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ABSTRACT 

Studies have demonstrated that more than 1 million Australians experience some sort 

of sleep-related disorder in their lifetime [12]. In order to improve the diagnostic and 

clinical treatment of sleep disorders, the first important step is to identify or 

automatically detect the sleep stages. The most common method, known as the visual 

sleep stage scoring, can be a tedious and time-consuming process. Because of that, there 

is a need to create or develop an improved automatic sleep stage detection method to 

assist the sleep physician to efficiently and accurately evaluate the sleep stages of 

patients or non-patients.  

This research project consisted of two parts. The first part focused on the automatic 

sleep stages detection based on two individual bio-signals, which made up an overnight 

polysomnography (PSG), such as the electroencephalogram (EEG), and 

electrooculogram (EOG). Several features were extracted from these two bio-signals in 

the time and frequency domains. The decision tree and classification methods were 

utilised for the classification of the sleep stages.  

The second part of this project focused on the automatic classification of different sleep 

and psychiatric disorders, such as patients with periodic limb movements of sleep 

(PLMs), sleep apnea-hypopnea syndrome (SAHS), primary insomnia, schizophrenia 

and healthy sleep. Different PSG parameters were computed for the classification of 

sleep disorders, such as descriptive statistics of sleep architecture.  In conclusion, the 

advantage of an automatic sleep stage detection method based on a single-channel EEG 

or EOG signal can be undertaken with portable sleep stage recording instead of full the 

PSG system, which includes multichannel bio-signals. An automatic classification 

method of sleep and psychiatric disorders based on the descriptive statistics of sleep 

architecture statistics was found to be an effective technique for screening sleep and 
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psychiatric disorders. This classification method can assist physicians to quickly 

undertake a diagnostic procedure.   
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1.1 Introduction  

Scientists have indicated that sleep covers approximately one third of a human being`s 

life. Sleep refers to a period of consolidation of memory and brain recovery. In almost 

1000 years ago, scientists wrote about sleepiness and sleep, indicating that the 

regulation of sleep is associated with heat resulted by human body [1]. Since this period, 

many scholars have offered different opinions in relation to sleep [2]. It has been 

pointed out in several studies that sleep is critical for energy preservation, for the 

restoration of biosynthesis (a simple structure converted to a complex structure in living 

organisms), facilitating learning and memory. When an individual is sleeping, the mind 

is strengthened, and motor functioning and performance are improved [3, 4]. It has been 

suggested that sleep is linked to metabolic function and obesity [5]. Furthermore, short 

and fragmented sleep has been associated with an increase in susceptibility to the 

common cold [6]. Sleep can impacts negatively on aspects of cognition, like vigilant 

attention, and public health [7, 8]. Sleep restriction or disorders can lead to sleepiness 

and may result in the involuntary onset of sleep, (falling asleep) causing car/truck 

accidents [9, 10, 11]. Changed wake/sleep patterns can impact negatively on the 

performance on neuropsychological tests and also in shift work [9].  

Over a third of a century ago, Rechtschaffen and Kales (R&K) introduced a sleep 

manual with rules to detect different stages of sleep, using overnight polysomnography 

(PSG) [12]. Around a decade ago the American Academy of Sleep Medicine (AASM) 

revised and expanded the rules to encompass not only the sleep stages but also other 

abnormalities, including respiratory and cardiac events [13]. Sleep has been monitored 

through PSG with electrooculogram (EOG), electromyography (EMG) and 
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electroencephalogram (EEG) electrodes and different sensors. Sleep stages are scored 

or classified using central EEG, left and right EOG, and chin EMG [12]. The manual 

scoring of sleep is a subjective and time-consuming process; hence, there is a demand 

for comprehensive and better automatic techniques that can be applied more easily, and 

can be used in experimental and clinical, ambulatory research.  

Feature extraction is an important tool in the development of scoring algorithms for the 

detection of sleep stages. Most previous scoring algorithms depended on 

computationally undemanding, time-domain analyses, such as period amplitude [14] or 

the interval histogram method [15]. Most of these algorithms use 20- or 30-second 

epochs for EEG signal sleep stage classification either according to the R&K or AASM 

rules [16, 17]. However, there is some debate within the sleep research community in 

connection with the R&K or AASM sleep stage rules [18]. These rules might be 

accurate only for healthy young subjects and use a tentative resolution based on 20- or 

30-second epochs to identify the different sleep stages. Therefore, in this thesis the 

candidate has attempted to develop an algorithm for automatic sleep stage detection 

based on consecutive and non-consecutive, 6-second sub-epoch EEG. On the other 

hand, the scalp EEG electrodes placement may cause sleep disturbance due to using 

many electrodes during the recording. Therefore, in this thesis the candidate has 

attempted to utilise a single EEG electrode for automatic sleep stage detection. 

  This thesis attempts to address the following sets of research questions. The first set 

focuses on sleep stage detection as follows: 

1.   Which of the PSG signals are the most efficient in the detection of the different 

sleep stages?  
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2. Can the EOG signal be used to automatically detect the sleep stages as an alternative 

to the EEG signal? 

3. What feature extraction parameters from the PSG signals are most suitable to 

distinguish and characterise various sleep stages? 

The second set of research questions focus on the sleep disorder classification as 

follows: 

1. Are there significant differences in the PSG signals characterising healthy 

subjects and patients with various sleep disorders? 

2. Can these differences be utilised to develop a screening method that can 

effectively classify various sleep disorders? 

1.2  Motivation  

In Australia, the prevalence of sleep disorders has been studied over different 

age groups in the general population [19]. In 2010, approximately 1.5 million people 

(8.9% of the population in Australia) were diagnosed with a sleeping disorder that 

included 199,000 people with restless limb syndrome (RLS) (1.2%), 492,000 with 

primary insomnia (3%) and 775,000 in the obstructive sleep apnoea (OSA) (4.7%) [12]. 

The direct annual cost, including health care and medication is estimated to be $10 

billion. The indirect costs (i.e. increased traffic accidents and work, reduced 

productivity and other medical illness vulnerability) can reach $100 billion [19].  

Various theories have been proposed to explain the physiological function of sleep [3]. 

However, no universally accepted theory exists. Therefore, for individuals to 

comprehend their sleep function, disorders and physiology, extensive sleep-monitoring 

studies should be undertaken on different subjects for an extended duration. This 
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necessitates objective evaluation methods for the sleep process. The recording of sleep 

stages is vital to the clinical treatment and analysis of sleep disorders. The information 

obtained from the sleep stages is significant because it can be utilised in estimating 

respiratory disturbances in various stages of sleep. 

1.3 Research aims 

The research aims can best be presented in the following manner: 

1. Develop an automatic sleep stages detection method: 

a. By utilising  only EEG signal for the detection of all sleep stages based 

on the: 

i. consecutive or non-consecutive EEG sub-epoch approach;  

ii. evaluation of the most suitable spectral estimation methods 

(nonparametric or parametric);  

iii. evaluation of the most effective consecutive or/and non-

consecutive EEG sub-epoch approach with different sleep 

disorders and ages;  

b. By utilising only the EOG signal for the detection of all sleep stages 

based on the: 

i. most suitable EEG and/or EOG feature extractions related to the 

sleep stages. 

2. Develop an automatic classification of sleep disorders:  

a. By utilising sleep architecture parameters and rules based on PSG sleep 

stage parameters; 
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b. Investigating the significant difference in architecture parameters 

between healthy and non-healthy sleep. 

1.4 Objectives 

The general objective of this research is two-fold: firstly, to develop an automatic sleep 

stage detection method based on the EEG and/or EOG signals; secondly, to utilise the 

PSG features of sleep stages to develop an automatic sleep disorders classification 

system. The advantage of an automatic sleep stage detection method based on EEG or 

EOG signals can be utilised with portable sleep stage recording instead of using 

multichannel PSG signal. Classification of sleep disorders based on an automatic 

system can be improved with screening or diagnostic procedures which can be a faster 

and easier method. 

1.5  Thesis composition  

This thesis is organised in the following manner: 

Chapter 1 presented an introduction to the research. This preamble included the 

motivation, research approach, and objectives.  

Chapter 2 gives an introduction to sleep and its basic concepts. Polysomnography and 

sleep variables are defined as the tools for the detection of the sleep stages. This chapter 

describes the difference between the R&K and AASM rules. An overview of automatic 

sleep stage detection and a description of its components is also presented.  

Chapter 3 describes the data and methodology used for the development and validation 

of the algorithm.    

Chapter 4 describes the methods of automatic sleep stage detection.   

Chapter 5 describes the classification method for the sleep disorders.      
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Chapter 6 presents in detail the results of the validation of the algorithms.  

Chapter 7 discusses the significance and limitations of the algorithms. 

Chapter 8 presents a summary of the research contributions and also provides future 

works. 
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2.1 Basis of Sleep 

The sleep phenomenon has gained reasonable scientific interest for an extended time. 

Sleep refers to a behavioral state that varies from wakefulness by a loss of reactivity 

readily and reversible in relation to events within one`s environment [20]. The 

reversibility of sleep differentiates it from other types of states of consciousness, such 

as altered states of consciousness like the state of anesthesia or coma characterised by 

unresponsiveness and others. Different theories offer insight about the reasons that 

people sleep. According to the passive theory, sleep occurs because of a lack of sensory 

stimulation or to prevent tiredness [3, 21]. For many years sleep was considered as a 

passive state of the brain and the opposite of wakefulness [22]. It was assumed that the 

excitatory regions of the brainstem and other areas of the brain get exhausted and turn 

inactive. Hence, sleep was brought about by this inactiveness. The active theories also 

indicate that the brain aggressively deters consciousness [22]. 

Prior to the neurophysiologic analysis of sleep, the depth of sleep was assessed 

behaviourally [23]. Applying data from 211 nights, Michelson attested earlier 

documentation that sleep depth (estimated as arousal threshold) reached its maximum 

within approximately one hour after an individual fell asleep. In the course of the night, 

several sleep depths were indicated as many as four maxima and minima before the 

lowest depth of sleep during the morning [23]. Deep sleep was later interrelated to 0.5-

3Hz low brain waves [24]. The effects of sleep deprivation were measured on several 

consequences, counting heart rate, memory, and urine examination [25]. Loomis et al. 

[26] undertook the first organized and systematic neurophysiologic recordings of sleep.  
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2.1.1  Non-Rapid Eye Moment Sleep 

NREM is the classifications of deep sleep N3 (S3, S4) and light sleep N1, N2 (S1, S2). 

Deep sleep is also known as slow wave sleep (SWS). Sleep stage N2 (S2) is featured 

by K complexes (KC) and sleep spindles (SS). The abbreviations, MT (movement 

time), W, S1, S2, S3, S4 and SREM (sleep rapid eye movement), are obtained from the 

old standard of R&K (1968) [12] and R, W, N1, N2, N3 are derived from the standard 

of the AASM [13] (the difference between these two standards will explained in section 

2.3). 

An intensification of NREM sleep, especially during SWS, has been linked to 

recovery from a deficiency of sleep [27]. In NREM sleep, depolarization of cortical 

neurons occurs and fire tonically (the same as quiet wakefulness). However, the 

depolarization upstates are interrupted by short, hyperpolarized downs-states while the 

neurons stay silent [28]. 

The SWS part of NREM sleep is fundamental of the markers of the regulation 

of sleep [27]. Studies demonstrated that extended wakefulness led to an increase in the 

quantity of SWS in the subsequent recovery of sleep [29]. An EEG delta (0.5-4 Hz) 

power is applied instead of the visually scored SWS. This can be known as slow wave 

activity (SWA). Alteration in SWA and SWS have been found in various experimental 

paradigms [30]. After a total sleep deficiency, recovery sleep indicates an increase in 

the quantity of SWS [31].  

2.1.2  Rapid Eye Movement Sleep 

Approximately 140 years ago, Griesinger`s studies suggested a link between somatic 

muscle and twitching of the eyelids during sleep [32]. In 1877, Dewar recorded eye 

movements using an electrical method and it was found that the electrical potential 
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occurred due to involuntary activities of the eyeball [33]. The early assessments 

presumed that the recorded potential included action-potential (the electrical membrane 

potential of a muscle rapidly increases and decreases) emerging from the ocular muscle 

[34]. Later, it was established that the recorded activity was due to the corneo-retinal 

potential (which is the remaining potential among the cornea and retina) [35]. However, 

it took long studies (until 1953) when Aserinsky and Kleitman discovered the rapid eye 

movement (REM) in the course of sleep [36].  

A growing interest emerged in regards to assessing eye movement during sleep 

after Kleitman and Aserinsky`s work. The density of REM (DREM) and REM sleep 

was linked to sleep, essentially after 1969 [36]. According to Aserinsky, DREM occurs 

almost after seven to ten hours of sleep [36]. The density of eye movement reduces 

during recovery sleep after the occurrence of sleep deprivation [37]. Lucidi and 

colleagues found that a reduction in the density of REM parallels an upsurge in SWS 

[38]. De Gannaro and colleagues also reported on the similar results [39]. 

 The density of eye movement is increasing in REM sleep periods followed by 

periods of awakening then followed by NREM sleep [40]. The density of eye movement 

has been recorded to be highest in 5-10 minutes after the beginning of the REM sleep 

period followed by a significant reduction after 10 minutes [41]. The density of eye 

movement has approximately a 10-minute periodicity [42].  

2.2 Sleep disorders and psychiatric disorder 

 Sleep disorder refers to a medical condition, also known as somnipathy [43]. 

Contemporary studies have argued that severe sleep disorders can interfere with the 

normal mental, social, emotional and physical functioning of an individual [44]. 

Actigraphy (a non-invasive technique for monitoring human activity period) and 
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polysomnography (PSG) (more information in section 2.4) are some of the common 

tests that have been used in the diagnosis of sleep disorders.  

Lack of quality sleep has been associated with adverse impacts on emotional balance, 

energy, and health. People with good health usually tend to have quality sleep while 

those suffering from repeated disorders of sleeping might have an underlying severe or 

minor mental or medical problem. Evidence indicates that even minimal sleep loss puts 

a toll on people`s moods, wellbeing and their ability to cope with stress [44].  

2.2.1       Primary insomnia 

Subcategory insomnia complaints commonly include difficulty in initiating (sleep onset 

insomnia) or/and maintaining sleep. They include extended periods of sleep onset 

insomnia or/and maintaining insomnia amounts of nighttime sleep [45]. The diagnostic 

and symptom category of insomnia are best denoted by their subcategory. These 

subcategories are described by different combinations of repeated sleep problems with 

sleep duration, initiation, quality and impairment during the daytime [43]. Insomnia 

complaints can be associated with the perception of non-restorative or poor quality 

sleep even if the quantity and quality of sleep episodes are perceived as adequate or 

regular. The meaning of insomnia being a complaint of sleep maintenance, sleep 

initiation, non-restorative sleep or associated with daytime impairment [46].  

    Primary insomnia can comprise both extrinsic (the body effected by outside factors) 

and intrinsic (the body effected by inside factors) factors involved in their etiology. 

They are not regarded as being secondary to another disorder [43]. The National 

Institutes of Health Consensus Development Conference for Insomnia in 2004 led to a 

promotion of comorbid insomnia term to differentiate primary insomnia from forms 

due to other sleep disorders, psychiatric and medical disorders and insomnia due to drug 

or medication use [43, 47].  The term, primary insomnia, is applied in the Diagnostic 
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and Statistical Manual of Mental Disorder (DSMMD) and is listed in the International 

Classification of Disease (ICD) [48, 49, 50]. Hence, it has a significant advantages for 

use as a global categorization of insomnia.  

The ICSD defines primary insomnia as a syndrome consisting of paradoxical insomnia, 

psychophysiological insomnia, and idiopathic insomnia [51]. Primary insomnia is 

regarded as a difficulty in maintaining sleep (early morning awakening or mid-sleep 

awakening), a difficulty in initiating sleep (sleep onset insomnia) or even non-

restorative sleep which is chronic and persists for more than three weeks, 

notwithstanding that one has adequate opportunity for rest/sleep and it impairs daytime 

performance [52,53]. 

 Many abnormalities (see Table 1) have been reported with primary insomnia patients 

[54]. These can be measured using PSG, with a particular focus on the REM stage and 

N1 stage.  It has been reported that patients with primary insomnia most often suffer 

from difficulty falling asleep as well as intermittent wakefulness during sleep [53]. 

Moreover, the PSG characteristics in primary insomnia patients show an increase in N1 

and a decrease in sleep efficiency (SE) [53]. Table 1 describes the PSG features of 

primary insomnia disorders.  

Table 1: Polysomnographic features for primary insomnia disorders 

PSG features of primary insomnia 

Increase in N1 sleep stage 

Increase in Sleep latency (SL) 

Increase in REM sleep 

Decrease in total sleep time (TST) 

Increase in N1 sleep stage 

Decrease in sleep efficiency (SE) 
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2.2.2       Periodic limb movement syndrome 

The periodic limb movement syndrome (PLMs) is when a person is unaware of the limb 

movements caused by muscle contractions during sleep [1, 55]. The episodic limb 

movement condition occurs during sleep as an independent disorder of highly 

stereotyped and repetitive limb movements [56]. It is often associated with the 

syndrome of restless legs [56, 57]. Abnormal considerations include more than five 

involuntarily movements per hour in sleep whereby each limb movement lasts between 

0.5 to 5 seconds [55, 58].  

