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ABSTRACT

The purpose of this paper is to extend results about skew injective modules to a torsion theoretic setting. Given a
hereditary torsion theory 7, a module M is called t-skew injective if all endomorphisms of 7-dense submodules of M can be
extended to endomorphismsof M. A characterization of t-skew injectivity using split short exact sequences is given.
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1 Preliminaries

All modules considered will be right unitalR-modules, where Ris some associative ring with a nonzero identity.By 7 =
(7, F)we denote a hereditary torsion theory on the category mod-R of R-modules, where T (resp. F) denotes the class of
all t-torsion (resp. 7-torsion free) R-modules.

A submoduleN of a module M is said to be t-dense in M (denoted N <™ M) if M/N is t-torsion, and M is t-torsion if and
only if all its elements are annihilated by t-dense right ideals of R. A submodule N of M is called t-essential in M (denoted
N <™ M) if N is both t-dense and essential in M. In this case, M is called a t-essential extensionof N. The intersection of
any finite number of t-dense (resp. t-essential) submodules is again t-dense (resp. t-essential). If N and K are
submodules of a module M such that N < M then N NnK < K. Any submodule that contains a z-dense (resp. -
essential) submodule is itself T-dense (resp. T-essential). An R-module is called z-injective if it is injective with respect to
every short exact sequence having a z-torsion cokernel. Every R-module M admits a t-injective envelopeE = E;(M), i.e. a
T-injective R-module E containing M as a t-essential submodule. A module M is called 7-quasi injectiveif homomorphisms
from t-dense submodules of M into M are extendable to endomorphisms of M. For preliminaries about torsion theories,
we refer to [2].

Charalambides [3] introduced the concept of r-essentially closedsubmodules. A submoduleN of a module M is called z-
essentially closed in M (denoted N <™ M) if N has no proper t-essential extensions in M.

A module M is called skew injective [4] if whenever N is a submodule of M, any f in End(N) can be extended to g €
End(M). Note that in [5] skew injective modules are called semiinjective. In this paper, we generalize this concept to
torsion theoretic setting.

2 T-Skew Injective Modules

Definition. A module M is called 7-skew injective if whenever N is a t-dense submodule of M, any f in End(N) can be
extended to g € End(M).

Remarks.

a) Every skew injective module is 7-skew injective.

b) Every t-quasi injective module (and hence every 7-injective) module is t-skew injective.

c) If M is a t-torsion t-skew injective module, then it is skew injective.

d) If zis the torsion theory in which every R-module is t-torsion, then a module is t-skew injective if and only if it is
skew injective.

Proposition 1: A module M is t-skew injective if and only if for every t-essential submodule Nof M, any endomorphism of
N can be extended to an endomorphism of M.

Proof. Let N be a t-dense submodule of Mand f € End(N). Let N’ be a relative complement of Nin M. Then N®N' is a t-
essential submodule of M. Moreover, f can be extended to an R-endomorphism g of N®N' by putting g(N ) = 0. By the
given condition, there is an R-homomorphism h of M which extends ghence f. The other direction is trivial. o

Given a submoduleM ofa module E and an endomorphism fof E,we call fan M-z-essential endomorphism if f(N) € N for
some t-essential submodule N of M.

Theorem 2: If E is the 7-injective envelope of a module M, then the following statements are equivalent:

(@) Misz-skew injective and f(M) < M for any endomorphism f of E having a z-essential kernel.
(b) g(M) c Mfor any M-t-essential endomorphism g of E.

Proof. (a) = (b) Let g be an M-t-essential endomorphism of E. Then there is a r-essential submodule N of M such that
g(N) € N. By t-skew injectivityof M, there exists h € End(M) that extends g. Again t-injectivity of E gives existence of a k
in End(E) such that k|y =h. So (g —k)(N) =0. Hence N < ker(g — k). So ker(g — k) <™ E. Then by hypothesis
(g — k)(M) < M. Therefore, for any x in M we have (g — k)(x) = m € M, hence g(x) =m+ k(x) € M, i.e. g(M) € M.

(b) = (a) Since any endomorphism of E having a t-essential kernel is necessarily an M-t-essential homomorphism, we
need only prove that M is t-skew injective. By Proposition 1, let N be a t-essential submodule of Mand f € End(N). By t-
injectivity of E we have a g € End(E) such that g(N) = f(N) € N. Hence, g is an M- t-essential homomorphism, so
g(M) € M. Then, gly € End(M) is an extension of f. o

The following Theorem generalizes Lemma 6 of [5].

