

Skew Injective Modules Relative to Torsion Theories

Mehdi Sadik Abbas, MohanadFarhan Hamid Department of Mathematics, College of Science, University of Mustansiriya, Baghdad, Iraq amsaj59@yahoo.com Department of Mathematics, College of Science, University of Mustansiriya, Baghdad, Iraq mohanadfhamid@yahoo.com

ABSTRACT

The purpose of this paper is to extend results about skew injective modules to a torsion theoretic setting. Given a hereditary torsion theory τ , a module *M* is called τ -skew injective if all endomorphisms of τ -dense submodules of *M* can be extended to endomorphisms of *M*. A characterization of τ -skew injectivity using split short exact sequences is given.

Indexing terms/Keywords

Torsion theory; τ -torsion module; τ -dense submodule;skew injective module.

Academic Discipline And Sub-Disciplines

Mathematics; Algebra.

Mathematics Subject Classification

16D50.

Peer Review Research Publishing System

Journal: Journal of Advances in Mathematics

Vol 9, No 2

editor@cirjam.org

www.cirjam.com, www.cirworld.com

brought to you by 🗓 CORE

ISSN 2347-1921

1 Preliminaries

All modules considered will be right unital*R*-modules, where *R* is some associative ring with a nonzero identity.By $\tau = (\mathcal{T}, \mathcal{F})$ we denote a hereditary torsion theory on the category mod-*R* of *R*-modules, where \mathcal{T} (resp. \mathcal{F}) denotes the class of all τ -torsion (resp. τ -torsion free) *R*-modules.

A submodule*N* of a module *M* is said to be τ -dense in *M* (denoted $N \leq^{\tau d} M$) if *M*/*N* is τ -torsion, and *M* is τ -torsion if and only if all its elements are annihilated by τ -dense right ideals of *R*. A submodule *N* of *M* is called τ -essential in *M* (denoted $N \leq^{\tau e} M$) if *N* is both τ -dense and essential in *M*. In this case, *M* is called a τ -essential extension *N*. The intersection of any finite number of τ -dense (resp. τ -essential) submodules is again τ -dense (resp. τ -essential). If *N* and *K* are submodules of a module *M* such that $N \leq^{\tau e} M$ then $N \cap K \leq^{\tau e} K$. Any submodule that contains a τ -dense (resp. τ essential) submodule is itself τ -dense (resp. τ -essential). An *R*-module is called τ -*injective* if it is injective with respect to every short exact sequence having a τ -torsion cokernel. Every *R*-module *M* admits a τ -*injective* envelope $E = E_{\tau}(M)$, i.e. a τ -injective *R*-module *E* containing *M* as a τ -essential submodule. A module *M* is called τ -*quasi injective* if homomorphisms from τ -dense submodules of *M* into *M* are extendable to endomorphisms of *M*. For preliminaries about torsion theories, we refer to [2].

Charalambides [3] introduced the concept of τ -essentially closed submodules. A submodule N of a module M is called τ essentially closed in M (denoted $N \leq^{\tau c} M$) if N has no proper τ -essential extensions in M.

A module *M* is called *skew injective* [4] if whenever *N* is a submodule of *M*, any *f* in End(N) can be extended to $g \in End(M)$. Note that in [5] skew injective modules are called semiinjective. In this paper, we generalize this concept to torsion theoretic setting.

2 τ -Skew Injective Modules

Definition. A module *M* is called τ -skew injective if whenever *N* is a τ -dense submodule of *M*, any *f* in End(*N*) can be extended to $g \in \text{End}(M)$.

Remarks.

- a) Every skew injective module is τ -skew injective.
- b) Every τ -quasi injective module (and hence every τ -injective) module is τ -skew injective.
- c) If M is a τ -torsion τ -skew injective module, then it is skew injective.
- d) If τ is the torsion theory in which every *R*-module is τ -torsion, then a module is τ -skew injective if and only if it is skew injective.

