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ABSTRACT 

The airborne sound transmission through a plate below its critical frequency is dominated by 

forced waves even though the plate vibration is dominated by freely propagating waves. This 

paper studies whether the transmission of the two wave types is different at a junction. It is 

shown in this paper that it is not possible to separately calculate in a meaningful way the 

intensity of a forced incidence wave and its freely propagating reflected wave in the medium 

from which incidence occurs because the cross terms in the intensity calculation for the 

combined waves, which vanish when the incident wave is freely propagating, do not vanish 

when the incident wave is forced. This means that it is not possible to define a transmission 

factor for forced incident waves. Thus the transmitted intensity must be calculated as a 

function of the mean square wave amplitude of the forced wave. 

1. INTRODUCTION 

When finite sized plate is excited into transverse vibration by an airborne sound field 

incident on one side of the plate, two types of bending wave field are produced in the plate. 

The first is the forced bending wave field which is directly excited by the incident airborne 

sound field. The wave length of the forced bending wave field is determined by the 

wavelength and angle of incidence of the exciting airborne sound field. This is the only 

bending wave field which would exist if the plate was infinite in extent. For a finite size 

plate, the forced bending wave field is reflected at the edges of the plate and the reflected 

waves are the freely propagating bending wave field. The wavelength of the freely 

propagating bending wave field is determined by the bending wave phase speed of the plate 

and the frequency of the freely propagating bending wave field. In terms of the partial 

differential equation for bending waves on a plate, the forced bending wave field is the 

particular integral which is a solution of the non-homogeneous bending wave equation which 

is forced by the sound pressure exerted on the plate by the incident airborne sound field. The 

freely propagating bending wave field is the solution of homogeneous bending wave equation 
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with no forcing term which together with the forced bending wave field satisfies the bending 

wave boundary conditions of the plate. 

Below the critical frequency of a panel, the panel’s airborne sound insulation is 

dominated by the forced waves in the panel, even though the panel’s vibration is dominated 

by the freely propagating waves. This is because the radiation efficiency of the forced waves 

is much greater than the radiation efficiency of the freely propagating waves below the 

critical frequency. This difference in radiation efficiency has led to the theory of airborne 

flanking sound transmission considering the two types of wave separately below the critical 

frequencies of the panels. Above the critical frequency it is not experimentally possible to 

distinguish between the two types of wave. 

Gerretsen
1
, in his first paper on flanking sound transmission, stated that “For a flanking 

transmission path only free vibrations should be considered below the critical frequency”. 

This will be correct if the bending wave intensity transmitted at a junction between panels by 

freely propagating waves is much greater than that transmitted by the forced waves. This will 

be the case if the amplitude of the freely propagating waves is much greater than the 

amplitude of the forced waves providing the transmission of the forced waves is not much 

greater than the transmission of the freely propagating waves at the panel junction. 

Alternatively it will also be the case if the transmission of the freely propagating waves at the 

panel junction is much greater than the transmission of the forced waves providing the 

amplitude of the forced waves is not much greater than the amplitude of the freely 

propagating waves. The first situation will usually apply, but Villot and Guigou-Carter
2
 

showed experimentally, using near field acoustical holography, that near the mass air mass 

resonant frequency of a lightweight cavity wall, the amplitude of the forced waves dominated 

the amplitude of the freely propagating waves. 

Irwin
3
, under the supervision of Davy, has researched the intensity transmitted at 

junctions by incident forced waves for the case of a junction between acoustic half infinite 

media and for the case of a pinned junction between two half infinite plates. Of particular 

interest was the situation of forced incident diffuse fields, and in the plate case the situation 

when one of the plates is forced by a diffuse sound field. The purpose of this paper is to make 

Irwin’s results available in the international refereed learned journal literature 

2. THE ACOUSTIC CASE 

In the plate case, the energy is transported by the interaction of the transverse velocity 

with the transverse force and by the interaction of the moment with the angular velocity. The 

situation is simpler in the acoustic medium case because the energy is transported only by the 
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interaction of the acoustic pressure with the acoustic particle velocity. For this reason, Irwin 
3
 

studied the acoustic case first before proceeding to the more complicated case of the junction 

between two plates. While it is probably not possible to practically generate a three 

dimensional forced sound field, a one dimensional forced sound field is produced inside a 

microphone turbulence screen and a two dimensional forced sound field is produced in the 

cavity of a double wall, providing the cross sectional dimension of both is very small 

compared to the wave length of the sound. 