Periodic leg movement disorder is associated with a dopamine (in the brain it is a 

function as neurotransmitter) responsive disorder, and can be improved through 

dopaminergic agonistic management [50]. It has been reported that PLMs occur at night 

during the interval before a person enters REM sleep [50].  According to ICSD that 

PLMS occur in N1 of the sleep period before reaching REM sleep [50].  Moreover, 

during the REM period of sleep, an individual`s voluntary muscles are paralysed, 

keeping them from acting out their dreams. The characteristics of PSG of PLMs are 

summaried in Table 2. 

Table 2: Polysomnographic features of PLMs syndrome  

PSG  features of PLMS 

Increase in N1 sleep stage 

Decrease in N2 and N3 sleep stage  

Absent during REM sleep 

 

2.2.3     Obstructive sleep apnea-hypopnea syndrome 

Obstructive sleep apnea-hypopnea syndrome (OSAHS) has increased in the last 50 

years, causing significant mortality and morbidity in both the developing and developed 

countries [59]. It causes daytime sleepiness [60]. Hypopnea and apnea are reasoned by 
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the airway being blacked during inspiration at sleeping periods. This condition occurs 

when the upper airway dilating muscles (striated muscles) normally relax when 

sleeping [59]. Patients with OSAHS have no ability for their dilating muscles to oppose 

the negative pressure in the airway in the course of inspiration [59].  

Moreover, most patients have narrow upper airways. The upper airway patency is kept 

by dilating muscles and it has a higher activity during awake patients. However, in the 

course of sleep, the muscle tone decreases, narrowing the airway [61, 62, 63]. This may 

cause snoring with a subsequent airway obstruction and the apnea is episodes. The 

features of this case are hypercapnia, hypoxemia, changes in the large intra-thoracic 

pressure (120 mm Hg) and increases in systemic pressure of blood up to 250/150 mm 

Hg, which is linked to sleep fragmentation and sleep arousal of up to 100 times per hour 

[59, 61, 62, 63, 64 ].  

The consequences OSAHS include social and neurobehavioral differences, such as: 

impaired vigilance, excessive daytime sleepiness, cognitive dysfunction, and mood 

disturbances. Sleepiness can lead to the inability to work efficiently, prevents 

socialising and can ruin interpersonal relationships [61]. Current studies have 

demonstrate that sleep-related disorders such as obstructive sleep apnoea may increase 

the risk of stroke or death [65]. The clinical examination is limited and not sufficiently 

sensitive; therefore, the PSG features are very important and required for screening the 

Obstructive sleep apnea (OSA) patients.  For example, it has been reported that the 

characteristic of PSG with OSA patients during sleep is shown increase in sleep N1 and 

N2 stage, as shown in Table 3 [1]. 
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Table 3: Polysomnographic features of Obstructive sleep apnea 

PSG features of 

 OSA 

Increase in N1 and N2 sleep stage  

Decrease in N3 sleep stage  

Decrease in REM sleep stage  

Increase of frequency of arousals 

  

2.2.4 Schizophrenia 

    Schizophrenia is a sleep mental disorder, with this ratio of one in one hundred people 

that are diagnosed [66]. This disorder affects human on psychiatric perceptions, 

emotions behavior and thoughts [66]. Sleep problems in individuals with schizophrenia 

are a familiar occurrence [66]. Although there is no evidence that sleep disorders lead 

to psychiatric disorders, there is a link between sleep and psychiatric disorders, like 

depression and schizophrenia, with studies indicating that psychiatric disorders are the 

leading cause of sleep disorders [67]. Disturbed sleeping patterns are often found in 30-

80% of patients with schizophrenia, and it mainly depends on the extent of the psychotic 

symptomatology [68, 69]. According PSG analyses, total sleep time and sleep 

efficiency typically decrease, while increased latency of sleep are found for patients 

with schizophrenia, as shown in Table 4. Studies have reported alterations in N2 sleep 

stage, REM and SWS, with decreasing REM and REM latency [68, 70]. Some evidence 

has indicated that patients with schizophrenia have a higher risk of experiencing sleep-

linked breathing disorders, more especially the groups who are overweight and have a 

long-term use of antipsychotics [68]. It is unclear whether restless legs syndrome or 

periodic leg movement during sleep are found in lower or higher occurrence in 

schizophrenic individuals [68]. There is no consistent impact of the first-generation 

antipsychotic medication on sleep continuity, as well as a measure of sleep structure, 

including REM latency and sleep stages [71, 72].   
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Table 4: Polysomnographic features of schizophrenia disorders  

PSG features of schizophrenia 

Increase in SL 

Decrease in SE  

Increase in wake time after sleep 

onset (WASO) 

Decrease in  N3 sleep stage 

Decrease in REM sleep 

 

2.2.5 Classification of sleep disorders 

The classification of sleep disorders is essential to differentiate between 

disorders and enhance the understanding of etiology (that is used to study the cause of 

sleep disorder phenomena), pathophysiology and symptoms that can enable appropriate 

treatment [42, 73]. The earliest systems of classification primarily distinguished 

between sleep disorders depending on the main symptoms and abnormal events 

occurring in sleep, excessive sleep and insomnia. Hence, the earliest systems of 

classification were not based on the pathophysiology of sleep since the causes of most 

disorders were unknown [42, 74]. The first noteworthy classification of sleep disorders 

was published as the ‘Diagnostic Classification of Sleep and Arousal Disorders’ [75]. 

In 1993, a significant effort was made to publish the International Classification of 

Sleep Disorders (ICSD) as a collaboration between different international sleep 

societies, such as the American Sleep Disorders Association (ASDA), the European 

Sleep Research Society, the Japanese Society of Sleep Research and the Latin American 

Sleep Society [76]. The ICSD has been extensively utilised by clinicians and is essential 

for diagnostic, epidemiologic (which deals with the study of the patterns, causes and 

the effective control of disease in the population) and research purposes.  



39 

 

The ICSD version 2 (ICSD-2) was disseminated in 2005, and is currently 

undergoing further amendments [50]. It integrates symptomatic presentation, such as 

insomnia with one structured in part of the pathophysiology (i.e circadian rhythms 

[changes in mental, physical and behaviour during a 24-hour period]) and body systems 

(i.e breathing disorders). This systematic structuring of sleep disorders is crucial since 

the pathophysiology of various disorders is still not well-known. The ICSD-2 offers 

relevant epidemiological and diagnostic knowledge on sleep disorders for easier 

differentiation from the other emerging disorders [50]. According to the ICSD, there 

are more than 80 types of sleep-related disorders; among the most common are sleep 

apnoea, snoring, insomnia, circadian rhythm and parasomnias [77].  

2.3  Visual sleep stage scoring 

The quantitative visual sleep stage scoring includes sleep stage or event epoch 

marking, analysis and counting [13, 78]. Events include eye movements, K complexes 

and sleep spindles. A standard approach to visual analysis includes the segmentation of 

sleep into 20 or 30 second epochs of movement time (MT), wakefulness (W), sleep 

stages S1, S2, S3 and S4 from EOG, EMG and EEG .With visual scoring, this data is 

required to offer consistent, practical and quantitative sleep structure or architecture 

information [79]. Determining the sleep stages is crucial in the clinical treatment and 

the diagnosis of sleep disorders [80].  

Alongside sleep staging, polysomnography comprises simultaneous reports of 

various other sleep signals, such as cardiac activity (ECG), blood oxygenation (oxygen 

saturation - SpO2), and respiration (thermistor, thermocouple). These signals serve as 

vital measures in the clinical assessment for sleep disorders, as depicted in the ICSD 

manual [76]. As indicated by Schulz [81], visual sleep staging has undergone an 
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evolution that led to a standardisation of the rules by Loomis in the 1930s [26], 

Aserinsky and Kleitman in 1950s [35] and by Rechtschaffen and Kales in 1960s [12].  

2.3.1      The Rechtscaffen and Kales scoring rules  

Recognising the importance of the ever-increasing need for standardising sleep 

scoring, a committee was formed comprising the members of the sleep research society 

in order to create a standardised scoring manual [82]. Rechtschaffen and Kales (R&K) 

formed standard criteria that segmented sleep into the sleep stages of REM S1, S2, S3, 

and S4, wakefulness and movement time (MT) based on characteristics of the EMG, 

EOG and EEG [12, 83]. The SWS is visually defined as waves of lower frequency 

(below 2Hz), having an amplitude greater than 75 V (peak to peak). An epoch is 

described as stage S3 when at least 20% of the epoch (20 seconds) includes SWS and 

is scored as S4 when more than 50% of the epoch (20 seconds) includes SWS. Stages 

S4 and S3 are known as SWS and the amplitude is measured from the C3-M2 or C4-

M1 channels. M2 and M1 are mastoids, and are used as reference points to measure 

EEG potentials. Any epoch that does not satisfy S4 or S3 criteria belongs to another 

sleep stage [84].  

The S1 stage of sleep is described as relatively low voltage and mixed-frequency EEG 

with an activity prominence within the range of 2 to 7Hz. The vertex sharp waves from 

EEG are rarely as high as 200 V appear in S1. Also, the S1 stage can be described by 

slow eye movements. When alpha activity is less than 50% of the epoch and with 

relatively mixed-frequency, and low-voltage is at least 50% of the epoch, the epoch is 

classified as stage S1.  Sleep spindles or K complexes denote stage S2.  Also, S2 is 

classified when a time interval is less than 3 minutes between sleep spindles and/or K 

complexes without a sign of pronounced increase or movement arousal of the muscle 

tone. The REM is relatively low-voltage, mixed-frequency EEG in connection with low 
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amplitude EMG and episodic REM [12, 84].  Moreover, detailed rules exist for the 

offset and onset of REM. Fundamentally, REM duration is continuously scored as an 

REM stage until muscle tones are amplified or spindles appear.  

2.3.2  The American Academy of Sleep Medicine scoring rules 

The American Academy of Sleep Medicine (AASM) scoring rules represent the 

development and evolution of the 2007 manual with an objective of consolidating, 

standardising and restructuring the original (R&K) sleep staging standard rules [13,85]. 

A major revision to the earlier scoring included changes to EEG electrodes placement 

of the frontal position to the typically used occipital and central position [13, 81]. 

Another change included the reclassification of sleep stages to stages N1 to N3 (non-

REM),W and R for REM stages [80]. The alteration of abbreviations was to prevent 

confusion between the two standards of classification whereby the stage S3 and S4 (in 

R&K rules) were joined to form stage N3, since no clinical or physiologic basis had 

been discovered for a difference between stages S4 and S3 [51, 86].  

Other notable changes included an alteration to the PSG data analysis, which has 

potential clinical effects [13]. For instance, large variance in the indexes of adult apnea-

hypopnea when using the recommended AASM rules versus the earlier rules (“if there 

was > 50% airflow reduction alone or a lesser airflow reduction associated with ≥ 3% 

desaturation or ≥ 3-sec EEG arousal”), a decrease in sleep N2 with an increase in sleep 

N1, and transitions of sleep due to a rule prevailing transition from sleep N2 to N1, 

increased sleep N3 in adults with the addition of  the EEG frontal electrode, enhanced 

slow wave detection and enhanced reliability of inter-scorer [87].  

2.4  Polysomnography and Hypnogram 
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Polysomnography (PSG) assesses comprehensive sleep using numerous electro-

physiological signals. It is the gold standard for measuring sleep stages [88]. Also it 

identifies stage-dependent pathologies and determines severity and cause [89]. The 

PSG studies are utilised by clinicians to analyse sleep quality in individuals who have 

sleep disorders or in research studies for both patients and normal subjects [90]. The 

PSG can be recorded in a laboratory or at home. It can also investigate the effectiveness 

of therapeutic regimens. In 1997, the AASM issued practice parameters or signals for 

PSG and related processes, including cardiorespiratory and oximetry studies that were 

later updated in 2005 [91].  

In the course of PSG studies, numerous electrodes were placed on the individual to 

measure activities of the eye, brain, heart, and muscles movement [92]. These signals 

were interpreted by sleep technologists to create an extensive sleep report of the 

individual`s night sleep. Table 5 shows some of the recommended parameters or signals 

to be reported for PSG, such as sleep scoring data, and arousal, respiration, cardiac and 

movement events according to the AASM standards [13]. 

Table 5: The recommend parameters to be reported for PSG during sleep [13].  

Parameter Sleep scoring 

data 

Arousal 

events 

Respiratory 

events 

Cardiac 

events  

Movement 

events  

EEG and 

EOG 

derivation 

Light out clock 

time (hr: min) 

Number 

of arousal  

Number of 

obstructive 

apneas 

Average 

heart rate 

during sleep 

Number of 

PLMS 

Chin EMG Total Sleep Time 

(TST; in min) 

Arousal 

index 

Number of 

mixed apneas 

Highest 

heart rate 

during sleep  

Number of 

with arousals  

Leg EMG 

derivation 

Total recording 

time (light out to 

light in min) 

Number of 

central apneas 

Highest 

heart rate 

during 

recording  

PLMS index 

Oxygen 

Saturation 

Percentage of SE  Number of 

hypopneas 

PLMS 

arousal index 

Airflow 

parameters 

Time in each 

stage (min) 

Hypopnea index 

Body 

Position 

Percentage of 

TST in each 

stage 

Respiratory 

effort linked to 

arousal  
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  The AASM has developed different recommendations for PSG for various sleep 

disorders [91]. The PSG with extended video and EEG are recommended for violent 

sleep behaviors, sleep walking, REM sleep behavior disorders (RBD: patients 

physically act out their dreams), and forensic cases [91]. For cases of parasomnia 

(undesirable behavioural or experiential events associated with sleep), PSG is unusual. 

In cases of narcolepsy (condition characterised by extreme tendency to daytime 

drowsiness), PSG is combined with the multiple sleep latency test (MSLT, a diagnostic 

tool for sleep disorder) that should be performed the following day. In nocturnal 

seizures, PSG with extended tibialis EMG, video and EEG are recommended [91]. 

PSG requires considerable capital investment in health-care, dedicated, well-trained 

technical staff and accurate bed space. The interpretation of the generated PSG data is 

a time-consuming process overall, with the cost of undertaking signals overnight PSG 

assessment or recording estimated to range between $1,000 and $2,000 [93].  

A hypnogram is sleep architecture that represents a form of polysomnography or a 

graph that depicts the stages of sleep in relation to time. A hypnogram allows for the 

identification of different stages of sleep, including NREM and REM. Typically, a 

hypnogram derived from night-long sleep recordings can graphically summarise the 

stages of sleep a person experiences. The hypnogram usually indicates the descent from 

W to stage N1 (lasting between 1 and 7 min), N2 (the duration between 10 and 25 min), 

N3 (can lasting up to 40 min) and REM (can lasting up to 90 min) [12, 94]. The duration 

of the cycle of sleep stage NREM-REM is expected to be between 90 and 120 minutes, 

and might be repeated between 4 to 6 times per night. Figure 1 shows a hypnogram 

sample with the sleep stage and its time duration. 
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Figure 1: Hypnogram sample, where the y-axis indicates the sleep stages and the x-axis indicates time 

(epoch) [95]. 

 

2.4.1  Electroencephalography (EEG) 

EEG measures and spontaneously records the electrical activity of the brain 

from the scalp [96]. It evaluates voltage potentials resulting from the ionic flows of 

current within the brain neurons. EEG includes multiple electrodes placed on the scalp 

[96].  

The brain waves generated by the EEG system comprise various frequency 

bands, such as delta, alpha, theta and beta wave bands [97, 98], as shown in Figure 2. 

Delta waves range from 0.5 to 4 Hz frequency with 20 to 400 V amplitude, and occur 

during low brain activity, such as medium anaesthetic state and deep sleep [99]. Alpha 

waves range from 8 to 13 Hz frequency with a 2 to 10 V amplitude range. They are 

usually recorded when a person is awake with closed eyes and in a mental and physical 

state of rest. Beta waves are recorded at higher frequencies, ranging from 13 to 30Hz. 

Their amplitudes range from 1-5 V [100]. Beta waves are observed at concentrated 

attentions during the mental working state and also during the REM stage of sleep.  
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Figure 2:  EEG frequency bands, where the y-axis indicates EEG frequency bands and the x-axis 

indicates time per second (sec) of the brain [101]. 

EEG signals can differentiate the stages of sleep. There are five phases observed 

in one’s NREM sleep. The Phase 0 wakefulness stage is characterised by low amplitude 

EEG levels and has two frequency bands – an alpha band of 8–13 Hz and a beta band 

of 13–30 Hz. Alpha waves are hallmarks of this stage. The Phase 1 stage, associated 

with drowsiness, is distinguished by higher EEG amplitude levels than the wakefulness 

stage, and theta bands of 4–7 Hz are more dominant. Two important events, known as 

the sleep spindle and the k-complex, occur during the Phase 2. The sleep spindle event 

has a frequency range of 12–16 Hz and can also be present in the Phase 3. Slow wave 

sleep (SWS), one of the hallmarks of Phases 3 and 4, has a lower frequency range of 

0.5–2 Hz but also exhibits higher amplitude EEG levels than the other stages [98]. Table 

6 shows the NREM sleep phases and their features. 