Proposition 1: A module *M* is τ -skew injective if and only if for every τ -essential submodule *N* of *M*, any endomorphism of *N* can be extended to an endomorphism of *M*.

Proof. Let *N* be a τ -dense submodule of *M* and $f \in End(N)$. Let *N'* be a relative complement of *N* in *M*. Then $N \oplus N'$ is a τ -essential submodule of *M*. Moreover, *f* can be extended to an *R*-endomorphism *g* of $N \oplus N'$ by putting g(N') = 0. By the given condition, there is an *R*-homomorphism *h* of *M* which extends *g*hence *f*. The other direction is trivial. \Box

Given a submodule *M* of a module *E* and an endomorphism f of *E*, we call f an *M*- τ -essential endomorphism if $f(N) \subseteq N$ for some τ -essential submodule *N* of *M*.

Theorem 2: If *E* is the τ -injective envelope of a module *M*, then the following statements are equivalent:

- (a) Mis τ -skew injective and $f(M) \subseteq M$ for any endomorphism f of E having a τ -essential kernel.
- (b) $g(M) \subseteq M$ for any M- τ -essential endomorphism g of E.

Proof. (a) \Rightarrow (b) Let *g* be an *M*- τ -essential endomorphism of *E*. Then there is a τ -essential submodule *N* of *M* such that $g(N) \subseteq N$. By τ -skew injectivity of *M*, there exists $h \in \text{End}(M)$ that extends *g*. Again τ -injectivity of *E* gives existence of a *k* in End(*E*) such that $k|_M = h$. So (g - k)(N) = 0. Hence $N \subseteq \ker(g - k)$. So $\ker(g - k) \leq^{\tau e} E$. Then by hypothesis $(g - k)(M) \subseteq M$. Therefore, for any *x* in *M* we have $(g - k)(x) = m \in M$, hence $g(x) = m + k(x) \in M$, i.e. $g(M) \subseteq M$.

(b) \Rightarrow (a) Since any endomorphism of *E* having a τ -essential kernel is necessarily an *M*- τ -essential homomorphism, we need only prove that *M* is τ -skew injective. By Proposition 1, let *N* be a τ -essential submodule of *M* and $f \in \text{End}(N)$. By τ -injectivity of *E* we have a $g \in \text{End}(E)$ such that $g(N) = f(N) \subseteq N$. Hence, *g* is an *M*- τ -essential homomorphism, so $g(M) \subseteq M$. Then, $g|_M \in \text{End}(M)$ is an extension of f. \Box

The following Theorem generalizes Lemma 6 of [5].

Theorem 3: Let *M* be a τ -skew injective module, *E* a τ -essential extension of *M* and *f* an *M*- τ -essential endomorphism of *E*. If for each $x \in M$ there exists a positive integer *n* such that $f^{n+1}(x) = f^n(x)$, then $f(M) \subseteq M$.

Proof. Let *N* be the sum of all τ -dense submodules *N'* of *M* such that $f(N') \subseteq N'$. Therefore $f(N) \subseteq N$ and by hypothesis, *N* is a τ -essential submodule of *M*. We see that $f^n(N) \subseteq N$ for all $n \ge 1$, hence by τ -skew injectivity of *M*, there exist endomorphisms $g_1, g_2, ...$ of *M* such that $(f^n - g_n)(N) = 0$ for all $n \ge 1$. So we have well-defined homomorphisms h_n from *M*/*N* into $E:h_n(m+N) = (f^n - g_n)(m)$ for all $m \in M$, $n \ge 1$. Let $\bar{A}_n = h_n^{-1}(N \cap \operatorname{Im} h_n)$ for all *n*. Hence \bar{A}_n are τ -essential submodules of $\bar{M} = M/N$, for \bar{A}_n is the inverse image under the homomorphism h_n of the essential submodule $N \cap \operatorname{Im} h_n$ of

