the design strategy 99 

 100 

Identification of genetic instruments for telomere length  101 

To identify genetic variants to serve as instruments for telomere length, we searched the genome-102 

wide association study (GWAS) catalog1,2 on the 15 January 2015, to identify reported single 103 

nucleotide polymorphisms (SNPs) associated with telomere length. To supplement the list with 104 

additional potential instruments, we also searched the original study reports curated by the GWAS 105 

catalog.3–11 We included all ‘telomere length’ SNPs in the GWAS catalog as potential proxies, 106 

regardless of their reported P-value, but used a P-value threshold of <5x10-8 (the conventional 107 

threshold for declaring association in GWAS) for SNPs identified from original study reports (if 108 

these were not already curated by the GWAS catalog). We acquired summary data for all SNPs 109 

identified by the above strategy from a meta-analysis of six GWASs of leukocyte telomere length, 110 

conducted in 9,190 participants of European ancestry.4 Telomere length in the six studies was 111 

measured by Southern blotting. GWAS analyses in the 6 studies were adjusted for age, sex, body 112 

mass index and smoking history. The genomic control inflation factor (λGC) ranged from 0.995 to 113 

1.076 across the six studies, indicating little evidence for confounding by population stratification.4 114 

The following summary data were acquired for each SNP from each of the six studies: the 115 

regression coefficient (beta) and its standard error, where the beta reflects the change in telomere 116 

length (in base pair units) per copy of the effect allele; the effect allele; the non-effect allele; and 117 

effect allele frequency. We combined the effect estimates from the six separate studies by fixed 118 

effects meta-analysis. We then excluded SNPs if they lacked strong evidence of association with 119 

telomere length. We defined strong evidence of association as a P value <5x10-8 in: i) the discovery 120 

stage of at least one published GWAS of telomere length3–10 or ii) a meta-analysis of summary data 121 
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from Mangino et al4 and other GWASs of telomere length,3,5–10 with any overlapping studies 122 

excluded from Mangino et al.4 We also excluded SNPs with a minor allele frequency <0.05 or 123 

showing strong evidence of between-study heterogeneity in associations with telomere length 124 

(P≤0.001). 125 

 126 

Acquisition of summary data from disease and risk factor studies 127 

We extracted the following summary data for each genetic instrument for telomere length from 128 

GWASs of diseases and risk factors: the regression coefficient (beta) and its standard error, the 129 

effect allele, the non-effect allele and effect allele frequency. For binary traits, the beta 130 

corresponded to the log odds ratio per copy of the effect allele. For quantitative traits, the beta 131 

corresponded to the unit change in the trait per copy of the effect allele. We harmonized the 132 

summary data for diseases and risk factors so that the effect allele reflected the allele associated 133 

with longer telomeres. When SNPs were palindromic, i.e. A/T or G/C, we used information on 134 

allele frequency to resolve strand ambiguity. We also requested the following metrics of SNP 135 

genotype quality: P-values for Hardy-Weinberg equilibrium (HWE), imputation quality scores and 136 

P-values for between-study heterogeneity. We also estimated the percentage overlap in participants 137 

amongst the telomere length and disease and risk factor GWASs. When reported, statistics on 138 

between-study heterogeneity, Hardy–Weinberg equilibrium and imputation quality were used to 139 

exclude low quality SNPs from disease and risk factor studies, using the following criteria: strong 140 

evidence of between-study heterogeneity in the SNP-phenotype association (P≤0.001), Hardy–141 

Weinberg disequilibrium (P≤0.001) or imputation quality metric (info or r2) ≤0.90. 142 

 143 

Power calculations 144 

Power calculations for disease outcomes were implemented using the method described by 145 

Burgess12 and assumed an odds ratio of ≥2.0 per standard deviation higher telomere length and an 146 

alpha of 0.01. Power calculations for risk factors for non-communicable diseases were similar, 147 
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except that a ≥0.5 standard deviation change in quantitative risk factors and an odds ratio of ≥1.5 148 

for binary risk factors was assumed for each standard deviation change in telomere length. When 149 

more than one study was available for the same outcome trait, priority was given to the study with 150 

the higher statistical power. Power calculations took into account the variance explained in telomere 151 

length by each SNP, inferred from published reports,3–10 and the sample size available for each 152 

outcome.  153 

 154 

Estimating the association between genetically increased telomere length and outcome traits 155 

We employed three general approaches for estimating the association between genetically increased 156 

telomere length and outcome traits. Our main results are based on a likelihood-approach.13 157 

Sensitivity analyses were based on two approaches: the weighted median14 and MR-Egger 158 

regression.15 The technical details of these approaches are described below.  159 

 160 

Prior to calculating the associations of genetically increased telomere length with diseases and risk 161 

factors, we estimated the pairwise r2 for all telomere-associated SNPs residing on the same 162 

chromosome using PLINK16 and 1000 Genomes phase 3 data for European samples.17 SNPs 163 

residing on separate chromosomes or separated by more than 50 megabases on the same 164 

chromosome were assumed to be in linkage equilibrium. The genetic instruments for telomere 165 

length were pruned so that no SNP pair had an r2>0.9 (strong linkage disequilibrium), using the 166 

‘indep’ command in PLINK.16 The base pair position and chromosome id for each SNP, in 167 

GCRCh38 format, was extracted from Ensembl through the R biomart package.18–20 Linkage 168 

disequilibrium between the remaining SNPs was taken into account using a variance-covariance 169 

matrix (described below). For analyses in which SNP-disease associations were derived from East 170 

Asian populations, genetic instruments were further pruned so that no SNP pair had an r2>0.1 171 

(because the variance-covariance matrix used to model the correlation between SNPs was based on 172 

a European population).   173 
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 174 

Likelihood approach  175 

We combined summary data across SNPs into a single instrument, using maximum likelihood to 176 

estimate the slope of the relationship between βGD and βGP and a variance-covariance matrix to make 177 

allowance for linkage disequilibrium between SNPs, where βGD is the change in the outcome trait 178 

per copy of the effect allele and βGP is the standard deviation change in telomere length per copy of 179 

the effect allele.13 The standard deviation of telomere length corresponds to approximately 650 base 180 

pairs.4 The variance-covariance matrix was estimated using 1000 Genomes phase 3 data for 181 

Europeans.13 The model that is fitted is: 182 

~ , Σ  

where  is a vector of the SNP-telomere-length associations,  is a vector of the SNP-disease 183 

associations,  is the causal effect parameter, K is the number of SNPs, Σ  is a variance-184 

covariance matrix with elements ( ) = ( ) ( )  where ( ) is the standard 185 

error of the SNP-telomere-length association for the ith genetic variant, and   is the correlation 186 

between the ith and jth variants due to linkage disequilibrium. Components of Σ  are similarly 187 

defined as ( ) = ( ) ( ) , and Σ = Σ = 0 due to the two-sample setting 188 

(sensitivity analyses in a previous study13 suggested results were robust to some correlation between 189 

the gene-phenotype and gene-outcome associations that may arise due to sample overlap). The 190 

slope estimated by maximum likelihood can be interpreted as the log odds ratio for disease per 191 

standard deviation change in genetically increased telomere length. The slope can further be 192 

interpreted as the causal effect of telomere length on disease if Mendelian randomization 193 

assumptions hold. The assumptions are: the SNPs are associated with telomere length (IV1); the 194 

SNPs are independent of confounders (IV2); and the SNPs are independent of disease adjusted for 195 

telomere length and confounders (IV3). See Supplementary Figure S7 for further details of the 196 

Mendelian randomization assumptions and Supplementary Table S6 for a glossary of terms. 197 
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 198 

The weighted median approach14 199 

Let  represent the J causal effect estimates ordered from smallest ( ) to largest ( ).  200 