Table 6: NREM sleep phases and their characteristics [95]. 

NREM Sleep Phases Characteristics  

Phase 0 (wakefulness) Low-amplitude EEG, alpha rhythm (8–13 Hz) 

prominent over occipital regions. 

Phase 1 Low-amplitude mixed-frequency and low-

amplitude EEG pattern, with theta (4- 7 Hz) 

rhythm.  

Phase 2 EEG with one or more non-arousal KCs or one 

or more trains of SSs. 

Phase 3 and 4 Low-frequency deep sleep EEG activity. 
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REM sleep refers to the dream state and dreams experienced in this stage can be 

remembered while in the wakefulness state [101, 102]. This REM stage is usually 

interspersed between the other stages of sleep, and is linked with low-amplitude EEG, 

deprived of KCs or SSs, REMs and low chin EMG tone activity [96]  

2.4.1.1  10-20 EEG electrode placement system 

10-20 system of EEG electrode placement refers to the technique used to depict 

the location of the scalp electrodes [103, 104,105]. Scalp electrodes are applied in 

recording EEG through a machine known as an electroencephalograph. The EEG brain 

activities are generated from activities of thousands of neurons within the brain. The 

variation of patterns demonstrates the changes of an individual's state. For instance, a 

relaxed state shows slow EEG waves (8 to 13 Hz) and a state of arousal shows faster 

waves (13 to 30 Hz) [105].  

The 10-20 system is usually applied to describe the scalp electrode positioning 

of EEG recording [105, 106]. The objective of a 10-20 system is to standardise 

electrode positions or locations, with the numbers, 10 and 20 describing the distances 

between adjacent electrodes which are set at 10% or 20% of the right-left or front-back 

of the skull distance [105].  

The 10-20 system is based on the connection between the location of a given conductor 

and the fundamental area of the cerebral cortex [107]. Each brain area has a letter for 

the lobe and hemisphere location. The letter O, P, C, T and F stand for the occipital, 

parietal, central, temporal and frontal respectively [108]. For example, the letter, C, 

represents the central lobe, z (zero), which is the electrode placed on the midline, and 

the even numbers (2, 4, 6 and 8) denote electrode positions within the right hemisphere 
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whilst the odd numbers (1, 3, 5 and 7) denote the left hemisphere [105, 107].  Figure 3 

shows the electrode positions of the 10-20 system.  

 

 

Figure 3: The EEG electrode positions of the 10-20 system [101]. 

 

2.4.2 Electrooculogram  

 Electrooculography (EOG) is a method that records the cornea-retinal standing 

potential existing between the front and back of the human eye [108]. The resultant 

signal is known as the electrooculogram. In measuring the eye movement, electrode 

pairs are located either below and above or to the right and left of the eye [108]. An 

EOG signal response of positive or negative defection can be recorded if the movement 

of the eye is made from the central position towards one of the electrodes. Therefore, a 

potential difference would occur when the eye moves between the placed electrodes. 

The eye has a standing electrical potential known as the corneo-fundal [109]. This 

potential is decreased during darkness.  

 The earlier studies had a different EOG positioning of the electrodes. Loomis and 

colleagues [110] used only the referential electrode placed above the left eye whilst 
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Aserinsky and Kleitman recorded two bipolar channels on a single eye [35]. Later, Hord 

incorporated four electrodes into one bipolar channel in order to increase the common 

mode rejection ratio of an EEG system (amplifier) [111] but this positioning had 

shortcomings in the analysis of automatic sleep [112,113]. 

In the standard manual of the AASM, the EOG electrode positioning is recommended 

as approximately 1 cm above and faintly lateral to the outer canthus of one eye (E1 and 

E2, as shows in Figure 4) and a reference electrode on either the mastoid or homo-

lateral ear lobe.  Figure 4 shows three different electrode positions.  

 

 

Figure 4: Recommended, previous and alternate electrode locations of the EOG signal.  LOC = left 

outer canthus; ROC = right outer canthus [95]. 

 

2.4.2.1   Slow and Rapid Eye Movements 

By 1929, Miles had recorded the importance of the movements of the eye in the 

changeover from wakefulness to sleep [114, 115]. The difference between drowsiness 

and alertness was evident in analysing the behavior of the eyes. It is documented that 

the horizontal eye movements observed at sleep onset were similar to the pursuit 

movements when an eye is closely watching an object such as a slow swaying swing 

[115]. According to the manual sleep scoring rules of R&K, the slow eye movements 

(SEM) do not determine the onset of sleep but are linked to sleep onset, especially S1 
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which follows wakefulness, is featured by the SEM each taking several seconds, 

prominent at the early portions of the S1. Within the new scoring (AASM), the SEMs 

are used to define sleep onset for individuals who do not produce alpha rhythm [13]. 

They are described as “conjugate with a reasonably regular and sinusoidal eye 

movements with the initial deflection usually lasting >500 ms” [13]. Other scholars 

have defined SEM to be 0.25 Hz horizontal, pendular eye movement [116,117]. With 

the EOG channel, SEM is described as horizontal and lasting for 1 sec or longer at 100 

V amplitude. SEM can be recorded by utilising an electrode on the eyelid [116,118]. 

This nightcap system employs a 25 mm x 7 mm piezoelectric film that is adhesive-

backed and placed on the upper eyelid [118, 119]. The SEM has also been defined as 

[120]: 

• slow sinusoidal excursion of 0.2 to 0.6 and lasts more than 1 sec; 

• absence of artefacts like EEG/EMG and blinks; 

• movements beginning and ending at approximately zero velocity; 

• onset of left and right movement occurs in 300ms of another; 

• binocular synchrony with opposed-phase detections in the two EOG channels;  

• amplitude of 20-200 V.  

For REM (i.e saccades), many automatic systems for detection have been applied 

[121, 122]. Many cognitive elements are probed with the movements of the eye, such 

as responsiveness [121]. With digital progression, Haddad and Gopal created a system 

based on an amplitude and slope of the detection of eye movement in REM sleep [122]. 

Tsuji et al [123] utilised a wavelet transformation whilst Tan el al [124] used period–

amplitude and fast fourier transform (FFT) analysis to count the number of eye 

movements during REM sleep. Two-channel EOG was used, referenced to ipsilateral 
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mastoids. Signals were filtered using a 4th order Butterworth bandpass filter at 1 to 5 

Hz using the following steps [125]: 

a) Candidate REM detection: produces instantaneous signal of at least threshold 10 

(V) 2 with a local maximum if no higher peak within a time window of 1 sec. 

b) Detection REM features: Maximum absolute amplitude of right or left EOG, 

correlation coefficient of two EOG, Calculation of the negative instantaneous 

product, deflation angle (angles utilising 0.2 sec of data on the right and left side of 

the peak) 

c) The deflection angles rule for detection REM: If angle for both the right and left  

more than 45 degree  or  if the angle of left side more than 30 degree  and the right 

side more than of 60 degree or if the angle of left side more than 60 degree  and the 

right side more than of 30 degree.  

 

2.5  Automatic sleep stage detection 

The development of the first automated EEG analysis system applied to sleep recording 

[126]. Drohocki`s system was employed in plotting EEG integrated amplitude during 

the night [127]. The highest values were recorded during S4 and S3. Another researcher 

employed bandpass filtering, detecting rhythmical EEG wave band [16]. Frost 

developed portable analog sleep detecting machine that uses 1 channel EOG and 1 

channel EEG [128]. This system utilised 0.7-13 Hz amplitude EEG filter and period to 

produce a continuous sleep depth curve that has the threshold to detect the sleep stages. 

Three multiple level amplitudes of 20%, 1% and 100% were used, whereby 100% 

corresponded to wakefulness (highest amplitudes) and only the peaks were integrated 

with periods. The periods were detected when 20% and 1% thresholds were crossed in 

a given sequence. The lowest curve values had low periods and high counts of high 
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peaks. The indicator was 2 to 3 Hz EOG amplitude of REM if EEG showed S1 sleep. 

Several systems used period–amplitude analysis [129], and analog, hybrid, and early 

digital automatic sleep analysis systems were reviewed by Hasan [112].  

The main purpose of the automated sleep detection and monitoring systems is 

to accurately detect the sleep stages and the microstructure (i.e. sleep arousal) [130, 

131, and 132]. As mentioned, earlier sleep staging is based on the impression that the 

pattern (characteristic EEG patterns) will exist for a given interval of time before a new 

pattern emerges, which indicates a change of stage. There is a continuum from sleep 

stage N2 to sleep stag N3. The artificial differentiation of sleep stages is a facilitation 

implemented to standardise the examination of automated detection across the sleep 

laboratories and reviewers [130]. The exact period of change of sleep stages is 

extremely subjective and leaves room for different interpretations of what the sleep 

stage indicate to the epochs by scorers. Studies have indicated inter-scorer agreement 

(epoch by epoch agreement) between 67% and 90% depending on the different number 

of readers and scoring epoch lengths [133]. Most data from the inter-scorer agreement 

is based on the study of normal or healthy subjects. 

 Automatic sleep analysis comprises few consecutive steps, as shown in Figure 5. 

 

Figure 5: The automatic analysis process [130]. 

The pre-processing step involves the reduction by statistical tools of the vast amount of 

the generated raw data to be easily managed. It includes removal of the artefacts in the 

EEG signal [130, 135]. The next step, feature extraction, can be the power or amplitude 
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of regular EEG waves (i.e. delta, theta, alpha and beta bands) and transients, such as SS 

and KC [130]. The analysis can be undertaken in short epochs, ranging from 1 to 20 or 

30 seconds to avoid the loss of time resolution [134]. The final step includes the 

combination of EEG signals and extracted features to reduce the number of sleep stages.  

Rule-based logistics are utilised in classifying the stages based on features that 

are extracted from the EEG that imitate visual inspection according to standards, such 

as the AASM rules and R&K [130,135]. For clinical systems, the final outcomes of the 

automatic sleep scoring are required to closely imitate the visual AASM or R&K 

scoring. Most published studies on automatic sleep stage detection have produced 

outcomes from healthy persons with dependability between 70 and 90% [130,135].   

Feature extraction is an important part in the development of sleep stage scoring 

algorithms. The majority of the previous sleep stage scoring algorithms depended on 

computationally undemanding time domain analyses, such as period amplitude [14] as 

well as interval histogram method [15]. Subsequently, most of the algorithms have been 

developed before/after 1990 by feature extraction methods, utilising the power 

spectrum of the EEG, EOG or EMG signals. There are several methods that can execute 

spectral decomposition by means of discrete Fourier transform (DFT) /FFT [136, 137], 

autoregressive modelling [138], adaptive filter banks or wavelets [17]. Today, 

innovative spectral analysis methods are being used for the EEG sleep staging, such as 

normalisation amplitude of frequency bands [139, 140] and features derived from 

harmonic, predictor coefficients and Hjorth sub-band energy parameters [141]. 

Most algorithms have utilised 30- or 20-second epochs for EEG sleep stage 

classification according to the R&K or AASM rules [17,142]. Because the EEGs are 

non-stationary signals, the tradition of sleep stage scoring based on a 30-second epoch 
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might provide less information about the brain activities because it uses a fixed epoch 

duration. It has been suggested that EEG epoch duration be reduced to 1, 2 or 5 seconds 

[143].  

Due to the non-stationary nature of the EEG signal, time-frequency analysis is used in 

the decomposition process for classification. The matching pursuit, discrete wavelet 

transform, wavelet transform modulus maxima, and Gabor transform have been applied 

to detect the sleep stages [143, 144, 145, 146, 147].  

Also significant work has been done in creating systems for sleep staging based 

on nonlinear and linear classifiers, including fuzzy logic, artificial neural network 

(ANN) and pattern recognition [81, 148,149]. These classifiers do not need complicated 

domain knowledge or classification rules. The ANN characterise by learning ability 

which lets them create their own structures, depending on training sets [130].  

      One of the primary approaches of computer-assisted sleep stage detection or scoring 

is the ‘special purpose sleep analysing hybrid computer’ which utilised three EEG and 

two EOG signals [142]. This study was able to analyse data in online mode, based on a 

linear analog filter for detection of sleep spindles as well as the alpha EEG signal. The 

assessment was made based on a study of 15 healthy subjects aged between 15 and 21 

years. The inter-rater agreement between their system and the manual scoring was 

83.5%. However, several studies indicated that it was easier to detect sleep stages in 

young, healthy subjects than in older subjects who suffered from sleep disorders [150]. 

Agarwal and Gotman [151] presented a computer-assisted sleep staging method that 

utilised the principles of segmentation and self-organisation (clustering) based on 

primitive, sleep-related features to find the pseudo-natural (cluster pattern) stages. Their 

method was developed and tested using 12 subjects of many types (healthy, abnormal 
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[such as PLMS and sleep apnea], male, female, and different age groups), 

demonstrating an overall agreement of 80.6% with a manual scoring of 20-second 

epochs. However, this study reported that the maximum amount of errors occurred in 

the identification of the highly transitional S1, 54% of which were misclassified into 

neighbouring S2 or W. Tim Schluter et al. [152] developed automatic sleep stage 

scoring apnoea-hypopnoea detection based on EEG, EOG, and EMG signals. They 

utilised several combined techniques, such as FFT, wavelets, derivative dynamic time 

warping (DDTW), and waveform (pattern) recognition. Their approach was to extract 

features (frequencies and special patterns) from these signals and use the decision tree 

classifier to classify the sleep stages. The outcome of this study showed that the 

accuracy of sleep stage detection was 95.2%. However, this study used several 

databases without specification of the age or gender of all of its subjects.  

       Anderer et al. [150] presented automatic sleep stage detection and a classification 

based on 1 EEG signal, 2 EOG signals and a chin EMG channel. They utilised several 

methods for automatic identification of sleep/wake-related patterns based on the 

previous signals, such as to identify alpha and delta signals using period-amplitude 

analysis, model-based detection, band-pass filtering and spectral analysis. They also 

used the discrete wavelet transform and period-amplitude analysis methods to identify 

eye movement and maximal peak-to-peak amplitude as features extracted from the 

EMG signal. The classification system was based on the decision rules. The outcome 

of this study showed that the accuracy of a large database compared to manual scoring 

was 80%. Figure 6 compares the scoring of hypnograms by human experts with 

automated scoring by the commercial Somnolyzer 24 × 7 system (which developed by 

Siesta Group in Austria). 
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Figure 6: The hypnogram scoring of different human experts vs the Somnolyzer 24×7 system. The first 

hypnogram is indicate to the first expert scorer of sleep stage, the second hypnogarm is the second 

expert scorer of sleep stage, the third hypnogram is indicate to the consensus scorer and the final 

hypnogram is indicate to the Somnolyzer 24×7 system scoring [150]. 

 

However, this study faced obstacles in terms of the misclassification for some sleep and 

wake stages. In particular, subjects with sleep disorders, such as sleep apnea and 

insomnia had an accuracy of 75.6% and 85.5%, respectively. Susmakova et al. [153] 

utilised a spectral analysis and the fractal dimensions of the EEG, EOG, and EMG 

signals and obtained an accuracy of 77% in 20 healthy subjects. The authors faced 

obstacles in terms of distinguishing between stage N1 and REM sleep that eventually 

affected the overall accuracy. Recently, several studies have attempted to develop an 

automated sleep stage detection based on the EEG signals only [14,154]. Zhovna et al. 

[154] presented a novel method for automatic detection and classification of sleep 

stages using a multichannel autoregressive (MAR) model. The classification was 

performed using Kullback–Leibler (KL) divergence. The outcome of the study showed 

a classification accuracy of 93.2%. However, there was a weakness in their system in 

that it laced the W stage classification. Liu et al. [14] demonstrated a novel method 

based on the Hilbert-Huang transform (HHT) and back-propagation (BP) neural 
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network for automatic sleep stage detection and classification. The HHT was used as a 

feature extraction from the 30-second epoch of the EEG signal. The results revealed 

that the method was effective and promising in automatic sleep stage classification. 

However, this study was not able to differentiate between the N1 and REM stages; thus, 

they combined these two stages.   

  Another study employed 2-channel EOG for automatic sleep stage classification, EOG 

signal were referenced to the left mastoid (M1) [137]. The synchronous EEG activity 

SWS and S2 were identified by measuring peak-to-peak and the cross-correlation 

amplitude difference in the 0.5 to 6 Hz and between the 2-channel EOG. Automatic 

SEM approximation was utilised to designate W, S1, and REM. The EEG alpha power 

8-12 Hz and beta power 18-30 Hz were used for detecting wakefulness [137]. 

Synchronous 1.5 to 6 Hz EEG activity and absence of great movements of the eye were 

used for the separation of S1 from REM. Also, simple smoothing rules were applied. 