ISSN 2347-1921

Im h_n , this gives essentiality of \bar{A}_n in \bar{M} . Moreover, $\bar{M} = M/N$ is a τ -torsion module. This means that \bar{A}_n is τ -dense in \bar{M} for all n. If $\bar{M} = \bar{0}$, then $f(M) \subseteq M$ and everything is proved. Assume $b \in M \setminus N$ so that $\overline{N + bR}$ is a non-zero submodule of \bar{M} and choose a natural number n such that $f^{n+1}(b) = f^n(b)$. Put $\bar{A} = \bar{A}_1 \cap \cdots \cap \bar{A}_n$, hence \bar{A} is a τ -essential submodule of M since \bar{A} is the intersection of a finite number of τ -essential submodules of \bar{M} . Now $\bar{A} \cap \overline{N + bR} \neq 0$. Therefore, there exists an element $r \in R$ such that $br \in (N + bR) \setminus N$ and $br + N \in \bar{A}_1 \cap \cdots \cap \bar{A}_n$. It follows from the definition of the modules \bar{A}_i that $h_i(br) \in M$ for $i = 1, \cdots, n$. If $b_1 = br$, then $g_m(b_1) \in M$ for all m. From the definition of the homomorphisms h_i we see that $f^i(b_1) \in M$ for $i = 1, \cdots, n$. But then $f^m(b_1) \in M$ for all m, since $f^{m+1}(b_1) = (f^{m+1}(b))r = f^m(b_1)$. Now put $N_1 = N + \sum_{i=0}^{\infty} f^i(b_1R)$. Hence N_1 is a τ -dense submodule of M with $f(N_1) \subseteq N_1$ and $N_1 \notin N$, in contradiction with the choice of the module N. \Box

Charalambides [3] defines a module *M* to be τ -quasi continuous if it is invariant under idempotents of $\text{End}(E_{\tau}(M))$. From the above Theorem, we see that if *f* is an idempotent in $\text{End}(E_{\tau}(M))$ and *M* is τ -skew injective, then $f^2(x) = f(x)$ for all $x \in M$, hence $f(M) \subseteq M$. So we have the following corollary.

Corollary 1: Every τ -skew injective module is τ -quasi continuous.

In [3], a module *M* is defined to be τ -CS if every (τ -essentially) closed τ -dense submodule of *M* is a direct summand. There, it is proved that τ -quasi continuous modules are τ -CS. Hence we have:

Corollary 2: Any τ -skew injective module is τ -CS.

 τ -skew injectivity is preserved by taking direct summands:

Proposition 4: A direct summand of a τ -skew injective module is τ -skew injective.

Proof. Let *M* be τ -skew injective such that $M = N \oplus N'$. Let *K* be a τ -dense submodule of *N*. Then $N/K \cong (N \oplus N')/(K \oplus N')$ is τ -torsion, which means that $K \oplus N'$ is τ -dense in *M*. Any homomorphism $f: K \to K$ can be extended to a homomorphism $f': K \oplus N' \to K \oplus N'$ by putting f'(k + n') = f(k) for all $k + n' \in K \oplus N'$. Now τ -skew injectivity of *M* gives a homomorphism $g \in \operatorname{End}(M)$ that extends f'. Hence $h = pgi_N$ extends f, where p is the projection map of *M* onto *N*. \Box

We end this section with a characterization of τ -skew injective modules using split short exact sequences:

Theorem 5: For a module *A*, the following statements are equivalent:

- (1) Ais τ -skew injective.
- (2) Any short exact sequence $0 \to A \xrightarrow{a} B$ splits whenever there exists $\beta \in \text{Hom}(A, B)$ such that:
 - (a) $\alpha(A) + \beta(A) = B$,
 - (b) $\alpha(A) \cap \beta(A) \subseteq \alpha(\beta^{-1}(\alpha(A)))$ and
 - (c) $\beta^{-1}(\alpha(A)) \leq^{\tau-d} A$.

