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Optimizing Dynamical Network 
Structure for Pinning Control
Yasin Orouskhani1, Mahdi Jalili2 & Xinghuo Yu2

Controlling dynamics of a network from any initial state to a final desired state has many applications 
in different disciplines from engineering to biology and social sciences. In this work, we optimize 
the network structure for pinning control. The problem is formulated as four optimization tasks: 
i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing 
simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection 
weights. A newly developed population-based optimization technique (cat swarm optimization) is 
used as the optimization method. In order to verify the methods, we use both real-world networks, 
and model scale-free and small-world networks. Extensive simulation results show that the optimal 
placement of driver nodes significantly outperforms heuristic methods including placing drivers based 
on various centrality measures (degree, betweenness, closeness and clustering coefficient). The 
pinning controllability is further improved by optimizing the feedback gains. We also show that one can 
significantly improve the controllability by optimizing the connection weights.

Networked structures are found everywhere in our daily life; there exist a network system where a kind of infor-
mation exchange is happening1,2. Networks are comprised of two or more nodes that are connected through 
directed/undirected and weighted/unweighted edges. Examples of everyday life complex network systems include 
the World Wide Web, the Internet, power grids, transportation and water distribution networks. Complex 
networks have different definitions, but in the most valid definition we call a network as complex when it has 
non-trivial structure3. A series of research works in network science are based on considering specific dynamics 
on the nodes and study collective dynamics arising from complex interaction networks4–6. It has been shown that 
if dynamical systems interact over a network and some conditions are met, a collective behavior (synchronization 
or consensus) emergences.

Controlling dynamics of a network from any initial state to a final desired state has many applications in 
different fields, which has been heavily studied in network science community7–11. For example, modern power 
grids with many generators and consumers are required to be controlled to have desirable performance. The 
ease by which the whole network can be pinned to a reference state is denoted as its pinning controllability12–14. 
This is often performed by choosing some of the nodes as drivers to which the control signal is fed. The master 
stability function formalism, developed to study linear stability of the synchronization manifold in coupled iden-
tical dynamical systems15, is a proper tool to study pinning controllability. This allows use spectral properties of 
augmented Laplacian matrix, which includes the information on the control signal towards analyzing pinning 
controllability. Based on such information, the eigenratio of the augmented Laplacian, i.e., the largest eigenvalue 
divided by the smallest one, was proposed as a metric to quantify the pinning controllability of dynamical net-
works, i.e., the smaller the eigenratio the better the controllability12,16.

For some applications it might be desirable to have a network with high levels of pinning control. One of the 
important issues in optimal pinning control is to find the best driver nodes. Early works in this field selected 
the drivers randomly and showed that having only a small number of drivers can successfully control the whole 
dynamics into a reference state12. It was shown that controlling central nodes (e.g., those with high degree or 
betweenness centrality measure) is more effective than randomly selecting the drivers. Zhuo et al. considered the 
speed of synchronization to the reference trajectory, which is related to the smallest eigenvalue of the augmented 
Laplacian matrix17. Using linear matrix inequality approach, they introduced an optimization method to obtain 
the optimal drivers and their associated feedback gains to maximize this eigenvalue. They showed that by driving 
the nodes with high gains, the speed of pinning control is significantly improved as compared to the cases when 
nodes with high degree or betweenness centrality are chosen as drivers17.
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We have recently proposed an optimization method to find optimal drivers and shown that it significantly 
outperforms heuristic approaches16. In this paper, we extended the previous work by further optimizing the net-
work structure. Not only the locations of optimal driver nodes are found through an optimization technique, but 
also the feedback gains are optimized. We showed that optimizing the feedback gains have significant impact on 
the controllability. We further showed that the connection weights can also be optimized using the same opti-
mization techniques, and the networks with optimal connection weighted have much higher controllability than 
unweighted ones.