The EEG, EMG and EOG of sleep were recorded for 256 subjects. To tune the system 

132 training subjects’ data were used and applied to 131 validation subjects that had 

different SWS, and S2 epochs were epoch-by-epoch agreement of 72% with Cohen’s 

Kappa (CK) at 0.62. The results indicated an improvement of the specific EEG alpha 

thresholds for offline applications to 0.63 and 73% [137]. This method can further be 

developed in order to be applied in ambulatory sleep recording by employing only four 

disposable, self-applicable and self-adhesive electrodes. Figure 7 shows the study 

results.  
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Figure 7: Recording from group (a) percentages of slow wave (SW2 where 2 refers to rule number 2) 

segments; (b) SW3 (using rule 3) percentages; (c) percentages of rule S; (d) percentages of rule S; (e) 

automatic sleep stage scoring developed; (f) visual sleep scoring.  

One of the first automated pattern recognition systems was developed by Martin 

in 1972. It employed a low-pass filtered for EEG at 28 Hz and EOG at 14 Hz [136]. 

The FFT analysis was performed on 30-second epochs to separate S2, S1 and W. 

Conjugate REMs were identified on 2-channel EOG. Pattern recognition was employed 

for the EEG delta band detection. Peaks (“the delta measurement program examined 

successive 30-second increments of EEG data to locate peaks no closer” [136]) were 

sensed as local maxima with no higher local maxima at 0.5 second. Valleys were 

detected as the lowest points between two adjacent peaks and peak-to-valley variation 

had to surpass 75 V, and the coefficient of correlation of the raw data in the fitted line 

(straight) from peak-to-valley was at least 0.75 [136]. An agreement of 82% was 

obtained in separating REM, S1, W, S2, S3 and S4, which was only 7% less than the 

inter-scorer agreement.  
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Other recent automated methods including a semi-automated system as 

Morpheus [155] and automated Somnolyzer 24 X 7 [149] used in the clinical settings. 

The automated and semi-automated systems of sleep scoring provided an option for 

time-consuming, costly and variable manual scoring. According to scholars, the 

automatic analysis of SWS can be more reproducible than the visual analysis [156].  

Van et al. [157] employed EEG automatic detection for sleep staging. The method 

comprised four steps, including segmentation, extraction of parameters, analysis of 

cluster (aimed to classify (cluster) a number of points into K groups), and classification. 

The parameters compared included the harmonic, Hjorth and relative band energy 

parameters. For cluster analysis, the study used a modified version of K-means 

algorithm. The study concluded that it was capable of extracting information from EEG 

pertinent for sleep stage scoring, and it was also possible to uncover similar segments 

and, therefore, automate the sleep detection stages through K-means algorithm. 

However, it was reported that extra information, such as EOG and ECG was critical for 

vibrant fine-tuning of various sleep stages [157]. Zhang et al. [158] undertook a study 

on automatic sleep onset detection utilising EEG electrodes. They proposed a simple 

and accurate method for sleep onset prediction that was dependent on the EEG signal, 

obtained from a single frontal electrode within a wireless headband. This method first 

extracted an energy power ratio of EEG alpha (8-12 Hz) and theta (4-8 Hz) bands along 

the time domain. The resultant slow waves were used for sleep onset detection by 

feeding them into a rule-based engine. The polysomnographic method was used to 

evaluate the effectiveness of the approach and also headband EEG signals were 

acquired from 20 healthy adult subjects who each underwent two sessions of sleep 

events; hence, 40 sleep events were collected. The resultant recordings were assessed 

by an offline PSG technologist through visual observation of the waveforms of PSGs 
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who annotated sleep stages N2 and N1 by using the AASM scoring rules. This approach 

achieved 87.5% accuracy when the gold standard was used in sleep onset detection. 

These results were better and comparable to other techniques employing single or 

multi-channel data [158].  

Several other approaches have been reported based on single EEG channel data. 

Huang and colleagues [159] developed a system that detected the arousal states of 

individuals utilising mean frequencies of a single EEG for autoregressive hidden 

Markov models (HMM). This model accomplished wake-drowsiness detection at a rate 

of 70%. Novak et al. [160] used more features than the earlier system of Huang et al. 

[159], including autoregressive parameters, spectral entropy and the complexity 

stochastic measure in developing an HMM model used for sleep staging. This approach 

predicted sleep N4 and N3, but it was not able to detect well for stage REM. Rossow, 

et al. [161] also depicted an approach applying a single-channel EEG modelling using 

the HMM and Kalman filters. Its agreement rate when tested was 60.14%. Other 

researchers have adapted different approaches in the automatic determination of 

patients' sleep stages. Sukhorukova et al. [162] undertook a study to determine the 

difficulties and solutions of automatic sleep stage identification. They documented 

various problems, such as the data mining algorithms being challenging since the data 

set was noisy and colossal, and the signals were complex, thus needing specialists to 

analyse them. Therefore, the study adapted approaches from four fields involving 

mathematical optimisation, neural networks, frequency domain and financial 

forecasting to solve the problem identified in relation to the automatic determination of 

the patients' stage of sleep. The outcomes of this study, though preliminary, were 

promising and indicated that a combination of approaches can be more fruitful than 

relying on a single approach.  
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Research undertaken using 9-stage sleep onset automatic classifications showed that 

most hypnagogic imageries were remembered during the stage 5 EEG (theta stage) 

[163]. These imageries were least recurrent in stage 2 and 1 with EEG alpha activities. 

When the nine stages were classified depending on the subjective analysis of reaction 

time, recall rate and behavioral state of hypnagogic, the subgroups were not entirely 

coincidental. This denotes that sleep onset is influenced by the technique of 

determination. As the quantity of the subjective responses for having been asleep was 

43.7 only in conventional S2, the sleep onset period can be considered as an extension 

beyond S1. “If the criterion for wakefulness is cognitive response to external 

stimulation, only in EEG Stages 3, 4, and REM can accurate distinctions between sleep 

and wakefulness be made. If EEG is the criterion, then the data suggest that cognitive 

response is possible during Stages 1 and 2 sleep” [163]. Therefore, it seems that the 

absence or presence of the response is an uncertain measure for sleep onset. Hence, the 

slowing of reaction time should be applied as an additional parameter [164]. Table 7 

shows different automatic sleep stages algorithms, and some of these studies were 

described in detail [130].    

Table 7: An overview of automatic sleep staging methods and studies based on feature extraction, 

classifier, number of subjects, accuracy and signals.   

Author(s) Features Classifier Number of 

Subjects 

Accuracy 

(%) 

Signals 

Principe 

(1989) [165] 

frequency 

bands, spindle, 

K-complex 

Fuzzy logic 5 healthy 84.74 1-EEG,2-

EOG 

EMG 

Schwaibold 

(2001) [149] 

periodic 

activity, 

spindles, K-

complexes 

ANN 8 OSA patients 31.5 - 87.4 2-EEG 

2-EOG 

1-EMG 

McGrogan 

(2001) [166] 

reflection 

coefficients 

ANN 9 healthy, 3 non-

healthy  

72.2 - 96 1 EEG 

Flexer (2002) 

[167] 

reflection 

coefficients, 

stochastic 

complexity 

HMM 40 healthy 68 - 82 1 EEG 

Hanaoka 

(2002) 

[168] 

zero-crossing, 

wave period, 

amplitude, 

decision tree 

learning 

1 healthy 40 - 91.8 1-EEG 

1-EOG 

1-EMG 
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 duration, 

transient events 

Huang (2003) 

[169] 

Lempel-Ziv 

complexity 

measure 

ANN 6 healthy 90.83 2-EEG 

Huuponen 

(2003) 

[170] 

amplitude 

spectrum of 

subbands 

rule-based 15 healthy 76.80 7-EEG 

Gudmundsson 

(2005) 

[171] 

Hjorth 

parameters, 

power 

spectrum, 

amplitude and 

frequency 

distribution 

SVM, ANN 4 healthy 81 1 EEG 

Song (2007) 

[172] 

wavelet 

transform 

modulus 

maxima 

rule- based 4 healthy 55.4 - 97.7 1 EEG 

Virkkala et al. 

(2008) 

[137] 

 

spectrum of 

bandwidth, 

frequency 

distribution 

Decision 

tree 

256 healthy and 

non-healthy 

74 2-EOG 

Güneş et al, 

(2010) 

[173] 

Welch spectral 

analysis 

K-NN & 

decision tree 

5 healthy 82.15 1-EEG 

Dong et al. 

(2010) 

[175] 

empirical mode 

decomposition 

(EMD) 

algorithm, 

Fourier 

transform or 

non-stationary 

signals,   

Harmonic 

components, 

FFT 

 

15 non healthy 80 1-EEG 

 

Hedner et al. 

(2011) 

[174] 

PAT recorder 

signals, Itamar 

Medical, 

Caesarea 

Fuzzy logic 227 including 

healthy & non-

healthy 

59 - 94 2-EEG, 2-

EOG, 

EMG, ECG 

Liang et al. 

(2012) 

[176] 

multiscale 

entropy (MSE) 

and 

autoregressive 

(AR) models 

LDA 20 healthy 76.91 1-EEG 

Tagliazucchi 

et al. (2012) 

[177] 

periodic-

activity, 

spectrum of 

bandwidth, 

fMRI scanner 

Binary 

support 

vector 

machine, 

multiclass 

73 healthy 80 1-EEG-

fMRI 

Diego (2013) 

[178] 

spectral analysis Fuzzy logic 33 non-healthy 84 2-EEG, 2-

EOG, EMG 

Correa et al. 

(2014) 

[179] 

spectral 

analysis,Time 

analysis, 

Wavelet 

decomposition 

ANN 16 non-healthy 83.6 - 87.4 

 

3-EEG 

Popovic et al. 

(2014) 

[180] 

spectral analysis Decision 

tree 

29 healthy  80 1-EEG 
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3.1 Subjects  

This section describes the three PSG databases used in this research. The following 

section 3.1.1 describes the PSG napping or daytime PSG data. Sections 3.1.2 and 

3.1.3 describe the whole-night PSG data.    

3.1.1  Data set No.1 

 This existing PSG napping data set consisted of 10 healthy adult male subjects ranging 

in age from 21 to 43 years (M = 29) (see Table 8). None of the subjects had a previously 

diagnosed sleep disorder. RMIT Ethics approval was granted for the recording of this 

PSG data and all subjects signed the consent letters. A single continuous PSG recording 

of 20 minutes in duration was undertaken for each subject. This existing data was 

provided by Dr. Dean Cvetkovic, which originated from ARC linkage grant (2005- 

2009). All six channels were utilised for automated sleep scoring undertaken by 

Hypnolab commercial software (SWS Soft, Italy, 2006-2008), but only 1 EEG channel 

(C3-A2) data was used in this analysis. All subjects were exposed to audio and photic 

stimulation under biofeedback operant conditioning, influencing wake and sleep states. 

Therefore, the influence of these stimuli may have caused the PSG transients to differ 

considerably as compared to ‘normal’ wake and sleep conditions. Also, this PSG data 

can be considered to be recorded from 20 minute napping conditions rather than 20 

minute sleep/wake conditions. Sleep stage 1 (N1) and wake (W) were detected during 

these napping conditions. The PSG recording for each subject contained 6 channels, 2 

EEGs (O2-A1 and C3-A2), 2 EOGs (right outer canthus (ROC) and left outer canthus 

(LOC)) and an ECG (Lead II using torso electrode placement). The sample frequency 

was 256 Hz for each signal.  
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Table 8: Summary of the PSG napping data. 

Type of subjects Healthy 

Number of subjects 10 

Gender (male/female) (10/0) 

Age (mean years and range) 29 (21-43) 

TRT (min) 195 

W (% of TRT1) 92.1 

N1 (% of TRT) 7.9 
1TRT =  total recording time  

 

3.1.2 Data set No.2 

The  existing PSG data was downloaded from the online database [181]. This data is 

under the terms and conditions of the Attribution-NonCommercial-NoDerivs 3.0 

Unported (CC BY-NC-ND 3.0) License. Each use of one of these databases and/or its 

content is attributed to the University of MONS - TCTS Laboratory (Stéphanie 

Devuyst, Thierry Dutoit) and Université Libre de Bruxelles - CHU de Charleroi Sleep 

Laboratory (Myriam Kerkhofs).  Each PSG data file consists of at least 2 EOG, 3 EEG 

and 1 EMG submental channel, at the sampling frequency of 200 Hz. All sensitive 

information was coded by this institute and the data does not show any patient names, 

except their group, age and gender. All PSG data files are up to 8-9 hours of recording 

of overnight sleep. The overnight PSG data was recorded from 13 healthy adult 

subjects, 10 with periodic leg movement syndrome (PLMS), 10 with sleep apnoea-

hypopnoea syndrome (SAHS) as shown in Table 9. The sleep stages were manually 

scored by an expert according to the AASM criteria. 
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Table 9: Summary of PSG data set 2. 

Group of subjects Group1: Healthy control Group2: PLMS Group3: SAHS 

Number of subjects 13 10 10 

Gender (male/female) (3/10) (8/2) (6/4) 

Age (mean years and range) 42.5 (20-65) 49 (22-46) 56 (38-74) 

TRT (Min) 6627.8 5262.8 5249 

W (% of TRT1) 16.8 25.2 25.4 

N1 (% of TRT) 6.6 8.8 8.8 

N2 (% of TRT) 45.7 47.5 51.5 

N3 (% of TRT) 16.3 7.8 5 

R (% of TRT) 14.6 10.7 9.3 
1TRT =  total recording time 

3.1.3 Data set No.3 

The PSG dataset was recorded by the Central Institute of Mental Health (Mannheim, 

Germany). Each donated PSG patient data file consisted of up to 15 channels: 3 EEG, 

ECG, EMG, 2 EOG, nasal and oral airflow, snoring sound, breathing effort (measured 

at the chest and abdomen), oximetry and actigraphy recording body positioning and leg 

movements. The sampling frequency varied from 200, 256 to 500 Hz. In addition to 

each European data format (EDF) file, the institute’s sleep technicians 

manually/visually scored the sleep stages according to the AASM criteria.  

The PSG database included 30 subjects who were divided into three groups, each 

consisting of 5 males and 5 females (see Table 10). Group 1 consisted of 10 primary 

insomnia patients, in Group 2 was 10 schizophrenia patients and Group 3 contained 10 

healthy subjects. All patients and subjects were diagnosed on the basis of the Diagnostic 

and Statistical Manual (DSM-IV) and were recruited during in-house treatment at the 

Central Institute for Mental Health. The criteria for inclusion in the study included 

being aged between 18 and 60 years, the ability to provide informed consent, a 

stabilised disease course, stable (for at least two weeks) psychopharmacological 

treatment in the form of monotherapy with a second generation antipsychotic, and the 

absence of psychiatric comorbidity.  
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Table 10: Summary of PSG data set 3. 

Type of subjects Group 1: Primary 

insomnia 

Group 2: 

Schizophrenia 

Group 3: 

Healthy 

Number of subjects 10 10 10 

Gender (male/female) (5/5) (5/5) (5/5) 

Age (mean age and 

range) 

31.3 (18-45) 31.7 (22-46) 31 (20-47) 

TRT (Min) 4647 4899.5 4870 

W (% of TRT1) 22.1 14.05 22.98 

N1 (% of TRT) 10.2 7.95 9.34 

N2 (% of TRT) 40.6 43.06 42.45 

N3 (% of TRT) 18.2 18.28 12.77 

R (% of TRT) 8.9 16.63 12.75 
1TRT =  total recording time 
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This chapter describes various methods and materials utilised to develop an automatic 

detection of sleep stages. Section 4.1 describes the materials and methods utilised to 

develop an automatic detection of wake and sleep stage N1 based on EEG sub-epoch 

signal. Section 4.2 describes the materials and methods that were utilised to develop an 

automatic detection of sleep stage based on the consecutive and non-consecutive EEG 

sub-epoch approach. Section 4.3 describes the materials and methods utilised to 

develop an automatic detection of sleep stages based on EOG signals. 

4.1   Automatic detection of wake and sleep stage N1 using EEG sub-epoch 

approach 

4.1.1 Subjects 

Ten healthy adult male subjects were used, as described in Section 3.1.1 

4.1.2 EEG signal processing method 

Figure 8 shows the flowchart for the proposed consecutive and non-consecutive, 6-

second sub-epoch comparison approach comprised of six parts: EEG segmentation of 

the 30-second epochs (part 1); filtering (part 2); EEG segmentation of the 30-second 

epochs into 6-second sub-epochs (part 3); feature extraction (part 4); sleep stage scoring 

rules (part 5); and checking three consecutive and non-consecutive 6-second sub-

epochs (part 6).   

Part 1 segmentation of the 30-second epochs: The full length of this data was segmented 

into 30-second epochs for scoring the sleep EEGs prior to pre-processing. 

Part 2 Filtering: The EEG signal was processed utilising a 6-order Butterworth band 

pass filter for the different band frequencies, as follows: theta (θ, 4–7Hz), alpha (α, 8–

12Hz) and beta (β, 13–30Hz).  
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Part 3 Further segmentation of each of these 30-second epochs into 6-second sub-

epochs: Prior to feature extraction, the 30-second epochs were divided into five sub-

epochs of six seconds each. 

