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Palavras-chave 

 

Derivados de petróleo, propriedades físico-químicas, espectroscopia de 
ressonância magnética nuclear, métodos estatísticos multivariáveis, análise 
por componentes principais, regressão múltipla por componentes principais, 
regressão por mínimos quadrados parciais, redes neuronais artificiais, análise 
estatística. 

 
Resumo O principal objetivo deste trabalho foi monitorizar um conjunto de propriedades 

físico-químicas de correntes processuais pesadas através da espectroscopia 
de ressonância magnética nuclear, com o intuito de propor um procedimento 
de análise e processamento de dados em linha para o controlo processual. 
Vários métodos estatísticos que permitiram relacionar os resultados obtidos 
por espectroscopia de ressonância magnética nuclear com os resultados 
obtidos pelos métodos convencionais, aquando da caracterização das 
diferentes correntes, foram implementados a fim de desenvolver modelos de 
previsão dessas mesmas propriedades. O conhecimento em tempo real das 
propriedades físico-químicas dos derivados de petróleo é essencial para 
otimizar as operações de refinação, garantindo assim operações técnica, 
económica e ambientalmente adequadas. 

A primeira parte deste trabalho envolveu a realização de um elevado número 
de experiências, efetuadas na refinaria de Matosinhos, seguindo métodos 
convencionais normalizados, importantes para avaliar e caracterizar as 
correntes de gasóleo de vácuo leve, gasóleo de vácuo pesado e fuel óleo. As 
propriedades analisadas foram a massa volúmica, viscosidade cinemática, teor 
em enxofre, ponto de inflamação, resíduo carbonoso, valor P e a destilação 
atmosférica e de vácuo. Para além da determinação de todas estas 
propriedades físico-químicas, usando os métodos convencionais, as mesmas 
amostras foram analisadas por espectroscopia de ressonância magnética 
nuclear. 

A segunda parte deste trabalho esteve relacionada com a aplicação de 
métodos estatísticos multivariáveis que relacionam as propriedades físico-
químicas com a informação quantitativa adquirida por espectroscopia de 
ressonância magnética nuclear. Vários métodos foram aplicados, incluindo a 
análise por componentes principais, a regressão múltipla por componentes 
principais, as regressões múltiplas parciais e as redes neuronais artificiais. A 
análise de componentes principais foi utilizada para reduzir o número de 
variáveis preditivas e transformá-las em novas variáveis, os componentes 
principais. Estes componentes principais foram utilizados como variáveis de 
entrada da regressão múltipla por componentes principais e das redes 
neuronais artificiais. Na regressão por mínimos quadrados parciais os dados 
originais foram usados como variáveis de entrada. Tomando em consideração 
o desempenho dos modelos desenvolvidos, com recurso a parâmetros 
estatísticos, foi possível concluir que a regressão múltipla por componentes 
principais contribuiu para piores desempenhos. Melhores desempenhos foram 
obtidos com a aplicação da regressão por mínimos quadrados parciais e das 
redes neuronais artificiais. No entanto, foi com os modelos de redes neuronais 
artificiais que melhores desempenhos foram obtidos em quase todas as 
propriedades analisadas. 

Tendo em conta os resultados obtidos, foi possível concluir que a 
espectroscopia de ressonância magnética nuclear combinada com métodos  
estatísticos multivariáveis pode ser usada para prever as propriedades físico-
químicas de derivados de petróleo. Demonstrou-se que esta técnica pode ser 
considerada como uma potencial alternativa aos métodos convencionais 
tendo-se obtido resultados bastantes promissores. 
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Abstract 
 

The main objective of this work was to monitor a set of physical-chemical 
properties of heavy oil procedural streams through nuclear magnetic resonance 
spectroscopy, in order to propose an analysis procedure and online data 
processing for process control. Different statistical methods which allow to 
relate the results obtained by nuclear magnetic resonance spectroscopy with 
the results obtained by the conventional standard methods during the 
characterization of the different streams, have been implemented in order to 
develop models for predicting these same properties. The real-time knowledge 
of these physical-chemical properties of petroleum fractions is very important 
for enhancing refinery operations, ensuring technically, economically and 
environmentally proper refinery operations. 

The first part of this work involved the determination of many physical-chemical 
properties, at Matosinhos refinery, by following some standard methods 
important to evaluate and characterize light vacuum gas oil, heavy vacuum gas 
oil and fuel oil fractions. Kinematic viscosity, density, sulfur content, flash point, 
carbon residue, P-value and atmospheric and vacuum distillations were the 
properties analysed. Besides the analysis by using the standard methods, the 
same samples were analysed by nuclear magnetic resonance spectroscopy. 

The second part of this work was related to the application of multivariate 
statistical methods, which correlate the physical-chemical properties with the 
quantitative information acquired by nuclear magnetic resonance spectroscopy. 
Several methods were applied, including principal component analysis, 
principal component regression, partial least squares and artificial neural 
networks. Principal component analysis was used to reduce the number of 
predictive variables and to transform them into new variables, the principal 
components. These principal components were used as inputs of the principal 
component regression and artificial neural networks models. For the partial 
least squares model, the original data was used as input. Taking into account 
the performance of the develop models, by analysing selected statistical 
performance indexes, it was possible to conclude that principal component 
regression lead to worse performances. When applying the partial least 
squares and artificial neural networks models better results were achieved. 
However, it was with the artificial neural networks model that better predictions 
were obtained for almost of the properties analysed. 

With reference to the results obtained, it was possible to conclude that nuclear 
magnetic resonance spectroscopy combined with multivariate statistical 
methods can be used to predict physical-chemical properties of petroleum 
fractions. It has been shown that this technique can be considered a potential 
alternative to the conventional standard methods having obtained very 
promising results. 
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The importance of this study is demonstrated in this chapter. The motivation to 

develop this work and the scientific contributes for industries are also described. In 

addition, a description of the structure of the thesis is presented. 
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1.1. Scientific Relevance 

In the last decades, the petroleum industry had a great interest in refining light crude oils as 

they were easier to process and had lower operational costs. However, the quantities of 

light crude oil world reserves are decreasing and thus to acquire this type of crude oil 

becomes more expensive when compared to the purchase costs of heavier crude oils. With 

this and due to the growing worldwide energy demands and the increase demands of high 

quality distillates with tighter specifications, petroleum industries need to process 

increasingly heavier crudes and converted them from low value heavier petroleum 

fractions into lighter high value products. In the conversion of these heavier fractions, 

frequent innovations and new processes are implemented at petroleum industry to convert 

the heavier petroleum fractions and petroleum residues into products with more high 

commercial values. The problem associated with the refining of heavier petroleum 

fractions is the higher quantities of heavy residues that are obtained. The heavy residues 

are characterized for their complex composition rich in asphaltenes, sulfur, nitrogen and 

metal ions. The characterization of these fractions to obtain the products with desirable 

characteristics and defined specifications and to optimize the process conditions is a very 

important challenge in the refineries. 

In the refining industry there are some appropriate methods, including the ASTM, which 

can be applied in the characterization of the physical-chemical properties of such products. 

However, there are some drawbacks associated with these laboratory analyses as time 

consuming, the cost of each analysis and the many involving steps such as sampling, 

sample handling, sample preparation, measurements, data handling and reporting. The 

problem associated with these laboratory analyses are related to the delay between 

sampling and validation of the analytical results. This delay prevents process conditions 

being corrected and adjusted at the right time by applying a corrective response, 

contributing to obtain products out of specifications and units working at wrong 

conditions. An alternative would be to implement online quantitative technologies that 

allow full and real time characterization of the control process conditions and the final 

products. The production of the required range of fractions at maximum yield and at a 

minimum cost is one of the refineries goals.  
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The physical-chemical properties of petroleum fractions are the result of the influence of 

the physical-chemical properties of each individual substance which is part of the sample 

and of the iterations that each individual substance experiences with the surroundings. The 

identification of these compounds contributes to the identification of the physical-chemical 

properties of the product analysed. Once the physical properties are correlated with the 

chemical compositions it is possible to apply spectrometric methods to quantitatively 

determine the physical properties of a composition of chemical substances, such as a 

petroleum product. Nuclear magnetic resonance (NMR) is the chosen technique, due to its 

capability to provide great information on the chemical nature of individual types of proton 

and carbon atoms in different and complex mixtures of petroleum fractions. The great 

advantage of this technique is that it measures the physical properties of transparent, 

opaque and dense solutions by only one measurement and it can be applied to many 

streams of an industrial refining complex (The Qualion Company, 2006).  

The progress made in the interpretation of the NMR spectra with the development of 

different multivariate statistical methods can give relevant information about the 

identification and structural characterization of hydrocarbons and their physical-chemical 

properties. Principal component regression (PCR), partial least squares (PLS) and artificial 

neural networks (ANN) are examples of multivariate statistical methods used in this work 

to highlight the correlations among the NMR spectra and the target properties. Kinematic 

viscosity, density, carbon residue, P-value, sulfur content, flash point, vacuum and 

atmospheric distillation are examples of some of the properties analysed in this work.  

The use of industrial applications of NMR spectroscopy and multivariate models can 

enhance the refining industries operation as a result of a better knowledge of the streams 

composition in the refining process, as well as in the prediction of the better operating 

conditions for obtaining refined products with desired specifications and in adequate 

quantities to achieve the market demands.  

With this work it is expected to demonstrate that the combination of 
1
H NMR spectroscopy 

with multivariate statistical methods can be used to correlate the chemical composition of 

each stream with their physical-chemical properties. The real time knowledge of the 

physical-chemical properties of each stream is very important for process control 

contributing to obtain best performances in the operation of the units. 
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1.2. Thesis Structure 

The structure of this thesis is summarily described in this section. This document is divided 

into seven chapters, with Chapter 1 as the introduction.  

In Chapter 2, the characterization and classification of petroleum is briefly referred. An 

overview of petroleum processing history until the development of the modern petroleum 

industry is described. Afterward, the characterization of the petroleum industry, where this 

study was developed, and a more detailed discussion around the products and their 

physical-chemical properties which are object of study is presented. The aim of this 

chapter is to give a brief presentation about the main topics covered throughout the current 

work.  

In Chapter 3, a comparison between some chromatographic and spectroscopic techniques 

capable to characterize petroleum fractions is made. This chapter is important to 

understand why NMR is the chosen technique for the determination of the physical-

chemical properties of petroleum fractions. Subsequently, the NMR spectroscopy 

technique is described. Additionally, in this chapter a review about the applications of 

NMR in the analysis of petroleum and heavy petroleum fractions is presented.  

In Chapter 4, the experimental section is presented. The description of the ASTM and IP 

standard methods used to determine the physical-chemical properties of the different 

analysed samples are described in detail. The set-up of the procedures adopted for the 

manipulation of the NMR spectra data is explained.  

Chapter 5 presents a detailed description of the multivariate statistical methods used to 

exploit the information content of the NMR data. Principal component analysis is used to 

select the number of principal components that are needed as inputs for principal 

component regression and artificial neural networks. Principal component regression, 

artificial neural networks and partial least squares are used to highlight the correlations 

among the NMR spectra and the properties proposed in Chapter 4.  

In Chapter 6, the results of this work are presented and discussed for the different samples 

and using different multivariate models. The performance of the models for predicting the 
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physical-chemical properties of the different samples with NMR are evaluated by using 

statistical models.  

In Chapter 7, the main conclusions of this thesis are pointed out as well as some 

suggestions for future work. 
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PPEETTRROOLLEEUUMM  IINNDDUUSSTTRRYY  
 

 

 

 

 

 

Petroleum refining industry uses crude oil as raw material in the production of a 

large assortment of commodities and products important to human life and in 

many other processes. Products such as gasoline, gas oil, jet fuel, naphtha, gas, 

fuel, bitumen, petrochemicals are examples of some derivatives that are obtain 

after crude oil processing. The development of more adequate refining processes 

over the years contributed to increase the production effectiveness and the quality 

of crude oil derivatives.  
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2.1. Crude Oil 

Crude oil, also called petroleum, continues to be a very important power source for our 

civilization. It is flammable at a room temperature and can be very fluid and clear or very 

dark and viscous, depending on the quantity of light or heavy distillates, respectively. 

Crude oil is generally lighter than water and it presents a characteristic and strong odour. It 

is known that crude oil doesn’t have a simple chemical formula, but it has a very complex 

chemical composition that allows wider variety of uses. It is possible to say that crude oil 

is a mixture of many different hydrocarbons and small amounts of impurities (Table 2.1). 

These compounds as well as their proportions vary significantly with crude oils. Even 

crude oils from the same geographical area can be very different depending on its source, 

although, at elemental level, the typical composition of these compounds are carbon (83-

87%), hydrogen (11.5-14%) and heteroatoms (1-5.5%) (Simanzhenkov et al., 2003). 

Crude oil can be classified in different ways depending on: i) the type of hydrocarbons; ii) 

the American Petroleum Institute (API) gravity; iii) the sulfur content; and iv) the acid 

content. Taking into account the different hydrocarbons, paraffinic, naphthenic and 

aromatic hydrocarbons, crude oil can be classified as paraffinic, paraffinic-naphthenic, 

naphthenic, aromatic and aromatic-naphthenic crude. With these designations an idea is 

given on which type of hydrocarbons exist in higher quantities, since each crude oil 

contains all different types of these hydrocarbons in different percentages. 

 

Paraffinic crude – Crude with higher quantity of paraffinic hydrocarbons, normally more 

than 75% of paraffinic compounds. This type of crude is characterized as a light and fluid 

crude, for having a smaller density (smaller than 0.85 g/mL), a smaller viscosity, a smaller 

quantity of sulfur and a smaller quantity, smaller than 10%, of resins and asphaltenes. 

Normally a paraffinic crude is responsible for the production of: i) gasoline with lower 

octane index; ii) kerosene with high quality; iii) gas oil with good combustion conditions; 

iv) lube oils with high viscosity index and chemical stability; and v) residuum rich in 

paraffins. 
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Paraffinic-naphthenic crude – This type of crude is characterized for having a rich 

composition in paraffinic compounds (50 to 75%) and a smaller amount of naphthenic 

compounds (less than 20%). The quantity of resins and asphaltenes is small as well as the 

sulfur content. This crude has higher viscosity and density compared with a paraffinic 

crude.  

 

Naphthenic crude – A naphthenic crude is characterized for having a high quantity of 

naphthenic compounds and a small percentage of sulfur. Normally the use of naphthenic 

crude contributes to the production of gasoline with higher octane index.  

 

Aromatic crude – This crude normally contains about 50% of aromatic compounds. It is 

characterized for having more asphaltenes and resins than the other crudes (normally 10 to 

30%) and higher quantity of impurities such as sulfur (more than 1%).  

 

Aromatic-naphthenic crude – An aromatic-naphthenic crude is characterized for having 

on its composition less than 35% of naphthenic compounds. The quantity of resins and 

asphaltenes is higher when compared with an aromatic crude and it can be higher than 

25%. When compared with an aromatic crude the quantity of sulfur can be lower, normally 

having values between 0.4 to 1%. 

 

Relatively to the API gravity scale, a higher API values means a lower density and, 

consequently, means that crude oil has a higher quantity of valuable low boiling point 

fractions. Taking into account the API gravity scale, crude oil can be classified as heavy or 

light crude. Heavy crude oil is richer in higher boiling fractions, contains greater amounts 

of aromatic and naphthenic structures and higher quantity of heteroatoms. Light crude oil 

contains lower boiling constituents and waxy molecules and smaller amounts of 

heteroatoms such as nitrogen, oxygen, sulfur and metals (Altgelt et al., 1994). This light 
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crude oil is the easiest and cheapest to produce and refine but the main problem is that the 

world’s oil resources available are from heavy and viscous crude oils.  

Due to the sulfur content, crude oil can be classified as sour (high amount of sulfur) or 

sweet (low amount of sulfur). The presence of higher quantities of sulfur may have 

environment impact and effects on refining operations (Speight, 2002).  

Relatively to the acid content, an acid crude oil is classified for having the total acid 

number (TAN) higher than 1.0 mg KOH/g. The use of crude oils with a high TAN can give 

rise to corrosion problems in the refineries and several problems with product quality and 

environmental protection (Hsu et al., 2006). 

Normally the heavier and denser crude oil has a minimal value but it can be used in the 

production of many fuels, like gasoline, gas oil, naphtha, kerosene and fuel oil, and it can 

provide raw materials that are used in different industries to make plastics, paints and 

fibers. When crude oil is refined it gives high valued products although further investments 

and efforts are needed to take advance of the “bottom of barrel” and with that increase the 

production of these products with high commercial interest. 



 

 

 

 

 

Table 2.1: Composition of crude oil. 

H
y
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Paraffins 

(e.g. isooctane) 
 

Can present different structures, straight chain (normal paraffins) and branched chains (isoparaffins). Of 

these two different structures (straight and branched chains), the most frequent in the heavier fractions of 

crude oil are the branched chains (Simanzhenkov et al., 2003). The branched chains have a high octane 

index leading to a high quality of gasoline. 

Aromatics 

(e.g. pyrene) 
 

The presence of aromatic compounds in heavy crude oils play an important role in the production of 

gasoline and in the production of aromatic compounds (ex.: toluene and benzene). It is possible to find 

heavy aromatic or light aromatic compounds depending on the petroleum fraction in analysis. The light 

ones have huge benefits for some units, as the platforming, as these compounds provide good octane 

indexes. The heaviest ones are responsible for some problems that may occur in some petroleum products, 

such as jet and diesel. 

Naphthenes 

(e.g. cyclohexane)  

Cycloalkanes, known as naphthenes in the petroleum chemistry, are cyclic saturated hydrocarbons defined 

by the number of rings as mononaphthenes (monocyclic alkanes, CnH2n), dinaphthenes (dicyclic alkanes, 

CnH2n-2) and trinaphthenes (tricyclic alkanes, CnH2n-4). They are found in high quantities in most crude oils 

and are relatively stable. 

 

 

 



 

 

Table 2.1: Composition of crude oil (continuation). 

 

       Drawbacks 

Asphaltenes 

 

 

(*) 

Constitute the heaviest fraction of crude oil and are a 

complex mixture of molecules that contains 

significant quantities of heteroatoms (S, N, V, Ni, 

....), condensed aromatic rings, aliphatic chains and 

naphthenic rings. 

They are responsible for the obstruction in flow 

lines, pipelines and petroleum wells and to the 

poisoning of the catalyst used in the cracking and 

hydrocracking process (Wauquier, 1995). 

H
et

er
o

co
m

p
o
u

n
d

s 

Sulfur 

(e.g. thiophenol) 
 

Sulfur may be present in the form of sulfites, 

thiophenols, cycloalkanethiols, thiophenes, 

benzothiophenes and alkylbenzothiophenes. Crude 

can be classified as sour or sweet crude depending on 

the quantity of sulfur (values higher than 0.5% 

means sour crude and less than 0.5% means sweet 

crude).  

They contribute to the development of corrosion,  

which damages the equipment, contributes to the 

air pollution due to the emission of SOx in the 

atmosphere, to the catalyst contamination and are 

toxic. Sour crude cause many problems during the 

refining and its treatment is expensive and difficult 

because it needs specific equipments. 

Oxygen 

(e.g. methyl vinyl 

ketone)  

These compounds may be present, for example, as 

carboxylic acids (ex: naphthenic acids), phenols, 

esters, amides and ketones. 

They are responsible for the crude acidity. A high 

acidity means problems in the refineries as it 

aggravates the effect of corrosion in equipments 

and pipelines, makes changes in the colour and 

odour and also in the costs associated with the 

equipments protection. 

Nitrogen 

(e.g. pyridine)  

These compounds may be present in the organic 

form, for example, in the form of pyridines, 

quinolines, pyrroles, polycyclic compounds with 

oxygen and sulfur. 

They contribute to the catalyst poisoning and are 

responsible for the change in the quality of the final 

products. 

Metal ions  

It is possible to distinguish nickel, vanadium, iron, 

zinc, mercury, boron, sodium, potassium, calcium 

and magnesium. 

They are responsible for the catalyst poisoning. 

(*) Asphaltenes do not have a chemical molecular structure. This will be discussed in the Chapter 3. 

 



 

 

CHAPTER 2 
 

14 
 

2.2. Crude Oil Refining 

Since the discovery of petroleum, many refinery industries have been developed all over 

the world being the first refinery opened in 1861 (Hsu et al., 2006). Initially, the most 

valuable petroleum fraction was kerosene, produced by simple atmospheric distillation 

(Hsu et al., 2006; Jones et al., 2006), while the distillates heavier than kerosene were 

normally used as fuel oils and for making paving and roofing asphalts and the undistilled 

residues were discarded (Altgelt et al., 1994; Hsu et al., 2006). Nowadays the need in the 

variation of products as gasoline, gas oil, jet fuel and petrochemicals, contributed to the use 

of petroleum and its heavy ends. The growing of the automobile industry in the beginning 

of the twentieth century was one of the main factors that contribute to the development of 

the petroleum refining. Imagining the markets needs, in the near future, and with the object 

to increase the efficiency and the quality in the production of crude oil derivatives 

significant investments were made in the refining processes. With that, the refineries that 

process light and medium crude oils suffer significant changes to refine heavy crude oil. 

This heavy crude oil contains higher quantities of heavy fractions that, due to its molecular 

structure (long molecular chains) and its higher boiling point, requires the use of more 

energy in the refining processes. This explains the necessity to improve the refinery 

industry with the aim in improving the quality of petroleum fractions and the efficiency in 

the conversion of the heavy fractions. It is possible to say that the evolution of the refinery 

industry was notorious over the last years and it occurred due to the worldwide demand for 

refined products and environmental laws that become increasingly stringent contributing to 

the development of new processes (Wauquier, 1995). The most important refining steps 

can be included in different processes as the separation, conversion, finishing and the 

environmental protection processes (Simanzhenkov et al., 2003; Speight, 2006). These 

processes, shown in Table 2.2, have emerged and improved over the years. 
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Table 2.2: Basic operations in petroleum processing. 

Process Definition Examples 

Separation 

Separation of the constituents of crude oils 

into fractions having similar properties 

taking into account differences of boiling 

point, melting point, density or solubility.  

Distillation 

Absorption 

Extraction 

Crystallization 

Adsorption 

Conversion 

Conversion of the separated hydrocarbons 

into new molecules that contributed to 

obtain the desirable products with 

desirable properties. 

Catalytic reforming 

Isomerization 

Alkylation 

Ether synthesis 

Oligomerization 

Visbreaking 

Coking 

Catalytic cracking 

Steam reforming 

Hydroconversion 

Finishing 

Exclusion of elements and compounds that 

are not desirable to improve the quality of 

the desirable products 

Hydrotreatment / Hydrogenation 

Sweetening 

Environmental 

Protection 

Responsible for the processing of effluents 

and gases. 

Acid gas processing  

Stack gas processing 

Waste water treatment  

 

 

The first petroleum industries, denominated as simple refinery, were characterized for the 

production of gasoline, gas oil, domestic heating oil and industrial fuel oil. The refining 

steps included a primary distillation, a catalytic reforming along with a pretreatment step 

for improving the gasoline pool octane number, a partial hydrodesulfurization of the gas oil 

fraction and liquefied petroleum gas (LPG) and kerosene sweetening. These refineries 

were characterized for the absence of conversion process in product streams (excluding 

heavy naphtha stream) and for producing 40 to 50% of residual fuel oil. Figure 2.1 

represents a typical refining flowsheet of a simple refinery, where it is possible to see a 

catalytic reforming, very important to upgrade the gasoline octane number and to the 

production of hydrogen. Hydrogen was then used in other processes to enrich other 

fractions. In the same figure it is also possible to see a visbreaker unit although it was not 

widely used in that period and so considered as an alternative unit to the production of fuel 

oil (Wauquier, 1995; Decroocq, 1997). 
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Figure 2.1: Example of a refining flowsheet of a simple refinery. Adapted from Wauquier (1995). 

 

Since the simple refinery was no longer suitable to the market, a rapid growing of 

petroleum industries was visualized. The implementation of new units as the vacuum 

distillation, the catalytic cracking and/or hydrocracking of the vacuum distillate and the 

visbreaking were one of the main factors that helped refineries in the production of more 

gasoline and distillates. With this, refineries could answer the markets demands for other 

petroleum fractions. Consequently, there was a decrease in the demand of residual fuel oils 

which production passed from 40-50% to 20-25% of crude. Although, with this type of 

conventional refineries it was notorious an increase in the content of pollutants like sulfur, 

nitrogen and metals (Wauquier, 1995; Decroocq, 1997; Hsu et al., 2006). This increase of 

pollutants, which did not respect the environmental regulations, could be related to the 

absence of process responsible for: i) lowering the sulfur content in gas oil and domestic 

heating oil; ii) the reduction of SOx emissions; and iii) the elimination of lead in gasoline. 

The presence of lead in gasoline was related to the poisons that contaminated the active 
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metal of the catalytic converters used to remove carbon monoxide and hydrocarbons from 

automobile exhaust (Wauquier, 1995; Hsu et al., 2006). In Figure 2.2 it is possible to see 

an example of this conventional refinery. 

 

 

Figure 2.2: Example of a refining flowsheet of a conventional refinery. Adapted from Wauquier (1995). 

 

To achieve a solution to respect the environmental regulations and to respect the 

requirements for reformulated gasoline and low sulfur content, the refineries started to 

develop and implement new processes and units, as shown in Figure 2.3. Isomerization, 

etherification (MTBE – methyl-t-butyl ether, ETBE – ethyl-t-butyl ether, TAME – methyl-

t-amyl ether) and alkylation are examples of three units that helped in the reduction and 

elimination of lead in the gasoline. The hydrodesulfurization of the fluid catalytic cracking 

(FCC) feedstock and the hydrodesulfurization of gas oils and domestic heating oils are 

examples of hydrotreating that contributed to the reduction of SOx emissions and to obtain 

products with high quality. In these refineries it become regular to use low sulfur light 
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crude since the conversion of heavy residues was not always made (Wauquier, 1995; Hsu 

et al., 2006). 

 

 

Figure 2.3: Example of a refining flowsheet of petroleum industries. Adapted from Wauquier (1995). 

 

In today’s refineries the great challenge is to convert large quantities of heavy crude oils 

and to reduce the aromatics content. Since the quantities of the light crude oils became less 

available and more expensive, the refineries had to introduce complementary conversion 

processes to transform the heavy crude oils into specific sets of refined products to meet 

the market demands. These heavy crude oils are generally less expensive and give greater 

yields of lower value higher boiling products, therefore, complex and expensive processes 

have been introduced to convert them into lower boiling products. Units as hydrocracking 

and catalytic cracking have their high importance in the production of diesel motor fuel 

and gasoline, respectively. Other new processes as the alkylation, polymerization, 

isomerization and the dehydrogenation of n-butane may have greater importance. The 

growing of the refineries depends on the type of the used crude oils, light crude oil or 
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heavy crude oil, on its costs, the market demands and on the final product specifications. 

To remain viable, to meet the markets demands and every crude supplies, the refineries 

need to be constantly adapt and upgrade. As a result, the simple refinery, highly dependent 

on local markets, responsible to prepare feedstocks for petrochemical manufacture, for the 

production of industrial fuels, large quantities of unfinished oil, desulfurized distillated 

fuels and high octane gasoline, upgrade to the most versatile conversion refinery. This 

conversion refinery besides all the bases units that already exist also incorporates new 

conversion processes, new solvent extraction processes for manufacturing lubricants and 

petrochemical units to recover propylene, benzene, toluene, and xylenes. Consequently, an 

increased in the yields and quality of the refined petroleum products is notorious 

(Wauquier, 1995; Decroocq, 1997; Hsu et al., 2006; Speight, 2006). Figure 2.4 represents a 

possible flowsheet of a today’s refinery. 

 

The intention of the flowsheets presented is to give an idea about the growth and 

development of new processes in refineries. However the refineries are not all the same, 

there are many different things that differentiate them, as the location, history and markets 

drivers. Each refinery has its own flowsheet that depends on the refinery goals. There are 

some refineries more interested in the production of gasoline whereas other refineries are 

more oriented toward the production of middle distillates such as jet fuel and gas oil. 

Besides all the differences, most refineries perform the same basic operations presented in 

Table 2.2. 

 



 

 

 

Figure 2.4: Example of a possible today’s refining flowsheet (Speight, 2006). 
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2.2.1. Crude Oil Refining in Portugal  

Galp Energia S.A. is an example of a company operating with a modern petroleum 

refining. Galp Energia S.A. is responsible for the exploitation and production of crude oil 

and natural gas, for the refining and distribution of petroleum products, for the distribution 

and sale of natural gas and generation and commercialization of electricity (Galp Energia, 

2010a). It has a capacity of refining 330 thousand barrels per day of crude oil. Galp 

Energia is divided into two refineries, Matosinhos refinery (Figure 2.5) which has a 

110000 bbl/day (barrel per day) distillation capacity and Sines refinery which has a 

distillation capacity of 220000 bbl/day. These two refineries working together in a 

coordinate and integrate way are responsible for the normal supply of fuels, base oils, 

aromatics, asphalt and other products needed in different sectors of activity including 

aviation, marine transportation and lubricants industry (Galp Energia, 2010a; Galp 

Energia, 2010b; Galp Energia, 2011b). 

 

 

 

Figure 2.5: Matosinhos refinery - Galp Energia S.A. (Galp Energia, 2010b). 
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2.2.2. Matosinhos Refinery 

Matosinhos refinery, located in the north of Portugal, started operating in 1969. It is an 

example of a modern refinery presenting different units and processes, incorporating most 

of the processes presented in Figure 2.4. Matosinhos refinery doesn’t have a hydrocracking 

and catalytic cracking but produces and sends the feedstocks for these units located at 

Sines refinery. One of the goals of Matosinhos refinery is to increase the production of gas 

oil due to the implementation of two new units as the vacuum distillation and the 

visbreaker unit. With these units the refinery has now the ability of processing different 

heavy and light crude oils and is prepared to receive acid crude oils. In addition, to 

improve the environmental performance other units responsible for the treatment of acid 

water and for sulfur recovery were implemented (Figure 2.6). Moreover, to reduce the 

environmental impact and to obtain a more energetically efficient refinery a new 

cogeneration unit is implemented (Galp Energia, 2010b; Galp Energia, 2010c; Galp 

Energia, 2011b). 

Today, Matosinhos refinery has a storage capacity of 1.78 million m
3
, approximately, of 

which 649000 m
3
 are for different crude oils and 1.132 million m

3 
are for intermediate and 

final products. It is responsible for the production of fuels (3700000 ton/year), base oils 

(150000 ton/year), aromatics and solvents (440000 ton/year), lube oils (1500 ton/year), 

paraffins (10000 ton/year), bitumen (150000 ton/year) and sulfur (10000 ton/year). 

Besides, it is responsible for the production of important raw materials (e.g. chemical 

naphtha, base oils, aromatic solvents, fuel oils, etc.) for other important industries as the 

chemical, petrochemical, plastics, textiles, fertilizers and paints. The production of all these 

different products are only possible due to the existence of different and complex 

operations that are performed in different process units, integrated in five different 

factories (Galp Energia, 2010b). These factories are: 
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1. Lubes plant - in this area the main purpose is the production of lubricating oils and 

greases from paraffinic base oils;  

 

2. Aromatics plant – consuming reformate, which is its principal raw material, this factory 

is responsible for the production of important raw materials for other industries as 

petrochemical; 

 

3. Base oil plant – production of base oils and other products like paraffins and bitumens 

using the Arabian light crude oil as raw material; 

 

4. Fuels plant – using crude oil as raw material it is responsible for the production of a 

great variety of fuel products, some of them used as raw materials for the aromatic and 

solvent plant. Some of the intermediate and final products produced at this plant were the 

base to develop this project. 

 

5. Utilities plant – this part is very important in the correct operation for all other factories 

since it is responsible for the production and distribution of energy and utilities. Without 

the utilities plant the refinery doesn’t operate. As visualized in Figure 2.6, in the flowsheet 

of Matosinhos refinery the facilities of the utilities plant (thermoelectric plant, treatment of 

boiler water, water cooling system,…) are not evident. 

 



 

 

 

Figure 2.6: Flowsheet of Matosinhos refinery (Galp Energia, 2011c). 
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2.2.3. Fuel Plant 

The fuel plant of Matosinhos started its activity in 1969. It has a distillation capacity of 

12000 ton/day and it produces different fuels important in the market, raw materials for the 

aromatic and solvent plants and other products that are feedstock to the cracking unit of 

Sines refinery. These products are obtained due to the existence of a great variety of 

processes at the fuel plant, such as physical separation, chemical treatment and conversion 

processes as the conversion of the molecular structure of certain hydrocarbons families. 

The fuel plant, shown in Figure 2.7, is composed of a large set of unit processes which uses 

crude oil as the main raw material (Galp Energia, 2011a). Initially, crude oil was subjected 

to an atmospheric distillation (3000 unit
1

) where the separation of the different 

hydrocarbons were promoted by heating, cooling and separation under specific 

temperature and pressure conditions. The atmospheric distillation was fed by a mixture of 

different crude oils with different characteristics with the idea to optimize and adjust the 

production to the market needs. As these obtained products do not meet the necessary 

specifications to be marketed they are subsequently treated in different units passing 

through separation and conversion processes until commercial products are obtained. After 

the atmospheric distillation, the intermediate products obtained were processed to obtain 

the following final products: 

 

1. Gases. The light fraction resulting from the atmospheric distillation after treatment 

(3600 unit) is separated in a fuel gas and LPG stream. Before the production of fuel gas, 

the light fraction is sent to the 1500 unit for an acid gas treatment. This unit is responsible 

for the extraction of the sulfide gas (H2S), in several gas streams, by an absorption 

processes using diethanolamine (DEA). The obtained sulfide gas is then sent to the unit 

responsible for the sulfur recovery (3800/10800 unit) and the fuel gas is sent to the fuel gas 

system in the refinery. Relatively to the LPG stream it is separated in commercial propane 

and butane; 

                                                           
1
 Unit is referred as a unit process which comprises the fuels plant. As visualize in Figure 2.7 each process is 

characterized by a different number. 
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2. Light gasoline. The light gasoline is sent to the gas oil/ hydrodesulfurization unit (1400 

unit), to reduce the sulfur content. In this unit (1400 unit), a treatment with hydrogen and 

in the presence of an appropriate catalyst is necessary for the extraction of these 

compounds. After the treatment, the light gasoline can be used in the production of other 

products; 

 

3. Heavy gasoline. With the intention to remove the sulfur compounds, the heavy gasoline 

is sent to the 1200 unit. In this unit a catalytic conversion of some compounds as sulfur, 

oxygen, nitrogen and other contaminants occurs, after which they are removed. This only 

occurs under an atmosphere of hydrogen and in the presence of an appropriate catalyst. 

The products obtained in this unit are heavy gasoline desulfurated, the light gasoline and 

gas. The heavy gasoline goes to the platforming unit (1300 and 3300 unit), the light 

gasoline goes to the gas oil/ hydrodesulfurization (1400 unit) while the gas flows are sent 

to the treatment unit (1600 unit). In the platforming unit the idea is to increase the octane 

number of the heavy gasoline. For that, the heavy gasoline desulfurated is blended with a 

gas stream rich in hydrogen and passes, due to the existence of a catalyst, by different 

chemical reactions. A gas rich in hydrogen, a mixture of propane and butane and a gasoline 

with a high octane number (reformate) are obtained in this unit. The reformate is then used 

as feedstock to the aromatic plant and as blending in gasoline; 

 

4. Petroleum. After being obtained, petroleum atmospheric derived from the atmospheric 

distillation and from storage is sent to the 1400 unit (gas oil/ petroleum 

hydrodesulfurization) for treatment. The main feedstock of this unit is a mixture of gas oil 

and petroleum which passes through a desulfurization process with hydrogen. The final 

product is used as blending for gas oil. Besides that, in this unit it is possible to treat the 

White-Spirit, a product from the base oil plant, that is widely used in other industries as 

those of paints, solvents and resins; 
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5. Gas oil. With the intention to reduce the quantity of sulfur, the gas oil is sent to the gas 

oil desulfurization unit (3700 unit). For that the gas oil passes through a 

hydrodesulfurization process in the presence of hydrogen and an appropriate catalyst. 

Although, gas oil can also be sent to the 1400 unit; 

 

6. Residue from the atmospheric distillation unit. To increase the conversion of the 

heaviest fractions with lower commercial value, the residue from the atmospheric 

distillation unit is sent to the vacuum distillation unit (10000 unit). Here the atmospheric 

residue, which comes from the atmospheric distillation and from storage, is processed at a 

lower pressure than the atmospheric one. Heavy vacuum gas oil (HVGO), medium vacuum 

gas oil (MVGO), light vacuum gas oil (LVGO) and vacuum residue are the products 

obtained after the vacuum distillation. Normally, HVGO can be used as feedstock of a 

catalytic cracking or of a hidrocracking unit. The MVGO is mixed with HVGO and then 

sent to storage while the LVGO can be used as feedstock in the gas oil desulfurization unit 

(3700 unit). The residue from the vacuum distillation unit goes to the visbreaker unit 

(10100 unit). The visbreaker unit is used for increasing the conversion of the heavier 

fractions into light fractions such as gasoline and gas oil and to decrease the viscosity of 

the residue from the vacuum distillation unit. For that, a thermal cracking process taking 

into account the temperature and the residence time is used. 

 

With the description of all processes necessary for the production of final products with 

commercial value it is possible to conclude that crude oil needs to pass through different 

physical-chemical operations, with high complexity, to be used by the end consumer. It is 

this complexity that gives a refinery its very own characteristics and potentialities.  

From all the processes which were presented from the fuels plant, the vacuum (10000 unit) 

and visbreaker (10100 unit) units are considered the most important for this project as the 

main idea is to analyse the products obtained when upgrading the “bottom of barrel”. 

 



 

 

 

Figure 2.7: Flowsheet of the fuels plant of Matosinhos refinery (Galp Energia, 2011a). 
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2.3. Upgrading the “Bottom of Barrel” 

Nowadays, the great challenge for the crude oil refining industry is to refine large 

quantities of heavy crude oils and to transform them into specific sets of refined products 

to meet the market demands (Wauquier, 1995). This means that all crude mixtures should 

be converted from heavy fractions to light distillate products in multiple complex refining 

steps, including distillation (atmospheric and vacuum distillation), catalytic cracking, 

hydrocracking, coking (Altgelt et al., 1994) and other processes as previously stated. 

Vacuum distillation and visbreaking are processes used to convert the heavy fractions or 

residues to light distillate products. These heavy fractions, called bottom-of-the-barrel, 

gained significant importance due to the increase in competitiveness in the markets, the 

continual increase in the crude oil prices, the increase into the global energy consumption 

and the demand for transportation fuels.  

 

2.3.1. Vacuum Distillation  

The vacuum distillation unit receives the residue from the atmospheric distillation unit to 

recover additional distillates. This distillation occurs under high vacuum conditions in a 

vacuum column where very low pressure is guaranteed (Jones et al., 2006). One of the 

main advantages of this distillation is that it allows the distillation of the residue using 

lower temperatures comparing with the atmospheric distillation. At these temperatures, the 

thermal cracking of the components does not occur as easily, although if occurring, it can 

lead to the formation of coke and olefinic products (Jones et al., 2006). The presence of 

coke is undesirable due to coke deposits formed in the pieces of equipment and piping, 

which reduces the process unit run-time and increases the maintenance costs.  

A typical vacuum distillation includes a preheating system, a furnace, a vacuum column, a 

top system, an amine absorber and a tempered water system (see Figure 2.8). With the 

preheating the residue from the atmospheric distillation unit reaches the adequate 

temperature before entering in the furnace. At the furnace and, before to be sent to the 

vacuum column, the heating and the vaporization of the residue occur. When the residue 

goes to the flash zone, in the column, to ensure maximum distillate yield, the temperature 

should be higher and the pressure lower (Speight, 2006). The acid gas is cooled to remove 
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the water from the condensate hydrocarbons and subsequently sent to the amine absorber 

to produce the off-gas stream which is then sent to the furnace. The obtained liquid 

fractions are the light vacuum gas oil (LVGO), medium vacuum gas oil (MVGO), the 

heavy vacuum gas oil (HVGO) and the vacuum residue. In Matosinhos refinery the LVGO 

can be used as cutter stock of fuel oil or it can be sent to the gas oil desulfurization unit. 

The MVGO and HVGO are sent together to storage or can also be used as cutter stock of 

fuel oil. The residue from the vacuum distillation unit is the raw material of the visbreaker 

unit (Galp Energia, 2011a). 

 

 

Figure 2.8: Example of a vacuum unit (Galp Energia, 2011a). 

 

2.3.2. Visbreaker Unit 

The visbreaking is an example of a thermal cracking process, with moderate severity, 

which contributes to the reduction of the pour point of a waxy residue and to the reduction 

of the viscosity of the residue from the vacuum distillation unit and other similar fractions 

for values that allows its use as a fuel oil component (Singh et al., 1990; Speight, 2006). 

Besides residual fuel oil, gas, naphtha and gas oil are also formed with the thermal 

decomposition of hydrocarbons (Jones et al., 2006; Joshi et al., 2008). 
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A typical visbreaker unit includes a furnace, a reactor (for example a “soaker” reactor) and 

a fractionation column (Meyers, 2004) (see Figure 2.9). The feed, the residue from the 

atmospheric or vacuum distillation units, is preheated and partially cracked in the 

visbreaker unit. Then, the feed is sent to the reaction section which is constituted by a 

heater and a soaking drum. In the heater a mild thermal cracking process occurs where the 

severity can be controlled by the temperature level. In the soaking drum, a reaction time is 

provided to obtain the desired conversion. Normally an extra residence time is provided 

with the intention to have a heater operating at lower temperatures, thereby saving on fuel 

consumption. However, it is important to have in attention that with these conditions a 

decoking operation may occur, here the solution is to have the appropriate equipment or a 

good practice in coke removal and handling. Afterwards, the effluent of the reaction 

section is sent to the fractionation column where the separation of the products occurs, 

taking into account its boiling point. Naphtha, gas, gas oil and residue are the products 

obtained in the visbreaker unit (Galp Energia, 2011a). Sometimes, when the idea is to 

reduce the quantity of lighter cutter stock which is mixed with the visbroken residue to 

meet viscosity specifications, instead of removing the gas oil as a product it can be 

integrated with the visbroken residue. Thereby, naphtha, gas and residue are the only 

products obtained from this unit. The visbroken residue is used to produce the fuel oil 

(Simanzhenkov et al., 2003). 

The visbreaker severity is determined by the stability of the fuel oil produced from the 

blending of cutter stock into the visbroken residue. The fuel oil stability can give an idea 

relatively to the blending of fuel oils without the occurrence of asphaltenes precipitation 

(Dente et al., 1997). The stability and compatibility of the visbroken residue can be affect 

by the chemical nature of the residue from the vacuum distillation unit (Somov et al., 

1999). An aromatic residue from the vacuum distillation unit is preferred to a paraffinic 

one, once the aromatic ones have high solvent power and contribute to the stability of the 

visbroken residue.  

During visbreaking process there are some reactions that may occur, namely, cracking 

reactions, dehydrogenation, cyclization, aromatization, condensation, among others 

(Meyers, 2004). With these reactions: i) the paraffin chain suffer C-C splitting reactions, 

which contributes to the reduction in their carbon number, normally from 50 to 30 carbons 
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in saturates, and in the formation of olefinic molecules; ii) some aromatics and resins 

compounds go through dealkylation reactions suffering a reduction in chain length and in 

the quantity of naphthenic rings, while other compounds undergo condensation reactions 

resulting in carbon number increasing; iii) it is possible that resins undergo substitutive 

addition reactions but when the residence time is shorter, in visbreaking, these reactions 

can be ignored; iv) asphaltenes undergo dealkylation and condensation reactions; and v) 

the quantity of corrosive compounds (carboxylic and naphthenic acids) is reduced due to 

the existence of decarboxylation reactions (Dente et al., 1997; Joshi et al., 2008; Kulkarni 

et al., 2010; Zhang et al., 2010). Summarizing, during these reactions there is a reduction 

in the saturate and resin contents, an increase in the aromatic content and an increase in 

asphaltene content (Somov et al., 1999). 

The reactions, previously referred, strongly depend on the main operative variables of the 

visbreaker unit as the temperature, pressure and the residence time. Normally small 

pressures and higher temperatures contribute to the formation of low molecular weight 

compounds, olefinic hydrocarbons with two to four carbons, due to the favoured reactions 

in gaseous phase. When using higher pressures and moderate temperatures the thermal 

decomposition is smaller and in these cases the formation of products presenting a 

distillation similar to the distillation of gasoline and gas oil is predominant. The existence 

of higher residence time contributes to the formation of coke due to the occurrence of 

condensation and polymerizations reactions. Moreover, using higher residence time and 

smaller temperatures also contributes to higher yields of coke. Relatively low temperatures 

and moderate residence times are very important to reduce coke formation, but essential to 

have the desired conversion and a unit working for a desired time (Speight, 2006). The 

most favourable is to have a visbreaker unit working with an adequate severity, this means, 

good conditions that do not compromise the stability of the visbroken residue, do not 

contribute to the formation and deposition of coke in pipelines and equipments and to 

obtain a significant amount of distillates. 



 

 

 

 

 

 

Figure 2.9: Example of a vacuum – visbreaker unit (Galp Energia, 2011a).
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2.4. Crude Oil Derivatives 

Between all products obtained from the vacuum and visbreaker units, LVGO, HVGO and 

fuel oil are considered in this project (see Figure 2.10). Since fuel oil is a final product it is 

very important to control its characteristics and quality. Producing fuel oil with the correct 

specifications and without having product loss is one of the goals of the refinery. The 

characterization of LVGO and HVGO is considered very important to control the right 

operation of the vacuum column. Since the residue from the vacuum distillation unit 

cannot be sampled at the Matosinhos refinery, the analysis of these two streams will be 

very important to understand and control the unit operation. 

 

 

 

Figure 2.10: Flowsheet of the vacuum and visbreaker unit of Matosinhos refinery. 
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2.4.1. Vacuum Gas Oil (LVGO and HVGO) 

Vacuum gas oil produced by conversion of residue from the atmospheric distillation unit 

includes light vacuum gas oil (LVGO), medium vacuum gas oil (MVGO) and heavy 

vacuum gas oil (HVGO). Vacuum gas oil has a boiling point over 345 ºC with the LVGO 

presenting a boiling point of 345 to 400 ºC, the MVGO of 400 to 430 ºC and the HVGO of 

430 to 540 ºC (Simanzhenkov et al., 2003). Normally, vacuum gas oil is used as feedstock 

to the catalytic cracking unit to be converted to a lower boiling point fractions as jet and 

diesel fuels (Kapur et al., 2005; Speight, 2006). 

 

Light vacuum gas oils is a mixture of 40-49 wt% of saturate compounds, typically 50 

wt% of aromatic compounds and 1-10 wt% of polar compounds. The saturate compounds 

with a carbon number typically from C15 to C30 are mainly paraffins and alkylnaphthenes 

presenting 1 to 4 rings. The aromatic ones are essentially: i) alkylbenzenes, naphthalenes 

and phenanthrenes with or without naphthenic rings; and ii) aromatics with substantial 

amounts of heterocompounds with sulfur. Relatively to the polar compounds, they are 

referred as compounds presenting nitrogen or/and oxygen. LVGO is characterized as more 

aromatic, when compared with atmospheric gas oil, due to have a higher molecular weight 

and higher concentration of heteroatoms (Altgelt et al., 1994). 

 

Heavy vacuum gas oils presents a higher molecular weight and higher heteroatom content 

compared to LVGO. Normally, HVGO has a carbon number typically from C20 to C50, 

meaning higher carbon number and longer alkyl chains. HVGO is a mixture of 32 wt% of 

saturates, 58 wt% of aromatics, 10 wt% of polar compounds and small percentages of other 

derivatives. It contains: i) aromatic and polar compounds with 1-3 aromatic rings as well as 

naphthenic rings; ii) heterocompounds types with more aromatic rings; iii) 

heterocompounds bearing several functional groups, such as amides, sulfoxides, carboxylic 

acids and hydroxycarboxylic acids; and iv) some other nitrogen and oxygen compounds. 

Once again, comparing with LVGO, HVGO has an increase in aromatics and polar content 

and a reduction in saturate compounds (Altgelt et al., 1994). 



 

 

CHAPTER 2 
 

36 
 

2.4.2. Fuel Oil 

Fuel oils (also called No. 6 fuel oil, Bunker C oil or residual fuel oil) are produced from the 

distillation residues and/or visbroken residues by blending cutter stocks (Speight, 2006). 

Besides the residual fuel oil, there is another type of fuel oil, the distillate fuel oil. This 

type of fuel oil, which it is vaporized and condensed during a distillation process, is 

characterized for having a definite boiling point range and for the absence of high boiling 

point oils or asphaltic components. However, these two terms are no longer used and were 

replaced by terms referring to the use of fuel oil such as domestic fuel oils, diesel fuel oils 

and heavy fuel oils, once the production of fuel oils have now in attention specific uses and 

can be distillates or/and residuals. The domestic fuel oils, the most used at home, includes 

kerosene, stove oil and furnace fuel oil. Such fuel oils are example of distillate fuel oils. 

The diesel fuel oils, other example of distillate fuel oils, includes diesel oil for diesel 

compression ignition and light heating oil for industrial and commercial uses. Heavy fuel 

oils include all residual fuel oils blended with distillates such as some industrial oils and 

the bunker oils used to fuel ships (Speight, 2002; Speight, 2006). 