The case of two half infinite acoustic media which are joined at the infinite plane 

interface x = 0 is considered in this section. The geometry of the situation considered is 

shown in Figure 1. The medium 1 occupies the space x < 0 and medium 2 occupies the space 

x > 0. The media have freely propagating wave numbers k1 and k2 and characteristic 

impedances Z1 and Z2, respectively. A forced plane wave with acoustic pressure root mean 

square (rms) amplitude pi is incident from medium 1 upon the plane interface with wave 

number ki = (kix, 0, kiz) = (kicos(θi), 0, kisin(θi)) where θi is the angle of incidence of the 

forced wave number relative to the positive x – axis and ki = |ki|. It should be noted that there 

is no loss of generality by assuming that the y – axis component kiy of ki is zero. The 

Cartesian co-ordinate system axes can always be rotated about the x – axis to zero the y-axis 

component of the incident forced wave number. 

The incidence of the forced incident wave on the interface produces a freely 

propagating reflected wave in medium 1 and a freely propagating transmitted wave in 

medium 2. The transmitted wave has acoustic pressure rms amplitude tpi with wave number 

k2 = (k2x, 0, k2z) and k2= |k2|. The reflected wave has acoustic pressure rms amplitude rpi with 

wave number k1 = (-k1x, 0, k1z) and k1 = |k1|. 

Define  

 
1

i
a

k

k
  , (1) 
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1

k

k
  , (2) 

 2

1

Z

Z
  , (3) 

  2 2 2sina is   . (4) 
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In order to satisfy the continuity conditions at the interface (x = 0), the reflected and 

transmitted waves must have the same component of wave number in the positive z-axis 

direction as the incident wave, namely 

  2 1 sinz z iz i ik k k k    , (5) 

where 2, 1 and i denote the transmitted, reflected and incident waves. 

The reflected wave has a wave number component in the negative x-axis direction with 

magnitude kx1 given by 

  2 2

1 1 1 sinx a ik k    . (6) 

Note that this is only a propagating wave if a |sin(i)|  1. If a |sin(i)| > 1, this 

reflected wave becomes a non-propagating near field wave. If the reflected wave is a 

propagating wave, its direction of propagation makes an angle of θ1 with the negative x-axis 

direction given by 

    1sin sina i   . (7) 

The transmitted wave has a wave number component in the positive x-axis direction 

with magnitude kx2 given by 

  2 2 2

2 1 sinx a ik k     . (8) 

Note that this is only a propagating wave if a |sin(i)|  κ. If a |sin(i)| > κ, this 

transmitted wave becomes a non-propagating near field wave. If the transmitted wave is a 

propagating wave, its direction of propagation makes an angle of θ2 with the positive x-axis 

direction given by 

    2sin sina
i


 


 . (9) 

Applying the continuity conditions at the interface (x = 0) gives 

 
 2 2 2

2 2 2

1

1

a s s
t

s s

 

 

  


  
, (10) 

 

2 2 2 2

2 2 21

a s s
r

s s

  

 

  


  
. (11) 

The intensity Itx transmitted in the positive x - axis direction from medium 1 into 

medium 2 at the media interface (x = 0) is given by the following equation. 
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   

2
2 2 2 2 2 2

2

2 2
2 2 2

2 1 Re
2

1

a
tx

i

s s s
Z I

p s s

   

 

   



  

. (12) 

For an incident diffuse sound field, the lower limit of integration can be set equal to 

 

2

2
1  if 

0            if 

a

l a

a

g


 



 


 

 




, (13) 

because of the occurrence of total internal reflection. The integral over the hemisphere of all 

possible solid angles of incidence uses a sin(i) weighting factor because the hemisphere has 

more area as a function of incident angle close to grazing angles of incidence. The 

substitution g = cos(θi) is used. 

The intensity < Itx > transmitted in the positive x - axis direction from medium 1 into 

medium 2 at the media interface (x = 0) by an incident forced diffuse sound field is given by 

the following equation. 

 
   

2
2 2 2 2 2 2 2 2

1

2

2 2
2 2 2 2 2 2 2

1 Re2
2 d

1l

a a a a a
tx

gi
a a a a

g g gZ I
g

p g g

       

     

    



    
 . (14) 

The integral in eqn (14) usually has to be numerically evaluated. However, if κ = 1, the 

integral can be analytically evaluated to give the following very simple equation. 

