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Abstract

Lax monoidal powerset-enriched monads yield a monoidal structure on the category of
monoids in the Kleisli category of a monad. Exponentiable objects in this category are iden-
tified as those Kleisli monoids with algebraic structure. This result generalizes the classical
identification of exponentiable topological spaces as those whose lattice of open subsets forms
a continuous lattice.
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1 Introduction

The classical identification of exponentiable topological spaces by Day and Kelly ([9], see [10] or
[14]) can be summarized as follows:

A topological space is exponentiable if and only if its set of open subsets, ordered by
inclusion, forms a continuous lattice.

In [8], Day subsequently showed that continuous lattices were precisely algebras for the filter
monad F = (F, µ, η) on Set. The occurrence of a monad in the cited exponentiability result
seemed anecdotal—until Gähler remarked in [12] that a topological space is exactly a monoid
in the Kleisli category of F (see Section 2.3 for details). By identifying the set of open subsets
of a topological space X with the set [X, 2] of continuous maps into the Sierpinski space 2, and
defining a map conv : F [X, 2] −→ [X, 2] that sends a filter F on the set of open subsets of X to
the set

⋃
A∈F (

⋂
A)◦ (with (−)◦ denoting the interior operation), Day and Kelly’s result can thus

be rephrased as:

An F-monoid X is exponentiable if and only if ([X, 2], conv) is an F-algebra.

The categorical product, that appears in the definition of exponentiability as a functor

X × (−) : Top −→ Top ,
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can itself be related to F, via the monoidal natural transformation κ : F (−)×F (−) −→ F (−×−)
whose components sends a pair of filters to their product. These features point to the ubiquitous
role of the filter monad. In this article, we introduce sufficient conditions for a monad T on Set to
reproduce the behavior of F: such a monad will be called a lax monoidal powerset-enriched monad,
and Day and Kelly’s result becomes our Theorems 3.2.3 and 3.3.7, summarized as follows.

1.1 Theorem. Let T be a lax monoidal powerset-enriched monad, and V a family of T-algebras
that is initially dense in Mon(SetT).

A T-monoid (X,α) is exponentiable if and only if ([X,V ], conv) is a T-algebra for all V ∈ V.

The definition of the category Mon(SetT) of T-monoids is given in 2.3, and that of a lax monoidal
powerset-enriched monad in 2.2 and 2.5. The fact that a T-algebra can be seen as a T-monoid is
recalled in Proposition 2.3.2, and the monoidal structure induced on Mon(SetT) is described in
Section 2.6. The notation [X,V ] designates the set of all T-monoid homomorphisms f : (X,α) −→
(V, q∗), and the map conv : T [X,V ] −→ [X,V ] is defined in 3.3.4.

We illustrate the various notions of Section 2 with the powerset and filter monads, and apply our
main result to them at the end of Section 3. In Section 4, we give further examples.

2 Monads and monoidal structures

Classical references for the categorical concepts that we use here include [1], [2, 3] and [15]. We
also include a number of more specific references in the text.

2.1 Eilenberg-Moore algebras and sup-semilattices. Let us denote by P = (P,
⋃
, {−}) the

powerset monad on Set, and suppose that T is a monad with a monad morphism τ : P −→ T.
Recall (for example from [3, Proposition 4.5.9]) that τ induces a functor Setτ : SetT −→ SetP

between the corresponding Eilenberg-Moore categories: this functor commutes with the forgetful
functors to Set and sends a T-algebra (X, a) to a P-algebra (X, a · τX). As

SetP ∼= Sup

is the category of complete sup-semilattices and sup-preserving maps (see for example [3, Propo-
sition 4.6.5]), any T-algebra (X, a) has an underlying complete sup-semilattice structure a · τX .
It follows that a T-algebra homomorphism f : (X, a) −→ (Y, b) has a right adjoint f∗ : Y −→ X,
so that

1X ≤ f∗ · f and f · f∗ ≤ 1Y ,

whereX and Y are equipped with their induced orders (a·τX)∗ : X −→ PX and (b·τY )∗ : Y −→ PY
respectively, and the hom-sets Set(X,Y ) are ordered pointwise. Note that a T-algebra structure
a : TX −→ X is in particular a split epimorphism in Set, so that one has

1TX ≤ a∗ · a and a · a∗ = 1X .

2



2.1.1 Example. The functor F of the filter monad F = (F, µ, η) associates to a set X the set FX
of filters on X (that is, subsets of PX that are closed under finite intersection and up-closure),
and to a map f : X −→ Y , the map Ff : FX −→ FY defined for all B ⊆ Y and x ∈ FX by

B ∈ Ff(x ) ⇐⇒ f−1(B) ∈ x .

The components of the unit and multiplication can be described for x ∈ X, A ⊆ X, and F ∈ FFX
by

A ∈ ηX(x) ⇐⇒ x ∈ A and A ∈ µX(F ) ⇐⇒ AF ∈ F ,

where AF := {x ∈ FX | A ∈ x }. The Eilenberg-Moore category of F is the category of continuous
lattices with continuous sup-preserving maps [8]:

SetF ∼= Cnt .

There is a monad morphism τ : P −→ F, namely the principal filter monad morphism, that sends
A ∈ PX to its up-closure τX(A) = {B ⊆ X | A ⊆ B} ∈ FX. Via τ , any F-algebra is a complete
sup-semilattice, and any F-algebra homomorphism has a right adjoint. Note that τ equips the
sets FX with the refinement order (µX · τFX)∗ : FX −→ PFX, that is, the reverse inclusion of
filters:

x ≤ y ⇐⇒ x ⊇ y

for all x , y ∈ FX.

2.2 Powerset-enriched monads. A powerset-enriched monad is a pair (T, τ) in which T =
(T, µ, η) is a monad on Set and τ : P −→ T is a monad morphism (from the powerset monad P)
that makes the Kleisli category SetT into an ordered category; since composition in SetT is given
by

g ◦ h = µY · Tg · h

(for h : Z −→ TX and g : X −→ TY ) and the hom-sets Set(X,TY ) are ordered pointwise, the
condition for (T, τ) to be powerset-enriched is simply

f ≤ g =⇒ µY · Tf ≤ µY · Tg (∗)

for all f, g : X −→ TY . A morphism θ : (S, σ) −→ (T, τ) of powerset-enriched monads is a
morphism in the comma-category (P ↓ MndSet) of monads under P; that is, the monad morphism
θ : S −→ T makes the diagram

P
σ

��

τ

��

S θ // T

commute. When working with powerset-enriched monads (T, τ), we will often assume a fixed
choice of τ , and speak of “the powerset-enriched monad T”.