Fuel oils are normally used for heating and processing in some power plants, marine 

vessels and industrial furnaces (Simanzhenkov et al., 2003; Nielsen et al., 2008), and in 

steam generation providing mechanical energy that can be used for electrical power 

generation and propulsion (Speight, 2002). They are characterized for presenting a very 

complex composition of different hydrocarbons rich in paraffinic, naphthenic, olefinic, and 

polycyclic hydrocarbons as asphaltenes and for presenting a higher quantity of impurities, 

compared with distillate fuels. It is possible to find in their composition other compounds 

as sulfur, nitrogen and heavy metals such as nickel and vanadium (Simanzhenkov et al., 

2003; Nielsen et al., 2008). One of the problems associated with fuel oils is normally 

related with the specifications that it needed to respect, as example, sulfur content due to 

environmental implications, the viscosity due to transportation and storage and the carbon 

residue due to carbon formation and deposition under thermal conditions (Speight, 2002; 

Simanzhenkov et al., 2003). The difficulty is to find out what are the best cutter stock that 

can be blended with the visbroken residue to obtain a homogeneous, stable residual fuel oil 

that respects the specifications. There are different cutter stocks that can be used, e.g. 

kerosene, light cycle oil (LCO), visbroken gas oil and LVGO, but it is important to have in 
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attention its nature. An aromatic cutter stock is preferred over a paraffinic one that 

decreases fuel oil stability. 

 

2.4.3. Physical-Chemical Characterization of Petroleum Fractions 

As previously mentioned during the conversion of petroleum into petroleum fractions, 

LVGO, HVGO and fuel oil, there are many processes and reactions occurring. In detail, 

there are some large molecules breaking into smaller ones, there are heteroatoms that have 

to be removed and there are the hydrogenation of aromatic compounds and cracking 

reactions of naphthenes into paraffins and isoparaffins occurring. Concluding, there is a 

need to routine control composition of these heavy fractions to obtain knowledge of 

constituent components, information about the molecular level composition of the product 

and its effect on performance properties. This kind of information can improve refine 

operations, even contribute to the preservation of precious resources, minimize energy and 

contribute to the reduction of pollution problems. Besides the difficulty associated with the 

composition analysis, due to the complex and heterogeneous mixture that characterized 

these fractions, the potential benefits obtained are even greater. The main limitation 

associated with these heavy fractions, as previously mentioned, are the complexity of the 

mixture characterized for having thousands of compounds, hydrocarbons and 

heterocompounds, ranging in carbon number and relative quantity. For this reason, it is 

expected that each heavy fraction presents different compositions, and in consequence, 

different physical-chemical properties. Density, kinematic viscosity, pour point, carbon 

residue, sulfur content, among others, are some examples of properties that are important 

to describe, analyse and evaluate (Wauquier, 1995). Normally these properties are obtained 

taking into account ASTM methods and other traditional tests (Table 2.3). 

 

 

 

 



 

 

CHAPTER 2 
 

38 
 

Table 2.3: ASTM methods and other tests used in the characterization of petroleum fractions. 

Petroleum Fraction Properties ASTM method 

LVGO 

Density (g/cm
3
) ASTM D1298 

Sulfur content (% m/m) IP 336 

Kinematic viscosity (cSt) ASTM D445 

ASTM distillation (ºC) ASTM D86 

Flash point (ºC) ASTM D93 

HVGO 

Density (g/cm
3
) ASTM D1298 

Sulfur content (% m/m) IP 336 

Kinematic viscosity (cSt) ASTM D445 

Carbon residue (% m/m) ASTM D4530 

Vanadium ASTM D1548 

Nickel IP 285 

ASTM distillation (ºC) ASTM D1160 

Flash point (ºC) ASTM D93 

Fuel Oil 

Density (g/cm
3
) ASTM D1298 

Kinematic viscosity (cSt) ASTM D445 

Sulfur content (% m/m) IP 336 

Flash point (ºC) ASTM D93 

P-value SMS 1600 

Carbon residue (% m/m) ASTM D4530 

 

 

1. Kinematic viscosity 

The kinematic viscosity in fluid, expressed in centistokes (cSt), is a measure of its 

resistance to flow. The kinematic viscosity depends on the temperature and when the 

temperature increases the kinematic viscosity decreases. The decrease in kinematic 

viscosity, when the temperature increases, may be related to the energy that the fluid 

molecules have to create a hole in the liquid contributing to their movement in or out of the 

liquid. The kinematic viscosity also depends on the composition of the sample in analysis, 

e.g. depends on the heteroatom content, the aromatic ring condensation and the interactions 

that may occur. As example, a paraffinic fraction normally is characterized for having low 

viscosity due to the lower interactions occurring even in fractions with a high boiling point 

(Altgelt et al., 1994; Simanzhenkov et al., 2003). The analysis of the kinematic viscosity 

data can give important information relatively to fuel transfer, storage and other that 

contributes to an efficient combustion (Speight, 2002). 
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2. Density 

Density is a very important property used when it is desirable to make conversions 

between mass (weight) and volume measurements. This property, very easy to measure, 

can be a good indicator of fuel quality and, moreover, it can be correlated with aromaticity, 

naphthenicity and paraffinity. On the other hand, this propriety is applied in product 

control, e.g. this is not a property that is used to evaluate the performance of the product 

but it is used in the product control and in the weight-volume relationship. Normally, this 

property, expressed in g/cm
3
, is determined at standard temperatures, 15 or 20 ºC (Speight, 

2002). 

 

3. Carbon residue 

Carbon residue is defined as an indicator of coking propensity. It provides information 

relatively to the tendency of hydrocarbons that have difficult combustion characteristics, 

e.g. the amount of coke or carbonaceous type deposits that can be formed during exposure 

to thermal effects. Normally there is an increase in the amount of deposits during 

combustion process in cases where the quantity of carbon is higher and consequently its 

burning is hard. There also exist a correlation between carbon residue and H/C ratio. The 

smaller the H/C ratio the higher the percentage of carbon residue (Simanzhenkov et al., 

2003). 

 

4. Flash point 

Flash point can be defined as the temperature needed for the vapors of a fuel ignite when a 

test flame is applied. This property gives important information relatively to safety during 

storage, transportation and contamination by more volatile products. The presence of 

contamination normally leads to a lower flash point than expected. For fuel oil, the flash 

point has to be more than 60 ºC (Speight, 2002). 
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5. Sulfur content 

Sulfur content normally is related with crude oil origin and with the refining process. 

During combustion process and in the presence of an excess of air, temperature and 

pressure, sulfur is converted into sulfur oxides as sulfur dioxide (SO2) and sulfur trioxide 

(SO3). These sulfur oxides in the presence of humidity are responsible for the formation of 

sulfurous acid (H2SO3) and sulfuric acid (H2SO4). However, these acids are undesirable 

due to corrosion problems. For these reasons, the use of fuels with high sulfur content can 

contribute to the development of corrosion problems as equipment damages, air pollution 

and acid water due to the emission of SOx in the atmosphere, contamination of the catalyst 

and are toxic (Speight, 2002; Simanzhenkov et al., 2003). These problems were the 

reasons for the development of new processes and technologies to decrease the sulfur 

content and sulfur emissions. 

 

6. Metal content 

Normally, vanadium and nickel are the most commonly found in some heavy fuel oil 

molecules such as in the asphaltenes. With combustion processes it is possible to find some 

vanadiumoxides. The existences of double oxides/sulfates with sodium are the most critical 

problem. Currently, there are some additives and treatments that can be used to prevent the 

existence of these compounds in high quantities (Simanzhenkov et al., 2003). 

 

7. Pour point 

Pour point is described as the lowest temperature at which an oil will continue to flow 

when it is cooled under specified standard conditions. In the indication of the pour point of 

an oil, it is very important to know the temperature that is achieved to transfer the oil from 

one place to another and even in storage conditions. When the oil is kept at a temperature 

below of its pour point it is possible that wax crystallizes. The presence of wax can lead to 

the obstruction of filters and can be deposited on heat exchangers. However, even when the 

pour point specification is met, it is possible that wax settling occur. For this reason and 
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when there are large changes in temperature it is very important to pay attention to diesels 

with a higher heavier n-paraffins content (Speight, 2002; Simanzhenkov et al., 2003). 

 

8. Peptization value (P-value) 

The P-value method describes a way for quantifying the intrinsic stability of the 

asphaltenes in a fuel oil. The stability of asphaltenes depends on its own nature and on its 

chemical environment such as on the aromatic content and on the molecular mass of the 

asphaltenes. Incompatibility and instability of fuel oils usually results from the 

precipitation of the asphaltenes. Asphaltenes are the molecules in crude oil containing 

higher concentrations of detrimental compounds, such as, vanadium, nickel, sulfur and 

nitrogen. They have a negative effect in the production, transportation and oil processing, 

and consequently the elimination of these molecules is one of the main objectives of the 

refineries. This method is not only useful to analyse the stability/instability between fuel 

oils, as it is a way to analyse the effect of the addition of cutter stocks to visbroken residues 

in order to reduce the viscosity. An aromatic cutter stock that contributes to keep the 

asphaltenes dispersed provides a good stability reserve.  

 

9. Distillation  

The distillation is one of the most important separation processes considered as an 

alternative way to determine boiling ranges of refined products using smaller samples and 

smaller operation times. It consists in the separation of individual hydrocarbons taking into 

account differences in their boiling point (Altgelt et al., 1994). Distillation characteristics 

of hydrocarbons give important information relatively to their safety and performance, 

especially in the case of fuels and solvents. Information on the boiling point range is very 

useful to understand the composition and behaviour of the samples during storage and use, 

while the rate of evaporation plays an important role in the application of different solvents 

(ISO Standards 3405, 2011). 
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2.5. Final Remarks 

The implementation of new processes to increase the production of products with high 

commercial value and to take advantage of the heaviest part of crude oil, the residuum, 

contribute to the formation of vacuum gas oil (HVGO and LVGO) and fuel oil. The 

vacuum gas oil is used as feedstock to other process units to be converted to a lower 

boiling point fraction, as jet and diesel fuels, while the fuel oil is a final product used for 

heating and processing in some power plants, marine vessels and industrial furnaces and in 

steam generation providing mechanical energy that can be used for electrical power 

generation and propulsion. The characterization of these heavy fractions is a challenge due 

to its complex mixture rich in thousands of compounds. Furthermore, the knowledge of 

such composition can be very useful in controlling the process and in the production of 

final products with desirable characteristics. For such characterization different ASTM 

methods and other traditional tests are used. 
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2
 The contents of this chapter were adapted from Silva, S.L., Silva, A.M.S., Ribeiro, J.C., Martins, F.G., Da Silva, F.A., 

Silva, C.M., 2011. Chromatographic and spectroscopic analysis of heavy crude oil mixtures with emphasis in nuclear 

magnetic resonance spectroscopy: A review. Analytica Chimica Acta 707 (1–2), 18-37. 

The characterization of crude oil fractions can be done by different techniques, such as gas chromatography 

(GC), high performance liquid chromatography (HPLC), thin layer chromatography (TLC), infrared (IR) 

spectroscopy, Raman spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry 

(MS). Nuclear magnetic resonance spectroscopy is the chosen technique due to its capability to provide 

information in the chemical nature of individual types of hydrogen and carbon atoms in different and complex 

mixtures of crude oils. The progress made in the interpretation of the NMR spectra with the development of 

new NMR techniques can give relevant information about the identification and characterization of 

hydrocarbons and their physical-chemical properties. These progresses can improve the refining industries 

operation as a result of better knowledge on the petroleum composition that is fed in the refining process, as 

well as in the prediction of better operating conditions to obtain refined products with desired specifications and 

in quantities desirable to meet the markets demands. The improvement in the refining operation conditions are 

reflected in economic benefits. 
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3.1. Chromatographic and Spectroscopy Characterization of Petroleum 

Fractions 

There are different methods classifying the chemical compounds present in petroleum 

which allows to draw some conclusions concerning their properties. Until now most of the 

methods used to analyse petroleum fractions are chromatographic methods, like gas 

chromatography (Beens et al., 2000), high-performance liquid chromatography 

(Boduszynski, 1988), thin-layer chromatography, and some spectroscopic techniques like 

infrared (Sastry et al., 1996), Raman (Ahmadjian et al., 1976), and NMR spectroscopy and 

also mass spectrometry (Boduszynski, 1987). 

 

3.1.1. Gas Chromatography (GC) 

GC is used in the separation and analysis of complex mixtures of many components that 

can be vaporized without decomposition. In the GC technique the sample is carried 

through the column by the moving phase (a gas). The rate taken by the chemical 

constituents of the sample to pass through the column depends on their physical-chemical 

properties and on the interaction with the stationary phase (liquid or solid) of the column. 

The time taken for each compound to leave the column is called the retention time. The 

quantity of separated substances which coming out from the column are detected and 

represented by an electronic signal. These signals are detected by some detectors as the 

flame ionization detector (FIDr), flame photometric detector (FPD) and the thermal 

conductivity detector (TCD), having different sensitivity (smallest quantity of compounds 

in analysis) and selectivity (type of compound). FIDr is very sensitive and selective just for 

some compounds, used in the analysis of organic substances as benzene in gasoline 

according to the ASTM D3606 method (Simanzhenkov et al., 2003). The FPD is used in 

the identification of organic compounds containing sulfur or phosphorus as heavily 

biodegraded spill samples (Butt et al., 1986). TCD is not very sensitive but very selective 

in detecting everything (Speight, 2001) while FIDr is preferred in the analyses of crude oil 

fractions or products (Simanzhenkov et al., 2003). GC studies, using TCD detector, have 

proven that the mixture components are not destroyed during the analysis and just a small 

amount of the material is needed, while in the case of FIDr and FPD detectors the 
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compounds are destroyed (Kenkel, 1994). Beyond FIDr, FPD and TCD there are other 

detectors, as electron trap detector and nitrogen/phosphorous thermo ionic detector, which 

can be used depending on the exactly compound under investigation. In spite of the 

advantages that can be achieved with the GC technique, due to the short time needed to 

make an analysis and the required small amount of sample, it is possible to conclude that 

this method is not widely used for the analysis of heavy crude fractions since all 

compounds analysed by GC must be in the gaseous phase and need to have a boiling 

temperature less than 350 ºC (Altgelt et al., 1994; Simanzhenkov et al., 2003). The 

problem is that only the light fractions, as gasoline, kerosene and gas oil, have a boiling 

point smaller than 350 ºC. For the heaviest ones, as residue, the distillation temperatute is 

much higher, over 350 ºC. This method is rather used when in presence of light (Figure 

3.1) and middle distillates (de Andrade et al., 2010). Moreover, it is also applied to obtain 

the true boiling point distribution of distillates and crude oils. This simulated distillation 

has been developed to simulate the time-consuming true boiling point distillation relating 

the retention time with the distillation temperatures of the hydrocarbon components. 

Example of two standardized methods of simulated distillation are the ASTM D2887 for 

the analysis of gaseous boiling range (ASTM Standards D2887, 2013) and the ASTM 

D5307 for the determination of boiling range distribution of crude petroleum (ASTM 

Standards D5307, 2007). Other examples on the application of GC for the crude oil 

characterization are the ASTM D2163 for the determination of hydrocarbons in liquefied 

petroleum gases and propane mixtures (ASTM Standards D2163, 2007), ASTM D2427 

method to determine the composition of gasoline (ASTM Standards D2427, 2011) and 

ASTM D3606 method for the aviation gasoline (ASTM Standards D3606, 2010). 
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Figure 3.1: Example of a GC chromatogram of a light Nigerian crude (fraction with a boiling temperature smaller than 

343 ºC). Reprinted with permission from Butt et al. (1986). Copyright John Wiley and Sons. 

 

3.1.2. High Performance Liquid Chromatography (HPLC) 

HPLC is characterized by using high pressure to force chemical compounds to pass the 

column (metal tube) containing a stationary phase. This column has very thin particles that 

contribute to an efficient separation. HPLC is an important tool for the analysis of 

compounds that do not present enough volatility to be analysed by GC. Besides the 

similarities between HPLC and GC, there are compounds analysed by HPLC but not by 

GC. A crude with 80% of heavy fractions needs temperatures above 350 ºC to vaporise, 

thus is more efficiently analysed with HPLC than with GC. The possibility to obtain a 

good and efficient separation of heavy oil fractions and a very precise analysis in a very 

short time are the main advantages of HPLC. The main disadvantage of HPLC is that 

depending on the used detector [e.g. UV absorption (UV), refractive index (RI) or 

fluorescence (F)] there are some compounds which are impossible to distinguish. UV and 

F spectrophotometries only detect some species, F only detects fluorescent species while 

RI has the ability to analyse all compounds. However, the RI detectors are less sensitive 

than the UV detectors and strongly dependent on the temperature of the sample (Kenkel, 

1994). HPLC is a chromatography technique scarcely used in the analysis of crude oils 

since the objective is using one technique that provides precise analysis of every 

component in a very short time, like minutes, if possible. When the objective is analysing 
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group of compounds, such as paraffinic, naphthenic and aromatic compounds, HPLC 

continues to be a possibility, but to analyse individual compounds of crude oil the use of 

HPLC is inadequate. Besides that, HPLC does not give precise results when analysing 

hydrotreated and hydrocracked compounds, which present identical boiling point range. 

However, HPLC was used in the identification of molecular types in non-volatile 

feedstocks, in the study of asphaltene fractions aiming to identify molecular species 

(Speight, 2001) and in the identification of aromatic groups (mono, di, tri- aromatics) 

(Pasadakis et al., 2001). HPLC is very important in fingerprinting oils and used in the 

identification of vanadyl compounds (Fish et al., 1984). 

 

3.1.3. Thin Layer Chromatography (TLC) 

TLC like the other chromatographic techniques, GC and HPLC, also has a stationary and a 

mobile phase. Here the stationary phase is silica or alumina placed on a glass, aluminium 

or plastic plate unlike the GC and HPLC where this phase is located in the column. The 

mobile phase is a solvent or a mixture of solvents that are needed to help in the separation 

of compounds. Hexane, tetrachloromethane, benzene, dichloromethane, chloroform, ethyl 

acetate, dioxane, acetone, isobutanol, isopropanol, ethanol and methanol are example of 

some used solvents. The use of mixture of solvents is desirable to ensure the properties 

needed for the chromatographic separation. TLC is an analytical method that can be used 

with other chromatographic and spectroscopic techniques to provide more information and 

analytical data on the isolated compounds. The TLC is used in the separation of mixtures 

and is proven to be faster and to provide better separations. It is also a simpler and an 

inexpensive technique, when compared with the HPLC and GC. It is recommended in the 

analysis of some organic substances. However, TLC is more often used in qualitative 

analysis, and when necessary to identify isolated substances and the structure of the 

compound other precise methods are required. Up to now, precise quantitative analysis 

were not obtained by TLC (Simanzhenkov et al., 2003). TLC is used in the analysis of 

heavy petroleum fractions, applied in the characterization of semi-volatile and non-volatile 

products and in the separation of compounds, such as asphaltenes, which present a high 

boiling point, proving to be simpler and quicker. Advances in TLC as TLC with flame-

ionization detection (TLC-FIDr) have been used when the purpose was to make a 
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distinction between hydrocarbon groups, such as saturates, aromatics and polars ones, in 

heavy oil as shown in Figure 3.2. Although, TLC presents some limitations as the 

impossibility to distinguish between diesel and jet fuel, two very similar products (Speight, 

2006) and to give precise and accurate results. 

 

 

Figure 3.2: Example of TLC-FIDr chromatograms of 500 N VGO cut and its fractions. Chromatogram a) VGO, b) 

extract, c) raffinate, d) wax and e) base oil. Reprinted with permission from Barman (2005). Copyright 2005 American 

Chemical Society.  

 

3.1.4. Infrared (IR) Spectroscopy 

IR spectroscopy is one of the most important techniques that can provide miscellaneous 

information of complex mixtures of compounds, such as information about hydrocarbon 

skeleton and functional groups (e.g. hydroxyl and carbonyl groups). It allows measuring a 

great number of structural parameters like paraffinic and naphthenic character, aromatic 

hydrocarbons and methyl group content and gives information about functional features of 

various petroleum constituents, nature of polymethylene chains and the nature of 

polynuclear aromatic systems. It also contributes to the aging determination of oils related 

to the oxidation of carboxylic acids (Gautam et al., 1998). The main advantage of this 

technique is the possibility to analyse the hydrogen bonding in the crude oil mixture. It is 

possible to say that the IR can give more qualitative rather than quantitative information 
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making impossible to detect some compounds. There is more limitations associate with 

this technique like the overlap that occurs between frequency ranges, which can be 

overcame by the use of NMR spectroscopy. There are some studies in the application of IR 

in the analysis of crude oil fractions (as Figure 3.3), but the implementation of this 

technique is more related with the study of middle distillates. An example is the 

determination of fatty methyl esters (FAME) content in middle distillates (European 

Standard EN 14078, 2009) and of benzene content in motor and aviation gasoline (ASTM 

Standards D4053, 2009), the method of carbon type analysis in lubricating oils (FORD 

Standards EU-AJ 051-01, 2001) and even the identification of chemical species as 

contaminated species (by comparison IR spectra). Another example is the use of IR in the 

study of spilled oils (derivatives from crude), but only in the definition of the chemical 

classes to which they belong, since the use of IR in the characterization and differentiation 

of different classes of hydrocarbons, from different heavy products, is difficult. In this 

case, once again, IR should be combine with other spectroscopic techniques to predict such 

hydrocarbons (Butt et al., 1986). On the other hand, it is possible to use multivariate 

statistical methods, such as the partial least squares regression (PLS) and principal 

component analysis (PCA) to predict properties of the sample in analysis (Aske et al., 

2002) and with this establish correlations, which could be an improvement for online IR. 

As it will be demonstrated in Chapter 5, these multivariate statistical methods were used in 

combination with other spectroscopic technique to predict some petroleum fractions 

properties. 

 

Figure 3.3: Example of an IR spectrum of heavy fuel oil. Reprinted with permission from Butt et al. (1986). Copyright 

John Wiley and Sons. 
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3.1.5. Raman Spectroscopy 

Raman spectroscopy is used to obtain information about the vibrations of molecular bonds 

in the sample and to measure the energy needed to change the ground state of a chemical 

compound. The Raman effect occurs when there is a change in the molecular polarization, 

and can give more complete information than infrared spectroscopy. These two techniques 

are very similar in terms of results and can be used in combination to obtain more 

information about the analysis of petroleum samples (Simanzhenkov et al., 2003). Raman 

spectroscopy is used in the analysis of aromatic and olefinic compounds in hydrocarbon 

mixtures, it does not need a sample preparation and is quicker. This technique is not 

considered the best choice for the characterization of crude oil, due to the weak signal 

obtained in the Raman spectrum. Another disadvantage of using Raman spectroscopy in 

the analysis of crude oil may be related with the natural fluorescence, that leads to the 

impossibility of identifying any signals when hydrocarbon components are irradiated by 

visible lasers (Simanzhenkov et al., 2003). Details of these methods are mostly found when 

applied to light elements as gasoline (as for example registered in Figure 3.4), gas oil, jet 

and kerosene and also when Raman is used in combination with Fourier transform (FT). 

There are some studies on the use of FT-Raman spectroscopy in the determination of the 

octane number (RON), the motor octane number (MON), the pump octane number (pump) 

and the Reid vapour pressure (RVP) (Cooper et al., 1995). 
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Figure 3.4: Example of a Raman spectrum of a gasoline sample. Reprinted with permission from Process Instruments 

(2001).Copyright Process Instrument, Inc.. 

 

3.1.6. Mass Spectrometry (MS) 

MS can give information on the structure of some compounds, for example assigning their 

molecular formula based on the molecular weight, contributing to the identification of 

some compounds or to have an idea about new compounds. There are different MS 

techniques that can be used, such as electron impact (EI), chemical ionization (CI), field 

ionization (FI), fast atom bombardment (FAB), among others. EI-MS (electron impact – 

mass spectrometry) is a technique of major importance and is characterized by the 

existence of a set of electrons with high energy that will contact with the molecules and 

will be responsible for the ionization and fragmentation of these molecules (Kenkel, 1994). 

This technique gives a fragmentation pattern exhibiting both parent ion peaks and 

fragmentation ion peaks, characteristic of each molecular type. The fragmentation is 

normally used to distinguish between isomers of pure compounds and of molecules in 

simple mixtures. For example, in alkyl chains the most pronounced fragments are caused 

by the loss of CH3
˙
, C2H5

˙
 or C2H4

˙
. Four carbons atoms are an example of a fragment that 

is most common in ions of paraffinic chains. Other examples of fragments are those of 
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having C3, C2 and C5. The monoalkylbenzenes are characterized by the fragment of C6H5
˙
. 

Besides these examples, there are others related to monoalkylnaphthalenes, 

monoalkylphenanthrenes, monocyclic alkanes and other molecules (Altgelt et al., 1994). 

Since heavy petroleum fractions are rich in thousands of compounds, it is expected that 

due to such complexity and closely related compounds that the fragmentation patterns 

became crowded and impossible to distinguish. With this, EI-MS is not frequently used in 

the analysis of heavy petroleum fractions. Therefore, the most common type of MS 

techniques used in the analysis of heavy crude oil is the non-fragmenting (NF)-MS, also 

called “soft ionization”. These techniques produce simpler spectra compared with those 

resulting from the fragmentation (Skoog et al., 1997). For example, the hard fragmentation 

of aliphatic hydrocarbons does not follow a given pattern, making very difficult to identify 

these compounds. Sulfur and nitrogen compounds and species with the same chemical 

formula are also difficult to analyse, while other compounds like the aromatics has a good 

behaviour in the final spectra and are easy to identify, especially with “soft-ionization” 

techniques. Recently, the combination of some “soft-ionization” techniques as the low-

voltage electron ionization, electrospray ionization (ESI), field desorption ionization (FDI) 

and atmospheric pressure photoionization (APPI) contributed to the development of FT-

ICR-MS (Fourier transform ion cyclotron resonance mass spectrometry), which was used 

in the analysis of thousands of chemical constituents in heavy petroleum fractions. This 

new technique has already been used, for example, in the analysis of polycyclic aromatic 

sulfur heterocycles in different Arabian crude oils, as shown in Figure 3.5 (Panda et al., 

2007). When the boiling point increases it becomes more difficult to use the MS in sample 

analysis due to the increase in the number of types of compounds and the decrease in the 

concentration of these compounds (Behera et al., 2008). Concluding, aromatic 

hydrocarbons, sulfur and nitrogen compounds are examples of compounds complicated to 

be analysed by MS, and thus, to obtain information about all heavy crude oil fractions it is 

necessary to use this technique conjugated with other complementary techniques. There is 

a possibility to use MS hyphenated techniques, like GC-MS or HPLC-MS. In other words 

a spectral method can be combined with chromatographic methods to exploit the 

advantages of both and obtain better information about the sample in analysis. Besides the 

advantageous that the MS hyphenated techniques can bring, normally a great diversity of 

standards is required, which makes it a very expensive method.  
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Figure 3.5: Example of an ESI FT-ICR mass spectra of condensed thiophenes in different Arabian crude oils. Reprinted 

with permission from Panda et al. (2007). Copyright 2005 American Chemical Society. 

 

3.1.7. Nuclear Magnetic Resonance (NMR) Spectroscopy  

The NMR spectroscopy has been proven to be a very important technique in the study of 

heavy petroleum fractions, considered increasingly as a potential alternative to some 

conventional methods used in laboratories. The problem with the laboratory methods, 

based on traditional techniques, are normally time consuming, quite elaborated and 

expensive if using expensive solvents and instruments (Bansal et al., 1998; Molina et al., 

2007). Regarding these facts, and taking into account that the determination of petroleum 

fraction properties are very important in process monitoring and in controlling the refining 

operation, there is a need to use known technologies to characterize petroleum fractions 

and to especially contribute in the reduction of the time and cost of analysis and also to 

give online information. 

The NMR spectroscopy has gained a prominent place in the study of the chemical 

composition of petroleum and in the characterisation of petroleum fractions. It has been 

demonstrated that its use can provide an analysis in only a few minutes per stream, which 

can be performed in a continuous and online way and has the ability to analyse dark and 

opaque samples, such as crude. It is a rapid and non-invasive procedure, offering great 

analyses in the chemical nature of individual types of hydrogen and carbon atoms, in 

different and complex mixtures of petroleum and in the final products obtained by refining 
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processes (Gautam et al., 1998). The analysis of different types of carbon atoms and 

groups, like CH3, CH2, aromatic and aliphatic CH, aliphatic C and other C (Altgelt et al., 

1994) are possible. Besides the previously mentioned advantages there are other associated 

with this technique including the improvement in the analysis, reduction in the number of 

analysis, reduction in maintenance costs and unique ability to provide all control properties 

with one analysis. 

As mentioned by the Mesures Magazine (2002) the main advantages are the direct relation 

between the measured signal and the total proton concentration and the superior resolution 

of chemical information contained in the signals. In the NMR spectra the functional groups 

of aromatics, aliphatics and olefins are well distinguished, in consequence it is possible to 

distinguish a polynuclear aromatic from a mononuclear aromatic and to identify the 

physical properties by the concentration of aromatics and the chain length of aliphatics. 

Besides these advantages there also exist commercial and operational benefits associated to 

the NMR spectroscopy. The commercial benefits are related to the optimization in the feed 

of refining processes to adjust the production taking into account the market necessity, to 

benefit the attractive price of some crudes and in saving money by using complete systems 

of acquisition analysis in a short time. The operational benefits are to provide a higher 

value in product yields, maximize unit recovery of potential lost, due to instability, and 

improve the performance of downstream units (The Qualion Company, 2006). On the other 

hand, there are some weaknesses associated with this spectroscopic technique like the high 

cost, the risk of magnetic disturbances, requiring magnetic shielding, and the overlap of 

frequency ranges. The overlap continues to make the analysis of the spectra a very difficult 

task. However improvements have been made to oppose these weaknesses as the use of 

some spectral editing techniques (DEPT, GASPE, COSY, etc.). Also the very complex 

information given by NMR spectroscopy requires a statistical approach to correlate the 

spectral data with the characterization of petroleum fractions. The combination of NMR 

spectroscopy with multivariate data methods will be discussed in Chapter 5. 

 

It is possible to conclude that there are some restrictions associate with all 

chromatographic and spectroscopic techniques discussed, making it unrealizable to analyse 

the heavy petroleum fractions. However, the NMR has been suggested as one of the most 
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powerful methods for industrial analysis. Until now, NMR has been used in some refinery 

laboratories with the purpose to determine: i) the content of oil in paraffins and aromatic 

carbon contents of hydrocarbon oils by high resolution NMR (ASTM Standards D5292, 

1999); ii) the aromatic hydrogen and carbon content by high resolution NMR (IP Standards 

392, 1990); iii) the hydrogen content of middle distillate petroleum products by low-

resolution pulsed NMR (ASTM Standards D7171, 2005); and iv) the aromatic carbon 

content of lubricant mineral base oils and middle distillate petroleum fractions by 
13

C 

NMR spectroscopy (IP Standards 499, 2011). Besides the laboratory applications, online 

NMR systems have been used in many refineries around the world applied on the feed and 

products units for control and optimization (Bakeev, 2010). Examples of some applications 

are: i) NMR for gasoline analysis in Australia Caltex Brisbane refinery; ii) NMR to the 

optimization of a crude unit in Petróleos De Venezuela S.A. (PDVSA) - Isla refinery; iii) 

NMR for monitoring the feed, intermediate and final products of a lubricant oil 

manufacturing plant in Livorno, Italy; and iv) most frequently in many other refineries, 

NMR is used in the analysis of feed and cracked products such as light cycle oil on fluid 

catalytic cracking units (Bakeev, 2010). Examples of other applications are related to the 

use of NMR well logging for real-time analysis of rock and fluid properties (Hirasaki et 

al., 2003; Ramos et al., 2009). Here, instead of using the 
1
H or 

13
C NMR spectra, the NMR 

well logging measured both 
1
H relaxation times and diffusion coefficient. This information 

can be useful to distinguish between water, oil and gas content in reservoir fluids as well as 

to analyse the diffusion coefficients, porosity and estimate the oil viscosity, establishing 

differences between light to extra heavy crude oils. Crude oils are characterized for having 

broad relaxation time and diffusivity distributions. The ones presenting lower relaxation 

time are normally associated to a higher viscosity (Hirasaki et al., 2003; Ramos et al., 

2009).  

 

3.2. NMR Spectroscopy - Overview 

The NMR spectroscopy is a method based on the magnetic properties of nuclei and their 

interactions with applied magnetic fields (Gil et al., 2002; Bakeev, 2010). The information 

given by the NMR spectroscopy, for each type of observed nuclei, depends either on the 

electronic environment were the nuclei are immersed and on the positions of the nuclei in 
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the molecules. Therefore, the NMR data is very important to understand the molecular 

structure of the sample as well as the internal and global dynamics of the molecules in the 

sample (Gil et al., 2002). 

The nuclei observable by NMR are those possessing nuclear spin. Protons and neutrons, 

quantum mechanically subatomic particles, have spin. When the number of protons and 

neutrons is equal, it means that when in some nuclei these spins are paired and cancel each 

other out, the nucleus of the atom has no overall spin. Nuclei with an even atomic number 

and even mass number, such as the isotopes 
12

C, 
16

O and 
32

S, are example of some nuclei 

with a spin number equal to zero. However, the number of protons and neutrons is not 

always equal and in many cases the sum of the number of protons and neutrons is an odd 

number, thus contributing to nuclei with half-integer spins. On the other hand, if the 

number of protons and the number of neutrons are both odd, then it gives rise to what is 

called the integer spin. Thus, the spin quantum number,  , can be 1/2, 1, 3/2 and 5/2, this 

is, it can be multiples of 1/2. The proton (
1
H) and carbon (

13
C) are examples of nuclei with 

a spin       (Pavia et al., 1996; Gil et al., 2002; Bakeev, 2010). When the nuclei are 

spinning they possess angular momentum,  , and a nuclear charge which gives rise to an 

associated magnetic moment,   (Equation 3.1), such as: 

 

      (3.1) 

 

where   presents the magnetogyric ratio, a constant for particular nuclei that represents the 

strength of the magnetic moment. When the nuclei, without preferred orientation, are 

placed under the influence of an external magnetic field of strength   , applied in a defined 

direction, an interaction, commonly called the Zeeman interaction, between the magnetic 

moment of the nucleus and the applied magnetic field occurs (Becker, 2000). 

Consequently, the magnetic moments will align themselves relative to the external 

magnetic field into      energy states. Thus, the proton (
1
H) and all other nuclei having 

a spin of      , when placed in a magnetic field, will have two allowed energy states 

that equate to aligning with or against the applied magnetic field (Figure 3.6). However, 

from these two allowed energy states the nucleus can only adopt one, taking up one of the 

two possible orientations with respect to the applied external magnetic field, parallel 
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         or anti-parallel          (Christian et al., 1986; Gil et al., 2002). The 

parallel orientation, the one towards the magnetic field, is more stable while the anti-

parallel orientation, opposed to the applied field, is of higher energy.  

 

 

Figure 3.6: Representation of the possible energy levels for nuclei with spin of      . Reprinted with permission from 

Bakeev (2010). Copyright 2010 John Wiley and Sons. 

 

The magnetic moments cannot align directly along the axis of the applied magnetic field 

due to the torque imposed by the applied field on the magnetic moments. The existence of 

such torque contributes to the circular path of the magnetic moments around the applied 

field direction in a motion referred to as Larmor precession (Jacobsen, 2007). The rate of 

this precession depends on the magnetogyric ratio of the nucleus, which leads to the 

precessing of different nuclei around the applied magnetic field at an angle with different 

angular velocities or Larmor frequencies (Figure 3.7). The rate of the precession can be 

defined by the angular velocity,     (rads
-1

) (Equation 3.2), or frequency,   (Hz) (Equation 

3.3), expressed as: 

 

        (3.2) 

 

  
  
  

 (3.3) 

 

I = - ½  

I = + ½  
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where   is the strength of the nuclear magnetic moment and    represents the strength of 

the external magnetic field. Consequently, the frequency at which a proton precesses is 

proportional to the strength of the nuclear magnetic moment as well as to the strength of 

the external magnetic field. The precession frequency increases with increase of the 

strength of the external magnetic field (Pavia et al., 1996; Gil et al., 2002; Jacobsen, 2007; 

Bakeev, 2010). 

 

 

Figure 3.7: Precession of a single proton around the external magnetic field. Reprinted with permission from Bakeev 

(2010). Copyright 2010 John Wiley and Sons. 

 

When the precession process occurs it is generated an oscillating electric filed with the 

same frequency    . If radiofrequency waves of this frequency are required to the 

precessing proton, the energy can be absorbed and the proton promoted to the less 

favorable higher energy state. This energy transferred from the incoming radiation to the 

nucleus can only be performed when the frequency of the electromagnetic radiation 

applied matches the frequency generated by the precessing nucleus, the Larmor precession. 

When the two fields, the frequency of the applied radiation and of the precession, coincide 

or resonate and the energy can be transferred, the nucleus changes its spin state and 

consequently the nuclear magnetic resonance process occurs (Figure 3.8) (Pavia et al., 

1996; Claridge, 1999). 
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Figure 3.8: The nuclear magnetic resonance process (Pavia et al., 1996). 

 

When considering a collection of similar spin-half nuclei in the applied magnetic field, it is 

verified that, in equilibrium, the distribution of spin population between the two possible 

energy states, the parallel ( ) and the anti-parallel ( ) to the applied magnetic field, is not 

the same. A slight excess of spin population in the parallel direction is found due to this 

level being energetically more favorable. The distribution of the spin population between 

the two energy levels is defined by the Boltzmann distribution as given by Equation 3.4 

(Claridge, 1999; Becker, 2000): 

 

  
  

     
  

  
  (3.4) 

 

with      representing the populations of nuclear spins in the parallel      and anti-

parallel levels     ,   the Boltzman constant and   the absolute temperature. Since the 

energy separation of the spins states is comparatively small and consequently the 

corresponding population differences between both levels are also small, NMR is 

considered to be an insensitive technique relative to other techniques, such as IR and UV 

(Christian et al., 1986). However, the insensitivity of the NMR instrument can be 

overcome with the increase of the operation frequency of the NMR instruments. Thus 

contributing to a larger separation between the energy levels and consequently to higher 
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population difference. These improvements were very important especially to observe less 

sensitive nuclei, such as 
13

C, that is not very abundant, and to improve the signal-to-noise 

ratio of the spectrum (Pavia et al., 1996). The small excess of nuclear spins in the parallel 

state is measured in NMR and is responsible for the NMR signal. The excess of population 

distributed randomly about the precessional cone and parallel to the Z-axis is summed 

together, after the opposing nuclear spins in the parallel and anti-parallel direction cancel 

each other out, in a bulk magnetization vector along the magnetic field M0 (see Figure 3.9).  

 

 

Figure 3.9: Formation of the bulk magnetization vector from the excess spin population. Reprinted with permission from 

Bakeev (2010). Copyright 2010 John Wiley and Sons. 

 

When the sample is irradiated by an orthogonal radiofrequency field, B1, all of the 

magnetic nuclei in the molecule are simultaneously excited. Consequently, the spins, 

oscillating at the Larmor frequency, start to precess around the orthogonal B1 field and, 

after a few microseconds, the net magnetization vector M0 will rotate into the transverse 

(x-y) plane, where it can be electronically detected. This radiofrequency pulse is 

transmitted through a coil surrounding the sample, whose geometry dictates that the B1 

field exists in the transverse plane, perpendicular to the static magnetic field B0 (Pavia et 

al., 1996; Claridge, 1999; Bakeev, 2010). The amplitude and the duration of the 

radiofrequency pulse are responsible for the angle through which the net magnetization 

vector M0 turns. Thus, the magnetization vector M0 reaches the y axis after a 90º pulse 

(Figure 3.10) and consequently, no magnetization vector will be observable along de z 
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axis. With this, after the application of the 90º pulse, the populations of the   and   states 

are equalized, since there is no magnetization along the z axis. However, the net 

magnetization in the x-y plane results from the bunching of the individual spins, which are 

in a phase coherent manner, caused by the radiofrequency pulse applied. On the other 

hand, if the radiofrequency pulse is left on for twice as long, the magnetization vector M0 

becomes oriented along the -z axis, representing a 180º pulse. With the 180º pulse the 

populations of the spin states are inverted and more spins are found in the   state than in 

the   state, to place the bulk vector anti-parallel to the static field. When the magnetization 

vector M0 is oriented along the -z axis no signal is detected. Only magnetization vector in 

the x-y plane is able to induce a signal in the detection coil (Claridge, 1999). 

 

 

Figure 3.10: Representation of the net magnetization vector M0 in the transverse plane after the application of the 90º 

radiofrequency pulse. Reprinted with permission from Bakeev (2010). Copyright 2010 John Wiley and Sons. 

 

As soon as the radiofrequency pulse is turned off, the system will adjust to re-establish the 

Boltzman equilibrium, and the bulk magnetization vector begins to precess around B0 

reducing its intensity along the y axis and simultaneously increasing in intensity along the 

z axis toward its initial value and direction (M0). This return to equilibrium referred to as 

the relaxation is responsible for the NMR signal to decay with time. The decaying signal is 

called as free induction decay (FID) and it is the basis for all NMR data (Claridge, 1999). 

The Fourier transformation (FT) of the FID, of the time domain data, is used to separate 

each of the individual components of the decay signal and convert them to frequencies, 
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giving rise to a frequency domain spectrum (common NMR spectrum) as visualized in 

Figure 3.11 (Pavia et al., 1996). 

 

 

Figure 3.11: Application of the Fourier transformation on the FID. (A) Time domain data, FID, (B) Frequency domain, 

spectrum. Reprinted with permission from Bakeev (2010) Copyright 2010 John Wiley and Sons. 

 

The relaxation process can be divided in two categories, the spin-lattice or longitudinal 

relaxation (relaxation time called T1) and the spin-spin or transverse relaxation (relaxation 

time called T2). The longitudinal relaxation (recovery of magnetization along the z axis) 

corresponds to the re-establishment of the equilibrium of populations and consequently to 

the energy exchanges occurring between the spins and the surroundings (lattice). The 

transverse relaxation (decay of magnetization in the x-y plane) involves energy transfer 

between the magnetized spins. These two relaxation process described are assumed to 

follow an exponential behaviour, occurring simultaneously but as completely separate 

phenomenas. This means, any nonequilibrium longitudinal component will approach M0 

exponentially with time T1 while any transverse component of the magnetization 

experience an exponential decay with time T2 (Christian et al., 1986; Claridge, 1999; 

Jacobsen, 2007). 

After obtaining the NMR spectra, there are some useful parameters that can be extracted in 

order to provide important information for molecular structure characterization. For 

instance in the 
1
H NMR spectra these parameters include: i) chemical shift ( , expressed in 

part per million, ppm); ii) spin-spin coupling pattern (multiplicity); iii) coupling constant 

( ); and iv) signal intensity. 
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Any nucleus in a molecule has an electronic environment which depends on where the 

nucleus is in the molecule and what is attached to it. When the electrons, that surround the 

nuclei, are subject to a strong static magnetic field, the electrons are induced to circulate 

around the applied field. The circulation of the electrons is responsible for the production 

of its own magnetic field that acts in opposition to the applied field. Thus, the effective 

magnetic field experienced by the nucleus results from the effect of the magnetic field and 

the induced magnetic fields generated by the circulation of the surrounding electrons. 

These induced magnetic fields from the electrons are responsible for shielding the nucleus 

from the applied magnetic field. Since, the shielding effect depends on the electron density 

around the nucleus, then the effective magnetic field that each individual nuclei experience 

depends on the chemistry surrounding the nucleus under observation. Thus, in the case of 

proton observation, protons at different sites in the molecule are magnetically shielded to 

different extents depending on their chemical environment and location (neighbouring 

atoms and type of chemical bond). Consequently, each site experiences a different 

magnetic field and has a different position on the NMR spectrum. The position of NMR 

peaks with each peak corresponding to a unique chemical environmental is measured by its 

resonance frequency (expressed in Hz) and it depends on the magnetic field strength and 

on the operating frequency of the spectrometer. Consequently, the position of a NMR 

signal vary from one spectrometer to another as the magnetic field strength changes. 

However, in order to allow consistent comparison of the NMR data, the obtained 

resonance frequencies are: i) normalized using a reference compound (set to 0.0 ppm); and 

ii) divided by the resonance frequency of the spectrometer (in MHz). The resulting 

dimensionless quantity obtained is termed chemical shift     and expressed in parts per 

million (ppm). This chemical shift is independent of the operating frequency of the 

spectrometer (Bakeev, 2010). 

The interaction that occurs between the neighbouring magnetic nuclei with a molecule is 

commonly referred as spin-spin coupling or scalar coupling. This interaction is responsible 

for the splitting of NMR signals into multiplets. The multiplicity of a signal, referred as the 

number of peaks in the split signal, is expressed as      , where   represents the 

number of neighbouring equivalent nuclei and   the spin quantum number. 
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For 
1
H NMR spectra, the peak area (integrated peak area or integral) of the signals is 

directly proportional to the number of equivalent nuclei represented by that peak 

(Jacobsen, 2007). In this context, for quantitative NMR acquisition conditions, it is 

important to allow the spins to fully relax between pulses in order that the observed signal 

intensities will not diminished by incomplete recovery of the magnetization between 

acquisitions. The pre-processing of the NMR spectra is also a fundamental requirement to 

enhance the quantification results. In the next chapter all the pre-processing steps used are 

described. Besides the 
1
H NMR spectra, the most commonly used for quantitative analysis 

of complex mixtures, quantitative 
13

C NMR may also be used in an attempt to obtain 

complementary structural information. Moreover, the use of different nuclides (nitrogen, 

sulfur and oxygen) may be a good choice when the concentration of acidic OH and basic N 

groups are desirable. It will be possible to identify some compounds as ethers, secondary 

amines, thioethers and thiophenes (Snape, 1986). The identification of ethers is a way to 

identify oxygen bonds that may have some impact in some processes, such as 

desulfurization and denitrogenation. From all nucleus presented, 
1
H and 

13
C are the most 

commonly used in the analysis of petroleum fractions. For this reason they were studied 

and applied in this work.  

 

3.2.1. 1
H NMR Spectroscopy 

The natural abundance of 
1
H is 99%, one of the main reasons which allows a proton 

spectrum to be obtained in a few seconds. Generally the proton resonates over a range of 

15 ppm; using a reference compound such as tetramethylsilane (TMS) its chemical shift 

goes from 0 ppm to 15 ppm. The chemical shift of 0 ppm is assigned to TMS. An example 

of a 
1
H NMR spectrum for a fuel oil is presented in Figure 3.12. 
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Figure 3.12: 1H NMR spectrum of a fuel oil. 

 

In a 
1
H NMR spectrum it is possible to identify different types of hydrogens. In a 

petroleum or even in a petroleum fraction these hydrogens can be differentiated in four 

different groups: i) aromatic hydrogen – hydrogens attached to carbons on aromatic rings; 

ii) hydrogens attached to carbons in the α position on the aromatic rings     ; iii) 

hydrogens of methyl groups (CH3) located in the   position and beyond relative to the 

aromatic rings     ; and iv) all other hydrogens – CH, CH2 of chains in the   position and 

beyond, and the CH3 hydrogens in the   position      (Wauquier, 1995; Speight, 2002). 

The percentage of hydrogen for each one of the above groups can easily be determined due 

to the fact that the signal’s area are directly proportional to the number of protons and 

related to the percentage of atoms. This is one of the main advantages of 
1
H NMR 

compared with other spectral analysis methods. With the information that can be taken 

from the 
1
H NMR spectrum it is possible to affirm that the 

1
H NMR spectroscopy is a 

technique which contributes to obtain information about the structural characteristics and 

to estimate the aromaticity factor, molecular weight, average length of some chains and 

other important parameters. 
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3.2.2. 13
C NMR Spectroscopy 

13
C resonates over about 220 ppm. The 

13
C NMR is less sensitive than 

1
H NMR due to the 

lower natural abundance (1.1%) and to the lower gyromagnetic ratio of the C-13 isotope. 

In addition, the resonance of 
13

C nuclei is the most difficult to observe and the carbon 

nuclei have a longer relaxation time comparing to the protons. Even using the Fourier 

transform data acquisition, the acquisition of a 
13

C NMR spectrum can be long and it can 

take hours to be obtained (Pavia et al., 1996). This can be explained by the fact that 
13

C 

nuclei relaxes slower than protons, making a very long relaxation delay between repetitive 

pulses necessary. Moreover, the 
13

C NMR spectroscopy is characterized for presenting a 

very complex spectrum with high multiplicity of the signals. To eliminate these high 

multiplicity that results from the spin-spin splitting due to the protons attached to each 

carbon, the decoupling of the proton must be used. With the decoupling, where all the 

protons in the molecule are irradiated with continuous low power radio frequency energy 

at the proton resonance frequency, the 
13

C nucleus appears as a singlet independently of 

the number of protons attached. This occurs since with the decoupling the 
13

C nucleus only 

sees the average of each proton between the two energy levels. The final spectrum will be 

composed by a set of peaks, one for each carbon, indicating especially the number of 

carbons in the sample (Morrison et al., 1996; Jacobsen, 2007). Figure 3.13 is an example 

of a decoupling 
13

C NMR spectrum of a crude oil. 

 

Figure 3.13: Inverse gate decoupling 13C NMR spectrum of a crude oil (Albecore Crude Oil). 
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The 
13

C NMR spectrum is produced basically by the same way that the 
1
H NMR spectrum 

and the same basic principles are applied. The information given by the 
13

C NMR spectra 

is generically similar as that of the 
1
H NMR spectra. The 

13
C NMR gives information 

related to: i) aromatic CH groups; ii) aromatic carbons substituted by an alkyl chain; and 

iii) condensed aromatic carbons belonging to two attached rings (Wauquier, 1995). 

However, the normally used 
13

C NMR spectrum is not quantitative, this is, the peak areas 

are not proportional to their concentration especially due to the relaxation phenomena 

(Christian et al., 1986). It is for this reason that 
1
H NMR spectroscopy is preferred over the 

13
C spectroscopy in the analysis of mixtures. Although it is possible to acquire a 

quantitative 
13

C NMR spectrum which, especially in the case of polymers and complex 

mixtures, it takes an extremely long time. To obtain a quantitative 
13

C NMR spectrum, the 

different relaxation times of 
13

C nuclei in different chemical groups, especially for 

aliphatic versus aromatic C, and the nuclear Overhauser enhancement (NOE) effect, must 

be suppressed (Altgelt et al., 1994). The NOE effect is related to the increase degree in the 

signal intensity, with a weak radio frequency signal, when C-H coupled protons are 

saturated by the decoupling field. However, the increase peak intensity is not always the 

same and due to such variability, the NOE must be avoided for quantitative measurements 

(Pavia et al., 1996). To reduce the long relaxation times of some carbons a paramagnetic 

relaxation reagent, such as trisacetylacetonatochromim(III) [Cr(acac)3], is needed to be add 

to the sample. Using this reagent the long relaxation time of some carbons is reduced and 

the relaxation mechanism is changed (Altgelt et al., 1994). Besides all this, the 
13

C NMR 

spectroscopy is used to obtain information relatively to the molecular carbon skeleton and 

to the chemical composition of a sample, also considered as an important method for the 

structure elucidation. 

