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Abstract

The masking phenomenon has been used to investigate cochlear excitation patterns and 
has even motivated audio coding formats for compression and speech processing. For 
example, cochlear implants rely on masking estimates to filter incoming sound signals 
onto an array. Historically, the critical band theory has been the mainstay of psycho-
acoustic theory. However, masked threshold shifts in cochlear implant users show a dis-
crepancy between the observed critical bandwidths, suggesting separate roles for place 
location and temporal firing patterns. In this chapter, we will compare discrimination 
tasks in the spectral domain (e.g., power spectrum models) and the temporal domain 
(e.g., temporal envelope) to introduce new concepts such as profile analysis, temporal 
critical bands, and transition bandwidths. These recent findings violate the fundamental 
assumptions of the critical band theory and could explain why the masking curves of 
cochlear implant users display spatial and temporal characteristics that are quite unlike 
that of acoustic stimulation. To provide further insight, we also describe a novel ana-
lytic tool based on deep neural networks. This deep learning system can simulate many 
aspects of the auditory system, and will be used to compute the efficiency of spectral 
filterbanks (referred to as “FBANK”) and temporal filterbanks (referred to as “TBANK”).

Keywords: auditory masking, cochlear implants, filter bandwidths, filterbanks, deep 
neural networks, deep learning, machine learning, compression, audio coding, speech 
pattern recognition, profile analysis, temporal critical bands, transition bandwidths

1. Introduction

The transformation of sound into a representation within the auditory system involves many 

layers of information analysis and processing. Sound is first converted into nervous impulses 
by cochlear hair cells, which are mechanically organized to distribute the spectral energy of 
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their excitation along the length of the basilar membrane (Figure 1). The connecting nerve 

fibers show a bandpass response to the input signal, where the density of firings for a particu-

lar fiber varies with the stimulus intensity over a certain range. Basic information from a sound 
is then extracted and passed to subsequent stages for perceptual machinery to present its own 

construction of reality. Noninvasive methods are needed to investigate the influence of these 
higher-level perceptual processes on the properties of the cochlea. For example, the method of 

psychophysical inference is often used to fill in the gaps of physiological knowledge.

This chapter will be divided into two sections. In the section on human hearing research, we 
will predict neural firing characteristics from the perspective of psychoacoustic “masking” 
experiments. In the section on machine hearing research, we will compare artificial neural 
network input from the perspective of machine learning experiments. Experimental data is 

presented in both human hearing and machine hearing to supplement the incompleteness of 

current neurophysical methods by providing new insight into the stages of processing.

2. Human hearing research

2.1. Auditory masking

2.1.1. Spectral masking

The masking phenomenon of one tone by another provides quantitative data on frequency 

selectivity and the dynamical theory of the cochlea [1]. In a psychoacoustic experiment, 
the testing stimulus is called the probe, the sound that interferes with the detection of 

the probe is called the masker, and the amount of masking refers to the amount by which 

the hearing threshold of the probe is raised in the presence of the masker. The method of 

measuring a threshold shift is straightforward. First, the detection threshold of the probe 

is determined. Next, the threshold shift of the probe is determined in the presence of the 
masker. Auditory masking curves have established wide‐ranging mathematical relation-

ships between sensory behavioral responses and even the activity of single neurons [2]. In 
general, the probe is most easily masked by sounds with frequency components that are 

close to the probe.

Figure 1. Spatial arrangement of cochlear hair cells along the basilar membrane (base to apex).
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2.1.2. Critical band theory

The “critical band theory” [3] has played an important role in hypothesizing how the audi-

tory system resolves the components of complex sound. In classic band‐widening experi-
ments, the threshold of a sinusoidal probe is measured as a function of the bandwidth 

of a noise masker. First, a noise with a constant power density is centered at the probe 

frequency. As the bandwidth increases, the total noise power increases (which presumably 
has effects on the threshold for detecting the probe).

Masking curves have shown that the threshold of the probe increases at first, but flattens off as 
the addition of more noise (at a greater distance from the probe frequency) produces no addi-

tional masking. The bandwidth at which the probe threshold ceases to increase is called the 

“critical bandwidth.” To account for these observations, the listener is assumed to make use of a 
filter with a center frequency close to the probe when detecting the probe in noise. According 
to this critical bandwidth theory, the noises outside the range of the filter should presumably 
have no effect on detection. If this filter passes the signal and removes much of the noise, 
then only the components of the noise that passes through the filter should have any effect in 
masking the probe. Therefore, thresholds should correspond to a certain signal-to-noise ratio 

at the output of the auditory filter.