2.2.1 Examples.
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(1) The powerset monad P = (P,
⋃
, {−}) is powerset-enriched via the identity monad morphism

1P : P −→ P. Hence, (P, 1P) is an initial object in the category of powerset-enriched monads
and their morphisms. The order on the sets PX described in 2.1 is simply subset inclusion
suprema are given by arbitrary union.

(2) The filter monad F = (F, µ, η) is powerset-enriched via the principal filter monad morphism
τ : P −→ F of Example 2.1.1.

The next result shows that condition (∗) trickles down to the T-algebra level.

2.2.2 Proposition. Let T be a powerset-enriched monad. For any T-algebra (Y, b), and maps
f, g : X −→ Y , one has

f ≤ g =⇒ b · Tf ≤ b · Tg .

Proof. Observe that

f ≤ g =⇒ µY · T (b∗ · f) ≤ µY · T (b∗ · g) =⇒ b · µY · T (b∗) · Tf ≤ b · µY · T (b∗) · Tg .

The claimed result follows because the last statement is equivalent to b · Tf ≤ b · Tg since
b · µY = b · Tb and b · b∗ = 1Y .

2.3 T-monoids. Let T = (T, η, µ) be a monad powerset-enriched via τ : P −→ T. The category
Mon(SetT) of T-monoids (or Kleisli monoids) has as objects pairs (X,α), with X a set and
α : X −→ TX is a reflexive and transitive map:

ηX ≤ α , α ◦ α ≤ α ;

a homomorphism f : (X,α) −→ (Y, β) is a map f : X −→ Y satisfying

Tf · α ≤ β · f .

In presence of the reflexivity condition, transitivity can be expressed as the equality α ◦ α = α,
since

α = α ◦ ηX ≤ α ◦ α ≤ α .

This idempotency condition makes a T-monoid structure α on X into a homomorphism α :
(X,α) −→ (TX, µ∗X); indeed,

α ◦ α ≤ α ⇐⇒ µX · Tα · α ≤ α ⇐⇒ Tα · α ≤ µ∗X · α .

2.3.1 Examples.

(1) In the case of the powerset monad (together with its identity structure 1P), Mon(SetP) is
the category of preordered sets. Indeed, a map α : X −→ PX is precisely a relation on
X, and the reflexivity and transitivity conditions make this relation into a preorder; αX is
therefore the down-set map ↓X : X −→ PX. A map f : X −→ Y is a morphism of Mon(SetP)
if and only if it preserves the relations, that is, if and only if f is a monotone map. Hence,

Mon(SetP) ∼= PrOrd .

4



(2) When F is equipped with the principal filter monad morphism, Mon(SetF) is the category
of topological spaces and continuous maps [11]:

Mon(SetF) ∼= Top .

Indeed, a Kleisli monoid α : X −→ FX associates to each point x ∈ X a filter α(x) ∈ FX;
the elements of this filter all contain x by reflexivity of α, and transitivity translates as
the axiom required of a family of filters (α(x))x∈X to form the set of neighborhoods of
the topology it determines ([4, Proposition 1.2.2]). A map f : X −→ Y is a morphism of
Mon(SetF) if and only if the image of the neighborhood α(x) of x ∈ X is finer that the
neighborhood β(f(x)) of f(x), that is, if and only if f continuous.

2.3.2 Proposition. Let T be a powerset-enriched monad. The map sending a T-algebra (X, a)
to the pair (X, a∗) defines a functor L : SetT −→ Mon(SetT) that commutes with the underlying-set
functors.

Proof. Since a · ηX ≤ 1X and a · µX ≤ a · Ta, one has

ηX ≤ a∗ and µX · T (a∗) · a∗ ≤ (a∗ · a · Ta) · T (a∗) · a∗ = a∗ .

A similar verification shows that a morphism f : (X, a) −→ (Y, b) of T-algebras yields a homo-
morphism of T-monoids f : (X, a∗) −→ (Y, b∗).

2.3.3 Proposition. For a powerset-enriched monad T, the forgetful functor Mon(SetT) −→ Set
is topological: given a family (Yi, βi) of T-monoids, the initial structure induced on X by a family
of maps (fi : X −→ Yi)i∈I is

α :=
∧
i∈I

(Tfi)
∗ · βi · fi .

Proof. The claim follows from direct verifications (see [17, Remark 3.11]).

2.3.4 Examples.

(1) When T is the powerset monad P, Proposition 2.3.2 simply described the functor

Sup ∼= SetP −→ Mon(SetP) ∼= PrOrd .

that send a complete sup-semilattice to its underlying preordered set. Proposition 2.3.3
recalls that the underlying-set functor PrOrd −→ Set is topological [1].

(2) In the case where T is the filter monad F, the functor

Cnt ∼= SetF −→ Mon(SetF) ∼= Top

of Proposition 2.3.2 sends a continuous lattice to its underlying topological space by equip-
ping it with the Scott topology. In turn, Proposition 2.3.3 yields the well-known fact that
the forgetful functor Top −→ Set is topological.
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2.4 Monoidal functors. Let us denote by

υX,Y,Z : X × (Y × Z) −→ (X × Y )× Z , λX : X −→ X × 1 ρX : X −→ 1×X

the associativity and unitality natural isomorphisms that form the cartesian structure of Set.
Consider a functor T : Set −→ Set, a map η1 : 1 −→ T1 (with 1 = {?} a singleton), and a family
of maps

κ = (κX,Y : TX × TY −→ T (X × Y ))X,Y ∈obSet

natural in X and Y . The functor T is monoidal (with respect to (η1, κ)) if it is compatible with
the cartesian structure of Set as follows:

(M1) one has κX×Y,Z · (κX,Y × 1TZ) · υTX,TY,TZ = TυX,Y,Z · κX,Y×Z · (1TX × κY,Z):

TX × (TY × TZ)

υ

��

1×κ
// TX × T (Y × Z)

κ // T (X × (Y × Z))

Tυ
��

(TX × TY )× TZ κ×1
// T (X × Y )× TZ κ // T ((X × Y )× Z) ;

(M2) one has κX,1 · (1TX × η1) · λTX = TλX and κ1,X · (η1 × 1TX) · ρTX = TρX :

TX

λ

ww

Tλ

''

TX × 1
1×η1

// TX × T1
κ // T (X × 1)

and

TX
ρ

ww

Tρ

''

1× TX η1×1
// T1× TX κ // T (1×X) .

