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Abstract 

This thesis tests whether forecast accuracy improves when models that explicitly capture the stylised 
features of the Australian National Electricity Market (NEM) are employed to generate predictions. It is 
believed that by explicitly modelling these features of electricity wholesale spot prices, the accuracy of 
the price forecast models can be improved when compared to standard alternative. The stylised 
features identified in data are mean-reversion, sudden short-lived and consecutive jumps and heavy 
tails. 

 

When employing models to capture the stylised features of electricity prices, the models necessarily 
become more complex and often contain a greater number of parameters which combine to mimic the 
characteristics observed in the price series. Throughout this thesis an adherence to the principle of 
parsimony (Makridakis, et al page 609) will be maintained; that is if two models effectively generate the 
same forecast performance the simpler model will be preferred whether it contains the stylised features 
or not. This is also known as Occum’s Razor. 

 

This investigation is important in terms of a better understanding of what models are more useful has 
the potential to lead to more accurate price forecasts which may result in less volatility in market prices 
leading to more efficient markets.  Further, by assessing models that capture various stylised features 
it may be possible to infer the importance of particular features. Given that wholesale prices are a major 
determinant of how much end users pay for powering their homes and businesses, it is believed that a 
better understanding of what forecasting models work (and do not) will allow market participants to 
develop more successful (business) strategies for adjusting supply to meet demand and to assist with 
the valuation of financial assets as part of risk management. Additionally, a better understanding of the 
dynamics of electricity prices and its implications for successful forecasting is important for government 
policy makers, as Government sets the rules that govern the production and distribution of electricity.  

 

It is believed that by explicitly modelling the stylised features of electricity wholesale prices, forecast 
accuracy can be improved upon baseline models commonly used in quantitative finance. This thesis 
investigates the forecasting ability of two distinct modelling approaches which by construction capture 
the stylised characteristics of electricity prices. Namely, these are linear continuous time and non-linear 
modelling methods. The AR-GARCH model is chosen to be the standard approach in forecasting price 
series (Engle, 2001) and is taken as the benchmark model in this thesis. More specifically, this thesis 
aims to answer the following research questions: 

 

1. Does the application of continuous-time models in capturing the stylised features of Australian 
electricity wholesale spot prices improve forecasting ability upon the traditional AR-GARCH 
model? 

2. Does the application of non-linear forecast models in capturing the stylised features of 
Australian electricity wholesale spot prices improve forecast ability upon traditional AR-GARCH 
model? 

 

The continuous-time models examined in this thesis are; Geometric Brownian Motion (GBM), Mean-
Reverting, and Mean-Reverting Jump-Diffusion processes. The inclusion of GBM in this thesis is due 
to it being the foundation for the Mean-Reverting and Jump-Diffusion models, which are considered in 
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this thesis. Continuous-time models capture some of the main stylised features of electricity prices; 
Mean-Reverting process captures the mean-reversion (tendency of electricity prices to revert back to 
its long-term average over time) characteristics of electricity prices whilst Mean-Reverting and Jump-
Diffusion process models the sudden jumps prevalent in Australian electricity prices. The models are in 
order such that each successive model extends the one preceding it. Note that each extension 
addresses a stylised feature of the data therefore the a priori expectation is that the forecasting 
performance will improve.  

 

The inclusion of the non-linear approach to forecasting Australian electricity prices is performed with 
the application of a Markov Regime-Switching model and the application of Extreme Value Theory 
(EVT) into electricity price modelling. The Markov Regime-Switching model is a non-linear modelling 
tool that is able to capture consecutive spikes prevalent in electricity prices that Mean-Reverting and 
Jump-Diffusion processes fail to capture. The application of EVT is included in this thesis so that heavy 
tails present in electricity prices can be adequately captured. Copulas are considered as a unique 
method that models the dependence structure of data. The forecasts based on the EVT model is built 
upon the application of Copula functions as these functions model the interdependence of prices within 
the separate regions of the Australian electricity markets.  

 

The models examined in this thesis are: 

1. AR(1)-GARCH(1) 

2. Geometric Brownian Motion 

3. Mean-Reverting Model 

4. Mean-Reverting and Jump-Diffusion Model 

5. Markov Regime-Switching Model with spike distributions modelled with 
-Gaussian distribution 
-Log-Gaussian distribution and, 

6. Extreme value Theory and Copula functions 

 

Each model under investigation mimics a known characteristic of electricity prices. Comparative 
performance evaluations of each model investigated in this thesis showed that the benchmark model is 
providing superior short-term forecasting ability. 
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RESEARCH QUESTIONS 
 

This thesis answers the following research questions: 

 

1- Are forecast models generated by continuous-time models more accurate 

than traditional AR-GARCH model? 

2- Are forecast models generated by non-linear models more accurate than 

traditional AR-GARCH model? 
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CHAPTER 1 - OVERVIEW 

 

This thesis tests whether forecast accuracy improves when models that explicitly capture the 

stylised features of the market are employed to generate predictions. It is believed that by 

explicitly modelling these features of electricity wholesale spot prices, the accuracy of the price 

forecast models can be improved when compared to standard alternative. The stylised features 

identified in data are mean-reversion, sudden short-lived and consecutive jumps and heavy 

tails. 

 

When employing models to capture the stylised features of electricity prices, the models 

necessarily become more complex and often contain a greater number of parameters which 

combine to mimic the characteristics observed in the price series. Throughout this thesis an 

adherence to the principle of parsimony (Makridakis, et al page 609) will be maintained; that 

is if two models effectively generate the same forecast performance the simpler will be 

preferred whether it contains the stylised features or not. This is also known as Occum’s Razor. 

 

This investigation is important in terms of a better understanding of what models are more 

useful has the potential to lead to more accurate price forecasts which may result in less 

volatility in market prices leading to more efficient markets.  Further, by assessing models that 

capture various stylised features it may be possible to infer the importance of particular 

features. 

 

Given that wholesale prices are a major determinant of how much end users pay for powering 

their homes and businesses, it is believed that a better understanding of what forecasting models 

work (and do not) will allow market participants to develop more successful (business) 
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strategies for adjusting supply to meet demand and to assist with the valuation of financial 

assets as part of risk management. Additionally, a better understanding of the dynamics of 

electricity prices and its implications for successful forecasting is important for government 

policy makers, as Government sets the rules which govern the production and distribution of 

electricity.  

 

To investigate the accuracy of the various forecasting models two distinct modelling 

approaches which capture the stylised features of electricity prices in National Electricity 

Market (NEM) are examined1. Namely, these are the continuous-time and non-linear 

modelling methods. Continuous time models consist of Geometric Brownian Motion (GBM), 

Mean-Reversion and the Mean-Reversion Jump-Diffusion processes, as they account for the 

mean-reversion and sudden and short-lived jumpy characteristics of the electricity prices in the 

NEM. The non-linear models of Markov Regime-Switching and Extreme Value Theory 

(EVT) aim to deal with consecutive jumps and non-Gaussian which is also prevalent in NEM. 

 

This thesis is organised as follows:  

Chapter 1 will outline the motivation for the thesis and describes the electricity industry in 

Australia. It explains that a better understanding of electricity price forecasting will help all 

market participants to develop more efficient price risk management strategies and improve 

financial asset valuations. Additionally, it is believed that accurate price forecasts will 

eventually result in less volatility in market prices (leading to more efficient markets) and this 

will clearly benefit consumers. 

In Chapter 2, a background to electricity markets in Australia is presented. The importance of 

the electricity market in the Australian domestic economy and an overview of the institutional 

                                                           
1 NEM is consisted of five separate but interconnected markets. 
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characteristics of electricity markets are discussed. This chapter also explains the derivation of 

market prices. In Australian National Electricity Markets, the delivery of electricity to 

customers, that is, from the point at which the energy departs the generator terminals and is 

delivered via the transmission and distribution network, remains a regulated monopoly 

(Simshauser, 2014 page 558). The wholesale market, where generators and retailers interact, is 

coordinated by Australian Energy Market Operator (AEMO). Clearly accurate forecasting is 

also of great importance to government policy makers. 

 

In Chapter 3, the data collection, collation procedures and sources of the electricity price data 

used in this study are described. The summary descriptive statistics for each series are also 

presented. These statistics show that electricity prices tend to be mean-reverting, have sudden 

and short-lived jumps and are non-Gaussian. Furthermore, the importance of modelling 

electricity prices in NEM from a risk management point of view is emphasised in this chapter. 

It is shown that advanced modelling can be used by players to manage risks and explore profit 

taking opportunities.  

 

In Chapter 4, the literature relevant to this thesis is presented. The approaches to modelling 

electricity prices are reviewed and these are used to inform the research questions in this thesis. 

The first section of this chapter presents Autoregressive (AR) models with examples from the 

literature that utilised the AR specification; whilst the section on Mean-Reverting and Mean-

Reverting-Jump-Diffusion models discuss the previous work that utilised Stochastic 

Differential Equation (SDE) when applied to   modelling electricity prices. This discussion also 

includes the use of Markov Regime-Switching approach. Section three describes volatility 

modelling of electricity prices, namely Auto Regressive Conditional Heteroskedastic (ARCH) 

and Generalized Auto Regressive Conditional Heteroskedastic (GARCH) models. Section four 
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of this Chapter then presents both the Extreme Value Theory (EVT) and Levy-diffusion 

models, which are thought to capture the heavy-tailed nature of electricity prices. Finally, 

section five shows some of the recent work conducted using electricity price data from 

Australia. 

 

Chapter 5 presents an overall introduction to the separate econometric models examined in the 

thesis. The three continuous-time models are explained in sequence such that each successive 

model extends the previous one. Note that each extension addresses a stylised feature of the 

data, therefore it is expected that forecasting performance will improve. The inclusion of the 

non-linear approach to forecasting Australian electricity prices is done with the application of 

Markov Regime-Switching processes in combination with EVT and Copula simulations. These 

applications are a further extension to previously examined continuous-time models as they 

capture the Non-Gaussian behaviour of electricity prices in NEM and incorporate these 

characteristics into forecast paths. 

 

Australian wholesale electricity price forecasts with Geometric Brownian Motion (GBM) are 

presented in Chapter 6. This model is included in the thesis as it is the foundation for the other 

Stochastic Differential Equations (SDE) based models. By construction, GBM does not capture 

the stylised features of electricity prices namely, mean-reversion, sudden and infrequent jumps 

and non-Gaussian. Consequently, forecasts based on GBM result in large forecast errors. This 

finding shows that capturing the stylised features of electricity prices is important for having a 

model with potentially more accurate forecasts. 

 

Mean-Reverting and Mean-Reverting Jump-Diffusion models are discussed in chapters 7 and 

8. After considering the poor performance of the GBM forecasts due to its inability to capture 
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the stylised features of electricity prices, Mean-Reverting and Mean-Reverting Jump-Diffusion 

models are considered in this chapter. The forecast based on these models perform much better 

than GBM forecasts. This is attributed to the fact that both of these models capture the 

dynamics of mean-reversion and the jumpy nature of the price series that is evident in NEM.  

 

Chapter 9 presents a model based on Markov Regime-Switching dynamics of electricity prices. 

This model captures consecutive spikes prevalent in electricity prices. The Markov-Regime 

Switching model is based on the observed stochastic behaviour of a time series by two or more 

separate regimes with different underlying processes. The aim is to capture the mean-reversion 

characteristics of electricity prices similar to Mean-Reverting and Jump-Diffusion models. 

However the Markov process goes beyond these models in accounting for consecutive spikes 

that are prevalent in NEM. This model’s performance is superior to other models discussed 

earlier in the thesis when the spike regime is modelled with a Log-Gaussian distribution. 

 

Chapter10 presents a unique approach to forecasting electricity prices in NEM, as with the 

assistance of EVT, electricity prices are simulated with Copula functions to generate forecasts. 

This model shifts the focus to modelling the heavy tails of the data with the aid of Copula 

functions; thereby capturing the dynamic interactions of the regional price inter dependencies 

prevalent in NEM. 

 

Chapter 11 presents the findings of each model employed in the thesis in terms of their forecast 

performance. Formal comparative forecast accuracy statistics for each model are presented in 

this chapter. The root mean square error (RMSE) of each model is compared for the given 

forecast horizon. The analysis of the RMSE values shows that the forecasts generated by 

simulation models based on the Markov Regime-Switching process outperform other 
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continuous and non-linear models for each region of NEM. This model best captures all the 

stylised features of electricity prices i.e. mean-reverting, sudden and consecutive jumpy 

behaviour. However, this model was found to be generating less accurate forecasts as compared 

to the benchmark model. The areas that require improvement and require further research in 

modelling electricity prices in NEM are also discussed towards the end of this chapter, with a 

particular focus on the improvements in parameter estimations and model simulations. 
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CHAPTER 2 - BACKGROUND 
 

RATIONALE 

Electricity markets in Australia operate as a wholesale spot market in which generators and 

retailers trade electricity through a gross pool managed by the respective regional energy 

market operators. These operators aggregate and dispatch supply to meet demand. In addition 

to this physical wholesale market, participants in electricity markets also make use of financial 

markets as part of their risk management strategies. This occurs mainly in the over the counter 

market, however there is also an established futures market within Australian Securities 

Exchange (ASX) operations. 

 

The forecasting of electricity prices is important for both the physical and financial participants 

in the electricity industry for the following reasons: 

 

1. Generators are required to bid in advance, thus accurate price forecasting is necessary 

if optimal bidding strategies are to be formulated.  

2. Generators need to plan ahead for capacity building purposes (peak and off-peak 

generators have varying input requirements for production) therefore efficient price 

forecasting allows efficiency in planning of supplies. 

3. Traders need to take positions at both over the counter and the established futures 

trading platforms (e.g ASX), therefore accurate forecast of spot prices are important for 

derivatives pricing. 

4. The distribution of electricity is a publicly-regulated monopoly, therefore there are also 

many government policy implications.  
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In summary, a better understanding of effective electricity price forecasting will help all market 

participants to develop more efficient strategies, for example it will assist firms in the industry 

in formulating business strategies, real and financial asset valuations and improve their price 

risk management. Also, price forecasting is an important aspect of the industry as generators 

bid to the market operator to be granted the rights to supply electricity to the grid. Ineffective 

bids cause revenue losses to generators. For instance, bidding a low price to get the electricity 

to the grid will result in lost revenue if the market price is above the bid price and mutatis 

mutandis. 

 

The electricity market is highly regulated and controlled by government. This is likely to 

continue, especially given interest by policy makers to design policies to reduce carbon 

emissions. Therefore, having accurate electricity price forecasts is of great benefit to 

government policy makers. This arises as wholesale electricity prices influence the contract 

price at the retail level, which in turn impacts upon the final prices for consumers. It is believed 

that improved price forecasts will eventually result in less volatility in market prices (leading 

to more efficient markets) and this will result in benefits for consumers. 

 

An important feature of  wholesale electricity spot prices are that they are highly volatile due 

to non-storability, limited transportability, restricted arbitrage transactions and imperfect price 

forecasting techniques (Bunn, 2004). As such the nature of the electricity time series is not the 

same as traditional stock prices. In addition they are recognised as being spikier, showing 

extreme volatility and exhibiting more rapid mean-reverting behaviour than stock prices. These 

factors pose particular challenges in attempting to forecast electricity wholesale prices. 
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Mean-reversion, sporadic spikiness, and non-Gaussian  manifesting in positive skewness and 

leptokurtosis are well known to be the main stylized features of electricity prices as pointed out 

in the literature (Kaminski 1997). Therefore any forecasting model that fails to capture these 

features of electricity prices will likely result in relatively larger forecast errors (albeit not 

always). 

 

Consequently this thesis investigates the explicit incorporation of the stylised features of data 

into the forecasting models.  Specifically, the features of mean-reversion, sudden and short-

lived jumps, occasional consecutive jumps and non-Gaussian manifested as heavy tails are 

considered. 

 

It is expected that by explicitly modelling the stylised features of the electricity wholesale spot 

prices, forecast accuracy can be improved when compared to baseline models commonly used 

in quantitative finance. The AR-GARCH2 model is chosen to be the standard approach in 

forecasting price series (Engle, 2001) and is taken as the benchmark model in this thesis.  

 

This thesis will employ models from two distinct model classes which by construction capture 

the stylised characteristics of electricity prices: linear and non-linear modelling methods. More 

specifically, the following research questions will be investigated: 

1- Are forecast models generated by continuous-time models more accurate than 

traditional AR-GARCH model? 

2- Are forecast models generated by non-linear models more accurate than traditional AR-

GARCH model? 

                                                           
2 Autoregressive - Generalized Autoregressive Conditional Heteroskedasticity models the variance of the series. 



  

25 
 

Continuous-Time Models  

A wide variety of forecasting methods are available to businesses. These range from the naïve 

methods, such as the use of the most recent observation, to highly complex approaches such as 

neural networks and econometric systems of simultaneous equations. Companies use complex 

forecast models to gain a competitive edge and increase profitability.  

 

The overwhelming majority of electricity-pricing models are adaptations of popular models for 

price or returns from the financial econometrics literature that have been augmented to capture 

the idiosyncratic time-series properties of electricity prices, albeit with varying degrees of 

success (e.g. Weron, 2006). Evidence suggests that using models based on Stochastic 

Differential Models (SDEs) otherwise known as continuous-time models provide a much better 

fit to electricity prices than the autoregressive models (Lucia and Schwartz 2002, Huisman and 

Mahieu 2003). Models based on SDEs also allow for analytical tractability and are more 

suitable for derivatives pricing (Weron and Misiorek, 2008). It is for these reasons, SDE based 

forecast models have become widely recognised in the industry. 

 

The continuous time-models employed in this thesis are; Geometric Brownian Motion (GBM), 

Mean-Reverting and Mean-Reverting Jump-Diffusion processes. The inclusion of GBM in this 

thesis is mainly due to it being the foundation for the other continuous time models considered 

in this study. The other two continuous-time models capture some of the main stylised features 

of electricity prices. The Mean-Reverting process captures the mean-reversion (tendency of 

electricity prices to revert back to its long-term average over time) characteristics of electricity 

prices whilst Mean-Reverting and Jump-Diffusion method models the sudden jumps prevalent 

in electricity prices in NEM.  
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These models are presented such that each successive model extends the one preceding it. Note 

that each extension adds a stylised feature of the data, therefore the a-priori expectation is that 

the forecasting performance will improve. 

 

Non-Linear Models 

The inclusion of the non-linear approach to forecasting electricity prices is performed with the 

application of Markov Regime-Switching process and the combination of Extreme Value 

Theory and Copula simulations.  