According to this power spectrum model of masking, all stimuli are represented by their long-

term power spectra (or the relative phases of the components) while short‐term fluctua-

tions in the masker are ignored. Figure 2 shows the typical estimates of energy detection. 

Although energy detection models remain fundamental to theories of auditory perception, 

the axiom that energy only passes by a single auditory filter has been contradicted multiple 
times [4–7]. These findings violate the fundamental assumption of critical band theory and 
therefore challenge previous estimates of peripheral filtering.

2.1.3. Profile analysis

According to the critical bandwidth theory, a tone added to noise should be detected by an 
increase in the energy from a single auditory filter centered at the signal frequency. On the 

Figure 2. Energy detector model where the basilar membrane behaves as if it contains a bank of bandpass filters with 
overlapping passbands, where each point along the basilar membrane corresponds to a filter with a different center 
frequency. This Fourier‐transform‐based log filterbank with spectral coefficients distributed on a mel‐scale is often 
referred to as “FBANK” in audio‐coding applications involving machine learning. In the section on machine hearing 
research, the computational efficiency of FBANK will be evaluated in deep learning systems.
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contrary, experimental manipulations (e.g., roving-level procedures) that degrade energy 

cues in tone‐in‐noise detection tasks show no effects on detection thresholds. Listeners must 
therefore rely on alternative cues instead of just spectral analysis of a stimulus to explain the 

data of level‐invariant detection (where single‐channel energy cues are severely disrupted). In 
“profile analysis” [5], this process is described as detecting changes in the overall shape of the 

spectrum. With across‐channel cues, listeners are able to compare the shape or profile of the 
outputs of different auditory filters to enhance signal detection.

2.1.4. Temporal critical bands

Temporal discrimination tasks offer an alternative to spectral critical bands. In a temporal 
model, the detection cues are thought to be temporal in nature and based on changes in the 

cadence of neural discharge. These temporal models contrast with energy detection models 

that assume a rate‐place neural code. Recently, auditory filter bandwidths were measured 
for a temporal process using an amplitude‐modulation (AM) detection task [6]. The critical 

bandwidth for a temporal process (referred to as “temporal critical band”) was observed to be 
consistently greater than that predicted by the critical band theory. Therefore, these findings 
decrease confidence in previous estimates of peripheral filtering.

2.1.5. Transition bandwidths

Discontinuous threshold functions also contradict spectral critical bandwidths by implying 

that the discrimination tasks evoke different and separate auditory processes. For instance, 
“transition bandwidths” [7] assume that envelope cues dominate at narrow bandwidths, 

while across-channel level comparisons dominate at wide bandwidths. This concept stresses 

that there are changes in the underlying process, unlike the constraining boundaries of a 

solitary process (as hypothesized in critical bandwidth or energy integration theories). For 

transition bandwidths, the changes to another dominant auditory process are thought to 

be due to a central mechanism (whereas critical bandwidths are only associated with the 

periphery). Therefore, transition bandwidths allow for multiple filtering processes to occur.

2.1.6. The volley theory

The divergence of positions between spectral bandwidths and temporal bandwidths shares 

similar controversies as the place theory and the temporal theory of pitch perception. The place 

theory states that the perception of sound depends on where each component of frequency 

produces vibrations. The temporal theory states that the perception of sound depends on 

the temporal patterns of neurons responding to sound in the cochlea. The “volley theory” [8] 

postulates that groups of neurons in the auditory system respond to firing action potentials 
that are slightly out-of-phase with one another so that they can be combined to encode and 

send a greater frequency of sound to the brain for analysis, as shown in Figure 3. In the 
next sections, we describe the importance of resolving these theories and assumptions to 

improve real-world solutions for data compression and speech processing. For instance, we 

will compare the efficiency of systems that use only one filterbank or multiple filterbanks.

Advances in Clinical Audiology134



2.2. Filterbanks

2.2.1. Audio coding and data compression

Audio coding formats that use lossy data compression take advantage of human auditory 
masking properties [9]. For instance, the MP3 format hides noises under the signal spec-

trum based on the masking property that sounds near the threshold of another sound will 

either be completely masked or reduced in loudness. These auditory masking properties 

also play critical roles in both speech coding applications and objective quality measures. 

In the next section, we will cover the impact of auditory masking on the coding of cochlear 

implants (devices that require data compression due to the electroneural bottleneck).