 

Figure 8: Flow-chart describing the consecutive and non-consecutive, 6-second EEG epoch approach. 

 

Part 4 Feature extraction: Frequency domain feature extraction was applied, calculating 

the relative spectral energy band (RSEB) for the θ, α and β EEG bands from the were 

computed of parametric and non-parametric power spectral densities  

(
θPSD , 

PSD  
βPSD ). The RSEB can be calculated as follows: 

Total power = 
θPSD  + PSD  + 

βPSD             (1) 

RSEB(θ) = θPSD  / Total power                      (2) 

RSEB(α) = 
PSD  / Total power                     (3)         
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RSEB(β) = βPSD  / Total power                    (4) 

Part 4.1 Non-parametric method: Thomson’s multi-taper method (MTM) [182] was 

used to estimate the PSD of each EEG band. The advantage of using the MTM is that 

it reduces the variance of the spectral estimate by utilising a few groups of tapers, as 

proposed by Thomson (1982) and Percival and Walden (1992) [183]. The computation 

of the power multi-taper method (PMTM) was put forward in [184]. 

   Part 4.2 Parametric method: Non-parametric methods have the drawback of spectral 

leakage effects because of windowing, which can result in a weakening of the signal 

components. Using parametric methods to compute PSD is a solution to spectral 

leakage and provides optimal frequency resolution. In this study, Burg’s autoregressive 

(AR) method was applied in this analysis to calculate the PSD. The main concept of 

Burg’s method is that it attempts to reduce the forward and backward prediction errors 

by accepting the Levinson-Durbin recursion [185]. The reflection coefficients are 

estimated directly in Burg’s method rather than calculating the autocorrelation function.  

 Part 5 Sleep stage scoring rules: In this part, rules for scoring the sleep stages in each 

6-second epoch were applied. For example, according to the R&K rule, an epoch is 

scored as a W stage if RSEB(α) represents more than 50% of the 30-second epoch. On 

the other hand, the epoch is scored as stage 1 when the RSEB(θ) is more than 50% of 

the epoch. In addition, N1 can be scored when the RSEB(α) is less than 50% of the 

epoch. 

 Part 6 Checking the three consecutive and non-consecutive 6-second sub-epoch: This 

was accomplished by investigating whether three out of five consecutive or non-

consecutive 6-second sub-epochs indicated W or N1 sleep. The three out of five 

consecutive and non-consecutive 6-second sub-epochs characterised 60% of 
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predominant band power in its total, 30-second epoch, making the detection more 

difficult based on the rule criterion of 50% predominant power.  

4.2 Automatic detection of sleep stages using EEG sub-epoch approach 

4.2.1 Subjects 

Thirty-nine subjects were used in this study. Ten healthy subjects were utilised for the 

development of this algorithm (see section 3.1.2) and 29 subjects were utilised for the 

validation (see section 3.1.3)  

4.2.2 Automatic sleep stages detection algorithm  

Algorithms for automated sleep stage detection were previously explored with varying 

degrees of success (the algorithm was succeed with healthy subjects of varying age) 

[186]. Here, the candidature focused on the approach outlined in [186], using a single 

EEG (CZ-A1) channel and validated against the AASM criteria. An algorithm,  outlined 

in Figure 9, involves a consecutive or non-consecutive sub-epoch approach, and seven 

steps that are summarised as: (1) preprocessing; (2) EEG signal segmentation into 30-

second epochs; (3) 30-second epoch split into five, 6-second long sub-epochs; (4) 

filtering; (5) feature extraction within sub-epochs; (6) using three consecutive or non-

consecutive 6-second sub-epochs; and (7) a ‘smoothing’ rule. The algorithm introduces 

several new aspects including the new segmentation strategy and application of an 

adaptive filter to remove electrocardiogram (ECG) artifacts from the EEG signal. The 

following subsections detail the explanation of the specific procedures:  

1. Preprocessing and EEG Signal Segmentation  

During initial preprocessing, a baseline drift is removed, eliminating any linear 

trends and removing the mean value. As mentioned in section 3.1, the EEG data 

was segmented into 30-second epochs. Additionally, since EEG signals can be 
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affected by ECG, an adaptive filter based on a least mean square (LMS) algorithm 

was employed to eliminate artifacts from the EEG data. Subsequently, the 30-sec 

EEG signal epochs were divided further into five sub-epochs of 6-second duration 

each, 

 

 

Figure 9: Flow chart describing the automated sleep stage detection algorithm based on the three 

consecutive and non-consecutive 6-second EEG sub-epochs approach. Where the ‘*’ is indicated to 3 

consecutive or non-consecutive out 5 sub-epoch approach.  

  

2. Filtering 

A zero-phase bandpass filter was applied to the EEG data. The filter was a sixth-

order cascaded integrator-comb (CIC) type that selects the following EEG 

frequency bands of interest: delta 1 (δ1, 0.5–2 Hz), delta 2 (δ2, 2–4 Hz), saw-tooth 
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waves (2-6Hz), theta (θ, 4–8 Hz), alpha (α, 8–13 Hz), sigma (σ, 12–15 Hz), beta 1 

(β1, 13–20 Hz) and beta 2 (β2, 20–30 Hz). 

3. EEG Feature Extraction  

In order to extract features from the 6-second long EEG signal sub-epochs, spectral 

analysis was used. Burg’s parametric method was used to calculate the power 

spectral density (PSD) and estimate the spectral content by an autoregressive linear 

prediction filter model. Suitability of this approach was confirmed by the Akaike 

information criterion (a test effective in assessing the relatively quality of models) 

[187]. The parametric method was chosen because of its ability to resolve spectral 

leakage caused by ‘windowing’ and because it provides optimal frequencies. 

Relative spectral energy (RSE) of the ith frequency band, iB , is the sum of 

power within the band’s frequency range relative to the overall power in the entire 

considered spectrum, which can be written as: 
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where 
Lf  represents the lowest (0.5Hz) frequency and 
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The power spectral density ratios (PSDR) is defined, as (an example): 
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Central frequency (CF) is determined by  

    



 


H

L

H

L

f

f

f

f

fP

fPf

FC

)(

)(
                                                                         (7) 

The  90% Spectral Edge Frequency (SEF) is 
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where L is the ‘length’ of the RSE array and is determined by a number of frequency 

‘windows’ used in the calculation. 

Root mean square frequency (RMSF) was defined as: 
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4. The Three Consecutive and Non-Consecutive 6-Second Sub-Epochs Approach  

Varying segmentation strategy can have a drastic effect on the efficacy of 

algorithms. Segment length is not the only important factor. Here, the purpose of 

this step is to investigate whether three (out of five) consecutive or non-consecutive 

6-second sub-epochs are most effective at detecting the sleep stages. Since three out 
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of five consecutive (or non-consecutive) 6-second sub-epochs contain only 60% of 

the predominant band power in the total 30-second epoch, detection could be 

expected to be more difficult, based on the rule of 50% predominant power [185].  

However, the approach can be surprisingly effective, when the appropriate 

technique is applied. 

5. Identification of Sleep Stage Based on the Three Consecutive and Non-

Consecutive 6-Second Sub-Epochs Approach  

       Increasing the number of features used to identify each sleep stage is known to 

offer better detection performance [153,188,189]. Table 11 shows the sleep stage 

features and the associated rules used in this study. The algorithm process is outlined 

in Figure 9.  

At first, each rule was utilised for each sleep stage and both the three consecutive and 

non-consecutive 6-second sub-epoch method. Initially, RSE was applied because these 

features are well known from the AASM and R&K rules for the detection of sleep 

stages. For example, when RSE (α) represents more than 50% of the epoch’s total 

spectral energy, then rule 1 (R1) is positive and the epoch is scored as the W (waking) 

stage. For example, in the first step (R1) RSE (α) feature was used to split the W from 

the other sleep stages (see Figure 2). In the second step the slow-wave sleep (N3) was 

split from sleep stages, N1, N2 and R, using rule 4 (R4) and RSE (δ1), as this sleep 

stage is characterised by lower EEG delta activity. In the third step, sleep stage N2 is 

split off from sleep stage N1 and R by rule 3 (R3) as this sleep stage is characterised by 

sleep spindles. Sleep stage R is characterised by saw-tooth wave and was split from N1 

in the fourth step by rule 5 (R5). A similar procedure was done for the power ratio 

features in the event of negative rule outcomes in the previous steps. The remaining 
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rules (R11, R14-R17) and associated features represent contrasts between neighbouring 

stages and may be needed prior the sub-epoch being identified as a particular sleep 

stage. 

Table 11: Sleep stage algorithm rules. 

  W N1 N2 N3 R 

AASM rule 

[13] 

EEG Alpha >50 % 

of epoch. 

If alpha rhythm is 

present for part of 

the epoch (even <15 

sec) score as wake 

stage  

EEG Theta 

>50% of epoch 

or EEG Alpha 

<50 % of epoch  

Present sleep spindle 

& k-complex  

EEG Delta 

>20 % of 

epoch  

Low amplitude 

mixed frequency EEG 

Theta, 

Low chin EMG 

Rapid eye movement  EOG 

A
lg

o
ri

th
m

 R
u

le
  

RSE feature 

[190]  

R1:RSE(α) >50% 

of epoch  

R2:RSE (δ2) 

<15% and RSE 

(β2)>10 % of 

epoch or 

RSE(θ)> 50% 

R3: RSE (δ2) <20% 

& RSE (β2)<10 % 

of epoch,  or RSE 

(σ) >10%. 

respectively 

R4: RSE 

(δ1) >20% 

or >50 of 

epoch  

R5: RSE (saw-tooth wave) 

>.5% Or  RSE (β) and (σ) 

<10 % of epoch, RSE (β2) 

approximately 10% and 

RSE (δ2) <15 %  

 

Power ratio R6:  

α /β1> 7.8 

R7:  

α /β1<2.5 

R8: 

σ/ β2 >3.5 

R9: 

δ1/θ>5.5 

R10:  

δ1/θ < 1.6 

Central 

frequency  

R11:  

CF (α ) > 40% of 

epoch 

 

- - - - 

Root mean 

square 

spectrum 

R12: RMSF (α ) > 

40 % of epoch 

 

R13: RMSF (α) 

>19 % & < 40 

% 

- - - 

Spectral 

edge 

frequency 

(90 %)  

R14: SEF >=8 and 

<=13  

Or  

SEF 20> and <=30 

R15: SEF >=4 

and <=8  

 

R16:  

SEF >=12 and <=15  

 

R17: 

SEF>=.5 

and <=2  

 

- 
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Figure 10: Flow chart depicting process for sleep stage identification applied for both the three 

consective and non-consecutive epoch approaches.  

  

6. The Smoothing Rule  

Due to fluctuations in the recorded signals, it is desirable to ‘smooth’ the outputted 

sleep stage values to reduce output ‘jitter’ (misclassification of sleep stage, see 

Table 12 for the list of smoothing rules). For example, if the case detection of the 

sleep stage was a consecutive sequence such as W- (any stage)-W then, the 

consecutive sleep stage value should be  replaced as W-W-W (e.g. see rule number 

1, Table 12).  
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Table 12:  The smoothing rules 

Rule number Case detection Replace to consecutive sleep stage 

1 W-(any stage)-W W-W-W 

2 N1-(any stage)-N1 N1-N1-N1 

3 N2-(any stage)-N2 N2-N2-N2 

4 N3-(any stage)-N3 N3-N3-N3 

5 R-(any stage)-R R-R-R 

 

4.3 Automatic detection of sleep stages using EOG  

4.3.1 Subjects  

Thirty subjects and patients were used in this study, as described in section 3.1. 

4.3.2 EOG signal Method 

Figure 11 describes the algorithm for detecting the sleep stages based on EOG signals. 

It includes five steps, as shown in Figure 11. 

 

 

       

 

 

4.3.2.1 Pre-processing  

The EOG data was segmented into 5-second epochs. The entire EOG signal was 

processed utilising a zero-phase bandpass filter with a cascaded integrator-comb (CIC) 

filter of order 6, for the following different frequency bands: delta (0.5-2 Hz), delta1 

(2-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), sigma (12-16 Hz), beta1 (16-20 Hz), and 

beta2 (20-30 Hz). Since an EOG signal might be affected by EMG, and ECG artifacts, 

launching a suitable algorithm in order to remove the artifacts and noise was necessary. 

Pre-processing  Input EOG Classification  Feature Smoothing rule 

Sleep stages 

Figure 11: Block diagram of the automatic sleep stage detection method using EOG signals. 
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A cascade of three adaptive filters based on a least mean square (LMS) algorithm was 

employed, to eliminate ECG, and EMG artifacts [191]. 

4.3.2.2 Feature extractions  

 Several features were extracted from the EOG signal in the time and frequency domain, 

such as variance, the maximal peak amplitude value (MAX-PAV), the minimum peak 

amplitude value (MIM-PAV), energy entropy, Shannon entropy, and cross-correlation. 

In order to select the best feature that classified the variations in sleep stages and 

wakefulness, the sequential feature selection method (SFS) was used.  

The definitions of the features are as follows :   

 Energy entropy (EE) 

The energy entropy was performed, utilising wavelet packets as   

 
i

issEE )log()( 2
                                                                      (10) 

Where (s) is the EOG signals and si  is the coefficient of (s).  

 Shannon entropy (SE) 

The Shannon entropy was performed by utilising wavelet packets as   

  
i

ii sssSE )log()( 22
                                                                        (11) 

Where (s) is the EOG signals and si is the coefficient of (s). 

 Cross correlation 

For each 5-second epoch, the cross-correlation between each frequency band of EOG 

left, EOG right channels, and peak-to- peak amplitude differences from EOG left –

right were calculated [137]. 
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 Maximum peak amplitude value 

The maximum peak amplitude value (MAX-PAV) is a measure of the EOG signal 

amplitude value at the highest point (i.e. the maximum positive value) in both EOG 

right and EOG left signals. 

 Minimum peak amplitude value  

The minimum peak amplitude value (MIM-PAV) is a measure of the EOG signal 

amplitude value at the lowest point, (i.e the minimum negative value), EOG right and 

EOG left. 

 Variance 

The variance of the EOG signal is a measure of the signal power calculated as 

2

1

)(
1




N

i

i xx
N

VAR  

Where 𝑥𝑖is ith sample of EOG signal, x  is the mean and ‘N’ is the epoch size for 

computing features. 

 

4.3.2.3 Classification using K-nearest neighbour classifier  

In this study, the K-nearest neighbour (KNN) classifier was used for classification of 

the sleep and wake stages. The KNN is based on a nonparametric method and can be 

employed for a different pattern classification approach, which represents as one robust 

classifier [192].  The KNN classifier is based on a comparison between a new sample 

(testing data) and baseline (training data). It attempts to find out the K-nearest 

neighbour within the baseline, and indicates a class which seems more normally in the 

nearest neighbour of K. The value of K might need to be diverse in order to detect the 

corresponding class between the training and testing data. In this study, the value of K 
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varies from 1 to 5. The Euclidean distance metric is utilised for calculating the distance 

between the two points. The training and testing data was evaluated based on 10-fold 

cross-validation.  

4.3.2.4 Smoothing rule  

The smoothing rule is used to increase the detection accuracy of the sleep stages (for 

more information see Table 12).  

4.4  Sleep architecture statistical method 

In order to evaluate the performance of the algorithms for automatic sleep stage 

detection, the sensitivity and specificity were calculated for each sleep stage. The inter-

rater agreement (IRA) and Cohen’s Kappa were calculated in order to evaluate the 

overall performance of the algorithms. In this dissertation the criteria of calculation 

sensitivity and specificity methods that were utilised for the sleep stages was done 

according to  Devuys et al. criteria  [193].  

 
FNTP

TP
ySensitivit


                                                                        (12) 

 
FPTN

TN
ySpecificit


                                                                        (13) 

where TP is true positive; FN is false negative; FP is false positive; TN is true negative. 

 The IRA was calculated as the following: 

 𝐼𝑅𝐴 =
 𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑟𝑟𝑒𝑐𝑡  𝑠𝑡𝑎𝑔𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 

𝑇𝑜𝑡𝑎𝑙 𝑠𝑡𝑎𝑔𝑒𝑠
                                              (14)    

 The Cohen’s Kappa was utilised to evaluate  the IRA matrix, ‘k’, which can be 

calculated as [194]: 

  
c

co

pN

pp
K




                                                                                      (15) 
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where op  is the total correct stage detection (sum of the diagonal), ‘N’ total stages 

and cp  is  the expected frequency for the number of agreements that would be 

expected by chance for each stage. 

 The interpretation of Cohen’s Kappa coefficient was as the follow: < 0.00 (poor 

agreement); 0.00 - 0.20 (slight agreement); 0.21- 0.40 (fair agreement); 0.41- 0.60 

(moderate agreement); 0.61- 0.80 (substantial agreement); > 0.80 (excellent 

agreement) [194]. 
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5 : Automatic classification of sleep 

disorders 
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5.1 Classification of primary insomnia, schizophrenia and healthy sleep 

5.1.1  Subjects  

Thirty subjects participated in this study (see date set No. 3). 