 

3.2.3. NMR Spectrometer 

Figure 3.14 represents a schematic illustration of a high resolution NMR spectrometer. By 

analysis of the Figure 3.14 it is possible to identify some indispensable parts that form the 

NMR spectrometer such as the magnet, the probe containing the sample, the radio 

frequency transmitter to pulse and receive the emitted response, the preamplifiers and the 

computer to collect, digitize and perform the Fourier transform of the signals. 
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Figure 3.14: An example of a modern NMR spectrometer. Adapted from Claridge (1999). 

 

The superconducting magnet is one of the main reasons why NMR spectrometer is 

considered a complex and expensive equipment. To operate it requires to be in a bath of 

liquid helium, responsible for cooling the system down to 4 K, and surrounded by a bath of 

liquid nitrogen also responsible for cooling the instrument down to about 77 K avoiding 

helium evaporation. There are different types of magnets such as the permanent magnet, an 

electromagnet or a superconducting solenoid (“supercon”), but all of them are responsible 

for the generation of a very strong, stable and homogeneous magnetic field. It is in the 

central bore of the magnet that many shim coils (or electrical coils) are housed. These shim 

coils with a small magnetic field are responsible for the shimming, a process that 

contributes for optimizing the magnetic field homogeneity. Inside the magnet, the probe 

alternately transmits and receives radio frequency signals. The probe which is like a coil of 

wire positioned around the sample receives higher power and very short pulse duration of 

radio frequency, emitted by a transmitter. After that and to obtain a digital FID signal, the 

electrical analogue signal received is amplified, converted to a digital format and sampled 

at regular intervals of time by the computer via the analogue-to-digital converter (ADC). A 
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final spectrum, on the computer monitor, is obtained after a Fourier transform is applied 

(Christian et al., 1986; Claridge, 1999; Jacobsen, 2007). 

 

3.3. Applications 

Many researches using NMR spectroscopy can be found in the literature, however, the vast 

majority of these applications can be divided in different main headings: i) determination 

of structures of pure compounds; ii) quantitative determination of mixtures; iii) 

determination of diffusion coefficients and porosity; and iv) measurements of relaxation 

times. NMR spectroscopy combined with other major techniques is very useful for 

structural determination, while NMR spectroscopy combined with multivariate statistical 

methods is important for quantitative determinations. 

Relatively to the analysis of petroleum fractions, few applications have been described in 

the literature. NMR has been already used in this field for a long time, being first published 

by Friedel (1959), “Absorption Spectra and Magnetic Resonance Spectra of Asphaltene”. 

Since then, some researchers have been publishing the use of NMR in the analysis of 

petroleum fractions. The main purpose was to help refineries to refine heavy crude oils in 

more efficient ways and at lower processing costs. Examples of the applications of 
1
H and 

13
C NMR spectroscopy, 

1
H and 

13
C NMR spectra of petroleum samples, asphaltenes 

characterization, NMR techniques and NMR relaxation effects are going to be presented. 

The use of multivariate statistical methods of NMR spectra is going to be presented in 

another chapter (see Chapter 5). 

 

3.3.1. 1
H NMR Spectroscopy in the Analysis of Petroleum Fractions 

1
H NMR spectroscopy was used to determine the aromatic content of petroleum products 

such as base oils (Sarpal et al., 1998). Some methods have been developed for such 

purpose as the one presented by Brown and Ladner (Sarpal et al., 1998). However, since 

these methods required the use of other techniques such as C and H elemental analysis and 

other parameters not directly estimated, new alternatives were required. The objective of 

modifying the Brown-Ladner equation (represented by the Equation 3.5) was to quantify 
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the factors needed to determine the aromatic content, like the elemental H and C content of 

the sample      , the average number of hydrogen per α-alkyl substituents, the atomic 

 
   ratio for non-aromatic groups      in the sample, the aromatic protons     , among 

others.  

 

        
         

 
   

  
  (3.5) 

 

Sarpal et al. (1998) developed a direct and quick method with the objective to create a new 

equation to estimate the aromatic content      of base oils using 
1
H NMR spectroscopy. 

From the interpretation of the 
1
H NMR spectra and the use of two-dimensional 

heteronuclear correlation (2D HETCOR) technique it was possible to calculate the 

aromatic carbon content by changing the Brown-Ladner equation (Equation 3.5), as well as 

to estimate the bridgehead carbons      and the quaternary aromatic carbons      content. 

The new equation (Equation 3.6) does not need the determination of such factors but just 

the directly use of one and two dimensional NMR spectra to estimate the number of 

protonated aromatic carbons      , the substituted aromatic carbons     , the contribution 

of bridgehead carbons      and the total relative number of carbons     . 

 

    
         

  
      (3.6) 

 

This method gives similar results as the Equation 3.5 being more advantageous due to the 

possibility to be used in all types of base oils as well as to the quick results which are 

obtained. 

Since the reduction of the aromatic content is one of the future objectives of the refineries 

it is important to quantify the total amount of aromatics in the petroleum fractions. Bansal 
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et al. (1998) started to use 
1
H NMR spectroscopy to estimate the content of total aromatics 

and their distribution as mono and polynuclear aromatics. These authors (Bansal et al., 

1998) started to analyse the 
1
H NMR spectra and the 2D HETCOR (

13
C-

1
H) NMR spectra 

of a representative diesel sample and of the aromatic fraction of a diesel sample, 

respectively. They estimated some structural parameters like the number of substituted 

aromatic carbons    ; Equation 3.7), the average of alkyl chain length      of aromatic 

substituents (Equation 3.8), the number of bridgehead carbons    ; Equation 3.9), the total 

aromatic content of the sample    ; Equation 3.10) and the estimation of mono-ring    ; 

Equation 3.11) and global di-plus-ring aromatics    ; Equation3.12): 

 

    
 

 
   

  
 
  (3.7) 

 

   

  
        

     
        

     
        

    

 
        

   

 (3.8) 

 

           (3.9) 

 

    
  
  
      (3.10) 

 

         (3.11) 

 



 

CHROMATOGRAPHIC AND SPECTROSCOPIC ANALYSIS OF 

PETROLEUM FRACTIONS WITH EMPHASIS IN NMR 

 

73 

 

   
        

    
 (3.12) 

 

with   representing the 2.4-3.5 ppm region;    the 2.0-2.4 ppm region;    the integral 

intensity of the   ppm region;    the integral intensity in the 7.5-10.0 ppm region;    the 

molecular weight of the aromatics; and finally    the total group molecular weight. 2D 

HETCOR spectra were used to improve the analysis and the signals assignment in the 
1
H 

NMR spectra, due to the overlapping. It allowed to conclude that only exist –CH3 groups 

between 0.5-1.0 ppm and did not exist any overlap; while some α-CH3 (α-substitution in 

aromatic carbons) groups were found between 2.4-2.6 ppm. It was possible, as well, to find 

a relationship between the –CH2 carbons, 25-40 ppm, and the protons that exist in the 2.4-

3.5 ppm region. With these data, it was concluded that some α-CH2, α-CH3 substituents on 

the aromatics and also some α-CH protons exist in the range 2.4-3.5 ppm. In the 
13

C NMR 

spectra, the overlap achieved between the 18-20 ppm may be due to the methyl 

substituents of the aromatic rings. 

From the interpretation of the 
 1

H NMR spectra of heavy crude oils developed by Behera et 

al. (2008), Bansal et al. (1998), and Ali et al .(2005) it is possible to assign a range of 

chemical shifts to different types of protons (Table 3.1). 

 

Table 3.1: Chemical shift regions of various types of protons (solvent: deuteriochloroform). 

 Chemical shift range (ppm) Type of protons 

Aromatic 

region 

6.0-9.0 Total aromatic proton 

6.0-7.2 Mono-aromatic proton 

7.2-7.6 Di-aromatic molecules 

7.2-8.0 or > 8.0 Poly-aromatics molecules 

Aliphatic 

region 

2.05-4.5 H-α to aromatic ring 

1.1-2.05 H-β to aromatic ring in paraffinic CH and CH2 

0.4-1.1 H-γ to aromatic ring/terminal CH3 

1.3 CH2 in long alkyl chains 

0.5-4.5 Total aliphatic proton 

0.9 CH3 in long alkyl chains 

2.1 CH2 in aromatic rings 

2.6 CH3 in aromatic rings 
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3.3.2. 13
C NMR Spectroscopy in the Analysis of Petroleum Fractions 

Yoshida et al. (1980) developed a work on some characteristic compounds in the 
13

C NMR 

spectra of the ring-type fractions of coal-derived oil aiming to determine the chemical shift 

ranges of protonated, bridgehead and substituted carbons of this type of sample and with 

that determine the equation for structural parameters. From the results of the Yoshida work 

(Yoshida et al., 1980) it was established that usually aromatic carbons appear in the order 

of protonated, bridgehead and substituted carbons from low to high frequency values. 

Normally, the chemical shifts of the protonated carbon appear at 115.0-129.2 ppm, the 

bridgehead carbons at 129.2-132.5 ppm, and the substituted carbons at 132.5-149.2 ppm. 

However, the presence of the phenolic OH and the amino groups influence the chemical 

shift of the neighbor protonated carbon shifting them to lower frequency values. Some of 

the bridgehead carbons were extended to a field lower than 132.5 ppm and others 

continued to appear in the range of 129.2-132.5 ppm, depending if these carbons are 

naphthalenic and methylated or just naphthenonaphthalenic, respectively. On the other 

hand, the chemical shift of the substituted carbons depends on the type of aliphatic carbons 

bonded to aromatic rings. In the subsequent 
13

C NMR spectra analysis it was possible to 

assign some signals to chemical shifts of model compounds, for example, the signals at 

132.5-137.2 ppm were due to substituted aromatic carbons bonded to methyl groups or to 

cycloparaffinic α-CH2. The signals at 137.2-149.2 ppm corresponded to the resonance of 

substituted aromatic carbons bonded to some alkyl groups (not include methyl and 

methylene bridge between aromatic rings) and that at 149.2-158 ppm to aromatic carbon 

attached to OH groups (phenolic OH). Other important aspects established in the Yoshida 

work (Yoshida et al., 1980) was that the coal-derived oil contain a lot of alkyl substituents 

and naphthenic rings. It was also possible to reach this conclusion through the analysis of 

some structural parameters like the aromaticity    ; Equation 3.13), the ratio of non-

bridgehead aromatic carbon to total carbon        ; Equation 3.14), and the degree of 

aromatic ring substitution   ; Equation 3.15). These structural parameters were defined by 

the following equations: 
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 (3.13) 

 

   

  
 
     
  

 (3.14) 

 

  
  
  

    (3.15) 

 

with    indicating the amount of the aromatic carbon,    the amount of total carbon,    

the amount of the bridgehead carbon, and    the amount of substituted carbon.  

Cookson and Smith (1985) studied a total of nine diesel samples, six of which were 

petroleum and three of them were synfuels (fuels from nonpetroleum sources), with two 

kerosene samples, aiming to obtain a better understanding on the differences in the 

composition, structural characteristics, and in the properties of each fuel using the 
13

C 

NMR spectroscopy. They have used the gated spin echo technique (GASPE) with the 

objective to minimize the overlap of resonances due to C, CH, CH2 and CH3 groups that 

usually occurred in a 
13

C NMR spectrum of complex mixtures. From the analysis of the 

resonances appearing in the spectra, they could identify a possible structure corresponding 

to an n-alkane formalized as          
y

CHCHCHCHCH 222222223  , and therefore 

calculate some parameters as the    (average n-alkane chain length; Equation 3.16),    

(average number of branching sites per molecule; Equation 3.17),    (average number of 

branches per molecule; Equation 3.18) and    (average number of rings per molecule; 

Equation 3.19). It was also demonstrated that all the diesel samples have an average chain 

length of 15-16 carbons while the kerosene examined has about 12 carbons chain length. 

However, firstly it is necessary to estimate the average number of carbons per molecule 

     that depends on the sample used.    is not always equal to the average n-alkane 

chain length     , once n-alkanes, branched saturated and cyclic saturated structures may 

have different average number of carbon atoms. Besides   , it is also required to 
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determine the total 
13

C NMR intensity due to the     and     groups and to known the C, 

CH and CH3 fractions of carbon atoms present as  ,    and     groups, respectively:  

 

   
                 

      
 (3.16) 

 

            (3.17) 

 

             (3.18) 

 

                      (3.19) 

 

The same authors, Cookson and Smith (1990), compared 50 jet and diesel fuels using 
13

C 

NMR spectroscopy, to understand some fuel properties and to define its composition (like 

aromaticity information as well as n-alkane abundance). The main objective of this 

analysis was to provide better information about the composition of this type of samples 

needed for the preparation of better quality refining products. Using earlier published 

works (Cookson et al., 1985; Cookson et al., 1987), Cookson and Smith (1990) developed 

a new approach (Equation 3.20) that listed a fraction relation of the total 
13

C NMR spectral 

intensity due to a long-chain n-alkyl carbon      atoms with the fraction of the total 
13

C 

NMR spectral intensity due to aromatic carbon      atoms, such as the following one: 

 

              (3.20) 

 

In Equation 3.20,   ,    and   were determined by a multiple linear regression and   was 

the property value. Cookson and Smith (1990) only considered the 
13

C NMR spectroscopy 
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to determine the samples composition, since it was considered a good technique to provide 

aromatic carbons identification. They had also proven that this approach was more 

efficient than other complex equations, better to distinguish a large quantity of fuels from 

different sources and available to determine their properties. 

Sarpal et al. (1997) began to develop some experiments with some base oils aiming to 

estimate the content of some structural parameters, like the n-paraffin      and isoparaffin 

     contents, the number of branching sites      and the average alkyl chain length     . 

These base oils, produced from different treatments like hydrocracking and wax 

isomerisation, were hydrofinished-solvent-refined oils (HF) of high viscosity index (HVI), 

several hydrofinished (SHF) oils of very high viscosity index (VHVI) and hydrotreated 

base oils (HT). It was verified that although the similarity between the types of branched 

structures produced by the hydrocracking and wax isomerisation, there were some 

differences, especially in the obtained quantities. For example, the HT base oils presented 

more branched structures bearing methyl groups located at the fifth (or higher) carbon 

away from the end of the chain, but it did not have the contribution of some branched 

structures, like the S-8, and had a greater amount of S-3, S-4 and S-5 structures (Table 3.2, 

page 80). The HF and the SHF have more S-8 type branched structures and reduced 

amounts of S-3, S-4 and S-5 (Table 3.2). From the analysis of the 
13

C NMR spectra, Sarpal 

et al. (1997) could estimate the percentage of n-paraffin (Equation 3.21) and isoparaffin 

(Equation 3.22) contents by using the following expressions: 

 

        
                 

  
  (3.21) 

 

  

  
 

     
                

 (3.22) 

 

where,    represents the total integral intensity in the region 5-160 ppm and    the integral 

area at the indicated   ppm. Sarpal et al. (1997) concluded that the HT and SHF base oils 
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presented an IP of 45-60%, whereas the HF base oils presented a smaller amount of 

isoparaffins (30-40%). As it was intended, other structural parameters were also calculated 

such as the    (Equation 3.23),    (Equation 3.24),      (percentage of terminal 

methyl; Equation 3.25) and the      (percentage of branched methyl; Equation 3.26). 

However, to determine such parameters, the integral area at the indicated ppm      and the 

percentage of branched paraffinic carbons      were required. 

 

     
  

    
  (3.23) 

 

   
       

  
 (3.24) 

 

          
          

  
  (3.25) 

 

          
                

  
  (3.26) 

 

From these results it was possible to conclude that the HT and SHF base oils have a less 

average number of branching sites      (3.0-3.5) compared with the HF base oil (3.5-5.5). 

It was also found that the HT base oils presented more branched paraffinic structures than 

branching near terminal methyl groups (S-2, S-3 and S-4) compared with other oils (Table 

3.2). It also had more predominance of S-6 and S-7 and less quantity of S-8 structures 

(Table 3.2). These last structures were found in a higher percentage in the HF and SHF 

oils. HT oils presented high quantity of branched structures, high quantity of isoparaffins, 

low quantity of BS, a lower pour point and a higher viscosity index. These results allowed 

to conclude that oils having structures with higher quantity of branching near the end of the 
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chain present a lower pour point. It was also concluded that the high viscosity index (HVI) 

and very high viscosity index (VHVI) base oils presented a higher quantity of branched 

structures near (S-2, S-3) and far (S-6, S-7) from the terminal carbon (Table 3.2). The 

VHVI oils had high quantity of NP and more S-6 and S-7 structures (Table 3.2) that 

contribute to the higher viscosity index. The LVI base oils presented a higher number of 

branching sites, a higher pour point and a lower viscosity index. 
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Table 3.2: Some branched structures identified in base oils and their characteristic 13C NMR chemical shifts. P=-CH3, 

S=-CH2 and *=carbons for which chemical shifts are reported (Sarpal et al., 1997). 

Structure Identification δ (ppm)
 

 
 

S-1 14.0 (P) 

 
 

S-2 22.7 (P), 28.2 (S)** 

 
 

S-3 11.4 (P) 

 
 

S-3’ 10.7 (P) 

 
 

S-4 14.2 (P) 

 
 

S-5 14.3 (P) 

 
 

S-6 27.0 (S) 

 
 

S-7 27.0 (S) 

 

S-8 24.0-25.6 (S) 

 

S-9 16.2 (P) 

 

S-10 28.6 (P), 27.4 (P) 

 

S-11 30.8 (P) 

**As the authors referred, the contribution of iso-methyl carbons of S-2 may be explained from the signal at 28.2 ppm 

corresponding to a –CH carbon. 
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Very recently, Verdier et al. (2009) used the 
13

C NMR data of a broad variety of samples 

produced from different vacuum gas oils to analyse the molecules with high viscosity 

indexes (VI). They concluded that oils presenting molecules with long alkyl chains, low 

aromatic contents, ethyl branching and tertiary carbons presented high VI. Theoretically, 

the VI has been considered an important way to predict the influence of the temperature on 

the viscosity, since the viscosity of oils with a high VI are slightly influenced by 

temperature. However, these authors (Verdier et al., 2009) also indicate that it is not 

always correct to correlate the viscosity index with the influence of the temperature on the 

oils viscosity, being also important to analyse the effect of the activation energy. They had 

also announced that it is preferred to use the flow activation energy rather than the 

viscosity index to analyse the influence of the temperature on the oils viscosity. 

Based on the results obtained by Yoshida et al. (1980) and Behera et al. (2008) it was 

possible to assign a range of chemical shifts to resonances of different carbon signals in the 

13
C NMR spectra of crude oils as are shown in Table 3.3. 

 

Table 3.3: Assignment of 13C NMR chemical shifts to different types of carbon atoms (solvent: deuteriochloroform) 

(Yoshida et al., 1980; Behera et al., 2008). 

Chemical shift 

range (ppm) 
Type of carbon atoms 

202.0-220.0 Ketone carbonyl carbon 
182.0-170.0 Acid carboxyl carbon 
165.0-175.0 Ester or amide carboxyl carbon 
100.0-160.0 Total aromatic carbon 
149.2-158.0 Aromatic carbons attached to heteroatoms 
137.2-149.2 Substituted carbons bonded to some alkyl groups (not include methyl and 

methylene bridge between aromatic rings) 
132.5-137.2 Substituted carbons bonded to methyl group or to cycloparaffinic α-CH2 

129.2-132.5 Bridgehead aromatic carbons 
115.0-129.2 Protonated aromatic carbon 
128.5-160.0 Quaternary aromatic carbons without triple-bridged aromatic carbons 
100.0-128.5 Tertiary aromatic and triple-bridged aromatic carbons 
50.0-10.0 Total aliphatic carbon 
25.0-60.0 Naphthenic carbon 
29.1-31.5 Carbons in alkyl chains (n > 6) 
27.6-28.6 Carbons in branching position of a terminal iso-propyl group 
17.6-20.4 Carbons in CH3 branches 
13.7-15.5 Carbons in terminal position of n-alkyl chains (n > 6) 
0.0-20.5 Total carbon in CH3 groups 
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3.3.3. 1
H and 

13
C NMR Spectroscopy in the Analysis of Petroleum Samples 

Woods et al. (2008) used NMR spectroscopy to characterize the SARA fractions 

(saturated, aromatics, resins and asphaltenes) separated from different Canadian crude oils. 

The assignment of different types of proton and carbon atoms in the 
1
H and 

13
C NMR 

spectra (Figure 3.15) of SARA fractions led the authors (Woods et al., 2008) to conclude 

that the aromaticity region (110-150 ppm) increases from saturated to asphaltenes 

fractions. This was confirmed by the     ratio decreasing with the increasing of 

aromaticity. On the other hand, the saturated fraction was characterized by an aliphatic 

nature represented with a high     ratio. It was also concluded that the     ratio 

decreases from saturated > aromatics > resins > asphaltenes; becoming the asphaltenes rich 

in long chain aliphatic compounds as can see in Figure 3.15. 

 

 

Figure 3.15: Typical 13C and 1H NMR spectra for SARA fractions, obtained in a Varian Unity Inova 400 MHZ 

spectrometer with a 5 mm 4 nucleus probe. Reprinted with permission from Woods et al. (2008). Copyright Oil & Gas 

Science and Technology-Revue d’IFP Energies nouvelles. 

 

Cookson and Smith (1987) studied the monoaromatic fractions obtained from petroleum, 

coal and shale-derived distillate fuels with the purpose to get new structural information. 

With the obtained data it was possible to analyse some average structure parameters, such 

as    (average number of carbon atoms per molecule; Equation 3.27),        (average 

number of CHn groups; Equation 3.28),    (number side chains per molecule; Equation 

3.29),    (average side chain length; Equation 3.30),     (number of side chain branches 
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per molecule; Equation 3.31),    (number of rings; Equation 3.32),     (
1
H NMR 

aromaticity; Equation 3.33):  

 

   
 

  
  (3.27) 

 

                  (3.28) 

 

          (3.29) 

 

   
        

  
 (3.30) 

 

        
            (3.31) 

 

              
                 

     (3.32) 

 

    
       

          
 
   

 (3.33) 

 

where    represents the fraction of 
13

C NMR intensity in the aromatic region;        the 

fraction of 
13

C NMR intensity due to the various CHn groups;        the number of 

nonprotonated aromatic carbon atoms;         number of aliphatic CH groups;      
    

number of aliphatic CH3 groups; and        number of aliphatic C groups. With the 

obtained results the authors (Cookson et al., 1987) could then concluded that all analysed 
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diesel fuels had an average of 13-15 carbons atoms per molecule whereas the kerosene 

aromatics had a lower value (11-12 carbons atoms). Other similarities between all the 

seven diesel fractions were seen, such as the same number of side chains per molecule 

      , the same average side chain length          (in only six of the samples) and 

the absence of quaternary carbon branching sites. One of the main differences between the 

samples was related to the number of ring structures involving aliphatic carbon atoms. The 

number of rings      observed for a specific fraction depends of the original sample; when 

a fraction is a product of hydrotreatment it has a large quantity of saturated ring structures. 

Kerosene samples compared with the diesel fractions presented a lower number of 

saturated rings per molecule and lower number of carbon atoms per molecule     . This 

could be due to the lower number of side chains and to the lower side chain length. From 

the 
1
H and 

13
C NMR spectra it was also possible to determine the average number of 

specific CH3 groups (α-CH3 and γ-CH3) per molecule. The assignment of proton 

resonances indicated that normally the intensity near 2.25 ppm region was due to α-CH3, 

while for some samples that signal could be at 2.1-2.4 ppm. The intensity of these signals 

generally yields 0.1 or 0.14 α-CH3 groups per molecule, depending on the spectra and on 

the occurring overlapping. In the 
1
H NMR spectra, the signal at around 1 ppm was 

assumed to be due to the γ-CH3 groups. In this work (Cookson et al., 1987) it was also 

possible to identify some sub-structures, like methyl, ethyl, propyl and butyl groups, 

tetralin, indane and 1-methylindane ring side chains in the analysed samples of shale oil 

diesel. 

Unlike the work of Cookson and Smith (1987) and Bansal et al. (1998), Lee and 

Glavincevski (1999) decided to analyse the content of aromatics in middle distillate oils 

and have developed a NMR method for the determination of the molar content of 

aromatics. A new expression (Equation 3.34): 

 

    
 

 
 
  

 
 
   

            (3.34) 
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was developed to estimate the molar content of aromatic groups by using the aromatic α-

hydrogen to α-carbon atom ratio       , the number of α-hydrogen     , the number of 

aromatic ring carbons      and the number of aromatic ring hydrogens     . However, 

these authors (Lee et al., 1999) have concluded that the presence of olefinic protons should 

be taken into account, therefore the following equation was used in the aromaticity 

calculation: 

 

                 
   

  
 
   

 
 
   

 (3.35) 

 

where o

nfH  is the molar fraction of olefinic protons,        the total hydrogen to carbon 

atom ratio, the        the hydrogen to carbon atom ratio of the olefinic bond structure and 

   the fraction of aromatic carbon (aromaticity). 

Sergeant et al. (1995) used 
1
H and 

13
C NMR spectroscopy to analyse different products 

from shale deposits in Australia in order to obtain information about the diversity of 

structures composition of lubricating oils, of maltenes and of distillates. From the 

differences between these products, it is noteworthy that lubricating oils were characterized 

by the absence of olefinic structures, the Rundle distillate samples by the presence of 

monoaromatic with some polyaromatic and naphthenic structures, while the maltenes 

where characterized by the existences of some olefinic structures and aliphatic chains that 

were less substituted. 

Recently, de Andrade et al. (2010) presented a review with 62 references on the 

determination of conjugated dienes in petroleum products using different chemical and 

instrumental techniques, including NMR spectroscopy. Among the implementation of 

different techniques analysis, the authors indicated NMR spectroscopy as one of the 

techniques chosen to characterize naphtha or gasoline samples and to characterize 

conjugated dienes in the samples. NMR was considered one of the techniques which 
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contributed to obtain rapid answers and information about the conjugated dienes 

composition. 

 

3.3.4. NMR Spectroscopy in Asphaltenes Characterization 

Asphaltenes present a dark colour and are defined as the fraction from crude oil that is 

soluble in toluene and insoluble in heptane. They are known to be the most complicated 

compounds in crude oil and are very difficult to analyse due to their tendency to associate, 

to the high molecular weight (approximately 1000 g.mol
-1

) (Aske et al., 2002) and to the 

paramagnetism (Simanzhenkov et al., 2003). Due to their complex nature it has not been 

found a specific molecular structure or a specific family compounds of asphaltenes 

(University of Illinois at Chicago, 2001), however there are different ideas relatively to 

their composition. Asphaltenes are characterized to be complex mixtures containing high 

quantity of heteroatoms (like nitrogen, oxygen, sulfur and metals such as vanadium, nickel 

or iron) and condensed aromatic rings, aliphatic chains and naphthenic rings (see Table 2.1 

– Chapter 2 in page 12 and 13). 

The objective of several research groups is to gain more information about asphaltenes and 

to further understand their influence in thermal and catalytic processes. 

Calemma et al. (1995) compared the content of asphaltenes present in heavy crude oils of 

seven different sources and reported structural characterization of asphaltenes using NMR 

and other spectroscopic techniques. NMR techniques (
13

C NMR GASPE) allowed the 

identification of some CH groups in the aliphatic chains, some condensed alicyclic 

structures, especially in the more aliphatic asphaltene molecules, and the aliphatic CH3/CH 

ratio. Furthermore it was possible to characterize the maturity of asphaltenes that is related 

to their capability to aggregate through π-π aromatic interactions. With the analysis of 

some molecular parameters from the NMR spectra, like the aromatic carbon fraction     , 

an average number of carbon per alkyl side chain      and the percentage substitution of 

aromatic rings      it was possible to draw some conclusions. Almost all analysed 

asphaltenes presented comparable average aromatic condensations and average numbers of 

polycondensed aromatic rings in the range of 5-7. It was possible to observe that 

asphaltenes presented different behaviours with the increase in the carbon content. As 
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consequence, when the carbon content of the asphaltene samples increases, the aromaticity 

and the average aromatic core size increase, the average length of alkyl side chains 

decrease and the heteroatom content and the average molecular weights also decrease. 

Asphaltenes with smaller molecular weight presented more aromatic carbons, less 

heteroatoms, slightly sulfur content, and smaller aliphatic side chains. 

In the same path, Sheremata et al. (2004) described a quantitative molecular representation 

of Athabasca asphaltenes, where 
1
H and 

13
C NMR spectroscopy was used to provide data 

from elemental analysis. The authors have pointed out that the combination of 
1
H and 

13
C 

NMR spectroscopy were very useful in the analysis of asphaltene chemistry and for an 

additional and better chemical detailed molecular structure description of these 

compounds. This study provided more information about aromatic and aliphatic primary 

structures, the concentration of quaternary and protonated aromatic carbons, the naphthenic 

content and the concentration of aliphatic CH and β-CH3 groups. Finally, three possible 

structures of asphaltenes, with multiple bridges between aromatic group were represented 

(Figure 3.16). However it was stated that these structures, as well as those denominated 

asphaltenes as archipelago structures, were not rigid, and some changes can occur 

depending on the solvent environment. It is possible to occur interactions between the 

porous surface of asphaltenes and the surrounding solvent which has the capacity to entrain 

in the reticulated asphaltenes microstructure and change its geometry. 

 

 

Figure 3.16: Example of some asphaltene structures generated using Monte Carlo method (Sheremata et al., 2004). 
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Douda et al. (2008) analysed some asphaltene mixtures by comparing the asphaltenes 

fractions obtained after pyrolysis (at different temperatures) with the original ones, by 

using 
1
H and 

13
C NMR spectroscopy. The large bands of aromatic and saturated regions in 

the 
1
H and 

13
C NMR spectra were thought to be due to the high values of different 

structures of asphaltene compounds. From the obtained results it was concluded that 

pyrolysis processes at high temperatures were responsible for a higher formation of 

asphaltenes. This knowledge about the effect of the temperature in the asphaltenes 

modification is very important in the prevention of some problems during the crude oil 

refining, like the deposition of asphaltenes in cooking, cracking and in the distillation.  

Durand et al. (2008) presented for the first time a 
1
H DOSY NMR spectrum of asphaltenes 

(Figure 3.17), from which it was possible to conclude that asphaltenes have more aliphatic 

than aromatic structures. Although in this spectrum no aromatic protons were detected due 

to the influence of the toluene signals that have a high signal-to-noise ratio compared to the 

sample aromatic protons. However, a separation in the aromatic region exists and there are 

some aromatic protons, although these aromatic rings are very substituted by alkyl chains. 

Furthermore, it was calculated the diffusion coefficient of asphaltenes and toluene using 

the modified Stokes-Einstein equation and then compared them with the sample 

concentration. The intention was to analyse the intermolecular interactions between solvent 

and solute and their dependence with the solute concentration and also to analyse the 

behaviour of the diffusion coefficients, while increasing the sample concentration, which 

can give some information about the nature of the mixture constituents. The separation in 

the diffusion coefficient between residual heptane and asphaltenes was demonstrated 

(Figure 3.17), and it was concluded that the diffusion coefficient remains constant at low 

concentrations, probably due to the predominance of the solute-solvent interactions. From 

the signals in the spectrum (Figure 3.18) it was concluded that terminal CH3 groups of long 

alkyl chains were represented by signals at 0.9 ppm while at 1-2 ppm some CH2 groups 

were found and peaks at 2.1-3 ppm correspond to CH, CH2 and CH3 in polycyclic aromatic 

hydrocarbons. It was also calculated the average molecular weight of asphaltenes (M ≈ 

3450 g.mol
-1

), being this result higher than expected when comparing with the published 

value (approximately 1000 g.mol
-1

) (Aske et al., 2002). 
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Figure 3.17: Example of a 1H DOSY NMR spectrum of a base oil. Reprinted with permission from Durand et al. (2008). 

Copyright American Chemical Society. 

 

 

 

Figure 3.18: Asphaltenes 1H NMR spectrum at 1 wt% in toluene at 20 ºC. Reprinted with permission from Durand et al. 

(2008). Copyright American Chemical Society. 

 

3.3.5. Spectral editing NMR Techniques 

Since crude oil is a complex mixture of compounds it is important to use different 

techniques to improve the quality of the NMR spectrum and to obtain better quantitative 

information about the sample in analysis. For this, beyond the use of 1D NMR 

spectroscopy, the typical 
1
H and 

13
C NMR spectra, it is beneficial to use the “spectral 

editing” techniques and the 2D NMR experiments (see Table 3.4, page 96 and 97). 

Although, the advantages of the “spectral editing” techniques and the 2D NMR 

experiments were known, they were not applied during this work. The motivation for not 
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applying these techniques were related with the type of NMR spectrometer available for 

online analysis, since the idea was evaluating the possibility of using an online NMR 

spectrometer to process stream monitoring. Moreover, the experimental time required to 

obtain the final spectra when using these techniques was much larger than when using 1D 

1
H NMR spectroscopy, were the spectra data obtained could be recorded in only a few 

minutes. The time required to obtain the required information was very important to 

improve the NMR potential for routine application in industry. However, in the literature, 

depending on the object of research, there are many works where 1D and 2D NMR spectra 

are used in combination, not referring only to studies about heavy crude oil but in other 

different areas such as the Organic Chemistry and Biochemistry, in mixture analysis of 

natural products (Exarchou et al., 2000; Lewis et al., 2007; Kontogianni et al., 2009) 

where the use of 2D NMR spectroscopy has demonstrated great potentialities in structural 

elucidation and quantification of complex mixtures.  

The “spectral editing” (Altgelt et al., 1994) techniques can be used to improve the analysis 

of the 
1
H and 

13
C NMR spectra due to the overlapping of signals, previously mentioned, 

which make difficult the identification of some structures. The aim of these “spectral 

editing” techniques is to contribute to the separation of primary (CH3), secondary (CH2), 

tertiary (CH) and quaternary      carbons and to a sensitivity improvement. Examples of 

“spectral editing” techniques are the INEPT (insensitive enhancement by polarization 

transfer), DEPT (distortionless enhancement by polarization transfer), GASPE (gated spin 

echo), PCSE (part-coupled spin echo) and QUAT (quaternary–only carbon spectra). 

INEPT and DEPT are examples of methods known as polarization transfer methods. The 

aim of these methods is to transfer the large excess of population (polarization) of the 
1
H to 

the insensitive nuclei before its perturbation (in the present case to 
13

C nuclei). On the 

other hand, the 2D NMR spectrum depend on the coupling between two nuclei. It is 

possible to have a 2D homonuclear spectrum that results from the coupling between nuclei 

from the same type and the 2D heteronuclear spectrum between nuclei from a different 

type. 2D COSY is an example of a homonuclear spectrum (Figure 3.19). In this spectrum it 

is correlated one proton to another proton, depending on the coupling constant value, 

which leads to identify resonances that are coupled each other. Cookson and Smith (1987), 

Sarpal et al. (1996), and Behera et al. (2008) are example of works, presented below, 

where this technique was used in the analysis of crude oils. 
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Figure 3.19: Example of a COSY spectrum of a base oil. Obtained using a 300 MHz NMR spectrometer with a sweep 

width of 3016 Hz and 4 K data points. Reprinted with permission from Sarpal et al. (1996). Copyright Elsevier. 

 

TOCSY (total correlation spectroscopy), another 2D homonuclear spectrum, is very useful 

in the analysis of complex mixtures helping in the characterization of the molecule 

structure. In this case, it is established a correlation between all the spins in a set of 

coupled spins in a molecule. Doan et al. (1995) has used this technique in the analysis of 

polyaromatics in crude gas oil mixtures. 

HETCOR is a 2D heteronuclear spectrum (see Figure 3.20) where it is possible to obtain a 

correlation between coupled heteronuclear spins across a single bond. Cookson and Smith 

(1987), Sarpal et al. (1996) and Behera et al. (2008) are examples of some works using the 

HETCOR technique in their research. 
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Figure 3.20: Example of an HETCOR spectrum of a base oil, obtained in a NMR spectrometer operating a 300 MHz for 
1H and 75 MHz for 13C. A = isopropyl methyl groups (0.93 and 22.7 ppm) of S-1 and S-2 structures. A’ = -CH group 

resonance (S-2) at δ 28.2. B and B’ = -CH2 carbon of S-4 at δ 20.3 correlated with a methyl group (19 – 21 ppm). E (0.9 

and 28.6, 27.4 ppm) and E’ (0.99 and 30.2 ppm) = branched methyl of S-10 and S-11. G = β – methylene groups (1.3 and 

22.4 ppm) of S-2. With S-1, S-2, S-4 and S-10 from Table 3.2. Reprinted with permission from Sarpal et al. (1996). 

Copyright Elsevier. 

 

Besides the referred homo- and heteronuclear spectra there are the 2D inverse detected 

homo- and heteronuclear experiments, although only the use in crude oil area will be 

described, such as the heteronuclear HSQC (heteronuclear single quantum correlation) and 

HMBC (heteronuclear multiple quantum correlation) spectra (Figure 3.21). In these 

techniques the 
1
H magnetization is directly detected while the 

13
C magnetization is 

indirectly detected. For this reason, the 
13

C magnetization is known as the “inverse” 

experiment. While the HETCOR, known as a heteronuclear experiment, is the “normal” 

one, because in this case, the 
1
H magnetizations are indirectly detected and the 

13
C directly 

detected. The “inverse” experiments are preferable over HETCOR, since the latter has 

lower sensitivity due to the detection of the lower-y nuclide, typically 
13

C. In addition, the 

“inverse” experiments are proton detected as the proton are much more sensitive nucleus 

compared with the 
13

C (Claridge, 1999). HSQC correlates coupled heteronuclear spins 

across a single bond while HMBC correlates coupled spins across multiple bonds. Some 

workers have demonstrated that the combination of HSQC and HMBC spectra is a very 

E’ 

E A 

A’ 

B 

B’ 
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good choice to get information about the carbon skeleton. Kontogianni et al. (2009), 

Exarchou et al. (2000) and Behera et al. (2008) are representative works using these 

techniques in the analysis of crude oils. 

 

 

Figure 3.21: Example of an a) HSQC and an b) HMBC spectra of a high boiling point fraction VGO, identifying CH3 

(a), CH2 (b) and CH (c) groups in different side chains - ethyl (a1, b1), propyl (a2, b2b3), butyl (a3, b4b5b6), isopropyl (a4, 

c1), tetraline (b7b8), indane (b9b10) and 1-methylindane (a5, b11b12c2). Obtained in a Bruker Avance 400 MHz NMR 

spectrometer equipped with an inverse detecting probe, using a π/2 pulses of 13.3 and 9.6 μs for 1H and 13C, respectively, 

a recycle delay of 2 s and three sine gradients of 1.5 ms with 8:3:2 ratio for HSQC and 5:3:4 ratio for HMBC. Reprinted 

with permission from Behera et al. (2008). Copyright Elsevier. 

 

The DOSY (Diffusion Ordered Spectroscopy) spectrum (Figure 3.17) is very useful to 

analyse the composition of mixtures based on the differences in diffusion coefficients of 

individual components. The obtained 2D spectrum is characterized for presenting, in one 

direction, the signals dispersed according to chemical shift while in the other the signals 

are dispersed taking into account the diffusion constant. Since this technique measures the 

self-diffusion coefficients it contributes to obtain information on structural, molecular size, 

shape, aggregation states and composition of complex mixtures. One of the great 

advantages of this technique is that it doesn’t need a prior separation of individual 

a) b) 
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components to separate, assignee and identify the different signals of a crowded spectrum 

(Claridge, 1999; Kapur et al., 2000; Durand et al., 2008). 

Cookson and Smith (1987) used homonuclear 2D COSY spectra, coupled and decoupled 

2D HETCOR spectra, and a RELAY 2D NMR method to provide a better analysis of the 

1
H and 

13
C NMR spectra and thus making a better structural assignment. 

Sarpal et al. (1996) used GASPE, PCSE, INEPT, DEPT, QUAT, 2D COSY and HETCOR 

to classify the composition of some different base oils in terms of the hydrocarbon types, 

especially the isoparaffins. 2D COSY and HETCOR helped to specifically improve the 

identification of some branching structures, since these spectra allows clarifying the 

existing information inside the overlapping signals. The use of DEPT also contributed to 

the improvement of the signals overlapping, especially in the region 28-40 ppm, as well as 

contributing to the separation of some carbons of normal paraffins, but did not give any 

idea about the existence of quaternary carbons, which could be due to the size of these 

structures. The use of 2D COSY and HETCOR contributed to the improvement in the 

identification and quantification of some types of branched structures (about eleven types 

of different branched structures). 

Besides the techniques used by Sarpal et al. (1996), it was already demonstrated that other 

techniques could contributed to the separation, assignment and identification of various 

signals in a crowded spectrum. Kapur et al. (2000) showed that the 2D DOSY NMR 

spectroscopy is very useful in the interpretation of the 
1
H and 

13
C NMR spectra of such 

complex mixtures such as crude oil, which are characterized by a great signals overlapping 

making difficult the identification of some components. In the 
1
H NMR spectra the 

overlapping occurs in the 0.5-2.0 ppm range due to the saturated components, whereas in 

the 
13

C NMR the overlapping was stronger in the 10-45 ppm range. Using the DOSY 

spectra the characteristic overlapping of both 
1
H and 

13
C NMR spectra was reduced 

allowing a better resolution of the signals and a better structure elucidation. This technique 

demonstrated to be very helpful in the analysis of heavy petroleum fractions. 

After Kapur et al. (2000) used a DOSY technique in the analysis of an aromatic petroleum 

fraction, in the distillate boiling range, Durant et al. (2008) presented a DOSY spectrum of 

a diesel sample and for the first time a 
1
H DOSY spectrum of asphaltenes. These authors 
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(Durand et al., 2008) confirmed that DOSY NMR technique is very important in the 

analysis of complex samples, such as crude oil, that could provided information on size, 

molecular weight, aggregation state and the composition of the mixture. The main 

advantage of this technique is the potential to give physical-chemical information all at 

once when compared to the pulse field gradient spin-echo NMR diffusion sequences 

(PFGSE NMR). 

More recently, Behera et al. (2008) used some NMR techniques, such as the gated-

decoupled 
13

C, DEPT, 2D (
1
H-

13
C) HETCOR and other 2D NMR methods for better 

identification of some structures in the very crowded NMR spectra of heavy petroleum 

fractions. For example, these authors (Behera et al., 2008) showed that HSQC and HMBC 

spectra were proven to be better techniques in the identification of side chain structures of 

aromatics.



 

 

Table 3.4: Spectral editing NMR techniques. 

 

 

Advantages/Drawbacks 

GASPE Gated Spin Echo 
Information about carbon type distribution, distinguishing and isolating C, CH, CH2 and CH3 sub-

spectra. 

PCSE 
Part-Coupled Spin 

Echo 

Information about carbon type distribution, distinguishing and isolating C, CH, CH2 and CH3 sub-

spectra (practically identical to GASPE). 

DEPT 

Distortionless 

Enhancement by 

Polarization Transfer 

Better than GASPE and PCSE due to a precise and quick analysis of the CH and CH3 sub-spectra. 

Quantifies CH, CH2 and CH3 carbons but not quaternary carbons. 

QUAT 
Quaternary–only 

Carbon Spectra 
Used to determine quaternary carbons. 

DOSY 
Diffusion-Ordered 

Spectroscopy 

One of the most commonly employed methods for identifying compounds in complex mixtures of 

petroleum fractions depending on different diffusion coefficients. Allows a better resolution of the 

signals and a better structure elucidation in both 
1
H and 

13
C NMR spectra when comparing with the 

1D 
1
H and 

13
C NMR spectra. Although, when comparing with a 

1
H-

13
C HSQC or HMBC it presents 

very low resolution in the diffusion axis and therefore considered as an inferior method. 

INEPT 

Insensitive 

Enhancement by 

Polarization Transfer 

Results of the excitation of 
1
H and polarization transfer to 

13
C by H-

13
C coupling which contributes 

to the identification of CHn groups but quaternary carbons are not identify in the INEPT spectra. The 

principal drawback is that the signal from each carbon is spread with many components resulting in 

the overlap of other carbon nuclei (Becker, 2000). 

2D 

HETCOR 

Heteronuclear 

Correlation 

Spectroscopy 

Correlation of the 
1
H and 

13
C NMR spectra, allowing a better interpretation of these spectra due to 

the identification of peak position. Is called a “direct” experiment because it is a way of doing 
1
H-

13
C correlation by direct detection of 

13
C (Jacobsen, 2007). 

2D COSY 

Homonuclear 

Correlation 

Spectroscopy 

Correlation between coupled protons NMR spectrum, allowing a better interpretation of the proton 

NMR spectrum due to the identification of peak position. 



 

 

Table 3.4: Spectral editing NMR techniques (continuation). 

 

 

Advantages/Drawbacks 

2D TOCSY 

Homonuclear Total 

Correlation 

Spectroscopy 

Correlation between all spins in a set of coupled spins of a molecule and contributes to the structure 

characterization of a molecule even in such complex mixtures as crude oils. 

HSQC 
Heteronuclear Single 

Quantum Correlation 

Technique similar to HETCOR, called an “inverse” experiment 

since 
1
H is directly detected and 

13
C indirectly detected. This 

technique identifies the heteroatoms to which the protons are 

directly attached and can be used to detect carbon nuclei indirectly 

from more sensitive protons, to assign side chain structures to 

aromatics (Günther, 1995) and to locate the position of a 

functional group within a known carbon skeleton (Jacobsen, 

2007). 

The combination of HSQC and 

HMBC is, today, a powerful 

method used in tracing the 

carbon skeleton of a compound 

(Jacobsen, 2007). 

HMBC 

Heteronuclear 

Multiple Quantum 

Correlation 

Technique also called an “inverse” experiment. This type of 

technique known as a long range heteronuclear correlation over 

typically two or three bonds, can be used to obtain information 

about the location of carbon-carbon or carbon-heteroatoms bonds. 

It is also used to detect indirectly quaternary and protonated 

carbons coupled to protons and provide unique information about 

the skeleton of a molecule (Claridge, 1999; Jacobsen, 2007). 

PFGSE 
Pulse Field Gradient 

Spin-Echo 

Characterized by introducing a perturbation in the magnetic field that propagates to the nearby 

protons. This perturbation only leaves the peak of interest and the rest of the peaks are destroyed 

(Jacobsen, 2007). This technique allows the measurement of asphaltenes diffusion coefficients. 

RELAY 
Heteronuclear Relayed 

Coherence Transfer 

Gives information about coupled Hn-Hm groups and correlates 
13

C resonances associated with the 

CHn and CHm groups (Cookson et al., 1987). 
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3.3.6. NMR Relaxation Effects 

The spin nuclear relaxation process is a very important way to obtain information about 

stereochemistry and molecular dynamics. This nuclear relaxation phenomenon is related 

with the structure, flexibility and molecular mobility that is responsible for the existent of 

different magnetic fields. The relaxation rate can be determined experimentally using the 

relationship between the relaxation times, T1 and T2, and the correlation time for molecular 

tumbling. The NMR techniques based on the analysis of T1 (longitudinal or spin-lattice 

relaxation time) and T2 (transverse relaxation time) decay curves can be obtained using the 

low-field 
1
H NMR spectroscopy and correlated and supplemented with information taken 

with the high-field nuclear magnetic resonance spectrometer. 

The relaxation times are important tools in the comprehension of the molecular structure. 

For example, when comparing two molecules if the relaxation time decreases it can be due 

to the existence of intramolecular hydrogen bonds that decrease the mobility. The low field 

1
H NMR relaxation method has been used for a long time especially in petrophysical 

analysis and well logging in petroleum exploration (Yao et al., 2010). Since 1990s, this 

method has been used in the characterization of reservoir properties (porosity, 

permeability, viscosity and saturation of oil and gas) (Yao et al., 2010). 

The correlation of relaxation times (T1 and T2) with viscosity/temperature and Larmor 

frequency was analysed by Hirasaki et al. (2003). These authors demonstrated that 

relaxation times T1 and T2 are equal, in crude oils, at low viscosity and can be correlated 

with the ratio of viscosity/temperature. However, for high viscosity crude oils T1 and T2 

are different. T1 is a function of the Larmor frequency while T2 follow the 

viscosity/temperature correlation. They concluded that the temperature influences the 

viscosity as well as the relaxation time of heavy oils. In Hirasaki et al. (2003) work NMR 

was used to analyse the presence of water, oil and gas in the reservoirs of petroleum, taking 

into account the relationship between diffusivity and relaxation time. From the 

interpretation of the NMR logs it was concluded that: i) water normally presented a large 

relaxation time in rocks due to the surface relaxation on the pore walls with different sizes; 

ii) the fluids presented different diffusivity, which is a way to distinguish one fluid from 

others; and iii) crude oil presented a huge relaxation time and a large diffusivity 

distribution due to its rich composition in different compounds. 
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Ramos et al. (2009) used T2 of protons in the viscosity prediction of crude oils. The 

analysis of the expansion of the 
1
H raw T2 relaxation curves of four Brazilian crude oil 

samples with different viscosities has demonstrated that there was a decrease in the 

relaxation decay curve when the oil viscosity increased. Therefore, a shorter T2 was 

produced for the sample with high viscosity. As a result, more viscous oil represents a 

lower relaxation time and less viscous oil has a larger relaxation time. In crude oil, 

saturated fractions and resins are responsible for a higher contribution to the T2 spectra, 

aromatics are responsible for a lower contribution while the asphaltene protons are less 

expressive in the T2 spectra. 