Pinning Controllability: Background Information
Controlling a complex network system has many applications ranging from engineering systems (such as power 
grids) to biological systems. One type of controlling a complex network is pinning control in which the dynamics 
of the nodes are pinned to a specific state. The ease by which a network can be controlled is often interpreted as 
its pinning controllability18,19. Let us consider a network with N nodes, in which a dynamical system seats at each 
node. These individual dynamical systems interact through the edges of the network and the equations of the 
motion read:

∑σ= − = …
=

x x xd
dt

F l H i N( ) ; 1, 2, , ,
(1)

i
i

j

N

ij j
1

where xi ∈  Rd are d-dimensional state vectors, F:Rd →  Rd defines the individual dynamics of each node, lij is the 
element (i, j) of Laplacian matrix which describes the network topology and can be obtained from the adjacency 
matrix. In this work, we limit ourselves to simple (unweighted and undirected) networks, and thus entries of the 
adjacency matrix A =  (aij) are either 1, if there is a link between i and j, and 0 otherwise. In order to construct 
the Laplacian, one has to obtain lij =  − aij for i ≠  j, and lii =  ki, where ki is degree of node i. σ is a unified coupling 
strength and H is a matrix indicating from which dimensions the dynamical systems are coupled to each other; 
for example, if the individual dynamical systems have three states that are connected through their first state, H is 
a 3-by-3 matrix whose (1, 1) entry is one and others are zero.

As we mentioned before, the goal of pinning control is to lead the nodes into a reference state. Let us consider 
a time-varying reference state as

= .
s sd t
dt

F t( ) ( ( )) (2)

In order to pin the nodes of network to the reference trajectory s(t), often some of the nodes are chosen as 
drivers and the control signal is fed to them. Applying the control signal to the network, the dynamical equations 
read

∑σ σβ= − + − = …
=

dx
dt

F x l Hx g H s x i N( ) ( ); 1, 2, , ,
(3)

i
i

j

N

ij j i i i
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where gi is the feedback control gain, and βi indicates the driver nodes such that βi =  1, if node i is a driver node 
and βi =  0 otherwise. If certain conditions are met, the driver nodes will be able to force the network to follow the 
reference trajectory, and a local synchronization to this manifold is obtained provided that the initial conditions 
are close enough, i.e., there exists ε >  0 such that for the initial conditions with distance less than ε, one has:

− → ∀ = … .
→∞

x st t i N( ) ( ) 0 1, (4)i t

Complete synchronization to s(t) can only be attained when the individual dynamical systems are identical 
and some conditions are met. In general, four causes have roles in determining whether synchronization can be 
obtained: i) the dynamics of the individual systems, expressed by F(·) in equation (1), ii) the network structure, 
represented by the connection graph described by A or L, iii) the type and strength of the interaction between the 
individual dynamical systems, and iv) the driver nodes and their associated feedback control gains. In studying 
pinning controllability of dynamical networks, the main problem is to study the stability of the solution x1(t) =  x2
(t) =  …  =  xN(t) =  s(t). To this end, the master stability function mechanism, which has been originally proposed 
for synchronization of dynamical networks15, can be efficiently used. The master stability function approach gives 
necessary conditions for the local stability of the above synchronized solution. This approach is based on studying 
the variational equations; each dynamical system is considered to have small enough perturbation ζi from the 
synchronous state; xi(t) =  s(t) +  ζi. The variational equations are

∑ζ ζ ζσ= − = …
=
≠

 sDF c H i N( ) ; 1, 2, , ,

(5)

i i
j
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1

where D stands for Jacobian and C is the augmented Laplacian matrix obtained as
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C has the information on the drivers (their locations and associated feedback gain) in its diagonal elements. 
Here, we consider undirected networks; thus C is a symmetric matrix (C =  CT), and it can be transformed into 
C =  ΓΩΓT, where Γ is the orthogonal matrix with columns as the eigenvectors of C and Ω is a diagonal matrix of 
corresponding real eigenvalues. Let define ζ =  (ζ1, ζ2, … , ζN) =  ηΓT, where η =  (η1, η2, … , ηN). Then, equation (5) 
is equivalent to