Proof. (1) \Rightarrow (2) Let $N = \beta^{-1}(\alpha(A))$. By hypothesis, $\alpha(A) \cap \beta(A) = \beta(\beta^{-1}(\alpha(A))) = \beta(N) \subseteq N$. Hence by τ -skew injectivity A, the homomorphism $\beta: N \to A$ extends to a homomorphism $\gamma: A \to A$. By assumption, $B = \alpha(A) + \beta(A)$, i.e. for each $b \in B$ there exist a, a' in A such that $b = \alpha(a) + \beta(a')$. Define $\delta: B \to A$ by $\delta(b) = \alpha(a) + \gamma(a')$. It is an easy matter to verify that δ is an R-homomorphism. Moreover, for $a \in A$, $\delta(\alpha(a)) = \delta(\alpha(a) + \beta(0)) = \alpha(a) + \gamma(0) = \alpha(a)$ so that $\alpha(A)$ is a direct summand of B.

(2) \Rightarrow (1) Let *N* be a τ -dense submodule of *A* and $g \in End(N)$. Form the pushout diagram:

N	\xrightarrow{i}	Α
$g\downarrow$		↓β
$0 \rightarrow A$	$\xrightarrow{\alpha}$	В

where $B = (A \oplus A)/W$, with $W = \{(n, -g(n)), n \in N\}$. If the second row splits then we get a homomorphism $\alpha': B \to A$ such that $\alpha' \alpha = 1_A$. Hence $\alpha' \beta i$ is an extension of g. So we need to show that conditions in (2) hold. But it is easy to see that conditions (a) and (b) hold. Moreover, $\beta^{-1}(\alpha(A)) = N$ which is τ -dense in A. Hence the lower sequence splits by (2). \Box

3 Direct sum of τ -skew injective modules

In Theorem 2 of the last section, we proved that a module *M* is (a) τ -skew injective and (b) $f(M) \subseteq M$ for any $f \in End(E_{\tau}(M))$ having a τ -essential kernel if and only if $g(M) \subseteq M$ for any M- τ -essential endomorphism *g* of *E*. In this section, we seek conditions on the module *M* and/or the ring *R* so that condition (b) above is already satisfied.

Let us see first what happens if we take direct sum or summands of modules satisfying condition (b):

Proposition 6. A module *M* satisfies condition (b) if and only if any direct summand of *M* satisfies condition (b).

Proof. Let $M = M_1 \oplus M_2$ so that $E_{\tau}(M) = E_{\tau}(M_1) \oplus E_{\tau}(M_2)$. Let *f* be an endomorphism of $E_{\tau}(M_1)$ having a τ -essential kernel. Now *f* can be easily extended to an endomorphism of $E_{\tau}(M_1) \oplus E_{\tau}(M_2)$ by $(x, y) \mapsto (f(x), 0)$ whose kernel is now equal to ker $f \oplus E_{\tau}(M_2)$ which is clearly a τ -essential submodule of $E_{\tau}(M_1) \oplus E_{\tau}(M_2)$. By assumption, the image of *M* under this map is contained in *M*. So $f(M_1) \subseteq M_1$. Conversely, Let *f* be an endomorphism of $E_{\tau}(M)$ having a τ -essential kernel.

Now for all i, $M_i \cap \ker f$ is τ -essential in M_i . But $M_i \cap \ker f$ is the kernel of $p_i \circ (f|M_i)$, where p_i is the projection map of M onto M_i . Hence $p_i \circ (f|_{M_i})(M_i) \subseteq M_i$ for all i. So $f(M) \subseteq M$. \Box

Recall that a module *M* is called τ -nonsingular [1] if $Z_{\tau}(M) = 0$ where $Z_{\tau}(M) = \{m \in M \mid \operatorname{ann}_{R}(m) \leq^{\tau e} R\}$. The following proposition shows that if we assume τ -nonsingularity of the module *M*, then we can remove condition (b) above from Theorem 2:

Proposition 7. Let *M* be a τ -nonsingular module. Then *M* is τ -skew injective if and only if *M* is invariant over endomorphisms $g \in \text{End}(\mathbb{E}_{\tau}(M))$ having M- τ -essential kernels.