 

The Markov Regime-Switching process is a non-linear modelling tool that is able to capture 

consecutive spikes prevalent in Australian electricity prices that the Mean-Reverting and Jump-

Diffusion processes fail to capture.  

 

The EVT model is included in this thesis so that it captures the heavy tails present in electricity 

price data. Forecasts based on the EVT model build upon the application of Copula3 functions 

as these functions model the interdependence of prices within the separate regions of the 

Australian electricity markets. 

 

Forecast Approach 

To determine whether the five forecasting approaches (each of which captures particular 

stylised features of the time series under consideration) are more accurate than the benchmark 

model, short-term forecast performances (90 days) are critically assessed.  Each of these 

assessments are compared to the chosen (AR-GARCH) benchmark model.  

                                                           
3 Copulas are considered as a unique method that models the dependence structure of data. 
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The price data used in this study are average hourly pool price observations sourced directly 

from AEMO for the period of 01/06/2006 to 29/08/2010. The data from 01/06/2006 to 

31/05/2010 (in-sample data) are used to estimate the parameters of the models, while the period 

from 01/06/2010 to 29/08/2010 (out-of-sample data) are used to derive out-of-sample forecast 

accuracy statistics.  

 

The rationale behind the chosen out-of-sample period is due to the fact that most of the 

electricity derivatives in the market are Asian options. As known, for Asian options the payoff 

is determined by the average underlying price over some pre-set period of time that is most of 

the time is three months. 

 

The models examined in this thesis are; 

 

 

• AR(1)-GARCH(1) 

Benchmark Model

• Geometric Brownian Motion

• Mean-Reverting Model 

• Mean-Reverting Jump Diffusion Model

Continous-time Models

• Non-Linear Models

• Markov Regime-Switching models with spike distributions modelled with

-Gaussian distribution

-Log-Gaussian distribution

• Extreme Value Theory and Copula functions.

Non-linear Models
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Each model under investigation mimics the known characteristics of electricity prices. The 

Mean-Reverting model replicates the mean reversion feature of prices series whilst Mean-

Reverting and Jump-Diffusion model incorporates jumpy feature of prices series along with 

mean-reversion. The Markov Regime-Switching model incorporates the consecutive jumps 

prevalent in NEM in its formation. Finally EVT based model replicates the nonlinear, heavy 

tailed nature of the electricity price series. 

 

Each of the continuous-time and the Markov Regime-Switching models are simulated using 

the Euler approximation method. This method simulates sample paths of correlated state 

variables driven by Brownian motion sources of changes over consecutive observation periods 

and thus approximating continuous-time stochastic processes.  

 

EVT based forecast models on the other hand are simulated with Copula functions, returning 

random vectors generated from a t-copula with linear correlation parameters. This method 

generates a set of simulations from a bivariate t-copula and each column of the simulation sets 

is a sample from a uniform marginal distribution.  

 

A set of comparative forecast performance measures is used in this thesis in measuring the 

relative forecast performance of each forecast model. The forecast performance measures of 

Root Mean Square Error (RMSE) and Theil’s U are used to present the forecast errors of each 

model by each region of the NEM.  
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A Review of Modelling Electricity Prices in Australia 

Limited academic work has been undertaken in Australia that provides a detailed understanding 

of electricity price forecast behaviour by using models that capture the stylised features of 

electricity prices.  

 

Higgs and Worthington (2008) are the only researchers modelling electricity prices in Australia 

covering all market regions of the National Electricity Market (NEM) with the assistance of 

SDE based models. They applied three different SDE models to electricity price series in an 

attempt to determine the best spot price model applicable in all of the NEM regions. The 

forecast models they utilised in their study were a basic stochastic model, a mean-reverting 

model and a Markov Regime-Switching model. Their results showed that the Markov Regime-

Switching model outperforms the basic stochastic and mean-reverting models.  

 

This thesis extends the work of Higgs and Worthington (2008) by modelling electricity prices 

with Mean-Reverting and Jump-Diffusion process and compares the forecast performance of 

this model with GBM, Mean-Reverting, Markov Regime-Switching models, and a non-linear 

model based on the combination of EVT and Copula functions.  

 

In doing so, the major contribution of this thesis to the literature is the systematic investigation 

of the importance of stylized facts of electricity prices to determine if their capture in model 

settings can improve upon the standard forecast approaches.  
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AUSTRALIAN ELECTRICITY INDUSTRY 

 

According to a recent Government report, the electricity industry is one of Australia’s largest 

industries, representing 1.4 per cent to total Australian industry value added in 2008–09 

(Energy in Australia, 2011). The industry consists of generators, transmission and distribution 

networks and retailers. NEM allows market determined power flows across the Australian 

Capital Territory (ACT), New South Wales (NSW), Queensland (QLD), South Australia (SA), 

Victoria (VIC) and Tasmania (TAS).  

 

Western Australia and the Northern Territory are not connected to the rest of the regions of 

Australia, primarily because of their geographic distance from the East Coast. Western 

Australia’s electricity market uses a net pool arrangement. Another distinguishing feature of 

the market in Western Australia is the provision of a separate capacity mechanism. On the 

contrary, the electricity transmission and distribution is supplied by a wholly Territory owned 

company Power and Water Corporation. The Western Australia’s and Northern Territory’s 

electricity market will not feature in the rest of this thesis. Its inclusion here is merely to alert 

the reader to its distinction. 

 

The NEM consists of registered generators, state-based transmission networks linked by cross-

border interconnectors and major distribution networks that collectively supply electricity to 

end-use customers. The NEM operates as a wholesale spot market in which generators and 

retailers trade electricity through a gross pool managed by the Australian Energy Market 

Operator (AEMO), which aggregates and dispatches supply to meet demand. In addition to the 

physical wholesale market, retailers may also contract with generators through financial 

markets to better manage any price risk associated with trade on the spot market. The following 

diagram demonstrates the interactions between the players of NEM.  
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Figure 1 Market Structure in NEM 

 
Source: Energy in Australia 2011, Department of Resources, Energy and Tourism, Commonwealth of Australia 

 

As is seen in Figure 1, AEMO receives supply offers from the generators and schedules 

generations to meet current demand. It achieves this by dispatching generators by matching 

their supply offers (Part I). Physical electricity flows to, non-industrial consumers through the 

transmission and distribution networks. The electricity flow between the industrial consumers 

occurs as a separate mechanism (Part II). Non-industrial consumers receive electricity and 

payments generated flow to retailers (Part III). Figure 1 also points out that financial contracts 

are predominant between the generators and retailers (Part IV). These financial contracts 

provide hedging capacity for both the retailers and generators. 

 

NEM is the world’s geographically largest interconnected power system that runs for more 

than 5,000 kilometres from Port Douglas in Queensland to Port Lincoln in South Australia and 

supplies more than $10 billion worth of electricity annually to meet the demand of more than 

8,000,000 end users (AEMO Annual Report, 2011). It is connected by seven major 

transmission interconnectors. These interconnectors link the electricity networks in QLD, 

NSW, VIC, SA and TAS. The electricity transmission and distribution networks of NEM 

consist of around 790,700 kilometres of overhead transmission and distribution lines and 

Part II Part I 

Part IV 

Part III 
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around 113,700 kilometres of underground cables (RET, 2011). Table 1 illustrates the existing 

transmission lines as of 2009.  

 

Table 1 Australian Major Power Network Transfer Capabilities, 2008-09 

Interconnector Location Forward 

capability (MW) 

Reverse 

capability 

(MW) 

NSW to Queensland (QNI) Armidale to Braemar 483 1,078 

NSW to Queensland (Terranora) Terranora to Mullumbimby 115 245 

Snowy to NSW Murray to Dederang 3,114 1,134 

Victoria to Snowy Boronga to Red Cliffs 1,274 1,780 

Victoria to SA (Murraylink) Red Cliffs to Berri 220 180 

Victoria to SA (Heywood) Heywood to Tailem Bend 460 300 

Tasmania to Victoria (Basslink) Seaspray to Georgetown 630 480 

Source: Australian Energy Market Operator, Annual Report 2010 

 

Existing capacity of the transmission lines are an important aspect of the electricity price 

determination in NEM. This is due to the fact that these interconnectors allow the electricity to 

be traded between the separate regions of NEM when it is needed. For instance, when the 

demand exceeds the existing capacity in a region, adjacent regions (depending on their 

available capacity) offer to export electricity to the demanding region. Naturally, supply and 

demand mechanisms bring the price in the region back to its long-term equilibrium. This trade 

is restricted by the capacity of the transmission lines. Therefore the convergence in the supply 

and demand equilibrium is also restricted to the existing capacities of these interconnectors. 

 

Electricity Consumption by Industry Type 

Figure 2 describes the types of electricity consumers in 2010. As is seen, residential electricity 

users are the largest consumers of this commodity followed by commercial users, 27.7 per cent 

and 22.2 per cent respectively. Other larger consumers of electricity are metals (mainly steel 

manufacturing), aluminium smelting and mining industries.  
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Demand factors that play a role in household electricity consumption include: shifts in 

household disposable incomes and moves to improve the energy efficiency of new homes. 

Hence, supply factors that play a role in household electricity consumption include changes in 

the price of electricity and competing fuels and the availability of a wider range of fuels.  

 

The metals manufacturing sector comprises the manufacture of iron and steel and the smelting 

and refining of non-ferrous metals, such as copper, lead, zinc and nickel. Aluminium 

production alone accounts for about 11 per cent of Australia’s total electricity usage as the 

production of aluminium is electricity intensive. Electricity comprises an estimated 30 per cent 

of the operating costs of a large aluminium smelter. 

 
Figure 2 Electricity Consumption by Sector, 2010 

 
Source: Australian Energy Market Operator, Annual Report 2010 

 

Electricity Generation by Fuel Type 

Broadly speaking, there are two types of generating plants in the NEM, known as base-load 

and peak-plant generators. Base-load generators use coal as the primary energy input as they 

are the cheapest source available in Australia therefore their marginal costs are the lowest of 

all generators operating in NEM. Peak-plants on the other hand use mainly natural gas to 
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generate electricity followed by hydro and wind energy. Importantly, the reason why these 

plants are called peak-plants is because as the energy source they use is more expensive than 

the base-load generators, their marginal costs are more expensive and their operations are 

profitable only when the prices in the wholesale market are above a certain threshold.  

 

Figure 3 Electricity Generation by Fuel Type, 2008-09 

 
Source: Energy in Australia 2011, Department of Resources, Energy and Tourism, Commonwealth of Australia 

 

A variety of fuels are used in the production of electricity. The majority of Australia’s 

electricity generation is supplied by steam plants, using coal or natural gas as fuel. Black coal 

and brown coal are distinguished by differences in their energy and water content. A given 

tonnage of black coal contains more energy and less water than the same tonnage of brown 

coal. Most of Australia’s black coal fuelled generation capacity is located in New South Wales 

and Queensland, while Queensland has the largest generation capacity of gas fuelled plants.  

 

In 2011, about 56 per cent of all generators in NEM used black coal and about 25 per cent used 

brown coal to produce electricity whereas natural gas, hydro and wind energy represent a little 

less than 20 per cent of the total electricity generated in 2011 (Energy in Australia, 2011).  

54.9%

21.8%

15.0%

4.7%

1.5% 2.1%

Black Coal Brown Coal Natural Gas Hydro Wind Oil and Other



  

35 
 

According to IBISWorld Market Research (2012), the share of electricity generated from 

natural gas, coal seam methane and wind has increased during the past five years at the expense 

of black and brown coal. The main growth fuel has been natural gas, although coal seam 

methane has also increased in importance. Coal seam methane is gas extracted from coal 

deposits. The importance of hydro-electricity tends to fluctuate depending on the availability 

of water reservoirs. 

 

ELECTRICITY PRICES AND THE ECONOMY 

Electricity plays an essential role in modern life, bringing benefits and progress in all sectors, 

including transportation, manufacturing, mining and the communication sectors. Electricity is 

an important input to production in these industries and more generally within the economy. In 

many industries like the car manufacturing industry, technical change tends to increase the 

relative share of electricity in the value of output as more mechanised manufacturing boosts 

labour productivity. These industries’ productivity growth is also found to be greater as the 

price of electricity lowers and vice versa.  

 

The total gross value added (chain volume measures) of the electricity industry in Australia 

was $4.3 billion in March quarter 2012 (ABS, 2012). Though, electricity markets have three 

layers of operations in Australia; generation, transmission and distribution, each creating its 

own industry.  

 

According to IBISWorld Market Research (2012), the Electricity Generation Industry produces 

a net profit of $3.3 billion in 2011-12. Correspondingly, the revenues generated by the 

electricity generation industry totalled $19.1 billion in 2011-12 financial year. It is also 

estimated that the annual growth over the past five years to 2012 has been around 5.5 per cent 
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but it is expected to increase to nine and a half per cent between the years of 2012 to 2017 due 

to the introduction of assistance provided to the industry under carbon pricing arrangements.  

 

The Electricity Transmission Industry operates the high-voltage electricity network, linking 

electricity generators to the distributors that operate the low-voltage electricity supply system. 

The structure of the Electricity Transmission industry differs from the electricity generation 

and distribution industries in one fundamental area. According to IBISWorld Market Research 

(2012), the revenues generated by the electricity transmission industry totalled $3.2 billion in 

2011-12 financial year. It is also estimated that the annual growth over the past five years to 

2012 has been around five and a half per cent but it is expected to increase to 3.1 per cent 

between the years of 2012 to 2017.  

 

The Electricity Distribution Industry on the other hand involves operating low voltage power 

supply systems (consisting of lines, poles, meters and wires). IBISWorld Market Research 

(2012) points out that the revenues generated by the electricity transmission industry totalled 

$50.9 billion in the financial year of 2011-12.  

 

PRICE FORMATION IN AUSTRALIAN NATIONAL ELECTRICITY MARKET 

The crucial feature of price formation in NEM is the instantaneous nature of electricity. 

Delivery of electricity across the transmission grid requires a synchronised energy balance 

between the injection of power at generating plants and the consumption at demand points (plus 

some allowance for transmission losses). Across the grid, production and consumption are 

perfectly synchronised, without any ability for storage. Electricity as a commodity differs from 

other commodities such as oil and grains where its storage is not possible with traditional 
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methods (Bunn, 2004). Therefore, modelling electricity prices with traditional models that rely 

on the existence of a ‘convenience yield’ presents its challenges. 

 

Furthermore, end-users treat this product as a service at their convenience and as a 

consequence, price elasticity of demand for electricity is very low (Bohi and Zimmerman 1984, 

Filippini 1999, Beenstock, Goldin and Nabot 1999, King and Shatrawka 1994, King and 

Chatterje 2003, Reiss and White 2005, Faruqui and George 2005, Taylor, Schwarz and Cochell 

2005). Price elasticity of demand measures the responsiveness, or elasticity, of the quantity 

demanded of electricity to a change in its price. More precisely, it gives the percentage change 

in quantity demanded in response to a one per cent change in price (ceteris paribus, i.e. holding 

constant all the other determinants of demand, such as income). Price elasticity is usually 

negative, that is, an increase in price will normally cause demand to fail, therefore it is usually 

quoted in absolute terms. If an own price elasticity is small, it is known as an inelastic demand; 

that is demand is generally unresponsive to price changes. 

 

Low levels of absolute price elasticity of demand in NEM indicate that price increases are not 

associated with substantial declines in the demand for electricity. This means that when prices 

are higher than usual the demand does not tend to decline significantly. So when there is an 

unexpected spike in demand due to say, weather events, increasing prices do not cause a decline 

in demand, which needs to be fulfilled instantaneously. The task of the grid operator therefore 

is to monitor the demand process and to call on those generators who have the capacity to 

respond to the fluctuations in demand.  

 

Low absolute levels of own price elasticity of demand and the operations of retailers in the 

NEM also means that sudden price increases are borne by the market participants at the 
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wholesale level rather than the end-consumer of electricity.  Electricity retailers offer a fixed 

charge for electricity usage to their customers rather than a variable charge for electricity usage. 

This implies that sudden rises in prices at the wholesale level need to be borne by the retailers. 

Hence, this further highlights the importance of accurate price forecasting in the NEM. 

 

Australian Energy Market Operator (AEMO) 

AEMO is the grid operator in NEM. AEMO’s responsibilities include; day-to-day management 

of wholesale and retail energy market operations and emergency management protocols; on-

going market development required to incorporate new rules, infrastructure and participants; 

and long term market planning through demand forecasting data and scenario analysis (AEMO 

Annual Report, 2011).  

 

Day to day operation of Australian electricity markets involves dynamic trading between 

energy generators, wholesalers and retailers based on variable pricing levels that reflect current 

levels of demand. AEMO maintains the systems through which prices are set and transactions 

carried out and provides accurate and timely market data to participants (AEMO Annual 

Report, 2011). 

 

AEMO’s role in producing demand forecasts is crucial for the efficient workings of the 

electricity markets in NEM. Generators are called into production in line with the forecast 

demand produced by AEMO and furthermore they determine their bidding prices according to 

these forecast demand values. Therefore, any fundamental imbalances between the forecast 

and actual demand may cause market inefficiencies such as high/low prices in electricity at the 

wholesale level, increasing either the cost of electricity consumed or risk management costs of 

the generators. 
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The AEMO interconnects five regional market jurisdictions whose cooperation under the NEM 

is secured through Commonwealth legislation and memorandum of understandings (AEMO 

Annual Report, 2011). AEMO facilitates exchange between electricity producers and 

consumers through a pooled system where output from all generators is aggregated and 

scheduled to meet consumer demand. This allows for sophisticated pricing structures and load 

shedding arrangements that ensure security of supply despite large fluctuations in consumer 

demand.  

 

Wholesale electricity trading in AEMO is conducted as a spot market where supply and 

demand is instantaneously matched in real-time through a centrally-coordinated dispatch 

process. Generators offer to supply the market with specific amounts of electricity at particular 

prices. Offers are submitted every five minutes of every day. From all offers submitted, AEMO 

determines the generators required to produce electricity based on the principle of meeting 

prevailing demand in the most cost-efficient way. AEMO uses the spot price as the basis for 

the settlement of financial transactions for all energy traded in the NEM.  

 

The rules of electricity trading in AEMO set a maximum spot price, also known as a market 

price cap, of $12,500 per megawatt hour (MWh). This is the maximum price at which 

generators can bid into the market and is the price automatically triggered when AEMO directs 

network service providers to interrupt customer supply in order to keep supply and demand in 

the system in balance (AEMO Annual Report, 2011).  