2.4.1 Examples.

(1) There is a natural transformation π = (πX,Y : PX × PY −→ P (X × Y ))X,Y ∈Set associated
to the powerset functor P : Set −→ Set given by

πX,Y (A,B) = A×B

(for all A ∈ PX and B ∈ PY ). The pair (P, {−}1) is a monoidal functor (where {−}1 :
1 −→ P1 is the singleton map).

(2) The product of the filters x ∈ FX and y ∈ FY is defined by

x × y := {C ⊆ X × Y | ∃A ∈ x , B ∈ y (A×B ⊆ C)} ∈ F (X × Y ) .

One obtains the product filter natural transformation κ : F (−) × F (−) −→ F (− × −) by
setting

κX,Y (x , y) = x × y

(for all x ∈ FX and y ∈ FY ). The pair (F, η1) then forms a monoidal functor (where
η1 : 1 −→ F1 is the principal ultrafilter map).
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2.5 Lax monoidal monads. A powerset-enriched monad T with a natural transformation κ :
T (−)× T (−) −→ T (−×−) is lax monoidal if T is monoidal with respect to (η1, κ) and κ is laxly
compatible with the monad structures as follows:

(M3) one has ηX,Y ≤ κX,Y · (ηX × ηY ):

X × Y
η×η

xx

η

&&
≥

TX × TY κ // T (X × Y ) ;

(M4) one has µX×Y · TκX,Y · κTX,TY ≤ κX,Y · (µX × µY ):

TTX × TTY

≥

Tκ·κ //

µ×µ
��

TT (X × Y )

µ

��

TX × TY κ // T (X × Y ) ;

(M5) one has τX · πX,Y ≤ κX,Y · (τX × τY ):

PX × PY

≥

π //

τ×τ
��

P (X × Y )

τ

��

TX × TY κ // T (X × Y ) ,

were π : P (−)×P (−) −→ P (−×−) is the natural transformation associated to the powerset
monad (Example 2.4.1(1)).

When referring to a lax monoidal powerset-enriched monad T, we will always assume that the
natural transformation κ is given together with τ . Hence, a lax monoidal powerset-enriched
monad T is in effect a triple (T, τ, κ) with τ : P −→ T and κ : T (−)× T (−) −→ T (−×−) suitable
natural transformations.

Note that conditions (M4) with (M5) yield

µX · τTX · PκX · πTX,TY = µX · TκX · τTX · πTX,TY
≤ µX · TκX · κTX,TY · (τTX × τTY )

≤ κX,Y · (µX × µY ) · (τTX × τTY ) = κX,Y · ((µX · τTX)× (µY · τTY )) .

By adjunction, one obtains the diagram

PTX × PTY

≤

Pκ·π // PT (X × Y )

TX × TY

(µ·τ)∗×(µ·τ)∗
OO

κ // T (X × Y ) ;

(µ·τ)∗
OO
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Since (µX · τX)∗ : TX −→ PTX is the down-set map associated to the order induced by τ on TX,
this diagram means that κ preserves the order induced by τ in each variable:

(x , y) ≤ (x ′, y ′) =⇒ κX,Y (x , y) ≤ κX,Y (x ′, y ′)

for all x , x ′ ∈ TX, y , y ′ ∈ TY .

2.5.1 Examples.

(1) The powerset monad P together with its powerset-enrichment 1P : P −→ P and the natural
transformation π : P (−) × P (−) −→ P (− × −) of Example 2.4.1(1) is a lax monoidal
powerset-enriched monad.

(2) The filter monad F with the principal filter monad morphism τ : P −→ F and the product
filter natural transformation κ : F (−) × F (−) −→ F (− × −) is a lax monoidal powerset-
enriched monad.

2.6 The box products of T-monoids. Let T be a lax monoidal powerset-enriched monad.
The box product (X,α) � (Y, β) of the T-monoids (X,α) and (Y, β) is obtained by equipping the
set X × Y with the structure α� β : X × Y −→ T (X × Y ) defined by

α� β := κX,Y · (α× β) .

2.6.1 Examples.

(1) For the powerset-enriched monoidal powerset monad P, the box product of preordered sets
(X, ↓X) and (Y, ↓Y ) is the relation on X × Y that sends a pair (x, y) ∈ X × Y to the set

πX,Y · (↓X × ↓Y )(x, y) = ↓Xx× ↓Y y .

In other words,
(x′, y′) ≤ (x, y) ⇐⇒ x ≤ x′ & y ≤ y′

(for all x, x′ ∈ X, y, y′ ∈ Y ), that is, the box product of preordered sets is their ordinary
product.

(2) For the powerset-enriched monoidal filter monad F, the box product of topological spaces
(X,α) and (Y, β) is given by the topology on X×Y that associates to a point (x, y) ∈ X×Y
their product neighborhood filter

κX,Y · (α× β)(x, y) = α(x)× α(y) .

Hence, the box product of topological spaces is their ordinary product. In Section 4, we will
present categories of T-monoids for which the box product is not the categorical product.

2.6.2 Lemma. The box product of T-monoids defines a functor

(−) � (−) : Mon(SetT)×Mon(SetT) −→ Mon(SetT)

that commutes with the underlying-set functors.
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Proof. For T-monoid morphisms f : (X,α) −→ (X ′, α, ), g : (Y, β) −→ (Y ′, β′), we set f�g = f×g.
Since

T (f × g) · κX,Y · (α× β) = κX′,Y ′ · (Tf × Tg) · (α× β) ≤ κX′,Y ′ · (α′ × β′) · (f × g)

by naturality and monotonicity of κ, (−) � (−) is well-defined, and is therefore a functor.