Now define 201 

,  202 

where wj is the inverse variance of , 203 

and equate with a quantile, , defined as  204 

 . 205 

 represents the quantile from the weighted empirical distribution function of the ordered 206 

estimates . The weighted median estimate,  is defined as the 50th percentile of this 207 

weighted distribution. Typically the 50th percentile will lie between two estimates ( and , 208 

say), in which case is found by linear interpolation. is a consistent estimate for provided 209 

that at least 50% of the ‘weight’ making up  comes from genetic variants that are valid 210 

instruments. In other words, the weighted median function provides a valid estimate of the causal 211 

effect of telomere length on disease if at least half of the genetic information comes from valid 212 

instruments (assumptions illustrated in Supplementary Figure S7; glossary of terms in 213 

Supplementary Table S6).14 214 

 215 

The MR-Egger approach 216 

The MR-Egger method15 performs a weighted linear regression of the SNP-disease coefficients on 217 

the SNP-exposure coefficients (where exposure in this study is telomere length): 218 

   219 
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where Γ corresponds to the SNP-disease coefficients, γ corresponds to the SNP-exposure 220 

coefficients and σyj is the standard error of Γ . If all SNPs are valid instruments, then = 0. The 221 

value of  can be interpreted as an estimate of the average pleiotropic effect across the SNPs. An 222 

intercept term that differs from zero is indicative of overall directional pleiotropy. The MR-Egger 223 

estimate for , , is consistent even if all SNPs are invalid, provided that 224 

• Across all SNPs, the magnitude of the SNP-exposure associations are independent of their 225 

pleiotropic effects (also known as the InSIDE [Instrument Strength Independent of Direct 226 

Effect] assumption) 227 

• The number of SNPs, J, grows large (i.e. tends to infinity). 228 

See Supplementary Figure S7 for further details on the assumptions and Supplementary Table S6 229 

for a glossary of terms.  230 

SUPPLEMENTARY RESULTS 231 

In analyses of secondary cancer outcomes, genetically increased telomere length was associated 232 

with thyroid cancer, chronic lymphocytic leukemia and multiple myeloma (P<0.05) (Supplementary 233 

Figure S2). In analyses of secondary non-neoplastic diseases, genetically increased telomere length 234 

was associated with reduced odds of panic disorder (P<0.05) (Supplementary Figure S2). In 235 

secondary analyses of 44 risk factors for non-communicable diseases (Supplementary Table S2), 236 

genetically increased telomere length was associated with increased pulse pressure, systolic blood 237 

pressure, diastolic blood pressure, mean arterial pressure, triglycerides, uric acid and education and 238 

with decreased HDL cholesterol, mean corpuscular haemoglobin and mean corpuscular volume 239 

(P<0.05) (Supplementary Figure S5). There was some evidence for an association between 240 

genetically increased telomere length and ever smoking status (P=0.03, Supplementary Figure S6) 241 

but this association is unlikely to be reliable given that the SNP-telomere-length associations were 242 

adjusted for smoking history; the association may therefore reflect collider bias.21  243 

 244 

 245 

0Eβ

0
ˆ

Eβ

β 1̂Eβ
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SUPPLEMENTARY DISCUSSION 246 

Mechanisms of association between SNPs and telomere length  247 

The mechanisms of the underlying associations between the selected SNPs and telomere length are 248 

generally unknown. Some of the SNPs are located in or near the TERC or TERT genes, suggesting 249 

that the mechanism could involve the telomerase enzyme, as well as the OBFC1 and CTC1 genes, 250 

which have known roles in regulation of telomere length biology (Table 1). OBFC1 is an enzyme 251 

involved in initiating DNA replication and is involved in the telomere-associated CST complex.22 252 

CTC1 encodes a component of the CST complex, which plays a role in protecting telomeres from 253 

degradation.  254 

 255 

Bias from sample overlap and strength of the association between SNPs and telomere length 256 

The selected genetic instruments for telomere length correspond to 10 independent genomic loci 257 

and collectively account for 2-3% of the variance in leukocyte telomere length. The corresponding 258 

F statistic is around 18, which means that bias due to weak instruments is unlikely to be substantial 259 

even if there were considerable overlap amongst the telomere length and disease and risk factor 260 

GWASs.23 The estimated overlap in participants amongst the telomere length and outcome GWASs 261 

was less than 11% for all diseases and risk factors, except for hepatic steatosis, for which overlap 262 

was around 51%, indicating that the vast majority of our results should be robust to weak 263 

instrument bias.  264 

 265 

Misconceptions about Mendelian randomization 266 

A common misconception about Mendelian randomization studies is that genetic instruments 267 

should explain a substantial proportion of the variation in target exposures (e.g. telomere length in 268 

this study) in order to provide robust inferences about exposure-disease associations. However, if 269 

the genetic instruments are valid (i.e. conform to Mendelian randomization assumptions, 270 
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Supplementary Figure S7), the variation explained by the instrument only affects statistical power 271 

and does not generally affect validity of the causal inference. In this sense, genotype assignment in 272 

a Mendelian randomization study is analogous to treatment assignment in a randomized controlled 273 

trial, e.g. of blood pressure lowering drugs.24 Although experimental interventions to reduce blood 274 

pressure may only explain a small fraction of the total variation in blood pressure in a typical RCT, 275 

we can still make causal inferences about blood pressure as a whole (and not just the proportion of 276 

variation in blood pressure due to the experimental intervention). Moreover, the aim of Mendelian 277 

randomization studies is to make inferences at the population level and not the individual level (for 278 

which genetic proxies of substantial explanatory power would be required).24 If Mendelian 279 

randomization assumptions were violated, however, then the limited variation explained by our 280 

genetic instruments might not behave in similar manner to other sources of variation in telomere 281 

length, which would undermine our ability to draw causal inferences. See the above section 282 

‘Estimating the association between genetically increased telomere length and outcome traits’ and 283 

Supplementary Figure S7 for details on the assumptions. See Supplementary Table S6 for an 284 

explanation of Mendelian randomization terminology. See Haycock et al25 and Davey Smith and 285 

Hemani26 for reviews on Mendelian randomization.  286 

 287 

Potential for confounding by population stratification, ancestry and age 288 

It is unlikely that confounding by population stratification, ancestry or age (an important 289 

confounder of observational studies of telomere length) can account for our results. The 15 primary 290 

diseases showing some evidence of association with telomere length (defined as a P value<0.05) 291 

were 100% European, on the basis of self reported ancestry or genetic analyses (individuals 292 

showing genetic evidence of non-European ancestry were excluded).3,27–44 In addition, these studies 293 

all made some allowance for population stratification in their analyses: 12 adjusted for principal 294 

component scores of genetic variation in their models or applied genomic control corrections to 295 

their results; and 3 concluded there was little evidence for population stratification, on the basis of 296 
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visual inspection of Quantile-Quantile plots of GWAS results (i.e. lambdas for genomic inflation 297 

were close to 1). The GWAS we used to defined genetic instruments for telomere length4 also 298 

adjusted for principal component scores; and lambdas for genomic inflation were close to 1. Since 299 

our MR analyses will have inherited any adjustments made in the original analyses, it is therefore 300 

unlikely that confounding by ancestry or population stratification can explain our results. 301 

Confounding by age is also unlikely, given the random distribution of genotypes in the general 302 

population with respect to lifestyle and other environmental factors, as well as the fixed nature of 303 

germline genotypes. Consistent with this expectation, we did not observe an association between 304 

subject age and their genetically predicted telomere length values in our previous studies.44,45  305 

 306 

Associations with non-neoplastic diseases 307 

The inverse associations observed for coronary heart disease, abdominal aortic aneurysm, celiac 308 

disease and interstitial lung disease are compatible with findings based on observational and 309 

Mendelian randomization studies of telomere length as well as dyskeratosis congenita (a congenital 310 

disease characterized by chronically short telomeres).46–50  311 

 312 

 313 

 314 

 315 

 316 

 317 

 318 

 319 
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 323 

 324 

 325 

 326 

 327 

 328 

Supplementary Table S1. Study characteristics for secondary non-communicable diseases and diseases from 
independent studies for replication analyses 

  
No. 

cases 
No. 

controls 
No.  