 

Although the schedule of dispatch is based on submitted bids, there is scope for generators to 

re-bid the quantity it will produce. The volume of electricity may be changed from the original 

bid volume but not the price of the bid. This re-bidding mechanism has been criticised as it 
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may make the system vulnerable to exploitation and exposing AEMO to generator’s market 

power (Beder, 2003, Quiggin 2004). For instance, it was argued that price spikes occur 

generally at times of low demand, absence of supply shortages and existence of favourable 

reserve plant margins4. Whilst Chester (2006) argued that the manipulation of prices by re-

bidding strategies occurred as the result of a small number of generator’s domination of the 

market. 

 

In summary, this brief overview has shown that the national electricity market in Australia is 

highly integrated and prices are formed according to the supply and demand norms prevalent 

in the market. Hence, by applying complex models as opposed to more parsimonious models 

to the price series on the assumption that they predict better, it is believed that there will be 

wider benefits realised by end users of electricity. 

 

The next chapter explores the stylised features of the electricity prices in NEM and describes 

the source of the data and provides descriptive analysis of the empirical data utilised in this 

thesis. Chapter 4 reviews the recent literature by different classes of econometric models 

utilised by past studies in a chronological order. Chapters 5 to 10 describe the methodology 

employed in this thesis while Chapter 11 discusses the findings of this thesis and it also suggests 

future research areas in electricity price forecast modelling in Australia. 

  

                                                           
4 When reserve plant margins exceeded peak demand loads by around 30 per cent. 



  

41 
 

CHAPTER 3 - DESCRIPTION AND SOURCES OF DATA 

INTRODUCTION 

The purpose of this chapter is to describe the data collection “collation procedures” and sources 

of the data used in this thesis. There are five market regions in the National Electricity Market 

(NEM) and this chapter analyses time series from each region of the NEM. The regions of 

NEM considered in this thesis are New South Wales (NSW), Victoria (VIC), Queensland 

(QLD), South Australia (SA), and Tasmania (TAS). The data was collated from Australian 

Energy Market Operator (AEMO). AEMO collates and reports average daily observations for 

each price for the five market regions of NEM.  

 

The summary statistics for each region of NEM are also provided in this chapter. Summary 

statistics point to the stylised facts of electricity prices, namely the mean-reverting, jumpy and 

heavy-tailed nature of the data as well as the presence of negative prices. 

 

A number of formal statistical tests are performed in this chapter to examine the distributional 

characteristics of the data i.e. Jarque-Bera and Kolmogorov–Smirnov test. Further to these 

tests, a number of unit root and stationary tests are also performed i.e. Augmented Dickey and 

Fuller (ADF) t-test, Kwiatkowski–Phillips–Schmidt–Shin (KPSS) and Lagrange Multiplier 

(LM)-test.  

 

The formal normality and unit root tests confirm the non-Gaussian and stationary nature of the 

price series. Lastly, Runs tests were conducted to examine the efficiency of the Australian 

electricity prices. The tests conducted in this chapter provided a thorough understanding of the 

empirical data and assisted in the choice of appropriate methodology applied in this thesis. 

http://en.wikipedia.org/wiki/Andrey_Kolmogorov
http://en.wikipedia.org/wiki/Nikolai_Smirnov_(mathematician)
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AUSTRALIAN WHOLESALE SPOT ELECTRICITY PRICE SERIES 

Electricity prices change every five minutes to match the demand with the schedule of bids 

offered by generators. Transactions are settled every half-hour at the spot price, which is 

derived as the average of the prices at which electricity supplied in the six preceding five-

minute intervals. Chapter 1 described how electricity prices are set by AEMO in detail. This 

chapter describes the time-series characteristics of the wholesale electricity prices in NEM. 

 

Electricity spot prices are amongst the most volatile commodity prices in the world. It has 

characteristics like non-storability, limited transportability and restricted arbitrage transactions. 

Therefore the nature of the electricity time series does not appear to be similar to traditional 

stock prices. Typically, they are spikier, show extreme volatility and exhibit a rapid mean-

reverting pattern (Bunn 2004). Mean-reversion, the presence of jumps, and non-Gaussian 

manifested as positive skewness and leptokurtosis are the main stylised facts of electricity 

prices as pointed out in the literature (Kaminski 1997, Deng 1998). 

 

Kaminski (1997) used random-walk jump diffusion model to capture the jumpy characteristics 

of electricity prices via an application of a Stochastic Differential Equation (SDE). Later, Deng 

(1998) considered the mean-reverting characteristics of the electricity price series. This work 

and the work of Kaminski (1997) opened the way for modelling electricity prices with SDEs 

and paved the way for research utilising SDEs in electricity price modelling. 

 

The price data used in this study are average hourly pool price observations sourced directly 

from AEMO for the period of 01/06/2006 to 29/08/2010 for the regions of NSW, VIC, SA, 

QLD and TAS. The data from 01/06/2006 to 31/05/2010 are used to estimate the parameters 

of the models while the period from  01/06/2010 to 29/08/2010 are used to derive out-of-sample 



  

43 
 

forecast accuracy statistics. The rationale behind choosing this sample period is due to 

Tasmania’s entry to AEMO towards the end of 2005.  As a result, data prior to this date was 

not available.  

 

Figure 4 Daily Wholesale Electricity Prices in NEM 

 
Source: Author’s calculations. Data obtained from AEMO (July 2010). 

 

Figures 5 to 9 show average daily reported price values for each region, expressed in Australian 

dollars per megawatt hour (MWh) for each day from June 2006 to June 2010. The figures show 

main features of electricity prices for all regions of NEM, namely; mean-reversion, jumpy, 

heavy tailed and highly volatile nature of the series. 

 

Figure 5 shows the historical wholesale spot prices in NSW. As is seen, there are large but 

short-lived price spikes, which tend to revert back to long-term mean levels very quickly. 

Generally, these spikes are observed over consecutive days leading to volatility clustering that 

is quite common in financial markets. 
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Figure 5 Daily Electricity Wholesale Prices in NSW 

 
Source: Author’s calculations. Data obtained from AEMO (July 2010). 

 

Figure 6 Daily Electricity Wholesale Prices in VIC 

 
Source: Author’s calculations. Data obtained from AEMO (July 2010). 

 

Similar to prices in NSW, historical wholesale spot prices in VIC have large but short-lived 

price spikes, which tend to revert back to long-term mean levels very quickly. Generally, these 

spikes are observed over single days unlike the ones observed in NSW. Figure 6 also shows 

that the maximum daily prices reached in VIC are higher than the levels reached in NSW over 

the sample period.  
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Another fact that can be observed from this figure is that negative prices sometimes occur. The 

occurrence of negative prices in the NEM is uncommon but likely (Thomas et al, 2011). This 

is attributable to price bidding strategies of generators to get into the production schedule. 

 

Figure 7 Daily Electricity Wholesale Prices in QLD 

 

Source: Author’s calculations. Data obtained from AEMO (July 2010). 

 

Figure 7 shows the historical wholesale spot prices in QLD. As is seen, there are large but 

short-lived price spikes, which tend to revert back to long-term mean levels very quickly. 

Similar to the observed spikes in NSW, these spikes are observed over consecutive days leading 

to volatility clustering. 
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Figure 8 Daily Electricity Wholesale Prices in SA 

 

Source: Author’s calculations. Data obtained from AEMO (July 2010). 

 

Figure 8 shows the historical wholesale spot prices in SA. As is seen, there are large but short-

lived price spikes, which tend to revert back to long-term mean levels very quickly. Similarly 

to VIC, the average daily maximum price reached $2,000 levels in SA over the sample period. 

This similarity maybe due to the weather characteristics of both regions, the capacity of the 

existing interconnectors and the fuel type used in generation process. 

 

Finally, Figure 9 shows the historical wholesale spot prices in TAS, which joined the AEMO 

(joined in 2006) later than all other regions and therefore it is a relatively immature electricity 

region in NEM. As is seen, there are large but short-lived price spikes along with smaller jumps 

with large frequencies, which tend to revert back to long-term mean levels very quickly. 

 

As is mentioned earlier, spikes are one of the main features of electricity prices in the NEM. 

According to the historical price series, which were examined in this thesis, the spikes function 
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as a result of a number of factors unique to each region such as weather and generation 

maintenance. 

 

Figure 9 Daily Electricity Wholesale Prices in TAS 

 
Source: Author’s calculations. Data obtained from AEMO (July 2010). 
 

DESCRIPTIVE STATISTICS 

In fitting the data, log prices are used due to their convenient mathematical properties. Log 

specification is not defined in the presence of negative prices. This is not considered an issue 

as there are so few instances of negative prices in NEM. Splicing is used where log prices are 

not defined. For the period of time investigated in this thesis, there has been one observation 

of negative price occurrence in Victoria, 12 in Tasmania and two in South Australia.  

 

This study uses average daily reported price values for each region, expressed in Australian 

dollars per megawatt hour (MWh) for each day. Although the highest frequency of electricity 

spot prices in NEM are quoted as half-hourly, daily average prices are of significant importance 
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to market players. The most common derivative instrument in electricity markets is Asian 

options, which is priced by average daily prices5.  

 

Furthermore, using daily prices provides analytical tractability, commonly used in the 

literature. Therefore in this study, average daily prices are used rather than half-hourly price 

series. Most of the work on modelling electricity prices in the literature also used daily average 

data in order to retain simplicity and analytical tractability. This is performed despite the fact 

that trading in most markets is based on half-hourly intervals.  

 

Even though use of average daily prices may lead to a loss of some important information (Ait-

Sahalia et al., 2004), nevertheless as Weron et al. (2004) showed averaged time series retain 

the typical characteristics of electricity prices including seasonality, mean-reversion and jumps. 

Although this specification causes a loss of information at the left tail of the distribution, this 

loss is acceptable for the purpose of understanding and modelling positive spikes in electricity 

prices. As pointed out earlier, sudden and extremely high prices are the cause of higher 

electricity prices to end-users and modelling of this phenomenon is the main objective of this 

thesis. 

 

The descriptive statistics by each region of the NEM (prices and log-prices) are presented in 

the tables that follow throughout this chapter.  

 

                                                           
5 Asian options are option contracts in which the payoff is linked to the average value of an underlying asset 

(wholesale spot electricity prices in NEM) during a defined duration. This is usually three months in electricity 

trading markets. 
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The right tailed skewness and high kurtosis indicate the fat-tailed characteristic of electricity 

prices in NEM. These descriptive statistics also indicate the non-Gaussian nature of the price 

series. Mean and median electricity prices are broadly consistent across NSW, QLD, and VIC 

where base generation technologies are similar and use relatively low-cost fuels. SA has the 

highest mean and second highest median prices per megawatt hour at $57.94 and $33.59 

respectively. This is most likely attributable to the nature of the generation technology 

prevalent in this state and benefits of a direct interconnector with NSW are not available. NSW, 

QLD and VIC mainly rely on relatively low-cost brown and black coal fired generators for 

their base-load electricity needs. SA has a greater reliance on higher cost gas-turbine generators 

compared to low cost coal based generators in NSW, QLD and VIC.   

 

The existence of maximum daily values of up to $2,534 in SA where the mean price was only 

$57.90, and $2,376 in VIC with a mean price of $45 indicates the spiky characteristics of the 

electricity price series in NEM.  

 

Table 2 Summary Statistics of Daily Price Series in NEM 

 NSW VIC QLD SA TAS 

Mean 45.8 45.0 43.0 57.9 48.2 

Median 30.6 32.2 27.7 33.6 40.7 

Maximum 1,394.2 2,376.1 1,487.3 2,534.0 835.2 

Minimum 13.8 -8.9 0.5 -6.9 -181.6 

Standard Deviation 79.6 91.5 75.9 157.6 50.3 

Skewness 10.3 17.4 11.3 9.5 8.6 

Kurtosis 135.3 371.6 173.5 105.4 106.9 

Source: Author’s calculations. 

 



  

50 
 

Price increments exceeding 2.5 standard deviations of the mean are considered as spikes6 in 

this study. This filtering procedure for the in-sample data resulted in 45 spikes in NSW, 37 

spikes in VIC, 34 spikes in SA, 40 spikes in QLD and 22 spikes in TAS region. 

 

The analysis of the descriptive statistics demonstrates that the distributions of prices are 

significantly non-Gaussian in all regions of NEM, and this is consistent with the characteristics 

of electricity prices in other markets that have been analysed in the literature. The price series 

in all of the electricity regions are positively skewed and leptokurtic. These extreme fat-tailed 

characteristics are consistent with the findings of earlier studies (Huisman and Huurman 2003, 

Higgs and Worthington 2005, Thomas et al. 2011) and is likely to be driven by the occasional 

prevalence of extremely high prices. 

 

STYLISED FEATURES OF ELECTRICITY PRICES IN NEM 

Based on the analysis of the historical spot electricity prices and their descriptive statistics 

presented above, this section outlines the stylised features of electricity prices in NEM. 

 

Prices in the Australian National Electricity Market (NEM) are determined by the aggregate 

demand and supply functions. An unexpected event on either the supply side or demand side 

could either shift the supply curve to the left or the demand curve to the right, therefore causing 

                                                           
6 Literature also has other methods of identifying jumps. Jumps can be considered  as price moves that are outside 

90 per cent prediction intervals implied by Gaussian distribution (Borovkova and Permana, 2004) or the method 

applied by Geman and Roncoroni (2006) who filtered price data using different thresholds and choosing the one 

that leads to the best calibration of their model  
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a price jump. Unexpected events that either restrict supply or increase demand could cause a 

price jump. 

 

Electricity prices in NEM exhibit a rapid mean-reversion process. This process occurs as the 

changes in either the supply or the demand curve normalise the deviations from the equilibrium 

levels. Mean reversion can be thought of as a modification of the random walk, where price 

changes are not completely independent of one another but rather are related in such a way that 

however much they escalate, they all always get back to long-run value known as the mean. 

 

The jumpy and mean-reverting characteristics of electricity prices can also be explained by the 

microstructure elements of the electricity market. These elements are the diversity of plant 

technologies and fuel efficiencies at different levels of demand as different plants will be 

setting the market price at different market prices (fuel convergence)7 as explained earlier in 

the chapter on price formation in NEM. 

 

While the nature of fuel convergence has a mean-reverting implication, the instantaneous 

production process of following a highly variable demand profile, creates significant volatility 

in prices. Other factors such as spikes in demand levels, system outages and congestions also 

contribute to the price volatility. All these elements contribute to characterisation of spot prices 

                                                           

7 The most efficient plants with lowest marginal costs (base-load) operate most of the time but during peaks in 

demand peak-plants operate only a few hours. The recovery of capital costs on peak-plants, through market prices, 

have to be achieved over a relatively few hours of operation. This will enable the construction of low capital/high 

operating plant for peaking purposes and the over-recovery of marginal costs in operation, with the consequence 

that prices are much higher in peaks. 
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and reflect the fundamental economic and technical nature of pricing electricity in Australia as 

a real-time, non-storable commodity. 

 

As mentioned earlier, prices in NEM are sometimes negative, which is a feature not usually 

encountered in financial time series (Thomas et al., 2011). Generators may bid a negative price 

into the pool for its self-dispatch quantity as a tactical move to ensure that they are among the 

first to be called in to generate. The occurrence of a negative price may also be a function of 

the nature of technology used to generate electricity. In Victoria and New South Wales, “base 

load” generation capacity employs what is generally referred to as “slow-start” generation 

technology, this is the case with brown coal in Victoria or black coal in New South Wales fired 

generation plants (Thomas, 2007). The negative prices borne by these generators over the 

course of a day or two are generally offset with the sales revenues they generate over this time 

period. 

 

The following tests verify the non-Gaussian characteristics observed in electricity price data in 

NEM. This finding is consistent with previous studies conducted on electricity price data 

elsewhere (Kaminski 1997, Deng 1998). 

 

Normality tests 

Jarque-Bera test 

To test further whether the price series are Gaussian distributed, Jarque-Bera test are applied 

to each region of the NEM.  Jarque-Bera test statistic is defined as; 

 

𝐽𝐵 =
𝑛

6
(𝑆2 +

1

4
 (𝐾 − 3)2)          (1) 

 



  

53 
 

where n is the number of observations; S is the sample skewness and K is the sample kurtosis. 

The Jarque-Bera statistic asymptotically has a chi-squared distribution with two degrees of 

freedom, so the statistic can be used to test the hypothesis that the data are from a Gaussian 

distribution8. The null hypothesis is a joint hypothesis of the skewness being zero and the 

excess kurtosis being zero. As samples from a normal distribution have an expected skewness 

of 0 and an expected kurtosis of 3.  

 

As the definition of Jarque-Bera shows, any deviation from this increases the Jarque-Bera 

statistic and the statistics are very high for each price series tested. The Jarque-Bera statistic 

rejects the null hypothesis of distributional normality at the 0.01 level for all regions of the 

NEM as illustrated in the following table.  

 

Table 3 Jarque-Bera Normality test 

  NSW VIC QLD SA TAS 

Jarque-Bera statistic 1,091,628 1,799,886 660,382 674,524 8,342,082 

Probability 0.000 0.000 0.000 0.000 0.000 

Source: Author’s calculations. 

 

The results from Jarque-Bera test supports the idea that non-conventional modelling techniques 

that do not rely on the assumption of Gaussian distribution should be used to forecast electricity 

prices in NEM. 

 

                                                           
8 A non-parametric testing for normality (Kolmogorov–Smirnov) test further substantiates the results of Jarque-

Bera test. See Appendix 1 for the results of Kolmogorov–Smirnov test. 

http://en.wikipedia.org/wiki/Asymptotic_analysis
http://en.wikipedia.org/wiki/Chi-squared_distribution
http://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)
http://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)
http://en.wikipedia.org/wiki/Statistical_hypothesis_testing
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Null_hypothesis
http://en.wikipedia.org/wiki/Excess_kurtosis
http://en.wikipedia.org/wiki/Andrey_Kolmogorov
http://en.wikipedia.org/wiki/Nikolai_Smirnov_(mathematician)
http://en.wikipedia.org/wiki/Andrey_Kolmogorov
http://en.wikipedia.org/wiki/Nikolai_Smirnov_(mathematician)
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Unit root and stationary tests 

Knittell and Roberts (2001) conducted unit root tests in electricity prices in the markets of 

Argentina, Australia (Victoria), New Zealand (Hayward), NordPool (Scandinavia), Spain and 

US (PJM) and found no presence of unit root. 