η η ησλ= − = …


DF DH i N; 1, 2, , , (7)i i i i

where λi are the eigenvalues of C, ordered as 0 <  λ1 ≤  λ2 ≤  …  ≤  λN 20. Since C is a symmetric matrix, all its eigen-
values take real values. A necessary condition for the stability of the synchronization manifold is that all the 
Lyapunov exponents of equation (7) are negative. The largest Lyapunov exponent of the variational equation (7), 
Λ (a) where a =  σλ, called master stability function, accounts for the linear stability of the synchronization solu-
tion, i.e., if Λ (a) <  0, the synchronized state is stable. For many systems, the master stability function is negative 
only within an interval (a1, a2) where and hence, the network synchronizes to the reference trajectory in such an 
interval15. Requiring all coupling strengths to lie within this interval, i.e. a1 <  σλ1 ≤  …  ≤  σλN <  a2, one concludes 
that if the network locally asymptotically synchronizes to the reference trajectory, we have

λ
λ

= <R a
a

,
(8)

N

1

2

1

for the corresponding graph.
The left hand side of the above equation depends only the network structure and information on the driv-

ers, whereas the right hand side depends on the individual dynamical systems and the projection matrix. R is 
accounted for pinning controllability of the network; i.e., for network N1 to be more pinning controllable than 
network N2, N1 should have smaller R as compared to N2 (provided that they have the same number of nodes and 
connection cost). Therefore, in order to improve the controllability one has to minimize R.

Pinning Controllability: Optimization
Considering R as an indicator of network controllability, it depends not only on the network topology, but also 
on the number of driver nodes, their locations in the network and feedback gains. This way only topology of the 
network is important in determining its pinning control properties, and thus, controllability optimization will 
be performed through structural optimization of networks. In this research, we consider different scenarios to 
optimize R.

Optimizing the locations of driver nodes (Task 1).  One of the key issues in optimizing the network 
structure to have high levels of pinning control over the network is the location of driver nodes. Often, there is a 
limited budget for control, and thus not all nodes can be driven. Indeed, it is desired to have the control done with 
as small number of drivers as possible. In early works, the locations of drivers were considered to be random12, 
where considering only a few drivers could successfully pin the whole network to the reference trajectory. A bet-
ter way is to drive nodes with high centrality values, e.g., high-degree nodes12, where it has been shown that by 
selecting the high-degree nodes as drivers, better control performance can be achieved as compared to the case 
when drivers are randomly chosen. We have recently shown that one can further optimize the pinning control 
performance by finding the optimal locations for drivers16. It was shown that properties of optimal drivers signifi-
cantly depend on the network type; for heterogeneous networks, optimal drivers have characteristics close to hub 
nodes, whereas they have properties similar to network average in homogeneous networks.

The problem of finding the best drivers can be defined as a constrained optimization problem with specific 
cost function. In this part, let suppose that all drivers have the same feedback gain. When the drivers are chosen 
based on their centrality values, first the nodes are sorted based on their centrality scores (e.g., degree or between-
ness centrality), and then Nd N N( )d  nodes with the highest centrality is considered to be drivers. Here we 
compare the optimization method with four heuristics including choosing the drivers based on their degree, 
betweenness centrality, closeness or clustering coefficient. As the feedback gains are considered to be the same, 
the only parameters that should be determined in the optimization process are βi’s that are 1 when the node is 
driver and 0 otherwise. Furthermore, the total number of driver nodes is Nd. Thus, the constrained optimization 
problem to be solved can be formulated as

∑

β
β
β

λ
λ

β β

=

= ∈

β

=

R

subject to N and

min ( ) ( )
( )
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where β =  (β1, β2, … , βN) are the parameters to be optimized. For this task, all drivers have the same feedback 
gain of ki =  10.

Optimizing the feedback gains (Task 2).  As mentioned, not only the locations of drivers are important 
in determining pinning control properties of a dynamical network, but also the feedback gains play a major role. 
In this section, we suppose that the locations of optimal drivers are fixed, and determine the optimal value for the 
feedback gains. Therefore, the only free parameters for the optimization process are gi’s which are considered to 
be in a certain interval. Thus, the optimization problem is

λ
λ

α γ

=

≤ ≤

g
g

R g

subject to g

min ( ) ( )
( )

(10)

g
N

i

1i

where = …g g g g( , , , )N1 2 d
 are the parameters that should be optimized. In this manuscript, the feedback gains 

are limited to the interval [0, 100], which means that optimal feedback gains will be in this range.