Proof. We will show that the only endomorphism of *M* that has a τ -essential kernel is the zero homomorphism. But this implies that *M* is invariant under such homomorphisms and hence by Theorem 2, the result follows. To this end, let $f \in \text{End}(M)$ with ker $f \leq \tau^{-e} M$, and let $g = 1_M - f \in \text{End}(M)$. We will show that $g = 1_M$ and hence f = 0. For each $x \in M$, there exists a non-zero element $r \in R$ such that $0 \neq xr \in \text{ker } f$, so f(xr) = 0 hence g(x)r = g(xr) = xr - f(xr) = xr, then (g(x) - x)r = 0 and $\operatorname{ann}_R(g(x) - x)$ is a non-zero ideal of *R*. But $(\ker f : x) \leq \tau^e R$ and hence $\operatorname{ann}_R(g(x) - x) \leq \tau^e R$, i.e. $g(x) - x \in Z_\tau(M) = 0$ and therefore f(x) = 0.

In the next result, if the τ -injective envelope of *M* satisfies some ascending chain condition, then we can get rid of condition (b).

Proposition 8. Let *M* be a τ -skew injective module. If $E = E_{\tau}(M)$ satisfies the ascending chain condition on τ -essential submodules, then $f(M) \subseteq M$ for every M- τ -essential $f \in End(E)$.

Proof. Consider the ascending chain $M \cap \ker f \subseteq M \cap \ker f^2 \subseteq \dots \subseteq M$. It is clear that $M \cap \ker f^k \leq^{re} M$ for each $k \ge 1$, so by assumption there is a positive integer n_\circ such that $M \cap \ker f^n = M \cap \ker f^{n+1}$ for all $n \ge n_\circ$. We claim that $\operatorname{Im}(f^n) \cap \ker f^{n} \cap M = 0$. To see this, let $x \in \operatorname{Im} fn \cap \operatorname{Ker} fn \cap M$. So there is $y \in E$ such that x = fny and $\theta = fnx = fnfny = f2ny$. Hence $y \in \ker f^{2n} = \ker f^n$. So $x = f^n(y) = 0$. But $\ker f^n \le^{r-e} E$ implies that $\operatorname{Im} f^n = 0$. Now for $x \in M$, $x - f(x) \in E$ and $\theta = f^n(x - f(x)) = f^n(x) - f^{n+1}(x)$ or $f^n(x) = f^{n+1}(x)$ for $n \ge n_\circ$. So by Theorem 3, we have $f(M) \subseteq M$.

Now, combining the above propositions with Theorem 2, we get:

Corollary. If *M* is a τ -nonsingular module or $E_{\tau}(M)$ satisfies the ascending chain condition on τ -essential submodules, then *M* is τ -skew injective f and only if it is invariant under all *M*- τ -essential endomorphisms of $E_{\tau}(M)$.

Now, we put conditions on the ring R to help us remove condition (b). For this we give a concept that generalizes both noetherian and weakly noetherian modules in [5].

Definition. A module *M* is said to be τ -weakly noetherian if for every ascending chain $L_1 \subseteq L_2 \subseteq \cdots$ of submodules of *M* with $L_{i+1}/L_i \leq^{\tau e} M/L_i$ for all *i*, there is a positive integer *k* such that $L_{n+1} = L_n$ for all $n \geq k$. A ring *R* is called τ -weakly noetherian if it is τ -weakly noetherian as an *R*-module.

Remarks.

- (1) Every module with ascending chain condition on τ -essential submodules is τ -weakly noetherian.
- (2) If M is τ -weakly noetherian then so is any homomorphic image of M.
- (3) Every cyclic module over a τ -weakly noetherian ring is τ -weakly noetherian.