 

 

3.4. Final Remarks 

The preference of a method to analyse heavy crude oil depends especially on the nature of 

the sample and on the analysis purpose. NMR was chosen as the main technique to be used 

in crude oil refining industries that want to characterize the “messy” that describes the 

crude oil fractions and the obtained refined products. With all analysed references, NMR 

have been proven to be a potential technique in providing information about the physical-

chemical properties and in the structure and chemical composition of crude oils. 
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This chapter is focused in the description of the physical-chemical techniques and 

nuclear magnetic resonance spectroscopy used to characterize LVGO, HVGO 

and fuel oil. The parameters described are important for process monitoring and 

during refining operation. Experimental setup and careful planning of the 

samples preparation are of utmost importance when the objective is to obtain the 

best possible data for analysis and interpretation. Some pre-processing and data 

manipulations of the NMR spectra employed to improve the performance of the 

subsequent multivariate analysis are also described.  
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4.1. Samples 

LVGO, HVGO and fuel oil are different products presenting different and complex 

chemical compositions and consequently different physical-chemical properties. There are 

some factors affecting the chemical composition of these fractions such as unit operation 

(changes in temperature, pressure and residence time) and processed crude oil, which is the 

feedstock from the entire process. The knowledge of the composition and the physical-

chemical properties is very important to control the quality and the characteristics of 

finished products and to optimize unit operation. The determination of the kinematic 

viscosity, density, sulfur content, carbon residue, flash point, P-value and atmospheric and 

vacuum distillation are examples of some properties that can be determined with the goal 

to improve product quality parameters or plant control. The determination of such 

properties is normally made taking into account some tests following the ASTM 

(American Society for Testing and Materials) norms, the IP (Institute of Petroleum) norms 

and other traditional tests. Apart from the samples analysed by these techniques the 

samples undergo an analysis using the NMR spectrometer. All ASTM, IP and other test 

procedures used in this work to characterize the different samples analysed are presented in 

Table 4.1. 

With the exception of the LVGO samples, HVGO and fuel oil samples were heated before 

use. A short heating with a lower temperature (no more than one hour with a temperature 

higher than 200 ºC) was desirable only to ensure that the samples could be handled. An 

excessive heating could lead to the oxidation of some compounds and to some changes in 

the structure and composition of the samples. The heating, when necessary, and the 

homogenization of the samples were the only treatment needed before starting the analysis 

by the standard procedures.  
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Table 4.1: Identification of samples for properties that were analysed. 

Properties LVGO HVGO Fuel Oil 

Kinematic viscosity 50 ºC (ASTM D445)    

Kinematic viscosity 100 ºC (ASTM D445)    

Density (ASTM D4052)    

Density (ASTM D5002)    

Carbon residue (ASTM D4530)    

P-value (SMS 1600)    

Sulfur content (IP 336)    

Distillation (ISO 3405)    

Distillation (ASTM D1160)    

Flash point (ASTM D93)    
1
H NMR spectra    

13
C NMR spectra    

 

 

4.2. Physical-Chemical Characterization 

4.2.1. Kinematic Viscosity (ASTM D445) 

The standard test method for kinematic viscosity of transparent and opaque liquids (ASTM 

Standards D445, 2009) is a very important procedure in the determination of the kinematic 

viscosity of petroleum fuels. The kinematic viscosity is a measure of liquids resistance to 

flow. In the determination of this property, the time for a volume of liquid to flow under 

gravity through a calibrated glass capillary viscometer under a reproducible driving head 

and at a known temperature is measured (Wauquier, 1995; Simanzhenkov et al., 2003; 

ASTM Standards D445, 2009). In this work the kinematic viscosity of fuel oil and HVGO 

samples was determined. The kinematic viscosity of LVGO samples was not measured 

since the main objective of analysing the LVGO stream was to evaluate its fractionation. 

For that, other properties were considered more important. 

 

Procedure for transparent liquids, such as HVGO 

Prior to measure the kinematic viscosity of any sample it was necessary to select the right 

viscometer with an appropriate capillary having a diameter that let the sample flow freely. 



 

 

EXPERIMENTAL PROCEDURES 
 

105 

 

The configuration and size of the capillary were calibrated and tested to give a constant 

value which was specific for each viscometer and helped to differentiate one viscometer 

from the other. Normally, for the HVGO samples the most common viscometer used was a 

150 capillary viscometer Cannon-Fenske. After choosing the viscometer (Figure 4.1, a), it 

was filled, using suction, with the HVGO sample up to the filling mark (1) (Figure 4.1, b) 

and then inserted into the viscosity Tamson bath (Figure 4.2) at 100.00±0.02 ºC. The 

sample was left in the bath during 30 minutes in order to achieve thermal equilibrium 

(Figure 4.1, c). Using suction, the sample was adjusted to above the upper timing mark 1 

(Figure 4.1, d) and when it arrived at the first timing mark (1) by gravity, the time required 

for the sample to flow from the first (1) to the second timing mark (2) was measured in 

seconds (  ). The procedure was repeated (    ) and the kinematic viscosity ( ) was 

determined considering the average of the two viscosity values calculated (    ), as will be 

explained posteriorly. 

 

 

a) b) c) d) 

Figure 4.1: Example of a Cannon-Fenske viscometer for transparent liquids. 

 

1 
2 
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Figure 4.2: Viscosity Tamson bath with a viscometer for transparent liquids (ASTM Standards D445, 2009). 

 

Procedure for opaque liquids, such as fuel oil 

The viscometer mostly used for the fuel oil samples was the 200 capillary viscometer 

Cannon-Fenske for a determination at 100 ºC and the 450 capillary viscometer Cannon-

Fenske for a determination at 50 ºC (Figure 4.3, a). The procedure was similar with that 

used in the determination of the kinematic viscosity of transparent liquids but in this case 

the samples need to be filtered. The viscometer was also filled, using suction, with the fuel 

oil sample until the filling mark (1) (Figure 4.3, b), and then the viscometer was inserted 

into the bath at 100.00±0.02 ºC (Figure 4.2) or 50.00±0.02 ºC, letting the sample flow by 

gravity until it filled more than half of the first bulb (2) (Figure 4.3, c). When the sample 

was at a rich point a stopper was placed on top at one side of the viscometer (Figure 4.3, 

d). To achieve thermal equilibrium, the sample was left in the bath for 30 minutes. After 

which, the time required for the sample to advance between the first mark (3) to the second 

one (4) (  ), and from the second to the third mark (5) (  ) was measured in seconds and 

recorded for the kinematic viscosity determination.  
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a) 
b) 

c) d) 

Figure 4.3: Example of a Cannon-Fenske viscometer for opaque liquids. 

 

Independently of having an opaque or transparent liquid the way to determine the 

kinematic viscosity values,   and   , was the same. Each flow time,    and   , measured 

was multiplied by the respectively viscometer constant,   , by means of the following 

equation: 

 

             (4.1) 

 

The final result of the kinematic viscosity,  , was obtained as an average of the two 

calculated values for each sample (    ). To ensure that no mistakes were made, the 

kinematic viscosity of one sample was always measured twice using different viscometers, 

with different viscometer constants. With that, it was possible to calculate the repeatability, 

the difference between successive results obtained with the same apparatus under constant 

operating conditions and with the same sample, and to evaluate the precision of the test 

method.  

In Figure 4.4 and in Figure 4.5 the range of kinematic viscosity variations at 100 ºC of all 

analysed HVGO and fuel oil samples is represented. While, in Figure 4.6 the range of the 

kinematic viscosity variations at 50 ºC of all analysed fuel oil samples is demonstrated. 
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Figure 4.4: Histogram for 168 samples on the variation of HVGO kinematic viscosity at 100 ºC. 

 

 

 

Figure 4.5: Histogram for 217 samples on the variation of fuel oil kinematic viscosity at 100 ºC. 
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Figure 4.6: Histogram for 108 samples on the variation of fuel oil kinematic viscosity at 50 ºC. 

 

 

4.2.2. Density (ASTM D4052 and ASTM D5002) 

Density is an important physical property that can be used to characterize petroleum 

products and petroleum fractions, in conjugation with other properties. There are different 

types of ASTM methods, to determine densities, used in the refinery for plant control and 

finished product quality. Examples of used ASTM densities were the ASTM D4052 

(ASTM Standards D4052, 2011) for LVGO characterization, and the ASTM D5002 

(ASTM Standards D5002, 2005) in the analysis of HVGO and fuel oil samples. 

 

ASTM D4052 – Standard test method for density, relative density and API gravity of 

liquids by digital density analyzer 

The ASTM D4052 method can be used for the determination of the density, relative 

density, and API gravity of petroleum distillates and viscous oils that can be handled as 

liquids at the tested temperature between 15 to 35 ºC. However, this method is restricted to 

liquids with a viscosity value below 15000 cSt and a total vapor pressure typically below 

100 kPa. Nevertheless, liquids with a total vapor pressure higher than 100 kPa can also be 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

103.2-201.6 201.6-300 300-398.4 398.4-496.8 496.8-595.2 595.2-693.6 693.6-792 792-890.4 

N
u

m
b

er
 o

f 
sa

m
p

le
s 

 

Kinematic viscosity 50 ºC (cSt) 



 

 

CHAPTER 4 
 

110 
 

analysed when ensured that the density determination is not affect by other perturbations 

such as bubbles in the oscillating sample tube. Gasoline and gasoline oxygenate blends, 

diesel, jet, base stocks, waxes and lubricating oils are examples of products that can be 

assessed by this method.  

The density of LVGO was analysed by the standard test method using a digital density 

analyzer DMA 4500 (Figure 4.7). In this method, a small amount (about 1 to 2 mL) of 

liquid was measured in an oscillating sample tube and due to the existence of a system for 

electronic excitation and frequency counting, the total mass of a tube was measured by 

determining its natural frequency of vibration. The oscillating frequency depends on the 

dimension and elastic properties of the tube, and on the weight of the tube and of the 

sample. The results of the vibration frequency used in conjunction with calibration data 

provided the samples density. With one analysis the apparatus provided two determinations 

in the density of the sample and if the two determinations did not differ by more than 

0.0002 g/mL the result was accepted. The range of density variations are presented in 

Figure 4.8. 

 

 

Figure 4.7: Digital density analyzer, Anton Paar DMA 4500M (ASTM Standards D4052, 2011). 
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Figure 4.8: Histogram for 105 samples on the variation of LVGO density. 

 

 

ASTM D5002 – Standard test method for density and relative density of crude oils by 

density analyzer 

For HVGO and fuel oil samples it was more appropriate to use the ASTM D5002 standard 

test method. This method can be used to determine the density or relative density of crude 

oils that can be handled as liquids at tested temperatures between 15 and 35 ºC. It can also 

be used in the analysis of crude oils with high vapor pressures and when necessary it can 

require measurements at higher temperatures to eliminate air bubbles in the sample. For 

these reasons samples as HVGO and fuel oil were analysed with this standard test method. 

We were referring to two dark samples that required some temperature increment to ensure 

that no unseen air or gas bubbles were in the sample. The basic principle of the operation 

in the equipment used (Figure 4.9) was similar to the ASTM D4052 standard test method. 

Beyond the required temperature, the main difference was related to the quantity of the 

sample that was required for the analysis, approximately 0.7 mL. The variations of the 

results obtained are presented in Figure 4.10 and Figure 4.11. 
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Figure 4.9: Digital density analyzer used, Mettler Toledo Density Meter De40 (ASTM Standards D5002, 2005). 

 

 

 

Figure 4.10: Histogram for 189 samples on the variation of HVGO density. 
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Figure 4.11: Histogram for 185 samples on the variation of fuel oil density. 

 

 

4.2.3. Carbon Residue (ASTM D4530) 

The standard test method used for the determination of carbon residue (ASTM Standards 

D4530, 2007) allowed evaluating the tendency of such materials (HVGO and fuel oil 

samples) to coke formation. The amount of carbon residue produced was dependent on the 

test conditions when evaporation and pyrolysis occurred. 

The procedure used in the determination of this property can be resumed into two main 

parts. The first one involved the sample preparation while the second one was related to the 

processing of the samples. The first step in the preparation of the sample was to heat and 

stir the samples until a homogeneous liquid was obtained. This step was only necessary 

once the samples in analysis were HVGO and fuel oil, two samples that when cooled were 

difficult to handle. After that, an appropriate mass of the sample was transfer into a tare 

sample vial and then the vial was placed into a vial holder. The required sample mass 

depended on the samples description. In the case of HVGO samples, the recommended 

quantity of the sample was 1.5±0.5 g, while for black, viscous or solid samples such as fuel 

oil, the quantity recommended was 0.15±0.05 g. After the preparation and during the 

processing of the samples, the vial holder, with the vials, was placed into the oven at less 
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than 100 ºC. The oven (see Figure 4.12) was slowly heated up to 500 ºC under an inert 

(nitrogen) atmosphere in a controlled manner for a specific time. During this time, the 

volatiles formed with the cooking reactions were swept away by the nitrogen, leaving the 

carbon residue. After a specific period of heating and when the temperature in the oven 

was less than 250 ºC, the vial holder was removed for further cooling. The cooling of the 

vials was made in a desiccator. When cooled, the vials were weighed.  

The carbon content in the original sample was calculated as the ratio between the weight of 

the carbon left and a percentage of the weight of the original sample, as in the following 

equation: 

 

                 
       

 
 (4.2) 

 

where   was the mass of carbon residue (g) and   the mass of the sample used (g). 

In Figure 4.13 and Figure 4.14 the range of carbon residue (% m/m) variations of all 

HVGO and fuel oil samples analysed are represented. Information about the carbon residue 

of LVGO samples is not given since this property was not included in the characterization 

of the LVGO samples. As previously mentioned, the carbon residue gives indication of the 

amount of coke that will be formed during thermal processes as well as of the amount of 

high boiling constituents. As LVGO samples are rich in lower boiling fractions and contain 

insignificant quantities of coke precursors a lower carbon residue is expected. 
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Figure 4.12: Coking oven, Alcor MCRT-160 (ASTM Standards D4530, 2007). 

 

 

 

Figure 4.13: Histogram for 142 samples on the variation of HVGO carbon residue. 
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Figure 4.14: Histogram for 103 samples on the variation of fuel oil carbon residue. 

 

 

4.2.4. Sulfur Content (IP 336) 

The IP 336 method (IP Standards 336, 2004) is used in the determination of sulfur content 

in products having sulfur contents in the range 0.03 (% m/m) to 5.00 (% m/m) such as 

naphthas, distillates, fuel oils, residues, lubricating base oils and unleaded gasolines. In this 

work the IP 336 method was used to determinate the sulfur content in fuel oils. LVGO and 

HVGO samples were not analysed by the IP 336 method once the sulfur content in these 

samples was expected to be very small. It is in the higher molecular weight fractions, such 

as the residue, that the greater concentration of sulfur compounds is located. Generally, the 

sulfur compounds found in crude oils have tendency to concentrate in residue. Farther, to 

determine the sulfur content of the fuel oil samples, the energy-dispersive X-ray 

fluorescence analyzer (Figure 4.15) was used. 
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Figure 4.15: Energy dispersive X-ray fluorescence analyzer, Oxford Instruments, Lab-X3500SCL (IP Standards 336, 

2004). 

 

In this procedure, a sample cell equipped with a thin transparent film was filled with the 

sample for the X-ray. The sample cell was placed in an analyzer detector in the beam 

emitted from a suitable low energy radioactive source, such as 
55

Fe source, and 

consequently irradiated by primary X-radiation. The basic operation principle of this 

analyzer is related to the X-ray fluorescence analytical method. This method explains that, 

due to the effect of the radiation, some electrons of the internal shells are ejected by the 

exciting radiation and with that they go to higher energy levels. Due to the movement of 

the electrons to other energy levels, electrons coming from higher levels occupy the 

“holes” create when the exited electrons turn away. This electronic rearrangement is 

responsible for the emission of the secondary X-radiation whose wavelengths are 

characteristic in the bombarded element. Each element can represent emissions of many 

different wavelengths depending on the internal electronic transitions. When electrons are 

ejected by the exciting radiation, the electrons from higher energy levels “fall down” to 

take the void place of K, L and M left by the electrons (as shown in Figure 4.16). This 

means that an emission    results from the movement of the electron arriving at the K 

shell and departing from the L shell. The index   refers that the origin of the transition was 

at a level above. In   and   index the origins of the transition were at two and three levels 

above, respectively. The sulfur content was analysed on the    emission at 5.573   

(Wauquier, 1995). Figure 4.17 presents the range of sulfur variations of fuel oil samples. 
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Figure 4.16: Fluorescence of sulfur atom. 

 

 

 

Figure 4.17: Histogram for 213 samples on the variation of fuel oil sulfur content. 

 

 

 

 

0 

50 

100 

150 

200 

250 

0.53-0.93 0.93-1.33 2.13-2.53 2.53-2.93 2.93-3.33 3.33-3.54 

N
u

m
b

er
 o

f 
sa

m
p

le
s 

Sulfur (% m/m) 



 

 

EXPERIMENTAL PROCEDURES 
 

119 

 

4.2.5. Flash Point (ASTM D93) 

The standard test method for flash point by Pensky-Martens closed cup tester (ASTM 

Standards D93, 2011) is the test method used in the determination of the flash point of 

petroleum products, at a temperature range from 40 to 360 ºC, and of biodiesel at a 

temperature range of 60 to 190 ºC. The flash point is an indispensable property that should 

be used for evaluating the flammability of a petroleum cut, since it is described as a 

measure in the tendency of the material to form a flammable mixture with air. The 

procedure in this method consisted in filling the brass test cup up to the inside mark with 

the analysed sample. After that the sample was heated and stirred at a specified rate in the 

automated apparatus – HFP 360 Flash Point Analyzers (Figure 4.18). Then an ignition 

source in the form of a small flame directly into the test cup at regular intervals was 

applied. When a flash was seen in the sample the flash point was found. The temperature at 

the moment of the flash was noted as the flash point of the sample. Figure 4.19 presents the 

results obtained with the application of the ASTM D93 on fuel oil samples. The flash point 

of LVGO and HVGO samples was not determined. Besides the important information 

obtained with the analysis of the flash point, this property was not used in LVGO and 

HVGO characterization once the determination of other properties were considered more 

significant to the required evaluation.  
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Figure 4.18: Pensky-Martens closed flash tester, HFP 360 Flash Point Analyzers (ASTM Standards D93, 2011). 

 

 

Figure 4.19: Histogram for 157 samples on the variation of fuel oil flash point. 
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4.2.6. P-Value (SMS 1600) 

The P-value, also called peptization value test, allows obtaining information on stability 

and stability reserve required in refinery process control. This stability is directly related 

with the asphaltenes precipitation and the data obtained with this method will avoid 

undesirable asphaltenes precipitation and will improve production efficiencies. The SMS 

1600 – state of peptization of asphaltenes in heavy oil streams – (Shell Method Series 

1600, 2001) describes the tendency of asphaltenes precipitation in residues and residual 

fuel oils having a viscosity value less than       cSt at 50 ºC. In the realization of this 

method an automated procedure using a commercially available automated stability 

analyzer (Zematra ASA Automated Stability Analyzer; Figure 4.20) was used. An amount 

of the sample (approximately 12 g), heated and stirred at specified rates in the automated 

apparatus, was diluted with cetane (hexadecane). The quantity of cetane used depended on 

the quantity required to reach the point of instability, which meant, that the sample become 

unstable after the injection of a measured quantity of cetane. The point of instability 

(asphaltene flocculation point) was determined by measuring the reflection of light by the 

asphaltenes that had precipitated on the glass surface in the optrode device. The P-value 

(stability reserve) was automatically calculated (Figure 4.21) taking into account the 

number of mL of cetane with which one gram of the sample can be diluted until it doesn’t 

flocculate the asphaltenes (    ): 

 

               (4.3) 
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Figure 4.20: Zematra ASA automated stability analyzer for residual refinery streams and fuel oils (Shell Method Series 

1600, 2001). 

 

 

 

Figure 4.21: Histogram for 213 samples on the variation of fuel oil P-value. 
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4.2.7. Distillation at Atmospheric Pressure (ISO 3405) 

To determine the distillation of LVGO products the ISO 3405 (ISO Standards 3405, 2011) 

– determination of distillation characteristics at atmospheric pressure - was used. This 

international standard method can be used to determine the distillation characteristics of 

light and middle distillates derived from petroleum and having initial boiling points above 

0 ºC and end points not above 400 ºC.  

An automated device, Herzog Atmospheric Distillation HAD 627, was used in the 

determination of LVGO distillation (Figure 4.22). This method used a standard round 

bottom distillation flask with a capacity of 125 mL attached to a water cooled condenser. 

The thermometer bulb was introduced into the top of the distillation flask using an 

appropriate snug-fitting device that held the temperature sensor in the middle of the neck in 

the distillation flask. A 100 mL of the sample was placed in the flask and heated by a small 

gas flame. The temperature of the initial boiling point was read when the first condensate 

drop entered the receiving cylinder at the end of the condensate bath. The test was 

continued at a constant rate and systematic observations of thermometer readings and 

volumes of condensate recovered were made at determined recovery levels of 

condensation. The final boiling point, the highest temperature observed, was also recorded 

(ISO Standards 3405, 2011). 

 

 

Figure 4.22: Herzog atmospheric distillation HAD 627 apparatus (ISO Standards 3405, 2011). 
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4.2.8. Distillation at Reduced Pressure (ASTM D1160) 

The ASTM D1160 – Standard test method for distillation of petroleum products at 

reduced pressure – was used for determining the range of boiling points in HVGO 

products (ASTM Standards D1160, 2006). This method can also be used in the 

determination of the distillation characteristics of petroleum products that can be partially 

or completely vaporized at a maximum liquid temperature of 400 ºC at controlled pressure 

between 1 and 50 mmHg. In this method, a 200 mL of the sample was weighed, into the 

distillation flask. The distillation apparatus, Herzog Vacuum Distillation HDV 632, (Figure 

4.23) was evacuated until the pressure reached the prescribed level for distillation. After 

the desired pressure level was obtained, the heat was applied to the flash as quickly as 

possible taking into account that undue foaming of the sample cannot occurred. When 

vapor or refluxing liquid appeared at the neck of the flask, the heating rate was adjust to 

recover at 6-8 mL/min until the distillation was completed. Data from vapor temperature, 

time and pressure at different volume percentage fractions of the charge collected in the 

receiver were recorded. 

 

 

Figure 4.23: Herzog vacuum distillation HDV 632 apparatus (ASTM Standards D1160, 2006). 

 



 

 

EXPERIMENTAL PROCEDURES 
 

125 

 

All procedures previously described were used to determine the required physical-chemical 

properties. A summary of all properties analysed with indication of the number of samples 

studied is presented in Table 4.2. In Table 4.2 it is also indicated the test time required to 

analyse each sample. This test time comprises the time required to prepare the samples, the 

time needed to make the analysis using the standard methods and the time required to clean 

the material used. As visualized, the standard methods used in this work were time-

consuming, some of them requiring many hours before the final result were obtained. 

Carbon residue was the standard method most time-consuming. The analysis of P-value of 

fuel oil samples could also take, at maximum 3 hours. However, depending on the sample 

composition this property could be determined in just 1 hour. To make a comparison 

between all procedures used to analyse each sample, Table 4.2 presents the time required 

to obtain a 
1
H and 

13
C NMR spectra. The procedure used to obtain a 

1
H and 

13
C NMR 

spectra will be explained in the following section. It was possible to conclude that, from all 

experimental procedures used, it was quicker to obtain a 
1
H NMR spectrum. It was verified 

that 25 minutes were enough to obtain a 
1
H NMR spectrum and, when using 

1
H NMR 

spectroscopy in combination with multivariate models, 25 minutes were enough to obtain 

the information about all the physical-chemical properties. On the other hand, many hours 

were needed to obtain a complete quality information of the samples in analysis when 

following the procedure of the traditional standard methods. In addition, the use of some of 

these standard methods required extensive handling and sample preparation. 

Besides, the identification of the properties studied, the number of samples analysed and 

the time required to develop a procedure, in Table 4.2 the minimum and maximum value 

obtained for each property and for each sample is also shown. 

 

 



 

 

Table 4.2: Number of samples, test time and minimum and maximum results for properties that were analysed. 

  
number of samples analysed  test time results [minimum;maximum] 

  
LVGO HVGO Fuel Oil  LVGO HVGO Fuel Oil 

P
ro

p
er

ti
es

 

Kinematic viscosity 50 ºC (cSt) - ASTM D445 
 

 108             
  

[103.2;890.4] 

Kinematic viscosity 100 ºC (cSt) - ASTM D445 
 

168 217             
 

[8.050;18.60] [14.20;1367] 

Density (g/mL) - ASTM D4052 105           [0.8592;0.9050] 
 

 

Density (g/mL) - ASTM D5002 
 

189 185         
 

[0.9152;0.9609] [0.9487;1.019] 

Carbon residue (% m/m) - ASTM D4530 
 

142 103      
 

[0.08;1.03]] [12.9;22.1] 

P-value - SMS 1600 
 

 217      
  

[1.00;1.8] 

Sulfur content (% m/m) - IP 336 
 

 213         
  

[0.53;3.54] 

Distillation (˚C) - ISO 3405 105        * 
 

 

Distillation (˚C) - ASTM D1160 
 

116       
 

*  

Flash point (˚C) - ASTM D93 
 

 157         
  

[49;102] 

1
H NMR spectra 105 214 222         

1
H NMR spectrum 

13
C NMR spectra 

 
 63             

  

13
C NMR 

spectrum 

(*) The results of the distillation depends on the distillation cut. 
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4.3. NMR Experiments 

The NMR spectroscopy was used to chemically characterize all the samples previously 

analysed by means of the ASTM standard methods. The main idea was to carry out a 

quantitative analysis of all samples. To obtain high quality spectra, the NMR spectra were 

recorded with a Bruker Avance 300 spectrometer (Figure 4.24) operating at atmospheric 

temperature and 300.13 MHz for proton and 75.47 MHz for carbon. 
1
H and 

13
C NMR 

spectra were recorded in the work hereby reported.  

 

 

Figure 4.24: Bruker Avance 300 NMR spectrometer. 

 

4.3.1. 1
H NMR Experiments 

The 
1
H NMR spectra were recorded using the following conditions: spectral with 6887 Hz, 

with a 30º pulse width (3.63 μs), 2.4 s acquisition time, 1 s relaxation delay, 32768 K data 

points and 128 scans. Very good signal to noise (S/N) ratio was obtained under these 

experimental conditions. The NMR spectrum was acquired using a high quality tube with 5 

mm diameter. The HVGO and fuel oil samples were prepared diluting 0.2000 g of the 

sample into 1 mL of deuteriochloroform (CDCl3) while for LVGO samples 0.35 mL of 

CDCl3 was used to dissolve 0.25 mL of the samples. In both preparations, an internal 

reference such as the tetramethylsilane [Si(CH3)4], commonly abbreviated as TMS, was 



 

 

CHAPTER 4 
 

128 
 

used. This internal reference defines the zero of the chemical shift scale and thus improves 

the precision of the quantitative and qualitative analysis. An example of LVGO, HVGO 

and fuel oil spectrum is presented in Figure 4.25, Figure 4.26 and Figure 4.27, respectively. 

 

 

Figure 4.25: Example of a LVGO 1H NMR spectrum. 

 

 

Figure 4.26: Example of a HVGO 1H NMR spectrum. 
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Figure 4.27: Example of a fuel oil 1H NMR spectrum. 

 

Apparently, it is not possible to highlight the main differences between the three spectra 

here presented. All spectra, LVGO, HVGO and fuel oil spectrum, present an aromatic and 

an aliphatic region. However, to indicate which of the samples present a high quantity of 

aromatic or aliphatic hydrogens a more detailed analysis of the spectra should be 

performed. For that, the integration of the spectrum is required. Such comparison is 

performed and discussed in Chapter 6. 

 

4.3.2. 13
C NMR Experiments 

To obtain a quantitative spectrum, an inverse gate decoupling 
13

C NMR spectrum was 

used. The important parameters used in recording such 
13

C NMR spectrum were the 

following: i) spectral with 20000 Hz; ii) with a 30º pulse width (1.5 μs); iii) 8 h acquisition 

time; iv) 6 s relaxation delay; v) 32 K data points; and vi) 4224 scans. As in the 
1
H NMR 

experiments, very good signal to noise (S/N) ratio was obtained under the previously 

described experimental conditions. The 
13

C NMR solution was prepared using the same 

tube as the ones used in the 
1
H NMR experiments, a tube with 5 mm diameter. The 

samples analysed by 
13

C NMR spectroscopy were the fuel oil samples. The samples were 

prepared by dissolving 0.2000 g of the sample into 1 mL of deuteriochloroform (CDCl3). 
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The tetramethylsilane (TMS) as internal reference was also used. In contrast to 
1
H NMR 

spectroscopy, a small amount of paramagnetic relaxation reagent such as 

trisacetylacetonatochromium(III) [Cr(acac)3] was add into the NMR solution. The idea of 

using the Cr(acac)3 was to reduce the long relaxation times of carbons and to avoid the 

nuclear Overhauser enhancement (NOE), related to the increase in signal intensity when C-

H coupled protons were saturated by the decoupling field (Altgelt et al., 1994). The use of 

Cr(acac)3 contributed in obtaining a quantitative spectrum (as example, Figure 4.28), 

which the advantage was the peak areas, in different molecular positions, where 

proportional to their concentration, which didn’t occur in a normal 
13

C NMR spectrum. 

As will be presented in Chapter 6, the use of 
13

C NMR spectroscopy to provide the 

physical-chemical properties of the analysed samples will be not considered in this work. 

The main reason for not using the 
13

C NMR was the time required to obtain a quantitative 

result necessary to develop reliable models (see Table 4.2, page 126). Since 
13

C NMR 

spectroscopy will not be considered in this work, the analysis of the LVGO and HVGO 

samples were not made by 
13

C NMR spectroscopy. 

 

 

Figure 4.28: Example of a fuel oil inverse gate decoupling 13C NMR spectrum. 
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As occur for the 
1
H NMR spectrum, to comment the 

13
C quantitative NMR spectrum 

(Figure 4.28) the integration of the spectrum is required. In Chapter 6 the integration of the 

13
C NMR spectrum is presented in an attempt to understand fuel oil composition. 

 

4.3.3. Pre-Measuring Steps 

As it is well known the quality of the NMR data depended on some experimental factors 

that need to be controlled and respected such as: i) sample preparation; ii) data acquisition; 

iii) pulse sequence; iv) optimization of instrumental parameters; and v) pre-processing 

data. 

 

Sample preparation 

As mentioned before, there were some precautions which had to be taken during the 

preparation of the sample. The quantity of each constituent that formed the final sample, 

the crude oil fraction, the solvent and the paramagnetic relaxation reagent, when used, need 

to be measured with some precision for obtaining adequate quantitative measurements. It 

was important that all samples, especially fuel oil samples, should be filtered before placed 

in the NMR sample tube to avoid the presence of solid impurities that will degrade the 

homogeneity of the magnetic field. The selection of the solvent used was also very 

important. The solvent used in all preparations, as referred, was the deuteriochloroform 

(CDCl3) once it had a high dissolving power (Christian et al., 1986) and the spectrometer 

needed a deuterium (
2
H) signal to “lock” the magnetic field strength and prevent it from 

changing with time. TMS was chosen as an internal reference since it is an inert, a low-

boiling liquid, and gives rise to a single line in the spectrum. Such facts occur due to all the 

protons in the symmetrical molecule having an identical environmental, and all protons in 

TMS resonate at a higher field than practically any other proton (Christian et al., 1986; 

Claridge, 1999). 
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Computer controlled NMR spectrometers 

As seen in Section 3.2.3, the NMR spectrometer was controlled by a computer which was 

used to collect, digitize and perform the Fourier transformation of the signals. There were 

some experimental variables that were digitally defined at the beginning of the experiment. 

These variables were the size of the data table ( ), the acquisition time (  ), in seconds, 

and the spectral width (  ), in Hertz, of the transformed spectrum. The data table can be 

expressed as followed: 

 

         (4.4) 

 

with   related to the number of addresses to be filled and responsible with the limits for 

the eventual resolution attainable (Christian et al., 1986). Additionally, there were other 

variables with high importance such as the pulse width and the delay time. The pulse width 

was defined as the time, in microseconds, during which the radio frequency pulse was 

applied. The delay time was referred to the time, in seconds, between pulses sequences and 

can be used to allow nuclei to reach magnetic equilibrium or “relax”.  

 

Instrumental variables 

There were many instrumental variables that were controlled such as the amplification, 

noise filtering, phasing of signals, width of sweep, adjustments of field homogeneity and 

the amplitude of the radio frequency radiation. This last variable, the amplitude of the radio 

frequency radiation, when too high can be responsible for increased sensitivity. For this 

reason the amplitude of the radio frequency radiation was set at a value that only saturates 

some of the resonances, in a real sample, over the finite range of relaxation times 

(Christian et al., 1986). 
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4.3.4. Data Pre-Processing 

In this section some of the pre-processing and data manipulations used to improve the 

performance of the subsequent multivariate data methods are reviewed. This pre-

processing of the NMR data is always necessary if quantitative NMR spectroscopy is 

desirable. A set of necessary processing steps, as shown in Figure 4.29, must be 

implemented to minimize or eliminate artifacts (resulting from experimental variations) 

and to enhance resolution or signal to noise ratio (Becker, 2000). To apply these pre-

processing steps it was important to obtain the spectrum that was acquired with the 

application of the Fourier transform to the FID signal. After that, the spectrum can be 

manipulated or transformed to produce the data set for multivariate analysis. These 

different types of data manipulations are described: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.29: Example of a flow chart of the different steps that can be utilized during the analysis of NMR spectral data. 

1. Time Domain NMR Data (FID) 

2. Fourier Transform (Spectrum) 

3. Phase and Baseline Correction 

4. Chemical Shift Alignment 

5. Data Reduction 

6. Binning 

7. Normalization 

 

8. Intensity Scaling 

9. Creation of Data Set for Multivariate Analysis 
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4.3.4.1. Phase and Baseline Correction 

The main difficulties encountered in the analysis of NMR data were related with the 

baseline distortions and variations in the spectral phasing between spectra. These variations 

could be the result from chemically induced changes and/or instrumental and temperature 

instability, field inhomogeneities and sample susceptibility effects (Alam et al., 2004). If in 

each single spectrum no correction was made, difficulties in accurately determining peak 

areas (quantification) and problems in classification when using some multivariate 

methods could be found. 

As previously stated, the phase correction of the spectrum was indispensable to optimize 

the appearance of the overall spectrum and to obtain the desired peak shape (Jacobsen, 

2007). After Fourier transform, the signals of the spectrum could be decomposed into 

absorptive and dispersive signals as indicated in Figure 4.30. The application of the phase 

correction was needed to yield purely absorptive signals (absorption mode). The NMR 

spectra were preferred in the absorption mode as it comprises a higher resolution and a 

higher proportionality between the integral of peaks and the number of nuclei which cause 

the signal, when compared with the dispersion mode.  

 

Figure 4.30: Peak signal in pure absorption or dispersion mode (Zerbe, 2010). 

 

The baseline correction was also very important to obtain all signals connected by a flat 

line and with that, obtained a good quality spectrum. Besides that, a good baseline gave 

good results in quantitative measurements where integral calculations were required 

dispersion mode 

absorption mode 
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(McKenzie et al., 2011). The baseline can be defined as the average of the noise part of the 

spectrum that should ideally be straight and a horizontal line representing zero intensity. 

Phasing and baseline distortions affect the quality of the spectra, reason why it is important 

to adjust and correct the spectra, automatically or manually. In the past, manually 

correction was used but soon standard commercial and public domain NMR software 

programs including methods to automatically correct these variations were developed. In 

this study, the phase and baseline were automatically adjusted and corrected by using the 

MestreNova 5.0.3 (Mnova) software (Mestrelab Research - Chemistry Software Solutions, 

2012). 

 

4.3.4.2. Chemical Shift Alignment 

All spectra obtained were aligned to the TMS signal at zero ppm (Figure 4.31). This 

procedure, the alignment of the spectrum to a reference peak, was important to acquire a 

useful chemical shift scale and to compare all spectra considered. 

 

 

Figure 4.31: 1H NMR spectrum of a fuel oil with reference of the TMS signal. 

TMS signal  
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To ensure that all spectra analysed had the TMS signal at zero ppm, a simple procedure 

implemented in Matlab 2011a (Mathworks Inc., Natick, MA, USA) was used to 

automatically adjust the TMS signal at 0.0 ppm. This type of chemical shift alignment was 

always used in this work due to the good results obtained. However other procedures were 

also tried and implemented, such as: 

- alignment of the spectra to the solvent peak as a chemical shift reference; 

- alignment of the spectra to another important and non-sensitive signal such as CH3 

signals; 

- alignment of the spectra according to a reference spectrum; 

- alignment of the aromatic region to the solvent peak (CDCl3) and the aliphatic 

region to the TMS signal. 

These procedures were not used during the pre-processing of the data once the results 

obtained when applying the multivariate data methods were not as good as when compared 

with the alignment of the spectrum to the TMS signal. 

In the scientific literature there are some studies referring the use of chemical shift 

alignment in terms of peak position (Stoyanova et al., 2004; Forshed et al., 2005; Guo et 

al., 2008; Savorani et al., 2010; McKenzie et al., 2011). Example of some methods are the 

partial linear fit (PLF) (Forshed et al., 2005), dynamic time warping (DTW) (Savorani et 

al., 2010; McKenzie et al., 2011), the correlation optimized warping (COW) (Savorani et 

al., 2010; McKenzie et al., 2011), the multiplicative signal correction (MSC) (Kramer et 

al., 2008) and the icoshift algorithm (Savorani et al., 2010). In this study, the multiplicative 

signal correction (MSC) algorithm was applied. With the MSC each spectrum was 

regressed against a “standard” spectrum and compared one by one with the line segments 

of the “standard” spectrum. Each spectrum was then shifted and aligned with the 

“standard” spectrum (Kramer et al., 2008). However, this type of algorithm was not used 

in this study due to the unsatisfactory obtained results after the multivariate data methods, 

when comparing with the alignment of the spectrum to the TMS signal. This lead to 

conclude that the use of peak alignment algorithm in these types of samples, which forces 
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the variation of the peak position, can slightly reduce the predicted ability of the model 

developed and should only be employed when strictly necessary. 

 

4.3.4.3. Data Reduction  

Data reduction is used to advantageously reduce the unused or undesired spectral regions. 

It can be used to remove just a signal or a spectral area with some noise or a non-viable 

region. In this research, data reduction was used: i) to remove the TMS signal that didn’t 

bring chemical information; ii) to remove the signal of the solvent used (CDCl3); and iii) to 

remove the region between 4.5 and 6.3 ppm since it was a region where no important 

information occurred and where spectral signatures of additives or other chemical species 

appeared. 

 

4.3.4.4. Binning 

Binning process has been considerably used for NMR data especially in the development 

of multivariate classification models. Binning involves the calculation of peak areas within 

specified segments of a spectrum (binning or bucketing) (Craig et al., 2006; McKenzie et 

al., 2011) becoming the resulting “spectrum” the input variable instead of the real NMR 

spectrum. It is evident that there is a reduction in the number of variables in the resulting 

“spectrum” and a reduction in the spectral resolution. This procedure is a rapid and 

consistent method that simplifies the data by reducing its size and smoothes out alignment 

errors between different samples. It also contributes to the elimination of the impact of 

small chemical shift variations (especially due to concentration) between different samples 

on the subsequent multivariate analysis. The most frequently bin size used in the NMR 

spectra is a bin width in the range of 0.02 to 0.04 ppm (Alam et al., 2004; Flumignan et al., 

2012). In this work, the most frequent used bin was 0.02 ppm due to better results that 

were obtained after applying multivariate data methods.  
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4.3.4.5. Normalization 

Normalization methods are data pre-processing approaches used when comparisons 

between spectra are required. Normally, in optimal conditions, the NMR peaks integrals 

are directly proportional to concentrations, in quantitative analysis. However, there are 

some experimental and instrumental variables that can affect the absolute NMR peak 

intensities. For this reason the normalization, to remove or minimize the effects of such 

variables, is used. In the present work, the normalization of the data used involved setting 

each spectrum to have unit total intensity by expressing each spectrum segment as a 

fraction of the total spectrum integral. Other alternative normalization approach, such as, 

normalization by the maximum peak of the spectrum and normalization by a given area 

(0.25 to 0.27 ppm) were also applied. The best results were obtained when using the 

normalization by the total spectrum integral. 

 

4.3.4.6.  Intensity Scaling  

Scaling is a part of multivariate analysis which can significantly improve the rate of 

identification and separation of groups during classification, normalizing the relative 

importance of each variable (Alam et al., 2004). Scaling should be used when there is no 

information about variable importance and, as previously stated, to regulate the importance 

of each variable in the model due to the existence of largest and smallest spectral features. 

When no scaling is applied the largest spectral features, which are not necessary more 

important than those present in a lower concentration, can obscure systematic variation of 

interest in the low intensity regions (Alam et al., 2004). In the literature it is possible to 

find some scaling methods including mean-centering (Cloarec et al., 2004; Craig et al., 

2006), variable stability (VAST) scaling (Keun et al., 2003), scaling to unit variance 

(autoscaling) (Craig et al., 2006) and Pareto scaling (Keun et al., 2003). In this study, 

mean-centering scaling was used to emphasize weaker spectral component and the 

autoscaling was also used to obligate the variables to have equal probability of influencing 

the model (Figure 4.32). With the mean-centering the average value of each column was 

calculated and then each column could be given a mean of zero by subtracting the column 

mean from each value in the column. While, applying the autoscaling meant scaling each 
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column to have unit variance by dividing each variable in the column by the standard 

deviation of the column and, therefore, giving equal weight to each variable.  

 

 

Figure 4.32: Representation of the scaling methods used: after mean-centering and autoscaling all variables will have 

mean zero and unit variance. Adapted from Eriksson et al. (2006).  

 

4.3.4.7. Creation of Data Set for Multivariate Analysis 

After applying all different types of data manipulations to each spectrum, a NMR data 

matrix composed by the spectra was obtained. Each different spectrum was composed of n 

areas for the frequencies within the observable spectral window as shown in Figure 4.33. 

This NMR data matrix could now be submitted to a multivariate analysis. 

 

 

Figure 4.33: Creation of data set for multivariate analysis after applying data pre-processing to each spectrum. 
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4.4. Final Remarks 

Analysing the procedures and sample preparation in the methods used during this research 

it was verified that these methods were elaborate, time-consuming, presenting some of 

them tedious preparations and requiring large amount of samples when compared with the 

NMR spectroscopy. As demonstrated, the impact of the pre-processing procedure on the 

analysis of NMR spectral data can be very significant in the subsequent multivariate 

analysis. Phase and baseline correction, chemical shift alignment, intensity scaling, 

normalization, binning and data reduction were the main pre-processing steps used. These 

different types of data manipulations were demonstrated to be very important and 

necessary to exploit the information content on the NMR data, increase the prospect of 

detecting subtle changes in the NMR data and enhance the interpretability of the resulting 

multivariate models. 
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PPRREEDDIICCTTIIOONN  UUSSIINNGG  

MMUULLTTIIVVAARRIIAATTEE  MMEETTHHOODDSS  
 

 

 

 

The difficulty and complexity associated with the interpretation of NMR spectra, 

from crude oil and derivatives require the development of powerful multivariate 

models to explore the information of such complex spectra. The use of 

multivariate models in the study of crude oil spectra is not new, but there are only 

few researchers using such models in the analysis of crude oils. In addition, 

studies referring the use of statistical models in the analysis of fuel oil, heavy 

vacuum gas oil and light vacuum gas oil samples are very scarce. 
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5.1. State of the Art 

The analysis of crude oil and derivatives using NMR spectroscopy requires the application 

of sophisticated chemometric techniques to extract the meaningful information from the 

complex and highly informative spectra. Normally the information about these types of 

samples, whose molecular structure of most compounds were very complex, could not be 

easily assessed due to the many overlapping peaks in the NMR spectra. The development 

of chemometric techniques overcome this NMR disadvantage and the possibility of 

applying multivariate methods to establish correlations between the spectral data and 

sample properties which were determined by the conventional techniques.  

The use of chemometric techniques to compute models for extracting chemical information 

in a NMR crude oil spectrum has quickly become an important tool for the NMR 

spectroscopy, allowing both qualitative and quantitative information to be obtained from 

these complex spectral signals. Chemometric analysis are mathematical and statistical 

methods responsible for decomposing the complex multivariate data into simple and 

relevant information, focusing on the important variances within the data (Miller et al., 

2005; Kiralj et al., 2006). Many developments in the chemometric methods have emerged 

and the combination of multivariate models and the NMR spectra have been used in the 

analysis of crude oil (Kvalheim et al., 1985; Molina et al., 2007; de Peinder et al., 2009; 

Silva et al., 2011; Masili et al., 2012). Although very few, some studies have been found in 

literature referring the use of statistical models in the analysis of heavy crude oil fractions 

such as fuel oil (Nielsen et al., 2008). However, to our knowledge, published works using 

statistical models in the analysis of LVGO and HVGO were not found. 

Principal component analysis (PCA), principal component regression (PCR), partial least 

squares (PLS) and artificial neural networks (ANN) are examples of important techniques 

of multivariate data analysis that can be applied to spectral data to extract significant 

information from the complex and highly informative spectra. These techniques allow the 

construction of models that can predict macroscopic properties of mixtures of crude oils 

from NMR measurements (Aske et al., 2002). 

Very briefly, PCA is a method of data analysis applied in contexts where there are several 

variables collected in each observation. The idea is to transform all these correlated 
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variables into a reduced set of variables called the principal components. The main 

objectives of PCA are to reduce the size of the data and analyse the structure relationship 

between the variables and observations (Alam et al., 2004; Miller et al., 2005). In simple 

terms, PCR is a regression model that combines principal component analysis and linear 

regression. In PCR, some of the principal components are used instead of all original 

variables, reducing in this way the number of predictor variables (Alam et al., 2004). PLS 

regression generates and combines characteristics from principal component regression 

and multiple regression. PLS seeks to estimate the subspace that best explains the 

variability in the  -axis, also describing the variability in the  -axis. The interpretation of 

PLS model allows the analysis of the relative importance of variables   in predicting   

(McKenzie et al., 2011). ANN regression is a mathematical model that contributes to 

simulate the structure and/or the functional aspects of the sample. They are usually 

associated with nodes or processing units and responsible to establish relationships 

between other units, receiving inputs and sending outputs, finding some patterns in 

complex data sets (Fraser et al., 1997). 

Molina et al. (2007; 2010) developed a new PLS based method contributing to the yield 

analysis and to the analysis of the principal physical-chemical properties of a crude oil 

mixture. Taking into account some studied physical-chemical properties, like the gravity 

values (ºAPI), KUOP factor, wax content, and correlation index (IC) it was confirmed the 

composition of the crudes studied (paraffinic or aromatic) (Molina V et al., 2010). For 

example, the crude classified as the most paraffinic was characterized as presenting the 

highest value of ºAPI and KUOP factor, while the most aromatic one was characterized for 

having low values of ºAPI and KUOP factor. It was also observed that when the paraffinic 

hydrocarbons content decreases and the aromatic resins and asphaltenes contents increases, 

other properties’ values increase such as the sulfur, nitrogen, vanadium and nickel content, 

the percentage of insolubles in n-pentane (nC5) and n-heptane (nC7) and the percentage of 

carbon residue (CR). The most naphthenic studied crude has presented the lowest pour 

point and the highest acid number. The authors justified the achieved correlation between 

1
H NMR spectrum and the content of vanadium and nickel by the PLS method probably 

due to the presence of paramagnetic metallic centers (for example vanadyl porphyrins). 

These paramagnetic metallic centers in the molecules affect the chemical shifts of the 

entire 
1
H NMR spectrum, the area of the spectrum of more distant protons and also the 
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protons belonging to the closest surrounding molecules. Consequently, their perturbation 

range is extended further than the molecules containing metallic centers, influencing 

different types of protons. Using the PLS regression method and the 
1
H NMR spectra of 

different crudes it was possible to meet the physical-chemical properties and the refining 

product yields with a high precision. 

Nielsen et al. (2008) used multivariate models in the study of different heavy crude oil 

fractions, aiming to identify physical-chemical properties. The physical-chemical 

parameters analysed were the calculated carbon aromaticity index (CCAI), density at 15 

ºC, gross (GCV) and net calorific values (NCV), viscosity at 50 ºC, ash content (ASH), 

total sediment accelerated (TSA), carbon residue (CR) plus aluminum, silicon, zinc and 

water contents. The obtained results, especially of density, showed that high aromatic 

content is associated with a high density, while a high fraction of aliphatic compounds 

normally has a lower density. A higher aromatic content means a higher value of 

calculated carbon aromaticity index (CCAI) of the sample. Relatively to the GCV and 

NCV, which are very important parameters in the oil quality analysis, it was verified that 

they have a positive contribution for the signals at 1.5, 0.7 and 0.5 ppm and a negative 

contribution for the signal at 2.5 ppm in the 
1
H NMR spectra. The MCR parameter, related 

with the oil stability, can be determined in the 
1
H NMR spectrum by the signals at 4.7-6.2 

ppm, having therefore a slighter contribution for the signals at 3.2-3.7 ppm and a negative 

effect for that at 1 ppm. The sulfur content can be determined by taking into account the 

region between 2.1 and 3.0 ppm. The water content is predicted near 4.5 ppm for undiluted 

samples and 
1
H NMR measurements at 50 ºC. The combination of the PLS and PCA 

techniques with the NMR spectroscopy have demonstrated, once again, to be very 

important in the analysis of physical-chemical properties on the heavy crude oil due to the 

facility, fast and reliable way to obtain this type of information. 