Theorem 3: Let M be a t-skew injective module, E a t-essential extension of M and f an M- t-essential endomorphism of
E. If for each x € M there exists a positive integer n such that f**1(x) = f*(x), then f(M) € M.

Proof. Let N be the sum of all T-dense submodules N’ of M such that f(N') € N'. Thereforef(N) € N andby hypothesis, N
is a 7-essential submodule of M. We see thatf"(N) € N for all n > 1, hencebyr-skew injectivity of M, there exist
endomorphismsgy, g,, ... of M such that (f* — g,,)(N) = 0 for all n = 1. So we have well-defined homomorphisms h,, from
M/Ninto E:h,(m + N) = (f* — g,)(m) for all me M, n > 1. Let A, = h;'(N nImh,) for all n. Hence 4, are t-essential
submodulesof M = M/N, for 4, is the inverse image under the homomorphism h,, of the essential submodule N N Im h,, of
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Im h,,, this gives essentiality of 4,, in M. Moreover,M = M/N is a t-torsion module. This means that 4,, is t-dense inM for
alln. If M =0, then f(M) S M and everything is proved. Assume b € M \ N so that N + bR is a non-zero submodule of 1
and choose a natural number n such that f**1(b) = f*(b). Put A = 4; n--n 4, hence A is a t-essential submodule of M
since 4 is the intersection of a finite number of t-essential submodules of M. Now A N N + bR # 0. Therefore, there exists
an element r € R such that br € (N + bR) \ Nand br + N € 4; n---n A,. It follows from the definition of the modules 4; that
h;(br) € Mfor i = 1,--,n. If by = br, then g,,(b;) € M for all m. From the definition of the homomorphismsh;we see that
fi(by) € Mfor i =1,,n. But then f™(b;) € M for all m, since fm*i(by) = (f™*(b))r = f™(b;). Now put N; = N +
Yo fi(bR). Hence N; is a t-densesubmodule of M withf(N;) € N;andN; & N, in contradiction with the choice of the
module N. o

Charalambides [3] defines a module M to be t-quasi continuous if it is invariant under idempotentsof End(E,(M)). From
the above Theorem,we see that if f is an idempotent in End(E,;(M)) and M is 7-skew injective, then f2(x) = f(x) for all
x € M, hence f(M) € M. So we have the following corollary.

Corollary 1: Every 7-skew injective module is t-quasi continuous. o

In [3], @ module M is defined to be 7-CS if every (r-essentially) closed 7-dense submodule of M is a direct summand.
There, it is proved that t-quasi continuous modules are 7-CS. Hence we have:

Corollary 2: Any 7-skew injective module is 7-CS. o
t-skew injectivity is preserved by taking direct summands:
Proposition 4: A direct summand of a t-skew injective module is t-skew injective.

Proof. Let M be t-skew injective such that M = N@N'. Let K be a 7-dense submodule of N. Then N/K = (N®N')/(K®N")
is T-torsion, which means that K®N" is t-dense in M. Any homomorphism f:K — K can be extended to a homomorphism
f:K®N — K®N by putng f (k+n)=f(k) for all k+n € KON. Now t-skew injectivity of M gives a
homomorphismg € End(M) that extends f'. Hence h = pgiyextends f, where p is the projection map of M onto N. o

We end this section with a characterization of z-skew injective modules using split short exact sequences:
Theorem 5: For a module 4, the following statements are equivalent:

(1) Aist-skew injective.

(2) Any short exact sequence 0 — A L splits whenever there exists § € Hom (4, B) such that:
(@) a(4)+p(4) =B,

(b) a(4)np) < a(p(a(4))) and

(© p(a(@) <4 A
Proof. (1)=(2) Let N =p"!(a(4)). By hypothesis, a(4)np(4)=p (ﬁ‘l(a(A))) =B(N) S N. Hence by t-skew
injectivityof 4, the homomorphism g: N — A extends to a homomorphism y:A — A. By assumption, B = a(A) + B(4), ie.
for each b € B there exist a, a in A such that b = a(a) + B(a ). Define §: B —» Aby 6(b) = a(a) + y(a ). It is an easy matter
to verify that & is an R-homomorphism. Moreover, for a € 4, §(a(a)) = §(a(a) + B(0)) = a(a) + y(0) = a(a) so that a(4)
is a direct summand of B.