2.2.2. Cochlear implants

The cochlear implant is a surgically implanted electronic device that restores partial hear-

ing to a person who is deaf or hearing impaired [10–12]. This neural prosthesis provides 

similar functions of the inner ear by electrically stimulating the auditory nerve. Cochlear 

implants consist of an external microphone, a speech processor, a transmitter, an internal 
receiver, and a multielectrode array stimulator. The microphone is placed on the ear and 

picks up incoming sounds from the environment. The speech processor filters these incom-

ing sounds into different frequency channels and sets the appropriate electrical stimula-

tion parameters. Next, a transmitter coil powers and transmits the processed sound signals 
through the skin to the internal receiver. Finally, the receiver converts the signals into elec-

tric impulses that stimulate an electrode array. Electrode arrays are surgically coiled within 

the scala tympani of the cochlea so that individual electrode plates can electrically stimulate 

different regions of the auditory nerve. A sparse electric representation is sufficient for the 
restoration of hearing.

Cochlear implant performance is satisfactory in quiet settings, but the abnormal perception 
of electric pitch limits the performance in noise. Typical users only detect over a 10% change 

in pitch compared to normal-hearing listeners who easily detect <1% change. Electric pitch is 

degraded because only a limited number of electrodes (∼22 electrodes) can be inserted into 

the cochlea versus the >3000 inner hair cell transducers in a normal cochlea. In addition, the 

Figure 3. Temporal properties of nerve firing according to the “volley theory” of temporal coding.
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current spread from each electrode is uncontrollably broad and large areas of nerves can be 

unintentionally activated. Spectral mismatches can also occur from degraded nerve survival 

or inaccurate frequency-to-electrode allocation [11].

Speech recognition in noise becomes especially difficult without the ability to adequately 
separate components of sound from interfering sources. Figure 4 shows the cochlear im -

plant coding scheme [12] that was discovered to greatly improve speech recognition. This 

sparse representation at the auditory periphery is unique as it presents electric pulse stim-

ulations that feature both (1) temporal envelope information and (2) place information. 

Section 3.2.3 will discuss how this coding is simulated as temporal envelope bank (TBANK) 
features in deep learning systems [13].

2.3. Auditory masking in cochlear implants

To optimize current settings, psychoacoustic experiments were designed to investigate how 
the human auditory system processes complex sound interactions from electric stimulations. 

Specifically, auditory masking was investigated using electric stimulations as the probe or 
masker to understand how electric stimulations separate into individual sound sources. The 

diversified subject population with different types of hearing loss and electric configurations 
also provide alternative testing paradigms to reevaluate previous masking results obtained 

from normal hearing subjects. By measuring electric stimulations, the research field can gain 
new insight to study the interactions of peripheral and central auditory systems. In this sec-

tion, we will review previous comparisons of ipsilateral electric-on-electric masking, electric-

on-acoustic masking, and also contralateral electric-on-electric masking. We will then compare 

auditory masking curves in cochlear implants with the recently proposed concepts of profile 
analysis, temporal critical band, and transition bandwidths in normal hearing.

2.3.1. Comparison of electric‐on‐electric masking

Similar to the observations in normal hearing, electric masking studies [14] have shown that 

the amount of forward masking increases by decreasing the spatial separation between the 

Figure 4. Temporal properties of a cochlear implant processor. In machine learning, temporal features can be derived 
from extracted temporal envelope bank (referred to as “TBANK”).
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probe electrodes and the electric pulses from adjacent maskers. Both the amount of masking 
and the spread of neural excitation increase with electric masker levels. Cochlear implant 

excitation patterns were also shown to have a spatial bandpass characteristic with a peak in 
the region of the masked electrode [15].

2.3.2. Comparison of electric‐on‐acoustic masking

Electric-on-acoustic masking can also be measured for cochlear implant users who have pre-

served residual acoustic hearing following implantations (Figure 5). In a unilateral cochlear 
implant user with functional hearing preserved in the implanted ear, electric stimulations 

were observed to interact in the peripheral and central auditory system [16]. The masking 

growth function in Figure 5 shows the detection thresholds of an electrode increased when 

the level of a 125‐Hz acoustic masker increased from 90 to 110 dB. The 250‐Hz acoustic masker 
also elevated electric detection in a similar manner. This data is consistent with the central 

theory of auditory masking and even provides new supporting evidence since the acoustic 

stimulations had to have been confined to the functional hair cells or nerves (as there is no 
known mechanism that acoustic stimulations could have directly activated a nerve fiber).

2.3.3. Comparison of contralateral electric-on-electric masking

Contralateral electric-on-electric masking can also be measured in bilateral cochlear implant 

users [17]. Figure 6 shows the complete set of central masking data, with threshold eleva-

tion normalized so that each function peaks at 1. Each of the bilateral subjects was tested 

twice, alternating the ear used as the masker or probe (n = 14). As shown in Figure 6, the 

 contralateral masking electrodes elevated the detection thresholds in both the left and the 

Figure 5. Ipsilateral masking data from [16]. The left panel shows a schematic representation of the acoustic (A) masking 
and the electric (E) masking mechanisms in hybrid hearing. The right panel shows the masking of an electrode probe by 

acoustic maskers at 125 or 250 Hz.
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right ears. The threshold elevation peaks generally occurred between interaural pairings shar-

ing the same electrode number (which corresponds to electrodes with similar insertion depths 

across ears).