Optimizing the locations of driver nodes and feedback gains (Task 3).  In this section we do not fix 
the locations of driver nodes but let the optimization process simultaneously finds the optimal locations and their 
associated feedback gain. Fixing the number of drivers at Nd, βi’s and gi’s are chosen as free parameters that should 
be determined by the optimization process. Therefore, the optimization problem can be formulated as

∑

β
β
β

λ
λ

β β α γ

=

= ∈ ≤ ≤

β

=

g g
g

R

subject to N and and g

min ( , ) ( , )
( , )

{0, 1}
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g
N

N

i

i d i i

, 1
1

i i

where β =  (β1, β2, … , βN) and = …g g g g( , , , )N1 2 d  are the parameters that should be optimized. Similar to Task 
2, in Task 3 also the feedback gains are limited to [0, 100].

Optimizing link weights for better pinning control (Task 4).  In all the above problems, the under-
lying connection graph is an undirected and unweighted network. However, many real-world networks are 
weighted, and it has been shown that synchronization properties of dynamical networks can be improved by 
proper weighting the links21,22. Here we investigated whether the link weights can also be optimized for better 
control. To this end, we used the networks obtained in Task 1 (with optimized locations of drivers), and optimized 
the connection weights using the optimization technique. Let us denote the weight of the edge between nodes i 
and j by wij’. The optimization problem can be formulated as

Network #Nodes #Edges Avg. Deg. Avg. Betweenness Avg. Closeness Avg. Clustering

IEEE14 14 20 2.85 8.92 0.0332 0.36

IEEE30 30 41 2.73 33.43 0.0107 0.23

IEEE57 57 78 2.73 110.70 0.0037 0.12

IEEE118 118 179 3.03 310.55 0.0014 0.16

IEEE300 300 408 2.73 1305.8 0.00035 0.08

France 146 223 3.05 406.58 0.0011 0.27

Spain 98 175 3.57 189.96 0.0022 0.31

Iran 105 142 2.7 305.84 0.0015 0.1

USA 4941 6594 2.6 44433 0.00001 0.08

Table 1.   IEEE Benchmarks and Power Grids Details.

Parameter Value

SMP 5

SPC True

SRD 20%

CDC 80%

MR 2%

Population Size 250

Realization 20

Max-Iteration 500

Table 2.   Parameter Settings for CSO method.
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where w is a vector of edges’ weights that should be optimized. For this task, all drivers have the same feedback 
gain of gi =  10.

Figure 1.  Optimal controllability (the less R the better the controllability of the network) in (left) IEEE 
benchmark and (right) and real power grid networks. The outcome of the optimization process (Optimal) is 
compared to the cases where the driver nodes are chosen based on (high) centrality values in terms of degree, 
betweenness, closeness, and clustering coefficient.

Figure 2.  Optimal controllability as compared to heuristic methods; (left) R as a function of m in 
preferential attachment scale-free networks, and (right) R as a function of rewiring probability P in small-
world networks. The graphs show averages over 20 realizations.

Figure 3.  Schematic view of 30-node IEEE benchmark network. 
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Optimization technique.  The above optimization problems are not convex, and thus efficient tools availa-
ble for optimization of convex problems cannot be used for them. A good approach to handle such optimization 
tasks is to use population-based techniques. In this paper, we used Cat Swarm Optimization (CSO), which has 
been shown to be an efficient population-based optimization technique23. CSO is an evolutionary algorithm 
designed to solve problems with discrete or continuous search space. This algorithm is composed of two modes: 
Seeking and Tracing. For modeling the behavior of cats in both the resting and alert states, we use the seeking 
mode. This mode is a time for thinking and deciding about the next move, and has four main parameters: seeking 
memory pool (SMP), seeking range of the selected dimension (SRD), counts of dimension to change (CDC) and 
self-position consideration (SPC). Seeking mode first makes copies of each cat (as counts of SMP by considering 
SPC), and then selects some copies and randomly mutates position of each cat (i.e., it selects CDC dimensions 
of each cat, and then mutates by (1 +  SRD) or (1 −  SRD) randomly)23. Tracing mode is responsible for moving 
cats to new points based on position and velocity equations considering the position of the best-performing cat. 
In order to integrate the two modes into the algorithm, we define a mixture ratio (MR) which indicates the rate 
of mixing of seeking and tracing modes. This parameter decides how many cats will be moved into the seeking 
mode process (the remaining cats will be moved into the tracing mode). In order to solve the first problem 
(i.e., finding the location of optimal driver nodes), discrete version of CSO24 was used, while continuous version 
was used to solve the second problem (i.e., finding the optimal feedback weights while the location of drivers is 
fixed). In order to simultaneously optimize the location of optimal drivers and their associated feedback gain, 
co-evolutionary technique that was introduced in25 was used to develop an appropriate optimization method. It 
is worth mentioning that other population-based optimization techniques (such as genetic algorithms, particle 
swarm optimization, simulated annealing and differential evolution) can also be used to solve these optimization 
problems; however our experiments showed that CSO resulted in better performance compared to them.