(2) = (1) Let N be a t-dense submodule of A and g € End(N). Form the pushout diagram:

N — 4

gl LB
054 — B

where B = (A®A)/W, with W = {(n, —g(n)),n € N}. If the second row splits then we get a homomorphism «': B - A such
that @'a = 1,. Hence « Bi is an extension of g. So we need to show that conditions in (2) hold. But it is easy to see that
conditions (a) and (b) hold. Moreover, p"l(a(A)) = N which is T-dense in A. Hence the lower sequence splits by (2). o

3 Direct sum of r-skew injective modules

In Theorem 2 of the last section, we proved that a module M is (a) t-skew injective and (b) f(M) € M for any f €
End(E,(M)) having a t-essential kernel if and only if g(M) € M for any M-t-essential endomorphism gof E. In this section,
we seek conditions on the module M and/or the ring R so that condition (b) above is already satisfied.

Let us see first what happens if we take direct sum or summands of modules satisfying condition (b):
Proposition 6.A module M satisfies condition (b) if and only if any direct summand of M satisfies condition (b).

Proof. Let M = M;@® M, so that E,(M) = E,(M;) ®E,(M,). Let f be an endomorphism of E,(M;) having a t-essential
kernel. Now f can be easily extended to an endomorphism of E,(M;) @ E.(M,) by (x,y) - (f(x),0) whose kernel is now
equal to ker f @ E,(M,) which is clearly a t-essential submodule of E,(M;) @ E,(M,). By assumption, the image of Munder
this map is contained in M. So f(M;) € M;. Conversely, Let f be an endomorphism of E,(M) having a t-essential kernel.
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Now for all i, M; nker f is T-essential in M;. But M; nker f is the kernel of p; o (f|M;), where p; is the projection map of M
onto M;. Hence p; o (f|u,)(M;) € M; for all i. So f(M) € M. o

Recall that a module M is called z-nonsingular [1] if Z,(M) = Owhere Z,(M) = {m € M|annz(m) <™ R}. The following
proposition shows that if we assume t-nonsingularity of the module M, then we can remove condition (b) above from
Theorem 2:

Proposition 7. Let M be a t-nonsingular module. Then M is z-skew injective if and only if M is invariant over
endomorphisms g € End(E,(M)) having M-t-essential kernels.

Proof. We will show that the only endomorphism of M that has a 7-essential kernel is the zero homomorphism. But this
implies that M is invariant under such homomorphisms and hence by Theorem 2, the result follows. To this end, let
f € End(M)with ker f <™=¢ M, and let g = 1)y — f € End(M). We will show that g = 1), and hence f = 0. For each x € M,
there exists a non-zero element r € R such that 0 # xr € ker f, so f(xr) = 0 hence g(x)r = g(xr) = xr — f(xr) = xr, then
(g(x) —x)r =0 and anng(g(x) — x) is a non-zero ideal of R. But (ker f:x) <™ R and hence anng(g(x) —x) <™ R, i.e.
g(x) —x € Z,(M) = 0 and thereforef(x) = 0.0

In the next result, if the z-injective envelope of M satisfies some ascending chain condition, then we can get rid of
condition (b).

Proposition 8. Let M be a 7-skew injective module. If E = E,(M) satisfies the ascending chain condition on z-essential
submodules, then f(M) < M for every M-t-essential f € End(E).

Proof. Consider the ascending chain M nker f € M nker f2 c---€ M. It is clear that M nker f* <™ M for each k > 1, so
by assumption there is a positive integer n, such that M nker f* = M nker f**! for all n > n,. We claim that Im(f*) n
ker/znM=0. To see this, let x€lm/nker/nNM. So there is y€£ such that x=/nyand O0=/nv=/n/ny=/2ny. Hence
y € ker f2" = kerf*. So x = f"(y) = 0. But kerf" <*~° E implies that Imf™ =0. Now for x € M, x — f(x) € E and
0=f"(x—f)=f"(x) — fr*(x) or f*(x) = f**1(x) for n > n.. So by Theorem 3, we have f(M) € M. o

Now, combining the above propositions with Theorem 2, we get:

Corollary. If M is a T-nonsingular module or E,(M) satisfies the ascending chain condition on z-essential submodules,
then M is t-skew injectiveif and only if it is invariant under all M-t-essential endomorphisms of E,(M). o

Now, we put conditions on the ring R to help us remove condition (b). For this we give a concept that generalizes both
noetherian and weakly noetherian modules in [5].