Proof.(1) Let $L_1 \subseteq L_2 \subseteq \cdots$ be an ascending chain of submodules of a τ -weakly noetherian module M with $L_{i+1}/L_i \leq^{\text{re}} M/L_i$ for all i. For each i, under the natural map $M \to M/L_i$, we have L_{i+1} is the preimage of L_{i+1}/L_i . So it must be essential in in M. Moreover, $M/L_{i+1} \cong (M/L_i)/(L_{i+1}/L_i)$ is τ -torsion, hence $L_{i+1} \leq^{\text{re}} M$. Thus the ascending chain $L_2 \subseteq L_3 \subseteq \cdots$ (and hence the ascending chain $L_1 \subseteq L_2 \subseteq \cdots$) terminates.

(2) Let *N* be a submodule of *M*. We want to show that M/N is τ -weakly noetherian. Let $L_1/N \subseteq L_2/N \subseteq \cdots$ be an ascending chain of submodules of M/N such that $(L_{i+1}/N)/(L_i/N) \leq^{\text{re}} (M/N)/(L_i/N)$ for each *i*. Hence $L_{i+1}/L_i \leq^{\text{re}} M/L_i$ for each *i*. Now for every *i*, $(M/L_i)/(L_{i+1}/L_i) \cong \frac{(M/N)/(L_i/N)}{(L_{i+1}/N)/(L_i/N)}$, so that $L_{i+1}/L_i \leq^{\text{re}} M/L_i$. So by assumption there is a positive integer *k* such that $L_{n+1} = L_n$ for all $n \ge k$ or $L_{n+1}/N = L_n/N$.

(3) Let *M* be a cyclic module over a τ -weakly noetherian ring *R*. This means that $M \cong R/\operatorname{ann}_R(m)$ for some $m \in M$. By (2) it follows that *M* is τ -weakly noetherian. \Box

Theorem 9. Let *M* be a module over a τ -weakly noetherian ring, then for each endomorphism *f* of $\text{End}(\text{E}_{\tau}(M))$ that has a τ -essential kernel, there is a positive integer *n* such that $f^n(x) = 0$ for every $x \in \text{E}_{\tau}(M)$.

Proof. Put $E = E_{\tau}(M)$ and let $K_0 = 0$, $K_1 = \ker f$, ..., $K_{n+1} = f^{-1}(K_n \cap f(E))$. Hence $K_1 \subseteq K_2 \subseteq \cdots$ is an ascending chain of submodules of *E*. Now ker $f = K_1 \leq^{\tau d} E$. This implies that $K_n \leq^{\tau d} E$ for each *n* and hence $E/K_{n+1} \cong (E/K_n)/(K_{n+1}/K_n)$ which is τ -torsion, gives that $K_{n+1}/K_n \leq^{\tau d} E/K_n$. So $K_{n+1}/K_n \leq^{\tau e} E/K_n$ for each *n* since $K_{n+1}/K_n \leq^{e} E/K_n$ for each *n*. For each $x \in E$, let A = xR which by remark (3) is τ -weakly noetherian. Put $A_0 = 0$, $A_1 = A \cap \ker f$, ..., $A_n = A \cap K_n$, ... which gives an ascending chain $A_0 \subseteq A_1 \subseteq \cdots$ of submodules of *A*. Since each K_n is τ -essential *E*, $A_n = A \cap K_n$ is τ -essential in *A* [3], and hence $A_{n+1}/A_n \leq^{\tau d} A/A_n$ for all *n*. But *A* is τ -weakly noetherian. So there is a positive integer *k* such that $A_{n+1} = A_n$ for $n \ge k$. But A_{n+1}/A_n is an essential submodule of E/A_n for all $n \ge k$. This is equivalent to saying that $A_n = A$

ISSN 2347-1921

for all $n \ge k$. Hence $A = A_n = A \cap K_n$. So $A \subseteq K_n$, but $x \in A$ which implies that $f(x) \in K_{n-1} = f^{-1}(K_{n-2} \cap f(E))$. Thus $f^2(x) \in K_{n-2}$ and so on, we have $f^n(x) = 0$. \Box

Now we can remove condition (b) provided *R* is τ -weakly noetherian:

Theorem 10. Let *M* be a module over a τ -weakly noetherian ring. Then *M* is τ -skew injective if and only if it is invariant under *M*- τ -essential endomorphisms of $E_{\tau}(M)$.