2.6.3 Proposition. Let P be a lax monoidal powerset-enriched monad. With E := (1, η1), the
triple (Mon(SetT),�, E) is a monoidal category whose underlying structure maps are those of the
cartesian structure of Set.

Proof. It suffices to prove that the components of the natural transformations υ, λ and ρ are
isomorphisms of T-monoids. Thus, let (X,α), (Y, β) and (Z, γ) be T-monoids. With the use of
(M1), the equalities

TυX,Y,Z · κX,Y×Z · (α× (κY,Z · (β × γ)))

= TυX,Y,Z · κX,Y×Z · (1TX × κY,Z) · (α× (β × γ))

= κX×Y,Z · (κX,Y × 1TZ) · υTX,TY,TZ · (α× (β × γ))

= κX×Y,Z · (κX,Y × 1TZ) · ((α× β)× γ) · υX,Y,Z
= κX×Y,Z · ((κX,Y · (α× β))× γ) · υX,Y,Z

show that the associativity map υX,Y,Z is a T-monoid isomorphism. Similarly, (M2) yields that
λX : X −→ 1×X and ρX : X −→ X × 1 are isomorphisms.

3 Exponentiability

3.1 Exponentiable T-monoids. Given a lax monoidal powerset-enriched monad T, we say that
a T-monoid (X,α) is exponentiable if the functor (−) �X : Mon(SetT) −→ Mon(SetT) has a right
adjoint GX . In Lemma 3.2.1, we prove that the underlying set of an exponential GXY can be
identified with the set

[X,Y ] := Mon(SetT)(X,Y )

of all T-monoid homomorphisms f : X −→ Y (with (Y, β) a T-monoid). Hence, we will often write
[X,−] in lieu of GX (with the T-monoid structure nbhd : [X,Y ] −→ T [X,Y ] tacitly assumed when
necessary). To further simplify notations, we write Y X for the hom-set Set(X,Y ), so the counit
of the adjunction

((−)×X) a (−)X : Set −→ Set

is given by the evaluation maps
evX,Y : Y X ×X −→ Y

(for all X,Y ∈ obSet). We also denote by evX,Y the restriction evX,Y : [X,Y ]×X −→ Y .

Note that we explicitly study the right adjoint of (−)�X only: the right adjoint of X � (−) can
be obtained mutatis mutandis, once the case for (−) �X has been elucidated.
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3.2 Exponential T-monoids are T-algebras.

3.2.1 Lemma. Let T be a lax monoidal powerset-enriched monad, and E = (1, η1). There is a
natural bijection between [E,−] and the underlying-set functor | − | : Mon(SetT) −→ Set.

In particular, for an exponentiable T-monoid (X,α), the corresponding exponentials can be con-
sidered to be sets of the form [X,Y ] with a T-monoid structure nbhd : [X,Y ] −→ T [X,Y ].

Proof. Any map x : 1 −→ X is a homomorphism x : (1, η1) −→ (X,α):

Tx · η1 = ηX · x ≤ α · x ,

so that elements of X are in bijective correspondence with elements of [E,X]: [E,X] ∼= X1 ∼= X.
It is also clear that the bijection [E,X] −→ X is natural in X.

Suppose that (X,α) is exponentiable in Mon(SetT), and denote by GX the right adjoint to (−)�
X : Mon(SetT) −→ Mon(SetT). By the previous point, there are bijections

[X,Y ] ∼= [E �X,Y ] ∼= [E,GXY ] ∼= |GXY |

that are natural in Y , so that one can always replace |GXY | by [X,Y ].

3.2.2 Lemma. Consider a lax monoidal powerset-enriched monad T, and a T-algebra (V, q).
Let (X,α) be an exponentiable T-monoid, and ([X,V ], nbhd) denote the GX-image of the T-
monoid (V, q∗). Then there is a unique T-monoid homomorphism conv : (T [X,V ], µ[X,V ]) −→
([X,V ], nbhd) that makes the following diagram commute:

[X,V ] �X
ev // V

T [X,V ] �X

conv�1X

OO

q·T ev·κ·(1×α)

88

Proof. The fact that the underlying set of the exponential object GXV is [X,V ] follows from
Lemma 3.2.1. The map κ[X,V ],X · (1T [X,V ] × α) : T [X,V ] �X −→ T ([X,V ] ×X) is a T-monoid
homomorphism:

T (κ[X,V ],X · (1T [X,V ] × α)) · κT [X,V ],X · (µ∗[X,V ] × α)

= Tκ[X,V ],X · κ[X,V ],X · (1TT [X,V ] × Tα) · (µ∗[X,V ] × α)

≤ Tκ[X,V ],X · κ[X,V ],X · (µ∗[X,V ] × µ
∗
X) · (1T [X,V ] × α)

≤ µ∗[X,V ]×X · κ[X,V ],X · (1T [X,V ] × α) ,

and consequently so is the composite g := q ·T evX,V ·κ[X,V ],X · (1T [X,V ]×α) : T [X,V ]�X −→ V .
The couniversal property of evX,V : [X,V ] ×X −→ V then yields a unique T-monoid homomor-
phism conv : T [X,V ] −→ [X,V ] with evX,V · (conv × 1X) = g, as claimed.

3.2.3 Theorem. Let T be a lax monoidal powerset-enriched monad, and (V, q) a T-algebra. If
(X,α) is an exponentiable T-monoid, then ([X,V ], conv) is a T-algebra.
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Proof. The exponentiable T-monoid (X,α) yields a T-monoid structure nbhd : [X,V ] −→ T [X,V ]
that makes evX,V : [X,V ]×X −→ V a T-monoid homomorphism:

T evX,V · κ[X,V ],X · (nbhd× α) ≤ q∗ · evX,V .