Figure 7 presents the same data to show the growth of masking as a function of the masker-

probe electrode separation across ears. Masker-probe separation is calculated by subtracting 

the differences between the masker and probe electrode numbers. Place‐matched mask-

ing conditions are categorized as “0” since both the masker and probe electrode numbers 
were identical across ears. When categorized in this manner, Figure 7 shows the amount 

of central masking diminished with masker‐probe electrode separation. In [17], this data 

was reorganized to analyze the growth of masking. A two‐way repeated measure analysis 
of variance (ANOVA) showed a significant main effect of masker‐probe electrode separa-

tion and threshold elevation [F(2.122, 27.581) = 3.667, p = 0.036]. There was also a signifi-

cant main effect of masker‐probe electrode separation, ear used as the probe electrode, and 
threshold elevation [F(2.563, 33.323 = 9.472, p < 0.001]. The masking growth pattern for each 
ear was also fitted with exponential equations and displayed similar spatial constants and 
significant R2 values (R2 > 0.97). The results demonstrate that the amount of central masking 

diminished with masker-probe electrode separation at similar rates on both sides.

Figure 6. Central masking data measured and replotted for seven bilateral cochlear implant subjects from [17]. The 

curves are sorted into panels according to the location of the probe electrode number (black contacts) in either the (A) 
fixed left ear or (B) fixed right ear. Thin lines show the individual central masking curves and the thick lines show the 
mean data for each fixed probe electrode location. All curves are normalized so that the peak threshold is equal to 1.
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Figures 6 and 7 show bilateral cochlear implant stimulation contralaterally masked in a place-

dependent manner. For electric-on-electric signals, the average thresholds peaked when the 

position of the masker and probe electrodes were place-matched across ears and diminished 

with electrode separation. These place‐dependent findings have also been reconfirmed in 
a recent work [18] using different electrode arrays and testing apparatus. However, both 
 studies [17–18] directly counter a previous conclusion in [19] that central masking with bilat-

eral users gives rise to increased threshold, but not in a place-dependent manner (as is the 

case for contralateral masking in normal hearing). This previously accepted hypothesis in [19] 

was most likely concluded from data that was obscured by a limited test population (n = 2), 

electrical malfunctions (arrays with multiple electrical shorts), subjects reporting discomfort 

(uncomfortably high-pitched sensations), and electrodes that were inserted with primitive 

surgical techniques (offsets in electrode place accuracy of 6–9 electrodes).

2.3.4. Comparison of masking in cochlear implants and normal hearing

It will be important to optimize the configurations of cochlear implant stimulation as it has 
been reported that electrical pulse trains and acoustic sine waves do not fuse or merge well 

into a single percept [17, 20]. The presence of electric masking has indicated regions where 

electric and acoustic signals share similar frequencies as normal acoustic masking. However, 

the data in Figure 6 show a large amount of individual variability as many of the bilateral 

participants displayed unmatched masking patterns across ears. This individual variability 
could be the result of several factors. First, cochlear implant users are likely to have irregular 

Figure 7. Threshold elevation as a function of the interaural electrode offset between the masker and the probe (n = 14). 

“Apical” refers to all masking conditions where the masker was apically positioned from the probe, whereas “basal” 
refers to all conditions where the masker was basally positioned from the probe. The 1st and 2nd implanted ears refer to 

the ears on each side of a participating subject that were sequentially implanted in two separate surgeries.
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patterns of auditory nerve survival, which could cause the current to stimulate auditory fibers 
that are too apical or too basal from the intended location. “Dead regions” in auditory nerves 
may also prevent the adjacent masking electrodes from stimulating distinct place-frequencies. 

Second, different surgical procedures could result in variability between the insertion depths 
of a user's electrode array. This variability could be significant since neural activation patterns 
depend on the density of neurons in a particular region of the cochlea and on the radial dis-

tance between the electrode array and neural targets in the modiolus.

In general, cochlear implant subjects have exhibited electric‐masking patterns that are much 
broader compared to what has been observed in normal hearing [14–20]. A reduction in the 
magnitude of contralateral versus ipsilateral masking functions was observed in [18], but this 

reduction was not as great as observed in normal hearing. Together, these findings of broader 
masking with cochlear implants both support and are supported by the concepts of:

1. Distorted profile analysis, where cochlear implant users are unable to adequately use 

across‐channel cues to compare the shape of the output of different auditory filters.