Peinder et al. (2009) analysed the potential of PLS to predict some properties of crude oils, 

such as yield long-on-crude (YLC), density (D), viscosity (V), sulfur content (S), pour 

point (PP), asphaltenes (Asph) and carbon residue (CR). The results obtained with the 

multivariate analysis and the traditional methods, like the ASTM and IP, demonstrated the 

importance of the PLS modelling that gave valuable and fast results. In this research, 
1
H 

and 
13

C NMR spectra and also other spectroscopic technique, the IR technique, were used, 
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primary to the analysis of each single technique and then associated, to determine the 

properties previously described. It was verified that a single spectrum from different 

techniques did not lead to any improvement in the results concerning the crude oil 

properties. The combination of the two techniques did not present additional information 

once the sample in the analysis was the same crude oil. However, each single spectrum 

was modeled by PCA model and then compared with the results of the PLS models with 

the single spectrum of each technique without the PCA method. With that it was concluded 

that modelling PCA scores instead of all spectrum only contribute to a better results if the 

13
C NMR spectroscopy was used. 

In 1985, Kvalheim et al. (1985) used PCA to help in the NMR interpretation of the crude 

oil naphtha fraction. The main idea was to analyse samples of the same geographical area 

aiming to identify correlations between samples from the same source. Dependence 

between the samples, especially in the composition, was found, for example in long chain 

versus short chain alkanes, branching, cyclization, and aromatization. The main differences 

were obtained in the quantities of the different structures. 

Masili et al. (2012) used 
1
H NMR spectroscopy and PLS regression models to predict the 

properties of 64 crude oil samples. The idea of such investigation was to develop a model 

that contributed in a fast and low cost effective way to the characterization of the different 

crude oils. Properties such as density, sulfur content, total acidity number, true boiling 

point distillation yields and KUOP factor were determined using the ASTM standard 

methods and were the properties predicted by the developed models. Successful results 

were obtained when using the PLS models to predict such properties. 

 

5.2. Methods Applied in this Thesis 

As the main objective of this research was the characterization of heavy residues and oil 

fractions such as fuel oil, HVGO and LVGO, using NMR spectroscopy, it was important to 

implement statistical methods to correlate the NMR determinations with the physical-

chemical properties used in the characterization of such products. After creating the data 

set for multivariate analysis, as referred in Chapter 4, the statistical methods for the 

analysis of NMR spectral data could be applied. The statistical methods used, as shown in 
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Figure 5.1, were: i) Principal Component Regression (PCR) [based on principal 

components analysis (PCA)]; ii) Partial Least Squares (PLS); and iii) Artificial Neural 

Networks (ANN) [based on principal components analysis (PCA)]. 

 

Figure 5.1: A flow chart of the different multivariate statistical methods used in this work. 

 

5.2.1. Principal Components Analysis - PCA 

Principal components analysis, also known as eigenanalysis or principal factor analysis 

(PFA), is a multivariate statistical method of data analysis applied in contexts where there 

are several variables collected in each observation (Miller et al., 2005). The idea is to 

transform all these predictive variables into a reduced set of new variables called the 

principal components   ,   , …,    (PCs). The principal components are linear 

combinations of the original variables describing each specimen   ,   , …,   . The first 

principal component,    (PC1), describes the first greatest variance and the second 

principal component,    (PC2), describes the second greatest, and so on, with the later 

components describing the smallest variance. These principal components are orthogonal 

and uncorrelated with each other (Martens et al., 1989). They are calculated by linear 

combinations of the original variables by means of the following equations: 

Multivariate Analysis 

Principal Component Analysis 

Principal Component Regression Artificial Neural Networks Partial Least Squares 

Sample Classification  
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                             (5.1) 

                             (5.2) 

 

with    ,    ,     representing the coefficients chosen with the aim to obtain new 

variables that are not correlated with each other, unlike the original variables, and their 

variance as large as possible. The principal components contain, in a much smaller number 

of variables, more than 90% of the information (cumulative percentage variance) that is 

available in the original data set, meaning that these variables include the greatest 

variability of the data and exclude the ones that contain modest information. 

Geometrically, the PCA is a rotation of the axes where the first principal component is in 

the direction of maximum variation, the second greatest principal component in the 

direction of the next greatest variation, and so on. With this, PCA reduces the data matrix 

from (   ) where   is the number of samples and   the number of data points per 

spectrum to a (   ) matrix with   representing the number of PCs determined. The 

sample coordinates on the new PC axes are called scores while the relationship between 

the new and the original axes are referred as loadings. Consequently, the decomposition of 

the data matrix occurs as indicated in Figure 5.2. With the scores it is possible to have 

information relative to the relation between samples variation (concentrations of 

multivariate), while with loadings it is possible to have an idea about which region of the 

spectrum represent the highest variation, which means, a description about the PCs and its 

relation with the original variables (chemical shifts) (Alam et al., 2004; Sousa et al., 2007; 

Winning et al., 2008; McKenzie et al., 2011). 

 

 

Figure 5.2: Decomposition of the data matrix into scores, loadings and the residual (E). 

data matrix 
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It is important to have in attention that the principal components are not scale invariant, i.e. 

they are dependent on the measurement scale in which the original variables are expressed 

(Miller et al., 2005). Consequently, it is important to analyse both the units used as well as 

the range of values that the original variables assume and standardized the data before 

applying PCA, using the scaling methods as described in the Chapter 4. Once again, 

standardizing the original variables     , by using the scaling methods, corresponds in 

calculating the variable      values using the following expression: 

 

   
     

        
 (5.3) 

 

which, using the mean of each variable      and the variance      , transform all original 

variables to have a zero mean and unit standard deviation. After applying this method, e.g. 

after the standardization of the original data, the covariance matrix is determined. 

Following, the eigenvalues ( ; Equation 5.4) are determined by using the subsequent 

expression: 

 

           (5.4) 

 

where   represents the identity matrix and     the covariance matrix. When the 

standardization is used, the covariance matrix of the standardized data is equivalent to the 

correlation matrix of the original data. Using the Equation 5.5, the weights of the variables 

in the PCs are calculated (Çamdevýren et al., 2005; Sousa et al., 2007).  

 

            (5.5) 
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where   is the matrix of the weights (or eigenvectors). The principal components, in 

mathematical terms, are the eigenvectors of the matrix and to each principal component 

(eigenvector) corresponds an eigenvalue which indicates the amount of variance in the data 

set explained by the principal component (Miller et al., 2005). Using the original data set 

standardized and the weights it is possible to obtain the principal components: 

 

        (5.6) 

 

The number of principal components obtained is equal to the number of original variables 

used. However, the number of principal components used into further analysis is smaller 

than the number of the original variables. The selection of the principal components used 

in further analysis depends on several criteria, which will be explained in the following 

section. 

Concluding, PCA is used to reduce the amount of data for further visualization and 

analysis. It helps in the interpretation of the process and in the identification of groups of 

variables that are interrelated. This interrelation is not directly observed and is also useful 

to analyse which data is considered an outlier, i.e. samples with significant different 

characteristics when comparing with other samples (Alam et al., 2004; Miller et al., 2005; 

Rezzi et al., 2005; Eriksson et al., 2006; Winning et al., 2008). 

 

5.2.2. Principal Component Regression - PCR 

Principal component regression is a regression model that combines multiple linear 

regression (MLR) and principal component analysis (PCA) (Martens et al., 1989; Alam et 

al., 2004; Miller et al., 2005; Pires et al., 2008a), i.e. the spectral data is compressed by 

PCA and then a multiple linear regression is applied using as predictive variables the PCA 

scores. The variables  , from a linear combination, are substituted by a matrix of their PCs 

which are correlated with the output variable  . When comparing with PCA, PCR is 

another method that can be used to reduce the number of predictor variables by using some 
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of the principal components instead of using all original variables. There are several 

criteria that can be used to determine the number of principal components used in the 

regression analysis, such as: i) retain a sufficient number of principal components taking 

into account the cumulative percentage variance (Alam et al., 2004), with a number of 

components that explained more than 90% of the original data set; and ii) retain the 

components whose eigenvalues are greater or equal to unit (Kaiser criterion) (Çamdevýren 

et al., 2005) once, like this, the variance of each principal component is always greater or 

equal to the variance of the original variable. In this work, these methods typically agree 

on the number of components to retain, which is indifferent using either. The criteria 

mostly used is the one which selects PCs with eigenvalues greater than 1, and when this 

criterion does not achieve 90% of the original data variance the other criterion must be 

used. In this way, it is ensure that the select PCs represented at least 90% of the original 

data variance. The most important aspect to have in attention when choosing the 

components is the amount of variation they explain of X (Martens et al., 1989; Miller et 

al., 2005). 

 

5.2.3. Partial Least Squares – PLS 

Partial least squares regression (PLSR) generates and combines characteristics from 

principal component regression (PCR) and multiple linear regression (MLR) to estimate 

the subspace that best explains the variability in the relation between the response 

variable      and predictor variables    . When using PCR, the principal components 

chosen explains the greatest amount of variance in  , independently of the strength of the 

relationships between the predictors and the response variables. However, PLS finds a set 

of uncorrelated linear combinations of the predictor variables which, as happens in PCR, 

have the highest capacity to explain the overall variability in the predictor variables but, 

moreover, still are highly correlated with the response variables (Miller et al., 2005). 

Normally, PLS is preferred relatively to other traditional multivariate methods when there 

are smaller numbers of observations compared to the numbers of predictor variables, 

which is the reason that it is considered to be one of the least restrictive methods compared 

with other multivariate extensions of the MLR models (Wold et al., 2001; Molina et al., 

2007). Besides this, it is also chosen in situations where only partial knowledge of the data 
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and multicollinearity among the explanatory variables exists (Eriksson et al., 2006). As 

already stated, PLS has been designed to find the relation between the explanatory 

variables     and the output variables     and searches a set of orthogonal components, 

the latent variables, which performs a simultaneous decomposition of   and   with the 

constraint that these components explain as much as possible the covariance between   

and   (Wise et al., 1996; Abdi, 2003; McKenzie et al., 2011). The number of latent 

variables depends on the correlation between these variables and the dependent variable, 

but the main idea is to have the highest correlation and, if possible, with the smallest 

number of latent variables. If the number of latent variables is too small then there is not 

enough information to create the model and it will be a poor prediction. However, if the 

number of latent variables is higher, then there is too much variation and the model will 

not be robust enough to small variations. There are different mathematical algorithms that 

can be applied when using PLS as the PLS with cross validation (Keun et al., 2003; Molina 

et al., 2007; Satya et al., 2007; Flumignan et al., 2012; Zerzucha et al., 2012) and with 

external validation. With these algorithms the idea is to determine the correct number of 

latent variables which contributes to good predictions and small errors. Normally the cross 

validation is used when the number of samples is modest while the external validation is 

more often used when a higher number of samples is presented. The best model, in the two 

algorithms, is the one that presents a smaller error. In the cross validation the        

(Root Mean Squared Error of Cross Validation) given by Equation 5.7 is calculated and in 

the external validation the       (Root Mean Squared Error of Prediction) is calculated 

using Equation 5.8. 

 

        
             
 
   

 

 
 (5.7) 

 

       
             
    
   

 

    
 (5.8) 
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For the external validation an independent validation data set is required and so      refers 

to the validation data set while, for the cross validation a data set encompassing the 

training and validation data sets, consequently,   refers to the number of samples of the 

training and validation data sets. This splitting of the data will be explained in Section 5.3.  

The complete procedure used when applying the PLS model can be defined as follows 

(Wise et al., 1996; Wold et al., 2001; Abdi, 2003; Pires et al., 2008b): 
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Figure 5.3: A flow chart of the complete procedure used when applying the PLS model. 

No? 

No? 7. Convergence of  ? 

Yes? 

Procedure completed. 

Yes? 

8. Estimation of the coefficient  ; 

9. Determination of the   factor loadings,  ; 

10. Elimination of the effect of   from   and  ; 

 

11. Optimal number 

of latent vectors? 

 

1. Normalization of X and y; 

2. Definition of the vector u with random values; 

3. Estimation of the   weights,  ; 

 

4. Calculation of the   factor scores,  ; 

5. Calculation of the   weights,  ; 

6. Estimation of the   factor scores,  ; 
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1. Normalization of   and  ; 

 

   
 

   
 (5.9) 

 

   
 

   
 (5.10) 

 

2. Estimation of a vector   using random values (normally one of the   columns); 

3. Estimation of the   weights,  ; 

 

  
  
   

   
    

 (5.11) 

 

4. Calculation of the   factor scores,  ; 

 

  
    

     
 (5.12) 

 

5. Calculation of the   weights,  ; 

 

  
  
   

   
    

 (5.13) 
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6. Estimation of the   factor scores,  ; 

 

       (5.14) 

 

7. Repetition of the steps 3 to 6 until the convergence of  ; 

8. Estimation of the coefficient   used in the prediction of   from  ; 

 

       (5.15) 

 

9. Determination of the   factor loadings,  ; 

 

     
   (5.16) 

 

10. Exclusion of the effect of   from   and  ; 

 

           
  (5.17) 

 

           
  (5.18) 

 

11. Repetition of the steps 2 to 10 until the determination of a select number of latent 

variables. 
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With this procedure, the vectors estimated,  ,  ,  ,   and  , were stored in the columns of 

the correspondent matrices  ,  ,  ,   and  , while the scalar   was stored in the diagonal 

matrix  . The entire procedure was repeated until all latent variables were determined, i.e., 

until    becomes the zero matrix.  

The dependent variables were predicted using the following multivariate regression 

expression (Equation 5.19): 

 

               (5.19) 

 

This regression become equivalent to a principal component regression (PCR) if all the 

latent variables were used (Abdi, 2003). 

 

5.2.4. Artificial Neural Networks – ANN 

The artificial neural networks (ANN) are powerful mathematical models that can be used 

in the process control, in developing predictive models and in matching patterns (Fraser et 

al., 1997). They are considered as a tool to solve chemical problems having been already 

applied to spectroscopic analysis in the interpretation of mass spectral data (Curry et al., 

1990), infrared spectral analysis (Roggo et al., 2007) and nuclear 
1
H and 

13
C spectral 

analysis (McKenzie et al., 2011). However, when comparing with the use of other 

techniques such as PCA and PLS, ANN are not widely used in the interpretation of NMR 

spectroscopy data. To our knowledge, it has not yet been found in scientific literature the 

use of ANN in the analysis of NMR spectral data of heavy petroleum fractions such as 

LVGO, HVGO and fuel oil. Related with petroleum refining industry, the ANN have been 

used in the prediction of distillate yields in a visbreaking process (Foddi et al., 2009), in 

the prediction of diesel fuel cold properties (Marinović et al., 2012) and diesel fuel 

lubricity (Korres et al., 2002). 

In a simple form, the ANN are learning models inspired in the biological neural processing 

system (Fraser et al., 1997; McKenzie et al., 2011) that attempt to mimic the operation of 
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neurons in the brain trying to imitate the human brain’s ability to learn. Therefore, ANN 

can be considered as a processing unit that stores knowledge based on learning such as the 

human brain. The human brain is able to learn and make decisions based on human 

learning that results from human interaction with their surroundings.  

The fundamental elements that characterize the ANN models are: i) the neurons or also 

known as nodes; ii) a pattern of connectivity among neurons; iii) an activation function for 

each neuron; and iv) a learning algorithm (Ahmadloo et al., 2010; Wang et al., 2010). All 

processing nodes that forms the ANN are interconnected by synapses in a net like 

structure, operate in parallel, communicating with each other by means of connecting 

weights (Wang et al., 2010) and are distributed by several layers (input layer, output layer 

and hidden layers) (Miller et al., 2005; Liu et al., 2007; Roggo et al., 2007), as shown in 

Figure 5.4. The structure of the network that is defined by the nodes and the way that they 

are linked can be divided into two of the most common types: i) feedforward networks; 

and ii) recurrent networks (Fraser et al., 1997; Maier et al., 2010; Wang et al., 2010). The 

feedforward networks are characterized for only present connections starting in inputs 

nodes and ending in outputs nodes and for not having connections starting in outputs of 

nodes and ending in inputs of nodes in the same layer or previous layer. In these cases, the 

information flows only feedforward from input to output nodes and never feedback. On the 

other hand, when the networks present the two types of connections, the feedforward and 

the feedback, the neural network architecture is designated by recurrent network. From 

these two, the feedforward is the most applied in the real world applications and normally 

is characterized from having an output layer, not many hidden layers (one or two hidden 

layers will be preferred) and an input layer. 
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Figure 5.4: Example of a feedforward artificial neural network. 

 

The learning process of the ANN is progressive and depends on the variability of the input 

data, and on the linkages that is established between nodes to obtain the output 

information. In the linkages established between nodes, also called synapses, there are 

values assigned that are defined as the weights. These weights are very important and 

considered adjustable parameters that are responsible by the neural structure and have the 

ability of learn and keep the information given on memory. It is important that the 

information received by the artificial neural network is descriptive about the physical 

phenomenon to allow that the ANN extracts the best relationship between the inputs and 

the desired outputs. There are three types of learning algorithms used in artificial neural 

networks: i) unsupervised learning; ii) reinforcement learning; and iii) supervised learning. 

In the first one, during the training of the artificial neural network, the response desired is 

not given. In the reinforcement learning and during the training of the neural network only 

a reward response is given. In the last one, the supervised learning, during the training the 

desired response is given to the ANN (Fraser et al., 1997; Wang et al., 2010). From all 

these learning algorithms, the most commonly used is supervised learning. As stated 

earlier, in the supervised learning a set of input-output pairs are given to the ANN. The 

data received by the input is then propagated to output passing through the 

interconnections between neurons. The neurons are responsible for processing the 
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information received by the inputs and calculating the output. There are some activated 

functions associated to the artificial neuron that are used to obtain the output. The most 

common functions are: i) the pure linear; ii) the sigmoid; and iii) the hyperbolic tangent 

(Marques, 1999; Hernández-Caraballo et al., 2003; Liu et al., 2007). The general working 

principle of the artificial neuron and the way to obtain the output of node   (  ) can be 

demonstrated by means of the following expression: 

 

               

 

   

  (5.20) 

 

where     is the activation function,    the input value from the previous node  ,     the 

weight value that connects node   and node  ,    the bias value of node   and   the total 

number of previous nodes connecting with node  . The network continues to correlate the 

inputs and outputs to find the best weights and bias that minimize the output error, which is 

acquired when comparing the predicted output of the ANN with the actual output value. 

This process is called the training procedure and it is repetitively applied in an iterative 

process until the bias values and weights are adjusted to reduce the global error (Kapur et 

al., 2004; Liu et al., 2007). To train the ANN a learning rule must be implemented and the 

most popular in the ANN is the back-propagation algorithm (Liu et al., 2007). The back-

propagation algorithms has different variants being the Levenberg-Marquardt algorithm 

one of the most widely used (Chaloulakou et al., 2003; Motlaghi et al., 2008). As some 

authors (Chaloulakou et al., 2003) announced, the Levenberg-Marquardt algorithm 

compared with the original back-propagation algorithm has showed significantly faster 

convergence and has been proved to be accurate enough in most cases. The main idea of 

using these algorithms is to minimize the error between the predicted and the observed 

output values and so the error of the output neurons is back propagated through the 

network to adjust the weights and bias values during the training period (Gershenson, 

2003; Motlaghi et al., 2008; Mashrei et al., 2010).  
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During the training procedure it is possible to find some overfitting problems (Kapur et al., 

2004). Overfitting indicates that the artificial neural network models memorize the training 

examples and have not learnt the ability to generalize, consequently the application of the 

neural network models to new situations can lead to higher errors. The same doesn’t occur 

with the values used to train the network, since the error is reduced due to the high number 

of iterations applied to obtain the best network. To overcome the overfitting problem and 

to improve the generalization of the network the available data is divided into three data 

sets, the training set, the validation set and the test set (Chaloulakou et al., 2003; Maier et 

al., 2010). The training data set is the only one used to develop the ANN models and to 

determine the network weights and bias values by solving a non-linear optimization 

problem. The validation data set is important to examine the accuracy of the ANN during 

the training set and plays a role of preventing overfitting on the training set. At the end of 

each training iteration the mean squared error       is determined (see Equation 5.21) by 

cross-validation for the training and validation data sets simultaneously. Normally, the 

errors on both data sets decreases as the proceeding of the training processes, although 

when the ANN begins to overfit, the error on the validation data set starts to increase while 

the error of the training data set progress decreasing (Mi et al., 2005). The continuous 

increasing of the error on the validation data set, for a specified number of iterations, stops 

the training processes. The best network parameters corresponds to an ANN which 

presents a minimum global value of     for the validation and training data sets and 

generally a high number of attempts is performed. This ANN presenting the minimum 

global value of     for the validation and training data sets will have a better 

generalization. The    , used as the performance function to interpret the difference 

between the predicted output value of the ANN and the observed output value, is 

determined by means of the following equation:  

 

    
 

 
          

 
 

   

 (5.21) 
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where    represents the observed values,     the modeled ones and   the number of samples 

from the data set. The test data set, never used for the training of the ANN, is used as a 

final test to analyse the trained ANN performance using another different set of samples 

(Kapur et al., 2004; Ahmadloo et al., 2010).  

The main steps used in the development of ANN prediction models are resumed in Figure 

5.5 (Maier et al., 2010): 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Steps used in the development of an ANN prediction models. 

 

1. Choice of potential inputs and outputs – using a priori knowledge and/or availability 

of data, the modeller should be able to select a set of potential model input variables from 

the available data. It is important to select the right pairs of input-output data that is going 

to be used in the develop of the best possible model (Maier et al., 2010); 

 

1. Choice of potential inputs and outputs 

2. Data processing 

3. Selection of inputs 

4. Division of the data 

5. Selection of model architecture 

6. Optimization of hidden nodes and model parameters (iterative process) 

 

7. Model validation  
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2. Data processing – consists in the preparation of the data to subsequent steps of the 

model development process. Standardization and scaling are examples of data processing 

that can be applied. In this study, as already mentioned in Chapter 4, all input variables 

(NMR spectra) have undergone a pre-treatment;  

 

3. Selection of inputs – the selection of the appropriate set of inputs is determinative in the 

ANN process. The idea is not having too many or too few inputs. If too many inputs are 

used, it is possible that some of them are related with each other and so redundant 

information or even no additional information is given to the model, which can contribute 

to overfitting and to identical model performance. While when using too few inputs it is 

possible that some of the inputs that have significant information are excluded and so the 

available data is not enough in the development of the resulting model. In this study, the 

principal components obtained after the application of PCA were used as inputs of the 

network. The use of principal components will contribute to simplify the network 

architecture due to the decrease of input variables, trying also to mitigate overfitting 

problems in the ANN model (Warne et al., 2004; Sousa et al., 2007; Maier et al., 2010); 

 

4. Division of the data – as stated earlier, the data is divided into training, validation and 

test data sets. These different data sets must be representative of all information available;  

 

5. Selection of model architecture – as stated before, the network architecture gives 

important information about the overall network structure and indicates how the 

information flows in ANN models. It depends on the number of layers, the number of 

nodes and how they are linked with each other. The number of nodes in the input and 

output layers are determined by the nature of the problem while the optimum number of 

nodes in the hidden layer can be determined by trial and error. The most commonly ANN 

architectures used are the feedforward and recurrent networks (Maier et al., 2010);  
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6. Optimization of hidden nodes and model parameters – for such optimization it is 

important to have in account: i) the structure of the network as the number of hidden nodes 

and the activation functions; ii) the model network parameters, as weights and bias values; 

and iii) the performance evaluation of the model. Following an iterative process of training 

and evaluation steps, the best model structure, which represents the desired input/output 

relationship, is obtained. With this iterative process the goal is to search a combination of 

model parameters (weights and bias values) that minimizes the output error between 

predicted and observed output values; 

 

7. Validation of the model – after identifying the best network configuration, to validate 

the model it is necessary to verify its performance when using an independent data set, the 

test data set. In this study, the best network configuration corresponds to an ANN which 

presents a minimum global value of     for the validation and training data sets, after the 

network being trained during one thousands of attempts with different initial values for 

weights and bias. The best network obtained has a better generalization and its 

performance is evaluated calculating some statistical performance indexes (Maier et al., 

2010). The statistical parameters used in this work are presented in Section 5.4.  

 

5.3. Models Pre-Treatment 

This study aims to evaluate the performance of the statistical models described above 

(PCR, PLS and ANN) for predicting the crude oil fractions properties from NMR. The data 

obtained with the NMR spectroscopy was used as the predictors’ variables (X) of the 

models, while the physical-chemical properties determined using the ASTM and IP 

standards methods were used as outputs of the models (y). For the development of the 

models, the data was divided into different groups: training, validation and test data sets, in 

the ratio of 60%, 20% and 20%, respectively. All different data sets were representatives of 

the data available. For the PCR model and PLS model with cross validation the samples 

forming the training and validation data sets were grouped (Figure 5.6) while for the ANN 

model, as visualized in Figure 5.7, a separate validation data set was required. The training 

data set, the largest one, was used to set up the model and to determine the models 
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parameters, while the test data set was inevitable for evaluating the models performance 

when applied to a new data set. The validation data set was used to find the optimal 

dimensionality of the multivariate model, avoiding either overfitting or underfitting. The 

splitting of the data is a very important procedure for models that are aimed for 

applications in the routine processes control since it is necessary to perform a model that 

will be applicable to the overall data set and to new samples. If the splitting of the data was 

not made, e.g. if using all samples at the training data set, the developed model would 

became very dependent on the data and when applied to a new data set it probably would 

not respond with a good accuracy and precision leading to large prediction errors. 

 

 

Figure 5.6: Schematic representation of variable selection for the PCR model and PLS model with cross validation. 

 

 

Figure 5.7: Schematic representation of variable selection for the and ANN models.  
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The split of the original data has been performed using the percentile distribution. Using 

the percentile distribution the objective was to divide the data into three sets covering 

approximately the same region and having similar statistical properties. The percentile was 

determined applying the percentile function in the range of the corresponding data set for 

values of percentile between 0.01 to 0.99. Taking into consideration the percentile 

distribution determined, the original data was randomly selected and allocated to the 

different data sets. Hence, it was guaranteed the representative of the original data in three 

data sets. The results obtained using the percentile distribution to create the different data 

sets were similar with the results obtained by applying a different algorithm based on 

works performed by Snee and Fernández Pierna et al. (Snee, 1977; Fernández Pierna et al., 

2009) for selecting the different data sets. Their algorithm was based on the Euclidean 

distance between all possible pairs of inputs points. Hence, in this work the Euclidean 

distance between two input vector (input data obtained by NMR spectroscopy of the 

sample   and  , for example) for a given physical-chemical property ( ) was calculated by 

using the following expression: 

 

               
 

 

   

 (5.22) 

 

with   representing all the samples analysed for a given physical-chemical property and     

indicating the  th sample analysed of the input data obtained by NMR spectroscopy for the 

physical-chemical property determined ( ). The procedure consisted in determining the 

distance between all input vectors and then selecting the two vectors which were furthest 

away from each other. These vectors were assigned for the training data set. Subsequently, 

after removing the two vectors for the training data set, from the remaining vectors, the 

other two vectors which were farthest away from each other were selected for the grouped 

validation and test data set. The procedure continued to be applied until all vectors from 

the original data were added alternately to each set, the training data set and the validation 

and test data sets. Afterward, the same procedure was performed to the grouped validation 
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and test data set in order to generate the two new data sets, the validation data set and test 

data set. In this stage of the analysis, the training data set was composed by 50% of the 

original data while the validation and test data sets were formed by 25% of the original 

data set, respectively. Since the results obtained with this algorithm were very similar to 

the ones achieved by the percentile distribution it was considered that both approaches 

could be applied. For this reason, the percentile distribution was the selected method to be 

used to create the different data sets.  

When using the PCR method, the principal components obtained in the PCA, were used as 

inputs of the model and the physical-chemical properties analysed were used as outputs. To 

determine the number of principal components to be used in this regression analysis, the 

criteria indicated to retain the components whose eigenvalues were greater or equal to the 

unit, was used (Kaiser criterion), although, from all principal components only the ones 

with statistically significance were required. With this, it was guaranteed that the 

components which had important contributions from the original variables were included 

in the model. In this algorithm the training data set include 80% of the original data while 

the test data set comprised 20% of the original data. Meaning that in the PCR model the 

training data set (80%) encompassed the samples forming the training data set (60%) and 

the ones from the validation data set (20%), after the separation in the three different 

groups by the percentile distribution. 

When using PLS, the cross-validation and the external validation method were test to 

determine the number of latent variables. However, once the results obtained using cross-

validation were always better than the ones obtained with external validation, the last 

method was no longer used. The number of latent variables, estimated using the cross-

validation algorithm, was selected by determining the minimum of the mean squared error 

(      ), given by Equation 5.7, considering a wide range of latent variables. With this 

algorithm an iterative procedure was used where one vector was put aside at each step and 

the response values for the vector that had been left out was determined and the resulting 

error of prediction estimated. Thereby, the mean squared error was calculated from n 

multiple partial regressions, where in each regression the number of input vectors used to 

determined the regression parameters was n-1, while the other vector was used in the 

prediction of the error. This procedure was carried out until all the input vectors were used 



 

 

CHAPTER 5 
 

168 
 

only once in the estimation of the error. The value n was assigned to the number of input 

vectors of the training and validation data sets. The input variables of the PLS model were 

the NMR spectra and the properties of the samples the output variables.  

For the ANN method, the principal components were used as input variables while the 

predicted properties were used as outputs. The networks used were of the feedforward 

artificial neural network type. These networks were characterized for having three types of 

layers (the input, the hidden and the output layer) and were tested using two, three and four 

nodes in the hidden layer. The best results were obtained when three nodes in the hidden 

layer were used. More than four nodes in the hidden layer were not considered as it can 

arrive to networks with a higher number of parameters compared with the dimension of 

data available. The transfer function used to obtain the output value was the hyperbolic 

tangent at the hidden layer node and the linear in the output layer node. The best network 

obtained corresponded to the ANN that presented a minimum global value of     

(Equation 5.21) for the training and validation data sets, after the network had been trained 

during one thousands of attempts with different initial values for weights and bias. Hence, 

the training data set was used to determine the network weights and bias, while the 

validation data set was applied to evaluate the performance of the network during the 

training data set. The test data set was used to evaluate the performance of the obtained 

ANN in different situations than those used in the training of the ANN. 

All models used were developed in Visual Basic
®
 for Applications develop for Microsoft 

Excel
®
 and in Matlab

®
 2011a (Mathworks Inc., Natick, MA, USA) using available models 

of principal component analysis, principal component regression, partial least squares and 

artificial neural networks.  

 

5.4. Performance Indexes 

To evaluate the model’s performance in both training and validation data sets and test data 

set there were some statistical parameters (see Table 5.1) that were calculated, such as the: 

i) coefficient of determination    ; Equation 5.23) or the Nash-Sutcliffe efficiency (   ; 

Equation 5.24); ii) mean absolute error (   ; Equation 5.25); iii) the root mean squared 

error (    ; Equation 5.26); iv) mean bias error (   ; Equation 5.27); v) percent bias 
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(     ; Equation 5.28); and vi)     -observations standard deviation ratio (   ; 

Equation 5.29). These statistical parameters analysed can be divided in different major 

categories: i) standard regression; ii) dimensionless; and iii) error index. The standard 

regression statistics, which included the coefficient of determination, determine the 

strength of the linear relationship between the predicted and observed data (Moriasi et al., 

2007). The Nash-Sutcliffe efficiency       is an example of dimensionless techniques, 

which provide a relative model evaluation between the residual variance (“noise”) 

compared to the measured data variance (“information”). Moreover, it indicates how well 

the plot of observed versus measured data fits the 1:1 line (Legates et al., 1999; Hall, 2001; 

Moriasi et al., 2007). The     statistical parameter, introduced by Nash and Sutcliffe 

(1970), is analogous with the coefficient of determination      and, in this case, where 

both determined by using the same expression, as visualized in Table 5.1. Although these 

statistical parameters were determined in the same way, it was considered important to 

determine both for model evaluation. The tendency is to use the coefficient of 

determination as a first way to evaluate how much of the observed dispersion is explained 

by the prediction. However, it should not be used alone when model evaluation is required 

and therefore, other statistical parameters are necessary to evaluate the relationship 

between measured and predicted properties. Since the general performance ratings 

presented by Moriasi et al. (2007) were used in this work, the     statistical parameter 

was also determined. Besides the standard regression and dimensionless categories, the 

error indices measure the deviation between the predicted and experimental data. Examples 

of error indices are the mean absolute error      , mean bias error      , root mean 

squared error       , percent bias        , and the     -observations standard 

deviation ratio      . 

To evaluate each model performance, all the statistical parameters indicated in Table 5.1 

were determined. However, since the general performance ratings presented by Moriasi et 

al. (2007) were based on the    ,     and       results, only these statistical parameters, 

in addition to the reported performance ratings presented in Table 5.2, were used to 

classify the developed models. In this way, taking in consideration the    ,     and 

      results, the developed models can be evaluated, compared and classified as very 

good, good, satisfactory and unsatisfactory. These general performance ratings 

recommended by Moriasi et al. (2007) (Table 5.2) were defined to compare simulated 
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output with measure data and consequently used to establish a platform for model 

evaluation. The idea of Moriasi et al. (2007) research was to demonstrate that the 

combination of graphical techniques and dimensionless and error index statistics should be 

used for model evaluation. Consequently, the quantitative statistics    ,       and     

were recommended as well as its performance ratings. 

 

 



 

 

Table 5.1: The statistical parameters analysed. 

Statistical Parameters Expression Definition  

Coefficient of Determination 

        
         

           
  

   
 
   

          
 
   

 

With the coefficient of determination it is possible 

to have an idea about the variability of the results 

reproduced by the development model when 

compared with the observed data. High values of  

   indicate small errors in variances and 

consequently correspond to better models.  

(5.23) 

Nash-Sutcliffe Efficiency (            
         

  
   

        
  

   

  

The Nash-Sutcliffe efficiency, analogous to the   , 

is a normalized statistic parameter presenting the 

relative magnitude of the residual variance when 

compared to the variance of the measured data. 

Positive values of     indicate acceptable 

performances while the negative ones are 

representative for unacceptable models. If     is 

equal to 1 a good model is obtained. 

(5.24) 

Mean Absolute Error (         
 

 
         

 

   

 
    (Equation 5.25) and      (Equation 5.26) 

evaluate the residual errors, describing the 

difference between the predicted and observed 

values. A better model is obtained when     and 

     presets lower values. These performance 

indexes have the same units of the output variable. 

(5.25) 

Root Mean Squared Error 

(            
 

 
         

 
 

   

 (5.26) 

Note:    = output value;     = model output;     = average of the output variable. 



 

 

Table 5.1: The statistical parameters analysed (continuation). 

Statistical Parameters Expression Definition  

Mean Bias Error (   )     
 

 
         

 

   

 

    gives an idea if the observed value is over or 

under estimated.     results closest to zero are 

more desirable. This indice have the same units of 

the output variable. 

(5.27) 

Percent Bias (              
               
 
   

     
 
   

  

      (expressed as a percentage), similar to    , 

indicates that the simulated data is larger or smaller 

than the observed data. If       has a positive 

value it indicates that the model is overestimated, 

otherwise the model would be underestimated. 

Values equal to 0 corresponds to a good model. 

(5.28) 

    -Observations Standard 

Deviation Ratio (     
    

    

        
 

           
  

    

           
 
    

 

    is not more than the standardization of      

by calculating the ratio between the      and the 

standard deviation of the measured data.     

ranges between 0 to a larger positive value. If     

is 0,      and the residual variation is also zero, 

then a good model simulation performance is 

obtained.     is a valuable statistical parameter 

once it integrates the benefits of error index 

statistics and a normalization factor allowing its 

application to various constituents (Moriasi et al., 

2007). 

(5.29) 

Note:    = output value;     = model output;     = average of the output variable. 
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Table 5.2: General performance ratings (Moriasi et al., 2007). 

Performance 

Rating 
              

Very Good 0.00 ≤     ≤ 0.50 0.75 <     ≤ 1.00       < ±15 

Good 0.50 <     ≤ 0.60 0.65 <     ≤ 0.75 ±15 ≤       < ±30 

Satisfactory 0.60 <     ≤ 0.70 0.50 <     ≤ 0.65 ±30 ≤       < ±55 

Unsatisfactory     > 0.70     ≤ 0.50       ≥ ±55 

 

Before applying this classification scheme (Table 5.2), the performance ratings presented 

were evaluated to verify if they were adequate to the samples in study. It was verified that 

the performance ratings recommended by Moriasi et al. (2007) were applicable to the 

models developed during this research once no conflicting performance ratings were 

obtained into the models. Normally the results of    ,     and       were in accordance. 

However, in situations with conflicting performance ratings, e.g. if the    ,     and 

      results were not all three in accordance and just two of them were in agreement, 

then the overall performance should be described with the performance rating defined by 

the two parameters in accordance.     and     are standardized parameters, therefore 

expected, as visualized, their ability to many models evaluation. The performance ratings 

used for PBIAS demonstrated to be, in most cases, in accordance with the other two 

statistical parameters and so, in this way, considered a good statistical parameter for these 

models evaluation. Moreover, it was considered important and appropriate using the 

general performance ratings developed by Moriasi et al. (2007) to compare simulated 

output with the measured.  

 

5.5. Final Remarks 

To predict the physical-chemical properties of the diverse petroleum fractions analysed 

(fuel oil, HVGO and LVGO) using as predictors NMR spectroscopy, different statistical 

models (principal component regression, partial least squares and artificial neural 

networks) were applied. The performance of each model developed was evaluated by using 

statistical significant regression parameters and a classification based on very good, good, 

satisfactory and unsatisfactory model. 
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RREESSUULLTTSS  AANNDD  DDIISSCCUUSSSSIIOONN  
 

 

 

 

 

This chapter presents the results obtained by nuclear magnetic resonance 

spectroscopy in the identification of some physical-chemical properties using 

different multivariate models. The selected models were based on: i) principal 

component regression; ii) partial least squares; and iii) artificial neural networks. 

As it will be shown, the models were ranked considering the values of several 

statistical indexes aiming to quantify the performance of the models. 
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6.1. Data 

As already stated in a previous chapter, the monitoring samples considered in this study 

were fuel oil, HVGO and LVGO. Their physical-chemical properties were determined at 

the laboratory of Matosinhos refinery while the NMR spectra of such samples were 

determined with a laboratory spectrometer at the University of Aveiro. At the beginning of 

the project, 
1
H and 

13
C NMR spectroscopy were used to evaluate the performance of each 

technique in predicting the physical-chemical properties of the samples in study. 

Information about the number of the first samples analysed by each technique and their 

properties is shown in Table 6.1. However, the analysis of each sample using both, 
1
H and 

13
C NMR spectroscopy, has not always been applied. As set out in further detail below, 

there are some limitations associated with one of these techniques. A brief description of 

the results obtained using 
1
H and 

13
C NMR spectroscopy techniques is presented. Finally, a 

detailed analysis of the results for predicting physical-chemical properties of the three 

different streams is presented. 

 

Table 6.1: Number of samples analysed by 1H and 13C NMR spectroscopy and minimum and maximum values of the 

properties analysed by the standard methods. 

samples properties 
number of samples 

analysed 

properties results 

minimum maximum 

Fuel Oil 
Kinematic viscosity 100 ºC (cSt) 32 20.76 68.34 

Density (g/mL) 32 0.9665 0.9911 

 

 

6.1.1. 13
 C NMR Spectroscopy 

Figure 6.1 presents some of the quantitative 
13

C NMR spectra obtained with the analysis of 

the fuel oil samples. By observation of the spectra it is possible to visualize that between 

70 and 90 ppm no important information about the composition of the sample occurs, i.e., 

no important signals appears in this region. Consequently, this region was omitted to avoid 

including the solvent signal into the models. Hence, the spectral region considered in the 

developed models only included the signals between 11 and 60 ppm and between 100 and 

160 ppm.  
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Figure 6.1: Quantitative 13C NMR spectra of some fuel oil samples. 

 

For the development of the models all 32 samples of fuel oil were used. From which, 12 

samples constituted the training data set while the validation and test data sets were 

represented by 10 samples, respectively. The bin width (division of the spectrum in 

specified segments) used was 0.5 ppm instead of 0.02 ppm. In the case of quantitative 
13

C 

NMR, it was impossible to use a bin of 0.02 ppm, due to the large chemical shift of the 

quantitative 
13

C NMR spectrum. If using a bin of 0.02 ppm, 21 PCs (principal components) 

were select. The results obtained when using quantitative 
13

C NMR and the multivariate 

models (PCR, PLS and ANN) are presented in Table 6.2. 

Before applied PCR and ANN models, PCA was implemented. PCA was used as a 

classification method to reduce the number of variables in the models by selecting only the 

principal components with eigenvalues greater than or equal to 1. In this study, the PCs 

with eigenvalues greater than or equal to 1 incorporate more than 90% of the original data 

variance. These results were very important once it indicated that the PCs chosen contained 

significant information about the original variables and increased the confidence in the 

PCA results. Results presented in Table 6.2 shows that 17 PCs were used for predicting 

kinematic viscosity (cSt). The percentage of the original data variance contained in the 

selected PCs was 96.6%. For predicting density (g/mL), 17 PCs corresponding to 96.4% of 

the original data variance were required. 



 

 

 

 

Table 6.2: Results obtained for different properties of fuel oil analysed when using quantitative 13C NMR in multivariate models. 

   
bin 

number 

PC 

number 

LV 

number 

nodes 

total 

variance 
                               

model 

performance 

Kinematic 

viscosity 

100 ºC 

PCR 
training and validation 

0.5 

17 

  

96.6% 

0.26 7.06 8.96 0.00 0.00 0.86 unsatisfactory 

test 
  

0.36 6.14 8.32 -1.60 -4.47 0.80 unsatisfactory 

ANN 
training and validation 

 3 
0.63 4.72 6.29 0.52 1.45 0.61 satisfactory 

test 
 

0.52 5.51 7.18 -2.22 -6.20 0.69 satisfactory 

PLS 
training and validation 

 5   
0.99 0.65 0.79 0.00 0.00 0.08 very good 

test 
   

0.22 6.47 9.13 -1.50 -4.19 0.88 unsatisfactory 

Density  

PCR 
training and validation 

0.5 

17 

  

96.4% 

0.31 0.004 0.005 0.00 0.00 0.83 unsatisfactory 

test 
  

-0.24 0.005 0.006 0.00 0.01 1.11 unsatisfactory 

ANN 
training and validation 

 3 
0.80 0.002 0.002 -0.001 -0.06 0.45 very good 

test 
 

0.67 0.002 0.003 0.00 0.01 0.58 good 

PLS 
training and validation 

 3   
0.84 0.002 0.002 0.00 0.00 0.40 very good 

test 
   

0.50 0.003 0.004 0.00 0.04 0.71 unsatisfactory 
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The final models were obtained and the performance of the developed models (PCR, PLS 

and ANN) considering the training and validation data sets and the test data set evaluated 

through the determination of the performance indexes as referred in Chapter 5. When 

predicting fuel oil kinematic viscosity, very good performance indexes in the training and 

validation data sets using the PLS model with five latent variables were obtained, as 

visualized in Table 6.2. The model did not predict the values of the test data set. In a way 

to understand this behaviour, a very good prediction obtained at the training and validation 

data sets and an unsatisfactory prediction at the test data set, the data sets were modified to 

verify if no mistakes during the selection of the samples for each data set occurred. As 

expected, since each data set was representative of the original data and equally spread in 

variance, the same behaviour occurred, e.g. the model did not predict the values of the test 

data set independently of the selected samples composing the test data set. This lead as to 

conclude that the obtained performance indexes were not dependent on the choice of the 

samples forming each data set, but on the model applied and the number of samples 

composing the data sets, as better predictions, than the ones achieved with the PLS and 

PCR models, were obtained, at the test data set, when applying the ANN model. 

Comparing with PCR and PLS, it was possible to visualize that ANN model presented 

higher     value and smaller     result, when analysing the test data set. Furthermore, it 

was possible to verify that it was with the ANN model that a smaller      value was 

obtained at the test data set. The     and       were negative for the test data set 

predicted with the ANN model, meaning that, in average, the predict kinematic viscosity of 

fuel oil samples was underestimated. For the training and validation data sets, the results 

obtained were not as good as the ones obtained with the PLS model. Nevertheless, it was 

with the ANN model that similar predictive results were obtained for both data sets. Using 

the general performance ratings developed by Moriasi et al. (2007), the results obtained by 

the ANN model were classified as satisfactory in all data sets. Accordingly, the results 

showed that the best model to predict the kinematic viscosity of fuel oil samples using 

quantitative 
13

C NMR spectroscopy was obtained with ANN model.  

Analysing the results obtained for the prediction of fuel oil density (Table 6.2) it was 

possible to conclude that the worst performance occurred with PCR model, where 

unsatisfactory predictions for both data sets were obtained. Concerning the results obtained 

with the PLS model, it was verified that very good predictions at the training and 
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validation data sets were obtained, however, when predicting the test data set 

unsatisfactory results were achieved. When applying the ANN model, very good 

predictions at the training and validation data sets were obtained, although for the test data 

set only a good model was achieved. Once again, the ANN was the model that gave the 

best results in both data sets. High     value and small     results were indicatives of a 

good model. Additionally,      and     presented low values indicating that the 

difference between the predicted and observed density values was very small. For the 

training and validation data sets and for the test data set, the prediction of the density 

values was overestimated. 

Coming back to Table 6.2, it was clear that the use of the ANN model lead to more 

accurate results, compared to the other models in predicting the kinematic viscosity and 

density of fuel oil samples by using quantitative 
13

C NMR spectroscopy. However, to 

improve the results obtained and the accuracy of the developed models more fuel oil 

samples should be included in the both data sets.  

 

6.1.2. 1
H NMR Spectroscopy 

With respect to experimental results, the 
1
H NMR spectra of several fuel oil samples are 

presented in Figure 6.2. Even though the 
1
H NMR spectrum of fuel oil is very crowded and 

highly overlapped it is possible to assign distinct structural regions to different functional 

groups. The region between 0.5 to 4.5 ppm originates the aliphatic region, where it is 

possible to identify the aliphatic CH3 groups at 0.5 to 1.0 ppm, while the aromatic region 

spans from 6.5 to 10.0 ppm. From these regions some chemical shifts were eliminated to 

create the appropriate data for posterior application of the models. The data set comprises 

the chemical shift region between 0.5 to 4.5 ppm, 6.5 to 7.1 ppm and 7.4 to 10.0 ppm. 

While the solvent signal (7.1 to 7.4 ppm) and the regions where no important information 

occurred and were spectral signatures of additives or other chemical species appears (4.5 to 

6.4 ppm) were avoided. 
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Figure 6.2: 1H NMR spectra of some fuel oil samples. 

 

The 32 fuel oil samples analysed with quantitative 
13

C NMR spectroscopy were also the 

samples analysed by 
1
H NMR spectroscopy, to compare the results of both techniques. 

Prior to multivariate modelling, the 32 fuel oil samples constituting the data set were 

divided in three different sets, the training data set containing 12 fuel oil samples, the 

validation data set comprising 10 samples and the test data set containing 10 samples. The 

spectral area used was divided in constant segments of 0.02 ppm, since the bin width of 

0.02 ppm procedure was preferred over other segments. Moreover, the whole procedure 

used to apply the multivariate models was the same as the one performed when using the 

quantitative 
13

C NMR spectra. The results obtained after applying multivariate modelling 

to the 
1
H NMR spectra are provided in Table 6.3. 

 

 



 

 

 

 

Table 6.3: Results obtained for different properties of fuel oil analysed when using 1H NMR in multivariate models. 

   
bin 

number 

PC 

number 

LV 

number 

nodes 

total 

variance 
                               

model 

performance 

Kinematic 

viscosity 

100 ºC 

PCR 
training and validation 

0.02 

7 

  

96.7% 

0.90 2.62 3.27 0.00 0.00 0.31 very good 

test 
  

0.42 6.37 7.92 1.08 3.03 0.76 unsatisfactory 

ANN 
training and validation 

 3 
0.88 2.80 3.59 0.15 0.43 0.34 very good 

test 
 

0.66 4.11 6.14 0.12 0.32 0.59 good 

PLS 
training and validation 

 12   
0.99 0.21 0.26 0.00 0.00 0.02 very good 

test 
   

0.57 5.39 6.82 1.70 4.75 0.66 satisfactory 

Density 

PCR 
training and validation 

0.02 

7 

  

96.6% 

0.60 0.003 0.004 0.00 0.00 0.64 satisfactory 

test 
  

0.18 0.004 0.005 0.00 0.21 0.91 unsatisfactory 

ANN 
training and validation 

 3 
0.89 0.001 0.002 0.00 0.03 0.32 very good 

test 
 

0.82 0.002 0.002 0.00 0.12 0.42 very good 

PLS 
training and validation 

 8   
0.98 0.001 0.001 0.00 0.00 0.12 very good 

test 
   

0.81 0.00 0.002 0.00 0.04 0.43 very good 
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The firsts results obtained during the prediction of the different properties of fuel oil by 

using 
1
H NMR spectroscopy in combination with multivariate modelling, demonstrated 

that 
1
H NMR spectroscopy has high potential to predict such properties.  

The prediction of the kinematic viscosity was performed using 7 PCs corresponding to 

96.7% of the total variance. The selection of the number of PCs was made taking into 

account the Kaiser criterion as referred in Section 5.2.2 and, as previously mentioned, also 

considering the total variance obtained when using the quantitative 
13

C NMR spectroscopy. 

Coming back to Table 6.3, independently of the model applied, very good predictions of 

fuel oil kinematic viscosity were obtained for the training and validation data sets. High 

    results, small      and     values, and small     results characterized all 

developed models achieved for the training and validation data sets. However, for the test 

data set, the predictions obtained with the applied models were not as good as the ones 

achieved for the training and validation data sets. As visualized in Table 6.3, the PCR 

model presented unsatisfactory performance indexes with low quality results, as small     

result and very high      value. The PLS model also indicated that the results obtained 

when predicting the kinematic viscosity of fuel oil were not accurate. In this case, only 

satisfactory predictions were performed by the model. Even changing the number of latent 

variables, it was not possible to improve the PLS results. When the ANN model was 

applied, better performance indexes were obtained, showing that the develop model was of 

higher quality. This model, obtained when using 3 nodes in the hidden layer, was 

characterized for having higher     result, small      and     values, and small     

value, comparing with the ones obtained with the PCR and PLS models. 