SNPs 
Statistical 

power Pop. First author /database 
Cancer             

Chronic lymphocytic leukemia 2883 8350 1 0.22 EUR Speedy/GWAS cat.51 
Chronic myeloid leukemia 201 497 8 0.07 EA Kim52  
Ewing’s sarcoma 401 684 4 0.06 EUR Postel-Vinay53  
Follicular lymphoma 212 748 3 0.04 EUR Conde54  
Gallbladder cancer 41 866 2 0.01 EA Cha55 
Gastric cancer             

Cardia adenocarcinoma 1126 2111 11 0.47 EA Abnet56  
Noncardia adenocarcinoma 632 2111 11 0.29 EA Abnet56  

Multiple myeloma 4692 10990 1 0.37 EUR Chubb/GWAS cat.57 
Nasopharyngeal carcinoma 1583 1894 2 0.17 EA Bei58  
B-cell Non-Hodgkin lymphoma 253 1438 10 0.13 EA Tan59 
Skin squamous cell carcinoma 449 11518 13 0.34 EUR Zhang60 
Thyroid cancer 649 431 12 0.16 EUR Kohler61 
Upper gastrointestinal cancers 3523 2100 2 0.28 EA Li/dbGAP62 

Autoimmune/inflammatory diseases  
Inflammatory psoriatic arthritis 609 990 13 0.29 EUR Huffmeier63 
Kawasaki disease 405 6252 11 0.26 EUR Khor64 
Narcolepsy 1188 1985 9 0.46 EA Han65 
Psoriasis 1139 1132 9 0.34 EA Zhang66  
Sarcoidosis 564 1575 9 0.16 EUR Fischer67 
Systemic lupus erythematosus 1311 1783 4 0.20 EUR Hom/dbGAP68 
Vitiligo 1117 1429 2 0.12 EA Quan69 
Wegener’s granulomatosis 459 1503 10 0.20 EUR Xie70 

Neurological / psychiatric diseases  
Bulimia nervosa 151 2291 8 0.07 EUR Wade71 
Panic disorder 718 1717 8 0.28 EA JCTGPD72 
Parkinson’s disease 1713 3978 4 0.35 EUR Simón-Sánchez/dbGAP73 
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Other         
Hirschsprung’s disease 173 615 6 0.04 EA Tang74  
Paget's disease 741 2699 12 0.43 EUR Albagha75  
Vascular dementia 84 200 8 0.03 EA Kim76 

Independent disease studies for replication analyses    
 Bladder cancer 7712 13125 1 0.56 EUR Figueroa/GWAS cat.77 
 Colorectal cancer 728 3282 9 0.39 EA Zhang78  
 Coronary heart disease 15399 15050 4 1.00 Mix C4D79 
 Glioma 1854 4955 1 0.12 EUR GliomaScan/GWAS cat.80 
 Interstitial lung disease† 542 542 11 0.15 EUR Noth81 
 Interstitial lung disease‡ 242 1469 1 0.02 EA Mushiroda/GWAS cat.82 
 Pancreatic cancer 4164 3792 10 0.90 EUR PanC483 
 Multiple sclerosis 978 883 4 0.11 EUR Baranzini/dbGAP84 
 Nasopharyngeal carcinoma 277 285 2 0.03 EA Tse85  
 Type 2 diabetes 8569 8923 10 1.00 EA Li86 

†≤17% cases overlapped with cases from Fingerlin et al31 and 77% of cases had idiopathic pulmonary fibrosis; ‡all cases had idiopathic pulmonary fibrosis. 
Study/database acronyms: C4D, Coronary Artery Disease Genetics Consortium; dbGAP, summary data downloaded from the database of Genotypes and 
Phenotypes; GWAS cat., data downloaded from the National Human Genome Research Institute/European Bioinformatics Institute Catalog of published genome 
wide association studies; JCTGPD, Japanese Collaboration Team for GWAS of Panic Disorder. Abbreviations: EUR, European; EA, East Asian; No., number; 
Pop., population; SNP, single nucleotide polymorphism.  

 
 
 
 

 

 

Supplementary Table S2. Study characteristics of 44 risk factors for non-communicable diseases 

  
Sample 

size SD Units 
No. of 
SNPs 

Stat. 
power Pop. 

First 
author / 
study 

Anthropometric               
Birth length 22557 2.0 cm 12 1.00 EUR EGG87 
Birth weight 26836 547.5 g 12 1.00 EUR EGG88 
Body mass index 241253 4.8 kg/m2 13 1.00 EUR GIANT89 
Childhood obesity 13848 NA loge odds 12 0.78 EUR EGG90 
Head circumference 10705 1.5 cm 13 1.00 EUR EGG91 
Height 253288 0.1 m 13 1.00 EUR GIANT92 
Hip circumference 224459 8.5 cm 13 1.00 EUR GIANT93 
Waist circumference 224459 12.5 cm 13 1.00 EUR GIANT93 
Waist-to-hip ratio 224459 0.1 ratio 13 1.00 EUR GIANT93 

Smoking behaviors               
Age of smoking initiation 47961 0.3 loge years 13 1.00 EUR TAG94 
Cigarettes smoked per day 68028 11.7 CPD 13 1.00 EUR TAG94 
Ever smoker 74035 NA loge odds 13 1.00 EUR TAG94 
Ex smoker 41969 NA loge odds 13 1.00 EUR TAG94 

Blood pressure               
Diastolic blood pressure 66466 10.7 mm Hg 12 1.00 EUR ICBP95 
Mean arterial pressure 27803 12.8 mm Hg 13 1.00 EUR ICBP96 
Pulse pressure 70903 13.5 mm Hg 13 1.00 EUR ICBP96 
Systolic blood pressure 66473 18.2 mm Hg 12 1.00 EUR ICBP95 

Education               
College completion 95427 NA loge odds 13 1.00 EUR SSGAC97 
Years of educational attainment 126559 1.2 years 13 1.00 EUR SSGAC97 

Glycemic               
2 hr glucose 15234 1.27 mmol/L 11 1.00 EUR MAGIC98 
Beta-cell function (HOMA-B) 46186 0.96 loge HOMA 12 1.00 EUR MAGIC99 
Fasting glucose 46186 0.73 mmol/L 12 1.00 EUR MAGIC99 
Fasting insulin 38238 0.79 loge pmol/L 12 1.00 EUR MAGIC99 
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Fasting proinsulin 10701 0.81 loge pmol/L 12 1.00 EUR MAGIC99 
Gycated hemoglobin (HbA1c) 46368 0.53 % 12 1.00 EUR MAGIC100 
Insulin resistance (HOMA-IR) 46186 0.67 loge HOMA 12 1.00 EUR MAGIC99 

Hemotological               

Hemoglobin 54287 1.3 g/dL 12 1.00 EUR 
van der 
Harst101 

Mean cell hemoglobin 45969 1.99 pg 12 1.00 EUR 
van der 
Harst101 

Mean cell hemoglobin concentration 49632 1.01 g/dL 12 1.00 EUR 
van der 
Harst101 