2. Reliance on temporal critical bands, where cochlear implant users relied on filter band-

widths that were consistently broader than predicted by critical band theory.

3. Rapidly changing transition bandwidths, where cochlear implant users used separate and 

different auditory processes to handle either the narrow or wide bandwidths.

4. Distorted volley theory of encoding, where cochlear implant users were unable to combine 

the phases of action potentials to analyze a greater frequency of sound.

These findings all decrease confidence in previous estimates of peripheral filtering as well as 
the assumptions made in critical band theory, especially when combined with recent evidence 

in normal‐hearing listeners that suggest a flexible selection of spectral regions upon which to 
base across-frequency comparisons [21]. Furthermore, the wide bandwidths observed in the 

initial filters of the cochlear implant subjects directly contradicts the theory that extraction of 
envelope information should be constrained to a single auditory filter, as theorized in [22]. 

For these reasons, transition bandwidths [7, 23] are the most plausible solution as they explain 

patterns that were observed in both normal hearing and electric hearing experiments (as this 
concept allows an interplay to occur between temporal or spectral processes). In the section 
on machine hearing research, a novel method based on “deep learning” is utilized to prove 
the computational efficiency of transition bandwidths in artificial neural network systems.

3. Machine hearing research

3.1. Motivation to compare human and machine hearing systems

There are several factors that have confounded cochlear implant research. Psychoacoustic 

experiments are often rendered inconclusive due to large individual variabilities in cochlear 

implant subjects. The physical limitations of uncontrollable test populations include variable 

nerve survival before implantation, inter-implant intervals and usage time, neuroplasticity 
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after implantation, age at testing, and surgical insertion depths. These physical limitations 

have significant effects on the amount of masking [16, 17]. In addition, individual variability 
can arise due to cognitive factors or subjective testing protocols. For instance, the evaluation 

of cochlear implants can be unintentionally influenced by decision rules or dynamic ranges 
based on loudness judgment, visual feedback, sequential test order, unrealistic simulations, 

and even the content material used in subjective studies such as speech recognition [24, 25]. 

Therefore, alternative methods such as computational simulations and mathematical models 

should be used in order to account for these uncontrollable factors of individual variation.

We can only appreciate how sophisticated the human auditory system truly is when try-

ing to simulate perceptual processing on a computer. By building a computational model, 
we gain new insight and develop quantitative ways to analyze each step of signal process-

ing. Computational models are well suited to investigate how information from independent 

fibers are distributed and the extent to which distinct bandpass filterbanks are constructed 
within neural architectures [4]. In this chapter, we use artificial neural networks in order to 
measure response properties of auditory fibers using realistic representations of different 
integrative processes. Machine learning can provide algorithms for understanding learning 

in neural systems and can even benefit from these ongoing biological studies [26].

3.2. Deep neural networks (DNNs)

3.2.1. Automatic speech recognition: an auditory perspective

There have been many attempts to incorporate principles of human hearing into machine 
systems [27]. The motivation for these previous attempts was simply that human percep-

tion is much more stable than machines over a range of sources of variability. Therefore, 

it was reasonable to expect that the functional modeling of the human subsystems could 

provide plausible direction for machine research. One of the first auditory‐inspired features 
(Figure 2) was based on the mel-scale warping of the spectral frequency axis (referred to 

as “FBANK”), which is then parameterized as mel‐frequency cepstral coefficients (referred 
to as “MFCC”) [28]. The usual objective for selecting an appropriate representation is to 

compress the input data by eliminating the information that is not pertinent for analysis 

and to enhance those aspects of the signal that contributes significantly to the detection 
of differences. In automatic speech recognition (ASR), these MFCC features were shown to 
allow better suppression of insignificant spectral variation in the higher‐frequency bands. 
Concatenating other types of auditory-inspired spectro-temporal features with MFCCs can 

also boost performance [29]. In [30], cochlear implant speech synthesized from subband 

temporal envelope was shown to contain sufficient information to rival MFCC features 
in terms of accuracy. These acoustic simulations of cochlear implants [31] were subse-

quently proposed as general indicators to conduct useful subjective studies. In [32], the 

cross- disciplinary methods of cognitive science and machine learning were converged to 

promote the shared views of computational [33] foundations. Our study [32] expanded on 

[30] by comparing cochlear implant results using the Bayesian model of human concept 
learning [34] and proposed hidden Markov models (HMMs) for computationally predicting 

cochlear implant performance. In the next sections, we will further expand upon previous 
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studies by introducing state-of-the-art tools based on deep neural network algorithms and 

 presenting new results comparing the efficiency of profile analysis, temporal critical band, 
and  transition bandwidths in cochlear implant simulations.