 
 

 

2

2

2 2

1 2      if 11

1 1 2   if 12

a atx

a ai

Z I

p

 

 

  
 

 
. (15) 

Note that if β = 1, the normalization of the left hand side of eqn (15) is the same as the 

normalization of the left hand sides of eqns (12) and (14). However, when eqn (14) was 

graphed by Irwin
3
, it was normalized by dividing it by its value when a = 1. 

The incident intensity I(i+r)x in the positive x-axis direction on the media interface (x = 

0) due to the combined incident and reflected waves can be shown, as must be the case, to be 

equal to the transmitted intensity Itx. This incident intensity is not equal to the sum of the 

intensity of the incident wave Iix in the positive x-axis direction on the media interface (x = 0) 

and the intensity of the reflected wave Irx in the positive x-axis direction on the media 

interface (x = 0) unless the incident wave is freely propagating. This can be shown easily by 

considering the normally incident case (θi = 0) when a = 1 and β = 1. There is still an 

interface at x = 0 because the forcing function is only non-zero when x < 0. 
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The intensities for this demonstration are normalized by dividing by the intensity Iix1 of 

the incident wave if it was freely propagating. The intensity of Iix of the incident wave in the 

absence of the reflected wave is 

 
1

ix
a

ix

I

I
 . (16) 

The intensity Irx of the reflected wave in the absence of the incident wave is 

 

2 2

1

1 1

2 2

rx a a

ix

I

I

     
      

   
. (17) 

Thus the sum of the incident and reflected wave intensities in the positive x – axis 

direction is 

 
2

1

6 1

4

ix rx a a

ix

I I

I

    
 . (18) 

The intensity due to the combined incident and reflected waves and the transmitted 

intensity is given by 

 
2

( )

1 1

2 1

4

i r x tx a a

ix ix

I I

I I

   
  . (19) 

Note that eqns (18) and (19) are not equal unless a = 1. In other words they are only 

equal if the incident wave is freely propagating. 

The main purpose of this section has been to show that it is not possible to calculate the 

net intensity which is incident on the junction by vectorially summing the intensities of the 

incident and reflected waves when the incident wave is forced. The reason for this is that the 

cross terms between the incident and reflected waves in the sound intensity calculation for the 

combined wave do not cancel unless the incident wave is freely propagating. This means that 

it is not possible to meaningfully calculate the incident intensity of the incident wave on its 

own, and hence that it is not possible to meaningfully calculate the transmission factor, which 

is the ratio of the transmitted to the incident intensity, unless the incident wave is freely 

propagating. 

It can also be seen, without the above mathematics, that this must be true by 

considering the case of an incident forced wave which has the same instantaneous values 

everywhere in the incident medium. Such a forced wave would be produced in a wall cavity 

by an external plane sound wave which is incident normally on one of the leaves of the wall 

cavity. This incident forced wave has a wave number of zero, and thus has zero intensity. 

Yet, at the junction between the two media where the forcing function stops acting, a freely 
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propagating reflected wave and a freely propagating transmitted wave will be produced 

because of the amplitude continuity conditions at the forcing function discontinuity. Thus 

there is a forced incident wave with zero intensity and freely propagating reflected and 

transmitted waves which on their own can only carry energy away from the forcing function 

discontinuity. This produces the paradox that energy is being transported away from the 

forcing function discontinuity while no energy is being injected at the forcing function 

discontinuity. This paradox disappears if the intensity of the combination of the forced 

incident wave and the freely propagating reflected wave is calculated. 

It should also be noted that the forcing function can inject energy into or remove energy 

from the forced incident wave in any region of the medium in which the incident wave is 

being forced. This means that the intensity incident on a junction due to the presence of a 

forced incident wave, and the reflected wave that the incidence of the forced wave produces, 

can only be calculated at the junction. 

3. TRANSMISSION OF BENDING WAVES AT A PINNED JOINT 

In this section, the bending wave intensity transmitted at the pinned line junction of two 

rigidly connected infinite half plates, when a forced bending wave is incident on the pinned 

line junction, is calculated. The geometry of the situation considered is shown in Figure 1. 