 

The findings of this thesis are consistent with the views of Knittel and Roberts (2001) by 

confirming the non-presence of unit root in Australian electricity prices. Two alternative unit 

root testing procedures were performed and the results are presented in Table 4.  These tests 

were performed in an attempt to deal with the fact that the series may not be very informative 

about the existence or not of a unit root. 

 

Table 4 Unit Root and Stationary Tests – Daily  and Log-Daily Electricity Prices 

 NSW VIC QLD SA TAS 

DAILY ELECTRICITIY PRICES 

ADF t-statistic -6.9 -17.5 -12.3 -10.4 -31.6 

Probability 0.000 0.000 0.000 0.000 0.000 

KPSS LM-statistic 0.2 0.5 0.1 0.2 0.3 

Probability 0.000 0.000 0.000 0.000 0.000 

DAILY ELECTRICITIY LOG-PRICES 

ADF t-statistic -5.1 -6.5 -8.5 -6.1 -6.1 

Probability 0.000 0.000 0.000 0.000 0.000 

KPSS LM-statistic -23 -25.9 -25.2 -21.3 -19.6 

Probability 0.000 0.000 0.000 0.000 0.000 

Source: Author’s calculations. 

 

The ADF test tests the null hypothesis that a time series 𝑦𝑡 is I(1) against the alternative that it 

is I(0) following Knittell and Roberts (2001) assuming that the dynamics in the data have an 

ARMA structure. The ADF test is based on estimating the test regression; 
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𝑦𝑡 = 𝛽′𝐷𝑡 + ø𝑦𝑡−𝑗 + ∑ ∆𝑦𝑡−𝑗
𝑝
𝑗=1 + 𝜀𝑡        (2) 

 

where 𝐷𝑡 is a vector of deterministic terms. The p lagged difference terms, ∆𝑦𝑡−𝑗 , are used to 

approximate the ARMA structure of the errors, and the value of p is set allowing the error 𝜀𝑡 

to be serially uncorrelated. The specification of the deterministic terms depends on the assumed 

behaviour of 𝑦𝑡 under the alternative hypothesis of trend stationarity. Under the null hypothesis, 

𝑦𝑡  is I(1) which implies that ø = 1.  

 

The ADF t-statistic and normalised bias statistic are based on the least squares estimates and 

given by; 

 

𝐴𝐷𝐹𝑡 = 𝑡ø−1 =
ø̂−1

𝑆𝐸(ø)
           (3) 

 

𝐴𝐷𝐹𝑛 =
𝑇(ø̂−1)

1−𝑣1−⋯−𝑣𝑝
           (4) 

 

The Phillip-Perron (PP) unit root test differs from ADF tests in their handling of serial 

correlation and heteroskedasticity in the errors. In particular, where the ADF tests use a 

parametric autoregression to approximate the ARMA structure of the errors in the test 

regression, the PP tests ignore any serial correlation in the test regression. The test regression 

for the PP tests is; 

 

∆𝑦𝑡 = 𝛽′𝐷𝑡 + 𝜋𝑦𝑡−1 + 𝑢𝑡          (5) 
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where 𝑢𝑡  is I(0) and may be heteroskedastic. The PP tests correct for any serial correlation and 

heteroskedasticity in the errors 𝑢𝑡 of the test regression by directly modifying the test statistics 

𝑡𝜋=0 and 𝑇𝜋. 

 

The ADF and PP unit root tests are for the null hypothesis that a time series 𝑦𝑡 is I(1). KPSS 

tests on the other hand for the null that 𝑦𝑡 is I(0). KPSS test statistic is derived by the following 

models; 

 

𝑦𝑡 = 𝛽′𝐷𝑡 + 𝜇𝑡 + 𝜀𝑡 , where  𝜇𝑡 = 𝜇𝑡−1 + 𝜀𝑡,𝜀𝑡~𝑊𝑁(0, 𝜎𝜀
2)                          (6)

      

where 𝐷𝑡 contains deterministic components, 𝑢𝑡 is I(0) and maybe heteroskedastic. The null 

hypothesis that 𝑦𝑡 is I(0) is formulated as 𝐻0: 𝜎𝜀
2 = 0 implying that 𝜇𝑡 is a constant.  

 

The KPSS test statistic is then the Lagrange multiplier for testing 𝜎𝜀
2 = 0 against the alternative 

that 𝜎𝜀
2 > 0 and is given by; 

 

𝐾𝑃𝑆𝑆 = (𝑇−2 ∑ 𝑆𝑡
2)/𝜆2𝑇

𝑡=1           (7) 

 

where 𝑆𝑡 = ∑ 𝑢𝑗
𝑡
𝑗=1  , 𝑢𝑡 is the residual of a regression of 𝑦𝑡 on 𝐷𝑡 and 𝜆2 is a constant estimate 

of the long-run variance of 𝑢𝑡 . Under the null that 𝑦𝑡 is I(0), KPSS converges to a function of 

standard Brownian motion that depends on the form of the deterministic terms 𝐷𝑡 but not their 

coefficient values 𝛽 .  

 

Testing of each log-price series for the presence of unit root using ADF, PP and KPSS tests is 

presented in this section. The respective ADF t-statistics are found to be -5.1 for NSW, -6.4 for 

QLD, -8.4 for SA, -6.0 for TAS and -6.1 for VIC. These tests rejected the null hypothesis of a 
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unit root at 0.01 level of significance, which is consistent with the earlier findings of Knittel 

and Roberts (2001) and Goto and Karolyi (2004).  

 

The results of these tests indicate that the log-spot prices are stationary. An important 

implication of this finding is that the application of forecasting methods on electricity price 

forecast based on autoregressive (AR) processes and models based on Stochastic Differential 

Equation (SDE) family processes are appropriate in modelling electricity prices in NEM. 

 

Alternative tests for efficiency 

The implication of inefficiency for the markets is quite significant as this creates arbitrage and 

speculation opportunities in trading and further necessitates the accurate modelling of the 

electricity prices. Serletis and Bianchi (2007) and Uritskaya and Serletis (2008) investigated 

the efficiency of electricity markets in the literature and found that the markets are highly 

inefficient. By applying Wald-Wolfowitz Runs Test tests on daily log-prices, this thesis 

provided evidence that the electricity prices in Australia are also inefficient.  

 

Wald-Wolfowitz Runs test assesses if the number of 'runs' in an ordering is random or not. This 

test assumes that the variable under consideration is continuous, and that it was measured on 

at least an ordinal scale (i.e., rank order). The Wald-Wolfowitz Runs test assesses the 

hypothesis that two independent samples were drawn from two populations that differ in some 

respect, i.e., not just with respect to the mean, but also with respect to the general shape of the 

distribution.  

 

The null hypothesis of the Wald-Wolfowitz Runs test is that the two samples were drawn from 

the same population. In this respect, this test is different from the parametric t-test which strictly 

http://documentation.statsoft.com/STATISTICAHelp.aspx?path=Glossary/GlossaryTwo/O/OrdinalScale
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tests for differences in locations (means) of two samples. Under the hypothesis test, if there are 

too few runs relative to the Gaussian mean and standard deviation, the z-value is small and it 

implies that the series is having a trend. If however there are a large number of runs, the z-

value is large and the series contains many ups and downs.  

 

Table 5 demonstrates for Wald-Wolfowitz Runs test z-scores for each region of the NEM both 

median and mean as cut points, respectively. All regions have significant negative z-scores, 

indicating that there exists non-randomness with large numbers of deviations from the mean. 

This further strengthens the importance of modelling electricity prices in Australia from a risk 

management point of view as in inefficient markets; players can make a difference with 

advanced models in managing their risks and exploring profit taking opportunities. 

 

Table 5 Runs Test (Mean and Median as Cut Points) 

 NSW VIC QLD SA TAS 

MEAN AS CUT POINTS 

Z value -24.70 -25 -24.90 -23.40 -27.30 

Significance (2-tailed) 0.000 0.000 0.000 0.000 0.000 

MEDIAN AS CUT POINTS 

Z value -25.30 -24.80 -24.30 -24.20 -27.40 

Significance (2-tailed) 0.000 0.000 0.000 0.000 0.000 

Source: Author’s calculations. 

 

CONCLUSION 

This chapter presented the times-series dynamics of the data from NEM. Electricity price series 

in NEM are found to exhibit extreme price spikes, fast mean-reversion, fat-tails and highly 

volatile. Occurrences of negative prices are found to occur from time to time. The formal 
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normality and unit root tests confirmed the non-Gaussian and stationary9 nature of the price 

series.  

 

Additionally, Wald-Wolfowitz Runs test indicated the importance of modelling electricity 

prices in Australia in an attempt to reduce risk management costs. One appreciates that in 

inefficient markets, market players can make a difference with advanced models in managing 

their risks and exploring profit taking opportunities. In other words, existence of dependence 

in the prices series is likely to result in forecast models to generate accurate forecasts. The 

findings of this chapter points to the fact that there are features in the data if modelled results 

in accurate forecasts than AR-GARCH, which do not capture any other features except basic 

form of dependency.  

 

An important implication of the findings described in this chapter is that the application of 

forecasting methods on electricity prices based on SDE and non-Gaussian techniques are 

appropriate. This is due to the fact that these models first of all reflect the stylised features of 

the electricity prices, namely the mean-reverting, jumpy and highly volatile nature of the price 

series. Secondly, non-presence of unit roots in the data indicates that these stochastic models 

are a good fit in modelling the price series. Thirdly, non-random nature of the price series as 

evidenced by Runs tests’ results suggest players in NEM to perhaps make a difference with 

advanced models in managing their risks and exploring profit taking opportunities. 

 

                                                           

9 The stationary nature of the electricity price series allow modelling of the series without differentiating it. As 

Lutkepohl (2005) and Enders (2004) proposed that differentiating the series distort interesting features of the 

relationships between the original variables, such as the co-movements between the data or the possible co-

integration relationships.  
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Next chapter will review the literature in electricity price modelling. The chapter will begin 

describing the developments in electricity price modelling with autoregressive representations. 

It will then describe the models based on SDEs. Modelling electricity prices with SDEs reflect 

the stylised features of electricity prices and there is a large literature on this area.  

 

The literature review of SDE models covers Mean-Reverting, Mean-Reverting and Jump-

Diffusion models. The application of Markov Regime-Switching models to electricity price 

modelling is also described in this chapter. Furthermore, incorporation of ARCH and GARCH 

models in electricity price modelling is also reviewed in the next chapter followed by non-

linear approaches to electricity price modelling such as application of Extreme Value Theory 

(EVT) and Levy Jump-Diffusions. The chapter will conclude by an examination of a number 

of pricing models applied to data from NEM. 
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CHAPTER 4 – LITERATURE REVIEW 

INTRODUCTION  

In this chapter, a review of the literature relevant to this thesis is presented in a chronological 

order. As the data for electricity spot prices across major deregulated electricity markets are 

publicly available for researchers, a wide array of research in electricity price modelling has 

been developed over the past two decades.  

 

The existing body of literature includes different aims and methodologies depending on the 

time period being studied. This thesis focuses on the stylised features of electricity prices and 

its forecasting in the short run. Structural methods of analysis, which include exogenous factors 

such as weather and demand, are not considered in this thesis. More specifically, this thesis is 

concerned with the stochastic modelling that is found to characterise the stylised features of 

electricity prices by early researchers in the area (Kaminski 1997, Johnson and Barz 1999).  

 

Electricity spot prices are amongst the most volatile commodity prices in the world. They have 

the characteristics of non-storability, limited transportability and restricted arbitrage 

transactions. Thus, the basic nature of the electricity time-series is dissimilar to the traditional 

stock prices. Kaminski (1997) showed a number of characteristics of the electricity time-series 

including extreme behaviour with fast-reverting spikes, multi-scale seasonality, calendar 

effects, and non-Gaussian manifested as positive skewness and leptokurtosis.  

 

Due to the fact that electricity cannot be stored, it requires a market design that achieves the 

best for both end-users and generators. Electricity transmission requires a synchronised energy 

balance between the injection of power at generators and the off-take at demand points. Across 

the electricity network, production and consumption are synchronised and storage is not 
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possible. If the two get out of balance, the frequency and voltage of the power result in 

fluctuations due to very low own price elasticity of demand.  

 

Therefore, the task of the Australian Electricity Market Operator (AEMO) is to monitor 

continuously the demand process and to call on generators that have the capacity to respond 

quickly to fluctuations in demand. Generators have various technologies and fuel efficiencies 

hence at different levels of demand; different generators will be setting the market clearing 

prices.  

 

There are two main reasons for this diversity in the system. Power plant obsolescence is one of 

them. As new power plants with advanced technologies come in to the production curve; prices 

fluctuate due to the varying efficiencies of the set plants. Secondly, base-load generators (low 

marginal costs) at times of high demand (during summer, winter months or weekdays as 

compared to weekends10), are not sufficient to meet the demand therefore  generators with high 

marginal costs gets scheduled into production. This progression results in increasing electricity 

prices on the market. 

 

The recovery of capital costs on peak operations via market prices need to be achieved in these 

few hours. This will favour both the construction of low-capital/high operating cost plant for 

peaking purposes. At the same time as more expensive generators enter the production, mean-

reversion in prices occurs, bringing the electricity prices back to a level of equilibrium. 

 

                                                           
10 Seasonal factors in electricity price modelling have been included in studies by Knittell and Roberts (2001), 

Lucia and Schwartz (2002), Escribano et al. (2002), Guthrie and Videbeck  (2007), Hadsell et al. (2004), Higgs 

and Worthington (2005), and Thomas et al. (2011). 
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Whilst the fundamental nature of price convergence has a mean-reverting implication, the 

instantaneous production process of following a highly variable demand profile, with a 

diversity of plant costs, creates the high spot price volatility. Other factors come in to play over 

the short term such as technical failures with power plants, congestion in the transmission 

system and sudden fluctuations in demand. All of these reflect in spot prices and reflect the 

fundamental economic nature of pricing electricity as a real-time, non-storable, commodity.  

 

This thesis focuses on models that reflect the stylised features of the electricity prices namely 

its mean-reverting, jumpy and fat-tailed characteristics, addressed by autoregressive and 

stochastic models in addition to its high volatility, which is addressed by volatility models.  

 

In this chapter, contributions to the literature are presented in a chronological order. The next 

section of this chapter presents the literature on autoregressive models while the next section 

focuses on jumps and regime switching models. Section 3 presents volatility models used in 

electricity price modelling and section 4 focuses on the emerging developments in electricity 

price modelling. Finally, Section 5 looks at emerging Australian literature and discusses 

opportunities for research emerging from the literature and the particular foci of this thesis. 

 

AUTOREGRESSIVE MODELS 

Autoregressive models (AR) and its variants are a standard modelling technique applied often 

in time series econometrics. In the context of electricity prices these models are widely 

employed. AR models traditionally are used to predict behaviour of electricity time-series from 

past values then such a prediction is used as a baseline to evaluate the possible importance of 

other variables to the system. AR modelling also contributes to the understanding of the 

physical system as it reveals the persistence of the physical process.  
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The literature has a wide array of applications of autoregressive models to exploring the price 

dynamics of electricity. Most of the autoregressive models aimed at explaining the stylised 

features of the electricity and sought to find the best fit to the empirical data. It is important to 

note here that a significant number of autoregressive models in the literature filtered seasonality 

present in electricity price data. 

 

One of the earlier applications of AR models was performed by Knittel and Roberts (2001) 

who modelled electricity prices from the Californian market with a seasonal ARMA11 and AR-

EGARCH12 processes. They also used a seasonal ARMA model with temperature and 

squared/cubed temperatures being as exogenous variables. Furthermore, Knittel and Roberts 

(2001) included variables to account for seasonalities and the different structure of price 

behaviour in peak and off-peak prices (peak and off-peak mean).  

 

They concluded that the forecast results of their models underlined the importance of 

incorporating higher order autocorrelation in modelling electricity prices. They also found 

evidence of an inverse leverage effect as the asymmetry parameter of their AR-EGARCH 

process was positive and significant indicating that positive shocks to prices amplify the 

conditional variance of the process more so than negative shocks. 

 

Comparison of a number of methods in modelling electricity prices from different markets was 

performed by Escribano et al. (2002) who estimated six different models in order to measure 

the relative contribution of the stylised features of electricity prices by using daily prices from 

                                                           
11 Autoregressive–moving-average (ARMA) models provide a parsimonious description of a (weakly) stationary 

stochastic process in terms of two polynomials, one for the auto-regression and the second for the moving average. 
12 Generalised Autoregressive conditional heteroskedasticity (GARCH) models are used to characterize and model 

observed time series. They are used whenever there is reason to believe that, at any point in a series, the error 

terms will have a characteristic size or variance. In the EGARCH model, the conditional variance is an asymmetric 

function of lagged disturbances. 
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the electricity markets of Argentina, Australia (Victoria), New Zealand (Hayward node), 

NordPool, U.S. and Spain. The stylised features included were; seasonality, mean-reversion, 

non-constant volatility and jumps. The models considered in this study were; an AR(1) constant 

volatility model with no jumps (pure diffusion model); an AR(1) GARCH(1,1) model with no 

jumps; an AR(1) pure jump model; an AR(1), pure jump model, intensity of the Poisson process 

time dependent; an AR(1) GARCH(1,1) model with jumps, intensity of Poisson process 

constant, and finally an AR(1) GARCH(1,1) model with jumps, intensity of the Poisson process 

time dependent.  

 

As in Knittel and Roberts (2001), a sinusoidal function was included in all of these processes 

to capture the seasonality present in the price series in each market. This study showed that 

electricity prices are mean-reverting and have strong volatility and jumps of time-dependent 

intensity even after adjusting for seasonality. This study also provided a detailed unit root 

analysis of electricity prices against mean reversion, jumps and GARCH errors, and proposed 

a new unit root procedure based on bootstrap techniques, all pointing  to the stationary nature 

of electricity prices. 

 

The unit root tests of Escribano et al. (2002) at I(1) and I(0) using Phillips-Perron and KPSS 

tests suggests that neither an I(1) nor I(0) description of the electricity price series is appropriate 

to capture the long-memory and mean-reversion of electricity prices as suggested by a number 

of researchers in the field (Atkins and Chen 2002, Haldrup and Nielsen 2006).  

 

An alternative way of measuring long memory and mean reversion was suggested by 

estimation of fractionally integrated processes for the price series (Granger and Joyeux 1980, 

Beran 1994, Baillie 1996). It was argued that both the Phillips-Perron and the KPSS tests are 
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consistent against fractional alternatives if the fractional order is less than unity as shown by 

Lee and Shie (2004). 