Results and Discussion
Datasets.  The above optimization techniques are applied to both model and real networks. Pining control 
has potential applications in power grids in which there are generator and consumer nodes. Therefore, we used a 
number of benchmark and real power networks in this work including IEEE benchmark networks with various 
nodes, high voltage grid of Spain, France26 and Iran27 and transmission network of northern USA28. In these 

Figure 4.  R in benchmark and real power networks when the feedback gains are optimized. The location of 
drivers is those of Fig. 1.

Figure 5.  (Left) R as a function of m in preferential attachment scale-free networks, and (right) R as a 
function of rewiring probability P in small-world networks. The feedback gains are optimized through the 
optimization process and the location of drivers is those of Fig. 2. The graphs show averages over 20 realizations.
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networks, a node can be a generator, transformer or substation and an edge represents a power supply line. Table 1 
shows details of these networks. In IEEE benchmark networks, 14% of the nodes were considered to be drivers, 
while in other power grids, 5% of nodes were selected as drivers.

The experiments were also carried out on model networks. As model networks, we used preferential attach-
ment scale-free networks, as proposed by Barabasi and Albert29, and small-world networks, as proposed by 
Watts and Strogatz28. Scale-free networks were constructed using the original preferential attachment algorithm 

Figure 6.  R in benchmark and real power networks when the locations and feedback gains are simultaneously 
optimized. The figures show the cases when only the location of drivers is optimized (Optimal 1), when only 
the feedback gains are optimized provided that the optimal drivers are already found (Optimal 2), and when 
the location of drivers and feedback gains are simultaneously optimized through a 2-dimesional optimization 
process (Optimal 3).

Figure 7.  (Left) R as a function of m in preferential attachment scale-free networks, and (right) R as a 
function of rewiring probability P in small-world networks. Other designations are as Fig. 5 and graphs show 
averages over 20 realizations.

Figure 8.  Average degree of the network (Mean), that of hub nodes (Hub), and that of optimal drivers 
(Optimal) in IEEE benchmark and real power networks. 
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introduced in29, which is as follows. First a small set of fully connected network is considered (here a network with 
3 nodes). Then, at each step, a new node is added to the network and connected to the old nodes with a probability 
that is proportional to their degree, i.e., the higher the degree of a node, the higher the chance of being connected 
to new nodes. Each new node makes m connections. Networks constructed in this way will have heterogeneous 
degree distribution; however, not all real-world networks show such properties. In order to construct networks 
with homogeneous properties, we considered small-world networks and used the algorithm proposed in28. First, 
a ring graph with each node connected to its m-nearest neighbor is considered. Then, each edge is rewired with 
probability P. For a range of P, the resulting network will have short average path length, comparable to corre-
sponding random networks, while its clustering coefficient is still high (similar to the original ring graph), that is 
much higher than corresponding random networks. We chose 5% of the nodes as drivers and fixed the network 
size as 1000 for first three tasks and 200 for the fourth one. The experiments were carried out for different values 
of m in scale-free networks and different values of rewiring probability P in small-world networks (with m =  6).