5.1.2 Method 

5.1.2.1  Calculating PSG sleep stage parameters 

In this study, we used the visual sleep stage scoring according to the AASM rules to 

measure different PSG sleep stage parameters, such as sleep latency (SL), sleep 

efficiency (SE), number of awakenings (NW), total sleep time (TST), waking after 

sleep onset (WASO), slow wave sleep (SWS), REM sleep, the first REM period, and 

the characteristics of the sleep stages (N1, N2, N3 and R).  

5.1.2.2  Decision tree analysis 

A decision tree analysis was used to classify the three groups based on the following 

rules:  

 R1 was used for the first REM period parameter to separate primary insomnia from 

schizophrenia patients. If R1 (first REM period) was less than two minutes then it 

would be classified as primary insomnia; if R1 (first REM period) was more than 

two minutes and less than 10 minutes it was classified as schizophrenia. 

 R2 was used for the N1 sleep stage parameter to identify the primary insomnia 

patients that R1 was unable to identify. If R1 (first REM period) was more than five 

minutes and R2 (sleep stage 1) was more than 12.5 % of the total time of sleep then 

it was classified as primary insomnia. 

 R3 was utilised for SL to distinguish between the schizophrenia and healthy 

(control) subjects. If R3 (SL) was less than 19 minutes, then it was classified as a 
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healthy control. All of these rules were based on some percentage of sleep stage and 

time duration of sleep parameters, such as SL and the first REM period. The 

automatic classification algorithm is described in Figure 12.  

 

Figure 12: Flow chart describing the automatic classification algorithm for primary insomnia, 

schizophrenia and healthy (control) patients based on the decision tree analysis. R1 is characterised by 

the first REM period in minutes, R2 by the % of sleep stage 1, and R3 by the SL in minutes. 

 

5.1.2.3 Statistical analysis 

A statistical analysis was conducted using post-hoc tests to ascertain whether there were 

significant differences between the three groups. Sensitivity and specificity tests as well 

as Cohen’s Kappa were conducted to evaluate the automatic classification algorithm 

for the three groups.   

5.2  Classification of PLMS, SAHS and healthy sleep 

5.2.1 Subjects  

Thirty subjects were utilised in this study (see data set No. 2 in section 3.1.2). 
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5.2.2  Method 

5.2.2.1 Computing PSG sleep stage parameters  

In order to classify the PLSM, SAHS, and healthy (control) subjects, different PSG 

sleep stage parameters were first computed, such as SL, SE, the number of times the 

subject woke up (NW), TST, WASO, SWS, and REM.  During the first REM period, 

characteristics of the sleep stages (N1, N2, N3 and R) were based on the automatic 

detection system detailed in the previous section (4.3). 

5.2.2.2 Decision tree analysis 

A decision tree analysis was preformed to classify the three groups of subjects based 

on the following rules:  

 Rule (1) used the percentage of the sleep stage N1 parameter to separate the SAHS 

patients from the PLMS patients and healthy (control) subjects. If N1 (%) was more 

than 7% and less than 9% of the total sleep time, then a subject was classified as an 

SHAS patient; if N1 (%) was less than 4% of the total sleep time, then a subject was 

classified as a healthy (control) subject; if N1 (%) was more than 10% of the total 

sleep time, then a subject was classified as a PLMS patient. 

 Rule (2) used the percentage of the N2 sleep stage parameter to separate the SHAS 

from PLMS patients.  If N2 (%) was more than 80% of the total sleep, a patient was 

classified as an SAHS patient; If N2 (%) was less than 80% and more than 60%, of 

the total sleep, a patient was classified as a PLMS patient. 

 Rule (3) utilised slow wave sleep duration (SWSD) in minutes and the percentage 

of the N3 sleep stage to discriminate between PLMS and healthy (control) subjects. 

If SWSD was more than 70 minutes and N3 (%) was more than 20% of the total 

sleep, a subject was classified as a healthy (control) subject. All of these rules were 

based on a percentage of the sleep stage and the time duration of the sleep 
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parameters, such as N1%, N2%, and SWSD. The automatic classification algorithm 

is described in Figure 13.  

 

Figure 13:  Flow chart based on decision tree analysis describing the automatic classification algorithm 

for PLMS and SAHS patients, and healthy subjects. N1 and N2 are the sleep stage percentages and 

SWSD is the duration in minutes. 

5.2.2.3 Statistical analysis 

The statistical method was mentioned in section 5.1.2.3. 
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6 : Results 
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6.1 Automatic detection of wake and sleep stage N1 using EEG sub-epoch 

approach 

The aim of this study was to detect the W and sleep S1 based on consecutive and non-

consecutive sub-epoch of EEG, and then compare the performance of the conventional 

30-second epochs with the three consecutive and non-consecutive 6-second epochs for 

detection W and sleep S1. As an example Figure 14 shows the hypnograms for subject 

22, using the parametric methods. The figure also shows the difference between using 

30-second epochs and three consecutive and non-consecutive 6-second epochs for 

identification of the W and sleep S1. From Figure 14, it is clear that the three 

consecutive and non-consecutive 6-second sub-epochs provide slightly better results 

than the 30-second epoch method. In addition, the non-parametric method showed 

lower detection accuracy for the W stage but higher detection accuracy for sleep S1. It 

is clear from Table 13 that the non-consecutive 6-second epoch method was able to 

detect both sleep stages better than the 30-second epoch method.  

 

Figure 14: The hypnograms for subject S22 using the parametric approach, comparing the 30-second and 

the three consecutive and non-consecutive 6-second epochs methods. ‘W’ = the wake stage; ‘S1’ =stage 

1; 0 = misclassification. 
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   Table 13 describes the count of W and stage S1 epochs automatically detected by the 

parametric and non-parametric methods, and compared to the commercial ‘Hypnolab’ 

tool. The 20-minute PSG recording translated into 39 epochs, each epoch consisting of  

30-second epochs (the last 30 seconds were not scored). While the sum of the W and 

S1 epochs was expected in all subjects (there were no other stages present), the W stages 

were all accounted for both parametric and non parametric and its three methods (30-

second epoch, consecutive and non-consecutive sub-epochs). However, for S1, not all 

epochs were detected with the three epoch/sub-epoch methods. Some subjects did not 

have any stages detected by Hypnolab, such as S18, S23, S29 and S30. Therefore, the 

validation for S1 for those subjects was not available (noted by N/A in Table 13). Also, 

for some subjects the consecutive and non-consecutive sub-epoch methods showed 

instances of not classified or misclassified, noted by M/C in Table 13.  

Table 13: The count of W and S1 stages scored epochs from the three automated detection methods using 

parametric and non-parametric spectral density functions, and compared with the commercial ‘hypnolab’ 

sleep scoring.  
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Subject 

S18 39 38 39 N/

A 

N/

A 

N/A 39 36 39 N/

A 

N/

A 

N/A 39 N/A 

S19 13 12 21 26 9 18 35 26 35 4 M/

C 

4 34 5 

S20 27 14 20 12 11 19 39 23 35 M/

C 

M/

C 

4 33 6 

S21 25 30 36 14 1 3 39 30 37 M/

C 

M/

C 

2 35 4 

S22 35 25 36 4 2 3 39 30 37 M/

C 

M/

C 

2 35 4 

S23 8 2 6 31 2 33 39 31 37 M/

C 

1 2 39 N/A 

S25 33 16 26 6 M/

C 

13 39 30 38 M/

C 

M/

C 

1 38 1 

S27 34 34 38 5 1 1 39 28 36 M/

C 

1 3 28 11 

S29 33 25 34 6 M/

C 

5 39 33 39 M/

C 

M/

C 

- 39 N/A 
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Note: N/A =  not available; M/C = not classified or misclassified. 

Table 14 revealed achieved an accuracy with the non-parametric spectral density 30-

second epoch method of 71.4% in the wake stage and 47.5% in stage 1,  while the 

accuracy of the three consecutive 6-second sub-epoch method was slightly lower than 

the 30-second method, as 59.3% in the wake stage and 35% in stage 1. The three non-

consecutive 6-second method revealed a slight improvement in accuracy as compared 

to the 30-second epoch method (non-parametric), at 77% (increase by 5.6%) for the 

wake stage and 55.8% (increase by 8.3%) for S1. Moreover, for some subjects the three 

consecutive and non-detection method for S1 proved to be more effective over the 

conventional 30 sec epoch method. For example, from Table 14, the accuracy of the 

detection of S1 for subjects S20 and S22 was higher by 80% with the three consecutive 

and non-consecutive 6-seconds methods. While, the accuracy of the 30-second method 

was 60% for subject S20 and 25% for subject S22, the average accuracy for all 10 

subjects was higher with the 30-second method as compared to the consecutive and 

non-consecutive methods. This standard deviation was also large in these subjects with 

the SD at 25-30% for the 30-second epoch and 40-46% for the consecutive and non-

consecutive 6-second sub-epoch methods. 

    On the other hand, the parametric method revealed a significant accuracy in the 

detection of the W stage, wherein the accuracy of the 30-second method was 98.5%, 

the three consecutive 6-second method was 75.6% and the accuracy of the three non-

consecutive 6-second method was 95.1%. The S1 detection was 0% for both the 30-

second epoch and 6-second consecutive sub-epoch methods, and 10.8% for the 6-

second non-consecutive sub-epoch.  

S30 33 36 39 6 M/

C 

M/C 39 31 38 M/

C 

M/

C 

1 39 N/A 

Mean 28 23 29 12 4.3 11.8 38.6 29.8 37.1 4 1 2.37 35.9 5.1 

S.D. 10 11 10 9 4.4 11 1.26 3.58 1.44 0 0 1.18 3.6 3.3 
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Table 14: The comparison of the accuracy between the three automated detection methods using non-

parametric and parametric spectral density functions.  

Note: N/A = not available in subject file. 

6.2 Automatic detection of sleep stages using EEG sub-epoch approach 

6.2.1 Overall Performance  

To help gauge the overall effectiveness of this study’s automatic detection approach, it 

was compared with the visual scoring method done by an expert (see Table 15 for the 

results of the performance and comparison). The rows and columns of the confusion 

matrix show the results of visual detection and automatic detection, respectively. Whilst 

the three consecutive sub-epoch approach yielded only 64.2% (0.50 Cohen’s Kappa) 

epoch-by-epoch agreement detection of the 5-stages for group 1, the three non-

consecutive sub-epoch method gave 82.4% (0.75 Cohen’s Kappa). The situation was 

similar for Group 2, where the three consecutive and non-consecutive sub-epoch 

method agreement was 71% (Cohen’s Kappa = 0.62) and 86.6% (Cohen’s Kappa = 

0.82), respectively. Likewise, in Group 3, the overall agreement of the three consecutive 

and non- consecutive sub-epoch method with visual detection was 68.35% (0.60 

Cohen’s Kappa) and 80.85% (0.74 Cohen’s Kappa), respectively.  

Method 

 

Non-Parametric Parametric 

30-s epoch  

 

3 

consecutive     

6-s sub-

epochs 

3 non-

consecutive  

6-s  sub-

epochs 

30-s epoch  3 

consecutive  

6-s  sub-

epochs   

3 non-

consecutive  

6-s  sub-

epochs 

Subject 

/W&S1 

%( 

W 

(%) 

S1 

(%) 

W 

(%) 

S1 

(%) 

W 

(%) 

S1 

(%) 

W 

(%) 

S1 

(%) 

W 

(%) 

S1 

(%) 

W 

(%) 

S1 

(%) 

S18 100 N/A 97.4 N/A 100 N/A 100 N/A 92.3 N/A 100 N/A 

S19 38.2 100 32.3 80 58.8 80 88.2 0 67.6 0 88.2 0 

S20 70.5 60 35.2 80 53.9 80 97 0 61.7 0 91.1  40 

S21 60.0   0 74.2 0 91.4 0 100 0 74.2 0 94.2 0 

S22 91.4 25 68.8 50 100 75 100 0 77.1 0 97.1 25 

S23 20.5 N/A   5.1 N/A 15.3 N/A 100 N/A 79.4 - 97.4 - 

S25 86.8 100 42.1 0 68.4 100 100 0 76.3 0 97.3 0 

S27 82.1 0 82.1 0 96.4 0 100 0 64.2 0 89.2 0 

S29 84.6 N/A 64.1 N/A 87.1 N/A 100 N/A 84.6 N/A 100 N/A 

S30 84.6 N/A 92.3 N/A 100 N/A 100 N/A 79.4 N/A 97.4 N/A 

Mean 71.4 47.5 59.3 35 77 55.8 98.5 0 75.6 0 95.1 10.8 

S.D. 25.2 46.2 28.1 39.8 27.9 44.9 3.74 0 9.3 0 4.3 17.4 
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When comparing the visual detection hypnogram to the automatic sleep stages 

determined by the 30-second epochs (for patient no. 8 from Group 2), a relatively poor 

comparison can be seen as in Figure 15. On the other hand, the automated three 

consecutive and non-consecutive 6-second sub-epoch methods were closer to the 

hypnogram that was visually scored. Upon closer inspection, when considering the finer 

details between the 300 and 400 epoch numbers, it can be clearly seen that the three 

non-consecutive approaches were more closely matched with the visual detection 

approach than the other methods. 

6.2.2 Comparison of sleep stage detection method 

  As shown in Table 15, the sensitivity and specificity of the five stages for each group 

of patients or subjects was better for the three non-consecutive 6-second sub-epoch 

method than the three consecutive 6-second sub-epoch method. For example, for Group 

1 the performance of the three non-consecutive method for all stages (stage (sensitivity, 

specificity)) was W (84.8, 89.9), N1 (68.83, 89.8), N2 (87.7, 96.7), N3 (73.4, 97.4) and 

R (83, 98.8), and similar to the performance for the three consecutive approach, which 

was W (70.9, 77.3), N1 (48.8, 64.3), N2(66.7, 92.2), N3(58.4, 94.4), R (69.1, 91.3). 
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Table 15: The overall performance and comparison between visual and automatic detection (by both 3 

consecutive and non-consecutive sub-epoch approaches) for the three groups. 

3 Consecutive 6 sec-sub epoch Method 3 Non-Consecutive 6 sec-sub epoch Method 

Group1: Primary insomnia 

V
is

u
al

 

d
et

ec
ti

o
n
 

Automatic detection 

 W N1 N2 N3 REM Sensitivity 
(%) 

W 1460 267 308 16 7 70.9 

N1 200 450 116 150 43 48.8 

N2 558 310 2518 320 75 66.7 

N3 191 354 123 982 31 58.4 

REM 82 145 10 20 576 69.1 

 Specificity 

(%) 

77.3 64.3 92.2 94.4 91.3  

kappa 0.50 

Agree (%) 64.2 
 

 

Group1: Primary insomnia 

V
is

u
al

 

d
et

ec
ti

o
n
 

Automatic detection 

 W N1 N2 N3 REM Sensitivity 

(%) 

W 1746 135 161 15 1 84.8 

N1 81 661 160 53 4 68.83 

N2 238 125 3316 99 3 87.7 

N3 64 167 211 1234 5 73.4 

REM 80 30 1 0 722 86.6 

 Specificity 
(%) 

89.9 89.8 96.7 97.4 98.8  

kappa 0.75 

Agree (%) 82.4 

Group2: Schizophrenia 

V
is

u
al

 

d
et

ec
ti

o
n
 

Automatic detection 

 W N1 N2 N3 REM Sensitivity 

(%) 

W 840 374 57 71 35 61.2 

N1 134 534 47 43 22 65.2 

N2 1167 264 2477 255 57 59.4 

N3 136 24 68 1558 6 78.4 

REM 149 56 6 5 1414 91.8 

 

Specificity 

(%) 88.9 93.6 68.9 82.8 84.3 

 

kappa 0.62 

Agree (%) 71 
 

Group2 : Schizophrenia 

V
is

u
al

 

d
et

ec
ti

o
n
 

Automatic detection 

 W N1 N2 N3 REM Sensitivity 
(%) 

W 1086 189 37 45 20 82.2 

N1 133 584 30 26 7 75.8 

N2 551 63 3522 81 3 85.2 

N3 31 2 48 1711 0 85.2 

REM 45 2 1 0 1582 97.1 

 Specificity 
(%) 89.8 97.2 97.8 98.4 99.7 

 

kappa 0.82 

Agree (%) 86.6 
 

Group3: Healthy 

V
is

u
al

 

d
et

ec
ti

o
n
 

Automatic detection 

 W N1 N2 N3 REM Sensitivity 

(%) 

W 1219 703 57 194 66 52.8 

N1 151 543 72 71 43 59.2 

N2 598 415 2638 406 78 64.2 

N3 35 9 63 1134 3 91.1 

REM 58 46 5 3 1130 91.2 

 Specificity 

(%) 84.1 93.2 67.83 86.9 87.9 

 

kappa 0.6 

Agree (%) 68.35 
 

 
 

 

Group3: Healthy 

V
is

u
al

 

d
et

ec
ti

o
n
 

Automatic detection 

 W N1 N2 N3 REM Sensitivity 

(%) 

W 1664 358 46 154 17 74 

N1 183 625 36 28 8 68.7 

N2 498 161 3316 154 6 80.8 

N3 5 1 41 1197 0 96.2 

REM 22 5 0 1 1214 97.7 

 Specificity 

(%) 89.4 93 97.3 95.7 99.4 

 

kappa 0.74 

Agree (%) 80.85 

 

6.3 Individual subject performance   

To obtain a view of the performance per subject, Cohen’s Kappa coefficients were 

computed for the automatic sleep stage detection based on the 30-second epoch, three 

consecutive 6-second sub-epoch and three non-consecutive 6-second sub-epoch 

methods for each group of patients: Primary insomnia (Figure 16), schizophrenia 

(Figure 17) and healthy (Figure 18).  
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For all three groups it can be seen from the Cohen’s Kappa coefficients that automatic 

detection (by the three non-consecutive 6 second sub-epoch method) agrees 

substantially better with the visual detection (expert) than with the automatic detection 

by the three non-consecutive 6-second sub-epoch and 30-second approaches). 