Proof. By Theorem 2 it is enough to show that *M* is invariant under all endomorphisms of $E = E_{\tau}(M)$ that have τ -essential kernels. Let *f* be such an endomorphism, thus by Theorem 9, there is a positive integer *n* such that $f^n(x) = 0$ for all $x \in E$. In particular, for every $m \in M$ we have $f^n(m - f(m)) = 0$. Thus $f^{n+1}(m) = f^n(m)$. Using Theorem 3, we have $f(M) \subseteq M$. \Box

So far, examples of modules satisfying condition (b) are:

- 1. τ -nonsingular modules,
- 2. Modules whose τ -injective envelopes satisfy the ascending chain condition on τ -essential submodules, and
- 3. Modules over τ -weakly noetherian rings.

Now we are ready to study direct sums of τ -skew injective modules. Here we give necessary and sufficient conditions for a direct sum of τ -skew injective modules to be τ -skew injective.

Theorem 11. Let $M = M_1 \oplus \cdots \oplus M_n$ be an *R*-module satisfying condition (b). Then *M* is τ -skew injective *i* and only if $K_{ij}M_i \subseteq M_j$ for each i, j = 1, 2, ..., n,

where $K_{ij} = \{f \in \operatorname{Hom}_R(\operatorname{E}_{\tau}(M_i), \operatorname{E}_{\tau}(M_j)) \mid f(N_i) \subseteq N_j \text{ for some } \tau \text{-essential submodules } N_i \text{ of } M_i \text{ and } N_j \text{ of } M_i \}$.

Proof. Put $E = E_{\tau}(M)$ and $E_i = E_{\tau}(M_i)$, i = 1, 2, ..., n. Then $E = E_1 \oplus \cdots \oplus E_n$. Suppose that M is τ -skew injective and let $f_{ij} \in K_{ij}$, i.e. $f_{ij}: E_i \to E_j$ is a map with $f_{ij}(N_i) \subseteq N_j$ for some τ -essential submodules N_i of M_i and N_j of M_j . Consider the direct sum $N = \bigoplus N'_k$, where $N'_k = N_k$ if k = i or k = j and otherwise $N'_k = E_k$. Now N is clearly τ -essential in E and hence $N \cap M$ is τ -essential in M. But f_{ij} can easily be extended to a map $f: E \to E_j$, $(x_1, ..., x_n) \mapsto f_{ij}(x_i)$. So that $f(N) \subseteq N_j$. Hence $f(N \cap M) \subseteq N_j = N_j \cap M \subseteq N \cap M$. This means that f is an M- τ -essential endomorphism of E. Hence $f(M) \subseteq M$ since M is τ -skew injective satisfying condition (b). So $f_{ij}(M_i) \subseteq M_j$. Conversely, let f be an M- τ -essential endomorphism of E, so that $f(N) \subseteq N$ for some τ -essential submodule N of M. Now for each *i* and j, we have $N \cap M_i \leq^{\tau-e} M_i$ and $p_j(N \cap M_i) \subseteq N \cap M_j$, where p_j is the projection of M onto M_j . So if we compose p_j with the restriction of f on M_i we get a map $f_{ij} \in K_{ij}$, i.e. $f_{ij}(M_i) \subseteq M_j$ for all i and j. Now it easy to see that $f(M) \subseteq M$.

Corollary. If *M* is a τ -skew injective*R*-module satisfying condition (b) then M^n is also τ -skew injective. \Box

Proposition 12. Let $M = M_1 \bigoplus M_2$ be a τ -skew injective *R*-module satisfying condition (b). Then $E_{\tau}(M_1) \cong E_{\tau}(M_2)$ if and only if $M_1 \cong M_2$.