 

Electricity prices from the Alberta market were modelled by Atkins and Chen (2002) who used 

autoregressive fractionally integrated moving average (ARFIMA) processes to capture the 

long-memory feature of electricity prices. Their approach in modelling electricity prices with 

an ARFIMA process also aimed at capturing the irregular behaviour of the prices better than 

the GARCH specifications as applied by Knittel and Roberts (2001). To estimate the 

parameters of the ARFIMA model, authors utilised Geweke and Porter-Hudak’s two step 

spectral regression method and approximate maximum likelihood methods13. Their findings 

indicated that ARFIMA process allows representation of dynamics in the stochastic behaviour 

of the electricity series. 

 

The role of adding GARCH processes in AR models in electricity price forecasts was shown 

by Contreras et al. (2003) who originally applied ARMA processes with multiple seasonalities 

and lags to predict hourly prices in the electricity markets of Spain and California. They later 

improved their ARMA forecast model with the addition of GARCH (1, 3) specification and 

concluded that the forecast errors were around nine per cent, depending on the studied month 

of the year in these markets. They also argued that this model outperformed their earlier ARMA 

model and pointed out that adding the demand to the GARCH model as an explanatory variable 

                                                           
13 Geweke and Porter-Hudak (1983) proposed a semi-parametric procedure to obtain an estimate of the fractional 

differencing estimator based on a linear regression of the log periodogram on trigonometric function. In contrast,  

Whittle (1953) proposed a frequency domain approximate maximum likelihood method to simultaneously 

estimate both the short and long memory parameters of an ARFIMA model based on the minimising the 

approximation of the logarithm of the spectral likelihood function  with respect to its parameters. 
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improved the performance of the method further. The importance of this study was that it 

strengthened the case to add GARCH processes in forecasting electricity prices. 

 

Carnero et al. (2003) extended the ARFIMA model of Atkins and Chen (2002) by modelling 

different periodic extensions of regression models with ARFIMA processes for electricity 

prices from NordPool, Germany, France and Netherlands markets. They proposed an 

RegARIMA (1,0,0), seasonal ARIMA (2,0,0)×(1,0,0), periodic RegARIMA(2,0,0)  and 

periodic seasonal ARFIMA  (0,d,0) for modelling spot prices and showed that day-of-the-week 

periodicity and long memory are important determinants for the dynamic modelling of the 

conditional mean of electricity prices. This RegARIMA model is defined as a multiple 

regression model with ARIMA disturbances. In these models, the standard explanatory 

variables were polynomial, trigonometric and other periodic functions of time.  

 

Modelling electricity prices with ARFIMA processes was further advanced with the work of 

Haldrup and Nielsen (2006) who estimated the fractional order of integration by specifying a 

multiplicative seasonal ARFIMA (SARFIMA) model where a lag polynomial order captured 

the within-the-day effects in NordPool. They later extended their earlier SARFIMA model to 

a state regime switching multiplicative SARFIMA (RS-SARFIMA) where there is an 8th order 

lag polynomial in the regimes determined by a Markov chain. The distinct feature of their 

model that differed from earlier class of regime switching models, where the Markov process 

generating the states is unobserved, was that all states were observable.  

 

The literature has also applications of AR processes that treat each hour of the day in electricity 

price series as a separate commodity.  The rationale behind modelling each hour of the price 

series as separate commodities is mainly the demand structure of electricity. It is thought that 
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each hour’s demand for electricity is determined by factors specific to that hour of the day such 

as its temperature and consumption by different user groups.  

 

Cuaresma et al. (2004) applied a number of AR specifications (including time varying 

intercepts and jumps) to forecast electricity prices in the German power market including 

specifications where each hour of the day was modelled separately. Their AR and MA orders 

included lags of 1, 23, 24 and 25 hours. They concluded that specifications where each hour of 

the day was modelled separately presented better forecasting properties than other AR 

specifications. Further, it was found that the inclusion of probabilistic processes for the arrival 

of jumps provides better fit to empirical data and enhanced forecast performance.  

 

Coneja et al. (2005) proposed forecasting electricity prices from Spain with Wavelet-ARIMA 

technique. Their study applied a level three decomposition to hourly prices and modelled the 

resulting data with ARMA processes to obtain 24 hourly predicted values. This study showed 

that the performance of Wavelet-ARMA technique is better than of a standard ARMA process 

in short term forecasting. 

 

Literature in electricity price modelling has innovative AR specifications that were found to be 

suitable for mimicking electricity price characteristics like sudden jumps and time varying 

mean reversion as well.  

 

One of these specifications was the threshold autoregressive (TAR) model of Rambharat et al. 

(2005) who allowed for different rates of mean-reversion in their TAR (1) model and applied 

it to daily electricity prices from U.S. PJM markets. The mean reversion rates of their study 

were set as one for weather events, one around price jumps and another for the remainder of 
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the process. This model allowed both the speed of mean- reversion and the jump arrival 

intensity to depend on the level of the price process relative to a threshold price level. The 

model’s AR parameter was allowed to take two values; firstly when the de-meaned log price 

is below the threshold level, and then when it is above the threshold.  

 

Periodic autoregressive (PAR) models are similar to AR models except that the AR coefficients 

take different values in different trading periods.  In this aspect, the similarities of PAR models 

with AR models is that they treat each hour of the day as a separate commodity. The literature 

has a number of modelling approaches with periodic autoregressive GARCH (PAR-GARCH) 

and PAR-ARFIMA-GARCH models. 

 

An earlier application of PAR-GARCH process was by Bosco et al. (2006) who used periodic 

ARMA models with GARCH disturbances in the Italian electricity market and compared the 

model’s performance with more classical ARMA-GARCH processes. They built a model to 

account for within-year seasonal component through the low frequencies components of 

physical quantities. Their study revealed that much of the variability of the price series is 

explained by deterministic seasonalities which tend to interact with each other. Consequently, 

Guthrie and Videbeck (2007) applied four variants of PAR to de-seasonalised prices from 

electricity prices from the New Zealand market. These variants were;  

1. Price in a particular trading period is regressed on the price in the same trading period 

on the previous day,  

2. Price is regressed on the price in the previous trading period,  

3. Price is regressed on the previous day’s price in the same trading period and price in 

the previous trading period, 

4. Price is regressed on all 48 prices recorded in the previous 24 hours.  
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They found that these models provided evidence that the intra-day dynamics are richer than 

can be captured by standard AR models. For instance, while a simple AR (1) process captures 

the low persistence evident in peak periods, it cannot simultaneously capture the greater 

persistence in off-peak periods, nor the fact that shocks reappear the following day. 

 

Earlier models of PAR-GARCH with fractionally integrated moving average (ARFIMA) 

models were developed by Carnero et al. (2007) in four electricity markets of Europe. This 

study’s Reg-ARFIMA-GARCH model explained the dynamics in the conditional mean and 

variance of electricity prices. The model specification included exogenous variables of water 

reservoir and demand levels and treated seasonalities by means of sinusoids and weekday 

dummies.  

 

This Reg-ARFIMA-GARCH specification modelled the day-of-the-week periodic auto-

covariance for short run dynamics by lagged dependent variables and for long run dynamics 

by seasonal ARFIMA models where regressors captured yearly cycles, holiday effects and 

possible interventions in mean and variance. This model also included a GARCH component, 

which handled the volatility clustering and extreme observations present in electricity prices. 

One of the important findings of this study was that heteroskedasticity of prices can only be 

correctly represented when the conditional mean of the time-series is modelled by means of 

periodic autoregressive processes. 

Weron and Misiorek (2008) later compared the forecast accuracy of 12 different time-series 

models in the California and NordPool markets. They used AR and threshold autoregressive 

(TAR) models with and without exogenous variables. The basic AR models only had system 

load as an exogenous variable in the case of California and hourly air temperature in the case 



  

71 
 

of NordPool. The AR structures also had dummy variables to account for the weekly 

seasonality and lagged variables. Additionally, a variable to link between bidding and price 

signals from the previous day and log-load forecast (California market) or actual temperature 

(NordPool) was included in their AR specifications.  

 

To account for consecutive spikes in electricity prices, Weron and Misiorek (2008) used TAR 

models of Tong and Lim (1980) to describe the governance of regime switching between two 

AR processes by the value of an observable threshold variable relative to a chosen threshold 

level. In their TAR models, they used the same dummies and additional variables as in the 

simple AR models. Following Ball and Torous (1983), they modelled a mean-reverting jump 

diffusion model as an AR process with the addition of the same variables in their AR and TAR 

models.  

 

The study of Weron and Misiorek (2008) transformed the basic AR models to semi-parametric 

construction. The foremost motivation for this extension stemmed from the fact that a 

nonparametric kernel density estimator yields better fit to empirical data than any parametric 

distribution. Their study used Hsieh-Manski’s estimator and smoothed nonparametric 

maximum likelihood estimator for calibrating AR models mentioned above for semi-

parametric modelling.  Their study’s main conclusion was that the models with the system load 

as the exogenous variable performed better in point forecast. Also, semi-parametric models 

were found to perform better than their Gaussian competitors.  

A unique extension of traditional AR models in electricity price modelling was the application 

of Poisson autoregressive models developed by Christensen et al. (2009). Authors made it clear 

that the intensity of the spike process is significantly related to the historical component of the 

data and that this persistence need to be accounted for in electricity price modelling. They also 
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modelled electricity prices from Australian electricity market with zero-inflated Poisson 

autoregressive model, which captured the persistence in spikes and hence provided a better fit 

to the electricity price data. The rationale behind the use of Poisson autoregressive model was 

outlined earlier by Geman and Roncorni (2006). They stated that spikes occur as a result of a 

number of unobserved strains happening on the grid system.  

 

K-factor generally integrated GARCH (GIGARCH) models were first introduced to the 

literature by Guegan (2003). Later, Dominique and Ka Diongue (2009) used a 

GIGARCH model to forecast one-month ahead log-hourly electricity spot prices from the 

German power market. They estimated three models in their comparative study:  

1. One-factor GIGARCH process estimated after removing the weekly seasonality, 

2.  SARIMA model of Box and Jenkins (1976) with conditional heteroskedastic noise, 

and 

3.  A three-factor GIGARCH model, which takes into account a number of stylized facts 

observed in electricity spot prices, in particular stochastic volatility, long memory and 

periodic behaviours.  

 

One of the main findings of this study was supportive of long-range dependence behaviour of 

electricity prices. Secondly, it also pointed to the fact that three-factor GIGARCH process 

provides better forecasts than models of seasonal ARMA-GARCH. 

 

In summary, it is observed that modelling electricity prices with variants of AR processes aims 

to capture the stylized features of electricity prices. These features are rapid mean-reversion to 

long-term mean levels and occasional and sometimes consecutive jumps in prices. The 

inclusion of GARCH terms are proven to be effective in capturing the time-varying volatilities 
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present in electricity prices. Major learning that can be deducted from the established literature 

presented in this section is that the stylized features of electricity prices are of particular interest 

in modelling electricity prices and they can be captured by complex model construction where 

variants of AR and GARCH processes are included. As the AR-GARCH model is taken as the 

benchmark model in this thesis, competing models of varying stochastic differential equations 

are expected to mimic the features of rapid mean-reversion to long-term mean levels and 

occasional and sometimes consecutive jumps in prices at least as good as AR processes.  

 

MEAN-REVERTING/JUMP-DIFFUSION AND REGIME-SWITCHING MODELS 

Most of the earlier work in electricity price modelling explored the mean-reverting and jumpy 

characteristics of the price series in a number of markets including the Australian National 

Electricity Market (NEM). These earlier models were inspired by techniques used in modelling 

financial markets after the seminal work of Merton (1976). One of the earliest models in this 

arena was the extension of general random walk model of random-walk jump diffusion model 

of Kaminski (1997). This model captured the randomness of the prices and their spiky character 

via an application of a Stochastic Differential Equation (SDE).  

 

SDEs characterize the behaviour of a continuous-time stochastic process as the sum of an 

ordinary Lebesgue integral and an Itō integral. A simplistic interpretation of the SDE is that in 

a small time interval of length, the stochastic process changes its value by an amount that 

is normally distributed with expectation and variance and is independent of the past behaviour 

of the process. This is the case because the increments of a Wiener process are independent 

and normally distributed. A typical SDE has two functions; a drift coefficient and a diffusion 

coefficient (diffusion process) and is usually a Markov process. Although the study by 

http://en.wikipedia.org/wiki/Continuous_time
http://en.wikipedia.org/wiki/Stochastic_process
http://en.wikipedia.org/wiki/Lebesgue_integral
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Kaminski (1997) captured the jumpy characteristics of the price series, it failed to model the 

mean-reverting behaviour of these series.   

 

A wave of researchers (i.e. Deng (1998) and Knittel and Roberts (2001)) modelled electricity 

prices after Kaminski who accounted for the mean-reverting characteristics of the prices and 

since then the literature on mean-reverting jump-diffusion models14 have been the focus of a 

wide range of studies. These studies can be classified into three approaches;  

 A single jump, positive or negative followed by a mean reverting pattern,  

 An initial jump, positive or negative, followed by a reverse-directed jump on the next 

time period and  

 A cluster of jumps in a short time period which can be positive, negative, or mixed 

(consecutive jumps behaviour).  

 

The initial approaches to modelling spikes utilised Poisson processes to introduce jumps to 

normal price dynamics. They combined either the usual Geometric Brownian Motion (GBM) 

or the Mean-Reverting process for the diffusion and a space-time Poisson process for the jumps 

such that the jump amplitudes are uniformly distributed. Deng (1998) modelled three variations 

of Mean-Reverting equations;  

 A Mean-Reverting deterministic volatility process with two types of jumps, (one 

representing upward and one representing downward jump with Poisson process to 

model the jumps and jump intensity,  

                                                           
14 Most of the earlier work in modelling electricity as mean-reverting, jump diffusion and regime switching 

processes involved decomposing the data into a deterministic and stochastic components. Then modelling 

stochastic component with mean-reverting jump diffusion processes separately from the deterministic component 

was performed. This decomposition provided data that is easier to parameterise.  
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 A Markov Regime-Switching Mean-Reverting process with two types of jumps in 

which  capturing the phenomena of spot prices switching between spike and base states 

was possible, and 

 A Mean-Reverting stochastic volatility process with two types of jumps where the 

modelling of the spiky behaviour was performed by assuming that the intensity function 

of upward jumps is only a function of time whilst the intensity of downward type jumps 

is a function of the volatility.  

 

In an attempt to describe the evolution of electricity prices from markets across California, 

Scandinavia, England and Wales, and Victoria (Australia), Johnson and Barz (1999) evaluated 

the effectiveness of four different SDE models with and without jumps. These model 

specifications were; 

(1) Brownian Motion, 

(2) Mean-Reversion, 

(3) Geometric Brownian motion (GBM), and  

(4) Geometric Mean Reversion.  

 

They concluded that the Geometric Mean-Reverting model gave the best performance, and 

that adding jumps to each of the models improved model performance. However, it is 

important to note that the mathematical properties of the models utilised in particularly GBM 

models are unsuitable for electricity price processes as future values of price depend only on 

the current price, with no relationship to a long-run mean value. Also, the variance of GBM 

increases linearly with time, whereas electricity prices exhibit mean reversion and hence 

bounded variance.  
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Pilipovic (1998) developed a two factor Mean-Reverting model quite different from Deng’s 

(1998) Mean-Reverting models. This model’s observable factor was the price levels rather than 

logarithmic prices. It is noteworthy to state that most of the early work prior to Deng on 

stochastic modelling employed logarithmic transformations.  

 

At the same time as the model of Pilipovic (1998), Either and Mount (1998) proposed a two-

regime specification in which both regimes are governed by an AR(1) process varied between 

the regimes in modelling daily on-peak price data from the electricity market in Victoria 

(Australia) and three hubs in the United States (ECAR, PJM East, and SERC). This model 

allowed two states which meant that electricity prices can jump discontinuously between states 

with different state probabilities. The model parameters were estimated by the recursive filter 

of Hamilton (1989)15. However, the model specification of this approach imposed stationarity 

in the spike process, which was not appropriate for electricity prices (de Jong and Huisman, 

2002).  

 

Examining the distributional characteristics of the electricity prices with SDEs continued with 

the work of Knittel and Roberts (2001) with an application of a Mean-Reverting process in 

California market. They used an AR model as it is in continuous time being equal to the 

Ornstein–Uhlenbeck process Mean-Reverting process. This Mean-Reverting process captured 

the autocorrelations present in the price series.  Though, this study ignored seasonalities present 

in the data (intraday, weekend/weekday and long-term seasonality) and assumed that the error 

                                                           

15 The Hamilton model allows stochastic jumps between regimes, where each regime is a mean reverting AR(1) 

process with unique mean and variance. Thus electricity prices are viewed as originating from either a high state 

or a low state. Regime switching is controlled by a two state Markov process, with state specific transition 

probabilities which allow different expected durations for each state (Ethier and Mount, 1998). 
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structure is independent across time. Correspondingly, its assumptions that the volatility is 

constant over time were a shortcoming of the model. Lastly, it was found that the normality 

assumption of the AR structure did not reproduce the extreme swings found in the data. Further 

extensions of the original model to forecast unique nature of the prices with time-varying 

Mean-Reverting model that included intraday, weekend and long-run seasonal effects 

improved the simple Mean-Reverting model but did not produce a good fit to empirical data.  

 

The relationship between electricity spot and futures prices was examined by Lucia and 

Schwartz (2002) who modelled prices with one and two factor mean-reversion processes in 

NordPool. They used a sinusoidal in order capture the seasonal pattern of the futures and 

forward curve directly implied by the seasonal behaviour of spot electricity prices. Their one 

factor model had a deterministic function and a diffusion stochastic process represented by thw 

Wiener process. Consequently, their two factor model extended the one-factor model by adding 

a second stochastic factor in the spirit of Schwartz and Smith (2000)16. They concluded that 

seasonal patterns play an important role in determination of spot and futures prices and their 

functional determination.  

 

Extension of the modelling framework of Lucia and Schwartz (2002) by modelling daily 

electricity prices from Dutch power markets via a Mean-Reverting model were performed by 

Huisman and Mahieu (2003). This model had a deterministic component where the effects of 

                                                           
16 Schwartz and Smith (2000) modelled the stochastic behaviour of oil prices as having a short-term mean 

reverting component and a long-term equilibrium price level. An important implication of adding a second factor 

in the model is that changes in prices of futures contracts with different maturities are not perfectly correlated, as 

is the case for all one-factor models. 
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seasonality is captured (weekend effects) and in order to capture the stochastic component 

modelling by a Wiener process is included.  