 

Figure 15: Hypnogram of visual sleep stage scoring versus automatic sleep stage scoring using 30-second 

epoch, three consecutive 6-second sub-epoch and three non-consecutive approaches, respectively. 

 

 

Figure 16: Cohen’s Kappa (C.K.) and accuracy (ACC) agreement of automatic detection approaches 

using 30-secend epoch, three consecutive 6-second and three non-consecutive 6-second methods with 

visual detection by expert for each primary insomnia patient (n=9 subjects, Sub 1-9). 
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Figure 17: Cohen’s Kappa (C.K.) and Accuracy (ACC) agreement of automatic detection approaches 

using 30-second epoch, three consecutive 6-second and three non-consecutive 6-second methods with 

visual detection by expert for each schizophrenia patient (n = 10 subjects, Sub 1-10). 

 

 

 

Figure 18: Cohen’s Kappa (C.K.) and Accuracy (ACC) agreement of automatic detection approaches 

using 30-second epoch, three consecutive 6-second and three non-consecutive 6-second methods with 

visual detection by expert for each healthy subject (n = 10 subjects, Sub 1-10). 
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6.4 Automatic detection of sleep stages using EOG  

In this study, the EOG signal was utilised for the detection of the sleep stages of 30 

patients, comprising 10 healthy (controls), 10 PLMS, and 10 SAHS. Several features 

were extracted from the EOG signal based on different frequency bands, as mentioned 

in the previous section (refer to section 4.3.2.2). The overall agreement, sensitivity and 

specificity of the sleep stage detection for healthy (control) subjects were 83.5%, 85%, 

and 88% respectively. The Cohen’s Kappa was 0.79. Table 16 shows the confusion 

matrix with the sensitivity and specificity after applying the smoothing rule 1, for a 

single healthy subject. The results showed that the best detection was in W, and N3 (the 

sensitivity was 91%).  The detection of sleep stage N1, after utilising the smoothing 

rule, was significantly improved. The overall agreement, sensitivity, and specificity for 

the detection of the sleep stages of the PLMS patients was 80%, 82%, and 86%, 

respectively. The Cohen’s Kappa was 0.71, which was lower than the Cohen’s Kappa 

for the healthy (controls) subjects. The reason for this is that the normal distribution of 

sleep stages with healthy subjects was much more consistent than with the PLMS 

patients. Table 17 shows the confusion matrix, sensitivity and specificity of the sleep 

stages for a single PLMS patient. It is clear that the total number of sleep stage N2s was 

higher than the other sleep stages; therefore, the detection of stages N1 and R was 

slightly lower than other stages. On the other hand, the overall agreement, sensitivity, 

and specificity for the detection of the sleep stages with the SAHS patients were 78%, 

77%, and 80%, respectively, whilst the Cohen’s Kappa was lower than in the other two 

groups (healthy and PLMS) by 0.67. Table 18 shows the confusion matrix, sensitivity 

and specificity of the sleep stages for a single SAHS patient. It is clear that the lower 

sensitivity was in the wakefulness stages, with an improvement in the detection of sleep 

stage N1.   
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Table 16: The confusion matrix of a single healthy (control) subject. 

  Automatic detection 

  W N1 N2 N3 R Sensitivity 

(%) 

Visual 

detection 

W 575 18 120 5 16 91 

N1 22 238 108 5 29 78 

N2 15 10 2280 39 62 80.6 

N3 3 1 168 1018 46 91 

R 11 3 150 43 1065 87.4 

Specificity 

(%) 

90 85 70 87.4 81.2  

 

 

Table 17: The confusion matrix of a single PLMS patient. 

  Automatic detection 

  W N1 N2 N3 R Sensitivity 

(%) 

Visual 

detection 

W 524 6 163 5 28 87 

N1 50 150 163 9 36 70 

N2 25 5 3091 13 44 80 

N3 10 0 191 224 19 85 

R 186 11 277 16 836 78 

Specificity 

(%) 

88 88 60 87.6   82.2 

 

Table 18: The confusion matrix of a single SAHS patient. 

  Automatic detection 

  W N1 N2 N3 R Sensitivity 

(%) 

Visual 

detection 

W 547 10 153 17 43 66 

N1 29 134 181 11 59 72 

N2 38 13 2893 68 138 79.5 

N3 3 2 104 731 24 84 

R 11 12 255 32 968 85.7 

 Specificity 

(%) 

85 75 66 96 85  

 

Figures 19, 20 and 21 show the hypnograms of visual sleep stage scoring vs. automatic 

scoring for a healthy (control), a PLMS and an SAHS patient, respectively. It can be 

observed that some sleep stages were scored as sleep stage N2 or N3 which made the 

hypnogram included some incorrect classifications. Figures 22, 23 and 24 show the 

accuracy of the selected features for the detection of the sleep stages for each group. 
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Figure 19: The hypnogram of visual sleep stage scoring vs. automatic scoring for a single healthy 

(control) subject. 

Figure 20: The hypnogram of visual sleep stage scoring vs. automatic scoring for a single PLMS 

patient. 

Figure 21: The hypnogram of visual sleep stage scoring vs. automatic scoring for an SAHS patient. 
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Figure 22: The accuracy of the selected features for the detection of sleep stages for healthy subjects. 

 

 

Figure 23: The accuracy of the selected features for detection sleep stages for PLMS patients. 
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Figure 24: The accuracy of the selected features for the detection of sleep stages for SAHS patients. 

 

 

6.5 Classification of insomnia, schizophrenia and healthy sleep 

Figure 12 shows the automatic classification algorithm used to identify the patients with 

primary insomnia, schizophrenia and the healthy (control) patients. The sleep 

parameters of SL, the first REM period and sleep stage N1 were used to classify these 

three groups on the basis of the thresholds as described in the previous section (refer to 

section 5.1.2.2). Table 19 shows the post-hoc t-test analysis for the three groups of 

patients. There were significant differences (p = 0.01 and 0.00 respectively) between 

the primary insomnia patients and the healthy (control) subjects, particularly in sleep 

stages N1(%) and R(%). Moreover, there were significant differences between the 

schizophrenia patients and the healthy (control) subjects in the sleep parameters of 

WASO (p = 0.05), NW (p = 0.05) SWS duration (p = 0.04). The primary insomnia 

significantly differed from the schizophrenia patients in some sleep parameters, such as 

SL (p = 0.04), WASO (p = 0.00), NW (p = 0.00) and the REM duration (p = 0.00). 

Figure 25 shows the bar plots of  the sleep parameters of the three patient groups. The 
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SL, NW, first REM period (FRP) and R sleep stages were all significant sleep stage 

parameters for the schizophrenia patients. Sleep stage N1(%) was a significant sleep 

parameter for the primary insomnia patients. The sensitivity and specificity of the 

identification the primary insomnia patients were 90% and 95%, respectively. For the 

schizophrenia patients, it was 90% and 81%, respectively. For the healthy (control) 

subjects it was 70% and 99 %, respectively (see Table 20). The level of accuracy and 

Cohen’s Kappa was 83.4 % and 0.75, respectively. 

 

Table 19: The post-hoc t-tests of the differences in the sleep parameters between the three groups.  

Sleep parameters Primary insomnia vs. 

healthy 

Primary insomnia vs. 

schizophrenia 

Schizophrenia  vs. healthy 

t SD p t SD p t SD P 

Sleep Latency -0.1 26 0.85 2.2 18.6 *0.04 1.3 27.8 0.21 

Sleep efficiency 0.7 16.5 0.47 1.6 6.6 0.13 1.4 16.1 0.18 

WASO -0.6 73.9 0.55 -4.2 21.2 *0.00 -2.1 64.4 *0.05 

Number of 

awakenings 

-0.6 148.4 0.50 -3.4 48.8 *0.00 -2.1 128.8 *0.05 

REM latency 0.4 56.2 0.67 -0.1 81.4 0.87 0.1 77.7 0.88 

First REM period -1. 5.8 0.08 1.6 8.9 0.13 0.3 10.3 0.76 

Total sleep time 1.1 80.2 0.28 1.3 38 0.21 1.9 74.2 0.08 

SWS duration 1.8 59.5 0.10 -0.1 38 0.88 2.3 43.3 *0.04 

REM duration -1.9 28.3 0.07 4.7 24 *0.00 1.7 34.5 0.10 

N1 (%) -7.7 20.2 *0.01 -0.8 10 0.43 -0.6 11.8 0.50 

N2 (%) -0.5 13.2 0.57 -0.9 8.6 0.34 -2 7.7 0.06 

N3 (%) 1.7 13.9 0.11 -0.5 16 0.61 8.9 8.1 0.28 

R (%) -3.1 5.6 *0.00 4.3 6.3 *0.00 1.3 6.8 0.20 

N1/N2 -0.8 24.5 0.41 -0.6 19.2 0.53 -1.1 28.5 0.26 

N1/N3 -0.12 48.1 0.9 0.2 38.1 0.78 0.1 34.2 0.88 

* p < 0.05. 

 

Table 20: Confusion matrix of detection of the three participant groups based on the decision three 

analysis. 

 Automatic classification 

  Primary 

insomnia 

Schizophrenia Healthy  Sensitivity (%) 

 

 

True 

classification 

Primary 

insomnia 

9 1 0 90% 

Schizophrenia 1 9 0 90% 

Healthy 0 3 7 70% 

Specificity (%)   95%  81%    99% 

Cohen’s Kappa 0.75 
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Figure 25: Bar plots of the different sleep parameters for the primary insomnia patients, schizophrenia 

patients and the healthy subject. SWD = slow-wave sleep duration; FPR = the first period REM; RED = 

the REM duration. 

 

6.6 Classification of PLMS, SAHS and healthy sleep 

Figure 13 shows the automatic classification algorithm used to classify the PLMS and 

SAHS patients, and the healthy (control) subjects. The significant sleep parameters of 

N1(%), N2(%), and SWSD were used to identify the three groups on the basis of the 

thresholds, as described in the previous section (see section 5.2.2.2). 

Table 21 shows the post-hoc t-test analysis for the three groups of patients. There were 

significant differences between the PLMS patients and the healthy control participants, 

particularly in sleep stages N2(%) (p = 0.01), N3(%) (p = 0.01) and SWS(%) (p = 0.03) 

duration. Furthermore, there were significant differences between the SAHS patients 

and the healthy (control) subjects in the sleep parameters of SWS duration (p = 0.01), 
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REM duration (p = 0.01), and sleep stages N2 (%) (p = 0.01), N3 (%) (p = 0.01), and 

R (%) (p = 0.01). 

 

Table 21: The post-hoc t-tests of the differences in the sleep parameters between the three patient 

groups.  

 PLMS vs Healthy PLMS vs SAHS  SAHS  vs Healthy  

Sleep parameters t SD p t SD p t SD p 

Sleep latency 0.37 43.2 0.71 0.2 40.2 0.81 0.28 21.5 0.77 

Sleep efficiency -0.62 22.4 0.54 -0.57 18.3 0.57 -0.24 14.5 0.81 

WASO 0.61 94.9 0.55 0.50 81.04 0.62 0.29 59.6 0.77 

Number of wakings 0.58 1.13 0.57 0.48 193 0.64 0.28 143 0.78 

REM latency 1.9 48.36 0.07 -0.43 101.7 0.67 1.4 95.2 0.17 

First REM period -2.07 0.08 0.06 -1.0 0.60 0.34 0.69 0.60 0.5 

Total sleep time  -0.41 118.9 0.68 -0.51 90.6 0.61 -0.03 77.3 0.97 

SWS duration -2.56 70.5 *0.03 50.2 0.51 0.62 -6.01 34.38 *0.01 

REM duration -1.8 41.7 0.10 1.0 32.9 0.33 -3.25 33.4 *0.01 

W (%) 0.30 23.2 0.76 0.30 18.8 0.76 0.08 15.38 0.93 

N1 (%) 2.07 6.1 0.06 1.2 5.7 0.25 1.34 4.23 0.21 

N2 (%) 2.95 16.6 *0.01 -2.93 10.2 *0.01 5.25 15.06 *0.01 

N3 (%) -3.04 15.2 *0.01 0.80 11.7 0.44 -7.61 7.30 *0.01 

R (%) -1.38 10.3 0.2 1.75 6.1 0.11 -2.78 9.03 *0.02 

* p < 0.05. 

 

Table 22: Confusion matrix of detection of the PLM and SAHS patients and healthy subjects based on 

the decision three analysis. 

  Automatic  classification 

True 

classification 

 PLMS SAHS Healthy 

PLMS 9 1 0 

SAHS 0 9 1 

Healthy 1 0 9 

Sensitivity (%) 90                       90 90 

Specificity (%) 95 95 95 

Cohen’s Kappa 0.85 

 

The PLMS differed from the SAHS patients within the sleep parameters of sleep stage 

N2 (%) (p = 0.01). Figure 26 shows the bar plots of the three groups. The SL, WASO, 

and NW were all significant sleep stage parameters for the PLMS patients. Sleep stage 

N2 was a significant sleep parameter for the SAHS patients. The sensitivity and 

specificity of identification in the PLMS patients was 90% and 95%, respectively, the 

SAHS patients was 90% and 95%, respectively, and the healthy (controls) was 90% 
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and 95%, respectively (see Table 22). The level of accuracy and Cohen’s Kappa were 

90% and 0.85, respectively. 

 

Figure 26: Bar plots of the different sleep parameters for the PLMS and SAHS patients and healthy 

subjects. 

 

  

0

0.5

1
SL

 

 

PLMS SAHS Healthy

0

0.5

1
SE

0

0.5

1
WASO

0

0.5

1
NW

0

0.5

1
FRP

0

0.5

1
TST (%)

0

0.5

1
SWSD (%)

0

0.5

1
REMD (%)

0

0.5

1
N1 (%)

0

0.5

1
N2 (%)

0

0.5

1
N3 (%)

0

0.5

1
R (%)

0

0.5

1
W (%)



106 

 

 

 

 

 

 

 

 

 

7 : Discussion 
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7.1  Automatic detection of wake and sleep stage N1 using the EEG sub-epoch 

approach 

 The results of this study confirmed the possibility of using the 30-second epoch and 

the three consecutive or non-consecutive 6-second epoch methods for the scoring of W 

and stage S1 sleep. Whilst the accuracy varied between subjects, the non-parametric 

method proved to be more effective with stage S1 sleep detection, whereas the 

parametric method was more effective for the W stage detection. The non-consecutive 

sub-epoch method was more effective and the three consecutive method was least 

effective in the non-parametric stage S1 detection. The 30-second epoch method was 

most effective for the parametric W stage detection.  

Parametric and non-parametric methods with approach of consecutive and non-

consecutive sub-epochs, using EEG signals to evaluate PSG (napping) database can 

contribute to improving the discrimination between W and sleep S1. These methods 

can also be used in evaluating the excessive daytime sleepiness (EDS) conditions. 

   However, there were limitations in this pilot study. There is a need to design an 

adaptive detector that is intelligent enough to know when to apply the non-parametric 

and parametric 30-second and the consultative/non-consecutive sub-epoch methods. 

Accuracy was calculated independently for W and S1, rather than combined. The PSG 

data, recorded without biofeedback conditions, would process different results, which 

subjects would exhibit non-induced W and S1 EEG activity. Other improvements to 

these results may be found in including relative EEG delta power. Also, the frequency 

bands that were used in this study were based on the study of Diego [178]. Therefore, 

further improvement may occur in the detection of S1 if the frequency band of theta to 
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be between 4 to 8 Hz. Moreover, using the smoothing rule that was described in the 

previous section (see section 4.2.2) may also improve the accuracy of detection W and 

S1, which was not applied in this study. Also, the pre-processed step of filtering may 

also need to be excluded to improve the EEG bands power computations.  