3.2.2. Spectral filterbank (FBANK) features as input to deep learning systems

Deep neural networks (DNNs) (Figure 8) make use of gradient-based optimization algorithms 

to adjust parameters throughout a multilayered network based on the errors at its input [35]. 

In DNNs, multiple processing layers learn representations of data with multiple levels of 
abstractions. In deep hierarchal structures, the internal layers of DNNs provide learned rep-

resentations of the input data. The benefit of studying filterbank learning in DNNs is that the 
filterbank input can be viewed as an extra layer of the network, where these filterbank param-

eters are updated along with the parameters in subsequent layers [36, 37].

In machine learning, speech is viewed as a two‐dimensional signal where the spatial and 
temporal dimensions have vastly different characteristics. For instance, the time‐dynamic 
information in the high‐frequency regions is different compared to low‐frequency regions. 
Although FBANK is popular, Sainath et al. [36, 37] argued that features designed based on the 

critical band theory might not guarantee appropriate frameworks for the end goal of reduc-

ing error rates. Since the power-spectra removes information from the signal by computing 

from a fixed window‐length, FBANK features often lack the necessary temporal information. 
By starting with a raw signal representation to learn filterbanks jointly in a DNN framework, 
the results computed in [36] share many similarities as concepts from psychoacoustic studies:

1. Consistent with critical band theory, the computational results showed a similarity between 

learned and mel‐filters in the low‐frequency regions.

2. Consistent with transition bandwidths, the computational results showed the learned fil-
ters had multiple peaks in the mid-frequency regions (indicating that multiple important 

critical frequencies are being picked up, rather than just one like the mel).

Figure 8. Structure of a deep neural network (DNN). Deep learning allows multiple layers of nonlinear processing.
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3. Consistent with the volley theory, the computational results showed the learned filters are 
high‐pass filters compared to mel‐filters (which are bandpass at high‐frequency regions).

3.2.3. Temporal envelope bank (TBANK) features

Our work in [13, 32] derived an alternative input feature (Figure 4) for ASR based on tempo-

ral envelope bank (referred to as “TBANK”) which was inspired by temporal critical bands [6] 

and the broad temporal masking patterns of cochlear implants [16, 17]. The TBANK features 
have been evaluated as an input feature for DNNs [38] and as a temporal alignment feature 

for DNNs [39]. In the present study, we will combine both FBANK and TBANK features to 
improve the temporal dimension and its correlation with the frequency or spatial-domain 

properties in DNNs. Figure 9 shows FBANK+TBANK (referred to as ⧠⧠, “double‐BANK”) 
features, which were inspired by psychoacoustic results showing the flexible usage of across‐
channel cues [21], transition bandwidths [7, 23], and the volley theory [8].

In Section 3.3, we will use the same procedures in [38, 39] for the Aurora‐4 robustness task 
(with a cochlear implant speech processor available at: www.tigerspeech.com/angelsim).

3.3. Computational results

3.3.1. Comparison of FBANK and TBANK on a computational ASR task

“Raw” TBANK features were derived from 32 channels of band envelope (Figure 4) via 

white-noise carriers [38]. These features were designed to preserve temporal and amplitude 

cues in each spectral band, but remove the spectral detail within each band as explained 

in [12]. ∆ and ∆∆ dynamic features were computed from derivative values with respect to time 
[40]. In Table 1, context‐dependent DNN‐HMMs were trained using 40‐dimensional FBANK 

Figure 9. A simplified FBANK+TBANK (referred to as ⧠⧠, “double-BANK”) representation of speech.

Temporal Filterbanks in Cochlear Implant Hearing and Deep Learning Simulations
http://dx.doi.org/10.5772/66627

143



(described in [36]), 120‐dimensional FBANK+∆+∆∆ (described in [41]), and our 80-dimen-

sional ⧠⧠ (FBANK+TBANK) input representation. It should be noted that the computational 
cost of changing the size of the input layer is negligible. Table 1 shows inclusion of TBANK 
in the ⧠⧠ (FBANK+TBANK) input features yielded a 14% improvement compared to FBANK 
and an 11% improvement over the FBANK+∆+∆∆ representation.

3.3.2. Comparison of FBANK and TBANK on temporal alignment task

Table 2 shows error rates for Gaussian mixture model (GMM)-HMMs when trained and tested 

on TBANK (Figure 4) alignment features (Figure 10) with white-noise carrier [13, 39]. TBANK 
models models aligned the training data to create senone labels for training the DNN. The 
results in Table 2 show the temporally aligned DNN gives fewer errors when subsequently 
trained and tested on FBANK features.