Mean cell volume 51277 5.2 fl 12 1.00 EUR 
van der 
Harst101 

Packed cell volume 46848 5.9 % 12 1.00 EUR 
van der 
Harst101 

Red blood cell count 47873 0.5 10¹²/L 12 1.00 EUR 
van der 
Harst101 

Lipids               
HDL cholesterol 103019 15.51 mg/dL 11 1.00 EUR GLGC102 
LDL cholesterol 97562 38.67 mg/dL 11 1.00 EUR GLGC102 
Total cholesterol 103266 41.75 mg/dL 11 1.00 EUR GLGC102 
Triglycerides 99050 90.72 mg/dL 11 1.00 EUR GLGC102 

Renal function               

Microalbuminuria 30482 NA loge odds 13 0.82 EUR 
CKDGen10

3 

Serum creatinine 67093 0.24 loge ml/min/1.73m² 13 1.00 EUR 
CKDGen10

3 

Serum cystatin 20957 0.23 loge ml/min/1.73m² 13 1.00 EUR 
CKDGen10

3 

Urinary albumin-to-creatinine ratio 31580 1.0 loge mg/g 13 1.00 EUR 
CKDGen10

3 
Other               

Grade of nuclear cataract 7140 0.8 grade 11 1.00 ASN SEEDS104 

Hepatic steatosis 7176 5.6 Hounsfield units 12 1.00 EUR 
Speliotes10

5 
Percent emphysema 7914 0.71 loge %+1 12 1.00 ME MESA106 
Uric acid 42742 1.3 mg/dL 12 1.00 EUR GUGC107 

Study acronyms: CKDGen, chronic kidney disease genetics consortium; EGG, Early Growth Genetics Consortium; GIANT, Genetic Investigation of 
ANthropometric Traits; GUGC, Global Urate and Gout consortium; TAG, Tobacco and Genetics Consortium; ICBP, International Consortium for Blood 
Pressure; SSGAC, Social Science Genetics Association Consortium; MAGIC, Meta-Analyses of Glucose and Insulin-related traits Consortium; MESA,  
Multi-Ethnic Study of Atherosclerosis; GLGC, Global Lipids Genetics Consortium; SEEDS, the Singapore Epidemiology of Eye Diseases Study. 
Abbreviations:  ASN, Asian; Con., concentration; EUR, European population; ME, multi-ethnic; SD - standard deviation; loge, natural log; Stat., 
statistical 
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Supplementary Table S3. Selected prospective observational studies of the association between leukocyte telomere length and disease  

Cohort / first 
author Disease Year Design 

No. of 
controls 
/ cohort 

size 

No. 
of 

cases

RR (95% CI) 
as reported by 

study

Scale of RR 
reported by 

study
Conversion 

factor§

RR (95% 
CI) per SD 
increase in 

TL Adjusted‡ Pop. Phet

Search 
strategy†

Cancer outcomes  

NHS, 
HPFS108 Bladder cancer 2007 NCC 192 184 1.88 (1.05 to 

3.36) 

shortest vs. 
longest 
quartile

2.54 1.28 (1.02 
to 1.61) ++ EUR NA 2 

CCHS, 
CGPS109 Breast cancer 2013 PC 24588 574 0.99 (0.95 to 

1.03) 

per 1000 bp 
(1.29 SD) 
decrease

-1.29 1.01 (0.98 
to 1.04) +++++ EUR 

0.17 

1 

SWHS110 Breast cancer 2013 NCC 695 601 1.77 (1.02 to 
3.06) 

shortest vs. 
longest 
quintile 

2.80 1.23 (1.01 
to 1.49) ++ EA 2 

Sister 
Study111 Breast cancer 2011 Case-

cohort 735 342 0.93 (0.64 to 
1.35) 

shortest vs. 
longest 
quartile

-2.54 1.03 (0.89 
to 1.19) + EUR 

(92%) 1 

EPIC112 Breast cancer 2010 NCC 420 199 1.58 (0.75 to 
3.31) 

shortest vs. 
longest 
quartile

2.54 1.2 (0.89 to 
1.6) + EUR 1 

WHS113 Colorectal 
cancer 2010 NCC 357 134 0.94 (0.65 to 

1.38) 
per unit (1.30 
SD) decrease -1.30 1.05 (0.78 

to 1.4) +++++ EUR 

0.47 

3 

PHS114 Colorectal 
cancer 2009 NCC 306 191 0.8 (0.55 to 

1.16) 
per unit (1.72 
SD) decrease -1.72 1.14 (0.92 

to 1.41) ++++ EUR 3 

CCHS, 
CGPS109 

Colorectal 
cancer 2013 PC 46748 496 0.97 (0.88 to 

1.07) 

per 1000 bp 
(1.29 SD) 
decrease  

-1.29 1.02 (0.95 
to 1.1) ++++ EUR 1 

SWHS115 Colorectal 
cancer 2012 NCC 549 441 1.61 (0.94 to 

2.75) 

longest vs. 
3rd shortest 

quintile 
1.40 1.4 (0.96 to 

2.06) + EA 1 

EPIC112 Colorectal 
cancer 2010 NCC 406 185 1.13 (0.54 to 

2.36) 

shortest vs. 
longest 
quartile  

-2.54 0.95 (0.71 
to 1.27) + EUR 1 

NHS116 Endometrial 
cancer 2010 NCC 791 279 1.2 (0.73 to 

1.96) 

shortest vs. 
longest 
quartile 

-2.54 0.93 (0.77 
to 1.13) +++++ EUR 

0.11 
2 

CCHS, 
CGPS109 

Endometrial 
cancer 2013 PC 25262 103 0.85 (0.71 to 

1.02) 
per 1000 bp 
(1.29 SD) -1.29 1.13 (0.99 

to 1.31) +++++ EUR 1 
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decrease  

PLCO117 Glioma 2013 NCC 198 101 1.26 (0.69 to 
2.29) 

shortest vs. 
longest tertile -2.18 0.9 (0.68 to 

1.18) ++ EUR NA 1 

CCHS, 
CGPS109 

Head & neck 
cancer 2013 PC 47036 76 1.17 (0.9 to 

1.53) 

per 1000 bp 
(1.29 SD) 
decrease  

-1.29 0.89 (0.72 
to 1.09) ++++ EUR NA 1 

CCHS, 
CGPS109 Kidney cancer 2013 PC 47063 59 1.04 (0.78 to 

1.39) 

per 1000 bp 
(1.29 SD) 
decrease  

-1.29 0.97 (0.77 
to 1.21) ++++ EUR NA 1 

PLCO118 Kidney cancer 2013 NCC 410 209 0.8 (0.5 to 1.5) 
longest vs. 

shortest 
quartile 

2.54 0.92 (0.74 
to 1.14) +++ EUR 

(89.5%) NA 1 

PLCO, 
ATBC, 
SWHS119 

Lung 
adenocarcinoma 2014 NCC 288 288 2.52 (1.38 to 

4.6) 

longest vs. 
shortest 
quartile 

2.54 1.44 (1.14 
to 1.82) ++ EUR 

(75%) NA 1 

CCHS, 
CGPS109 Lung cancer 2013 PC 47035 522 1.08 (0.98 to 

1.2) 

per 1000 bp 
(1.29 SD) 
decrease 

-1.29 0.94 (0.87 
to 1.02) ++++ EUR 

<0.001 

1 

PLCO, 
ATBC, 
SWHS119 

Lung cancer 2014 NCC 847 847 1.86 (1.33 to 
2.62) 

longest vs. 
shortest 
quartile  

2.54 1.28 (1.12 
to 1.46) ++ EUR 

(75%) 1 

PLCO, 
ATBC, 
SWHS119 

Lung SCC 2014 NCC 163 163 1.14 (0.53 to 
2.45) 

longest vs. 
shortest 
quartile 

2.54 1.05 (0.78 
to 1.42) ++ EUR 

(75%) NA 1 

CCHS, 
CGPS109 Melanoma 2013 PC 46805 177 0.89 (0.77 to 

1.03) 