Implementation details and parameters of the optimization method.  Table 2 shows the values 
of the parameters of CSO method. These parameters are selected based on the recommendation from previous 
works30. The parameter “Max-Iteration” indicates the maximum number of iteration in our implementation. The 
optimization procedure is stopped after 500 iterations if a steady-state solution is not yet obtained. However, our 
experience showed that on average the optimization was terminated after 250 iterations. In order to avoid the 
results from random effects, we perform our experiments 20 times.

Simulation Results.  Figures 1 and 2 compare the proposed optimization method with heuristic methods 
(i.e., selecting the driver nodes based on their centrality scores including degree, betweenness closeness and 
clustering coefficient) when only the location of drivers is optimized. Figure 1 shows the result of this com-
parison for real networks i.e., IEEE benchmarks and real power grids. As can be seen, the optimization strat-
egy outperforms heuristic methods by providing the best controllability, i.e., the least R. Among the heuristic 
methods, those based on closeness and clustering coefficient have the poorest performance, while degree- and 

Figure 9.  (Left) Average degree of the network (Mean), that of hub nodes (Hub), and that of optimal 
drivers (Optimal) in scale-free networks, and (right) average degrees as a function of P in small-world 
networks. 

Network

Common Nodes 
between tasks 1 

and 3

Mean feedback gains 
difference between tasks 

2 and 3 Network

Common Nodes 
between tasks 1 

and 3

Mean feedback gains 
difference between 

tasks 2 and 3

BA (m =  2) 90% 2.3% WS (P =  0.08) 60% 1.1%

BA (m =  3) 100% 0.6% WS (P =  0.1) 80% 0.9

BA (m =  4) 90% 2.9% WS (P =  0.12) 70% 1.4%

BA (m =  5) 100% 2.8% WS (P =  0.14) 70% 1.6%

BA (m =  6) 100% 1.6% WS (P =  0.16) 75% 0.7%

BA (m =  7) 100% 0.9% WS (P =  0.18) 75% 2.4%

BA (m =  8) 90% 1% WS (P =  0.2) 80% 1.2%

BA (m =  9) 90% 1.5%

BA (m =  10) 90% 0.3%

Table 3.   The percentage of common optimal driver nodes in the outcome of Task 1 (when only the location 
of drivers is optimized and Task 3 (when both location of drivers and feedback gains are simultaneously 
optimized), and the absolute difference (in percentage) between the feedback gains in Task 2 (when the 
feedback gains are optimized for the drivers found in Task 1) and Task 3. The networks are Barabasi-Albert 
(BA) scale-free with different m and Watts-Strogatz (WS) small-world with different rewiring probability P.
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betweenness-based methods are the second-top performer (after the optimal one) interchanging. The optimal 
one is again the best-performer in model scale-free and small-world networks (Fig. 2), while the one based on 
clustering coefficient has the worst performance.

In order to better discuss the results, we consider the 30-node IEEE benchmark network as a sample network 
(Fig. 3), and study properties of the optimal driver nodes. In this network, we optimize the locations and feedback 
gains of 4 driver nodes. In this network, the average degree of nodes is 2.7 and that of 4 hub nodes is 5.5. The 
proposed optimization method (Task 1) selects nodes 2, 10, 15, 27 (average degree of 4.5) as optimal drivers. Note 

Figure 10.  (Left) R as a function of m in preferential attachment scale-free networks, and (right) R as a 
function of rewiring probability P in small-world networks. The weights of existing edges are optimized 
through the optimization process. The graphs show averages over 20 realizations.

Figure 11.  Distribution of nodal strength values in Barabasi-Albert for different values of parameter m. 
The graphs show averages over 20 realizations.
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that only nodes 2 and 10 are among the top-4 hub nodes. It is seen that sometimes taking a node with smaller 
degree than a hub node results in better controllability; for example, in our example node 27 with degree of 4 is 
better driver node than node 6 with degree 6.