 

Later, Lucia and Schwartz (2002) used the residuals of their earlier model and applied Extreme 

Value Theory to assess the level of tail fatness in price series followed by comparison of the 

Monte Carlo simulation results based on Gaussian and Student-t distributions. Their simulation 

results improved upon the ones from the Gaussian distribution, as the Student-t price patterns 

resemble more closely the true price pattern of electricity prices. The most significant 

contribution of this study was that the normality assumption that researchers and practitioners 

often make in their simulation or valuation method was not appropriate and prone to lead to 

erroneous conclusions. 

 

The study of Huisman and Mahieu (2003) was not the only work performed on Dutch 

electricity prices. Huisman and de Jong (2003) used a Markov Regime-Switching model 

switching between a mean-reversion and a pure jump regime. Their model was a two state 

model assuming a mean-reverting and a spike regime with the base regime being governed by 

AR(1) and a spike regime governed by a Gaussian distribution. This specification allowed 

regime independence and accommodated consecutive regimes of spike and base. They found 

that their model typically overstated the prices in the base regime and predicted base regime 

with predicted occurrences of spikes much less than the actual rate of occurrences. 

 

The modelling of Mean-Reverting and Jump-Diffusion processes where positive jumps are 

always followed by a negative jump of about the same magnitude was performed by Bierbrauer 

et al (2003). They achieved this by letting the stochastic part to be independent of the jump 

component in their Mean-Reverting and Jump-Diffusion specification. This study defined that 
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the magnitude of jumps as a Log-Gaussian random variable and the probability of jumps as a 

Poisson random variable. The jump components of this model were estimated with a two-step 

procedure. Firstly, all jumps, defined as price increments exceeding three standard deviations 

of all price changes, are removed from the data and secondly the intensity and the distribution 

of the magnitude of the jumps were estimated from these few selected points. The parameters 

of the mean reverting process in this study were estimated using the Generalized Method of 

Moments (GMM).  

 

Bierbrauer et al (2003) also proposed a Regime-Switching model with two-regimes, a base 

mean-reverting regime (governed by a mean-reverting process, e.g. given by the Vasicek SDE) 

and a spike regime (governed by a  lognormal variable ) where the  price processes that linked 

to each of the two regimes were assumed to be independent of each other. The variable that 

determined the current state in their proposed model was a random variable that follows a 

Markov chain with two possible states, and the parameter estimation was performed using the 

expectation maximisation (EM) algorithm of Hamilton (1990)17. They found that both of the 

proposed models mirror the stylised features of electricity prices.  

 

                                                           
17 Expectation Maximisation algorithm uses an iterative procedure that consists of two steps. The first step 

involves filtering the regime at a time, given data assuming that the true parameter set, of the vector of parameters 

of the underlying stochastic processes. Then, the probability of the process that was in regime j at time t with 

knowledge of the complete dataset is obtained. These probabilities are referred to as smoothed inferences. In the 

second step, new maximum likelihood estimates for all model parameters is achieved. Starting from an arbitrary 

parameter set, new estimates using the smoothed inferences is calculated. With this new vector of parameters the 

next cycle of the algorithm starts to re-evaluate smoothed inferences and so on. Each cycle of the algorithm 

produces new estimates of the vector of parameters of the unknown parameter set based on the previously 

calculated value set. The limit of this sequence of estimates achieves a local maximum of the log-likelihood 

function (Weron, 2004).  
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Later, Weron et al. (2004) extended this two state Regime-Switching model with a base regime 

governed by a mean-reverting process and the spike regime governed by Gaussian, Log-

Gaussian and Pareto regimes. Their model allowed for spikes to occur consecutively and 

assumed a number of probability distributions. This study showed that modelling the spike 

regime with Log-Gaussian and Pareto regimes improve the model fit. 

 

Weron et al. (2004a) later proposed a Jump-Diffusion model and a Regime-Switching model 

in order to explore daily electricity prices from NordPool. Their Jump-Diffusion model allowed 

positive jumps being followed by a negative jump of the same magnitude each time. This is 

performed by allowing the stochastic part being independent of the jump component.  

 

The estimation of the jump component in their study was done by first defining jumps by all 

price increments exceeding three standard deviations of all price changes and selecting those 

observations from the data as in Bierbrauer et al (2003). Then, the intensity and the distribution 

of the magnitude of the jumps were estimated from these selected observations. The Mean-

Reverting parameters of this Jump-Diffusion model were estimated by GMM.  

 

This study also proposed a two-state Markov Regime-Switching model, which distinguished 

between a mean-reverting and a spike regime. This model used a lognormal variable for the 

spike regime and estimated the parameters of the model via Expectation Maximisation (EM). 

It was found that the probability of remaining in the same regime was very high for the mean-

reverting regime (0.98) and relatively high for the spike regime (0.63) indicating that electricity 

prices have consecutive spikes. 
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On-peak18 daily electricity spot prices from U.S. (PJM)19 markets were modelled by Mouth et 

al. (2006) by a Markov Regime-Switching model with time-varying parameters. In this model, 

the mean prices in two price regimes and the transition probabilities are specified as functions 

of the offered reserve margin and the system load. The most important feature of this model 

was that the key parameters were functions of observed explanatory variables and it was built 

on earlier models of Hamilton (1989), Chan and Gray (1996), Kim and Nelson (1999) and Ning 

(2001). The contribution of this work lies in extending the original Markov Regime-Switching 

models by making key parameters functions of time varying variables. Mouth et al. (2006) 

found that their model replicated the observed price volatility quite well.  

 

Modelling electricity prices with SDE based models continued with the work of Geman and 

Roncoroni (2006) who modelled electricity prices from U.S. California, PJM and East Center 

Area Reliability coordination agreement (ECAR) markets. Their model mimicked the mean-

reverting and jumpy characteristic of electricity prices where the jump sizes are modelled as 

increments of a compound jump process. Geman and Roncoroni (2006) estimated the 

parameters of their model by an estimator based on the exact likelihood of the unknown process 

with respect to a prior process chosen as a reference within the same class. The estimator is 

provided by the parameter vector maximizing this process over a suitable domain. The study 

found that the calibrated processes exhibit the expected mean reversion property fine and it 

was argued that this method provided two major advantages: 

                                                           
18 On-peak hours are weekdays 7 am to 11 pm except NERC holidays in PJM 
19 PJM Interconnection LLC (PJM) is a Regional Transmission Organization (RTO) which is part of the Eastern 

Interconnection grid operating an electric transmission system serving all or parts of Delaware, Illinois, Indiana, 

Kentucky, Maryland, Michigan, New Jersey, North Carolina, Ohio, Pennsylvania, Tennessee, Virginia, West 

Virginia and the District of Columbia. PJM, headquartered in Valley Forge, Pennsylvania, is currently the world's 

largest competitive wholesale electricity market. More than 650 companies are members of PJM, which serves 

51 million customers and has 167 gigawatts of generating capacity. With 1,325 generation sources, 56,000 miles 

of transmission lines and 6,038 transmission substations, PJM delivered 682 terawatt-hours of electricity in 2009. 
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(1) Analytical form of the exact likelihood function under continuous time observations 

can be computed for nearly all semi-martingales through a generalized version of the 

Girsanov theorem,  

(2) Discrete sample estimator converges to the continuous sample and a well-established 

estimation theory exists in this latter case.  

 

Hence, electricity prices from six European and two US electricity markets; NordPool, 

Germany, Netherlands, France, Austria, Spain, U.S. (PJM) and New England Pool (US) 

modelled by de Jong (2006). He divided the spot price into a predictable component and a 

stochastic component. The predictable component of the model accounted for predictable 

regularities, such as any genuine seasonal behaviour or trend, and is a deterministic function 

of time.  The models analysed in this study were:  

 A Mean-Reverting model,  

 A Poisson Jump-Diffusion model,  

 A model with regime switches with stochastic Poisson jumps,  

 A model with regime switches with three regimes and stochastic Poisson jumps,  

 A model with regime switches with exponential Poisson up and down jumps, and  

 A model with regime switches with independent spikes.  

 

In these models, GARCH (1, 1) model was found to be suitable (based on likelihood tests) to 

replace the constant variation to capture volatility function. The suitability of Markov Regime-

Switching models to capture stylised features of electricity prices as compared to Jump-

Diffusion models was also tested and it was concluded that Markov Regime-Switching 

specifications captured the stylised features of electricity prices better. In conclusion, four of 

the Markov Regime-Switching models were found to fit the empirical data well where the 
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model with three regimes and stochastic Poisson jumps and the model with regime switches 

with independent spikes provided poorer fits. It was noted that these models separated the 

spikes most clearly from the mean-reverting price process.  

 

A Mean-Reverting and Affine-Jump-Diffusion (AJD) model with spikes for daily and hourly 

electricity prices from the Dutch electricity market was performed by Culot et al., (2006). This 

model had deterministic annual (a sinusoidal function to approximate the annual cycle was 

performed) and intraweek patterns, with coefficient vectors acting as spike risk factors. The 

model accounted for spike behaviour flexibly using a Markov Regime-Switching process. It 

was argued that the model provided closed-form solutions for various interesting contingent 

claims in electricity prices, in contrast to traditional mean-reverting models. The estimation of 

this model was performed in two steps;  

 Spikes, seasonal patterns were pre-calibrated, and 

 Diffusive (state-space estimated) parameters were estimated using maximum likelihood 

and the Kalman filter methods.  

 

This model represented electricity market spikes well using a finite m-state Markov Regime-

Switching process, which modelled spike behaviour more flexibly than by random Poisson 

spikes. It was suggested that the model is more amenable to efficient derivative pricing and 

hedging applications. 

 

Furthermore, modelling electricity prices in the Australian NEM was performed by Higgs and 

Worthington (2008) who modelled daily electricity prices after dividing the price series into 

two components:  
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(1) A deterministic function that is predictable and is represented by a known deterministic 

function,  

(2) A stochastic component.  

 

Their first choice of an SDE was a simple Mean-Reverting model where spot electricity prices 

fluctuate around long-term equilibrium price level, which reflects the marginal cost of 

producing electricity following earlier models of Deng (1998). The second SDE model that 

was proposed was a Markov Regime-Switching model, which separated mean reversion in the 

normal and spike price periods. This Markov Regime-Switching model was similar to Huisman 

and Mahieu (2003) and it assured that on any day the electricity spot price lies in one of three 

regimes:  

 A normal when prices follow mean-reverting electricity price dynamics,  

 An initial jump regime when prices suddenly increase (decrease) during a price spike,  

 A downturn regime when electricity prices revert to normal after a spike has occurred.  

 

Maximum Likelihood (ML) estimates were used to determine the parameters of the model. 

Higgs and Worthington (2008) concluded that the price dynamics in Australian electricity 

prices are captured well with this three-state regime switching model however, the main 

limitation of this study was that the model did not have any allowance for consecutive spikes 

that arise in NEM. A suggested solution to this restrictive model was a two-regime model (de 

Jong and Huisman 2002, Bierbrauer et al. 2003, de Jong 2006) which permits consecutive 

spikes. 
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Alternative to previous studies that employed price series without de-seasonalisation, Weron 

(2009) explored the suitability of de-seasonalised electricity prices when modelling regime 

switching processes. De-seasonalised process of his study included three steps:  

(1) Removing the long-term trend via wavelet filtering-smoothing,  

(2) Weekly periodicity via moving average technique and  

(3) Finally shifting the de-seasonalised prices to make the minimum of the new price 

process same as the original price process.  

 

The Markov Regime-Switching model of Weron (2009) had two-regime specifications; with 

the base regime dynamics given by a mean-reverting Ornstein-Uhlenbeck process and the spike 

regime dynamics distribution of Log-Gaussian and Pareto. This model excluded a regime 

specification characterised by Gaussian distribution as it was found to be stable with respect to 

its parameter estimates. Calibration of this two-regime specification was performed with EM 

algorithm. This study found that the models with log-prices fit the data well as compared to 

models with de-seasonalised data except with the Pareto distributed model. 

 

Consequently, the contribution of Janczura and Weron (2010) to electricity price modelling in 

particularly to the development of Regime-Switching models is important. They modelled de-

seasonalised daily electricity prices from German, U.S. and New England power markets in an 

attempt to model the dynamics of the stochastic components of the electricity prices with: 

 A two-regime model with shifted spike distribution and mean-reverting regime 

dynamics  

 A two-regime model with shifted spike distributions and heteroskedastic base regime 

dynamics and   
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 A three-regime specification with heteroskedastic base regime dynamics, shifted 

lognormal distribution for the spike regime and inverted shifted lognormal distribution 

for the downward spike regime.  

 

Weron et al. (2010) used EM algorithm in calibrating the abovementioned models. They found 

that the three-regime specification with heteroskedastic base regime dynamics, shifted 

lognormal distribution for the spike regime and inverted shifted lognormal distribution for the 

downward spike regime model performed superior to other models. Moreover, this model also 

allowed for consecutive spikes or drops in prices. Further, it was shown that this model 

mirrored the inverse leverage effects widely reported for electricity prices.  

 

Almost all of the electricity models in the literature up to 2010 ignored the market capping 

mechanisms prevalent in some electricity regions. Janczura and Weron (2010) were pioneers 

in acknowledging the modelling issues with price caps. They used a number of Markov 

Regime-Switching models and evaluated the fit of models with standard, as well as truncated 

(or price-capped) spike regime distributions in the electricity markets of NSW (Australia) and 

New England Power Pool (U.S.) where market prices are capped. They introduced truncated 

spike distributions ensuring that observations do not exceed a specified level and, hence, are 

well suited for modelling these capped power market prices.  

 

Their two-regime model utilised de-seasonalised prices and modelled the base regime 

dynamics with a mean-reverting heteroskedastic process whilst the modelling of spike regimes 

were performed with shifted spike regime distributions which assign zero probability to prices 

below a certain quantile (lognormal and truncated lognormal distributions were employed). 
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They found that there are significant differences between the estimated spike distributions in 

the truncated and non-truncated cases. 

 

This section provided a brief review of the literature on modelling electricity prices with 

variants of SDEs. Similar to the learnings derived from the preceding section, this section 

highlights the importance of capturing the stylized features of electricity prices in modelling 

and forecasting. These features are rapid mean-reversion to long-term mean levels and 

occasional and sometimes consecutive jumps in prices. Additionally, the volatile and extreme 

nature of the electricity prices as manifested by fat tails in the distribution of the data is also 

emphasized in the literature. This asymmetric distribution in electricity price series leads to 

non-Gaussian. Hence, modelling electricity prices with techniques that assume normality will 

likely result in less than optimal forecasts. One of the major learnings that can be deducted 

from the established literature presented in this section is that the stylized features of the 

electricity prices are of particular interest in modelling electricity prices and they are best 

captured by variants of SDEs. 

 

In light of the recent literature, in this thesis, SDE based models are chosen to capture the 

stylised features of electricity prices; Mean-Reverting, Mean-Reverting and Jump-Diffusion 

and Markov Regime-Switching models. GBM model is also chosen as it is the foundation block 

for the other SDE based models.  

  

Particular choice of the SDE models is based on their ability to capture the stylised features of 

electricity prices in Australia. Mean-Reverting model is believed to mimic fast mean-reversion 

behaviour of the price series whereas Mean-Reverting and Jump-Diffusion model is believed 

to capture the sudden price spikes prevalent in Australian electricity market. Markov Regime-
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Switching model on the other hand is shown to capture sudden and consecutive jumps that 

occur in electricity price series therefore the last SDE based model of this thesis is chosen to 

be a Markov Regime-Switching model. 

 

VOLATILITY MODELS 

The literature on electricity price modelling has an array of applications of Autoregressive 

Conditional Heteroskedasticity (ARCH) or Generalised Autoregressive Conditional 

Heteroskedasticity (GARCH) processes. These models allow volatility shocks to cluster and 

persist over time and to revert to normal levels and so may offer potentially interesting insights 

on the volatility observed in the electricity markets.  

 

Many researchers investigated the conditional mean and volatility characteristics of electricity 

prices.  The former is the result of demand, capacity margin and trading volume on volatility 

levels whereas the latter describes the observed clustering of stable periods (GARCH effects). 

Measuring volatility is an important variable in the valuation of risk management models. 

Hence, it is argued that heteroskedastic behaviour in prices can only be modelled correctly 

when the conditional mean of the time series is properly modelled. 

 

Knittel and Roberts (2001) studied the price volatility in the Californian electricity market with 

an exponential GARCH (EGARCH) process in an attempt to understand the asymmetric 

impact of new innovations on the price volatility. This study found that the electricity prices in 

the Californian market have significant ARCH and GARCH effects indicating a high degree 

of persistence. Also, an inverse leverage effect was found to be present, indicating that positive 

shocks to electricity prices affect the conditional variance more than negative shocks. The 
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leverage effect20 refers to the asymmetric behaviour of electricity prices (negative shocks tend 

to increase volatility more than positive shocks).  

 

Time varying volatility of electricity prices with evidence of heteroskedasticity both in 

unconditional and conditional variance was described by Escribano et al. (2002) in which the 

measures of volatility illustrated the degree of randomness. This study specified the 

deterministic seasonality prevalent in a price series by sinusoidal functions before estimating 

six different volatility models:  

(1) A pure-Gaussian model with constant variance and without jumps,  

(2) A GARCH(1,1)-Gaussian model without jumps,  

(3) A Poisson-Gaussian models with constant variance,  

(4) A Poisson-Gaussian models with time-varying intensity for jumps,  

(5) A GARCH(1,1)-Poisson-Gaussian model with constant intensity, and  

(6) A GARCH(1,1)-Poisson-Gaussian model with time-varying intensity for jumps.  

 

Further, modelling of daily electricity price changes from NordPool with ARMA-GARCH 

process was performed by Solibakke (2002) who adjusted the conditional mean equation for 

day-of-week and month-of-year effects and conditional variance equation with day-of-week 

and month-of-year effects. This model’s conditional variance equation was estimated by log of 

the squared residuals from the conditional mean equation. Solibakke (2002) included three 

GARCH specifications namely, asymmetric GARCH (AGARCH), truncated GARCH (GJR) 

following Glosten et al. (1993) and EGARCH processes. Furthermore, this study used 

maximum likelihood (ML) approach based on a t-distributed log-likelihood function to account 

                                                           
20 The connection to leverage is that a lower stock price reduces the value of equity relative to debt, thereby 

increasing the leverage of the firm and consequently the risk of holding the stock. 
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for high kurtosis and skewness present in electricity prices. The results of the study were that 

the volatility equation favoured GJR or AGARCH version of the univariate ARMA-GARCH 

lag specification. The main contribution of this paper was its incorporation of asymmetric and 

fat-tailed characteristics to assess the electricity price changes first reported by Knittel and 

Roberts (2001). 