Tree‐building features Error % (GMM) Error % (DNN)

MFCC 5.08 2.88

16 band envelopes 5.44 2.80

24 band envelopes 5.03 2.63

32 band envelopes 5.90 2.82

Note: Bold indicates better score.

Table 2. Comparison of different tree‐building features to generate a state‐level alignment on the training set. TBANK 
features had 16, 24, or 32 band envelopes via white-noise carrier.

Note: Bold indicates better score.

Table 1. DNN performance (error rate %) on clean training set.
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Designing a representation that both preserves relevant detail in the speech signal and also 

provides stability/invariance to distortions is a nontrivial task. Therefore, Figure 11 derives 

slowly varying amplitude modulation (AM) and frequency modulation (FM) from speech to 
design novel features (referred to as frequency amplitude modulation encoding “FAME”) 
with different modulations, as proposed in [42] and computed in ASR [31, 39]. In the FAME 
condition, the FM is smoothed in terms of both rate and depth and then modulated by the 

AM. The “slow” FM tracks gradual changes around a fixed frequency in the subband. The 
FAME stimuli are obtained by additionally frequency modulating each of the band's cen-

ter frequency before amplitude modulation and subband summation. Finally, FAME stimuli 
were used to derive alternative features via extracted TBANK (Figure 10) for tree building 

and temporal alignment in GMM systems.

Compared to band envelope features (Figure 4), Table 3 shows AM and FM lowered the 
error rate in GMM systems used during forced alignment to generate frame‐level DNN 
training labels. These results expand upon [31] and provide additional evidence that FAME 
preserves more of the relevant detail compared to other carriers.

Figure 10. Generation of temporal alignment features using extracted TBANK, as in [39].

Figure 11. Signal processing diagram of frequency amplitude modulation encoding (FAME).

Tree‐building TBANK features Error rate % (GMM‐Alignment)

16 band envelopes 5.44

16 bands of FAME 5.21

Note: Bold indicates better score.

Table 3. Comparison of alternative TBANK features for GMM alignment systems.
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Table 4 shows error rates for GMM systems trained and tested on an additive configuration of ⧠⧠ (MFCC + FAME) (Figure 12). This configuration was inspired by a frequency‐dependent 
model that explains the loudness function in human auditory systems [43]. In this two‐stage 
model, the first stage of processing is performed by a mechanical mechanism in the cochlear 
(for high-frequency stimuli) and by a neural mechanism in the cochlear nucleus (for low-

frequency stimuli). Table 4 shows the DNN gives fewer errors during time alignment with 
this additive configuration of ⧠⧠ (MFCC + FAME) when subsequently trained and tested on 
FBANK. By digitally adding the different high‐frequency FAME information (via TBANK) 
to the low-frequency MFCC information, Table 4 shows this additive ⧠⧠ (MFCC + FAME) 
feature representation allowed a better alignment in GMM systems during the generation of 
senone training labels for training the DNN.

Table 5 provides further analysis [39] of deletion, substitution, or insertion errors to quan-

tify the effects of the digitally additive ⧠⧠ (MFCC + FAME) configuration. Misclassification 
leads to substitution errors. An imperfect segmentation leads to deletion errors (when some 
sounds are completely missed) or insertion errors (from extra boundaries). By reducing 
the extra segment boundaries, Table 5 shows how front‐end FAME processing using the 
FM extraction at high-frequency regions solves the segregating and binding problems [42] 

in ASR systems. The ⧠⧠ results also demonstrate the computational efficiency of multiple 
filterbanks, which supports temporal critical bands [6] and transition bandwidths [7, 23].

Figure 12. A digitally additive configuration of ⧠⧠ alignment features (MFCC + FAME).

Tree‐building features (GMM) Deletion, substitution, insertion (DNN) Deletion, substitution, insertion

MFCC 19, 189, 64 13, 114, 27

MFCC + FAME 20, 177, 61 18, 101, 28

Note: Bold indicates less errors.

Table 5. Error type (deletion, substitution, insertion) analysis.

Tree‐building features WER% (GMM) WER% (DNN)

MFCC 5.08 2.88

MFCC + FAME 4.82 2.75

Note: Bold indicates better score.

Table 4. MFCC vs. ⧠⧠ alignment feature (three additive FAME bands at high‐frequency regions).
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3.3.3. Discussion relating human hearing with machine hearing research  

Many computational algorithms [9, 27, 28, 29, 30, 31, 35, 40, 41, 42] have been inspired by audi-

tory processing pathways in the human nervous system. Traditionally, the critical band theory 

is commonly accepted for baseline DNN features [35] due to the ability of MFCC and FBANK 
to allow better suppression of insignificant spectral variation in the higher‐frequency bands. 
However, recent progress in deep learning systems has allowed computational models that 

are composed of multiple layers of parallel processing to learn representations of filterbank 
features with multiple levels of abstraction. In fact, some DNN researchers have questioned 
the efficiency of spectral features derived from critical band theory. In [36], error rates were 

shown to improve by using a filterbank learning approach rather than just having a fixed set 
of filters. Therefore, [36] was the first computational study to contradict the energy detector or 
power spectrum models of critical band theory using purely quantitative and statistical results.