Definition. A module M is said to be 7-weakly noetherian if for every ascending chain L; € L, € --- of submodules of M
with L; 4 /L; <™ M/L; for all i, there is a positive integer k such that L, ,; = L, for all n = k. A ring R is called t-weakly
noetherian if it is t-weakly noetherian as an R-module.

Remarks.

(1) Every module with ascending chain condition on t-essential submodules is t-weakly noetherian.
(2) If M is T-weakly noetherian then so is any homomorohic image of M.
(3) Every cyclic module over a -weakly noetherian ring is T-weakly noetherian.

Proof.(1) Let L, € L, < --- be an ascending chain of submodules of a 7-weakly noetherian module M with L;,/L; <*¢ M/L;
for all i. For each i, under the natural map M - M/L;, we have L;,, is the preimage of L;,{/L;. So it must be essential in
in M. Moreover, M/L;,, = (M/L;)/(L;4+1/L;) is t-torsion, hence L;,; <" M. Thus the ascending chain L, € L3 < --- (and
hence the ascending chain L; € L, < ---) terminates.

(2) Let N be a submodule of M. We want to show that M/N is t-weakly noetherian. Let L;/N € L,/N € --- be an

ascending chain of submodules of M/N such that (L;;/N)/(L;/N) < (M/N)/(L;/N) for each i. Hence

Lisi/Li <™ M/L; for each i. Now for every i, (M/Li)/(LHl/Li)E%, so that Li,q/L; <® M/L,. So by
i+1 i

assumption there is a positive integer k such that L,,,; = L, foralln > kor L,.1/N = L,/N.

(3) Let M be a cyclic module over a t-weakly noetherian ring R. This means that M = R/anng(m) for some m € M. By (2)
it follows that M is 7-weakly noetherian. o

Theorem 9. Let M be a module over a 7-weakly noetherian ring, then for each endomorphism f of End(E,(M)) that has a
t-essential kernel, there is a positive integer n such that " (x) = 0 for every x € E,(M).

Proof. Put E = E,(M) and let K, = 0, K; = kerf, ..., K,41 = f"1(K, n f(E)). Hence K; € K, < - is an ascending chain of
submodules of E. Now ker f = K; <™ E. This implies that K, <™ E for each n and hence E/K, .1 = (E/K,)/(Kp1+1/Ky)
which is t-torsion, gives that K,,,; /K, <™ E/K,. So K,.,/K, <* E/K, for each n since K, /K, <° E/K, for each n. For
each x € E, let A = xR which by remark (3) is T-weakly noetherian. Put 4, =0, Ay = Ankerf, ..., A, = ANK,, ... which
gives an ascending chain A, < A; < --- of submodules of A. Since each K, is t-essentialin E, A,, = AN K,, is T-essential in
A [3], and hence 4,.,/4, < A/A, for all n. But A is t-weakly noetherian. So there is a positive integer k such that
A1 = Ayforn > k. But A,41/A4, is an essential submodule of E/A, for all n > k. This is equivalent to saying that 4, = A
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for alln > k. Hence A=A, =ANnK,. So AcK,, but x € A which implies that f(x) € K,_; = f~*(K,_Nf(E)). Thus
f%(x) € K,_, and so on, we have f"(x) = 0. o

Now we can remove condition (b) provided R is t-weakly noetherian:

Theorem 10. Let M be a module over a 7-weakly noetherian ring. Then M is t-skew injective if and only if it is invariant
under M-t-essential endomorophisms of E,(M).

Proof. By Theorem 2 it is enough to show that M is invariant under all endomorphisms of E = E,(M) that have r-essential
kernels. Let f be such an endomorphism, thus by Theorem 9, there is a positive integer n such that f*(x) = 0 for all x €
E. In particular, for every m € M we have f*"(m— f(m))=0. Thus f**'(m) = f*(m). Using Theorem 3, we have
f(M)cM.o

So far, examples of modules satisfying condition (b) are:

1. z-nonsingular modules,
2. Modules whose t-injective envelopes satisfy the ascending chain condition on t-essential submodules, and
3. Modules over t-weakly noetherian rings.