 

The vector autoregressive (VAR) model of Leon and Rubia (2002) applied to the Argentinian 

electricity market21 utilised a number of different conditional covariance matrices. To estimate 

the conditional covariance matrix (CCM) of their model, authors utilised Orthogonal GARCH 

(OGARCH) and a constrained multivariate GARCH (MGARCH) models. These models aimed 

to cope with the time-dependent volatility of time series.  

 

The OGARCH is based on the application of the principal component analysis to identify the 

main sources of variation of the multivariate system associated to each eigenvalues. MGARCH 

model on the other hand proposed the restriction that the long run covariance matrix equals the 

sample covariance matrix. The main conclusion of this study was that the forecasting 

performance of OGARCH and MGARCH approaches yielded similar results. 

 

Modelling volatility dynamics of electricity prices in a number of markets including Australia 

with a jump-reverting and GARCH processes with and without time dependency was 

performed by Goto and Karolyi (2004). Overall findings of their study were that the GARCH 

models with seasonally time dependent jumps were significant in modelling price volatility 

across different markets.  

                                                           
21 This market is very unique and quite different from the U.S. and European markets where mainly thermal and 

nuclear resources constitute the whole generation resources. 
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The contribution of Goto and Karolyi (2004) to the Australian electricity price modelling 

literature was quite important as this study found little robustness of the monthly seasonal 

dummies in the mean returns function. Furthermore, it showed that the jump probability 

coefficient is lower for the Australian data even though they occurred with lower frequency in 

the series as compared to other markets.  

 

Threshold ARCH (TARCH) processes take account of asymmetric responses in electricity 

prices. Hadsell et al. (2004) used electricity prices from five major American markets, namely: 

California-Oregon Border (COB), Palo Verde, Cinergy, Entergy, and PJM in an application of 

TARCH model. This model incorporated seasonal effects to take account of all monthly 

variations in the conditional mean and variance equations. It also incorporated an asymmetric 

factor to take account of the different effects of positive and negative errors on the conditional 

variance equation. This study’s main contribution to volatility modelling was the detection of 

downward trends in ARCH term, indicating unstable expected volatility along with a negative 

asymmetric effect. 

 

The modelling of volatility in electricity prices was extended to variations of ARCH processes 

combined with several fundamental variables by Bunn and Karakatsani (2004). They used four 

alternative approaches in modelling electricity prices from the U.K. market where residual 

volatility is attributed to non-linear impacts of fundamentals. These models were: 

(1) GLS heteroskedasticity, asymmetric volatility responses to lagged price shocks,  

(2) A regression and TGARCH structure, evolution of the underlying price model due to 

market adaptation,  

(3) Time-varying regression effects and alteration of price structure during temporal 

market irregularities,  
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(4) Markov Regime-Switching regression dynamics.  

 

These models treated stochastic volatility as a non-linear, structural specification for either the 

price formulation process or the random shocks. This study noted that volatility inferences were 

sensitive to the assumed price models developed. It also showed that GARCH effects diminish 

after adjusting for the time-varying price structure. This finding in particularly has important 

applications for price modelling as it suggests that modelling the dynamic structure of the price 

process (e.g. an AR model with time-varying parameters) may describe volatility dynamics 

better than a price model with complex variance structures (e.g. AR-AGARCH).  

 

Consequently, studying the asymmetry in electricity price series continued with the work of 

Knittell and Roberts (2005) who used an AR-EGARCH specification in the California market 

and found that the asymmetry parameter is positive and significant, suggesting the presence of 

an inverse leverage effect. This model has lagged variables in GARCH equation as well as 

variables to account for seasonalities (winter, fall, summer and weekend) and the different 

structure of price behaviour in peak and off-peak prices (peak and off-peak mean). The main 

result of the study was that AR-EGARCH model was superior to different ARMA 

specifications during the Californian electricity crises in the summer of 2000 whilst this 

specification was found to be inferior during the pre-crises study period.  

 

Last but not least, the study of Higgs and Worthington (2005) provided a comprehensive 

modelling of volatility dynamics in Australian markets. They utilised GARCH, RiskMetrics22, 

and Gaussian asymmetric power ARCG (APARCH), Student APARCH and skewed Student 

                                                           
22 Risk Metrics model is equivalent to a normal integrated GARCH (IGARCH) model where the autoregressive 

parameter of the conditional variance equation is pre-set to a specified value. 
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APARCH processes in modelling volatility dynamics in NEM. These processes also included 

exogenous variables of time of day, day of week, month of year effects and demand volume. 

This model accounted for the large positive and negative price spikes prevalent in NEM. This 

study concluded that skewed Student APARCH model provided the best volatility estimates 

for electricity prices in NEM. Another important outcome of this study was that it indicated the 

appropriateness of modelling conditional standard deviation equation as non-linear 

specification. 

 

This section briefly reviewed the literature on volatility modelling of electricity prices. The 

major points that can be derived from the literature are that modelling the volatility dynamics 

is an inseparable part of electricity price modelling. This finding is in line with the learnings 

from the previous two sections of this chapter. The chosen benchmark model of this thesis 

models the volatility dynamics of the electricity prices in Australia. However, SDE based 

models that are believed to capture the stylised features of electricity prices do not specifically 

model volatility. 

 

EMERGING MODELS 

The literature on electricity price modelling has emerging models that combine Autoregressive, 

Mean-Reverting and Jump-Diffusion, and Volatility models with other econometric 

techniques. Application of Extreme Value Theory (EVT), spatial econometric modelling, and 

models based on Levy processes are such applications. The application of these models shows 

that as the econometric complexity of the models increase, the models get closer to mirroring 

true price processes in the electricity markets. 
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Extreme Value Theory (EVT) 

It is one of the stylised facts that electricity prices exhibit heavy tail characteristics. It is this 

construction of the price series that consequently led to modelling electricity prices with EVT 

by Bystrom (2005) who examined electricity prices in NordPool. 

 

Bystrom (2005), in order to apply EVT, first pre-filtered prices through an AR-GARCH 

process. This pre-filtering process achieved i.i.d. process in the model residuals. Then 

modelling the residuals with the assistance of Peaks-over-threshold (POT) method based on 

the Generalized Pareto Distribution (GPD) was conducted. The POT method is based on 

utilizing all exceedances of a given time-series above a specified threshold. Given the 

exceedances in each tail, Bystrom (2005) then optimised the negative log-likelihood function 

to estimate the shape and scale parameters of the GPD. This study found that the POT method 

accurately modelled the extreme values of the electricity prices with in-sample and out-of-

sample evaluation of forecast providing strong support for the application of EVT to electricity 

prices.  

 

Another application of EVT in modelling electricity prices conducted by Chan and Gray (2006) 

developed a Value-at-Risk (VaR) model with the aid of EVT. This study used daily electricity 

price returns from Victoria (Australia), NordPool, Alberta (Canada), Hayward (New Zealand) 

and PJM (U.S.). Authors estimated an AR-EGARCH model with a t-distribution governing the 

residuals and then standardising the residuals from this model before using the EVT techniques.  

In applying EVT, Chan and Gray (2006) used POT method to identify extreme observations 

(extreme standardized residuals) that exceeded a high threshold (which was derived via a 

combination of two popular techniques: the mean excess function and the Hill plots) and 

specifically modelled these exceedances separately from non-extreme observations. Compared 
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to a number of other parametric models and simple historical simulation based approaches, 

their proposed EVT-based model performed well in forecasting out-of-sample Value-at-Risk 

(VaR) estimates. 

 

Periodic Autoregressive Models 

The panel model of Huisman et al. (2007) examined the dynamics in hourly electricity prices 

for the markets of Netherlands, Germany and France via representing the price series as a panel 

of 24 cross-sectional hours that vary from day to day. This method of modelling electricity 

prices is quite similar to PAR models where each hour of the trading day can be viewed as a 

different commodity.  

 

Huisman et al. (2007) divided the price series into two components, deterministic and 

stochastic components23 following Huisman and Mahieu (2003). The stochastic component 

was designed to account for stochastic characteristics such as mean-reversion, time-varying 

volatility and spikes and the parameters of this model were estimated by seemingly unrelated 

regression method. The parameter estimation for the 24 hourly time series accounted for 

heteroskedasticity and contemporaneous correlations in the errors across the series. They found 

that hourly electricity prices mean-revert around an hourly specific mean price level, and that 

the speed of mean-reversion was different over the hours. Additionally, there was an apparent 

cross-sectional correlation pattern where prices in peak-hours correlated strongly with each 

other and the same held for prices in off-peak hours.  

                                                           
23 The deterministic component accounted for predictable seasonality of long-term mean reversion, hourly 

deviations from the mean price level and days of week effects whilst the stochastic component accounted for the 

variation of the price around the deterministic component. 
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Levy Jump-Diffusion Models 

Modelling electricity prices by Lévy Jump-Diffusion processes has been relatively new. The 

class of Lévy processes are general specifications of mean-reverting jump-diffusions of the 

form, which earlier researchers used in modelling electricity prices but they are not limited to 

those as there exist a Lévy process with infinitely many jumps in every interval. 

 

The analytical work of Benth et al. (2007) paved the way for studies in the area of electricity 

price modelling by Lévy processes as it reproduced the stylised features of electricity price 

series while preserving analytical tractability. Authors proposed a modelling approach with 

sum of non-Gaussian Ornstein-Uhlenbeck processes24 where each component consisted of a 

pure jump process with only positive jumps as a source of randomness described by Gamma 

distributions. These components were mean-reverting with different mean reverting rates.  

 

Later, Meyer-Brandis and Tankov (2008) proposed an estimation model for the model of Benth 

et al. (2007) where filtering out the different Ornstein-Uhlenbeck process components was 

performed via thresholding and the adapted Potts filter methods.  

 

Furthermore, Klűppelberg et al. (2009) developed an estimation method for the additive non-

Gaussian Ornstein-Uhlenbeck model of Benth et al. (2007) and suggested that EVT may be 

used to identify jumps present in the price series. This model consisted of two Ornstein-

Uhlenbeck Gamma processes to capture the multi-scale autocorrelation and another process to 

capture the spike regime where the randomness was described by Pareto distribution.  

 

                                                           
24 Ornstein–Uhlenbeck is a stochastic process that describes the velocity of a massive Brownian particle under the 

influence of friction. The process is stationary, Gaussian, and Markov, and is the only nontrivial process that 

satisfies these three conditions, up to allowing linear transformations of the space and time variables. Over time, 

the process tends to drift towards its long-term mean: such a process is called mean-reverting. 

http://en.wikipedia.org/wiki/Stochastic_process
http://en.wikipedia.org/wiki/Brownian_motion
http://en.wikipedia.org/wiki/Stationary_process
http://en.wikipedia.org/wiki/Gaussian_process
http://en.wikipedia.org/wiki/Markov_process
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An extension of application of Lévy processes in modelling electricity prices was performed 

by Borovkova and Permana (2009) who proposed modelling of electricity prices with potential 

Lévy diffusions. The approach taken in this study combined a diffusion driven by a Lévy 

process with an α-stable distribution, and with a drift given by a potential function, which forces 

the price process to return to its average level (given by a seasonal, ie, a deterministic, periodic 

function) after a large price move25. They used daily electricity prices from the Netherlands, 

the UK and Germany to apply their model after filtering out jumps, removing yearly trend from 

each series by moving average technique and estimating the yearly seasonal component by the 

least-squares fitting of a trigonometric function. This model produced large price jumps due to 

its heavy-tailed property, which reflected the corresponding empirical feature of electricity 

prices.  

 

Henceforth, Borovkova and Permana (2009) developed an alternative model that was a 

transitional model between the model based on the univariate SDE and the traditional Jump-

Diffusion models. They considered a compound Poisson component while plugging in a 

Brownian motion with volatility instead of small jumps. The studies of Borovkova and 

Permana (2009) showed that these models fit empirical distributional characteristics of the data 

remarkably well, and certainly better than traditional Jump-Diffusion models. 

 

Continuous Time ARMA Models 

Klűppelberg et al. (2011) applied continuous time ARMA (CARMA)26 processes to model 

electricity prices. They described the CARMA process by an equation, where the left-hand side 

                                                           
25 The proposed models are inspired by solutions of the non-linear stochastic differential equations driven by Lévy 

processes, studied in Imkeller and Pavlyukevich (2006). 

26 CARMA models are driven by a stable non-Gaussian Levy processes. 
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corresponds to an AR (p) process and the right-hand side to a (p−1)-dependent process. Their 

specification included a representation of the stable CARMA (p, q) process as the sum of 

dependent CAR (1) processes. They concluded that even though there is no weak MA 

representation of this (p − 1) dependent process, for a stable CARMA process, the principles 

of the model can still be applied when the innovations of the driving L´evy process have finite 

second moment27.  

 

Spatial Econometrics 

The literature also has applications of spatial econometrics in modelling electricity prices. A 

very unique approach to modelling electricity prices was proposed by Popova et al. (2011) 

whose spatial error model included forward electricity prices, system loads, air temperatures 

observed in each of the 16 regions of the U.S. (PJM) market, dummies for disentangling daily 

and weekly seasonality, lagged spot price and an error term. This study suggested that 

unobserved spatial correlation in electricity networks can be modelled by spatial error models 

and ignoring the spatial characteristics of the networks may cause biased results. Their model 

results indicated that electricity prices exhibit spatial correlation and this correlation fades 

rapidly when the congestions in the grid occur and then level out.  

 

This study was an important development in modelling electricity prices as it provided 

information on the econometric structure of each node/region of the price generation process 

(Baltagi and Li 2006). 

 

                                                           
27 The standard deviations of the estimates even decrease as the stable parameter α decreases. 
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Modelling Interconnected Regional Electricity Markets 

The literature also has an array of applications where the notion of nonlinearity has been 

associated with multiplicative nonlinearity or nonlinearity in variance. ARCH/GARCH models 

where the conditional variance is postulated depend on the variability of recent observations, 

associated nonlinearity with multiplicative nonlinearity. Stochastic volatility models on the 

other hand associated nonlinearity with nonlinearity in variance where volatility is postulated 

to be a function of some unobserved or latent stochastic process (Shephard, 1996). Both 

ARCH/GARCH stochastic volatility models assume that the time series is a zero-mean process 

and when the mean of the process is nonlinear, potential problems in modelling emerges. 

Inaccurate conclusions of nonlinearity in variance might emerge when the prime source of 

serial dependence is a nonlinear structure in residuals that could not successfully be extracted 

by conventional linear-based time series models (Wild et al., 2010).  

 

An examination of non-linearity in electricity prices was performed by Wild et al. (2010) who 

applied Portmanteau correlation, bicorrelation, and tricorrelation tests to detect nonlinear serial 

dependence in electricity price series in NEM. They found strong evidence of nonlinear serial 

dependence in electricity prices. It is argued that the presence of third- and fourth-order 

nonlinear serial dependence in electricity prices makes models that employ a linear structure, 

or assume a pure noise input.  

 

Furthermore, to understand the characteristics of the price series in Ercot (Texas) and PJM 

West hubs in U.S., Kim and Powell (2011) challenged the main arguments built into most of 

the models by earlier researchers. They argued that filtering out the heavy-tailed fluctuations 

via zeroth-order smoothing can be achieved by computing the trailing median of the process 
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(TMP)28, where the quantile function of a set is not affected by extreme events. This proposed 

model had the following assumptions:  

 There exists a long-term median for the price process and the price process is median-

reverting towards the TMP in the short term, and  

 Heavy-tailed price spikes exist.  

 

It was shown that the distribution of the error term in electricity prices of these markets is well-

described by the Cauchy distribution, which ensures that the median-reversion of the price 

process is smooth and heavy-tailed. In traditional mean-reverting models, the distribution of 

error term is described as Gaussian. A very important implication of this finding is that it paves 

the way in utilising the empirical cumulative distribution function and the quantile function 

rather than the empirical mean and the variance used in traditional linear models.  

 

In summary, these emerging models aimed to capture the stylised features of the electricity 

prices similar to established models reviewed earlier. These features are extreme values, heavy 

tails and therefore non-linearity, and the existing correlations between the nodes of electricity 

markets. This section reported that modelling electricity prices without capturing these features 

is likely to result in biased price estimates.  

One of the models of this thesis chosen to be compared against the benchmark model is based 

on combined application of Extreme Value Theory and Copula functions. It is believed that 

this model captures the extreme values and heavy tails prevalent in Australian electricity price 

series. 

                                                           

28 The trailing median process (TMP), which is a thin-tailed, symmetric, and a slow varying process with very 

low volatility, reverts towards the mean in the long term. The long-term mean of the TMP is the long-term average 

of the price process itself.  
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STUDIES IN THE AUSTRALIAN NATIONAL ELECTRICITY MARKET 

There have been a number of studies in the literature that utilised data from Australian National 

Electricity Market (NEM). These studies confirmed the stylised features of electricity and its 

presence in the Australian electricity price series.  

 

The studies of Either and Mount (1998), Johnson and Barz (1999), Escribano et al. (2002), 

Wilkinson and Winsen (2002) and Goto and Karolyi (2004) examined the mean-reverting and 

jumpy features of price series in a number of markets including Australia. These studies aimed 

at characterising the electricity prices by use of autoregressive and mean-reverting jump 

diffusion models and only used data from one market region of the Australian National 

Electricity Market (NEM). 

 

The contribution of Goto and Karolyi (2004) was particularly important in the literature as they 

found little robustness of the monthly seasonal dummies in the mean returns function across 

their model specifications. Furthermore, they showed that the jump probability coefficient is 

lower for the Australian series even though they occurred with lower frequency in the series as 

compared to other markets.  

 

Higgs and Worthington (2005) modelled electricity prices in Australia covering all market 

regions of the NEM. They applied a number of ARCH type models to understand volatility 

dynamics of the electricity prices in their first attempt to model Australian electricity prices.  

 

Later, Higgs and Worthington (2008) applied three different variants of SDEs to the electricity 

price series in an attempt to determine the most robust price model applicable in all of the NEM 

regions. The models they utilised in this study were: 
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 A basic stochastic model,  

 A Mean-Reverting model and  

 A Markov Regime-Switching model.  

 

The results of these models showed that the Markov Regime-Switching model outperforms 

the basic stochastic and mean-reverting models in providing the best fit to empirical data in 

NEM.  