In task 2, we aimed at optimizing the feedback gains for already existing driver nodes with fixed locations, and 
the results are shown in Figs 4 and 5 for real and model networks, respectively. It is seen that optimizing the feed-
back gains have significant influence on the controllability of the networks. Comparing Figs 1 and 4 reveals that 
optimizing the feedback gains made almost 30% improvement in the pinning controllability of both IEEE bench-
marks and real power grid networks. Considering our example network (30-node IEEE benchmark network), the 
optimal drivers are nodes 2, 10, 15 and 27 with optimized feedback gains as 5.93, 4.06, 6.49 and 6.38, respectively. 
The improvement of pinning controllability in model networks is much better; by optimizing the feedback gains, 
the eigenratio of scale-free and small-world networks decreased almost 60% and 70%, respectively.

Next we consider optimizing the eigenratio as a 2-dimesional optimization problem in which both the loca-
tion of drivers and feedback gains are simultaneously optimized. This allows search the solution space deeper 
and finds better results. Figures 6 and 7 show the results for real and model networks, respectively. It is seen that 
optimizing the location of drivers and feedback gains at the same time, can do the job better as compared to other 
cases that leads to network structures with better controllability. Another observation about the optimal control-
lability of model networks is that as the average degree of scale-free networks increased (i.e., m increased), the 
optimal controllability was improved. In small-world networks, as the rewiring probability increased (i.e., more 
shortcuts were created), communicability among the nodes improved, and as a result, the optimal controllability 
was enhanced.

In order to further study details of optimal driver nodes, we compare their average degree and feedback gain 
with those of hub nodes as well as the whole network. For each case, only the top-Nd hub nodes are considered. 
Figures 8 and 9 compare the average degrees for real and model networks, respectively. The real networks do not 
have the same behavior. For example, in 14-node IEEE network, the optimal drivers are indeed the hub nodes. As 
the networks become larger, the average degree of optimal drivers gets closer to the average degree of the network, 
indicating that more hubs are missing in the set of drivers. In the largest real network (USA grid), the optimal 
drivers have average degree much closer to the network average than the hub nodes. Therefore, one cannot simply 
search for optimal drivers among the hub, and sophisticated method (like the optimization strategy proposed 
in this work) should be used. Model networks have also different behavior. While, the average degree of optimal 
drivers is close to that of hubs in scale-free networks, it is much closer to the network average in Watts-Strogatz 
networks. Indeed, as the network becomes more homogeneous, less hubs are selected in the optimal drivers set.

We compare the outcomes of Tasks 1, 2 and 3. Table 3 summarizes the comparisons between the outcomes of 
these tasks in the considered Barabasi-Albert and Watts-Strogatz networks with varying parameters. The table 
shows the percentage of common nodes between the outcomes of tasks 1 and 3, and also the normalized differ-
ence between the feedback gains obtained in tasks 2 and 3. As is seen, tasks 1 and 3 result in almost the same set of 
optimal drivers in scale-free networks for which the match is at least 90%; however it varies between 60% to 80% 
in small-world networks. This is mainly due to higher heterogeneity in scale-free networks. As shown in16, the 
set of optimal drivers in scale-free networks has a mean degree close to that of hub nodes (much higher than the 

Figure 12.  Distribution of nodal strength values in Watts-Strogatz networks for different values of rewiring 
probability P. The graphs show averages over 20 realizations.
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Figure 13.  Distribution of strength values of driver nodes in Barabasi-Albert for different values of 
parameter m. The graphs show averages over 20 realizations.

Figure 14.  Distribution of strength values of driver nodes in Watts-Strogatz networks for different values 
of rewiring probability P. The graphs show averages over 20 realizations.
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mean degree of the whole network), while it is close to the network mean degree in small-world networks. Indeed, 
in scale-free networks the optimization algorithm always searches for optimal drivers within a small subset of the 
nodes (that are often those with high degrees), and thus varying or fixing the feedback gains has little effect on the 
final optimal drivers set. However, in homogeneous networks such as Watts-Strogatz small-world networks, the 
search space is much wider and the set of candidate nodes for optimal drivers is much larger than scale-free ones. 
Therefore, by optimizing the feedback gains, one will have higher degree of freedom and the set of optimal drivers 
may substantially change. When comparing the optimal feedback gains found in task 2 (fixed optimal drivers) 
and task 3 (drivers are simultaneously optimized), there is small difference (maximum 2.9%) in both scale-free 
and small-world networks. This indicates that optimization of feedback gain does not significantly differ whether 
the optimal drivers are separately fixed or simultaneously optimized with the gains.