The pinned line junction is chosen, because the situation is equivalent to two infinite half 

plates rigidly connected at right angles to each other along an infinite line junction, if 

longitudinal waves are ignored. Each infinite half plate restricts the transverse motion of the 

other infinite half plate, connected at right angles to the first plate, to be zero at the infinite 

line junction, if the longitudinal waves are ignored. Because the two plates are at right angles 

and rigidly connected, the infinite line junction is held linearly but not rotationally 

motionless. Making the infinite line junction a pinned junction achieves the same result 

regardless of the angle between the plates. It stops any motion of the junction by providing 

any needed force, but allows the transmission of bending wave power from one plate to the 

other plate by the interaction of angular velocities and moments. Pinning the infinite line 

junction stops the generation of the longitudinal waves which are being ignored in the right 

angle connection case. Thus in this section, the two plates are assumed to lie in the same 

plane without any loss of generality. 

The plates are inline in the y = 0 plane. Plate 1 is the infinite half plane given by y = 0 

and x  0. Plate 2 is the infinite half plane given by y = 0 and x ≥ 0. The two plates are rigidly 

joined along the line x = 0 and y =0. The incident and reflected bending waves are in plate 1 
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and the transmitted bending waves are in plate 2. The ratios of the root mean square (rms) 

amplitudes of the propagating reflected wave, the near field reflected wave, the propagating 

transmitted wave and the near field transmitted wave to the amplitude of the forced incident 

wave, are r, rj, t, tj respectively. k1 and k2 are the freely bending propagating wave numbers of 

plates 1 and 2 respectively. The forced incident wave has a forced bending wave number ki 

and is incident at an angle of i relative to the positive x – axis which is the normal to the 

junction line between the two plates. 

The rms transverse velocities of plates 1 and 2, normalized by dividing by the rms 

transverse velocity of the incident wave are 

      1 1 1exp exp exp exp( )exp( ) if 0ix x j N zjk x r jk x r k x k z j x       , (20) 

    2 2 2exp exp exp( )exp( ) if 0x j N zt jk x t k x k z j x       , (21) 

where ω is the angular frequency and τ is the time. 

The magnitude of the component of the incident bending wave number in the z – axis 

direction is 

  siniz i ik k  . (22) 

The propagating reflected wave has a bending wave number component in the negative 

x-axis direction with magnitude kx1 given by 

  2 2

1 1 1 sinx a ik k    . (23) 

Note that this is only a propagating wave if a |sin(i)| < 1. If a |sin(i)| > 1, this 

reflected wave becomes a non-propagating near field wave. If the reflected wave is a 

propagating wave, its direction of propagation makes an angle of θ1 with the negative x-axis 

direction given by 

    1sin sina i   . (24) 

The reflected decaying near field has a bending wave number component in the 

negative x-axis direction with magnitude kN1 given by 

  2 2

1 1 1 sinN a ik k    . (25) 

The propagating transmitted wave has a bending wave number component in the x-axis 

direction with magnitude kx2 given by 

  2 2 2

2 1 sinx a ik k       (26) 
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Note that this is only a propagating wave if a |sin(i)| < κ. If a |sin(i)| > κ, this 

transmitted wave becomes a non-propagating near field wave. If the transmitted wave is a 

propagating wave, its direction of propagation makes an angle of θ2 with the positive x-axis 

direction given by 

    2sin sina
i


 


 . (27) 

The transmitted decaying near field has a bending wave number component in the 

positive x-axis direction with magnitude kN2 given by 

  2 2 2

2 1 sinN a ik k     . (28) 

For a freely propagating incident wave (a = 1), eqns (23), (25),(26) and (28) agree with 

eqns (6.142a) to (6.142d) of Cremer et al. 
4
. 

Define 

 
2

22 2 2

2

1 1 1

B B k

B B k
   , (29) 

where B1 and B2 are the bending stiffnesses of plates 1 and 2 respectively. 

Define 

    2 2 2 2 2 21 1j s s j s s           . (30) 

The ratios of the root mean square (rms) amplitudes of the propagating transmitted 

wave, the propagating reflected wave, the near field transmitted wave, and the near field 

reflected wave, to the rms amplitude of the forced incident waves, are 

 
    2 2 2 2 2 21 1 1 1 2a aj s s j s s

t
        




, (31) 

 
    2 2 2 2 2 2 2 21 1 2a aj s s j s s

r
           




, (32) 

 
    2 2 2 2 2 21 1 1 1 2a a

j

j s s j s s
t

        
 


, (33) 

 
    2 2 2 2 2 2 2 21 1 2a a

j

j s s j s s
r

            



. (34) 

For a freely propagating incident wave (a = 1), eqns (31) and (32) agree with eqns 

(6.147a) and (6.147b) of Cremer et al.
4
. 
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The transmitted bending wave power (Itx) in the direction of the positive x – axis per 

unit length of the plate junction is given by the following equation. 