All the maps composing g := q · T evX,V · κ[X,V ],X · (1T [X,V ] × α) are monotone and [X,V ] is
ordered pointwise, so the defining equality evX,V · (conv × 1X) = g (Lemma 3.2.2) implies that
conv is monotone. Moreover,

evX,V = q · ηV · evX,V = q · T evX,V · η[X,V ]×X

≤ q · T evX,V · κ[X,V ],X · (η[X,V ] × ηX)

≤ q · T evX,V · κ[X,V ],X · (η[X,V ] × α) = evX,V · (conv × 1X) · (η[X,V ] × 1X) ,

that is, 1[X,V ] ≤ conv · η[X,V ]. The unicity of T-monoid homomorphisms [X,V ] −→ [X,V ] in
the couniversal property of evX,V : [X,V ] × X −→ V also forces conv · nbhd = 1[X,V ] because
g · (nbhd× 1X) = evX,V :

evX,V ≤ q · T evX,V · κ[X,V ],X · (η[X,V ] × ηX) ≤ g · (nbhd× 1X) ≤ q · q∗ · evX,V = evX,V .

Hence, monotonicity of conv and η[X,V ] ≤ nbhd yield

conv · η[X,V ] = conv · nbhd = 1[X,V ] .

Since conv is a T-monoid homomorphism and µ[X,V ] · Tη[X,V ] = 1T [X,V ], one has 1T [X,V ] =
T conv · Tη[X,V ] ≤ T conv · µ∗[X,V ] ≤ nbhd · conv, so

1T [X,V ] ≤ nbhd · conv and µ[X,V ] ≤ µ[X,V ] · Tnbhd · T conv .

By transitivity of nbhd, one obtains conv · µ[X,V ] · Tnbhd ≤ conv · µ[X,V ] · Tnbhd · nbhd · conv =
conv · nbhd · conv = conv, so

conv · µ[X,V ] ≤ conv · µ[X,V ] · Tnbhd · T conv ≤ conv · T conv .

With
conv · T conv ≤ conv · T conv · µ∗[X,V ] · µ[X,V ] ≤ conv · nbhd · conv · µ[X,V ] ,

one concludes that
conv · µ[X,V ] = conv · T conv

and ([X,V ], conv) is a T-algebra.

3.3 T-algebraic hom-sets are exponential. Let T be a lax monoidal powerset-enriched monad,
and V a family of T-monoids. We say that a T-monoid (X,α) is V-exponentiable if for all
(V, q) ∈ V, there is a T-monoid structure nbhd[X,V ] : [X,V ] −→ T [X,V ] that makes evX,V :
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[X,V ]×X −→ V into a ((−)�X)-couniversal arrow for V : for all g : Y �X −→ V in Mon(SetT),
there is exactly one T-monoid homomorphism f : Y −→ [X,V ] with evX,V · (f × 1X) = g

[X,V ]

Y

f

OO
[X,V ] �X

ev // V

Y �X

f�1X

OO

g

88

Given a V-exponentiable T-monoid (X,α), we define for any T-monoid (Y, β) a T-monoid structure
ω : [X,Y ] −→ T [X,Y ] via the initial lift of the family ([X, f ] : [X,Y ] −→ [X,V ])V ∈V,f∈[Y,V ]:

ω :=
∧

V ∈V,f∈[Y,V ]
(T [X, f ])∗ · nbhd[X,V ] · [X, f ]

(see Proposition 2.3.3).

3.3.1 Lemma. Let T be a lax monoidal powerset-enriched monad, V a family of T-monoids,
(X,α) a V-exponentiable T-monoid, and (Y, β) a T-monoid. If V is initially dense in Mon(SetT),
then evX,Y : [X,Y ] �X −→ Y is a T-monoid homomorphism.

Proof. By applying T to the equality f · evX,Y = evX,V · ([X, f ]×1X) for all f ∈ [Y, V ], we obtain
that the maps f · evX,Y : [X,Y ] �X −→ V are T-monoid homorphisms:

T (f · evX,Y ) · κX,Y · (ω × α)

≤ T (f · evX,Y ) · κX,Y · (((T [X, f ])∗ · nbhd[X,V ] · [X, f ])× α)

≤ Tf · T evX,Y · (T ([X, f ]× 1X))∗ · κX,V · ((nbhd[X,V ] · [X, f ])× α)

≤ T evX,V · κX,V · (nbhd[X,V ] × α) · ([X, f ]× 1X)

≤ q∗ · evX,V · ([X, f ]× 1X)

= q∗ · f · evX,Y .

As the family V is initially dense, evX,Y is a T-monoid homomorphism.

3.3.2 Lemma. Let T be a lax monoidal powerset-enriched monad. Given T-monoids (X,α),
(Y, β), (Z, γ) and a homomorphism g : Z � X −→ Y , the map gz : X −→ Y is a T-monoid
homomorphism for all z ∈ Z (where gz(x) := g(z, x) for all x ∈ X).

Proof. If g : Z � X −→ Y is a T-monoid homomorphism, then, denoting by z : 1 −→ Z the
constant map onto z ∈ Z, one has

Tgz · α = Tg · T (z × 1X) · TρX · α
= Tg · T (z × 1X) · κ1,X · (η1 × 1TX) · ρTX · α
= Tg · κZ,X · (ηZ × 1TX) · (z × 1TX) · ρTX · α
≤ Tg · κZ,X · (γ × 1TX) · (1Z × α) · (z × 1X) · ρX
≤ β · g · (z × 1X) · ρX = β · gz ,

so that gz is a T-monoid homomorphism.

12



3.3.3 Proposition. Let T be a lax monoidal powerset-enriched monad and V an initially dense
family of T-monoids. A T-monoid (X,α) is V-exponentiable if and only if it is exponentiable.

Proof. Obviously, an exponentiable T-monoid is also V-exponentiable. To prove the other impli-
cation, we need to show that evX,Y : ([X,Y ]×X,κX,Y ·(ω×α)) −→ (Y, β) is a ((−)�X)-couniversal
arrow for any T-monoid (Y, β). Lemma 3.3.1 already asserts that evX,Y is a homomorphism.

Consider a homomorphism g : Z � X −→ Y and (V, q) ∈ V. By Lemma 3.3.2, the unique
map f : Z −→ Y X with evX,Y · (f × 1X) = g corestricts to f : Z −→ [X,Y ]. The couniversal
property of evX,V , then produces for any h ∈ [Y, V ] a unique homomorphism k : Z −→ [X,V ]
with evX,V · (k × 1X) = h · g; since

h · g = h · evX,Y · (f × 1X) = evX,V · (([X,h] · f)× 1X) ,

one necessarily has [X,h] · f = k : Z −→ [X,V ], that is, [X,h] · f is a homomorphism for all
h ∈ [Y, V ]. As ω is the initial T-monoid structure on [X,Y ] with respect to all h ∈ [Y, V ] with
V ∈ V, one concludes that the unique map f : Z −→ [X,Y ] is in fact a homomorphism.