per 1000 bp 
(1.29 SD) 
decrease  

-1.29 1.09 (0.98 
to 1.23) ++++ EUR 

0.03 

1 

WHI, HPFS, 
NHS120 Melanoma 2011 NCC 579 557 0.43 (0.27 to 

0.7) 

shortest vs. 
longest 
quartile 

-2.54 1.39 (1.16 
to 1.68) + EUR 2 

CCHS, 
CGPS109 Ovarian cancer 2013 PC 25367 96 0.85 (0.7 to 

1.03) 

per 1000 bp 
(1.29 SD) 
decrease  

-1.29 1.13 (0.98 
to 1.32) +++++ EUR NA 1 

CCHS, 
CGPS109 

Pancreatic 
cancer 2013 PC 47091 124 1.14 (0.93 to 

1.41) 

per 1000 bp 
(1.29 SD) 
decrease

-1.29 0.9 (0.77 to 
1.06) ++++ EUR 

0.05 

1 

ATBC121 Pancreatic 
cancer 2013 NCC 660 193 1.58 (1.02 to 

2.46) 

longest vs. 
shortest 
quartile

2.54 1.2 (1.01 to 
1.42) ++ EUR 1 
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EPIC122 Pancreatic 
cancer 2014 NCC 331 331 1.38 (0.8 to 

2.41) 

longest vs. 
shortest 
quartile 

2.54 1.13 (0.91 
to 1.41) + EUR 1 

CCHS, 
CGPS109 Prostate cancer 2013 PC 21387 418 0.94 (0.85 to 

1.04) 

per 1000 bp 
(1.29 SD) 
decrease 

-1.29 1.05 (0.97 
to 1.13) ++++ EUR 

0.37 
1 

HPFS123 Prostate cancer 2015 NCC 935 922 1.11 (1.01 to 
1.22) 

per SD 
increase 1.00 1.11 (1.01 

to 1.22) ++++ EUR 1 

NHS124 Skin BCC 2011 NCC 1683 363 0.91 (0.66 to 
1.25) 

longest vs. 
shortest 
quartile 

2.54 0.96 (0.85 
to 1.09) + EUR NA 1 

CCHS, 
CGPS109 

Testicular 
cancer 2013 PC 21568 10 1.09 (0.57 to 

2.09) 

per 1000 bp 
(1.29 SD) 
decrease 

-1.29 0.94 (0.56 
to 1.55) ++++ EUR NA 1 

Non-neoplastic diseases                         

Haycock||125 Coronary heart 
disease 2014 MA 27352 2272 1.4 (1.15 to 

1.7) 
shortest vs. 

longest tertile -2.18 0.86 (0.78 
to 0.94) * EUR NA 4 

Haycock#125 Ischemic stroke 2014 MA 5300 824 1.14 (0.85 to 
1.54) 

shortest vs. 
longest tertile -2.18 0.94 (0.82 

to 1.08) * EUR NA 4 

Bruneck, 
SHFS, 
WHI126 

Type 2 diabetes 2014 MA 6991 2011 1.31 (1.07 to 
1.6) 

shortest vs. 
longest 
quartile

-2.54 0.9 (0.83 to 
0.97) ** Mix NA 4 

†Search strategy used to identify the study (see Table S4 for details). ||Meta-analysis of 11 prospective studies; #Meta-analysis of 6 prospective studies (90% of cases were ischemic stroke, 10% were unclassified 
cerebrovascular disease); §To convert reported log RR to log RR per SD increase in telomere length; ‡Adjustment for confounders: +adjusted for age and sex; ++plus smoking; +++plus body mass index; ++++plus alcohol 
and/or physical activity ; +++++plus hormone replacement therapy, menopause and/or parity; *most studies adjusted for age, sex and non-lipid vascular risk factors; **adjusted for age, sex and body mass index. 
Acronyms/abbreviations: BCC, basal cell carcinoma; bp, base pairs; CI, confidence interval; EA, East Asian; EUR, European; MA, random-effects meta-analysis of prospective studies; NCC, nested case-control study; 
PC, prospective cohort; Phet, p value for heterogeneity between studies; Pop., population; RR, relative risk; SD, standard deviation; SCC, squamous cell carcinoma; vs., versus; TL, telomere length. Study acronyms: 
ATBC, Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study; CCHS, Copenhagen City Heart Study; CGPS, Copenhagen General Population Study; EPIC, European Prospective Investigation into Cancer and 
Nutrition study; HPFS, Health Professionals Follow-Up Study; NHS, Nurses Health Study; PHS, Physicians' Health Study; PLCO, Prostate, Lung, Colorectal, and Ovarian; SHFS, Strong Heart Family Study; the Sister 
Study; SWHS, Shanghai Women's Health Study; WHI, Women’s Health Initiative; WHS, Women’s Health Study 
 
 329 

 330 

 331 

 332 
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Supplementary Table S4. PubMed search strategy for prospective observational studies of association between telomere length* and disease 

Search 
strategy Search terms or meta-analysis  

No. of 
studies 

identified 

No. meeting 
inclusion 
criteria 

Reasons 
for further 
exclusions 

No. of 
studies 

included 
Inclusion criteria: prospective study of primary cancer outcome and telomere length†   

Strategy 1 25 February 2015: cancer[TIAB] AND telomere length[TIAB] AND (meta analysis[TIAB] OR 
prospective[TIAB] OR meta-analysis[TIAB]) 54 11 NA 11‡ 

Strategy 2 

25 March 2015: telomere length[Title/Abstract] AND (retrospective[Title/Abstract] OR case-
control[Title/Abstract] OR case control[Title/Abstract] OR meta-analysis[Title/Abstract] OR meta 
analysis[Title/Abstract] OR prospective[Title/Abstract] OR cohort[Title/Abstract] OR cross-
sectional[Title/Abstract] OR cross sectional[Title/Abstract]) AND (B-cell non-Hodgkin 
lymphoma[Title/Abstract] OR breast cancer[Title/Abstract] OR  chronic myeloid leukemia[Title/Abstract] OR 
esophageal adenocarcinoma[Title/Abstract] OR endometrial cancer[Title/Abstract] OR esophageal 
cancer[Title/Abstract] OR gastric cancer[Title/Abstract] OR gallbladder cancer[Title/Abstract] OR 
glioma[Title/Abstract] OR head cancer[Title/Abstract] OR neck cancer[Title/Abstract] OR oesophageal 
adenocarcinoma[Title/Abstract] OR kidney cancer[Title/Abstract] OR melanoma[Title/Abstract] OR 
nasopharyngeal carcinoma[Title/Abstract] OR neuroblastoma[Title/Abstract] OR non-melanoma skin 
cancer[Title/Abstract] OR basal cell carcinoma[Title/Abstract] OR squamous cell carcinoma[Title/Abstract] OR 
ovarian cancer[Title/Abstract] OR pancreatic cancer[Title/Abstract] OR prostate cancer[Title/Abstract] OR 
testicular germ cell cancer[Title/Abstract] OR Wilm's tumour[Title/Abstract] OR Bladder cancer[Title/Abstract] 
OR Breast cancer[Title/Abstract] OR Chronic lymphocytic leukemia[Title/Abstract] OR Colorectal 
cancer[Title/Abstract] OR Multiple myeloma[Title/Abstract] OR Lung adenocarcinoma[Title/Abstract] OR Lung 
squamous cell cancer[Title/Abstract] OR cancer[Title/Abstract] OR osteosarcoma[Title/Abstract] OR 
leukemia[Title/Abstract] OR leukaemia[Title/Abstract] OR Ewing sarcoma[Title/Abstract] 

209 17 13 
duplicates 4 

Strategy 3 Ma et al127 (2011) and Wentzensen et al128 (2011) 48 10 8 
duplicates 2 

Inclusion criteria: prospective study of primary disease outcome and telomere length†         

Strategy 4 8 January 2016: (meta-analysis OR "meta analysis") AND "telomere length" 42 7 

2 did not 
report 

relative 
risks§; 3 

duplicates 

2|| 

*all identified eligible studies were studies of leukocyte telomere length; ‡1 study reported findings for 2 primary cancer outcomes and 1 study reported findings for 11 primary 
cancer outcomes; ||1 meta-analysis reported findings for 2 primary non-neoplastic diseases; †primary outcomes were diseases where a priori statistical power was >50% to detect 
associations with telomere length (see supplementary text for technical details); see table S1 for a list of the primary disease outcomes; §relative risks were defined as odds ratios, 
hazard ratios and risk ratios 
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Supplementary Table S6. Glossary of terms 333 
Mendelian randomization A technique to appraise causality in observational studies using 

genetic variants as ‘unconfounded’ instruments for risk factors or 
modifiable exposures of interest. 