Proof. Let $f: E_{\tau}(M_1) \to E_{\tau}(M_2)$ be an isomorphism. Then f extends to an endomorphism F of $E_{\tau}(M_1) \oplus E_{\tau}(M_2)$ by $(x, y) \mapsto (0, f(x))$. If we prove that F is M- τ -essential then, by Theorem 11 we must have $F(M_1) \subseteq M_2$. Now since M_2 is essential in $E_{\tau}(M_2)$ we have $f^{-1}(M_2)$ is essential in $E_{\tau}(M_1)$, and since M_1 is τ -essential in $E_{\tau}(M_1)$ we must have $M_1 \cap f^{-1}(M_2)$ is τ -essential in M_1 and hence $(M_1 \cap f^{-1}(M_2)) \oplus M_2$ is τ -essential in $E_{\tau}(M_1) \oplus E_{\tau}(M_2)$. Now $F((M_1 \cap f^{-1}(M_2)) \oplus M_2) = f(M_1 \cap f^{-1}(M_2)) \subseteq f(M_1) \cap M_2 \subseteq M_2 \subseteq (M_1 \cap f^{-1}(M_2)) \oplus M_2$. So F is M- τ -essential and $F(M_1) \subseteq M_2$. Similarly we get an M- τ -essential endomorphism G of $E_{\tau}(M_1) \oplus E_{\tau}(M_2)$ so that $G(M_2) \subseteq M_1$. Now for every $m_1 \in M_1$ we have $G \circ F(m_1) = G(F(m_1)) = M_1$. So $G \circ F = 1_{M_1}$. And similarly we have $F \circ G = 1_{M_2}$. The other direction is obvious. \square

Corollary. Let *M* be a τ -skew injective module satisfying condition (b) and $E = E_{\tau}(M)$. Then $M \oplus E$ is τ -skew injective if and only if M = E.

*Proof.*It is obvious that *E* satisfies condition (b), and by Proposition 6 so does $M \oplus E$. So we can apply Theorem 11 on $M \oplus E$. Clearly $1_{E \oplus E}$ is an $M \oplus M$ - τ -essential endomorphism of $E \oplus E$. So if $M \oplus E$ is τ -skew injective then $1_E(E) \subseteq M$ by Theorem 11. But this means that M = E. The other direction is trivial. \Box

Proposition 13. The following statements are equivalent for any ring *R*:

- (1) The direct sum of any two τ -skew injective *R*-modules satisfying condition (b) is τ -skew injective.
- (2) Every τ -skew injective*R*-module satisfying condition (b) is τ -injective.

Proof.(1) \Rightarrow (2) Let *M* be τ -skew injective satisfying condition (b). Then $M \oplus E$ is τ -skew injective by 1. So by the above corollary, M = E. (2) \Rightarrow (1) is trivial. \Box

Corollary. The following statements are equivalent for a τ -weakly noetherian ring:

- (1) The direct sum of any two τ -skew injective *R*-modules is τ -skew injective.
- (2) Every τ -skew injective *R*-module is τ -injective. \Box

ISSN 2347-1921

ACKNOWLEDGMENTS

The authors would like to express their gratitude to Professor Edgar Enochs who has read the manuscript and provided them with his valuable remarks.

REFERENCES

- [1] Abbas, M. S. and Hamid, M. F. 2013. A note on singular and nonsingular modules relative to torsion theories. Mathematical Theory and Modeling, Vol.3, No.14, pp. 11-15.
- [2] Bland, P. E.1998. Topics in Torsion Theory, Wiley-VCH, Berlin.
- [3] Charalambides, S. 2006. Topics in Torsion Theory, Ph.D. Thesis, University of Otago, Dunedin, New Zealand.
- [4] Govorov, V. E. 1963. Skew injective modules, Algebra Logika, 2, No. 6, 21-49.
- [5] Tuganbaev, A. A. 1982. Semiinjective modules, Mat. Zametski, Vol 31, No. 3, pp. 447-456.