Task 4 is to optimize the connections weights. Figure 10 shows the influence of optimal link weighting on the 
controllability of model scale-free and small-world networks. Having the same feedback gain for the driver nodes, 
first, the locations of best drivers were found through the optimization technique, and then, the link weights were 
optimized. This figure compares the original unweighted network with the one with optimized weights; the opti-
mal weighting strategy could significantly improve the controllability (more than 50% in many cases).

Next we study the distribution of nodes’ strength in optimally weighted networks (strength of a node is the 
sum of connection weights pointing to that node). It is well-known that unweighted Barabasi-Albert networks 
have scale-free degree distribution with exponent 3, while Watts-Strogatz networks have Poissonian degree 
distribution. Figures 11 and 12 show the distribution of nodal strength in optimally weighted Barabasi-Albert 
and Watts-Strogatz networks, respectively. These distributions are similar to the degree distribution of origi-
nal networks (not shown here), but with different parameters. This indicates that the optimization strategy 
used in task 4 did not dramatically change the distribution of the strength values (which equals to degree in 
unweighted networks). However, this is not the case when the distribution is obtained for drivers (Figs 13 and 14 
for Barabasi-Albert and Watts-Strogatz networks, respectively). The drivers in the optimally weighted networks 
have almost a flat distribution of strength values, indicating that the optimization strategy tries to make a balance 
between the weights connected to the drivers such that they have strength values in the same range. Indeed, the 
optimization process homogenizes the properties of driver nodes. In order to have deeper understanding on the 
distribution of optimal weights in the network, we compare the weights in hubs and leaves. To this end, the nodes 
are classified into two groups of hubs (high degrees) and leaves (low degrees). Table 4 shows the percentage of the 
hubs that have lower average link weight than the leaves. As it sees, in all cases, more than half of the hubs have 
lower average link weights than the leaves. This means that the optimization strategy assigns in average more 
weights on the links pointing to the leaves.

Conclusions
Controlling complex network systems from an initial state to a final desired state has many applications in science 
and engineering. Pinning control of dynamical networks is a type of control at which the dynamics of individual 
nodes is pinned to a single reference trajectory. In this work, we considered a number of problems in optimal 
pinning controllability and used a population-based optimization technique to solve them. Using linear stabil-
ity analysis and the master stability function approach, we considered a metric quantifying the controllability 
of the network. The metric is the largest eigenvalue of the augmented Laplacian matrix divided by its smallest 
eigenvalue. We then formulated four problems: i) optimizing the locations of driver nodes with fixed feedback 
gains, ii) optimizing the feedback gains with fixed locations for the drivers, iii) simultaneously optimizing the 
locations of drivers and their associated feedback gains, and iv) optimizing the connection weights. In order to 
solve the optimization problem, we used proper versions of cat swarm optimization technique, which is a new 
population-based optimization technique developed to solve non-convex optimization problems. Our extensive 
simulation results on both real and model networks showed that the proposed optimization method could suc-
cessfully optimize the pinning controllability under different conditions. The proposed method showed superior 
performance as compared to a number of heuristic methods. The outcome of this research can be used where an 
optimal structure is required for pinning control.

Network

Percentage of hubs 
that have lower 

strength than leaves Network

Percentage of link weights 
of hubs lower than average 

link weights of leaves

BA (m =  2) 54% WS (P =  0.1) 56%

BA (m =  3) 51% WS (P =  0.12) 62%

BA (m =  4) 58% WS (P =  0.14) 50%

BA (m =  5) 59% WS (P =  0.16) 55%

BA (m =  6) 65% WS (P =  0.18) 51%

BA (m =  7) 55% WS (P =  0.2) 51%

BA (m =  8) 60%

BA (m =  9) 53%

BA (m =  10) 58%

Table 4.   The percentage of hubs that have lower average link weight than leaves. The networks are Barabasi-
Albert scale-free with different m and Watts-Strogatz small-world with different rewiring probability P.
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