 
2

2

2 2

2 2 1

Re 1
2

txI s
t

m c v 


 
  

 
 

, (35) 

where m2 and c2 are the mass per unit area and the bending wave speed respectively of plate 2 

and |v1+| is the root mean square velocity of the forced incident bending wave. 

The transmitted bending wave power (I) per unit length of the plate junction is only 

nonzero when 

  2 2 2 2sina i s    . (36) 

This gives 

 arcsini

a






 
  

 
. (37) 

Define the upper limit of integration as 

 

                if 
2

arcsin  if 

a

u

a

a


 




 






 

 
  
  

. (38) 

The power per unit length <Itx> transmitted to plate 2 by a forced diffuse bending wave 

field in plate 1 is given by 

 
2

2

2 2

02 2

Re 1 d
2

u

tx

i

I s
t

m c v







 
  

 
 

 . (39) 

where |v| is the root mean square diffuse transverse velocity in plate 1. 

If the transverse bending vibration in plate 1 is forced on one of its sides by a plane 

sound wave, with wave number ka in the fluid medium, travelling at an angle of  to the 

normal to plate 1, the wave number ki of the forced wave in plate 1 is (the geometry of the 

situation considered is shown in Figure 1 and Figure 2) 

  sini ak k  , (40) 

and 

 
 

1 1

sinai
a

kk

k k


   , (41) 

  
   2 2 2

2 2 2

2

1

sin sin
sin

a i

a i

k
s

k

 
   . (42) 
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Eqn (41) is the reason for the use of the subscript a on the variable a. 

The modulus squared of the wave impedance of plate 1 is 

 

    
2

2

2
4 4 4 2 8 4 2

1 1sin sin
p

a a

Z
k k k B



  


   

, (43) 

where η is the damping loss factor of panel 1. 

The power per unit length <Itx>a transmitted to plate 2 by a bending wave field in plate 

1, which is forced by an incident diffuse sound field in the fluid medium on one side of plate 

1, is given by 

 

 

   

2
2

22 /2
1

2 22 4 4 4 2 8 4
0 02 2 1

Re 1 sin

d d
sin sin

u

tx a
i

a a

s
t

B I

m c p k k k





 

   

 
 

 
 

   
  , (44) 

where |p| is the root mean square diffuse sound pressure. 

Define 

 
1 1 1

a

c c

k f
q

k f




   , (45) 

where ω and f are the angular frequency and the frequency and ωci and fci are the critical 

angular frequency and the critical frequency of plate i. The angular critical frequency and the 

critical frequency are the angular frequency and frequency respectively when the sound wave 

number ka in the fluid medium equals the bending wave number ki in the plate. It should also 

be noted that 

 2 22

1 1 1

c c

c c

fk

k f





   . (46) 

Figure 3 shows the transmitted intensity in plate 2 of a bending wave, forced by an 

incident diffuse acoustic sound field on one side of plate 1 in dB as a function of the ratio q of 

the wave number of the diffuse sound field to the freely propagating bending wave number in 

plate 1. The mean square sound pressure of the incident diffuse sound field is kept constant as 

q varies since it is not possible to meaningfully calculate the incident intensity for a forced 

incident wave. Plate 2 is assumed to have the same material properties as plate 1 and the 

infinite length joint is assumed to be pinned. The curve of Davy & Irwin is the right hand side 

of eqn (44) converted to decibels and normalized so that it is equal to 0 dB when q = 1. The 

curve of Davy & Irwin uses a damping loss factor of η = 0.03 because Villot and Guigou-

Carter
2
 performed their calculations for two plates of 10 mm thick gypsum plaster board. 
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The second author’s thesis
3
 contains very detailed derivations of the equations 

presented in this paper. It also contains a large number of graphs of the equations presented in 

this paper. This thesis is available for download from RMIT University’s research repository 

at http://researchbank.rmit.edu.au/eserv/rmit:160444/Irwin.pdf .Thus, in the interests of 

brevity, these derivations and graphs have not been included in this paper, with the exception 

of the very important Figure 3. 