For the density predictions of the fuel oil samples, the results obtained during training and 

validation data sets and test data set using PLS and ANN models demonstrated that 

accurate models were achieved. It was observed in Table 6.3 that very good performance 

indexes were obtained for both data sets when both models, PLS and ANN models, were 

applied. Only the PCR model presented a significant difference, since worse predictions 

were obtained for both data sets, training and validation data sets and test data set. The 

predictions obtained with the PCR model at the training and validation data sets presented 

reasonable results, with a satisfactory model achieved; however, the performance indexes 

for the test data set were slightly worse than for the training and validation data sets. For 
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the PCR and ANN model, 7 PCs were used, explaining 96.6% of the total variance and 3 

nodes at the hidden layer of the ANN model where needed. The prediction with PLS model 

was performed using 8 latent variables.  

Concluding, the ANN and PLS models were preferred over PCR model to predict the 

properties of the fuel oil samples by using 
1
H NMR spectroscopy. The performance 

indexes indicated that the developed models were of higher quality when using the ANN 

model to predict the fuel oil kinematic viscosity. Relatively to the prediction of the fuel oil 

density, similar performance indexes than the ones achieved with the PLS model where 

obtained when using the ANN model. In general, higher coefficient of determination 

between the predicted and measured data and smaller residual variations were achieved 

when using the ANN model to predict both properties analysed. The ANN model 

demonstrated to be a very important method having the capability to construct very good 

models between the measured data and the predicted properties, due to their ability to learn 

complex non-linear and multivariate relationships between process parameters.  

 

6.1.3. 1
H and 

13
C NMR Spectroscopy 

Comparing the results presented above, it was possible to conclude that both techniques, 

1
H and 

13
C NMR spectroscopy, combined with multivariate statistical methods could give 

good predictions of the proprieties of fuel oil samples. In addition, it was demonstrated that 

both techniques could be used to predict the kinematic viscosity at 100 ºC and the density 

of fuel oil samples instead of the traditional ASTM methods in laboratory applications. 

However, when the idea was to evaluate the possibility of using an industrial application of 

NMR spectroscopy, to predict the proprieties of different samples, quantitative 
13

C NMR 

spectroscopy was not a good choice. Besides the good results, especially when predicting 

fuel oil density, the main problem associated with this technique was related to the time 

required to obtain a quantitative 
13

C NMR spectrum of such complex samples as petroleum 

fractions. It was necessary eight hours to obtain a quantitative 
13

C NMR spectrum of a fuel 

oil sample. With less than eight hours it was not possible to obtain a good spectrum, with a 

good signal resolution and an adequate signal to noise ratio. The time required to acquire 

this spectrum was very high and even a standard ASTM method could be faster (see Table 
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4.2, page 126). Besides the time, the preparation of a quantitative 
13

C NMR sample could 

also be a restriction. As referred previously, to obtain a quantitative 
13

C NMR spectrum a 

paramagnetic relaxation reagent as Cr(acac)3 was required. Cr(acac)3 was difficult to 

dissolve in fuel oil samples requiring higher amounts of the solvent (CDCl3). Additionally, 

to guarantee that a perfect homogeneous solution and all Cr(acac)3 was dissolved it was 

necessary to use the ultrasonic bath. Due to these facts and the difficulty associated with 

the use of the paramagnetic relaxation reagent it is not guaranteed that a perfect solution is 

obtainable at an online sample preparation.  

The main objective when evaluating the use of an online NMR spectrometer is to verify if 

its implementation will improve and lead to a better control over the streams and lead to 

achieve optimal operations and profitability in real time. Additionally, the objective is to 

obtain information about different properties, from a single measurement, that contribute to 

immediately adjust the production variables and increase the profitability by producing 

well at the first time, avoiding product loss. 
1
H NMR spectroscopy have the benefit of 

giving results in just a few minutes, doesn’t need complicate samples preparation, gives 

good predictions and contributes to develop reliable models. For this reason, 
1
H NMR 

spectroscopy was the technique used in this work for the prediction of petroleum fractions 

properties.  

In laboratory applications the use of both 
1
H and 

13
C NMR spectroscopy will be 

recommended. However, for industrial applications the 
1
H NMR spectroscopy will be the 

chosen technique.  

 

6.2. 1
H NMR Spectroscopy in the Analysis of Petroleum Fractions 

As indicated above, 
1
H NMR has been considered a fast and viable technique to predict 

petroleum fractions properties. As a result, in this work, 
1
H NMR spectroscopy, combined 

with multivariate methods, has been used in the prediction of the physical-chemical 

properties of fuel oil, HVGO and LVGO samples. The physical-chemical properties that 

were measured for each stream, the number of samples analysed by 
1
H NMR spectroscopy 

and some information about the properties results are reported in Table 6.4. The results of 

the development models for all properties analysed in each stream are presented as follows. 
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Since the procedure used to obtain the predicted results was similar in all properties of 

each analysed stream, it is only presented in detailed for the first property, i.e., for sulfur 

content. 

 

Table 6.4: Number of samples analysed by 1H NMR spectroscopy and minimum and maximum values of the properties 

analysed by the standard methods. 

samples properties 
number of 

samples analysed 

properties results 

minimum maximum 

Fuel Oil 

Sulfur content (% m/m) 213 0.53 3.54 

Kinematic viscosity 100 ºC (cSt) 217 14.20 1367 

Kinematic viscosity 50 ºC (cSt) 108 103.2 890.4 

Density (g/mL) 185 0.9487 1.019 

Carbon residue (% m/m) 103 12.9 22.1 

Flash point (ºC) 157 49 102 

P-value 217 1.00 1.8 

LVGO 

Density (g/mL) 105 0.8592 0.9050 

Distillation (ºC) 

5% 105 227 307 

10% 105 231 322 

50% 105 251 361 

90% 105 279 414 

95% 105 292 417 

HVGO 

Density (g/mL) 189 0.9152 0.9609 

Kinematic viscosity 100 ºC (cSt) 168 8.050 18.60 

Carbon residue (% m/m) 142 0.08 1.03 

Distillation (ºC) 

5% 116 359 410 

10% 116 374 418 

50% 116 433 466 

90% 114 484 542 

95% 99 500 558 

 

 

6.2.1. Fuel Oil 

The purpose of analysing fuel oil with 
1
H NMR spectroscopy was to verify if it was 

possible to use this technique to predict, by only one measurement, several properties 

which are part of fuel oil specifications. These physical-chemical properties were: i) sulfur 

content; ii) density; iii) carbon residue; iv) kinematic viscosity; v) flash point; and vi) P-

value. The results obtained in predicting these proprieties with 
1
H NMR spectroscopy will 

be presented below. 
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i) Sulfur content (% m/m) 

To determine the sulfur content of fuel oil stream using 
1
H NMR spectroscopy, 213 

samples were analysed. These samples exhibit a wide variety of results including fuel oil 

samples from cogeneration fuel oil, bunker fuel oil and some fuel oil produced at Sines 

refinery. The 213 samples were divided into three different groups including: i) training 

data set with 127 fuel oil samples; ii) the validation data set with 43 fuel oil samples; and 

iii) the test data set composed of 43 fuel oil samples. All three different groups were 

representative of the data using the procedure described in the Section 5.3. To these 

samples, PCR, PLS and ANN models were applied. Before applying PCR and ANN 

models, a PCA model was implemented. The statistical performance indexes were used to 

evaluate the performance of the models.  

Prior to multivariate modelling, the spectral area used was divided in constant segments of 

0.02 ppm. The choice of using a bin width of 0.02 ppm were acquired after analysing the 

results of the statistical parameters obtained with other bins (bin width 0.02, 0.03 and 

0.04). As can be seen in Table 6.5, it was with a bin width of 0.02 ppm that better 

predictions were obtained, especially for PLS and ANN models. However, for the PCR 

model, it was with a bin width of 0.03 and 0.04 ppm where slightly better results at the 

training and validation data sets were obtained. Although, when the PCR model was 

applied for the training and validation data sets, satisfactory results were obtained 

independently of the bin used. Besides these small differences, especially for the PCR 

model, it was considered appropriate using a bin width 0.02 ppm in comparison with bin 

widths of 0.03 and 0.04 ppm. Moreover, it was observed that it was with a bin width 0.02 

ppm that higher number of principal components were selected, due to the subdivision of 

the spectra into a higher number of regions, and it was with these 13 PCs that a higher 

percentage of the total variance of the original data was explained.  



 

 

 

Table 6.5: Performance indexes achieved using PCR, PLS and ANN models when applying different bins (bin = 0.02, 0.03 and 0.04). 

   

number 

PC 

number 

LV 

number 

nodes 

total 

variance 
                              

model 

performance 

bin = 0.02 

PCR 
training and validation 

13 

  

97.4% 

0.59 0.21 0.28 0.00 0.00 0.64 satisfactory 

test 
  

0.47 0.23 0.32 -0.02 -2.74 0.73 unsatisfactory 

ANN 
training and validation 

 3 
0.96 0.06 0.09 -0.0005 -0.05 0.20 very good 

test 
 

0.91 0.10 0.14 0.02 2.46 0.30 very good 

PLS 
training and validation 

 34   
0.99 0.02 0.03 0.00 0.00 0.06 very good 

test 
   

0.92 0.06 0.12 0.003 0.34 0.28 very good 

bin = 0.03 

PCR 
training and validation 

10 

  

96.8% 

0.62 0.19 0.27 0.00 0.00 0.61 satisfactory 

test 
  

0.51 0.21 0.31 -0.04 -4.31 0.70 satisfactory 

ANN 
training and validation 

 3 
0.95 0.07 0.10 -0.002 -0.28 0.23 very good 

test 
 

0.90 0.10 0.14 0.01 1.42 0.32 very good 

PLS 
training and validation 

 29   
0.99 0.03 0.04 0.00 0.00 0.09 very good 

test 
   

0.74 0.08 0.22 -0.02 -2.63 0.51 good 

bin = 0.04 

PCR 
training and validation 

9 

  

97.0% 

0.62 0.20 0.27 0.00 0.00 0.61 satisfactory 

test 
  

0.41 0.22 0.34 -0.03 -3.6 0.77 unsatisfactory 

ANN 
training and validation 

 3 
0.94 0.08 0.11 0.001 0.15 0.24 very good  

test 
 

0.83 0.11 0.18 0.03 3.65 0.41 very good 

PLS 
training and validation 

 32   
0.99 0.03 0.04 0.00 0.00 0.08 very good 

test 
   

0.85 0.09 0.17 -0.0 -1.27 0.39 very good 
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The principal components selected, corresponding to 97.4% of the original data variance, 

were used as inputs of the PCR and ANN models. PCR considered that the variables which 

most influence the predicted sulfur content were only 6 of the 13 PCs, corresponding to 

parameters which present statistical significance. Using the PCR model, performance 

indexes for the test data set were worse than the results obtained at the training and 

validation data sets. Analysing the Table 6.6 and taking into account the general 

performance ratings developed by Moriasi et al. (2007) for the test data set, unsatisfactory 

results were obtained while for the training and validation data sets satisfactory results 

were achieved. An unsatisfactory result was obtained in the test data set due to the lower 

quality of the performance indexes. Comparing all data sets, the test data set presented 

small     value and a higher      and     values. Analysing the       and    , it 

was demonstrated that for the test data set, the predicted results presented a significant 

difference when compared to the measured sulfur content, which means that the predicted 

results were underestimated. These results demonstrated that PCR did not predict the 

values of the test data set and so this model was not robust enough to predict such wide 

variety of results. 

 

Table 6.6: Performance indexes achieved when using PCR model during training, validation and test data sets, to predict 

the sulfur content of fuel oil samples. 

 PCR model 

 training and validation test 

       0.59 0.47 

    0.21 0.23 

     0.28 0.32 

    0.00 -0.02 

      0.00 -2.74 

    0.64 0.73 

Model performance satisfactory unsatisfactory 

 

 

ANN models with different network structures (different numbers of nodes at the hidden 

layer) were tested to find the best network for predicting the different properties. Taking 

into account the information from Table 6.7 and from the training and validation data sets, 

the best network was achieved with 3 nodes at the hidden layer. Besides the very good 
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models obtained using 2, 3 and 4 nodes at the hidden layer, the best performances were 

obtained with 3 nodes (see Table 6.7). The network used was characterized for having the 

same number of inputs as the number of PCs used, one hidden layer with three nodes and 

one output layer with one node. The network had been trained during one thousands of 

attempts and the chosen network corresponded to the network which the performance 

indexes achieved when using 3 nodes at the hidden layer, are presented in Table 6.7. 

 

Table 6.7: Performance indexes achieved when changing the number of nodes at the hidden layer in the ANN model. 

 ANN model 

 2 nodes 3 nodes 4 nodes 

 
training and 

validation  
test 

training and 

validation 
test 

training and 

validation 
test 

       0.93 0.89 0.96 0.91 0.95 0.84 

    0.07 0.10 0.06 0.10 0.06 0.12 

     0.11 0.15 0.09 0.14 0.10 0.18 

    -0.004 0.030 -0.001 0.020 0.000 0.040 

      -0.51 2.91 -0.05 2.46 0.34 4.24 

    0.26 0.34 0.20 0.30 0.22 0.40 

Model performance very good very good very good very good very good very good 

 

 

As indicated in Table 6.7, very good performances were achieved for all data sets. The 

performance indexes calculated were not very different in both data sets, with the 

exception of the       value. The       value was higher at the test data set indicating 

that the predicted results were overestimated, while the predicted results for the training 

and validation data sets were underestimated. This       difference may occur because, in 

the test data set, the percentage of samples was lower than that of the training and 

validation data sets, meaning that, besides the equivalent data sets, the number of samples 

encompassed in each data set may influence the       behaviour.  

When using the PLS model, the original variables were used as inputs, and the calculation 

of the number of latent variables was required for predicting the dependent variable. The 

choice of the number of latent variables was made taking into account the minima of the 

       (root mean squared error of cross validation) as plotted in Figure 6.3. The 
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       reached a minimum value for 34 LVs, as visualized in Figure 6.3. However, 

different models were developed using different number of LVs to compare the 

performance of the PLS model. Apart from the 34 LVs, 16 and 37 LVs were tested (see 

Table 6.8). The choice of the 16 and 37 LVs were made taking into account other 

minimum of the        plot. It was considered important to analyse the effect of more 

and less LVs than the number of LVs indicated by the global minimum in the        

plot. When using 16 LVs the performance indexes were for both, training and validation 

data sets and test data set, slightly worse that the ones obtained with a higher number of 

LVs. This behaviour was expected since, typically the quality of the prediction increases 

with the number of latent variables until a certain number of latent variables (Abdi, 2010). 

Comparing the performance indexes achieved when using 34 and 37 LVs, it was verified 

that the 34 LVs selected at the training and validation data sets contributed to the best 

performances at the test data set. This behaviour, a decrease of the quality of prediction 

with the 37 LVs, can be explained by the increased number of latent variables. When using 

a higher number of latent variables, if the quality of the prediction decreases this means 

that the model is overfitting the data, i.e., the model becomes more dependent of the data 

used at the training data set and will not be useful to fit new observations as the ones 

included at the test data set (Abdi, 2010). This fact contributes to a better performance of 

the model for the training and validation data sets and a worse performance for the test data 

set. As it was expected, for the training and validation data sets, when the     value 

increased with the increased of the latent variables, the     , the     and the     

results decreased.  
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Figure 6.3:        plot for predicting the number of latent variables. 

 

Table 6.8: Performance indexes achieved when changing the number of LVs in the PLS model. 

 PLS model 

 16 LVs 34 LVs 37 LVs 

 
training and 

validation 
test 

training and 

validation 
test 

training and 

validation 
test 

       0.98 0.86 0.99 0.92 0.99 0.91 

    0.05 0.10 0.02 0.06 0.02 0.07 

     0.06 0.17 0.03 0.12 0.02 0.13 

    0.000 -0.010 0.000 0.003 0.000 -0.002 

      0.00 -1.69 0.00 0.34 0.00 -0.26 

    0.15 0.38 0.06 0.28 0.05 0.30 

Model performance very good very good very good very good very good very good 

 

 

Better performance indexes were obtained when 34 LVs were used for modelling the 

sulfur content, as visualized in Table 6.8. As illustrated, very good models were obtained 

for all data sets, training and validation data sets and test data set. A combination of a very 

high     values, and a very small     ,     and     results were indicative of the 

good agreement between prediction and target values. Only       and     were quite 

different, although they presented reasonable results. The       value indicated a slight 
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overprediction of the predicted values at the test data set. Besides having overestimated 

results for the test data set, when calculating the reproducibility between all the predicted 

and observed values (Figure 6.4), it was verified that the difference between the values 

were respecting the reproducibility limits defined by the standard test method, which are 

derived statistically from especially designed studies. The reproducibility is a standardized 

term adopted by ASTM and other standardization organizations, and was a form to 

evaluate the precision of a test method. In this way, the difference between two single and 

independent results obtained by different ways, the measured and predicted results, was 

calculated and then compared with the reproducibility defined by the standard test method. 

The reproducibility of each standard test method analyses the degree of agreement between 

the measured and predicted results and support or challenge the validity of the assumption 

that both test results have been produced on the same material in a correct manner (IP 

Standards 336, 2004; Coleman et al., 2008). As visualized in Figure 6.4, it was guaranteed 

that, in average, the predicted sulfur values, the ones experimentally achieved and the ones 

obtained with the model, were respecting the reproducibility calculated by the equation 

defined from the IP standard method (Equation 6.1). From all 213 predicted results only 6 

results of sulfur content, obtained from the difference between the measured and predicted 

results, were out of reproducibility, indicating that 
1
H NMR spectroscopy could be used to 

predict the sulfur content instead of using the IP standard method. The reproducibility 

defined for the sulfur standard test method was determined using the following equation: 

 

                              (6.1) 

 

where   is the mean sulfur content. 

 



 

 

RESULTS AND DISCUSSION 
 

195 

 

 

Figure 6.4: Reproducibility and difference between predicted and observed sulfur content when using PLS model. 

 

 

Figure 6.5 shows the predicted values obtained by the different multivariate models (PCR, 

PLS and ANN) and the measured data, corresponding to training and validation data sets 

and test data set. For the training and validation data sets (Figure 6.5a), better performance 

indexes were achieved when PLS model was applied. A high quality model was also 

obtained when the ANN model was used. The worst results were achieved with PCR 

model. For the test data set (Figure 6.5b), it was shown that PLS model led to slight better 

predictions as it occurred for the training and validation data sets, comparing to the ANN 

model. At the test data set, the PCR predictions were not able to predict the sulfur content. 
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a) 

b) 

Figure 6.5: Prediction of sulfur content for the a) training and validation data sets and b) test data set, when using the 

three multivariate models. 

 

To corroborate the results formerly presented, Figure 6.6 depicts the linear plot between 

the predicted sulfur content by all models and the measured sulfur content, corresponding 

to both, training and validation data sets and test data set. Analysing Figure 6.6 it was 

possible to confirm that, it was with the PLS model (Figure 6.6b) that the predictions 

corresponding to both data sets were very close to the ideality, this means, there was a very 

good linear regression relationship of the type y=x, between the predicted and the 

measured sulfur content. For the ANN model (Figure 6.6c), it was evidently a higher 
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dispersion around the diagonal line, meaning that slightly less accurate models than the 

ones achieved with the PLS model were obtained, although still of high quality. A low 

quality model was achieved when the PCR model was applied (Figure 6.6a). A significant 

difference between the predicted and measured values was evidently, especially when 

predicting high sulfur values. Consequently, PLS model is more reliable to predict the 

sulfur content of fuel oil samples giving more accurate results and better performance 

indexes.  

As depicted, 
1
H NMR spectroscopy could be used to predict the sulfur content. The reason 

for this very good correlation, achieved with the PLS model, may be related with the types 

of sulfur compounds typically found in fuel oil samples. These compounds may consist of 

alkyl sulfides and thiols, thiophene, benzothiophene, and dibenzothiophene. Normally the 

alkyl hydrogens close to the sulfur atom in sulfides resonate in the aliphatic region between 

2.1 to 3.0 ppm (Nielsen et al., 2008; Silva et al., 2011). 
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 a) 

b) 

c) 

Figure 6.6: Correlation between the experimental and predicted sulfur results of the fuel oil samples obtained by: a) 

PCR, b) PLS and c) ANN models. 

0.50 

1.00 

1.50 

2.00 

2.50 

3.00 

3.50 

4.00 

0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 

P
re

d
ic

te
d

 s
u

lf
u

r 
(%

 m
/m

) 

Measured sulfur (% m/m) 

training + validation 

test 

0.50 

1.00 

1.50 

2.00 

2.50 

3.00 

3.50 

4.00 

0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 

P
re

d
ic

te
d

 s
u

lf
u

r 
(%

 m
/m

) 

Measured sulfur (% m/m) 

training + validation 

test 

0.50 

1.00 

1.50 

2.00 

2.50 

3.00 

3.50 

4.00 

0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 

P
re

d
ic

te
d

 s
u

lf
u

r 
(%

 m
/m

) 

Measured sulfur (% m/m) 

training + validation 

test 



 

 

RESULTS AND DISCUSSION 
 

199 

 

Kinematic viscosity 

Normally, the kinematic viscosity of fuel oil samples is controlled taking into account the 

kinematic viscosity results at standard temperatures of 50 ºC and/or 100 ºC. The kinematic 

viscosity of fuel oil samples can be analysed in terms of both temperatures but in terms of 

the specifications, the kinematic viscosity of a bunker fuel oil is required, for process 

control, at 50 ºC while the kinematic viscosity of a cogeneration fuel oil required at 100 ºC. 

It was considered important to determine the kinematic viscosity of fuel oil samples at both 

temperatures, independently of analysing a bunker or a cogeneration fuel oil. The idea was 

to verify if 
1
H NMR spectroscopy could be used to predict the kinematic viscosity of fuel 

oil samples at 50 and 100 ºC and with that, evaluate the possibility of using an online NMR 

spectrometer. It is expected to obtain, with just one analysis, information about the 

kinematic viscosity of fuel oil samples at both temperatures independently of the 

temperature at which the NMR experiments were performed. In this work, all the NMR 

experiments were obtained at ambient temperature since deuteriochloroform was the 

solvent selected to prepare the samples. When using deuteriochloroform, the NMR spectra 

were always recorded at room temperature due to its characteristics, such as, its boiling 

point.  

 

i) Kinematic viscosity at 100 ºC (cSt) 

To analyse the possibility of using an online NMR spectrometer to determine the kinematic 

viscosity at 100 ºC, 217 fuel oil samples were analysed. These 217 samples included 

different fuel oils as cogeneration fuel oil, bunker fuel oil and some fuel oil from Sines 

refinery. As a result, with all these samples, a wide variety of kinematic viscosity results 

ranging from 14.20 to 1367 cSt was guaranteed. From the 217 fuel oil samples, 131 

samples represented the training data set and 43 samples constituted the validation and test 

data sets, respectively. As stated previously, all different data sets were representative of 

the data and the procedure used to guarantee such division was described in Section 5.3. 

Before applying multivariate modelling, a bin width 0.02 ppm to divide the spectral area in 

constant segments was used. Subsequently, multivariate modelling and the statistical 

parameters indexes were used. 
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Table 6.9, presents the results obtained when applying the multivariate modelling, PCR, 

PLS and ANN, to fuel oil samples. Fourteen principal components were used as inputs of 

PCR and ANN. The percentage of the original data variance contained in the 14 PCs was 

97.8%. For the ANN model, it was with 3 nodes at the hidden layer that the best results 

were produced. When using PLS model, the minimum of the        plot indicated that 

35 LVs to achieve the best results were required. 

 

Table 6.9: Performance indexes achieved when using multivariate modelling during training, validation and test data 

sets, to predict the viscosity at 100 ºC of fuel oil samples. 

 PCR PLS ANN 

 
training and 

validation 
test 

training and 

validation 
test 

training and 

validation 
test 

       0.57 0.34 0.99 0.51 0.96 0.94 

    55.19 58.95 12.12 51.56 16.15 16.53 

     104.17 85.47 15.68 74.06 31.95 24.49 

    0.00 3.61 0.0004 7.55 0.52 2.69 

      0.00 5.27 0.00 11.00 0.69 3.93 

    0.66 0.81 0.10 0.70 0.20 0.25 

Model performance satisfactory unsatisfactory very good satisfactory very good very good 

 

 

Analysing Table 6.9 it was possible to conclude that better performance indexes were 

achieved with ANN model for both data sets. Very good     values and small residual 

variations were obtained when using the ANN model. The      and     values 

obtained, when applying the ANN model, may appear a bit high, but taking into account 

the measured kinematic viscosity values, these errors were acceptable. When analysing the 

    and      , it was verified that for both data sets the predicted values were positive, 

indicating that, in average, the kinematic viscosity was overestimated. These results 

showed that the models developed by the ANN model, for both data sets, were of higher 

quality and characterized with lower error variance. 

When using the PLS model, for the training and validation data sets, very good results 

were obtained. However, when predicting the test data set only a satisfactory model was 

achieved. Even the decrease of the LVs could not improve the final results of the test data 
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set. For this reason the PLS was not considered a possibility for predicting the kinematic 

viscosity of fuel oils. 

The worst performance occurred when applying PCR model. The PCR model failed when 

predicting the results of the test data set. However, for the training and validation data sets 

slightly better predictions were obtained, although only a satisfactory model was achieved. 

Even       indicating accurate model simulation             , the other performance 

indexes didn’t performed as good predictions as the       value. 

In Figure 6.7, the representation is a comparison between the prediction values obtained by 

the different multivariate models (PCR, PLS and ANN) and the measured data, 

corresponding to both, training and validation data sets and test data set. With this 

representation it was possible to confirm the conclusions previously made. The results 

showed that the use of ANN model led to a more accurate result than PCR and PLS 

models. PCR was the model that gave the worse performance predicting negative 

kinematic viscosity values (18%) for both data sets (Figure 6.7a). In the PLS model (Figure 

6.7b), a high degree of correlation was evident when predicting the training and validation 

data sets, whereas the results from the test data set showed larger deviations, compared to 

kinematic viscosity values of the training and validation data sets. However, better 

predictions with the PLS model were obtained when compared with the PCR model. For 

both data sets, the PLS model produced predictions with 94% of positive values. It was 

possible to conclude that the agreement between the predicted kinematic viscosity results 

obtained when using the ANN model and the measured kinematic viscosity results was 

remarkable, showing a high degree of correlation (see Figure 6.7c). Only the samples with 

high kinematic viscosity were slightly deviated from what was expected. The ANN model 

was the technique which led to better predictions, and was considered more reliable to 

predict the kinematic viscosity of fuel oil samples with a good accuracy. 

Viscosity can be used to obtain information about the composition of fuel oil samples. As 

example, a paraffinic fraction normally is characterized for having a low viscosity. The 

direct link to the compositional information contained in the NMR spectra resulted, as 

expected, in good kinematic viscosity predictions of the fuel oil samples. 
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 a) 

b) 

c) 

Figure 6.7: Correlation between the experimental and predicted kinematic viscosity results of the fuel oil samples 

obtained at 100 ºC by: a) PCR, b) PLS and c) ANN models. 
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ii) Kinematic viscosity at 50 ºC (cSt) 

To determine the kinematic viscosity at 50 ºC, 108 fuel oil samples were analysed. From 

all the samples analysed, the training data set included 64 samples while the validation and 

test data sets were formed by 22 fuel oil samples, respectively. Both data sets were 

representative of the data. With all samples analysed, bunker and cogeneration fuel oils, a 

wide variety of results ranging from 103.2 to 890.4 cSt were guaranteed. As occurred in 

the kinematic viscosity at 100 ºC, a bin width 0.02 ppm, multivariate modelling and 

statistical parameters indexes were also used. 

The results obtained when applying the multivariate modelling, PCR, PLS and ANN 

models, and the statistical parameters indexes are presented in Table 6.10. PCR and ANN 

models used the PCs as inputs whereas the PLS model was based on the original data. The 

number of PCs considered by principal component analysis was 15 PCs. These PCs were 

responsible for explaining 98.3% of the original data variance. To apply the ANN model, 3 

nodes at the hidden layer were used while for the PLS model 9 LVs, based on the 

minimum of the        plot, were required to obtain the best results. 

 

Table 6.10: Performance indexes achieved when using multivariate modelling during training, validation and test data 

sets, to predict the viscosity at 50 ºC of fuel oil samples. 

 PCR PLS ANN 

 
training and 

validation 
test 

training and 

validation 
test 

training and 

validation 
test 

       0.71 0.58 0.85 0.73 0.92 0.74 

    58.70 77.54 42.70 60.94 28.68 57.54 

     79.78 93.39 56.84 74.47 42.47 73.61 

    0.00 -2.72 0.00 4.16 1.08 -14.46 

      0.00 -0.65 0.00 1.00 0.26 -3.48 

    0.54 0.65 0.39 0.52 0.29 0.51 

Model performance good satisfactory very good good very good good 

 

 

As occurred in the prediction of the kinematic viscosity at 100 ºC, the best model to predict 

the kinematic viscosity at 50 ºC of fuel oil samples was achieved with the ANN model for 

both data sets, as can be visualized in Table 6.10. It was with the ANN model that smaller 
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residual variation and higher     value were achieved when compared with the respective 

PCR and PLS results. Also here, the results obtained for the      and    , with the 

ANN model, appear to be a bit higher, but taking into account the measured viscosity 

values, these errors were acceptable. Analysing       and     results for the ANN 

model, it was verified that the results were positive for the training and validation data sets, 

meaning that, in average the predicted kinematic viscosity was overestimated, while for the 

test data set the predicted kinematic viscosity was underestimated. Taking into account the 

obtained results (Table 6.10) and following the general performance ratings presented by 

Moriasi et al. (2007) the predicted results obtained with the ANN model for the training 

and validation data sets were characterized as very good whereas for the test data set the 

results were characterized as good. The same classification was obtained when using the 

PLS model, a very good model was achieved for the training and validation data sets while 

for the test data set a good model was obtained. However, when applying the PCR model, 

worst predictions were obtained for both data sets. The training and validation data sets 

were characterized as a good model but the test data set was only classified as satisfactory. 

As can be concluded, independently of the model applied worst predictions were obtained 

for the test data set.  

The conclusions previously made when analysing Table 6.10 can be confirmed by the 

following representations. Figure 6.8 shows the kinematic viscosity predictions with all 

models and the measured data, corresponding to the training and validation data sets and 

test data set. As visualized, it was possible to conclude that the higher degree of correlation 

was obtained when the ANN model was applied (see Figure 6.8c). Although, a slight 

dispersion of the predicted values, when using the ANN model, was notable. The PLS 

(Figure 6.8b) model gave slightly less accurate results than the ANN model, although still 

of high quality. However, the main difference between the results predicted with the ANN 

and the PLS models were related with the negative kinematic viscosities predicted by the 

PLS model (about 2% of the original data). It was with the PCR model (Figure 6.8a) that 

the main differences between the measured and predicted results were visualized and less 

accurate performance indexes were obtained, compared to PLS and ANN models 

predictions. The results obtained with the PCR model were surely satisfactory, but it was 

with the ANN model that the agreement between the predicted and measured values was of 

high quality. 
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 a) 

 b) 

 c) 

Figure 6.8: Correlation between the experimental and predicted kinematic viscosity results of the fuel oil samples 

obtained at 50 ºC by: a) PCR, b) PLS and c) ANN models. 
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iv) Density (g/mL) 

To develop a model that contributes to obtain the density results 185 fuel oil samples were 

analysed. From the 185 samples, 37 were used for the test and validation data sets, 

respectively, while the training data set was formed with the remaining 111 fuel oil 

samples. Both data sets were representative of the data. The samples used to develop the 

model embraced different fuel oils, as the cogeneration fuel oils and bunker fuel oils, and a 

wide variety of results ranging from 0.9500 to 1.020 g/mL were included. 

As occurred at the properties previously described, the spectral area was divided in 

constant segments of 0.02 ppm. This bin was preferred over other bin width, as already 

demonstrated, and it was always used for the analysis of fuel oil properties. After the 

preparation of the spectral data, multivariate modelling was applied and the statistical 

parameters indexes used to evaluate the performance of the developed models. 

Before applying the multivariate models (PCR, PLS and ANN), PCA was used. With PCA 

the number of principal components that were used as inputs of the PCR and the ANN 

models was identified. For predicting density (g/mL), 15 PCs were required. These PCs 

were responsible for explaining 98.1% of the original data variance. The ANN model was 

characterized for having 3 nodes at the hidden layer. As already demonstrated the best 

network performance was achieved when using the 3 nodes. For all the fuel oil properties 

analysed, 3 nodes at the hidden layer were always used. When applying PLS model, 6 LVs 

were necessary to obtain better performance indexes.  

Analysing Table 6.11 it was possible to conclude that very good predictions were achieved 

for both data sets with all multivariate models used. However, it was with ANN model that 

higher performance indexes were obtained for both data sets. When compared with PCR 

and PLS, it was with the ANN model that higher     values were obtained, indicating 

higher quality models for both data sets. As expect, due to the increase of the coefficient of 

determination obtained with the ANN model, smaller error indexes were achieved. A 

decrease of the     and      values was indicative of a better model simulation 

performance. By analysing       and     results for the ANN model, it was found that 

these results were positive for both data sets, meaning that, in average the predicted density 

of fuel oil was overestimated. However, taking into account the results obtained for the 
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reproducibility, Figure 6.9, it was possible to conclude that almost the predicted results 

obtained with the ANN model respected the reproducibility established by the ASTM 

standard method. These results indicate that the model can be used to predict density 

results. The reproducibility defined by the standard test method for density results was 

calculated by means of Equation 6.2: 

 

                          (6.2) 

 

where   represents the sample mean. 

 

Table 6.11: Performance indexes achieved when using multivariate modelling during training, validation and test data 

sets, to predict the density of fuel oil samples. 

 PCR PLS ANN 

 
training and 

validation 
test 

training and 

validation 
test 

training and 

validation 
test 

       0.77 0.75 0.79 0.77 0.85 0.86 

    0.003 0.003 0.003 0.003 0.002 0.002 

     0.004 0.004 0.004 0.004 0.004 0.003 

    0.000 -0.001 0.000 -0.001 0.000 0.000 

       0.00 -0.12 0.00 -0.11 0.03 0.02 

    0.48 0.50 0.45 0.48 0.38 0.37 

Model performance very good very good very good very good very good very good 
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Figure 6.9: Reproducibility and difference between predicted and observed density when using ANN models. 

 

When analysing the correlation plot between the predicted and measured density results 

obtained with all models applied (Figure 6.10), it was possible to conclude that high 

quality models were achieved. However, a high degree of correlation was obtained when 

the ANN model was applied (Figure 6.10c). A good dispersion was notable along the y=x 

line and the number of results that were far from the graphic diagonal line were scarce, 

when using the ANN model. When applying the PCR and PLS models higher dispersion 

around the diagonal was notable, although very good predictions were also possible to be 

obtained when applying both models (see Figure 6.10a,b). The conclusion was that the 

NMR combined with the ANN model could be used to predict acceptable and very good 

results of fuel oil density. Once, the density of fuel oil samples was correlated with 

chemical composition. Highly aromatic fuel oils are predicted to have a high density while 

fuel oils containing a high fraction of aliphatic compounds tend to have a lower density.  
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 a) 

 b) 

 c) 

Figure 6.10: Correlation between the experimental and predicted density results of the fuel oil samples obtained by: a) 

PCR, b) PLS and c) ANN models. 
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v) Carbon residue (% m/m) 

To evaluate the possibility of analysed carbon residue of fuel oils by using an online NMR 

spectrometer, 103 samples were studied. With these samples a wide variety of results was 

guaranteed with the carbon residue values ranging from 12.9 to 22.1% m/m. With all the 

samples analysed, three different groups were developed as the training data set including 

61 samples and the validation and test data sets formed with 21 samples, respectively.  

The multivariate modelling and the statistical performance indexes were applied. PCR and 

ANN were based on the PCs while PLS was based on the original data. Considering PCA, 

15 PCs were select and were responsible for 98.4% of the total variance. To apply the 

ANN model, the best architecture was achieved with 3 nodes at the hidden layer. When 

using the PLS model, better predictions were obtained when 7 LVs were selected. 

Table 6.12 presents the values of the performance indexes using PCR, PLS and ANN 

models for both training and validation data sets and test data set. The results obtained 

demonstrated that when using the ANN model better performance indexes were obtained 

for both data sets. Additionally, good predictions were obtained for the training and 

validation data sets when PCR and PLS were applied. However, the problem associated 

with these models was found when applied to the test data set, where unsatisfactory results 

were achieved. The test data set of both models, PCR and PLS, was characterized for 

having a small     value and high errors. On the other hand, when using the ANN model 

a higher     value was obtained, for both data sets, and a decrease of the     ,     and 

    values was notable when compared with PCR and PLS (see Table 6.12). The results 

obtained with the ANN model for the training and validation data sets were underestimated 

while for the test data set the results were overestimated. Although, the results obtained 

(Figure 6.11) were, in majority, respecting the reproducibility of the ASTM standard 

method for determining the carbon residue (Equation 6.3): 

 

                                                     (6.3) 
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Table 6.12: Performance indexes achieved when using multivariate modelling during training, validation and test data 

sets, to predict the carbon residue of fuel oil samples. 

 PCR PLS ANN 

 
training and 

validation 
test 

training and 

validation 
test 

training and 

validation 
test 

       0.65 0.37 0.75 0.31 0.77 0.70 

    0.85 1.28 0.74 1.30 0.54 0.94 

     1.09 1.56 0.93 1.63 0.88 1.07 

    0.00 -0.49 0.00 -0.49 -0.06 0.26 

      0.00 -2.87 0.00 -2.85 -0.36 1.50 

    0.59 0.79 0.50 0.83 0.48 0.55 

Model performance good unsatisfactory very good unsatisfactory very good good 

 

 

 

Figure 6.11: Reproducibility and difference between predicted and observed carbon residue when using ANN models. 

 

Figure 6.12, showing the measured versus predicted results obtained for the training and 

validation data sets and test data set when applying the different multivariate models, 

illustrates the range of the dispersion. It is observed that the ANN model offers the best 

performance indexes when predicting the carbon residue of fuel oil samples. It was with 
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when compared against experimental data (see Figure 6.12c). However, some dispersion 
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0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

0 20 40 60 80 100 

C
a
rb

o
n

 r
es

id
u

e 
(%

 m
/m

) 

Sample number 

Reproducibility 

Difference between predicted and observed results 



 

 

CHAPTER 6 
 

212 
 

Although, this dispersion around the diagonal line was more evident when applying the 

PCR and PLS models (see Figure 6.12a,b), with the models always overestimating or 

underestimating the results. Then, it is possible to conclude that the 
1
H NMR spectroscopy 

when combined with the ANN model could be used to predict the carbon residue of fuel oil 

samples. 

NMR spectroscopy was always considered a good technique to predict the carbon residue 

once the carbon residue, related to the propensity of the fuel oil samples to form carbon 

deposits, was also related with the chemical composition (Nielsen et al., 2008). The 

propensity to form carbon deposits depends on the     ratio and on the content of 

asphaltenes. The asphaltenes are characterized for having aromatic and aliphatic 

compounds in its structure, which are different types of hydrocarbons quantified by NMR 

spectroscopy. The smaller is the     ratio, the higher is the percentage of carbon residue. 
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 a) 

 b) 

 c) 

Figure 6.12: Correlation between the experimental and predicted carbon residue results of the fuel oil samples obtained 

by: a) PCR, b) PLS and c) ANN models. 
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vi) Flash point (ºC) 

The study performed to analyse the prediction of the flash point of fuel oil samples by 
1
H 

NMR spectroscopy was developed considering 157 samples including cogeneration fuel 

oils and bunker fuel oils. The training data set was constituted by 95 samples while the 

validation and test data sets included 31 samples, respectively. The flash point of the fuel 

oil samples analysed varied between 49 to 102 ºC.  

PCR, PLS and ANN models were used to predict the flash point of the fuel oil samples 

analysed and the statistical performance indexes were applied to evaluate the performance 

of the developed models. PCR and ANN models were based on the PCs whereas for the 

PLS model the original data was used as inputs. After applying the PCA, 15 PCs were 

selected corresponding to 98.3% of the original data variance. Considering the ANN model 

the best performance indexes were obtained when using 3 nodes at the hidden layer. 

Taking into account the PLS model, the best model was obtained when using 17 LVs.  

The results obtained when applying the statistical performance indexes for the different 

multivariate models (PCR, PLS and ANN) and for both data sets, training and validation 

data sets and test data set are presented in Table 6.13. The worst performance occurred 

when PCR was applied for both data sets. A slight improvement was notorious in the test 

data set, but small     value and high errors continued to characterize both data sets, when 

the PCR model was applied. When using the PLS model better predictions were obtained, 

when compared with PCR results. A very good model was obtained for the training and 

validation data sets indicating that high     value and small errors as     ,     and 

    occurred. However, for the test data set only satisfactory results were obtained. 

Comparing the three models, it was with ANN model that the best predictions for both data 

sets were obtained. Good coefficients of determination and small errors characterized the 

performance indexes obtained for both data sets, when ANN was applied. The     and 

      were positive for the training and validation data sets indicating that the predicted 

flash point was overestimated, while, for the test data set were negative, meaning that, in 

average, the predicted flash point was underestimated.  
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Table 6.13: Performance indexes achieved when using multivariate modelling during training, validation and test data 

sets, to predict the flash point of fuel oil samples. 

 PCR PLS ANN 

 
training and 

validation 
test 

training and 

validation 
test 

training and 

validation 
test 

       0.44 0.60 0.79 0.64 0.67 0.67 

    5.97 4.93 3.86 4.95 4.66 4.50 

     7.90 6.59 4.86 6.26 6.06 5.95 

    0.00 0.57 0.00 0.35 0.31 -0.22 

      0.00 0.77 0.00 0.48 0.42 -0.30 

    0.75 0.63 0.46 0.60 0.58 0.57 

Model performance unsatisfactory satisfactory very good satisfactory good good 

 

 

In Figure 6.13 a comparison between all measured and predicted flash point results 

obtained at the training, validation and test data sets when applying all models is 

represented. It is shown that the ANN model was considered the best model to predict the 

flash point of fuel oil samples, showing a good degree of correlation for the training and 

validation data sets and test data set, simultaneously. The correlation obtained illustrated a 

good agreement between the predicted and measured flash point results, although, as 

visualized in Figure 6.13c, a slight dispersion in the results around the diagonal line was 

notorious. This dispersion between the predicted and measured flash point results was 

verified independently of the model applied, however it was mainly pronounced when the 

PCR model was used. Figure 6.13a shows that the PCR model was not a good alternative 

to estimate the flash point of fuel oil samples. When applying the PLS model, a better 

agreement between the predicted and measured flash point results was obtained (Figure 

6.13b), although for the test data set larger deviations were achieved and consequently low 

quality predictions. Therefore, the 
1
H NMR spectroscopy combined with ANN model was 

considered the more reliable approach to predict the flash point of fuel oil samples, giving 

the idea that good performance indexes could be obtained. The flash point is also another 

property that depends on the chemical composition of fuel oil samples. Normally, samples 

with a higher aromatic content present a higher flash point.  
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 a) 

 b) 

 c) 

Figure 6.13: Correlation between the experimental and predicted flash point results of the fuel oil samples obtained by: 

a) PCR, b) PLS and c) ANN models. 
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vii) P-value 

To determine the P-value, 217 fuel oil samples were studied. From all variables, the 

training data set included 131 samples whereas the validation and test data sets were 

constituted by 43 fuel oil samples, respectively. A wide variety of results were covered 

with the P-value ranging from 1.00 to 1.8. 

To predict the P-value of the fuel oil samples, PCR, PLS and ANN models were applied. 

To evaluate the performance of the developed models the statistical performance indexes 

were used. PCR and ANN models used the PCs as inputs, while PLS was based on the 

original data. The number of PCs considered by the principal component analysis was 14 

PCs, which were responsible for explaining 97.7% of the original data variance. Using 

these PCs as inputs, the best ANN architecture was achieved when using 3 nodes at the 

hidden layer. When using the PLS model, 26 LVs were considered the most adequate for 

the PLS model to perform good predictions.  

Table 6.14 presents the values of the performance indexes using all multivariate models for 

both training and validation data sets and test data set. The results obtained indicated that 

PCR was not a good model to predict the P-value, once unsatisfactory models were 

obtained for both data sets. However, when using the PLS model, very good predictions 

were obtained for the training and validation data sets but when predicting the test data set 

the performance indexes were not as good. Only satisfactory model was obtained for the 

test data set, indicating that small     value and high errors were achieved. Different 

numbers of latent variables were used, but better predictions were obtained when using the 

26 LVs. Additionally, when using the ANN model the same occurred. A good model was 

obtained for the training and validation data sets but when analysing the test data set worst 

results were achieved. Nevertheless, the model developed for the test data set was 

classified as satisfactory. The predictions obtained for the test data set when using the 

ANN model were better when compared with the ones obtained with PCR and PLS 

models. Higher     value and small errors were obtained with the ANN model for the test 

data set.  
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Table 6.14: Performance indexes achieved when using multivariate modelling during training, validation and test data 

sets, to predict the P-value of fuel oil samples. 

 PCR PLS ANN 

 
training and 

validation 
test 

training and 

validation 
test 

training and 

validation 
test 

       0.50 0.10 0.91 0.53 0.74 0.62 

    0.07 0.11 0.03 0.08 0.06 0.07 

     0.11 0.14 0.04 0.10 0.08 0.09 

    0.00 0.03 0.00 0.02 0.004 0.009 

      0.00 2.29 0.00 1.84 0.27 0.67 

    0.71 0.95 0.30 0.68 0.51 0.62 

Model performance unsatisfactory unsatisfactory very good satisfactory good satisfactory 

 

 

As depicted in Figure 6.14 which shows the linear plot between the measured versus 

predicted P-value results obtained for all data sets with all models applied, a very wide 

deviation between the predicted and measured data was notable when the PCR model was 

applied. It was observed in Figure 6.14a that there wasn’t an agreement between the 

predicted and measured values and hence, low quality predictions were obtained. When 

applying the ANN model a better dispersion around the diagonal line, compared to the one 

obtained when using the PCR model, was evident (see Figure 6.14c) and consequently, 

better predictions were achieved. Nevertheless, P-value results smaller than 1.10 and 

higher than 1.70 continued to be predicted very poorly, when the ANN model was applied. 

Better performance indexes for the training and validation data sets were obtained when 

the PLS model was used. As visualized in Figure 6.14b, when using the PLS model, a 

small dispersion around the diagonal line was achieved, compared to the ones obtained 

when applying the PCR and ANN models. It was notorious in Figure 6.14b, that better 

agreement between the predicted and measured results were achieved, especially for the 

training and validation data sets. However, for the test data set less accurate model was 

obtained and hence, the performance indexes obtained were not as good as the ones 

achieved for the training and validation data sets. Taking into account the given 

information and the results obtained, especially for the test data set, NMR combined with 

ANN model could be considered a possible technique to predict the P-value of fuel oil 

samples.  
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P-value is a property that gives information about the stability of fuel oils samples. Such 

stability is related with the composition of the fuel oil, more specifically, it is related with 

the quantity of asphaltenes. The exact structure of asphaltenes is not known but it is known 

that asphaltenes molecules are constituted by carbon and hydrogen atoms and it is rich in 

aromatic and aliphatic compounds. This information leads to conclude that NMR is a good 

technique to predict the P-value content of fuel oil samples, since NMR spectroscopy is a 

technique that gives information about the chemical composition. In consequence, if the P-

value is related with the chemical composition, it should be possible to use NMR to predict 

the P-value content. The results obtained for the training and validation data sets especially 

when using the PLS and ANN models confirmed that it was possible to obtain good 

predictions with those approaches. The worst predictions obtained at the test data set may 

be justified by the number of samples used. The test data set was composed with 43 

samples and maybe for this property more samples to increase the quality of the developed 

models were necessary.  
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 a) 

 b) 

 c) 

Figure 6.14: Correlation between the experimental and predicted P-value results of the fuel oil samples obtained by: a) 

PCR, b) PLS and c) ANN models. 

1.00 

1.10 

1.20 

1.30 

1.40 

1.50 

1.60 

1.70 

1.80 

1.90 

2.00 

1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 

P
re

d
ic

te
d

 P
 v

a
lu

e 

Measured P value 

training + validation 

test 

1.00 

1.10 

1.20 

1.30 

1.40 

1.50 

1.60 

1.70 

1.80 

1.90 

2.00 

1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 

P
re

d
ic

te
d

 P
-v

a
lu

e 

Measured P-value 

training + validation 

test 

1.00 

1.10 

1.20 

1.30 

1.40 

1.50 

1.60 

1.70 

1.80 

1.90 

2.00 

1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 

P
re

d
ic

te
d

 P
-v

a
lu

e 

Measured P-value 

training + validation 

test 



 

 

RESULTS AND DISCUSSION 
 

221 

 

6.2.1.1.  Fuel Oil - Final Remarks 

1
H NMR spectroscopy combined with different multivariate models (PCR, PLS and ANN) 

were used to predict the properties of fuel oil samples. At the same time, statistical 

performance indexes were applied to evaluate the performance of each model. As 

visualized in Table 6.15, the ANN model present better performance indexes in almost all 

properties analysed. For the sulfur content it was with the PLS model that better 

predictions were obtained. However, when using the ANN model to predict sulfur content 

very good performance indexes were also achieved. In some of the properties studied, PLS 

model also gave very good results. When applying the PCR model, worst predictions were 

obtained. To develop models with more accuracy more fuel oil samples should be 

analysed. Therefore, more experimental data will be required in an attempt to improve the 

final results.  

Concluding, the final results presented in Table 6.15 demonstrated that 
1
H NMR 

spectroscopy is a good technique to obtain information about the fuel oil properties such as 

kinematic viscosity, sulfur content, carbon residue, density, P-value and flash point. The 

final models highlights that reasonable correlations were achieved when using 
1
H NMR 

spectroscopy, demonstrating that it can contribute to determine some properties with 

acceptable accuracy. The great advantage is that 
1
H NMR spectroscopy can give good 

predictions in just a few minutes which lead to control and avoid sample losses. Taking 

into account the obtained results, the possibility of acquiring an online NMR spectrometer 

for Matosinhos refinery is evaluated. It is expected that the use of an online NMR 

spectrometer can contribute in the process control and product quality evaluation, 

providing fuel oil samples with the desired properties and respecting the specifications. On 

the other hand, the online monitoring of such properties would also be very important to 

control the quantities of cutter stocks used in fuel oil production. An example of a simple 

economic evaluation of the implementation of an online NMR spectrometer at fuel oil 

stream is presented in Appendix A. 