3.3.4 The convergence map. Let T be a lax monoidal powerset-enriched monad and (V, q) a
T-algebra. For a T-monoid (X,α), we equip the set [X,V ] of all homomorphisms f : (X,α) −→
(V, q∗) with its pointwise order. There is then a map conv[X,V ] = conv : T [X,V ] −→ [X,V ] defined
as follows: for f ∈ T [X,Y ],

conv( f ) :=
∧
{g ∈ [X,V ] | ∀x ∈ X (T evX,V · κ[X,V ],X( f , α(x)) ≤ q∗ · evX,V (g, x))}

=
∧
{g ∈ [X,V ] | ∀x ∈ X (q · T evX,V · κ[X,V ],X · (1[X,V ] × α)( f , x) ≤ evX,V (g, x))} ,

with infimum taken in V X (Lemma 3.3.5 below shows that the codomain of conv is indeed [X,V ]).
With the pointwise order on [X,V ]T [X,V ], conv is then the smallest map c : T [X,V ] −→ [X,V ]
that makes the following diagram commute laxly:

[X,V ]×X ev // V

T [X,V ]×X

c×1X

OO

≥
q·T ev·κ·(1×α)

99

3.3.5 Lemma. Let T be a powerset-enriched monad, (X,α) a T-monoid, and (V, q) a T-algebra.
With [X,V ] ordered pointwise, one has

∧
S ∈ [X,V ] for all S ⊆ [X,V ], that is, the order-

embedding [X,V ] ↪→ V X creates infima.

Proof. Let S ⊆ [X,V ]. For any g ∈ S, we have Tg · α ≤ q∗ · g, or equivalently q · Tg · α ≤ g. By
Proposition 2.2.2,

q · T (
∧
S) · α ≤

∧
g∈S q · Tg · α ≤

∧
S ,

so
∧
S is a T-monoid homomorphism: T (

∧
S) · α ≤ q∗ ·

∧
S.

13



3.3.6 Proposition. Let T be a lax monoidal powerset-enriched monad, (V, q) a T-algebra and
(X,α) a T-monoid such that ([X,V ], conv) is a T-algebra. Then ([X,V ], conv∗) with evX,V :
[X,V ]×X −→ V form a ((−) �X)-couniversal arrow for V .

Proof. First note that ([X,V ], conv∗) is indeed a T-monoid by Proposition 2.3.2, and that conv ·
conv∗ = 1[X,V ] (since 1[X,V ] = conv · η[X,V ] ≤ conv · conv∗ ≤ 1[X,V ], see [17]). Hence, for a given
f ∈ [X,V ] the infimum of those g ∈ [X,V ] such that

q · T evX,V · κ[X,V ],X(conv∗(f), α(x)) ≤ evX,V (g, x)

(for all x ∈ X) is conv · conv∗(f) = f . As the order in [X,V ] is pointwise, one has

q · T evX,V · κ[X,V ],X(conv∗(f), α(x)) ≤ evX,V (f, x) ,

so that evX,V : [X,V ] �X −→ V is a T-monoid homomorphism.

By Lemma 3.3.2, for a T-monoid (Z, γ) and any homomorphism g : Z�X −→ V , there is a unique
map f : Z −→ [X,V ] such that evX,V · (f × 1X) = g. We are therefore left to show that f is a
homomorphism. For this, note that

T evX,V · κ[X,V ],X · (Tf · γ × α) = T evX,V · T (f × 1X) · κZ,X · (γ × α)

= Tg · κZ,X · (γ × α)

≤ q∗ · g = q∗ · evX,V · (f × 1X) .

By definition of conv, we therefore have conv · Tf · γ ≤ f , that is, Tf · γ ≤ conv∗ · f .

3.3.7 Theorem. Let T be a lax monoidal powerset-enriched monad, V a family of T-algebras
that forms an initially dense family in Mon(SetT), and (X,α) a T-monoid. If ([X,V ], conv) is a
T-algebra for all (V, q) ∈ V, then (X,α) is exponentiable in Mon(SetT).

Proof. If ([X,V ], conv) is a T-algebra, we can apply Proposition 3.3.6 for each (V, q) ∈ V. Thus,
(X,α) is V-exponentiable, and therefore exponentiable by Proposition 3.3.3.

3.3.8 Remark. It was shown in see [17] that for a powerset-enriched monad T the family of
free T-algebras V = (TX, µX)X∈obSet is always an initially dense in Mon(SetT). Not only is this
family V rather large, but a free object can be difficult to exploit; hence, one would hope to find
in Mon(SetT) a tractable initially dense family of T-algebras to play the role of a suitable V. In
our examples, it turns out that the single object (T1, µ1) alone can be used as test object.

3.3.9 Examples.

(1) Recall from 2.1 that a P-algebra is a complete sup-semilattice. We choose (V, q) to be the
set 2 = {0, 1} with structure map q =

∨
: P2 −→ 2; one has q∗(x) = ↓x for all x ∈ 2,

and (2, ↓2) is an initially dense object in PrOrd ∼= Mon(SetP). For a preordered set (X, ↓X),
a monotone map g ∈ [X, 2] can be identified with an up-closed subset Ag ⊆ X (with
(x ∈ Ag & x ≤ y) =⇒ y ∈ Ag), the evaluation evX,2 with the truth-value of elementhood:

evX,V (g, x) = 1 ⇐⇒ x ∈ Ag ,

14



and the induced order on [X, 2] with inclusion. Denoting by UpX the set of up-closed
subsets of X, the map conv : P [X, 2] −→ [X, 2] of 3.3.4 is given by

conv(A) =
∧
{g ∈ [X, 2] | ∀x ∈ X (P evX,2(A, ↓Xx) ⊆ ↓ g(x))}

=
⋂
{A ∈ UpX | ∀x /∈ A,∀B ∈ A (x /∈ B)}

=
⋂
{A ∈ UpX |

⋃
A ⊆ A} =

⋃
A

for all A ⊆ [X, 2] = UpX (and with respect to the lax monoidal structure π of 2.5.1(1)).
Since UpX (with union as supremum) is always a complete sup-semilattice, Theorem 3.3.7
states that every preordered set is exponentiable (with respect to the cartesian product).
This is just the well-known result that PrOrd is cartesian closed.