4. COMPARISON WITH THE RESULTS OF VILLOT AND GUIGOU-CARTER 

Because some of the results given in this paper differ from those given by Villot and 

Guigou-Carter
2
, this section examines the differences and the reasons for those differences. 

Eqn (31) agrees with eqn (9) of Villot and Guigou-Carter
2
 apart from differing in sign. This 

difference in sign is due to the fact that the two plates are in the same plane in this paper, 

while in Villot and Guigou-Carter
2
 the second plate has been rotated through 90 degrees in 

order to form a right angled junction. Thus the velocity in the positive y-axis direction in the 

second plate becomes a velocity in the negative x-axis direction in the Villot and Guigou-

Carter
2
 paper. Note that the positive direction of the x-axis in figure 6a of Villot and Guigou-

Carter
2
 is incorrect. It does not correspond to the signs of the exponential exponents in their 

eqn (4). Also note that once the positive direction of the x-axis is changed in their figure 6, 

the positive direction of the z-axis also has to be changed in order to maintain a right handed 

co-ordinate system. 

The first error in the paper of Villot and Guigou-Carter
2
 is that they divide eqn (35) by 

the intensity of the forced incident wave on its own in order to obtain the transmission 

efficiency in their eqn (10). As shown in section 2, the calculation of the intensity of the 

forced incident wave on its own does not produce sensible results unless the incident wave is 

freely propagating. It is easy to see that eqn (10) of Villot and Guigou-Carter
2
 does not 

always produce sensible results. A normally incident plane sound wave forces a transverse 

velocity wave with zero wave number and infinite phase speed in plate 1. The zero wave 

number gives zero stand-alone incident intensity [see eqn (3.92) of Cremer et al.
4
] and hence 

infinite transmission efficiency using the approach of Villot and Guigou-Carter
2
. 

Examination of eqns (35) and (31) and energy conservation show that this cannot be correct. 

Eqn (10) of Villot and Guigou-Carter
2
 actually predicts zero transmission efficiency in this 

case because the equation for calculating bending wave intensity used by Villot and Guigou-

Carter
2
 actually assumes that the incident bending wave is freely propagating, which is not 

valid for an incident forced bending wave. 

http://researchbank.rmit.edu.au/eserv/rmit:160444/Irwin.pdf%20.Thus
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It should be noted that Villot and Guigou-Carter
2
 did not include the damping loss 

factor that occurs in eqns (43) and (44). 

The second error occurs in eqn (13) of Villot and Guigou-Carter
2
 which calculates the 

transmission factor when the incident plate is excited on one side by an incident airborne 

diffuse sound field. Expanding Villot and Guigou-Carter’s weighting functions in their eqn 

(13) produces a weighting function which contains the cosine of the incident angle of the 

incident airborne diffuse acoustic sound field which excites the incident plate. This cosine 

term should not be in the weighting function because the amplitude of the forced wave in the 

panel depends on the amplitude rather than the intensity on the surface of the plate of the 

incident airborne diffuse acoustic sound field. 

The integration in eqn (44) uses an angular weighting factor of sin() in order to 

account for the fact that there more solid angle for angles of incidence close to grazing 

incidence. This angular weighting is different from that used in eqn (13) of Villot and 

Guigou-Carter
2
. In the notation of this paper, Villot and Guigou-Carter evaluate an integral of 

the form 

  
/2

0 0

, d d
ak

i i i i iF k k k



   . (47) 

Since 

    sin , d cos di a i ak k k k    , (48) 

Villot and Guigou-Carter’s integral becomes 

      
/2 /2

2

0 0

, sin sin cos d di a a i iF k k k

 

        . (49) 

The extra cos() factor occurs when the incident sound wave intensity on a surface is 

being calculated. However, in this case, the rms amplitude of the forced transverse vibrational 

bending wave in plate 1 depends on the rms amplitude of the incident sound wave and not on 

the incident intensity of the sound wave on plate 1. Thus Villot and Guigou-Carter’s second 

error is the use of the cos() factor. 

Figure 3 compares the calculations graphed in figure 7 of Villot and Guigou-Carter
2
 

with those made in this paper. The curve of Villot and Guigou-Carter is inverted to give 

transmission rather than transmission loss and normalized using their resonant transmission 

value from their figure 7. 