 



 

 

 

Table 6.15: Results obtained for different properties of fuel oil analysed when using 1H NMR in multivariate models. 

   

number 

PC 

number 

LV 

total 

variance 
                              

model 

performance 

Sulfur content 

PCR 
training and validation 

13 

 

97.4% 

0.59 0.21 0.28 0.000 0.00 0.64 satisfactory 

test 
 

0.47 0.23 0.32 -0.020 -2.74 0.73 unsatisfactory 

ANN 
training and validation 

 
0.96 0.06 0.09 -0.001 -0.05 0.20 very good 

test 
 

0.91 0.10 0.14 0.020 2.46 0.30 very good 

PLS 
training and validation 

 34  
0.99 0.02 0.03 0.000 0.00 0.06 very good 

test 
  

0.92 0.06 0.12 0.003 0.34 0.28 very good 

Kinematic 

viscosity 

100 ºC 

PCR 
training and validation 

14 

 

97.8% 

0.57 55.19 104.17 0.00 0.00 0.60 satisfactory 

test 
 

0.34 58.95 85.47 3.61 5.27 0.81 unsatisfactory 

ANN 
training and validation 

 
0.96 16.15 31.95 0.52 0.69 0.20 very good 

test 
 

0.94 16.50 26.49 2.69 3.93 0.25 very good 

PLS 
training and validation 

 35  
0.99 12.12 15.68 0.00 0.00 0.10 very good 

test 
  

0.51 51.56 74.06 7.55 11.00 0.70 satisfactory 

Kinematic 

viscosity 

50 ºC 

PCR 
training and validation 

15 

 

98.3% 

0.71 58.70 79.78 0.00 0.00 0.54 good 

test 
 

0.58 77.54 93.39 -2.72 -0.65 0.65 satisfactory 

ANN 
training and validation 

 
0.92 28.68 42.47 1.08 0.26 0.29 very good 

test 
 

0.74 57.54 73.61 -14.46 -3.48 0.51 good 

PLS 
training and validation 

 9  
0.85 42.70 56.84 0.00 0.00 0.39 very good 

test 
  

0.73 60.94 74.47 4.16 1.00 0.52 good 

 

 



 

 

Table 6.15: Results obtained for different properties of fuel oil analysed when using 1H NMR in multivariate models (continuation). 

   

number 

PC 

number 

LV 

total 

variance 
                              

model 

performance 

Carbon 

residue 

PCR 
training and validation 

15 

 

98.4% 

0.65 0.85 1.09 0.000 0.00 0.59 good 

test 
 

0.37 1.28 1.56 -0.490 -2.87 0.79 unsatisfactory 

ANN 
training and validation 

 
0.77 0.54 0.88 -0.061 -0.36 0.48 very good 

test 
 

0.70 0.94 1.07 0.260 1.50 0.55 good 

PLS 
training and validation 

 7  
0.75 0.74 0.93 0.000 0.00 0.50 very good 

test 
  

0.31 1.30 1.63 -0.490 -2.85 0.83 unsatisfactory 

Flash point  

PCR 
training and validation 

15 

 

98.3% 

0.44 5.97 7.90 0.00 0.00 0.75 unsatisfactory 

test 
 

0.60 4.93 6.59 0.57 0.77 0.63 satisfactory 

ANN 
training and validation 

 
0.67 4.66 6.06 0.31 0.42 0.58 good 

test 
 

0.67 4.50 5.95 -0.22 -0.30 0.57 good 

PLS 
training and validation 

 17  
0.79 3.86 4.86 0.00 0.00 0.46 very good 

test 
  

0.64 4.95 6.26 0.35 0.48 0.60 satisfactory 

P-value 

PCR 
training and validation 

14 

 

97.7 

0.50 0.07 0.11 0.000 0.00 0.71 unsatisfactory 

test 
 

0.10 0.11 0.14 0.030 2.29 0.95 unsatisfactory 

ANN 
training and validation 

 
0.74 0.06 0.08 0.004 0.27 0.51 good 

test 
 

0.62 0.07 0.09 0.009 0.67 0.62 satisfactory 

PLS 
training and validation 

 26  
0.91 0.03 0.04 0.000 0.00 0.30 very good 

test 
  

0.53 0.08 0.10 0.020 1.84 0.68 satisfactory 

Density 

PCR 
training and validation 

15 

 

98.1% 

0.77 0.003 0.004 0.000 0.00 0.48 very good 

test 
 

0.75 0.003 0.004 -0.001 -0.12 0.50 very good 

ANN 
training and validation 

 
0.85 0.002 0.004 0.000 0.03 0.38 very good 

test 
 

0.86 0.002 0.003 0.000 0.02 0.37 very good 

PLS 
training and validation 

 6  
0.79 0.003 0.004 0.000 0.00 0.45 very good 

test 
  

0.77 0.003 0.004 -0.001 -0.11 0.48 very good 
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6.2.2. LVGO 

1
H NMR spectroscopy was used to determine some LVGO properties such as density 

(ASTM Standards D4052, 2011) and the distillation curves at atmospheric pressure (ISO 

Standards 3405, 2011). The main objective of analysing this stream was to evaluate its 

fractionation and to ensure that a good separation into the vacuum column was obtained. It 

was for this reason that these two properties were considered the most important to 

analyse. 

As occurred in the analysis of the fuel oil samples, PCR, PLS and ANN were the models 

used to predict the LVGO properties. PCR and ANN models were based on the principal 

components while PLS model was based on the original data. The statistical performance 

indexes were also applied to evaluate the performance of the developed models. The 

spectral area was divided in constant segments of 0.02 ppm. It was with this bin that better 

predictions were achieved and consequently a bin width of 0.02 ppm was always used for 

the analysis of LVGO properties. The procedure used to determine the best network 

architecture when applying the ANN model was the same as presented for the fuel oil 

samples. The best architecture was achieved with different number of neurons in the input 

layer depending on the number of PCs used, three neurons in the hidden layer and one 

neuron in the output layer. When using the PLS model, the original variables were used as 

inputs and the choice of the number of latent variables was made taking into account the 

minima of the RMSECV (root mean squared error of cross validation) plot. As referred in 

Table 6.4 (page 187), the study was performed using 105 LVGO samples for each property 

analysed. Thereby, the training data set included 63 LVGO samples whereas the validation 

and test data sets were constituted by 21 LVGO samples, respectively. All three different 

groups were representative of the data using the procedure described in the Section 5.3. 

 

vi) Density 

Table 6.16 presents the performance indexes achieved when applying the different 

multivariate models for the data sets, training and validation data sets and test data set, 

when predicting the density of LVGO samples. The ANN and PCR models were based on 

the PCs, which were determined by principal component analysis. Fifteen PCs were 
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selected, explaining 98.1% of the original data variance. The PLS model was based on the 

original data and 13 latent variables to predict the best performance indexes were used. 

The results obtained (see Table 6.16) demonstrated that the best performance indexes were 

achieved with the ANN model for both data sets. With the ANN model, high coefficients 

of determination or high     values were obtained and very     ,     and     low 

values were achieved. These results were indication of very good predictions for both data 

sets. Taking into account the       and     values, for the training and validation data 

sets the predicted results were overestimated, while for the test data set the predicted 

values were underestimated. Less accurate predictions were obtained when the PLS model 

was applied, although still of high quality. Comparing the PLS and the ANN models, the 

main emphasized differences were the smaller     values and higher     results obtained 

with the PLS model. When applying the PCR model, very good performance indexes were 

achieved for the test data set, whereas for the validation and training data sets only 

satisfactory predictions were obtained. 

 

Table 6.16: Performance indexes achieved when using multivariate modelling during training, validation and test data 

sets, to predict the density of LVGO samples. 

 PCR PLS ANN 

 
training and 

validation 
test 

training and 

validation 
test 

training and 

validation 
test 

       0.54 0.80 0.72 0.82 0.92 0.93 

    0.003 0.003 0.002 0.002 0.001 0.002 

     0.004 0.003 0.003 0.003 0.002 0.002 

    0.0000 -0.0007 0.0000 -0.0002 0.0002 -0.0002 

      0.00 -0.08 0.00 -0.02 0.02 -0.03 

    0.68 0.44 0.53 0.42 0.29 0.27 

Model performance satisfactory very good good very good very good very good 

 

 

Comparing the measured and predicted density results obtained for the training, validation 

and test data sets when using all the multivariate models (Figure 6.15) it was possible to 

conclude that a high quality model was achieved when the ANN model was applied. As 

visualized in Figure 6.15c the agreement between the predicted and measured results was 

remarkable, showing that the developed model was of high quality. The correlation 
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between the predicted and measured values obtained when applying the PLS model gave 

slightly less accurate performance than the former although still of high quality, as 

visualized in Figure 6.15b. When using the PCR model, higher dispersion around the 

diagonal line was notorious (see Figure 6.15a). As illustrated in Figure 6.15a, the PCR 

model had more difficult to predict the lower density results of the LVGO samples. 

Consequently, low quality predictions were obtained especially for the training and 

validation data sets.  

In general, the results obtained indicate that the use of 
1
H NMR spectroscopy and ANN 

models is a good alternative to determine the density of LVGO samples.  
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 a) 

 b) 

 c) 

Figure 6.15: Correlation between the experimental and predicted density results of the LVGO samples obtained by: a) 

PCR, b) PLS and c) ANN models. 

0.8500 

0.8600 

0.8700 

0.8800 

0.8900 

0.9000 

0.9100 

0.8500 0.8600 0.8700 0.8800 0.8900 0.9000 0.9100 

P
re

d
ic

te
d

 d
en

si
ty

 (
g

/m
L

) 

Measured density (g/mL) 

training + validation 

test 

0.8500 

0.8600 

0.8700 

0.8800 

0.8900 

0.9000 

0.9100 

0.8500 0.8600 0.8700 0.8800 0.8900 0.9000 0.9100 

P
re

d
ic

te
d

 d
en

si
ty

 (
g

/m
L

) 

Measured density (g/mL) 

training + validation 

test 

0.8500 

0.8600 

0.8700 

0.8800 

0.8900 

0.9000 

0.9100 

0.8500 0.8600 0.8700 0.8800 0.8900 0.9000 0.9100 

P
re

d
ic

te
d

 d
en

si
ty

 (
g

/m
L

) 

Measured density (g/mL) 

training + validation 

test 



 

 

CHAPTER 6 
 

228 
 

Distillation  

The distillation curve of LVGO samples is a very important source of information which 

needs to be controlled to confirm that a good separation between LVGO and HVGO, in the 

vacuum column, is achieved. The distillation curve of LVGO was determined by defining 

the initial boiling point (IBP) and endpoint (EP). The cuts of the distillation curve that were 

analysed were 5, 10, 50, 90 and 95% (v/v) distillation cuts. These cuts were considered the 

most important to evaluate how the separation of LVGO occurred. 

 

vi) 5% Distillation 

The results obtained when 5% distillation of LVGO samples were predicted (see Table 

6.17) demonstrated that performances were particularly very good, for both data sets, when 

the ANN model was applied. Before applying the ANN model, 16 PCs were used as inputs 

of this model, explaining 98.5% of the total variance. The results obtained (Table 6.17) 

demonstrated that the     values or coefficients of determination varied from 0.87 to 0.79 

for the training and validation data sets and test data set, respectively. The performance 

indexes determined, such as,     ,    , and     were smaller for both data sets 

compared with the results obtained for the PCR and PLS models. These coefficients were 

the indicative for a very good model performance. As indicated by       and     the 

results obtained for the test data set were underestimated while the predicted results 

obtained for the training and validation data sets were overestimated. When applying the 

PCR and PLS models the performance indexes were not as good as the performances 

obtained with the ANN model. However good correlations were achieved especially for 

the training and validation data sets. Models with low quality were obtained when 

predicting the test data set. Unsatisfactory predictions were achieved for the test data set of 

the PCR and PLS models. For this reason, PCR and PLS models were not considered a 

good alternative to predict the 5% distillation results of a distillation curve.  
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Table 6.17: Performance indexes achieved when using multivariate modelling during training, validation and test data 

sets, to predict the 5% distillation of LVGO samples. 

 PCR PLS ANN 

 
training and 

validation 
test 

training and 

validation 
test 

training and 

validation 
test 

       0.74 0.30 0.76 0.29 0.87 0.79 

    4.77 8.77 4.51 7.68 3.24 5.39 

     6.64 11.59 6.35 11.72 4.65 6.41 

    0.00 -0.70 0.00 -0.68 0.53 -0.17 

      0.00 -0.25 0.00 -0.25 0.19 -0.06 

    0.51 0.84 0.49 0.84 0.36 0.46 

Model performance good unsatisfactory very good unsatisfactory very good very good 

 

 

The linear fits of calibration for all the multivariate models used are illustrated in Figure 

6.16. As visualized in Figure 6.16c, it was with the ANN model that a better agreement 

between the predicted and measured 5% distillation results was obtained. Consequently, 

the ANN model predicted the 5% distillation of LVGO samples with the higher accuracy. 

However, some dispersion between the predicted and measured results was notable and 

some difficult in predicting the 5% distillation temperature of samples with a distillation 

temperature smaller than 255 ºC was found. Samples with higher distillation temperature 

were easily predicted. Comparing the agreement between the predicted and measured 

results for each data set, training and validation data sets and test data set, when using the 

ANN model, it was visualized that the values of the test data set were not as well predicted 

as the ones from the training and validation data sets. Consequently, low quality model was 

obtained for the test data set, although still with very good performance. Models with high 

quality for both data sets were not achieved when applying the PCR and PLS models. 

Figure 6.16a and Figure 6.16b clearly demonstrated that there was some dispersion around 

the diagonal line and hence, the agreement between the predicted and measured results was 

not remarkable, especially for the test data set. It was for this reason that the performance 

indexes obtained for the test data set when using the PCR and PLS models were of low 

quality. Concluding, the ANN model is more reliable to predict the 5% distillation 

temperatures of LVGO samples. 
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 a) 

 b) 

 c) 

Figure 6.16: Correlation between the experimental and predicted 5% distillation of the LVGO samples obtained by: a) 

PCR, b) PLS and c) ANN models. 
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vi) 10% Distillation 

Table 6.18 demonstrated that the prediction of 10% distillation of LVGO samples through 

the use of 
1
H NMR spectroscopy could be made when applying all multivariate models. 

Very good performance indexes were achieved for both data sets when PLS and ANN 

models were applied. When using the PCR model, good predictions were obtained for the 

training and validation data sets, whereas for the test data set very good predictions were 

achieved. PCR and ANN models used as inputs 15 PCs, explaining 98.3% of the original 

data variance. PLS used the original data as inputs and it required 21 LVs to perform good 

predictions.  

 

Table 6.18: Performance indexes achieved when using multivariate modelling during training, validation and test data 

sets, to predict the 10% distillation of LVGO samples. 

 PCR PLS ANN 

 
training and 

validation 
test 

training and 

validation 
test 

training and 

validation 
test 

       0.73 0.90 0.96 0.75 0.89 0.90 

    4.99 3.98 1.99 5.14 2.86 3.86 

     7.02 4.86 2.65 7.75 4.42 4.86 

    0.00 0.24 0.00 -2.75 -0.11 1.24 

      0.00 0.08 0.00 -0.96 -0.04 0.43 

    0.52 0.31 0.20 0.50 0.33 0.31 

Model performance good very good very good very good very good very good 

 

 

When comparing the predicted results obtained for the training and validation data sets 

using all different multivariate models (Table 6.18), it was confirmed that good 

performance indexes were achieved for all models. However, it was with the PLS model 

that better predictions were obtained. The predicted results were characterized for 

presenting high     values and the smallest errors when compared with PCR and ANN 

predictions. As indicated by       and    , accurate model predictions were obtained. 

The performance indexes obtained when using PLS model were indicative of very good 

performance indexes.  
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As illustrated in Table 6.18, it was with the PCR and ANN models that better predictions 

for the test data set were achieved. The performance indexes obtained with PCR and ANN 

were quite similar, with the predicted results characterized for having high coefficients of 

determination or     values and small predicted errors. The main difference between these 

models was the     and       results.     and       indicated that the predicted 

results were overestimated for the two models, however it was with the PCR model that 

predicted results were more accurate. 

Taking into account the predicted and measured results obtained with all models for both 

training and validation data sets and test data set, it was considered that the ANN model 

was better to predict the 10% distillation of LVGO samples, as visualized in Figure 6.17c. 

The ANN model was considered the best model taking into account the performance 

indexes obtained for both data sets and especially for the test data set. It was with the test 

data set that the response of the model with new situations was evaluated. As illustrated in 

Figure 6.17, the agreement between the predicted and measured values, when applying the 

PLS and ANN models, was remarkable. When applying the PCR model, Figure 6.17a, 

larger deviations, compared to the ones achieved with the other two models, were found 

especially for the training and validation data sets. In general, the ANN model predicted 

the 10% distillation temperatures with higher quality and accuracy and consequently was 

considered the most reliable for such prediction.  
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 a) 

 b) 

 c) 

Figure 6.17: Correlation between the experimental and predicted 10% distillation of the LVGO samples obtained by: a) 

PCR, b) PLS and c) ANN models. 
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vi) 50% Distillation 

The prediction of 50% distillation cut of LVGO samples was performed using 16 PCs as 

inputs of the PCR and ANN models. These PCs were responsible for 98.5% of the total 

variance. Considering the PLS model, 21 LVs were necessary to performed good 

predictions.  

Analysing the results presented in Table 6.19 it was concluded that when predicting the 

50% distillation cut, independently of the multivariate models used, very good predictions 

were obtained for both data sets. High coefficients of determination or     values and low 

model errors characterize all predicted results obtained for both data sets. 

 

Table 6.19: Performance indexes achieved when using multivariate modelling during training, validation and test data 

sets, to predict the 50% distillation of LVGO samples. 

 PCR PLS ANN 

 
training and 

validation 
test 

training and 

validation 
test 

training and 

validation 
test 

       0.87 0.92 0.99 0.92 0.97 0.90 

    3.56 3.78 0.91 3.14 1.63 4.04 

     4.78 4.74 1.26 5.04 2.19 5.42 

    0.00 1.50 0.00 1.14 -0.03 -0.43 

      0.00 0.47 0.00 0.36 -0.01 -0.13 

    0.36 0.27 0.10 0.29 0.17 0.31 

Model performance very good very good very good very good very good very good 

 

 

When comparing the predicted results obtained for the training and validation data sets 

using all different multivariate models (Table 6.19) it was possible to conclude that it was 

with the PLS model that better performance indexes were achieved. However, as already 

stated and as demonstrated in Table 6.19, very good predictions were also obtained with 

ANN and PCR models. The predicted results obtained with the PLS model were 

characterized for displaying a very high     values, and the smallest     ,     and     

results when comparing with the other models. In addition,       and     results 

indicated that accurate model predictions were achieved with the PLS model. 
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The predicted results obtained for the test data set, when using the different multivariate 

models, were as good as the results obtained for the training and validation data sets. As 

visualized in Table 6.19, better predictions were obtained when PLS and PCR were 

applied. The performance indexes calculated for the PLS and PCR models were quite 

similar, although some differences at the       and     values were found. The       

and     results were positive for both models indicating a slight overprediction. 

However, when using the PLS model the results were similar with the measure data, as 

illustrated in Figure 6.18b. Figure 6.18 shows the measured versus predicted values 

obtained for both data sets when applying all the multivariate models, illustrating the range 

of the dispersion. As illustrated, independently of the model used, the agreement between 

the predicted and measured values was remarkable, showing that the models were of high 

quality and accurate models were achieved. Some dispersion around the diagonal line was 

notable when the PCR model was used (see Figure 6.18a), although this model is still of 

high quality.   

Considering the results obtained to predict the 50% distillation of LVGO samples through 

the use of 
1
H NMR spectroscopy, better performance indexes were achieved when the PLS 

model with 21 LVs was used. PLS model was more reliable to predict the 50% distillation 

of LVGO samples for both data sets. This meant that samples with smaller or higher 

temperature, especially samples of the training and validation data sets, were very well 

predicted. Only a few samples of the test data set were slight deviated from the diagonal 

line. This could be the reason why the predicted results at the test data set presented 

slightly smaller coefficient of determination when compared with the one obtained from 

the training and validation data sets. 
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 a) 

 b) 

 c) 

Figure 6.18: Correlation between the experimental and predicted 50% distillation of the LVGO samples obtained by: a) 

PCR, b) PLS and c) ANN models. 
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vi) 90% Distillation 

Table 6.20 presents the values of the performance indexes using PCR, PLS and ANN 

models for both, training and validation data sets and test data set. Before applying the 

PCR and ANN models, PCA was used to determine the number of PCs that were used as 

inputs of these models. With PCA, 15 PCs responsible for explaining 98.1% of the total 

variance were selected. To develop the PLS model, 13 LVs were used. 

Better performance indexes were achieved with the ANN model for both data sets (see 

Table 6.20). As illustrated in Table 6.20, it was with the ANN model that higher 

coefficients of determination or     results were obtained. In addition, small     ,     

and     values were also achieved. The values of     and       were negative, 

indicating a slight underprediction. It was with the ANN that models of high quality were 

achieved for both data sets, training and validation data sets and test data set. When 

applying the PCR and PLS models, to predict the training and validation data sets, very 

good predictions were obtained, although both models failed when predicting the test data 

set. Hence, models with low quality were achieved when using the PCR and PLS models 

to predict the test data set.  

 

Table 6.20: Performance indexes achieved when using multivariate modelling during training, validation and test data 

sets, to predict the 90% distillation of LVGO samples. 

 PCR PLS ANN 

 
training and 

validation 
test 

training and 

validation 
test 

training and 

validation 
test 

       0.77 -3.36 0.97 0.52 0.94 0.91 

    6.00 15.12 2.28 5.73 2.68 5.09 

     7.79 42.50 2.86 14.15 3.87 6.21 

    0.00 5.61 0.00 -4.12 -0.29 -2.38 

      0.00 1.57 0.00 -1.16 -0.08 -0.67 

    0.48 2.09 0.18 0.70 0.24 0.31 

Model performance very good unsatisfactory very good satisfactory very good very good 

 

 

To confirm the conclusions previously made, Figure 6.19 depicts the measured versus 

predicted 90% distillation results with all models (PCR, PLS and ANN models) and for 
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both data sets, training and validation data sets and test data set. As illustrated in Figure 

6.19c, the ANN model was most reliable to predict the 90% distillation results of LVGO 

samples, since a very good agreement between the predicted and measured results existed. 

A remarkable agreement between the predicted and measured results was also obtained 

when using the PLS model to predict the training and validation data sets. Although, the 

model failed when predicting the test data set. As visualized in Figure 6.19b, the larger 

deviation of some predicted values was one of the factors that contributed for such low 

quality. The higher dispersion of the predicted results was obtained when the PCR model 

was applied, as illustrated in Figure 6.19a. Consequently, less accurate models were 

obtained and even low quality predictions, for the test data set, where achieved. For these 

reasons, the ANN model was considered the best model to predict the 90% distillation 

results of LVGO samples.  
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 a) 

 b) 

 c) 

Figure 6.19: Correlation between the experimental and predicted 90% distillation of the LVGO samples obtained by: a) 

PCR, b) PLS and c) ANN models. 
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vi) 95% Distillation 

In most data sets, prediction of 95% distillation of LVGO samples through the use of 
1
H 

NMR spectroscopy when applying the different multivariate models, resulted in very good 

models performance. With the exception of the predicted results obtained for the test data 

set, when applying the PCR model, that unsatisfactory results were achieved (Table 6.21). 

For the PCR and ANN models 16 PCs corresponding to 98.4% of the total variance were 

used as inputs.  

 

Table 6.21: Performance indexes achieved when using multivariate modelling during training, validation and test data 

sets, to predict the 95% distillation of LVGO samples. 

 PCR PLS ANN 

 
training and 

validation 
test 

training and 

validation 
test 

training and 

validation 
test 

       0.77 -1.10 0.99 0.85 0.94 0.81 

    6.62 12.86 1.13 4.45 2.43 7.35 

     8.12 29.58 1.38 7.98 4.12 8.96 

    0.00 6.71 0.00 -0.38 -0.82 -0.22 

      0.00 1.83 0.00 -0.11 -0.22 -0.06 

    0.48 1.45 0.08 0.39 0.24 0.44 

Model performance very good unsatisfactory very good very good very good very good 

 

 

Analysing the linear plot of calibration between the measured and predicted results for all 

models applied and for both training and validation data sets and test data set (Figure 6.20) 

it was possible to conclude that PLS model was the more reliable to predict the 95% 

distillation values (Figure 6.20b). The PLS model developed with 22 LVs was 

characterized for having the highest coefficient of determination or     values and the 

smallest     ,     and     results, when comparing with the predictions obtained with 

the other models for both data sets. In addition, as indicated by the       and     results 

an accurate model was achieved when using the PLS model to predict the training and 

validation data sets, while a slight underprediction, for the test data set, was found. As 

illustrated in Figure 6.20c, a good agreement between the predicted and measured values 

was also found when the ANN model was applied. A slight deviation of the predicted 

results, from the test data set, was notorious (Figure 6.20c), compared with the PLS model, 
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although the performance indexes obtained were still of high quality. Figure 6.20a shows a 

larger deviation of the predicted results, especially for the test data set, when the PCR 

model was applied. Consequently, a low quality model for the test data set was found. For 

the training and validation data sets, the agreement between the predicted and measured 

results was not so evident and a slightly less accurate model was obtained, although still of 

high quality and characterized as a very good model. Concluding, the PLS model could be 

considered the most reliable to determine the 95% distillation of LVGO samples. 
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a) 

 b) 

 c) 

Figure 6.20: Correlation between the experimental and predicted 95% distillation of the LVGO samples obtained by: a) 

PCR, b) PLS and c) ANN models. 
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6.2.1.2.  LVGO – Final Remarks  

The prediction of LVGO properties were made through the use of 
1
H NMR spectroscopy 

combined with different multivariate methods (PCR, PLS and ANN). The performance 

developed by each model was evaluated by applying some statistical performance indexes. 

Table 6.22 presents the values of performance indexes calculated for all developed models 

for both, training and validation data sets and test data set. As visualized in Table 6.22, it 

was possible to conclude that, in almost all properties analysed, it was with the ANN 

model that better predictions were obtained. Even, for the properties where better 

predictions were achieved with the PLS model, very good predictions were also obtained 

with the ANN model. PCR model was not considered such a good model to predict LVGO 

properties as ANN and PLS models. However, when predicting some properties, PCR also 

gave good predictions. As expected, the ANN model performed better predictions due to 

its ability to develop models around non-linear relationship between the measured 

properties and the predicted results.  

Concluding, 
1
H NMR spectroscopy is a good technique to obtain information about the 

LVGO properties such as density and the distillation at atmospheric pressure. 

 

 

 



 

 

 

Table 6.22: Results obtained for different properties of LVGO analysed when using 1H NMR in multivariate models. 

   

number 

PC 

number 

LV 

total 

variance 
                              

model 

performance 

Density 

PCR 
training and validation 

15 

 

98.1% 

0.54 0.003 0.004 0.0000 0.00 0.68 satisfactory 

test 
 

0.80 0.003 0.003 -0.0007 -0.08 0.44 very good 

ANN 
training and validation 

 
0.92 0.001 0.002 0.0002 0.02 0.29 very good 

test 
 

0.93 0.002 0.002 -0.0002 -0.03 0.27 very good 

PLS 
training and validation 

 13  
0.72 0.002 0.003 0.0000 0.00 0.53 good 

test 
  

0.82 0.002 0.003 -0.0002 -0.02 0.42 very good 

Distillation 

(5%) 

PCR 
training and validation 

16 

 

98.5% 

0.74 4.77 6.64 0.00 0.00 0.51 good 

test 
 

0.30 8.77 11.59 -0.70 -0.25 0.84 unsatisfactory 

ANN 
training and validation 

 
0.87 3.24 4.65 0.53 0.19 0.36 very good 

test 
 

0.79 5.39 6.41 -0.17 -0.06 0.46 very good 

PLS 
training and validation 

 6  
0.76 4.51 6.35 0.00 0.00 0.49 very good 

test 
  

0.29 7.68 11.72 -0.68 -0.25 0.84 unsatisfactory 

Distillation 

(10%) 

PCR 
training and validation 

15 

 

98.3% 

0.73 4.99 7.02 0.00 0.00 0.52 good 

test 
 

0.90 3.98 4.86 0.24 0.08 0.31 very good 

ANN 
training and validation 

 
0.89 2.86 4.42 -0.11 -0.04 0.33 very good 

test 
 

0.90 3.86 4.86 1.24 0.43 0.31 very good 

PLS 
training and validation 

 21  
0.96 1.99 2.65 0.00 0.00 0.20 very good 

test 
  

0.75 5.14 7.75 -2.75 -0.96 0.50 very good 



 

 

 

Table 6.22: Results obtained for different properties of LVGO analysed when using 1H NMR in multivariate models (continuation). 

   

number 

PC 

number 

LV 

total 

variance 
                              

model 

performance 

Distillation 

(50%) 

PCR 
training and validation 

16 

 

98.5% 

0.87 3.56 4.78 0.00 0.00 0.36 very good 

test 
 

0.92 3.78 4.74 1.50 0.47 0.27 very good 

ANN 
training and validation 

 
0.97 1.63 2.19 -0.03 -0.01 0.17 very good 

test 
 

0.90 4.04 5.42 -0.43 -0.13 0.31 very good 

PLS 
training and validation 

 21  
0.99 0.91 1.26 0.00 0.00 0.10 very good 

test 
  

0.92 3.14 5.04 1.14 0.36 0.29 very good 

Distillation 

(90%) 

PCR 
training and validation 

15 

 

98.1% 

0.77 6.00 7.79 0.00 0.00 0.48 very good 

test 
 

-3.36 15.12 42.50 5.61 1.57 2.09 unsatisfactory 

ANN 
training and validation 

 
0.94 2.68 3.87 -0.29 -0.08 0.24 very good 

test 
 

0.91 5.09 6.21 -2.38 -0.67 0.31 very good 

PLS 
training and validation 

 13  
0.97 2.28 2.86 0.00 0.00 0.18 very good 

test 
  

0.52 5.73 14.15 -4.12 -1.16 0.70 satisfactory 

Distillation 

(95%) 

PCR 
training and validation 

16 

 

98.4% 

0.77 6.62 8.12 0.00 0.00 0.48 very good 

test 
 

-1.10 12.86 29.58 6.71 1.83 1.45 unsatisfactory 

ANN 
training and validation 

 
0.94 2.43 4.12 -0.82 -0.22 0.24 very good 

test 
 

0.81 7.35 8.96 -0.22 -0.06 0.44 very good 

PLS 
training and validation 

 22  
0.99 1.13 1.38 0.00 0.00 0.08 very good 

test 
  

0.85 4.45 7.98 -0.38 -0.11 0.39 very good 
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6.2.3. HVGO 

The purpose of analysing the HVGO stream is to evaluate its fractionating and to ensure 

that a good separation into the vacuum column between LVGO, MVGO, HVGO and 

residue is obtained. One of the most important properties used to evaluate the HVGO 

samples is the carbon residue. With this property the quantity of carbon deposits found in 

HVGO samples are controlled. As the determination of the carbon residue using the ASTM 

standard method is time consuming, the use of 
1
H NMR spectroscopy became a possible 

alternative to evaluate the HVGO samples. Among carbon residue, kinematic viscosity, 

distillation and density were also considered important parameters to be investigated in 

order to evaluate the HVGO stream.  

The HVGO samples were analysed by 
1
H NMR spectroscopy and to exploit the full 

information content of the NMR spectra various multivariate data methods have been used. 

Principal component regression, partial least squares and artificial neural networks were 

the methods used to predict the HVGO properties, such as occurred when predicting the 

fuel oil and LVGO properties. Principal component analysis was also used to reduce the 

number of predictive variables and to determine the principal components. These principal 

components were used as inputs of the PCR and ANN models. However, the PLS model 

was based on the original data. At the same time, the models behaviour was evaluated 

calculating the statistical performance indexes.  

Prior to multivariate modelling, the spectral area was divided in constant segments of 0.02 

ppm. As occurred when analysing the fuel oil and LVGO samples, the choice of the bin 

was made taking into account the predictions achieved when evaluating the possibility of 

using other bins. The data pre-processing was the same independently of the samples 

analysed. When applying the ANN model, the procedure used to determine the best 

network architecture was the same as presented for the fuel oil and LVGO samples. The 

best architecture was achieved with different numbers of neurons in the input layer 

depending on the number of PCs used, three neurons in the hidden layer and one neuron in 

the output layer. To apply the PLS model, the number of latent variables was determined 

taking into account the minima of the        (root mean squared error of cross 

validation) plot.  
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Table 6.4 (shown in page 187) presents the number of samples analysed for each property. 

Independently of the number of samples analysed, the data was divided into three different 

groups such as the training, the validation and the test data sets. All three different groups 

were representative of the data using the procedure described in Section 5.3. 

The results obtained for each property are discussed as followed and the values of 

performance indexes calculated for both data sets, training and validation data sets and test 

data set, and for all properties analysed when using the different multivariate models, 

presented.  

 

i) Density (g/mL) 

The study performed to analyse the prediction of the density of the HVGO samples by 
1
H 

NMR spectroscopy was developed considering 189 samples. The training data set was 

constituted by 113 samples while the validation and test data sets included 38 samples, 

respectively. The density of the HVGO samples analysed varied between 0.9200 to 0.9600 

g/mL. To develop the PCR and ANN models 14 PCs responsible for 98.1% of the total 

variance were used as inputs while for the PLS model, 11 LVs were necessary.  

Table 6.23 presents the values of the performance indexes using PCR, PLS and ANN 

models for both, training and validation data sets and test data set. The results obtained 

demonstrated that only the ANN model presented better predictions for both data sets. 

When using the other models, PCR and PLS models, worst predictions were obtained 

especially for the test data set. 
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Table 6.23: Performance indexes achieved when using multivariate modelling during training, validation and test data 

sets, to predict the density of HVGO samples. 

 PCR PLS ANN 

 
training and 

validation 
test 

training and 

validation 
test 

training and 

validation 
test 

       0.64 -0.48 0.73 0.28 0.76 0.76 

    0.002 0.003 0.002 0.003 0.002 0.002 

     0.004 0.007 0.003 0.005 0.003 0.003 

    0.0000 0.0008 0.0000 0.0002 0.0000 -0.0003 

      0.00 0.09 0.00 0.02 0.00 -0.03 

    0.60 1.22 0.52 0.84 0.49 0.49 

Model performance satisfactory unsatisfactory good unsatisfactory very good very good 

 

 

The results presented in Table 6.23 show that the use of the ANN model led to more 

accurate results than the PCR and PLS models, for both data sets. It was with the ANN 

model that higher coefficients of determination or     values were obtained for both data 

sets. In addition, it was also with the ANN model that smaller errors were achieved, such 

as smaller     ,     and     results.       and     were negatives for the ANN 

model and both data sets, meaning that the predicted density values were underestimated. 

When analysing the linear plot between the measured and the predicted density by the 

different multivariate models and for both data sets (Figure 6.21), the same conclusions 

were made. As illustrated, it was with the ANN model that the agreement between the 

predicted and measured results were most remarkable (see Figure 6.21c). Some dispersion 

around the diagonal line was notorious, especially for higher density results. However, 

samples with smaller density values were very well predicted. Consequently, the models 

obtained, for both data sets, when using the ANN model were of very good quality. Less 

accurate models were achieved when the PCR and PLS models were applied. As visualized 

in Figure 6.21a and Figure 6.21b, larger deviations between the predicted and measured 

values were obtained showing that these developed models were of low quality, especially 

when predicting the samples of the test data set. 

Concluding, 
1
H NMR spectroscopy combined with the ANN model was the most reliable 

to predict the density of HVGO samples.  
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 a) 

 b) 

 c) 

Figure 6.21: Correlation between the experimental and predicted density of the HVGO samples obtained by: a) PCR, b) 

PLS and c) ANN models. 
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ii) Kinematic viscosity at 100ºC (cSt) 

To predict the kinematic viscosity at 100 ºC, 168 HVGO samples were analysed. From the 

168 HVGO samples, 100 samples represented the training data set while 34 samples 

constituted the validation and test data sets, respectively. With all these samples, a wide 

variety of kinematic viscosity results ranging from 8.050 to 18.60 cSt were guaranteed. 

Table 6.24 presents the performance indexes achieved when applying the different 

multivariate models for both data sets, training and validation data sets and test data set, 

when predicting the kinematic viscosity of HVGO samples. Sixteen principal components, 

explaining 98.3% of the original data variance were used as inputs of the PCR and ANN 

models while for the PLS model 20 LVs to perform good PLS models were required. As 

visualized in Table 6.24, better performance indexes were achieved with the PLS and ANN 

models for both data sets. However, when applying the PCR model good predictions were 

obtained for the training and validation data sets, whereas for the test data set 

unsatisfactory results were achieved. PCR was not considered a good model to predict the 

kinematic viscosity of HVGO samples due to the performance indexes obtained. This 

model was characterized for having insignificant coefficient of determination or negative 

    results which indicated that the mean observed value was better measured than 

predicted, meaning that unacceptable performances were obtained. Analysing the errors 

obtained, it was verified that higher     ,     and     values were achieved with the 

PCR model. 

 

Table 6.24: Performance indexes achieved when using multivariate modelling during training, validation and test data 

sets, to predict the kinematic viscosity at 100 ºC of HVGO samples. 

 PCR PLS ANN 

 
training and 

validation 
test 

training and 

validation 
test 

training and 

validation 
test 

       0.68 -0.20 0.97 0.93 0.87 0.84 

    0.54 0.96 0.16 0.27 0.34 0.46 

     0.78 1.60 0.22 0.39 0.50 0.58 

    0.00 0.19 0.00 -0.12 0.02 0.07 

      0.00 1.75 0.00 -1.12 0.14 0.64 

    0.56 1.10 0.16 0.27 0.36 0.40 

Model performance good unsatisfactory very good very good very good very good 
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As visualized in Table 6.24, when using the PLS model, better predictions were obtained 

for both data sets. It is important to point out that when using the PLS model very good 

    values were obtained for both data sets. It was with this model that the smallest errors 

were obtained, such as, smaller     ,     and     results, when compared with the 

ones obtained with the PCR and ANN models. Analysing the       and     values, it 

was possible to conclude that accurate model simulation was obtained for the training and 

validation data sets, whereas for the test data set the predicted results were underestimated. 

As illustrated in Figure 6.22b, which shows the measured and predicted values of the 

kinematic viscosity determined by PLS model for both data sets, the predicted results 

obtained presented a very good agreement with the experimental values. Small and high 

HVGO kinematic viscosities were well predicted when using the PLS model and 

consequently high quality models, for both data sets, were achieved. Less accurate models 

were obtained when the ANN model was applied, although still of high quality with both 

data sets characterized with very good predictions. As indicated in Figure 6.22c larger 

deviations compared to Figure 6.22b were found as well as some difficulties in predicting 

higher kinematic viscosities of the HVGO samples. However, the ANN model predict 

more than 80% of the data. The same predictions were not possible to obtain when using 

the PCR model. As illustrated in Figure 6.22a a weak agreement between the predicted and 

measured results were found when the PCR model was applied, especially for the test data 

set. Consequently, unsatisfactory predictions were achieved. Figure 6.22 clearly 

demonstrated that 
1
H NMR spectroscopy combined with the PLS model could be a very 

good alternative to predict the kinematic viscosity of HVGO samples.  
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 a) 

b) 

c) 

Figure 6.22: Correlation between the experimental and predicted kinematic viscosity at 100 ºC of the HVGO samples 

obtained by: a) PCR, b) PLS and c) ANN models. 

7.50 

9.50 

11.50 

13.50 

15.50 

17.50 

19.50 

7.50 9.50 11.50 13.50 15.50 17.50 19.50 

P
re

d
ic

te
d

 k
in

e
m

a
ti

c 
v
is

co
si

ty
 (

cS
t)

 

Measured kinematic viscosity (cSt) 

training + validation 

test 

7.50 

9.50 

11.50 

13.50 

15.50 

17.50 

19.50 

7.50 9.50 11.50 13.50 15.50 17.50 19.50 

P
re

d
ic

te
d

 k
in

e
m

a
ti

c 
v
is

co
si

ty
 (

cS
t)

 

Measured kinematic viscosity (cSt) 

training + validation 

test 

7.50 

9.50 

11.50 

13.50 

15.50 

17.50 

19.50 

7.50 9.50 11.50 13.50 15.50 17.50 19.50 

P
re

d
ic

te
d

 k
in

e
m

a
ti

c 
v
is

co
si

ty
 (

cS
t)

 

Measured kinematic viscosity (cSt) 

training + validation 

test 



 

 

RESULTS AND DISCUSSION 
 

253 

 

iii) Carbon residue (% m/m) 

As already stated, carbon residue is a very important property that provides information on 

coking propensity of HVGO samples during combustion or conversion process in 

hydrotreatment units. To determine this property using 
1
H NMR spectroscopy, 142 HVGO 

samples were analysed. The training data set was composed by 86 samples while the test 

and the validation data sets were formed with 28 samples each. With all samples analysed, 

a wide variety of results ranging from 0.08 to 1.03% m/m were guaranteed. To develop the 

PCR and ANN models 15 principal components, explaining 98.2% of the original data 

variance, were used as inputs. For the PLS model, 17 LVs were required. 

As visualized in Table 6.25, the performance indexes calculated for the training and 

validation data sets and for the test data set demonstrated that the PLS model performed 

very good predictions. When applying the ANN model good predictions were obtained for 

both data sets. On the other hand, worst performance occurred, for both data sets, with the 

PCR model. 

 

Table 6.25: Performance indexes achieved when using multivariate modelling during training, validation and test data 

sets, to predict the carbon residue of HVGO samples. 

 PCR PLS ANN 

 
training and 

validation 
test 

training and 

validation 
test 

training and 

validation 
test 

       0.55 0.48 0.91 0.76 0.72 0.71 

    0.05 0.06 0.02 0.05 0.04 0.06 

     0.07 0.09 0.03 0.06 0.06 0.07 

    0.000 -0.030 0.000 -0.003 -0.001 0.001 

      0.00 -8.01 0.00 -0.80 -0.21 0.35 

    0.67 0.72 0.30 0.50 0.53 0.54 

Model performance satisfactory unsatisfactory very good very good good good 

 

 

Once again, the PLS model demonstrated to be the best alternative when predicting the 

carbon residue of HVGO samples (see Table 6.25). As demonstrated, it was with the PLS 

model that better performance indexes were obtained for both data sets. Although, for the 

test data set, the predictions were not as high as occurred for the training and validation 
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data sets. It was with the PLS model, for both data sets, that higher     values were 

obtained. In addition, smaller     ,     and     results also characterized the 

developed PLS model.       and     indicated that for the training and validation data 

sets an accurate model was obtained. However, for the test data set the results were 

underestimated. Since very good predictions were obtained when using the PLS model, 

this model was considered the best one to predict the carbon residue of HVGO samples. As 

analysed in Figure 6.23b, the developed model gave accurate results, although some 

dispersion between the measured and predicted results were notorious, especially for the 

test data set. The larger deviation between the predicted and measured values of the test 

data set could be the reason why the performance indexes obtained for the test data set was 

not as high as the ones obtained for the training and validation data sets. Although, for both 

data sets, the develop models were of very good quality predicting 91 and 76% of the data 

for the training and validation data sets and test data set, respectively. Smaller correlations 

were obtained when the PCR and ANN model were used. As visualized in Figure 6.23a 

and Figure 6.23c, the PCR and ANN models presented some difficulties in predicting 

smaller and higher carbon residue values. Moreover, larger deviations between the 

predicted and experimental carbon residue results, when compared to Figure 6.23b, were 

found. Though, these larger deviations were more pronounced when the PCR model was 

applied demonstrating that the agreement between the predicted and measured carbon 

residue was not remarkable. For these reasons, PCR model, which haven’t predicted more 

than 48% of the test data set, were not considered a good model to predict the carbon 

residue of HVGO samples. On the other hand, the ANN model gave slightly more accurate 

results than the PCR model and a better agreement between the predicted and measured 

results were achieved, as illustrated in Figure 6.23c. Consequently, models with better 

quality, for both data sets, than the ones achieved with the PCR model were obtained. 

ANN model predicted more than 70% of the data. Figure 6.23 demonstrated that 
1
H NMR 

spectroscopy combined with the PLS model could be an alternative to the ASTM standard 

test method to determine the carbon residue of the HVGO samples. 
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 a) 

b) 

c) 

Figure 6.23: Correlation between the experimental and predicted carbon residue of the HVGO samples obtained by: a) 

PCR, b) PLS and c) ANN models. 
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Distillation 

As occur for LVGO samples, the cuts of the distillation curve that were analysed to 

evaluate the HVGO samples were the 5, 10, 50, 90 and 95% distillation cuts. Analysing 

these cuts of the distillation curve it was evaluate how the separation of the HVGO stream 

occurred. The idea was to verify if there were no losses of HVGO and if some residue were 

collected in the HVGO stream. 

1
H NMR spectroscopy was used to verify if it can described, with good precision, the 

distillation curve of HVGO samples. 

 

iv) 5% Distillation 

When predicting 5% distillation cut of HVGO samples through the use of 
1
H NMR 

spectroscopy 116 samples were used, from which, 70 samples composed the training data 

set while 23 samples formed the validation and test data sets, respectively. This distillation 

cut included a wide variety of results ranging from 374 to 418 ºC. Thirteen principal 

components, responsible for explaining 98.3% of the total variance, were used as inputs of 

the PCR and ANN models. Considering the PLS model, 10 LVs were required. 

Table 6.26 clearly demonstrated the results of the performance indexes obtained when 

using PCR, PLS and ANN models to predict both data sets, training and validation data 

sets and test data set. As visualized, the predictions obtained were not as good as expected. 

It was expected better predictions with all applied models. Only the PLS model was able to 

predict the 5% distillation cut of the HVGO samples. When using the ANN model only 

satisfactory results were obtained for both data sets. Worse predictions were achieved 

when using the PCR model. 
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Table 6.26: Performance indexes achieved when using multivariate modelling during training, validation and test data 

sets, to predict the 5% distillation cut of HVGO samples. 

 PCR PLS ANN 

 
training and 

validation 
test 

training and 

validation 
test 

training and 

validation 
test 

       0.18 0.29 0.75 0.66 0.62 0.55 

    8.08 7.86 4.06 5.54 4.55 5.49 

     10.03 9.63 5.53 6.67 6.85 7.64 

    0.00 -1.97 0.00 -2.80 -0.61 -2.93 

      0.00 -0.51 0.00 -0.73 -0.16 -0.76 

    0.90 0.84 0.50 0.58 0.62 0.67 

Model performance unsatisfactory unsatisfactory very good good satisfactory satisfactory 

 

 

Comparing the predictions with all models and the measured data, corresponding only to 

the training and validation data sets (see Table 6.26), it was possible to visualize that worse 

predictions were obtained when using the PCR model. When applying the ANN model a 

small improvement was achieved and therefore, the model classified as satisfactory. On the 

other hand, when applying the PLS model better predictions were obtained. The PLS 

model, classified as very good, was characterized for predicting 75% of the data. It was 

with the PLS model that high     value, for the training and validation data sets, was 

obtained. Moreover, small errors, such as smaller     ,     and     values, were also 

achieved for the training and validation data sets comparing with those obtained with the 

PCR and ANN models. The results obtained with       and     were indicative that an 

accurate model simulation was achieved whit the PLS model. 

When analysing the results with all models only for the test data set, it was verified that 

worse predictions were obtained when comparing with those achieved for the training and 

validation data sets. As visualized in Table 6.26, the PCR model was not a good choice to 

determine the 5% distillation cut of HVGO samples. The model obtained was classified as 

unsatisfactory. The results obtained with the ANN model were also not so good. As 

occurred for the training and validation data sets, the best model to predict the 5% 

distillation cut of the HVGO samples, for the test data set, was the PLS model. With this 

model, a good     value was achieved and when comparing with the other results 

obtained for the test data set, it was with the PLS model, that small errors were obtained. 
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The results obtained with the PLS model for       and     were negative, meaning that, 

the predicted 5% distillations were underestimated. 

Figure 6.24 depicts a correlation plot between the predicted and measured results obtained 

when applying the multivariate models and the standard test method, respectively. As 

illustrated in Figure 6.24b, it was with the PLS model that better agreement between the 

predicted and measured results was obtained and hence best performance, for both data 

sets, were achieved. Although, some dispersion between the predicted and measured 

results was visualized as well as some difficulties to predict lower temperatures of the 5% 

distillation cut of HVGO samples. The larger deviations between the predicted and 

experimental results was more notorious at the test data set. These larger deviations of the 

samples from the test data set could be one of the reasons that justify the lower predictions 

at the test data set, compared to the training and validation data sets. Despite these results, 

it was with the PLS model that the most accurate models to predict the 5% distillation cut 

were achieved. When using the ANN model less accurate models than the ones obtained 

with the PLS model were found. Larger deviations between the predicted and measured 

results were visualized, for both data sets, when applying the ANN model. Moreover, 

difficulties in predicting higher values of the 5% distillation cut was also illustrated in 

Figure 6.24c. Figure 6.24a clearly demonstrates that very low quality models were 

obtained when the PCR model was applied. No agreement between the predicted and 

measured results were visualized in Figure 6.24a and consequently the PCR model was not 

considered an alternative to predict the 5% distillation cut of HVGO samples. Concluding, 

the PLS model was the most reliable to predict the 5% distillation cut of the HVGO 

samples.  
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 a) 

b) 

c) 

Figure 6.24: Correlation between the experimental and predicted 5% distillation cut of the HVGO samples obtained by: 

a) PCR, b) PLS and c) ANN models. 
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iv) 10% Distillation 

To determine the cut of 10% distillation, 116 HVGO samples were studied. With all these 

samples, a wide variety of results was guaranteed with the 10% distillation cut ranging 

from 374 to 418 ºC. From all variables, three data sets were formed, and the training data 

set composed of 70 samples while the validation and test data sets were constituted by 23 

samples, respectively. Before applying PCR and ANN models, principal component 

analysis was used to determine the number of PCs used as inputs of these models. Twelve 

principal components, explaining 98.1% of the total variance, were selected. To apply the 

PLS model, the number of latent variables were also selected and better predictions were 

obtained when 10 LVs were used. 