(2) For the filter monad F, we consider for (V, q) the Sierpinski space 2 = {0, 1} with structure
map q( f ) =

∧
A∈f

∨
A for all f ∈ F2. The neighborhood map q∗ : 2 −→ F2 is given by

q∗(0) = {{0}, {0, 1}} and q∗(1) = {0, 1}, that is, the singleton {0} is the only non-trivial
open subset; moreover, (2, q∗) is initially dense in Top ∼= Mon(SetF). For a topological space
(X,α), the set of continuous maps [X, 2] can be identified with closed subsets of X, ordered
by inclusion. Considering the product filter monoidal structure, one observes

conv(F ) =
∧
{g ∈ [X, 2] | ∀x ∈ X (F evX,2(F × α(x)) ⊇ q∗ · g(x))}

=
⋂
{A ⊆ X, closed | ∀x /∈ A,∃A ∈ F ,∃N ∈ α(x) (N ⊆

⋂
B∈AB

c)}

=
⋂
{A ⊆ X, closed | ∀x ∈ Ac,∃A ∈ F (

⋂
B∈AB

c ∈ α(x))}

for all F ∈ F [X, 2] (where Bc denotes the set-complement of B ⊆ X). The smallest closed
subset of X whose complement points each have one of the sets

⋂
B∈AB

c (A ∈ F ) as
neighborhood is

(
⋃
A∈F (

⋂
B∈AB

c)◦)c =
⋂
A∈F

⋃
B∈AB

(using the notations S and S◦ for the respective closure and interior of S ⊆ X). Hence, for
all F ∈ F [X, 2],

conv(F ) =
∧
A∈F

∨
A .

The isomorphism between the category of F-algebras and the category of continuous lattices

SetF ∼= Cnt

(see for example [18, Section 5.4]) yields that conv is an F-algebra structure precisely when
[X, 2]op is a continuous lattice (in the sense of [13]). Theorem 1.1 then returns the classical
result that a topological space is exponentiable (with respect to the cartesian product) if
and only if its set of open subsets, ordered by inclusion, is a continuous lattice1.

1As is often the case when working in an abstract setting, the order that emerges naturally from existing
structures clashes with the one usually appearing in the literature. To cite the “classical result” on exponentiability
of topological spaces, we need the corresponding definition of a continuous lattice—that is opposite to the one
presented in [18, Section 5.4]. Reversing the order on [X, 2] then leads us to switch from closed to open subsets.
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4 Applications

4.1 Interior spaces. The up-set monad U = (U, µ, η) arises from the adjunction

Set(−, 2) a PrOrd(−, 2) : PrOrdop −→ Set .

By identifying Set(X, 2) with the powerset PX, we observe that UX = UpPX is the set of
up-closed subsets in PX, and this monad can then be described as follows:

B ∈ Uf(x ) ⇐⇒ f−1(B) ∈ x , A ∈ ηX(x) ⇐⇒ x ∈ A , A ∈ µX(X ) ⇐⇒ AU ∈ X ,

for f : X −→ Y , x ∈ UX, x ∈ X, X ∈ UUX, and where AU = {x ∈ UX | A ∈ x }. The monad
morphism τ : P −→ U that associates to A ∈ PX the principal filter

τX(A) := {B ∈ PX | A ⊆ B}

makes P powerset-enriched. As in the filter case, the order induced by τ on the sets UX (via the
identification SetP ∼= Sup as in 2.1) is given by reverse subset-inclusion:

x ≤ y ⇐⇒ x ⊇ y

for all x , y ∈ UX, and one has

SetU ∼= Ccd and Mon(SetU) ∼= Int ,

where Ccd and Int denote the category of constructively completely distributive lattices and the
category of interior spaces, respectively (see [16]).

Let us note that the exponentiable spaces with respect to the cartesian product in Int are the
indiscrete ones (see [5, Corollary 2.3]). There is nevertheless a family of maps κX,Y : UX×UY −→
U(X × Y ) given by

κX,Y (x , y) := {A×B | A ∈ x , B ∈ y}

(for all x ∈ UX, y ∈ UY ) that makes (U, τ) lax monoidal, and allows us to define a monoidal
structure (−) � (−) on Int. The open subsets of the box product (X,α) � (Y, β) of two interior
spaces are given by arbitrary unions of open subsets of the form V ×W . By identifying open
subsets of (X,α) with the function space [X, 2]op and observing that the Sierpinski space 2 is
also initially dense in Int, Theorem 1.1 states that the exponentiable interior spaces are those
X whose set of open subsets forms a constructively completely distributive lattice. This result
faithfully reproduces the topological case, and provides an interesting collection of exponentiable
spaces.

4.2 Quantale-enriched categories. Given a quantale V with tensor ⊗ and neutral element k,
the V -powerset functor PV sends a set X to its V -powerset V X , and a function f : X −→ Y to
PV f : V X −→ V Y , where

PV f(φ)(y) :=
∨
x∈f−1(y) φ(x) ,
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for all φ ∈ V Y , y ∈ Y . The multiplication µ : PV PV −→ PV and unit η : 1Set −→ PV of the
V -powerset monad PV on Set are given respectively by

µX(Φ)(y) :=
∨
φ∈V X Φ(φ)⊗ φ(y) and ηX(x)(y) :=

{
k if x = y

⊥ otherwise ,

for all x, y ∈ X, Φ ∈ V V X
(where ⊥ denotes the bottom element of the lattice). There is a

monad morphism τ : P −→ PV whose components τX send a subset A ⊆ X, identified with its
characteristic function χA : X −→ {⊥,>}, to the characteristic function τX(A) = ι · χA of A in
V X :

τX(A)(x) :=

{
k if x ∈ A
⊥ otherwise.