Now we are ready to study direct sums of 7-skew injective modules. Here we give necessary and sufficient conditions for a
direct sum of t-skew injective modules to be 7-skew injective.

Theorem 11. Let M = M; @ - @ M, be an R-module satisfying condition (b). Then M is t-skew injectiveif and only if
K;;M; € Mjforeachi,j = 12,..,n,

where K;; = {f € Homg(E.(M;),E.(M;))| f(N;) € N; for some 7-essential submodules N; of M; and N; of M;}.

Proof. Put E = E,(M)and E; = E,(M;), i =1,2,...,n. Then E = E; @ ---@® E,. Suppose that M is t-skew injective and let
fij €Ky, i.e fij:E; > E; is a map with f; (N;) € N; for some z-essential submodules N; of M; and N; of M;. Consider the
direct sum N = @ N,, where N, = N, if k = i or k = j and otherwise N, = E,. Now N is clearly r-essential in £ and hence
NN M is t-essential in M. But f; can easily be extended to a map f:E - E;, (xq,..,%,) = fi; (x;). So that f(N) € N,.
Hence f(NNM) SN, =N, nM € NnM. This means that f is an M-z-essential endomorphism of E. Hence f(M) & M
since M is t-skew injective satisfying condition (b). So f;; (M;) € M;. Conversely, let f be an M-z-essential endomorphism
of E, so that f(N) & N for some z-essential submodule N of M. Now for each iand j, we have NnM; <*~® M; and
p;(N N M;) € N n M;, where p; is the projection of M onto ;. So if we compose p; with the restriction of f on M; we get a
map f; € Ky, i.e. f;; (M;) € M; for all i and j. Now it easy to see that f(M) € M. o

Corollary.If M is a 7-skew injectiveR-module satisfying condition (b) then M" is also t-skew injective. o
Proposition 12. Let M = M; @ M, be a t-skew injectiveR-module satisfying condition (b). Then E,(M;) = E,(M,) if and
only if My = M,.

Proof. Let f: E,(M;) - E,(M,) be an isomorphism. Then f extends to an endomorphism F of E,(M;) @ E,(My)by (x,y) »
(O,f(x)). If we prove that F is M-t-essential then, by Theorem 11 we must have F(M;) € M,. Now since M, is essential in
E.(M,) we have f~1(M,) is essential in E.(M;), and since M, is t-essential in E,(M;) we must have M; n f=1(M,) is -
essential in M; and hence (M; n f~'(M;)) @ M, is t-essential in E,(M;) @ E,(M,). Now F((M1 nf1(My)) ® Mz) =
f(Mynf=t(My))  fF(M)NM, €M, € (M nf~1(M,)) @ M,. So F is M-t-essential and F(M,;) € M,. Similarly we get an
M-t-essential endomorphism G of E,;(M;) @ E,.(M,) so that G(M,) € M;. Now for every m; € M; we have G o F(m;) =
G(F(my)) = G(f(my)) = my. S0 G o F = 1,,. And similarly we have F G = 1,,. The other direction is obvious. o

Corollary. Let M be a t-skew injective module satisfying condition (b) and E = E,(M). Then M @ E is 7-skew injective if
andonlyif M = E.

Proof.lt is obvious that E satisfies condition (b), and by Proposition 6 so does M @ E. So we can apply Theorem 11 on
M @ E. Clearlylggg is an M @ M-t-essential endomorphism of E @ E. So if M @ E is t-skew injective then 1;(E) € M by
Theorem 11. But this means that M = E. The other direction is trivial. o

Proposition 13. The following statements are equivalent for any ring R:
(1) The direct sum of any two 7-skew injective R-modules satisfying condition (b) is t-skew injective.
(2) Every t-skew injectiveR-module satisfying condition (b) is z-injective.
Proof.(1) = (2) Let M be 7-skew injective satisfying condition (b). Then M @ E is t-skew injective by 1. So by the above
corollary, M = E. (2) = (1) is trivial. o
Corollary.The following statements are equivalent for a t-weakly noetherian ring:

(1) The direct sum of any two 7-skew injective R-modules is t-skew injective.
(2) Every t-skew injective R-module is z-injective. o
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