The performance indexes obtained when applying all multivariate models for both training 

and validation data sets and test data set were presented in Table 6.27. As visualized, only 

the PLS model was able to predict the 10% distillation cut, for both data sets. With the PLS 

model very good predictions were obtained for the training and validation data sets and for 

the test data set, good predictions were achieved. When applying the ANN models, very 

good predictions were obtained for the training and validation data sets. However, the 

same doesn’t occur for the test data set, which was classified as an unsatisfactory model. In 

addition, unsatisfactory predictions were also obtained for both data sets when the PCR 

model was applied. PCR model was not considered a good model, for both data sets, to 

predict the 10% distillation cut of HVGO samples. 

 

Table 6.27: Performance indexes achieved when using multivariate modelling during training, validation and test data 

sets, to predict the 10% distillation cut of HVGO samples. 

 PCR PLS ANN 

 
training and 

validation 
test 

training and 

validation 
test 

training and 

validation 
test 

       0.24 0.07 0.78 0.66 0.76 0.18 

    6.00 7.21 3.09 4.65 2.83 6.66 

     7.78 9.00 4.21 5.62 4.38 8.47 

    0.00 -0.51 0.00 -0.20 0.41 -1.46 

      0.00 -0.13 0.00 -0.05 0.10 -0.37 

    0.87 0.96 0.47 0.60 0.49 0.91 

Model performance unsatisfactory unsatisfactory very good good very good unsatisfactory 
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Analysing the predictions with all models, corresponding to the training and validation 

data sets (Table 6.27), it was possible to conclude that the worst performance occurred 

with PCR model. The application of PCR model was not considered a good way to predict 

the 10% distillation cut of HVGO samples. However, the use of ANN and PLS models led 

to more accurate results than the PCR model. Very good predictions were obtained when 

using the ANN and PLS models. Although the ANN and PLS models presented similar 

results, for the training and validation data sets, the PLS model was considered to be the 

best. The main difference, when analysing the performance indexes achieved (Table 6.27) 

were found in       and     results. For the PLS model the       and     results 

were indicative that an accurate model simulation was achieved, while, for the ANN 

model,       and     were negative, meaning that, the predicted 10% distillation results 

were underestimated. 

Such good results, as those obtained for the training and validation data sets, were not 

achieved for the test data set. Table 6.27 shows that the application of the PLS model was 

considered better than using PCR and ANN models to predict the 10% distillation cut of 

the HVGO samples. Considering the PCR and ANN models, it was observed that the 

predicted results were not adjusted to the measured data. Both these methods were not able 

to predict, for the test data set, the 10% distillation cut of the HVGO samples. The 

predictions obtained with the PLS model for the test data set were classified as good, 

meaning that, a good     value and small errors, compared with those obtained for the 

ANN and PCR models, were attained. Taking into account the results obtained with the 

      and    , the predicted 10% distillation were underestimated. 

The results obtained indicated that 
1
H NMR spectroscopy could predict the 10% 

distillation cut of the HVGO samples by using the PLS model. As visualized in Figure 

6.25b, which shows the predicted and measured values and the goodness of the fit 

obtained, it was with the PLS model that a better agreement between the predicted and 

measured results was achieved. Some dispersion around the calibration line was also 

illustrated, especially for the test data set, indicating that less quality performance indexes 

were obtained for the test data set, compared to the ones obtained for the training and 

validation data sets. In spite of the performance indexes obtained for both data sets when 

using the PLS model were not of higher accuracy, it was with the PLS model that the best 
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predictions were achieved. With the ANN model, as illustrated in Figure 6.25c, the training 

and validation values mostly coincide with the calibration line, whereas the test data set 

showed larger deviations, compared with the Figure 6.25b. These larger deviations from 

the test data set contributed to a less quality model and consequently lower performance 

indexes. Moreover, low quality models were also obtained when the PCR model was 

applied. As illustrated in Figure 6.25a, no agreement between the predicted and measured 

results, for both data sets, were found when the PCR model was used. These results leads 

us to conclude that PLS model was the most reliable to predict the 10% distillation cut of 

the HVGO samples. 
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 a) 

b) 

c) 

Figure 6.25: Correlation between the experimental and predicted 10% distillation cut of the HVGO samples obtained by: 

a) PCR, b) PLS and c) ANN models. 
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v) 50% Distillation 

The prediction of 50% distillation of HVGO samples was made using 116 samples. From 

the 116 HVGO samples, 70 were used for the training data set while 23 composed the test 

and validation data sets, respectively. The samples used to develop the model included a 

wide variety of results ranging from 433 to 466 ºC. Thirteen principal components, 

responsible for 98.2% of the total variance, were used as inputs of the PCR and ANN 

models. Thirteen latent variables were required to apply the PLS model. 

The results obtained when predicting the 50% distillation of HVGO samples, presented in 

Table 6.28, were not as good as expected. From all models applied only the ANN model 

gave similar and good predictions for both data sets. The PCR model was not able to 

predict the 50% distillation cut of the HVGO samples and unsatisfactory predictions were 

obtained for both data sets. Using the PLS model, very good performance indexes were 

obtained for the training and validation data sets, however, the performance indexes for the 

test data set were slightly worse, where only satisfactory predictions were obtained. 

 

Table 6.28: Performance indexes achieved when using multivariate modelling during training, validation and test data 

sets, to predict the 50% distillation cut of HVGO samples. 

 PCR PLS ANN 

 
training and 

validation 
test 

training and 

validation 
test 

training and 

validation 
test 

       0.35 0.41 0.90 0.54 0.66 0.72 

    3.52 3.58 1.41 2.95 2.73 2.58 

     4.52 4.40 1.82 3.86 3.44 3.00 

    0.00 0.91 0.00 1.08 0.23 1.00 

      0.00 0.20 0.00 0.24 0.05 0.22 

    0.80 0.77 0.32 0.68 0.61 0.52 

Model performance unsatisfactory unsatisfactory very good satisfactory good good 

 

 

Considering only the results obtained and the measured data during training and validation 

data sets (Table 6.28), it was demonstrated that only PCR was not able to predict the 50% 

distillation cut of the HVGO samples. Very small     value and high errors were obtained 

when applying the PCR model. Only the     and       values presented a very good 
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result for the PCR model, which was expected since these statistical parameters tend to 

minimize the real value to the average one. On the other hand, a good model was obtained 

when applying the ANN model and when using the PLS model very good predictions were 

achieved. For the training and validation data sets, the best performance indexes were 

obtained when the PLS model was applied. The PLS model was characterized for 

presenting a high     value and small errors, such as a smaller     ,     and     

results, comparing with those obtained with PCR and ANN models. The       and     

obtained with the PLS model were indicative that an accurate model simulation was 

achieved. 

Taking into account the predicted results obtained for the test data set, when using all 

different multivariate models, the results were not as good as the results obtained for the 

training and validation data sets. As visualized in Table 6.28, the PCR model was not able 

to predict the 50% distillation cut of the HVGO samples and unsatisfactory predictions 

were obtained. Better results than the ones obtained with the PCR model were achieved 

with the PLS model, nevertheless, only satisfactory predictions were obtained. It was only 

possible to obtain good predictions when using the ANN model. This model was 

characterized for presenting good performance indexes, taking into account the 

performance ratings developed by Moriasi et al. (2007) (see Section 5.4). Also it was with 

the ANN model that smaller errors were obtained for the test data set. The     and       

values indicated that the model developed by the ANN was overestimated. 

Figure 6.26, which depicts a correlation plot of the measured and predicted results with all 

models, confirmed that the ANN model is the most reliable to predict the 50% distillation 

cut of HVGO samples. As illustrated in Figure 6.26c, it was with the ANN model that a 

better agreement between the predicted and experimental results, especially for the test 

data set, was found. It was visualized some deviation of the predicted results from the 

correlation line, although it was with the ANN model that the performance indexes of both 

data sets were in accordance and high quality model for the test data set was achieved. 

When applying the PLS model (Figure 6.26b), it was visualized that the training and 

validation results almost coincide with the calibration line, although the same doesn’t 

occur for the test data set. As visualized, larger deviations of the test data set from the 

calibration line, compared to Figure 6.26c, were achieved. To confirm the results obtained 



 

 

CHAPTER 6 
 

266 
 

when using the PLS model, the samples included in the test data set where changed with 

the samples encompassed at the training and validation data sets, although the same 

behaviour occur. The PLS model was unable to predict the test data set with high accuracy 

as occur for the training and validation data sets. This behaviour could indicate that the 

selection criterion of taking the number of LVs that corresponds with the minimal 

RMSECV value might result in overfitting the data, although, as expected, the use of less 

LVs contributed to less accurate models for both data sets. The PCR model was also 

unable to predict the 50% distillation cut of HVGO samples and low quality models were 

obtained for both data sets. As illustrated in Figure 6.26a there was no agreement between 

the predicted and experimental results. Concluding, the ANN model was considered the 

best model, with good agreement between both data sets, to predict the 50% distillation cut 

of HVGO samples. 

 

 



 

 

RESULTS AND DISCUSSION 
 

267 

 

 a) 

b) 

c) 

Figure 6.26: Correlation between the experimental and predicted 50% distillation cut of the HVGO samples obtained by: 

a) PCR, b) PLS and c) ANN models. 
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vi) 90% Distillation 

To develop a model that contributes to obtain the 90% distillation results, 114 HVGO 

samples were analysed. From the 114 samples, 68 composed the training data set while 23 

were used for the validation and test data sets, respectively. The samples used to develop 

the model included a wide variety of results ranging from 484 to 542 ºC. Before applying 

the multivariate models the principal component analysis was used. With the PCA, the 

number of principal components used as inputs of the PCR and the ANN models were 

selected. For predicting the 90% distillation cut, 12 PCs, responsible for explaining 98.1% 

of the original data variance, were required. When applying PLS model, 12 LVs were 

select. 

Table 6.29 demonstrates the results of the performance indexes obtained after applying all 

different multivariate models for both training and validation data sets and test data set. As 

analysed, bad predictive performance were obtained when predicting the 90% distillation 

cut of the HVGO samples. Independently of the model applied, the PCR, PLS and ANN 

models, unsatisfactory predictions were obtained for the test data set, meaning that, neither 

models were able to predict the measured values from the test data set. For the training and 

validation data sets better predictions were achieved when using the ANN and the PLS 

models. However, it was with the PLS model that the best performance were obtained. It 

was with the PLS model that the predicted results were closer from the measured data and 

higher     value was obtained, compared with those achieved for the PCR and ANN 

models. The smaller errors, such as, a smaller     ,     and    , were also found at the 

training and validation data sets when using the PLS model. The       and     results 

indicated that an accurate model simulation was achieved when using the PLS model. 
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Table 6.29: Performance indexes achieved when using multivariate modelling during training, validation and test data 

sets, to predict the 90% distillation cut of HVGO samples. 

 PCR PLS ANN 

 
training and 

validation 
test 

training and 

validation 
test 

training and 

validation 
test 

       0.25 0.20 0.75 0.48 0.58 0.50 

    4.78 5.23 2.92 4.44 3.81 4.32 

     6.70 7.01 3.85 5.67 5.02 5.55 

    0.00 0.81 0.00 0.25 0.25 -0.40 

      0.00 0.15 0.00 0.05 0.05 -0.08 

    0.86 0.89 0.50 0.72 0.64 0.71 

Model performance unsatisfactory unsatisfactory good unsatisfactory satisfactory unsatisfactory 

 

In Figure 6.27, which shows the linear plot between the predicted and measured results 

obtained with all models applied (PCR, PLS and ANN models) as well as the standard test 

method, it was possible to visualize that some dispersion around the calibration line existed 

independently of the model applied. Low quality predictions were achieved when the PCR 

model was used. As illustrated in Figure 6.27a, the developed model was unable to predict 

samples with lower and higher values of the 90% distillation cut. Consequently, 

unsatisfactory predictions characterized both data sets when the PCR model was used. 

Surely satisfactory predictions, for the training and validation data sets, were obtained 

when the ANN model was applied, as visualized in Figure 6.27c. Although, for the test 

data set larger deviations between the predicted and measured values were achieved. 

Consequently, the ANN model was also not considered an alternative to predict the 90% 

distillation cut of HVGO samples. Better agreement between the predicted and measured 

values was obtained, for the training and validation data sets, when the PLS model was 

used. As illustrated in Figure 6.27b, the training and validation data sets were closest from 

the calibration line, compared to Figure 6.27a and Figure 6.27c, although the test data set 

continued to show larger deviations. Consequently, none of the models were able to predict 

the 90% distillation cut of the HVGO samples and low quality models were achieved. To 

improve these bad predictions more HVGO samples should be analysed. Only 23 samples 

at the test data set were not enough to obtain a good model. It is believed that in increasing 

the number of samples, especially at the test data set, that better predictions will be 

achieved since improvements were obtained when increasing the database from 19 samples 

to 23 samples. 
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 a) 

b) 

c) 

Figure 6.27: Correlation between the experimental and predicted 90% distillation cut of the HVGO samples obtained by: 

a) PCR, b) PLS and c) ANN models. 
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vii) 95% Distillation 

To determine the distillation cut at 95%, 99 HVGO samples were analysed. From all 

different 99 samples analysed, the training data set included 59 HVGO samples whereas 

the validation and test data sets were composed by 20 HVGO samples, respectively. The 

95% distillation of all samples analysed varied between 500 to 558 ºC. From the 

multivariate models used to predict the 95% distillation of the HVGO samples, PCR and 

ANN models used the PCs as inputs while the PLS model was based on the original data. 

The number of PCs considered by the principal component analysis was 13 PCs. These 

PCs were responsible for explaining 98.4% of the original data variance. When using the 

PLS model, 11 LVs were considered the most adequate to predict the 95% distillation cut. 

Taking into account the performance obtained for both training and validation data sets and 

test data set, when applying the statistical performance indexes, it was possible to verify 

that the developed models were not able to predict the 95% distillation of the HVGO 

samples (Table 6.30). The results, in Table 6.30, showed that the use of PLS model led to 

slightly better results than the PCR and ANN models, contributing to achieve a good 

model for the training and validation data sets. Higher     value was obtained, for the 

training and validation data sets, when the PLS model was applied. Smaller     ,     

and     results were also achieved when using the PLS model to predict the 95% 

distillation of the HVGO samples. However, for the test data set, even the PLS model 

failed. Moreover, all models were classified for presented insignificant coefficient of 

determination and higher errors for the test data set. Different approaches were tried to 

improve the obtained results. A more critical selection of the inputs, like an outlier 

analysis, to select the samples used as inputs of the applied models was made. In addition, 

different models were performed by changing the samples incorporated in the different 

data sets. However, the results obtained were even worse than the ones presented here. 
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Table 6.30: Performance indexes achieved when using multivariate modelling during training, validation and test data 

sets, to predict the 95% distillation cut of HVGO samples. 

 PCR PLS ANN 

 
training and 

validation 
test 

training and 

validation 
test 

training and 

validation 
test 

       0.18 -0.22 0.71 0.05 0.51 -0.07 

    5.98 7.52 3.74 7.51 4.75 7.84 

     8.38 10.3 4.94 9.08 6.45 9.64 

    0.00 1.33 0.00 0.79 -0.14 0.25 

      0.00 0.24 0.00 0.15 -0.03 0.05 

    0.91 1.11 0.53 0.97 0.70 1.03 

Model performance unsatisfactory unsatisfactory good unsatisfactory satisfactory unsatisfactory 

 

 

As confirmed in Figure 6.28, that depicts the correlation plot of the measured and predicted 

results with all models applied and for both data sets, low quality models were achieved 

independently of the models applied. As illustrated, a weak agreement between the 

predicted and measured results were obtained. The PCR and ANN models were unable to 

predict samples with lower or higher 95% distillation results and larger deviations from the 

correlation line were evidently, as illustrated in Figure 6.28a and Figure 6.28c. On the 

other hand, slightly better accurate model, for the training and validation data sets, were 

obtained when the PLS model was used and better agreement between the predicted and 

measured results was also visualized (Figure 6.28b). Although, larger deviations of the test 

data set from the correlation line were observed and hence low quality models were 

achieved, independently of the model applied. 

 

 



 

 

RESULTS AND DISCUSSION 
 

273 

 

a) 

b) 

c) 

Figure 6.28: Correlation between the experimental and predicted 95% distillation cut of the HVGO samples obtained by: 

a) PCR, b) PLS and c) ANN models. 
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Referring to the use of 
1
H NMR spectroscopy to predict the 95% distillation of the HVGO 

samples no conclusions can be taken. Good predictions were obtained when using the PLS 

model for the training and validation data sets but bad predictions were achieved for the 

test data set. The prediction of the 95% distillation of the HVGO samples was another case 

where more information should be given to the developed models in an attempt to improve 

the obtained predictions. It was expected that the developed models should be able to 

predict the 95% distillation of the HVGO samples. However, unsatisfactory predictions 

were obtained and such predictions could be related with: i) the distillation of the heaviest 

fractions, which were difficult to distillate; ii) the standard method used which was 

characterized as a limited and complicated method where the distillation was performed at 

a reduced pressure and with just one theoretical plate; and iii) the reproducibility of the 

standard method. Due to the higher reproducibility of the standard method it was possible 

that small differences between the chemical composition of the samples were not 

differentiate with the distillation, as a consequence, different HVGO samples presenting 

the same distillation results were obtained. As example, Figure 6.29 presents the HVGO 

samples with the same distillation temperature (T=550 ºC) for the 95% distillation cut. 

Apparently no differences were identified when comparing the 
1
H NMR spectrum of each 

of the samples but analysing more carefully it was possible to conclude that samples with 

differences in the chemical composition were giving the same output value. 
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Figure 6.29: Comparison between some HVGO samples presenting the same distillation temperature for the 95% 

distillation cut (the spectrum of each HVGO sample was differentiate with different colours). 

 

 

In Figure 6.30 it is clearly demonstrated that greatest differences between the HVGO 

samples occurred around the 1.6 to 1.8 ppm, where some beta CH, CH2 and hydro-

aromatic appears. It will be possible to say that the spectra represented by the blue and 

magenta colour were similar but different from the other two spectra which were also 

presenting some similarities between them. At the aromatic region (Figure 6.31) 

differences between the four HVGO samples were notorious, especially at the heaviest 

aromatic region. The greatest differences were found between the 8.4 to 8.8 ppm were 

some tri- and tetra-aromatic rings appears and around 7.6 to 7.8 ppm which was 

characterized for the presence of diaromatic and most of tri- and tetra-aromatic. Once again 

it was verified that the samples presented by the blue and magenta spectra were similar but 

different from the other two. The similarities and differences between the presented spectra 

could be the reason why weaker predictions were obtained and why the model couldn’t be 

able to predict with higher accuracy the 95% distillation. 
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Figure 6.30: Expansion of the aliphatic region of the 1H NMR spectra of Figure 6.29 obtained in the 95% distillation cut 

(the spectrum of each HVGO sample was differentiate with different colours). 

 

 

 

Figure 6.31: Expansion of the aromatic region of the 1H NMR spectra of Figure 6.29 obtained in the 95% distillation cut 

(the spectrum of each HVGO sample was differentiate with different colours). 
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6.2.1.3.  HVGO – Final Remarks 

1
H NMR spectroscopy in combination with different multivariate models was applied to 

predict the most important physical-chemical properties used to evaluate and characterize 

the quality of the HVGO samples. Density, kinematic viscosity, carbon residue and 

distillation were the properties analysed. As demonstrated, very good predictions were 

obtained for both data sets, training and validation data sets and test data set, when using 

1
H NMR spectroscopy to predict the density, kinematic viscosity and carbon residue. 

These results were very important and confirmed that 
1
H NMR spectroscopy can be used 

alternatively to the traditional standard methods. The results showed (see Table 6.31) that 

the use of PLS model led to more accurate results than PCR and ANN models when 

predicting the kinematic viscosity and carbon residue. However, when predicting the 

density, the application of the ANN model led to better performance indexes. 

The prediction of the different distillation cuts were not achieved with high accuracy as 

occurred for the other properties analysed. However, the first distillation cuts analysed (5, 

10 and 50%) were possible to predict by 
1
H NMR spectroscopy, where good predictions 

were obtained. The use of the PLS model led to more accurate results when predicting the 

5 and 10% distillation cuts, whereas better performance indexes were achieved for the 50% 

distillation cut when using the ANN model. Worse performances were obtained when 

predicting the 90 and 95% distillation cuts. The models failed when predicting the test data 

set of both distillation cuts. Good performance indexes were achieved when using the PLS 

model for the training and validation data sets of both distillation cuts (90 and 95%) 

whereas, unsatisfactory results were obtained when predicting the test data set of both 

distillation cuts (90 and 95%). Different approaches were tried in an attempt to improve the 

final results obtained, such as, the change of the samples that composed the different data 

sets. However, the results obtained were practically the same. The reason why the HVGO 

distillation was not so well predicted perhaps can be justify with the chemical composition 

of the HVGO samples and the distillation results. It was verified, by analysing the 
1
H 

NMR spectra, that in all HVGO samples collected, there were some different samples 

giving similarity results at a given distillation cut. Consequently, the models were not able 

to predict the distillation of the HVGO samples with the expected accuracy. With the 

results obtained, for the 5, 10 and 50% distillation cuts, it was possible to conclude that 
1
H 
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NMR spectroscopy can also be used to predict the distillation of the HVGO samples. 

However, the performance indexes achieved, especially for the 90 and 95% distillation 

cuts, led to conclude that more information should be given to the develop models, 

suggesting that increasing the number of samples, especially for the test data set, a further 

improvement in the accuracy could be obtained. 

 



 

 

Table 6.31: Results obtained for different properties of HVGO analysed when using 1H NMR in multivariate models. 

   

number 

PC 

number 

LV 

total 

variance 
                              

model 

performance 

Density 

PCR 
training and validation 

14 

 

98.1% 

0.64 0.002 0.004 0.0000 0.00 0.60 satisfactory 

test 
 

-0.48 0.003 0.007 0.0008 0.09 1.22 unsatisfactory 

ANN 
training and validation 

 
0.76 0.002 0.003 0.0000 0.00 0.49 very good 

test 
 

0.76 0.002 0.003 -0.0003 -0.03 0.49 very good 

PLS 
training and validation 

 11  
0.73 0.002 0.003 0.0000 0.00 0.52 good 

test 
  

0.28 0.003 0.005 0.0002 0.02 0.84 unsatisfactory 

Kinematic 

viscosity 

PCR 
training and validation 

16 

 

98.3% 

0.68 0.54 0.78 0.00 0.00 0.56 good 

test 
 

-0.20 0.96 1.60 0.19 1.75 1.10 unsatisfactory 

ANN 
training and validation 

 
0.87 0.34 0.50 0.02 0.14 0.36 very good 

test 
 

0.84 0.46 0.58 0.07 0.64 0.40 very good 

PLS 
training and validation 

 20  
0.97 0.16 0.22 0.00 0.00 0.16 very good 

test 
  

0.93 0.27 0.39 -0.12 -1.12 0.27 very good 

Carbon 

residue 

PCR 
training and validation 

15 

 

98.2% 

0.55 0.05 0.07 0.000 0.00 0.67 satisfactory 

test 
 

0.48 0.06 0.09 -0.030 -8.01 0.72 unsatisfactory 

ANN 
training and validation 

 
0.72 0.04 0.06 -0.001 -0.21 0.53 good 

test 
 

0.71 0.06 0.07 0.001 0.35 0.54 good 

PLS 
training and validation 

 17  
0.91 0.02 0.03 0.000 0.00 0.30 very good 

test 
  

0.76 0.05 0.06 -0.003 -0.80 0.50 very good 

Distillation 

(5%) 

PCR 
training and validation 

13 

 

98.3% 

0.18 8.08 10.03 0.00 0.00 0.90 unsatisfactory 

test 
 

0.29 7.86 9.63 -1.97 -0.51 0.84 unsatisfactory 

ANN 
training and validation 

 
0.62 4.55 6.85 -0.61 -0.16 0.62 satisfactory 

test 
 

0.55 5.49 7.64 -2.93 -0.76 0.67 satisfactory 

PLS 
training and validation 

 10  
0.75 4.06 5.53 0.00 0.00 0.50 very good 

test 
  

0.66 5.54 6.67 -2.80 -0.73 0.58 good 



 

 

   

number 

PC 

number 

LV 

total 

variance 
                              

model 

performance 

Distillation 

(10%) 

PCR 
training and validation 

12 

 

98.1% 

0.24 6.00 7.78 0.00 0.00 0.87 unsatisfactory 

test 
 

0.07 7.21 9.00 -0.51 -0.13 0.96 unsatisfactory 

ANN 
training and validation 

 
0.76 2.83 4.38 0.41 0.10 0.49 very good 

test 
 

0.18 6.66 8.47 -1.46 -0.37 0.91 unsatisfactory 

PLS 
training and validation 

 10  
0.78 3.09 4.21 0.00 0.00 0.47 very good 

test 
  

0.66 4.65 5.62 -0.20 -0.05 0.60 good 

Distillation 

(50%) 

PCR 
training and validation 

13 

 

98.2% 

0.35 3.52 4.52 0.00 0.00 0.80 unsatisfactory 

test 
 

0.41 3.58 4.40 0.91 0.20 0.77 unsatisfactory 

ANN 
training and validation 

 
0.66 2.73 3.44 0.23 0.05 0.61 good 

test 
 

0.72 2.58 3.00 1.00 0.22 0.52 good 

PLS 
training and validation 

 13  
0.90 1.41 1.82 0.00 0.00 0.32 very good 

test 
  

0.54 2.95 3.86 1.08 0.24 0.68 satisfactory 

Distillation 

(90%) 

PCR 
training and validation 

12 

 

98.1% 

0.25 4.78 6.70 0.00 0.00 0.86 unsatisfactory 

test 
 

0.20 5.23 7.01 0.81 0.15 0.89 unsatisfactory 

ANN 
training and validation 

 
0.58 3.81 5.02 0.25 0.05 0.64 satisfactory 

test 
 

0.50 4.32 5.55 -0.40 -0.08 0.71 unsatisfactory 

PLS 
training and validation 

 12  
0.75 2.92 3.85 0.00 0.00 0.50 good 

test 
  

0.48 4.44 5.67 0.25 0.05 0.72 unsatisfactory 

Distillation 

(95%) 

PCR 
training and validation 

13 

 

98.4% 

0.18 5.98 8.38 0.00 0.00 0.91 unsatisfactory 

test 
 

-0.22 7.52 10.3 1.33 0.24 1.11 unsatisfactory 

ANN 
training and validation 

 
0.51 4.75 6.45 -0.14 -0.03 0.70 satisfactory 

test 
 

-0.07 7.84 9.64 0.25 0.05 1.03 unsatisfactory 

PLS 
training and validation 

 11  
0.71 3.74 4.94 0.00 0.00 0.53 good 

test 
  

0.05 7.51 9.08 0.79 0.15 0.97 unsatisfactory 
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6.3. LVGO, HVGO and Fuel Oil – Chemical Composition 

Although all the potentialities and advantages, previously demonstrated, of 
1
H NMR 

spectroscopy to determine the properties of the different fractions analysed, LVGO, 

HVGO and fuel oil, the ability of 
1
H NMR spectroscopy to analyse the chemical 

composition of such heavy fractions was assessed. The analysis of the molecular 

composition of these fractions could be considered a challenge once these heavy fractions, 

produced by conversion of residues, were very complex, containing hundreds of individual 

hydrocarbons varying in size and molecular structure and functional groups. Moreover, the 

large amount of very similar molecules present in each fraction could lead to signals 

overlap. Due to the overlap that characterized the NMR peaks many of the structural detail 

information that the NMR spectrum might give may be lost and the identification of some 

molecules impossible. However, some still are visible and NMR spectroscopy have been 

demonstrated as a paramount technique for the determination of the: i) aromatic and 

aliphatic content; ii) aliphatic CH3, CH2, CH and quaternary C; iii) aromatic CH and 

quaternary C; iv) H and C next to aromatic rings and farther away; and v) long aliphatic 

chains. With this, in order to analyse the chemical composition of such fractions besides 

the use of 
1
H NMR spectroscopy, that contained the molecular structure of all 

hydrocarbons contained in a petroleum cut, the quantitative 
13

C NMR spectroscopy was 

also used. The idea of using the quantitative 
13

C NMR spectroscopy was to obtain more 

detail information of the molecular structure. Table 6.32 and Table 6.33 present the 

assignment of bands in the 
1
H and 

13
C NMR spectra, respectively. These chemical shift 

regions were selected taking into account some published works in the study of petroleum 

and derivatives (Altgelt et al., 1994; Molina V et al., 2007; Behera et al., 2008; Process 

NMR Associates LLC, 2012a; Process NMR Associates LLC, 2012b) and confirmed by 

the 2D spectra obtained when analysing a petroleum fraction. 

 

 

 



 

 

 

 

Table 6.32: Comparison between LVGO, HVGO and fuel oil by using 1H NMR spectroscopy. 

 Chemical shift range (ppm) Type of proton 
Quantification (%) 

 
LVGO HVGO Fuel Oil 

Aliphatic 

region 

0.5 – 1.0 
H in  -CH3 or farther from an aromatic ring; CH3 in 

paraffins 
29.4 19.1 18.8 

1.0 – 1.9 H in  -CH3,  -CH2 and  -CH   
 

         1.0 – 1.6 
          H in  -CH2 and  -CH3 and farther from an 

aromatic ring; CH and CH2 in paraffins 
51.3 55.6 47.6 

         1.6 – 1.9 
          H in  -CH2 and  -CH and farther from an 

aromatic ring 
5.6 8.5 6.2 

1.9 – 3.4  -CH3,  -CH2 and  -CH   
 

           1.9 – 2.25           H in  -CH3 2.7 3.7 4.4 

         2.2 – 2.8           H in  -CH2 5.6 5.7 9.8 

         2.8 – 3.4           H in  -CH2 and  -CH 0.9 2.8 3.5 

3.4 – 4.5 H in CH2 and CH   to aromatic rings 0.0 0.0 0.8 

Aliphatics 0.5 – 4.5 aliphatic H 95.5 95.4 91.1 

Aromatic 

region 

6.5 – 7.3 monoaromatic H 2.7 1.8 3.5 

7.3 – 7.8 diaromatic H 1.8 1.8 3.5 

7.8 – 10.0 triaromatic H 0.0 1.0 2.6 

Aromatics 6.5 – 10.0 aromatic H 4.5 4.6 9.6 

 



 

 

 

Table 6.33: Comparison between LVGO, HVGO and fuel oil by using 13 C NMR spectroscopy. 

 Chemical shift 

range (ppm) 
Type of carbon 

Quantification (%) 

 
LVGO HVGO Fuel Oil 

Aliphatic 

region 

11.0 -15.0  -CH3 or farther from an aromatic ring 5.9 5.0 3.9 

15.0 – 18.0  -CH3 to an aromatic ring 1.7 2.5 1.3 

18.0 – 20.5 
 -CH3 shielded by one adjacent ring or group; some CH3   hydroaromatic and 

naphthenic CH2 
5.9 6.7 4.5 

20.5 – 22.5 CH3 not shielded by adjacent groups; some CH3   hydroaromatic and naphthenic CH2 7.6 6.7 5.2 

22.5 – 24.0 
 -CH2 and farther adjacent to terminal CH3;  -CH2 in unsubstituted tetralin structures; 

some CH3   hydroaromatic and naphthenic CH2 
2.5 2.5 1.3 

24.0 – 27.5 
some CH2 naphthenic;  -CH not shielded;  -CH2 in propyl side chains;  -CH3 in 

isopropyl side chains 
6.8 7.5 5.2 

27.5 – 37.0 

CH2 not adjacent to CH in alkyl groups; CH2 adjacent to alkyl CH in some  -CH2 and 

CH2 adjacent to terminal CH3 in alkyl substituents with more than four carbons; some 

CH2 naphthenic; some ring joining methylene (32 – 43 ppm) 

38.3 36.6 31.2 

37.0 – 60.0 

internal (bridgehead) naphthenic C or CH; CH in alkyl side chains (not isopropyl or 

isobutyl); CH2 in alkyl side chains adjacent to CH; some ring joining methylene (32 – 43 

ppm) 

16.1 15.8 12.3 

Aliphatics 11.0 – 60.0 aliphatic region 84.8 83.3 64.9 

Aromatic 

region 

100.0 – 115.0 some olefinic (other spread through aromatic region) 0.0 0.0 1.9 

115.0 – 129.5 protonated aromatic carbon atoms 9.3 7.5 18.2 

129.5 – 138.0  bridgehead aromatic carbon atoms 4.2 5.0 9.8 

138.0 – 160.0 substituted aromatic carbon atoms; heteroatom (N, O, S) aromatic 1.7 4.2 5.2 

Aromatics 100.0 – 160.0 aromatic region 15.2 16.7 35.1 
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Taking into account the information given in Table 6.32, it was verified that, in general, 

the results obtained from the analysis of the LVGO and HVGO spectra could not lead to 

any conclusion relatively to the aliphatic and aromatic hydrogen content, since similar 

results of the aliphatic (0.5 – 4.5 ppm) and aromatic (6.5 – 10.0 ppm) hydrogens content 

were obtained. As would be expected, higher differences were notable when comparing 

fuel oil with LVGO and HVGO samples. The aromatic content of the fuel oil samples were 

higher, with the fuel oil samples richer in aromatic protons and having higher quantity of 

protons that were present in mono-, di- and triaromatic structures. It was verified that the 

strong increase in aromatic hydrogens of the fuel oil samples, related with the increase of 

the aromatic ring number, was accompanied with an increase in the hydrogen’s   and a 

decrease in the hydrogen’s   and  , compared with the quantities of these molecules in 

LVGO and HVGO samples. This behaviour was an indicative that fuel oil samples were 

richer in aromatic compounds and poor in aliphatic structures when compared with LVGO 

and HVGO samples. These results, obtained by 
1
H NMR spectroscopy, were confirmed by 

the analysis of the quantitative 
13

C NMR spectra. As visualized in Table 6.33, fuel oil 

samples were characterized for presenting higher quantity of aromatic carbon content and 

smaller percentage of aliphatic carbon content, when compared with LVGO and HVGO 

samples. The other most pronounced differences were related with the presence of some 

olefinic compounds (100.0 – 115.0 ppm) and the higher percentage at the 138.0 to 160.0 

ppm at the 
13

C NMR spectra. Olefins are rarely found in crude oils, the reason for which 

any evidence of these compounds were found in the 
13

C NMR spectrum of LVGO and 

HVGO samples, however they may be present in substantial amounts in cracked refinery 

streams. Since fuel oil was produced at the visbreaker unit and since during the visbreaking 

process there are some thermal cracking process occurring it is possible that, depending on 

the severity conditions, some olefinic molecules were formed, as visualized in the 
13

C 

NMR spectra. Relatively to the higher percentage at the 138.0 to 160.0 ppm, this could be 

related with the higher quantity of compounds bearing heteroatoms in the heavier fractions, 

such as fuel oil. The same occurs when comparing this region (138.0 – 160.0 ppm) of the 

LVGO and HVGO spectra. It was known that HVGO samples presented higher quantity of 

compounds with heteroatoms when compared with LVGO samples, thus explaining the 

higher percentage of substituted aromatic carbon atoms at the HVGO samples. 
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When comparing the 
1
H NMR spectra of LVGO and HVGO samples, even though no 

conclusions were made relatively to the content of aromatic and aliphatic compounds, it 

was possible to see that LVGO samples were richer in  -methyl hydrogen or farther away 

from aromatic rings, represented by the band at 0.5 to 1.0 ppm. These results were 

indicative that the LVGO samples were, probably, richer in long alkyl chains suggesting 

that smaller quantity of aromatic compounds were found. Relatively to the aromatic region 

(6.5 – 10.0 ppm), the results indicated that LVGO samples were richer in protons attached 

to single rings (6.5 – 7.3 ppm) while HVGO samples had protons attached to single-ring 

and multiring aromatics. With this information, it was concluded that HVGO samples were 

richer in heavier aromatic compounds. The same conclusions were taken from the 

quantitative 
13

C NMR spectra. Moreover, with the quantitative 
13

C NMR spectra it was 

confirmed that LVGO samples presented long chains indicating higher quantity of longer 

paraffinic structures. The absorption of 11.0 to 15.0 ppm, which indicated  -CH3 groups or 

farther away from an aromatic ring, allowed us to conclude relatively to the length of the 

alkyl chains. In addition, the region at 27.5 to 37.0 ppm, also suggested longer chains of 

LVGO samples once this band represents CH2 groups from aliphatic compounds. 

Furthermore, the higher results at 20.5 to 22.5 and 37.0 to 60.0 also indicated that there 

was a contribution of long chains. At the aromatic region of the 
13

C NMR spectra, the 

higher percentage at 115.0 to 129.5 ppm suggested that LVGO samples presented more 

protonated aromatics then HVGO samples indicating that the aromatic compounds in the 

LVGO samples were farther away from each other. Suggesting, once again, that HVGO 

samples were composed with heavier aromatic compounds. Besides the heavier percentage 

of aromatic compounds, it was verified that the HVGO samples presented higher quantity 

of carbons attached to naphthenic compounds than LVGO samples, due to the higher 

results at 18.0 to 20.5 and 24.0 to 27.5 ppm.  

NMR, especially the combination of 
1
H and 

13
C NMR spectroscopy, demonstrated, once 

again, to be a paramount technique in the structural characterization of such complex 

mixtures as LVGO, HVGO and fuel oil. The structural analysis of these spectra 

demonstrated to be very useful for the knowledge of the chemical composition with the 

identification of structural groups, such as, the paraffinic, naphthenic and aromatic 

compounds. The knowledge of the chemical composition can be very useful for the 

comprehension of the influence of the nature of these petroleum fractions in the refinery 
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operations. For example, the nature of HVGO, an intermediate used as feedstock of the 

hydrocracking unit, influences the course of the reaction occurring during hydrocracking. 

Moreover, the chemical composition of LVGO, a portion of gas oil that is recovered at the 

vacuum unit and mixed with gas oil from the atmospheric unit, is also important once the 

presence of higher quantity of aromatic compounds can affect the quality of gas oil, 

decreasing its cetane number, and cause environmental problems.  
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It is presented in this chapter the final conclusions taken from the developed work 

as well as some suggestions for future work. In the developed work, very 

important issues in the field of petroleum refining were presented. These 

important issues were related to the use of 
1
H NMR spectroscopy combined with 

multivariate methods for predicting physical-chemical properties of heavy 

petroleum fractions. 
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7.1. General Conclusions 

The characterization of light vacuum gas oil, heavy vacuum gas oil and fuel oil by proton 

nuclear magnetic resonance spectroscopy was very important in the determination of 

significant physical-chemical properties for the complete assessment of their quality and 

for process control. With this work, it was demonstrated that combining proton nuclear 

magnetic resonance spectroscopy with different multivariate methods (principal 

component regression, partial least squares and artificial neural networks) it was possible 

to develop multivariate calibration models that had a high potential to predict the 

properties of such petroleum fractions, even though these fractions were characterized as 

the heavy ends of crude oils. Kinematic viscosity, density, carbon residue, P-value, sulfur 

content, distillation and flash point were example of some of the properties analysed and 

most of them where determined with good precision and accuracy. 

Nuclear magnetic resonance spectroscopy has been suggested as one of the possible 

techniques for industrial analysis and has already been used in some refinery laboratories. 

As found in the literature, nuclear magnetic resonance spectroscopy can offer precise 

analysis in real-time and control the properties of the crude from the feed to the final 

product. The greatest challenge is to verify the capability of a nuclear magnetic resonance 

spectrometer to monitor some properties and for process control. This is the motivation of 

this work, to verify if a proton nuclear magnetic resonance spectrometer can be used to 

predict some heavy petroleum properties and consequently evaluate the possibility of 

acquiring an online nuclear magnetic resonance spectrometer.  

To take advantage from all nuclear magnetic resonance benefits and to exploit the 

quantitative aspects of nuclear magnetic resonance spectroscopy some pre-processing and 

data manipulations of the nuclear magnetic resonance spectra were necessary to be 

performed. Phase and baseline correction, chemical shift alignment, data reduction, 

binning, normalization and intensity scaling were the main pre-processing steps used. All 

these different types of data pre-processing were considered important and necessary, due 

to the increased complexity and dimensionality of the nuclear magnetic resonance data, to: 

i) exploit the information content of the nuclear magnetic resonance data; ii) increase the 

prospect of detecting subtle changes in the nuclear magnetic resonance data; and iii) 

enhance the interpretability of the resulting multivariate models. From other approaches 
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found in the literature, these data manipulations were considered the most adequate and the 

ones that mostly contributed to significantly benefit of the analysis of nuclear magnetic 

resonance data. It was also important to have in attention that for obtaining a good 

quantitative spectrum some experimental factors need to be controlled and respected. 

Attention was also given to the sample preparation, data acquisition, pulse sequence and 

instrumental parameters. 

The impact of the pre-processing procedure, used before and after obtaining the spectrum, 

demonstrated to be very important for further application of the multivariate data methods. 

Principal component regression, partial least squares and artificial neural networks were 

the multivariate methods used to predict the physical-chemical properties of the petroleum 

fractions. The use of these multivariate methods proved to be very advantageous in the 

characterization of the petroleum fractions under analysis and enable the rapid computation 

of the physical-chemical properties prediction models. 

For the light vacuum gas oil samples, the models were developed to predict the density and 

the distillation at atmospheric pressure. For the heavy vacuum gas oil samples the same 

type of models were used to determine the kinematic viscosity, density, carbon residue and 

the distillation at reduced pressure. Finally, to predict the kinematic viscosity, density, 

carbon residue, P-value, sulfur content and the flash point of the fuel oil samples more 

models were also developed. The development of all these models were only possible after 

the samples underwent a characterization by following some standard methods and by 

using the proton nuclear magnetic resonance spectroscopy. Hundreds of samples of the 

different streams were analysed with the standard methods and proton nuclear magnetic 

resonance spectroscopy and consequently a good data base was created. It was in this data 

base that the different methods were applied and reliable models obtained. 

Comparing the results obtained for the different petroleum fractions analysed, it was 

notorious that the best results were obtained for all light vacuum gas oil properties due to 

its lower complexity, when compared with heavy vacuum gas oil and fuel oil samples.  

When analysing light vacuum gas oil samples, proton nuclear magnetic resonance 

spectroscopy proved to have a higher potential to predict the density and the atmospheric 

distillation, the two most important properties used to evaluate light vacuum gas oil 
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quality. The results showed that the use of artificial neural networks model led to more 

accurate results, in almost all developed models. Very good predictions were obtained for 

both data sets, training and validation data sets and test data set, and for all properties 

analysed.  

For the heavy vacuum gas oil samples, it was possible to conclude that proton nuclear 

magnetic resonance spectroscopy had high potential to predict heavy vacuum gas oil 

properties, such as density, kinematic viscosity and carbon residue. The higher problem 

occurs when predicting the distillation of the heavy vacuum gas oil samples. Good 

predictions were obtained when analysing the first distillation cuts (5, 10 and 50%), 

however, worse performances were achieved when predicting the 90 and 95% distillation 

cuts, especially for the test data set. The distillation of the heaviest fractions and the 

limitations of the standard method used could contributed to the less accurate models 

achieved when predicting the 90 and 95% distillation cuts. Although, more information 

should be given to the develop models, suggesting that increasing the number of samples, 

especially for the test data set, a further improvement in the accuracy could be obtained. 

When analysing fuel oil samples, it was demonstrated that proton nuclear magnetic 

resonance spectroscopy had high potential to predict almost all properties analysed. 

Accurate results were obtained when predicting the kinematic viscosity, density, sulfur 

content, carbon residue and flash point. The most difficult property to predict was the P-

value. Besides the good predictions obtained for the training and validation data sets, only 

satisfactory predictions were achieved for the test data set. However, it is expected that 

increasing the data set, i.e., the number of samples analysed, a further improvement in 

accuracy and robustness of the models could be obtained.  

When comparing the applied multivariate models, it was demonstrated that, better 

predictive performance were obtained, for both data sets, when using the artificial neural 

networks and the partial least squares models. Worst predictions were achieved for all 

properties analysed when using the principal component regression model. It was with the 

artificial neural networks model that better predictions were obtained, due to its ability to 

develop a model around non-linear relationships between the measured properties and the 

predicted results, and it was with the linear predictive model, principal component 

regression, that worst performance indexes were achieved. The partial least squares model 
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also demonstrated to be a good model giving normally better predictions for the training 

and validation data sets. It was with the artificial neural networks model that most reliable 

predictions when determining the kinematic viscosity at both temperatures, 100 and 50 ºC, 

the carbon residue, the flash point, the P-value and the density of fuel oil samples were 

achieved. Moreover, for the light vacuum gas oil samples, the artificial neural networks 

also demonstrated higher quality models when predicting the density and the 5, 10 and 

90% distillation cuts. In addition, the artificial neural networks was more reliable to predict 

the density and 50% distillation cut of heavy vacuum gas oil samples. On the other hand, 

the partial least squares model confirmed greats capabilities to predict the sulfur content of 

fuel oil samples, the 50 and 90% distillation cuts of light vacuum gas oil samples and the 

kinematic viscosity, carbon residue and the 5 and 10% distillation cuts of heavy vacuum 

gas oil samples.  

The results obtained demonstrated that proton nuclear magnetic resonance spectroscopy in 

combination with multivariate data methods is a very important technique that can be used 

to predict the properties of light (light vacuum gas oil) or heavy fractions (heavy vacuum 

gas oil and fuel oil) with high accuracy and precision. In addition, using the proton nuclear 

magnetic resonance spectroscopy and the developed models will contribute to quantify all 

properties analysed, almost replacing the standards methods and avoiding the tedious 

sample preparations used every day. 

Proton nuclear magnetic resonance spectroscopy has proven to be a very important 

technique in the study of petroleum fractions and can become an alternative to the 

traditional time-consuming laboratory methods. Using a nuclear magnetic resonance 

spectrometer, many benefits are expected to be obtained. It demonstrated to be a rapid and 

non-invasive procedure, offering improvement in the analysis, reduction in the number of 

analysis and unique ability to provide all control properties with just one analysis. This 

leads us to conclude that it will be advantageous to have an online nuclear magnetic 

resonance spectrometer to determine such properties. 
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7.2. Suggestions for Future Work 

Concerning the adequate results obtained when using 
1
H NMR spectroscopy combined 

with multivariate data methods to predict some properties of LVGO, HVGO and fuel oil 

streams, it will be interesting to develop an extensive work with an increase number of 

samples and of properties to demonstrate the interesting and benefits of nuclear magnetic 

resonance spectroscopy. 

Since the final results depend on the pre-measuring, pre-processing and data manipulations 

of the NMR spectra it will be a good practice to verify the effect of other approaches in the 

final developed models. It will be interesting to evaluate the use of other solvents during 

the preparation of the samples for NMR analysis, such as, the use of an internal or external 

standard. In addition, it will also be interesting to select which information of the spectrum 

should be used depending on the property in analysis. 

Besides PCR, PLS and ANN models, other models, such those generated by genetic 

program and based on fuzzy logic should be employed to explore the potentialities of 
1
H 

NMR spectroscopy in predicting the physical-chemical properties. In addition, other 

methodologies to divide the information into the three different data sets, training, 

validation and test data sets, should be also tried. Moreover, other approaches of the 

models used should be explored, such as, the selection of other inputs, instead of using all 

selected PCs, when applying the ANN model. 

To improve the performance indexes obtained with the developed models it will be 

advisable to increase the data base with more quantity of samples analysed. This will 

contribute to increase the precision and accuracy of the developed models to predict all 

properties under analysis. In addition, it will be required a continuous maintenance and 

upgrade of these developed models to ensure that the models continues to predict with high 

precision the required properties. This ensures that even occurring significant changes in 

the process, the models will be prepared to respond with a good accuracy.  

To verify all results obtained it will be useful to implement an online 
1
H NMR 

spectrometer to characterize such properties of light vacuum gas oil, heavy vacuum gas oil 

and fuel oil streams and to develop the multivariate models based on this information. 
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Appendix A: Economic Evaluation 

As referred in Chapter 6, since good results were obtained when predicting fuel oil 

properties using 
1
H NMR spectroscopy and fuel oil was a final product which properties 

were required in a real time, an economical evaluation of the implementation of an online 

NMR spectrometer at fuel oil stream was made. The objective of this economic study was 

to verify the profitability of the acquisition of an online NMR spectrometer. For this 

economic evaluation more information should be included, but only the information here 

presented was the one given by both entities involved, Matosinhos refinery and Qualion 

Company. Taking into account the information given by Qualion Company (The Qualion 

Company, 2006), a quotation for the entire project would be about                    . 

This investment includes: i) NMR analyzer installation; ii) commissioning and training 

remote PC for remote diagnostic; iii) assistance sample system; iv) shelter house; and v) 

project management. It excludes the piping, infrastructure and the humidity and 

temperature control, which should be prepared and acquired by the refinery. However, 

these last necessities are low cost when compared with the initial investment. Thereby, the 

total investment cost was estimated to be about         . 

As already mentioned, the online monitoring of fuel oil properties can contribute to: i) 

decrease the quantity of cutter stocks used in the production of fuel oil; ii) produce fuel oil 

with the desired properties; and iii) avoid product loss. Taking into account the quantity of 

fuel oil produced, the quantity of cutter stocks required and the blending of fuel oil at the 

collecting tank, it would be possible to save about 5 a 7 $/t when a good production and 

optimum blending are obtained. Considering that the production of fuel oil is around 1600 

t/day and fuel oil is produced during 333 days in a year (excluding some days when for 

some reason the production of fuel oil is interrupted) it will be possible to save 

                          .  

As the initial investment is around                    , the payback time of the initial 

investment will be approximately 3 months. This payback time is a highly attractive 

investment return. 
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