7.2 Automatic detection of sleep stages using EEG sub-epoch approach 

In this study, the main aim was to detect the sleep stages based on three consecutive 

and non–consecutive sub-epochs by using a single channel EEG (Cz location). The 

algorithm performance was reliable and satisfactory across all subjects. The overall 

agreement between the manual and automatic scoring was 67.85% for the three 

consecutive 6- second sub-epoch method, and 83.3% for the three non-consecutive 6-

second sub-epoch method. The reason that an overall accuracy was low (see Table 15)  

for the three consecutive 6-second sub-epoch method, is that some 30-second epoch 

were not included in three consecutive sub-epoch of any sleep stages. 

  It is challenging to discriminate the sleep stage R from N1 or W stage with an 

automatic sleep detection approach [195,196] because of the criteria that scoring R 

sleep is based on, the EOG signal (present REM), and EMG (muscle atonic) according 

to the AASM standard. The spectral analysis of the EEG signal showed the frequency 

mixture throughout the R stage with delta and sigma band power [197, 198]. The 

combination between these frequencies has been reported as a distinctive EEG marker 

of R sleep [197].  In order to distinguish between R sleep and other sleep stages, the 

three consecutive and non-consecutive sub-epoch was utilised with the band power of 

saw-tooth (2-6 Hz) or a combination between the delta2 (2–4 Hz), sigma (12–15 Hz), 

beta1 (13–20 Hz) and beta2 (20–30 Hz).  
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Table 23 compares the three consecutive and non-consecutive 6-second sub-epoch 

approach with four commercial sleep stage detection algorithms of FP-STAGER [180], 

ASEEGA [197], ZEO [198] and ARES [199]. These algorithms all use a single EEG 

signal and were compared by epoch-by-epoch manual scoring. The candidature's own 

3 consecutive and non-consecutive 6-second sub-epoch approach with a single EEG 

(Cz channel location) was also compared with the expert epoch-by-epoch scoring, as 

shown in Table 23. 

 

Table 23: A comparison of candidature own approach with existing commercial algorithms based on the 

single EEG channel.  

 References  Number 

of 

subjects  

Signal EEG Sensitivity 

(%) 

Specificity  

(%) 

Agreement 

(%) 

Cohen’s 

Kappa 

[180] 29 EEG (Fp1-

Fp2) 

- - 80.0 0.75 

[197] 15 EEG (Cz-Pz) 82.5 - 82.9 0.72 

[198] 26 EEG (Fp1-

Fp2) 

- - 84.0 0.57 

[199] 20 EEG (Fp1-

Fp2) 

- - 83.2 0.74 

Candidature 

result  

29 EEG (Cz) 82.9 95.2 83.3 0.77 

Note. - = not measured. 

Candidature results indicated that the detection of W stage with some subjects (in Group 

3) had low accuracy (74 %), due to a very low alpha activity over Cz location, which 

did not satisfy the criteria of scoring the W stage. Other algorithms performed similarly 

[199]. Additionally, most algorithms [182, 200] showed a very low detection accuracy 

for sleep stage N1. However, the three consecutive and non-consecutive 6-second sub-

epoch (EEG ‘Cz’) approach yielded improved detection of sleep stage N1.  

The candidature attempted to compare the performance of the automatic detection of 

sleep stages based on 30-second epoch (prior to dividing the 30-second epoch into sub-

epoch approach). There was a significant improvement when utilising the three 

consecutive and non-consecutive sub-epoch in comparison to the 30-second epoch.  
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This study had some limitations. Firstly, this approach was validated on a small 

population of young healthy and non-healthy subjects. Therefore, additional studies on 

elderly healthy and non-healthy subjects is necessary to fully evaluate this algorithm. 

Secondly, the features used in this algorithm were selected based on the optimal 

features for each sleep stage that were described in previous studies [153,188,189]. An 

algorithm can be optimised by selecting the best features for detecting each sleep stage. 

Finally, the sleep stage rules where optimized for this PSG data and thus the algorithm 

presented here may be suboptimal if utilised with different sleep stages rules or data.  

 

7.3 Automatic detection of sleep stages using EOG and classification of PLMS, 

SAHS and healthy sleep 

This pilot study used EOG signals for automatic sleep stage detection, and then used 

the data (sleep stages that detected automated to measure sleep parameters) to classify 

PLMS and SAHS patients and healthy (control) subjects. The overall inter-rater 

agreement between the visual and automatic sleep stage scoring for the three groups 

was 80.5%, with a Cohen’s Kappa of 0.73. On the other hand, the agreement level of 

the automatic classification of sleep disorders was 90%, and Cohen’s Kappa was 0.85.   

Different features were employed extracted from the EOG signals and then fed into the 

KNN classifier for detection of the wake and the sleep stages. Some studies have used 

the decision rule-based approach with various thresholds to predict the sleep stages 

[137]. However the results indicated a slight improvement of the specific EEG alpha 

thresholds for offline applications, with an accuracy of 73%. Therefore, the present 

study used the KNN classifier due to its simplicity and strength in detecting the sleep 

stages. Several studies have employed signals in addition to EOG signals for automatic 
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sleep stage detection, such as EEG and EMG signals [150,151,178]. These require more 

electrodes and more complicated algorithms to increase the accuracy level. On the other 

hand, some studies used only one EEG signal for automatic sleep detection [176,201]. 

Since the predominance of sleep stage N2 in PLMS and SAHS patients was more than 

in the healthy (control) subjects, this was a distinct difference between these three 

groups. This led to the overall accuracy of the sleep stages of the PLMS and SAHS 

patients to be very low (80% and 78% respectively), which meant that the KNN 

classifier detected the other sleep stages as sleep stage N2. In Table 17, for example, it 

was obvious that the total number of occurrences of sleep stage N2 was higher than in 

the other sleep stages, which caused an increased overall detection of the other sleep 

stages or the wakefulness stage.  

Similar studies have utilised the EOG signal for the detection of the sleep stages, or of 

one particular sleep stage such as SWS (N3) [136,201].  An automatic method was 

previously developed for detection of SWS based on two EOG channels [136]. This 

study employed the amplitude criterion for detecting SWS, and beta power [18-30] was 

utilised to reduce the artefact. The result showed inter-rater agreement between the 

visual and the developed automatic method was 93%, with a Cohen’s Kappa value of 

0.70. The sensitivity and specificity was 75% and 96%, respectively. Another study 

employed two-channel EOG with the reference to the left mastoid (M1) for the 

automatic sleep stage detection [136]. The synchronous EEG activity during S2 and S3 

was detected by calculating peak-to-peak and cross-correlation amplitude differences 

in the 0.5-6 Hz range (between the two EOG channels). The result indicated that the 

epoch-by-epoch agreement between the visual scoring and the automatic method was 

72%, with a Cohen’s Kappa value of 0.63.  
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The second aim of this study was to utilise the automated detection of sleep stages for 

the purpose of classifying PLMS and SAHS patients, and healthy (control) subjects.  

The results provided evidence to support the use of the PSG sleep stage parameters, 

such as sleep stage N1(%), N2(%), and SWSD in order to automatically classify PLMS 

and SAHS patients, and healthy (control) subjects. The stage N1 (%) was the most 

significant parameter distinguishing the SAHS patients from the healthy (control) 

subjects. The study found that sleep stage N1 (%) was 9% for seven SAHS patients. 

Conversely, eight healthy subjects had a sleep stage N1 (%) for less than 5% of the total 

sleep duration. However, some patients with PLMS showed higher sleep stage N1 (%), 

which led the mean average of sleep stage N1 (%) to be higher than in the other two 

groups. Figure 26 presents evidence that the mean average of sleep stage N1 (%) for 

the healthy (control) group was lower compared with the other groups (PLMS and 

SAHS). 

The sleep stage N2 (%) was used to distinguish between the SAHS and PLMS patients 

and healthy (control) subjects. This study found that most of the SAHS patients had a 

higher sleep stage N2 (%) (above 80%) than the PLMS patients. Figure 13 shows the 

threshold that was used to successfully distinguish between the SAHS patients and the 

other two groups (PLMS and healthy). The SWSD and sleep stage N3 (%) was used to 

discriminate the PLMS patients from the healthy (control) subjects. It was found that 

most of the PLMS patients had shorter SWSDs compared to the healthy subjects. The 

longest SWSD of the healthy (control) group was above 70 minutes. The reason for 

using sleep stage N3 (%) was because some PLMS patients had similar SWSDs to the 

healthy (control) group. The overall accuracy was 90%, and the Cohen’s Kappa was 

0.85. 
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7.4 Classification of insomnia, schizophrenia and healthy sleep 

 This pilot study provided evidence to support the use of the PSG sleep stage 

parameters, such as SL, FRP, WASO and sleep stage N1(%) for an automatic 

classification of primary insomnia and schizophrenia. The first REM period was the 

most significant parameter to distinguish between the primary insomnia and 

schizophrenia patients. The study found that this period was less than two minutes for 

eight primary insomnia patients. Conversely, eight schizophrenia patients showed a 

first REM period of 2 to 10 minutes. Figure 25 presents evidence that the mean average 

duration of the first REM period for the primary insomnia group was lower compared 

with the other groups (schizophrenia and healthy). Therefore, this parameter was used 

to discriminate the primary insomnia from the schizophrenia patients. To avoid 

misclassifications between the primary insomnia and schizophrenia patients, the sleep 

stage N1 (%) parameter was applied, as patients with primary insomnia showed an 

increase in sleep stage N1 (%) [54]. Figure 12 shows that the threshold used for 

addressing this problem was above 12.5% N1 (%). Therefore, the sensitivity in 

identifying primary insomnia from schizophrenia was 90%, which meant that nine 

patients from each group were accurately identified. The SL parameter was used to 

distinguish between the schizophrenia patients and healthy subjects since most studies 

have shown that patients with schizophrenia have a long SL [202]. Here, seven out of 

ten healthy (controls) subjects were perfectly classified and three patients were 

identified as schizophrenia patients, as shown in Table 20. The reason for this might be 

that, in relation to the schizophrenia patients, these three participants had the first degree 

of the schizophrenia condition. In order to investigate the sleep quality parameters, a 

post-hoc t-test analysis was used. There was a significant difference between the 

primary insomnia patients and healthy subjects in sleep stages N1 (%) and R(%). The 



114 

 

schizophrenia patients varied from the healthy subjects in some sleep parameters, such 

as WASO, NW and the SWSD. However, this study found that there was no significant 

difference between the schizophrenia patients and healthy subjects in the R(%) sleep 

over the total sleep stages, which could be due to the effects of the monotherapy (second 

generation antipsychotic). Also, while some studies have confirmed that patients with 

schizophrenia seemed to exhibit regular R(%) sleep stage [203, 204], the schizophrenia 

patients in this study showed a significant discriminate with the primary insomnia 

patients in the sleep parameters of SL, WASO, NW and the RED. 
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8 : Conclusion and future work 

 

 

  



116 

 

8.1 Conclusion  

To address the abnormal phenomena that occurs during the process of sleep, a proper 

diagnosis by a sleep physician is required. Firstly, the aim of this thesis was to focus 

primarily on the evaluation of the macrostructure of sleep and the detection of the sleep 

stages. Secondly, the information from the sleep stage feature extracts were applied in 

the process of classifying various sleep disorders and healthy (control) . In this thesis, 

two types of PSG data were used involving the short-time PSG recording (napping) and 

long-time PSG recording (overnight).  For these PSG recordings, multiples electrodes 

were utilised which often cause to sleep disturbance. Therefore, this thesis used a single 

electrode for the recording of the EOG or EEG signal for the detection of the sleep 

stages.  The first type of data included only the W and N1 sleep stages. These two stages 

are very important for the assessment/evaluation of the EDS condition. Two techniques 

were employed the parametric and non-parametric methods in order to evaluate the 

short-time data PSG recording and analysis of the napping data.  The results of this 

study provided evidence of the effectiveness of these methods to successfully detect the 

W and N1 sleep stages.  

 

  Most studies have had difficulty implementing automated detection methods to 

distinguish between sleep stages, in particular the sleep stages, N1 and R [14,153]. This 

thesis aimed to effectively overcome this problem, by applying the consecutive and 

non-consecutive EEG sub-epoch approach. The results confirmed the benefit of 

automatic sleep stage scoring based on 6-second sub-epochs. In particular, the non-

consecutive sub-epoch method was a favourable method for the detection of all sleep 

stages and for all groups. The application of this method could be used to improve the 

detection of sleep stages in ambulatory sleep monitoring conditions.  
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In this thesis, visual sleep stage scoring information (measured sleep quality 

parameters) was used for the automatic classification of primary insomnia, 

schizophrenia and healthy (control) subjects. The results have provided evidence to 

support the hypothesis that the PSG sleep stage parameters, (i.e. SL, FRP, WASO and 

sleep stage N1) can successfully be applied to automatically classify primary insomnia 

and schizophrenia. The results indicated that the first REM period was the most 

significant sleep stage parameter used to distinguish between primary insomnia and 

schizophrenia patients. The results have shown that the sensitivity of identifying 

primary insomnia, schizophrenia and healthy (control) subjects was high.  

Furthermore, this thesis aimed also, to develop an automatic method for the detection 

of the sleep stages based on EOG signals, and then utilised these sleep stage parameters 

for the classification of the PLMS and SAHS patients, and healthy (control) subjects. 

There is a significant advantage that supports the use of automatic sleep stage detection 

based on only EOG signals for future ambulatory sleep monitoring. The sensitivity of 

identifying PLMS and SAHS patients and healthy (control) was very high. This 

suggests that using an automatic classification system in screening processes is more 

effective and efficient compared to some standards, such as the Pittsburgh Sleep Quality 

Index (PSQI) [205].   

In terms of publications, it can be summarised that each of the publications has 

addressed each of the aforementioned research aims (section 1.3) and have made a 

contribution to the body of knowledge.  

Here, citations refer to the previous section (see List of Publications). The author’s 

following papers (2) (3) (4) present a new approach for automatic sleep stage detection 

based on the sub-epoch of the EEG signal. Instead of utilising multiple electro-
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physiological signals, such as EEG, EOG and EMG for the detection of the sleep stages, 

a single EEG signal alone can provide a significant advantage to reduce the sleep 

disturbance caused by multiple electrode connections and to simplify the training and 

eliminate the reliance on sleep experts. In addition, the classification of the sleep stages 

based on the consecutive or non-consecutive sub-epoch approach led to an increase in 

the degree of successfully distinguishing between the sleep stages. Through these 

publication research aims 1(a), 1(b), 1(c) and 1(d) (refer to section 1.3) are achieved 

and the results are validated. Thus, these provide a contribution to the body of 

knowledge. 

The author’s following papers (1) (5) (6) (see List of Publications) address the challenge 

in the detection of the sleep stages based on the EOG signals only. This work can be 

applied in the future development of ambulatory sleep monitoring by using two or four 

electrodes for an automatic sleep stages detection. Several features were extracted from 

the EOG signals to improve the detection of the wakefulness and sleep stages. The 

results showed a strong possibility of detecting the sleep stages using only EOG signals. 

Through these publications, the research aims 1(e) and 1(f) (refer to section 1.3) are 

achieved and the results are validated. 

 All these publications individually show the positive optimal outcome meeting the 

second research aim (develop an automatic classification of sleep disorder (refer to 

section 1.3)) 

The author’s following paper (1) (7) (see List of Publications) presents a new approach 

for the automatic classification of sleep disorders. The existing methods rely on the 

Pittsburgh Sleep Quality Index (PSQI), as a standardised subjective measure to evaluate 

sleep quality. PSQI is based on several questions relating to the evaluation of sleep 
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quality for a duration of one month. This is a tedious and time-consuming task for sleep 

physicians. The best solution for this problem is to develop an automatic system based 

on PSG sleep stage parameters in order to classify different sleep disorders. 

Consequently, the results provide significant evidence to support the use of the PSG 

sleep stage parameters in the classification of different sleep disorders, thus assisting 

the sleep physician during the screening processes. Hence, through this publication, 

research aims 2(g) and 2(h) (refer to section 1.3) and results have been validated. 

8.2 Future Work   

 In order to know when to use the parametric and/or non-parametric method, there is a 

need to develop an intelligent adaptive filter. Also, the development of new sleep stage 

rules for different patient age groups and sleep disorders is recommended for future 

work. Moreover, to extract more features from the EEG and EOG signals is 

recommended for future work to improve the detection of the sleep stages. 

 It is recommended to develop rules for detection of sleep stage based on the R&K 

manual scoring. Furthermore, it is recommended to utilise the algorithm of consecutive 

and non-consecutive sub-epoch EEG for detection of sleep microstructure events such 

as various arousals. Moreover, it is recommended to evaluate for the effectiveness of 

the consecutive and non-consecutive sub-epoch approaches with other PSG signals 

such as EOG and EMG in order to detect the sleep stages. In order to compare the 

accuracy and speed of detection sleep stage with respect to the consecutive and non-

consecutive sub-epoch EEG algorithm, other classification systems such as artificial 

neural network (AAN) and support vector machines (SVM) can be tested.  
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Also, there is a need to extend the range of parameters and rules for the classification 

of sleep disorders based on sleep quality. This thesis limitation was based on the 

validation of an algorithm on a small population of young healthy and non-healthy 

subjects; there is a need for future studies on elderly healthy and patients, with a large 

sample size. 
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