Instrumental variable A ‘proxy’ variable used in place of the hypothesized risk factor 
or exposure in a Mendelian randomization analysis. A valid 
instrumental variable is associated with the exposure of interest 
but is not associated with confounders; and is associated with the 
outcome (e.g. disease) exclusively via its effect on the 
hypothesized exposure (see Supplementary Figure S7 for an 
illustration of these assumptions).  

Reverse causation When the outcome causes variation in the hypothesized exposure 
and not vice versa. 

Confounding When the association between exposure and outcome is not due 
to a causal relationship between the two variables but arises as a 
result of the separate effects of a third variable (the confounder) 
on the exposure and the outcome. Mendelian randomization 
studies are less susceptible to confounding in comparison to 
observational studies (but confounding by pleiotropy or 
population stratification is possible).  

Pleiotropy Occurs when a genetic variant is associated with multiple traits or 
phenotypes. Vertical pleiotropy occurs when the phenotypes are  
on the same causal pathway (and is less problematic for 
Mendelian randomization studies). Horizontal pleiotropy occurs 
if the phenotypes are associated with the genetic variant via 
separate pathways and can introduce confounding into a 
Mendelian randomization analysis. Sensitivity analyses, such as 
MR-Egger, the weighted median, scatter plots and funnel plots, 
can be used to test and, in some instances, adjust for pleiotropy.  

Collider bias The phenomenon by which statistical adjustment for a variable, 
M (known as the collider), that is a downstream consequence of 
both the exposure X and the outcome Y, induces an association 
between X and Y that was not previously present, and therefore 
leads to bias. In MR, if published genetic associations with the 
exposure and/or outcome are adjusted for a collider, this may 
lead to collider bias. 

Weak instrument bias Occurs when the instrument is only weakly associated with the 
exposure. Can introduce confounding into a Mendelian 
randomization analysis when the exposure and outcome data 
come from the same sample. When exposure and outcome data 
come from separate samples, as in two-sample Mendelian 
randomization, bias is towards the null. An F statistic > 10, for 
the association between the instrument and exposure, is 
sometimes used as a threshold for defining strong instruments, 
although weak instrument bias varies continuously with the 
strength of the F statistic. 

 334 

Formatted: Numbering: Continuous
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Supplementary Figure S1. Study design 335 

 
+We searched the GWAS catalog in January 2015 for studies of non-communicable diseases that did 
not select controls on the basis of pre-existing conditions. Of the 1493 studies in the GWAS catalog 
with unique PubMed reference numbers, we classified 773 as disease studies (the excluded non-
disease studies were typically studies of risk factors for disease, biomarkers or response to 
treatments). A further 103 studies were excluded for the following reasons: studies of infectious 
diseases, studies of congenital abnormalities, studies of (not-cause specific) mortality, studies nested 
within disease populations and studies using pooled DNA samples. Of the 670 remaining non-
communicable disease studies, 130 were identified for correspondence. Our objective was to obtain 
the single largest available study for each non-communicable disease, so as to avoid unnecessary 
correspondence with duplicate studies and to avoid including studies with overlapping samples. 
*Primary outcomes were diseases with sufficient cases and controls for >50% power and secondary 
outcomes were diseases with <50% power to detect odds ratios ≥2.0 per standard deviation change in 
genetically increased telomere length (alpha assumed to be 0.01). All risk factors were classified as 
secondary outcomes. GWAS, genome-wide association study; GWAS Cat., NHGRI-EBI GWAS 
catalogue; SNP, single nucleotide polymorphism; NHGRI, National Human Genome Research 
Institute; EBI, European Bioinformatics Institute

Search of the NHGRI-EBI GWAS catalog for SNPs associated with 
telomere length (15 January 2015)

26 SNPs identified
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Supplementary Figure S2. Association between genetically increased telomere length and odds of secondary non-communicable diseases336 

 337 
*P value for association between genetically increased telomere length and disease from maximum likelihood; Phet, P value for heterogeneity amongst SNPs within the genetic risk score; SNP, single  338 
nucleotide polymorphism; CI, confidence interval 339 

Cancer
Multiple myeloma
Chronic lymphocytic leukemia
Thyroid cancer
Chronic myeloid leukemia
Ewing's sarcoma
Upper gastrointestinal cancers
Gastric noncardia adenocarcinoma
Gallbladder cancer
Nasopharyngeal carcinoma
Follicular lymphoma
B-cell Non-Hodgkin lymphoma
Gastric cardia adenocarcinoma
Skin squamous cell carcinoma

Neurological / psychiatric diseases
Parkinson's disease
Bulimia nervosa
Panic disorder

Autoimmune/inflammatory diseases
Kawasaki disease
Vitiligo
Systemic lupus erythematosus
Inflammatory psoriatic arthritis
Narcolepsy
Psoriasis
Wegener's granulomatosis
Sarcoidosis

Other
Hirschsprung's disease
Vascular dementia
Paget's disease

4692
2883
649
201
401
3523
632
41
1583
212
253
1126
449

1713
151
718

405
1117
1311
609
1188
1139
492
564

173
84
741

No. of
Cases

1
1
12
6
4
2
8
2
2
3
8
8
13

4
8
6

11
2
4
13
7
7
10
9

4
7
12

No. of
SNPs

10.02 (3.84, 26.13)
10.02 (3.56, 28.21)
3.98 (1.69, 9.36)
2.58 (0.68, 9.72)
2.11 (0.67, 6.62)
1.43 (0.69, 2.96)
1.41 (0.67, 2.96)
1.34 (0.03, 52.74)
1.28 (0.59, 2.76)
1.22 (0.28, 5.35)
1.19 (0.43, 3.30)
1.16 (0.64, 2.12)
0.65 (0.31, 1.36)

1.05 (0.62, 1.77)
0.94 (0.88, 1.01)
0.28 (0.11, 0.72)

2.04 (1.00, 4.16)
1.64 (0.68, 3.93)
1.59 (0.88, 2.88)
1.42 (0.64, 3.12)
1.01 (0.53, 1.92)
0.97 (0.46, 2.04)
0.77 (0.27, 2.17)
0.50 (0.21, 1.23)

1.81 (0.33, 9.78)
1.72 (0.25, 12.04)
0.96 (0.54, 1.71)
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1.00x10-5
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Supplementary Figure S3. Replication of association between genetically increased telomere 340 
length and odds of non-communicable diseases in independent datasets 341 