The values of q for the curve in figure 7 of Villot and Guigou-Carter
2
 are calculated by 

taking the square root of the ratio of the frequency divided by the critical frequency. In figure 
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7 of Villot and Guigou-Carter
2
, the critical frequency is where their forced curve stops 

decreasing with increasing frequency and becomes almost constant above 3.4 kHz 

The freely propagating bending wave case is approximately 0 dB in Figure 3. The 

freely propagating case is also the 1q   case in Figure 3. This is because when 1q  , the 

freely propagating transverse velocity waves generated by coincidence dominate the vibration 

of plate 1. Coincidence occurs when the component of the acoustic wave number parallel to 

the surface is equal to the freely propagating transverse wave number of plate 1. When 1q  , 

the Davy & Irwin curve and the Villot & Guigou-Carter curve are both close to 0 dB. 

For values of q ≥ 1, the integral in eqn (44) is dominated by values of a close to one. In 

this case 

   1sinak k  . (50) 

Because the damping loss factor η is small (0.03), the denominator of the integrand in eqn 

(44) is close to zero when eqn (50) applies. This means that the integrand has a sharp 

maximum at a = 1. The effect is that the integral is relatively constant for q ≥ 1. Because the 

integral is normalized by dividing by its value when q = 1, the normalized integral is close to 

one which is 0 dB when q ≥ 1. 

The critical frequency occurs when q = 1. Above the critical frequency, where q ≥ 1, 

the two curves in Figure 3 agree well with each other. Below the critical frequency, the 

relative transmitted intensity calculated in this paper is much greater than that calculated by 

Villot and Guigou-Carter
2
. Hence it is not as obvious as claimed by Villot and Guigou-Carter 

2
 that the intensity transmitted by the forced waves can be ignored relative to that transmitted 

by resonant waves. The production of Figure 3 was the main aim of this paper. The 

identification of two errors in Villot and Guigou-Carter’s
2
 calculations meant that it was 

important to correct their calculations. This has been achieved in Figure 3 and large 

differences between the corrected calculations of this paper and Villot and Guigou-Carter’s
2
 

calculations have been identified below the critical frequency. 

5. CONCLUSION 

This paper derived the transmitted intensity due to forced incident waves at a junction 

for both the acoustic case and the case of two plates connected at a pinned junction It has 

shown that the intensity incident on an interface cannot be calculated as the difference of the 

intensity of the incident wave minus the intensity of the reflected wave unless the incident 

wave is freely propagating. The reason is that the cross terms which appear in the calculation 

of the intensity of the combined wave do not cancel unless the incident wave is freely 
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propagating. This means that it is not possible to define a transmission factor for forced 

waves as Villot and Guigou
2
 attempted to do. 

This paper has also shown that there are two errors in the derivation of Villot and 

Guigou-Carter
2
. These two errors have been shown to lead to Villot and Guigou-Carter

2
 

under estimating the transmission of forced bending waves relative to the transmission of 

freely propagating bending waves at a pinned junction of plates below the critical frequency 

of the plates. This means that it is not as obvious as Villot and Guigou-Carter have suggested 

that “the transmission of forced vibration can be neglected” at a junction of plates. 
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Figures 

 

Figure 1. The geometry of the situation considered in this paper. The y-axis points vertically 

out of the page. Medium 1 (or plate 1) occupies the volume x  0 (or the area x  0, y = 0) and 

medium 2 (or plate 2) occupies the volume x ≥ 0 (or the area x ≥ 0, y = 0). 
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Figure 2. The geometry of the situation when plate 1 is excited on one side by a plane sound 

wave. Plate 1 occupies the area x  0, y = 0 and plate 2 occupies the area x ≥ 0, y = 0.The 

geometry in the plane y = 0 is shown in Figure 1. The wave number vectors ki, k1 and k2 lie 

entirely in the plane y = 0. 
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Figure 3. The relative bending wave power per unit length transmitted at a pinned joint 

between two panels when the two panels have the same material properties. The first panel is 

excited on one of its sides by a diffuse sound field. The Davy & Irwin curve shows the 

calculations made in this paper, while the Villot & Guigou-Carter curve shows the 

calculations made by Villot and Guigou-Carter
2
. The x-axis variable, q is the ratio of the 

wave number of the diffuse sound field to the free bending wave number of the two identical 

panels. The critical frequency occurs when q = 1. The curves are normalized so that they 

equal 0 dB when q = 1. The mean square amplitude of the incident diffuse sound field is 

assumed to be constant when q is varied. 
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