In the present study, we compared masking in cochlear implants and ⧠⧠ (FBANK+TBANK) 
input representations in deep learning. The data provides statistical evidence supporting the 

efficiency of profile analysis, temporal critical bands, and transition bandwidths. Therefore, 
results in both human hearing and machine hearing oppose the historically accepted critical 

band theory. Furthermore, all of these findings decrease confidence in previous estimates 
of peripheral filtering as presumed [3, 19, 22] and adopted in [27, 28]. Moreover, the simi-

larity and compatibility of the results in both human and machine hearing could provide 

new insight into the ability to process sound and may lead to advances in cochlear implant 

methods [44] or alternative neural network architectures [45]. For example, [36] indicated that 

using a nonlinear perceptually motivated log function was appropriate in deep learning, since 

their results showed that using log nonlinearity with positive weights was preferable.

4. Conclusions

In this chapter, we presented psychoacoustic results that support a recent theory in auditory 
processing [7, 23]: that the auditory system is actually composed of multiple filterbanks in the 
processing of sound (instead of just a solitary peripheral filterbank as previously assumed). 
Psychoacoustic results using electric stimulation in cochlear implant users suggest distorted 

profile analysis (where users are unable to adequately use across-channel cues to compare the 

shape of the output of different auditory filters), a reliance on temporal critical bands (where 

users relied on filter bandwidths that were consistently broader than predicted by critical 
band theory), rapidly changing transition bandwidths (where users employed separate and 

different auditory processes to handle either narrow or wide bandwidths), and a distorted 
volley theory of encoding (where users were unable to combine phases of action potentials to 

analyze a greater frequency of sound). In addition, the results from our deep learning system 
confirmed the computational effectiveness of combining both spectral filterbanks (FBANK) 
and temporal filterbanks (TBANK). The combined input representations (each with its own 
filtering properties) are formed into ⧠⧠ (double‐BANK) features to improve the processing 
of information in multiple parallel processes. These ⧠⧠ features all outperformed FBANK 
features in deep neural network (DNN) systems.
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Glossary

Human hearing research

Auditory masking: perceptual phenomenon that occurs when the threshold of audibility for 

one sound is raised in the presence of another sound.

Cochlear implant: a surgically implanted electronic device that restores a sense of hearing.

Critical band theory: estimates the bandwidth of spectral frequencies within which a second 

sound is predicted to interfere with the perception of the first sound by auditory masking.

Electric‐on‐acoustic masking: reproduction of masking by using cochlear implant electrodes.

Electric‐on‐electric masking: production of masking using only cochlear implant electrodes.

Energy detector model: the nonlinear power spectrum model approximation of auditory 

responses (which is the inspiration for acoustic features such as FBANK and MFCC).

Place theory: pitch perception depends on the location along the basilar membrane.

Profile analysis: a signal is detected by noting a change in the spectrum at some frequency.

Temporal critical bands: critical bandwidth for a temporal process (e.g., temporal envelope).

Temporal theory: pitch perception depends on the temporal firing patterns of neurons.

Transition bandwidths: occurrence of an interplay between spectral and temporal processes.

Volley theory: groups of neurons respond to a sound by firing action potentials slightly out‐
of-phase to encode a greater representation of sound that is sent to the brain.

Machine hearing research

Automatic speech recognition: a computational method that allows recognition of language.

Data compression: algorithm that reduces the audio transmission and storage requirements.

Deep learning: branch of machine learning that models high level abstractions in the data via 

multiple layers of processing and nonlinear transformations within hierarchal structures.

Deep neural networks: artificial neural network inspired by the hierarchal modeling of brains.

Double‐BANK (⧠⧠) features: the combination of features (e.g.: FBANK+TBANK) as inspired by 
the observance of temporal critical bands and transition bandwidths in the auditory system.

Frequency amplitude modulation encoding (FAME): alternative features derived via TBANK.

Gaussian mixture model hidden Markov model (GMM‐HMM): Bayesian method to align DNNs.

Spectral filterbanks: acoustic features (MFCC or FBANK) inspired by the nonlinear spacing of 
power spectrum or energy detector models, and critical band theory.

Temporal filterbanks: acoustic features (e.g.: TBANK) inspired by temporal critical bands.
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