 342 
*P value for association between genetically increased telomere length and disease from maximum likelihood. †Primary or secondary study from Fig. 343 
1 or Fig. S2. +Noth et al81: ≤17% of the cases overlapped with cases from Fingerlin et al31 and 77% of cases had idiopathic pulmonary fibrosis; ‡An 344 
inverse association was also observed in Mushiroda et al82. Phet, p value for heterogeneity amongst SNPs in the genetic risk score (NA when only a 345 
single SNP available); SNP, single nucleotide polymorphism; CI, confidence interval. Study abbreviations: C4D, Coronary Artery Disease Genetics 346 
Consortium; CARDIoGRAM, Coronary ARtery DIsease Genome wide Replication and Meta-analysis; CORECT, ColoRectal Transdisciplinary 347 
Study; GECCO, Genetics and Epidemiology of Colorectal Cancer Consortium;  IMSGC, International Multiple Sclerosis Genetic Consortium; 348 
NBCS, Nijmegen Bladder Cancer Study; IMSGC, International Multiple Sclerosis Genetic Consortium.  349 
 350 
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Supplementary Figure S4. Sensitivity analyses of association between genetically increased 355 
telomere length and odds of non-communicable diseases 356 
 357 

 358 
LMP, low malignancy potential; CI, confidence interval. The Pintercept from MR-Egger regression tests the null hypothesis that the 359 
intercept is zero and can be interpreted as a statistical test for the presence of directional (bias inducing) pleiotropy; the smaller the 360 
Pintercept value the stronger the evidence for directional pleiotropy.   361 
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Supplementary Figure S5. Association between genetically increased telomere length and risk factors for non-communicable diseases 362 

  
*P value for association between genetically increased telomere length and risk factor from maximum likelihood; Phet, p value for heterogeneity amongst SNPs within the genetic risk score; SNP, single  
nucleotide polymorphism; CI, confidence interval; HbA1c, hemoglobin A1c; HOMA-B, homeostatic model assessment β-cell function; IR, insulin resistance; †for binary risk factors results reflect the  
log odds ratio for the risk factor, all other results reflect the standard deviation change in the risk factor 

Anthropometric traits
Height
Body mass index
Waist circumference
Hip circumference
Waist-to-hip ratio
Birth weight
Birth length
Childhood obesity†
Head circumference

Education
Years of educational attainment
College completion†

Lipids
Total cholesterol
HDL cholesterol
Triglycerides
LDL cholesterol

Blood pressure
Pulse pressure
Systolic blood pressure
Diastolic blood pressure
Mean arterial pressure

Renal function
Serum creatinine
Urinary albumin-to-creatinine ratio
Microalbuminuria†
Serum cystatin

Hemotological traits
Hemoglobin
Mean cell volume
Mean cell hemoglobin concentration
Red blood cell count
Packed cell volume
Mean cell hemoglobin

Glycemic traits
Gycated hemoglobin (HbA1c)
Fasted glucose
Fasted insulin
Insulin resistance (HOMA-IR)
Beta-cell function (HOMA-B)
2hr glucose
Fasted proinsulin

Other traits
Uric acid
Percent emphysema
Hepatic steatosis
Grade of nuclear cataract

247695
241253
158648
149224
148662
26836
22557
13848
10705

126559
126559

103266
103019
99050
97562

70903
66473
66466
27803

67093
31580
30482
20957

54287
51277
49632
47873
46848
45969

46368
46186
46186
46186
46186
15234
10701

42742
7914
7176
7140

Sample
size

13
13
13
13
13
12
12
12
13

13
13

11
11
11
11

13
12
12
13

13
13
13
13

12
12
12
12
12
12

12
12
12
12
12
11
12

12
12
12
8

No. of
SNPs

0.02 (-0.01, 0.05)
-0.01 (-0.04, 0.03)
0.01 (-0.04, 0.05)
-0.00 (-0.05, 0.04)
0.02 (-0.02, 0.06)
0.00 (-0.08, 0.08)
-0.05 (-0.15, 0.04)
0.16 (-0.10, 0.43)
-0.06 (-0.20, 0.09)

0.04 (0.01, 0.07)
0.12 (0.02, 0.21)

-0.00 (-0.05, 0.05)
-0.08 (-0.13, -0.04)
0.07 (0.03, 0.12)
0.00 (-0.05, 0.05)

0.06 (0.01, 0.10)
0.09 (0.04, 0.15)
0.10 (0.04, 0.16)
0.09 (0.04, 0.13)

0.02 (-0.03, 0.07)
0.09 (-0.00, 0.19)
0.20 (-0.06, 0.46)
0.02 (-0.07, 0.12)

-0.01 (-0.05, 0.04)
-0.09 (-0.14, -0.04)
-0.01 (-0.03, 0.01)
0.03 (-0.01, 0.08)
-0.00 (-0.03, 0.03)
-0.23 (-0.34, -0.12)

-0.01 (-0.07, 0.05)
0.01 (-0.04, 0.06)
-0.05 (-0.10, 0.00)
-0.05 (-0.11, 0.01)
-0.03 (-0.06, 0.01)
-0.12 (-0.27, 0.02)
0.06 (-0.03, 0.15)

0.02 (0.00, 0.03)
0.09 (-0.04, 0.23)
0.11 (-0.08, 0.29)
-0.00 (-0.15, 0.14)

0.2477
0.6054
0.7911
0.8472
0.3158
0.9708
0.2753
0.2286
0.4416

0.0142
0.0215

0.9899
0.0005
0.0012
0.9985

0.0148
0.0014
0.0008
0.0005

0.4843
0.0546
0.1308
0.6247

0.7553
0.0009
0.3332
0.1626
0.8309
<0.0001

0.7766
0.6798
0.0586
0.1259
0.1779
0.1016
0.2139

0.0341
0.1826
0.2651
0.9572

P*

<0.0001
0.1109
0.1302
0.1708
0.2823
0.6970
0.9138
0.2111
0.2177

0.4718
0.1764

0.0037
0.2924
0.4907
0.0294

0.1526
0.2368
0.6963
0.2146

0.2522
0.2306
0.5607
0.4767

0.6636
0.0062
0.1728
0.4471
0.4526
0.0160

0.3652
0.2955
0.1910
0.2511
0.0165
0.9574
0.8945

0.0015
0.5247
0.8700
0.1934

Phet

0.02 (-0.01, 0.05)
-0.01 (-0.04, 0.03)
0.01 (-0.04, 0.05)
-0.00 (-0.05, 0.04)
0.02 (-0.02, 0.06)
0.00 (-0.08, 0.08)
-0.05 (-0.15, 0.04)
0.16 (-0.10, 0.43)
-0.06 (-0.20, 0.09)

0.04 (0.01, 0.07)
0.12 (0.02, 0.21)

-0.00 (-0.05, 0.05)
-0.08 (-0.13, -0.04)
0.07 (0.03, 0.12)
0.00 (-0.05, 0.05)

0.06 (0.01, 0.10)
0.09 (0.04, 0.15)
0.10 (0.04, 0.16)
0.09 (0.04, 0.13)

0.02 (-0.03, 0.07)
0.09 (-0.00, 0.19)
0.20 (-0.06, 0.46)
0.02 (-0.07, 0.12)

-0.01 (-0.05, 0.04)
-0.09 (-0.14, -0.04)
-0.01 (-0.03, 0.01)
0.03 (-0.01, 0.08)
-0.00 (-0.03, 0.03)
-0.23 (-0.34, -0.12)

-0.01 (-0.07, 0.05)
0.01 (-0.04, 0.06)
-0.05 (-0.10, 0.00)
-0.05 (-0.11, 0.01)
-0.03 (-0.06, 0.01)
-0.12 (-0.27, 0.02)
0.06 (-0.03, 0.15)

0.02 (0.00, 0.03)
0.09 (-0.04, 0.23)
0.11 (-0.08, 0.29)
-0.00 (-0.15, 0.14)

0-.5 -.25 0 .25 .5

Standard deviation or log odds† change (95% CI) in risk factor 
per standard deviation change in genetically increased telomere length

Formatted: Numbering: Continuous



26 
 

Supplementary Figure S6. Association between genetically increased telomere length and smoking 363 