With this monad morphism PV becomes a lax monoidal powerset-enriched monad and one
has

SetPV ∼= SupV and Mon(SetPV
) ∼= V -Cat ,

where SupV is the category of V -actions in Sup, and V -Cat is the category of small categories
enriched in V (see [19]). The order induced by τ on the sets V X is the pointwise order, a PV -
algebra (X, a) is a complete sup-semilattice with structure map a : V X −→ X corresponding to
an action a(φ) =

∨
x∈X φ(x)⊗ x, and the V -category (V, q∗) is initially dense in V -Cat.

4.2.1 The monoidal structure. If the quantale V is commutative, then for φ ∈ PVX and
ψ ∈ PV Y ,

κX,Y (φ, ψ) = φ⊗ ψ

defines a natural transformation κ : PV (−) × PV (−) −→ PV (− × −) that makes (PV , τ) lax
monoidal. In this case, one computes for a V -category (X,α) and φ ∈ V [X,V ],

conv(φ) =
∧
{g ∈ [X,V ] | ∀x ∈ X (q · PV evX,V (φ⊗ α(x)) ≤ g(x)}

=
∧
{g ∈ [X,V ] | ∀x ∈ X (

∨
v∈V,(f,y)∈ev−1(v) φ(f)⊗ α(x)(y)⊗ v ≤ g(x))}

=
∨
f∈[X,V ] φ(f)⊗ f ,

since k ≤ α(x)(x), and f ∈ [X,V ] means that
∨
y∈X α(x)(y) ⊗ f(y) ≤ f(x) for all x ∈ X.

Mirroring the powerset case, every hom-set [X,V ] of V -Cat is a V -action with this structure, so
that Theorem 3.3.7 simply states the well-known fact that V -Cat is monoidal closed (with respect
to its natural monoidal structure induced by the tensor of V as above).

4.2.2 The cartesian structure. If the underlying lattice of V is a frame, the maps ρX,Y :
PVX × PV Y −→ PV (X × Y ) given by

ρX,Y (φ, ψ) = φ ∧ ψ

(for all φ ∈ PVX, ψ ∈ PV Y ) form a natural transformation that defines the cartesian product in
V -Cat. This natural transformation makes (PV , τ, ρ) into a lax monoidal monad.
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For a subset A ⊆ [X,V ], one computes

conv(χA) =
∧
{g ∈ [X,V ] | ∀x ∈ X (q · PV evX,V (χA ∧ α(x)) ≤ g(x))}

=
∧
{g ∈ [X,V ] | ∀x ∈ X (

∨
f∈[X,V ],y∈X(χA(f) ∧ α(x)(y))⊗ f(y) ≤ g(x))}

=
∧
{g ∈ [X,V ] | ∀x ∈ X (

∨
f∈A,y∈X(k ∧ α(x)(y))⊗ f(y) ≤ g(x))} .

Since k ≤ α(x)(x) and
∨
y∈X α(x)(y)⊗ f(y) ≤ f(x), one has

conv(χA) =
∨
A

for all A ⊆ [X,V ]; hence, if conv : PV [X,V ] −→ [X,V ] is a PV -algebra structure, the order
induced on [X,V ] by conv · τ[X,V ] is the pointwise order. One also has conv · η[X,V ] = 1[X,V ] since
η[X,V ](f) = χ{f} for all f ∈ [X,V ].

If k = > in V , then for ψ ∈ PV [X,V ], the map ψ̃ : X −→ V , defined by

ψ̃(y) :=
∨
f∈[X,V ],z∈X(ψ(f) ∧ α(y)(z))⊗ f(z) ,

is a PV -monoid homomorphism. Indeed, for x ∈ X, one has

q · PV ψ̃(α(x)) =
∨
y∈X α(x)(y)⊗ ψ̃(y)

=
∨
y∈X α(x)(y)⊗

(∨
f∈[X,V ],z∈X(ψ(f) ∧ α(y)(z))⊗ f(z)

)
≤
∨
f∈[X,V ],z∈X

(
(
∨
y∈X α(x)(y)⊗ ψ(f)) ∧ (

∨
y∈X α(x)(y)⊗ α(y)(z))

)
⊗ f(z)

≤
∨
f∈[X,V ],z∈X(ψ(f) ∧ α(x)(z)))⊗ f(z) = ψ̃(x) ,

so that PV ψ̃ · α ≤ q∗ · ψ̃. Hence, for any ψ ∈ PV [X,V ],

conv(ψ) = ψ̃ ,

The condition conv · PV conv(Φ) = conv · µ[X,V ](Φ) for all Φ ∈ V V [X,V ] then becomes∨
(Φ(ψ) ∧ α(x)(y))⊗ (ψ(f) ∧ α(y)(z))⊗ f(z) =

∨(
(Φ(ψ)⊗ ψ(f)) ∧ α(x)(z)

)
⊗ f(z) (†)

for all Φ ∈ V V [X,V ]
and x ∈ X, with the supremum on each side ranging over all ψ ∈ V [X,V ],

f ∈ [X,V ], and y, z ∈ X. As the left-hand side is always smaller than the right-hand side, this
condition can be read with a “≥” sign instead of equality. For a chosen t ∈ X, if ψv,t ∈ V [X,V ]

is the map that sends α(−)(t) ∈ [X,V ] to v ∈ V and all other f ∈ [X,V ] to the bottom element

⊥ ∈ V , and Φu,v,t ∈ V V [X,V ]
is the map that sends ψv,t to u ∈ V and all other maps to ⊥, one

obtains from condition (†) and k = >:∨
y∈X(u ∧ α(x)(y))⊗ (v ∧ α(y)(t)) ≥

∨
z∈X

(
(u⊗ v) ∧ α(x)(z)

)
⊗ α(z)(t)

≥ (u⊗ v) ∧ α(x)(t) .

Hence, (†) implies ∨
y∈X(u ∧ α(x)(y))⊗ (v ∧ α(y)(z)) ≥ (u⊗ v) ∧ α(x)(z)
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for all u, v ∈ V and x, z ∈ X. Since (†) is also a consequence of this last condition, and
conv · η[X,V ] = 1[X,V ] always holds, Theorem 1.1 recovers the characterization from [6, Corol-
lary 3.5] of exponentiable V -categories (X,α) (with respect to the cartesian product) when the
underlying lattice of V is a frame, and k = >. Note that commutativity of the tensor of V is not
necessary.
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