 
*P value for association between genetically increased telomere length and risk factor from maximum likelihood; Phet, P value for heterogeneity amongst SNPs within the genetic risk score;  
SNP, single nucleotide polymorphism; CI, confidence interval; †for binary risk factors results reflect the log odds ratio for the risk factor, all other results reflect the standard deviation change  
in the risk factor 
 364 
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Supplementary Figure S7. Causal diagram illustrating the assumptions of Mendelian 366 
randomization  367 
a) 368 

 369 

b) 370 

 371 

IV, instrumental variable assumption; Gj, single nucleotide polymorphism j; X, telomere length; Y, 372 
outcome (disease or risk factor); U, confounder; α, G-Y association not mediated by telomere 373 
length (often described as a horizontal pleiotropic or direct effect); γ, SNP-telomere-length 374 
association.  375 
a) Key assumptions of Mendelian randomization. Gj is associated with X (IV1); Gj is independent 376 
of confounders (IV2); Gj is independent of Y given X and U (IV3). The weighted median approach 377 
assumes that IV1-IV3 hold for genetic variants making up at least 50% of the weight in the 378 
analysis; MR-Egger relaxes assumption IV3 (see InSIDE assumption below). 379 
b) Assumptions underlying the MR-Egger approach. IV3 is replaced with the InSIDE assumption 380 
(Instrument Strength Independent of Direct Effect): the strength of the pleiotropic effect (αj) does 381 
not correlate with the strength of the G-X association (γj). Under the InSIDE assumption, MR-382 
Egger can consistently estimate the causal effect of X on Y, represented by the parameter β in (b). 383 
 384 

 385 
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 424 

The Aneurysm Consortium 425 

GWAS data on abdominal aortic aneurysm (AAA) studies 426 

All known studies with AAA genome-wide genotyping were invited to join the International 427 

Aneurysm Consortium. All studies agreed to participate in the meta-GWAS, with cohort case 428 

control descriptions and inclusion/exclusion criteria having been previously reported.28,129,130 All 429 

AAA cases shared a common definition of infra-renal aortic diameter >30 mm. 430 

 431 

Descriptions of AAA cohorts 432 

In the present report, the Aneurysm Consortium consists of the original Aneurysm Consortium plus 433 

the NZ AAA Genetics Study (two separate cohorts), the Geisinger Vascular Clinic AAA study, the 434 

Iceland study and the Netherlands study.  435 

Original Aneurysm Consortium (1846 cases and 5605 controls): The original Aneurysm 436 

Consortium recruited cases of AAA from centres across the United Kingdom and Western 437 

Australia.  Cases were defined as an infra-renal aortic diameter ≥ 30 mm proven on ultrasound or 438 

computerized tomography (CT) scan. Controls were taken from the WTCCC2 common control 439 

group28,131 and were therefore unscreened for AAA.  440 

NZ AAA Genetics Study (with two separate cohorts: set 1 with 608 cases and 612 controls; set 2 441 

with 397 cases and 384 controls): The Vascular Research Consortium of New Zealand recruited 442 
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New Zealand men and women with a proven history of AAA (infra-renal aortic diameter ≥ 30 mm 443 

proven on ultrasound or CT scan). Approximately 80% had undergone surgical AAA repair 444 

(typically AAA’s > 50-55 mm in diameter). The vast majority of cases (>97%) were of Anglo-445 

European ancestry. The control group underwent an abdominal ultrasound scan to exclude (>25 446 

mm) concurrent abdominal aortic aneurysm and Anglo-European ancestry was required for 447 

inclusion. Controls were also screened for peripheral artery disease (PAD; using ankle brachial 448 

index), carotid artery disease (ultrasound) and other cardiovascular risk factors. 449 

 450 

Geisinger Vascular Clinic AAA Study, Pennsylvania, USA: AAA patients (n=724) were enrolled 451 

through the Department of Vascular Surgery at Geisinger Medical Center, Danville, PA. Details of 452 

this case-control set have been reported previously, and the samples have been used in previous 453 

association studies.129,132 To identify cases and controls from the electronic medical records, an 454 

ePhenotyping algorithm was developed29. AAA cases were defined as infrarenal aortic diameter ≥ 455 

30 mm as revealed by abdominal imaging. Approximately 20% of individuals with AAA had a 456 

family history of AAA. A control group (n=1231) was obtained through the Geisinger MyCode® 457 

Project, a cohort of Geisinger Clinic patients recruited for genomic studies. The MyCode® controls 458 

were matched for age distribution and sex to the Geisinger Vascular Clinic AAA cases. Based on 459 

electronic medical records, controls had no ICD-9 codes for AAA in their records, but they were 460 

not screened by ultrasonography for AAA. Both cases and controls from the Geisinger Clinic were 461 

of European descent. The eMERGE Network Imputed GWAS for 41 Phenotypes (the dbGaP 462 

eMERGE Phase 1 and 2 Merged data Submission) accession number is: phs000888.v1.p1 which 463 

includes the Geisinger AAA data. 464 

 465 

Iceland, deCODE Genetics: Icelandic individuals with AAA (defined as infra-renal aortic diameter 466 

≥ 30 mm) were recruited from a registry of individuals who were admitted at Landspitali University 467 

Hospital, in Reykjavik, Iceland, 1980 – 2006. AAA patients were either followed up or treated by 468 
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intervention for emergency repair of symptomatic or ruptured AAA or for an elective repair by 469 

surgery or endovascular intervention. In total, whole genome data from 557 subjects with AAA, 470 

enrolled as part of the CVD genetics program at deCODE, were included in the metaGWAS. The 471 

Icelandic controls used (n=89,235) were selected from among individuals who have participated in 472 

various GWA studies and who were recruited as part of genetic programs at deCODE. Individuals 473 

with known cardiovascular disease were excluded as controls129 but controls were unscreened for 474 

AAA. 475 

 476 

The Netherlands: The AAA sample set from Utrecht was recruited in 2007-2009 from eight centres 477 

in The Netherland129, mainly when individuals visited their vascular surgeon in the polyclinic or, in 478 

rare cases, during hospital admission for elective or emergency AAA surgery. An AAA was defined 479 

as an infrarenal aorta ≥ 30 mm. The sample set (n=840) comprised 89.9% males, with a mean AAA 480 

diameter of 58.4 mm, 61.7% had received surgery, of which 8.1 % was after rupture. The Dutch 481 

controls (n=2791) used in the AAA GWAS were recruited as part of the Nijmegen Biomedical 482 

Study and the Nijmegen Bladder Cancer Study (see http://dceg.cancer.gov/icbc/membership.html). 483 

 484 

Meta-analysis of AAA GWASs 485 

Data from the six cohorts detailed above, comprising 4972 AAA cases and 99,858 controls, that 486 

were genotyped with a variety of genome-wide SNP arrays.  All cohorts underwent quality control 487 

filtering using the manufacturers’ array-specific guidelines but with consistently applied inclusion 488 

criteria of SNP or sample call rates >95% and Hardy-Weinberg equilibrium P>5x10-5 in 489 

controls.28,129,130,132 Each cohort then underwent imputation (Impute 2.2) to a shared reference panel 490 

from the 1000 Genomes project (Phase I integrated variant set release (v3), March 2012, NCBI 491 

build 37(hg19 Following imputation SNPs were quality controlled by quality score (Q>0.9) and 492 

minor allele frequency (MAF>0.05 in controls) filtering, resulting in a common set of 5331120 493 

SNPs across all discovery phase participants. 494 
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The metaGWAS analysis was conducted using the METAL software package133 on the 495 

BCISNPmax database platform (version 3.5, BCI Platforms, Espoo, Finland). METAL was 496 

implemented using the sample size scheme with weighting for each cohort being two times the case 497 

number. The analysis was adjusted for genomic inflation (λ) in each cohort. 498 
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