 

Higgs (2009) analysed the inter-relationships prevalent in electricity prices in NEM regions 

and found high conditional correlations between the well-connected regions. This study 

examined the inter-relationships of electricity prices and price volatility in four Australian 

electricity regions of New South Wales (NSW), Queensland (QLD), South Australia (SA) and 

Victoria (VIC). The study consisted of three different conditional correlation multivariate 

GARCH models and demonstrated that the price and price volatility inter-relationships in the 

regions of NEM are best described by the dynamic conditional correlation multivariate 

GARCH specification. An important conclusion reached in this study was that the 

interconnectivity and/or geographic arbitrage between the separate regions in NEM have 

fostered a nationally integrated electricity market. Thus, this indicates that the NEM’s 

interconnected regions are informationally efficient. 

 

There have also been studies to characterise the non-linear structure of electricity prices in 

Australia. Rozario (2002) derived VaR for Victorian half-hourly electricity returns using a 

threshold based Extreme Value Theory (EVT) model whereas Chan and Gray (2006) applied 

an AR-GARCH-EVT model using data from a number of markets including Australia with an 

aim to develop a VAR model.  
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Furthermore, Christensen et al. (2009) modelled Australian electricity prices with zero-inflated 

Poisson autoregressive (PAR) model, which captured the persistence in spikes and hence 

provided a good fit to the electricity prices.  

 

Most recently, Wild et al. (2010) presented a unique study using Australian data in an attempt 

to examine nonlinearity present in NEM electricity prices. They found strong evidence of 

nonlinear serial dependence in the data. The main finding of this study points out that models 

based on Gaussian distribution will result in biased estimates.  

 

In conclusion, previous studies in the literature that employed data from NEM examined the 

stylised features of electricity prices with particular emphasis on mean-reverting and jumpy 

features.  

 

Additionally, most recent studies highlighted the presence of non-linearity and interconnected 

nature of the NEM. The existence of price and volatility interconnection amongst the physically 

connected regions of NEM presents unparalleled challenges in modelling electricity prices for 

a particular region of the NEM. A modelling approach that ignores this interconnection will 

result in bias estimates and inaccurate forecast.  
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CHAPTER 5 – INTRODUCTION TO METHODOLOGY 

In this chapter an overview of the models as used in this thesis to forecast wholesale electricity 

prices in the Australian National Electricity Market (NEM) are presented. Mean-reversion, the 

presence of jumps, and non-Gaussian manifested as positive skewness and leptokurtosis are 

the main stylized features of electricity prices as pointed out in the literature (example 

Kaminski 1977).  

 

It is believed that by explicitly modelling the stylised features of electricity wholesale prices, 

forecast accuracy can be improved upon baseline models commonly used in quantitative 

finance. This thesis investigates the forecasting ability of two distinct modelling approaches 

which by construction capture the stylised characteristics of electricity prices. Namely, these 

are linear continuous time and non-linear modelling methods. The AR-GARCH model is 

chosen to be the standard approach in forecasting price series (Engle, 2001) and is taken as the 

benchmark model in this thesis. More specifically, this thesis aims to answer the following 

research questions: 

1. Does the application of continuous-time models in capturing the stylised features of 

Australian electricity wholesale spot prices improve forecasting ability upon the 

traditional AR-GARCH model? 

2. Does the application of non-linear forecast models in capturing the stylised features of 

Australian electricity wholesale spot prices improve forecast ability upon traditional 

AR-GARCH model? 

The continuous-time models examined in this thesis are; Geometric Brownian Motion (GBM), 

Mean-Reverting, and Mean-Reverting Jump-Diffusion processes. The inclusion of GBM in 

this thesis is due to it being the foundation for the Mean-Reverting and Jump-Diffusion models, 
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which are considered in this thesis. Continuous-time models capture some of the main stylised 

features of electricity prices; Mean-Reverting process captures the mean-reversion (tendency 

of electricity prices to revert back to its long-term average over time) characteristics of 

electricity prices whilst Mean-Reverting and Jump-Diffusion process models the sudden jumps 

prevalent in Australian electricity prices.  

 

The models are in order such that each successive model extends the one preceding it. Note 

that each extension addresses a stylised feature of the data therefore the a priori expectation is 

that the forecasting performance will improve. 

 

The inclusion of the non-linear approach to forecasting Australian electricity prices is 

performed with the application of a Markov Regime-Switching model and the application of 

Extreme Value Theory (EVT) into electricity price modelling.  

 

The Markov Regime-Switching model is a non-linear modelling tool that is able to capture 

consecutive spikes prevalent in Australian electricity prices that Mean-Reverting and Jump-

Diffusion processes fail to capture.  

 

The application of EVT is included in this thesis so that heavy tails present in electricity prices 

can be adequately captured. Copulas are considered as a unique method that models the 

dependence structure of data. The forecasts based on the EVT model is built upon the 

application of Copula functions as these functions model the interdependence of prices within 

the separate regions of the Australian electricity markets.  
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To summarise, in total six econometric models are applied in this thesis. The models examined 

in this thesis are: 

 

 

Each model under investigation mimics a known characteristic of electricity prices. Mean-

Reverting model replicates the mean reversion feature of prices series, whilst Mean-Reverting 

and Jump-Diffusion model incorporates jumpy features of prices series along with mean-

reversion. Markov Regime-Switching model incorporates the consecutive jumps prevalent in 

NEM in its formation. Finally, the EVT based model replicate the nonlinear, heavy tailed nature 

of the electricity price series. 

 

To assess the relative forecast performance of these models, short-term forecast performances 

(90 days) are compared with each other and with the chosen benchmark model (AR-GARCH). 

The price data used in this study are average hourly pool price observations sourced directly 

from Australian Electricity Market Operator (AEMO) for the period of 01/06/2006 to 

• AR(1)-GARCH(1) 

Benchmark Model

• Geometric Brownian Motion

• Mean-Reverting Model 

• Mean-Reverting and Jump-Diffusion Model

Continous-time Models

• Non-Linear Models

• Markov Regime-Switching models with spike distributions modelled with

-Gaussian distribution

-Log-Gaussian distribution

• Extreme Value Theory and Copula functions.

Non-linear Models



  

107 
 

29/08/2010. The data from 01/06/2006 to 31/05/2010 (in-sample data) are used to estimate the 

parameters of the models while the period from 01/06/2010 to 29/08/2010 (out-of-sample data) 

are used to derive out-of-sample forecast accuracy statistics. 

 

The forecast exercises involve the simulation of these models via Monte Carlo and Copula 

approaches. Monte Carlo simulation is a numerical method commonly used in economics to 

solve partial differential equations such as the Black-Scholes equation for pricing stock options. 

The basic principle of Monte Carlo simulation is that there is a stochastic variable in an 

equation that can be sampled many times over. When the result of the many simulations of a 

function containing the random variable is averaged, it approximates to the real mean. This is 

a result from the Central Limit Theorem of probability. The variable being sampled in Monte 

Carlo simulation usually comes from the uniform distribution as simulated by a random number 

generator.  

 

Each continuous time the Markov Regime-Switching models are simulated using the Monte 

Carlo approach via Euler approximation method. This method simulates sample paths of 

correlated state variables driven by Brownian motion sources of risk over consecutive 

observation periods and thus approximating continuous-time stochastic processes. The model 

that incorporates the application of EVT on the other hand is simulated with Copula functions, 

returning random vectors generated from a t-copula with linear correlation parameters. This 

method generates a set of simulations from a bivariate t-copula and each column of the 

simulation sets is a sample from a uniform marginal distribution.  

 

A set of comparative forecast performance measures is used in this thesis in measuring the 

relative forecast performance of each forecast model. The forecast performance measures of 
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Root Mean Square Error (RMSE) and Theil’s U are used to present the forecast errors of each 

model by each region of the NEM. Appendix 2 provides an overview of the forecast accuracy 

measures utilised in this thesis. 

 

These measures show that Markov Regime-Switching models have a tendency to provide better 

forecasting results when their spike processes are modelled with a Log-Gaussian distribution. 

This is due to the fact that by construction Markov Regime-Switching models capture both 

mean-reversion and consecutive jumps prevalent in electricity price data in a non-Gaussian 

model setting.  

THE BENCHMARK MODEL 

Autoregressive (AR) models can be considered as the benchmark modelling tool in financial 

modelling. These models are also widely applied to electricity price modelling in the literature. 

Autoregressive models (AR) and their extensions that allow incorporating exogenous factors 

(ARX) are the standard modelling techniques in applied econometrics. These models are 

widely applied to electricity price modelling literature. AR models are used to predict behavior 

of electricity time series from past values then such a prediction is used as a baseline to evaluate 

possible importance of other variables to the system. AR modelling also contributed to 

understanding of the physical system by revealing something about the physical process that 

builds persistence into the electricity series.  

 

One of the earlier applications of AR models was performed by Knittel and Roberts (2001) 

who modelled electricity prices from the Californian market with seasonal ARMA and AR-

EGARCH processes.  
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The role of adding GARCH processes29 in AR models in electricity price forecasting was then 

shown by Contreras et al. (2003) who originally applied ARMA processes with multiple 

seasonalities and lags to predict hourly prices in the electricity markets of Spain and California. 

They later improved their ARMA forecast model with the addition of GARCH (1,3) 

specification and concluded that the forecast errors were around nine per cent, depending on 

the studied month of the year in these markets.  

 

They also argued that this model outperformed their earlier ARMA model and pointed out that 

adding the demand to the GARCH model as an explanatory variable improved the performance 

of the method further. This study’s importance in the literature lied as it strengthened the case 

to add GARCH processes in forecasting electricity prices.  

 

The price data used in this model is the same as all other models studied in this thesis. The data 

from 01/06/2006 to 31/05/2010 are used to estimate the parameters of the models while the 

period from  01/06/2010 to 29/08/2010 are used to derive out-of-sample forecast accuracy 

statistics in line with all other models developed in this thesis.  

 

As the benchmark model, an AR(1)-GARCH(1,1) with conditional t-distribution is fitted to 

electricity price series for each market of the Australian National Electricity Market (NEM). 

This complex conditional mean and variance model has Student’s t innovation in an effort to 

reflect the non-Gaussian nature of electricity price series in NEM.  

 

 

 

                                                           
29 For an extensive discussion of the AR-GARCH modeling in electricity price modeling, see the literature review 

of this thesis. 
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Table 6 AR-GARCH Model Parameters 

  Value Standard error t statistic 

N
S

W
 

C 0.53574 0.04044 13.2469 

AR(1) 0.84107 0.01155 72.7714 

K 0.56789 0.01205 4.7099 

GARCH(1) 0.09826 0.03851 2.5509 

ARCH(1) 0.90174 0.22236 4.0552 

V
IC

 

C 0.57203 0.04422 12.9361 

AR(1) 0.83367 0.01250 66.6603 

K 0.05587 0.00823 6.7820 

GARCH(1) 0.08821 0.05226 1.6876 

ARCH(1) 0.53787 0.1094 4.9167 

Q
L

D
 

C 0.5432 0.04217 12.8810 

AR(1) 0.83361 0.01240 67.2113 

K 0.04444 0.00971 4.5742 

GARCH(1) 0.28356 0.04910 5.7747 

ARCH(1) 0.71644 0.16903 4.2385 

S
A

 

C 0.70416 0.04826 14.5886 

AR(1) 0.79869 0.01355 58.9446 

K 0.11153 0.03372 3.3069 

GARCH(1) 0.1402 0.05028 2.7883 

ARCH(1) 0.8598 0.29716 2.8934 

T
A

S
 

C 0.36432 0.04145 8.7883 

AR(1) 0.90162 0.01108 81.3652 

K 0.03992 0.01022 3.9051 

GARCH(1) 0.29512 0.05320 5.5470 

ARCH(1) 0.70488 0.19763 3.5667 

Source: Author’s calculations. 

 

Table 6 describes the estimated parameters of the model and the conditional standard deviations 

and standardised residuals of the model are given in the appendices. The fitted model for each 

of the NEM regions is simulated in order to generate the dependent stochastic process that 

follows the conditional mean specification of general AR-GARCH form defined by model 

parameters values for up to three months. 

 

Where K is the conditional variance constant, GARCH is the coefficients related to lagged 

conditional variances, ARCH being the coefficients related to lagged innovations (residuals), 

and C is the conditional mean constant. AR represents the conditional mean autoregressive 

coefficients that imply a stationary polynomial. 
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The results of the AR(1)-GARCH(1,1) simulations over three month horizon (90 days) for each 

region of the NEM are illustrated in the following graph (for the period 01/06/2010 to 

29/08/2010).  

Figure 10 Simulated Price Series 

 
Source: Author’s calculations. 

 

The parameterisation of the model is based on the in-sample period chosen for this study and 

is the same as all other models previously discussed. The price path is for 90 days horizon, the 

same horizon used in all type models investigated earlier, allowing easy interpretation of 

performance comparisons between the various models constructed. The price paths presented 

in the following charts are the result of average of 10,000 simulated paths. 

 

As is seen, this model accounts for the time-varying variation present in electricity prices. The 

simulated prices also seem to be fluctuating around long-run mean levels. However, the model 

fails to capture the spikes prevalent in electricity price data. 

 

Analysis of formal forecast accuracy measures as described in the following table reveals that 

the benchmark model performs surprisingly well in short-term forecasting. This model 
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outperforms all other models employed in this study for each market region of the NEM except 

South Australia (SA) measured by root mean square errors (RMSE). The AR-GARCH model 

used in this study has RMSE scores of 0.328 for New South Wales (NSW), 0.238 for Victoria 

(VIC), 0.336 for Queensland (QLD), 0.475 for SA and 0.605 for Tasmania (TAS). The Markov 

Regime-Switching model with spike regime modelled via Log-Gaussian distribution has 

superior RMSE values for the SA region. This model also performs remarkably well in terms 

of its Theil’s U statistic indicating that the proposed model is as good as the naive model for 

all regions of NEM. This model has a Theil’s U statistic of 0.048 for NSW, 0.035 for VIC, 

0.053 for QLD 0.069 for SA and 0.085 for TAS. 

 

Table 7 Forecast Accuracy Measures of Benchmark Model 

 NSW VIC QLD SA TAS 

Mean error -0.02573 -0.09435 -0.18307 -0.12713 -0.27293 

Mean square error 0.10766 0.05666 0.1129 0.22619 0.36621 

Root mean square error 0.32812 0.23804 0.33600 0.4756 0.60515 

Mean absolute error 0.18430 0.19122 0.20202 0.26372 0.44279 

Mean percentage error -1.44263 -3.25139 -8.0017 -36.9556- -9.78207 

Mean absolute percentage error 5.12366 5.83328 8.57096 40.55399 12.77883 

Theil’s U 0.04849 0.03525 0.05349 0.06926 0.08525 

Source: Author’s calculations. 

 

SIMULATION OF AR(1)-GARCH(1) MODEL WITH MATLAB’S GARCHSIM FUNCTION 

MATLAB’s garchsim function simulates sample paths of series given specifications for the 

conditional mean and variance of a univariate time series. It simulates a sample path with 

multiple observations for the series, innovations, and conditional standard deviation processes. 

Innovations represents a mean zero, discrete-time stochastic process whilst the series is the 
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dependent stochastic process and follows the conditional mean specification of general ARMA 

form defined in model specification. 

 

The function generates Monte Carlo sample paths for both conditional mean and variance 

models. Monte Carlo simulation is the process of generating independent, random draws from 

a specified probabilistic model. When simulating time series models, one draw (or, realisation) 

is an entire sample path of specified length 𝑁, 𝑦1, 𝑦2, … , 𝑦𝑁.When you generate a large number 

of draws, say 𝑀, you generate 𝑀 sample paths, each of length 𝑁. Conditional mean models 

specify the dynamic evolution of a process over time through the conditional mean structure. 

Perform Monte Carlo simulation of conditional mean models by: 

1. Specifying any required pre-sample data (or use default pre-sample data). 

2. Generating an uncorrelated innovation series from the specified innovation distribution. 

3. Generating responses by recursively applying the specified AR and MA polynomial 

operators. The AR polynomial operator can include differencing. 

 

For example, consider an AR(2) process, 

𝑦𝑡 = 𝑐 + ∅1𝑦𝑡−1 + ∅2𝑦𝑡−2 + 𝜀𝑡        (8) 

 

Given pre-sample responses 𝑦0 and  𝑦 − 1, and simulated innovations  𝜀1,…,𝜀𝑁
 realizations of 

the process are recursively generated: 

 

𝑦1 = 𝑐 + ∅1𝑦0 + ∅2𝑦−1 + 𝜀1          (9) 

𝑦2 = 𝑐 + ∅1𝑦1 + ∅2𝑦0 + 𝜀2                   (10) 

𝑦3 = 𝑐 + ∅1𝑦2 + ∅2𝑦1 + 𝜀3                   (11) 

𝑦4 = 𝑐 + ∅1𝑦𝑁−1 + ∅2𝑦𝑁−2 + 𝜀𝑁                  (12) 
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For an MA (12) process, e.g., 

𝑦𝑡1 = 𝑐 + 𝜀𝑡−∅1𝜀𝑡−1 − ⋯ − ∅12𝜀𝑡−12                 (13) 

 

There is a need for 12 pre-sample innovations to initialise the simulation. By default, simulate 

sets pre-sample innovations equal to zero. The remaining 𝑁 innovations are randomly sampled 

from the innovation process. 

 

Conditional variance models specify the dynamic evolution of the variance of a process over 

time. Perform Monte Carlo simulation of conditional variance models by: 

1. Specifying any required pre-sample data (or use default pre-sample data). 

2. Generating the next conditional variance recursively using the specified conditional 

variance model. 

3. Simulating the next innovation from the innovation distribution (Gaussian or Student's t) 

using the current conditional variance. 

 

For example, consider a GARCH(1,1) process without a mean offset,  𝜀𝑡 = 𝜎𝑡𝑧𝑡 where 𝑧𝑡 either 

follows a standardised Gaussian or Student's 𝑡distribution and  

 

𝜎𝑡
2 = κ + 𝑦1𝜎𝑡−1

2 + 𝛼1𝜀𝑡−1
2                    (14) 

 

Suppose that the innovation distribution is Gaussian. Given pre-sample variance 𝜎0
2 and pre-

sample innovation 𝜀0 realisations of the conditional variance and innovation process are 

recursively generated: 

 

𝜎1
2 = κ + 𝑦1𝜎0

2 + 𝛼1𝜀0
2                   (15) 
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Sample  𝜀1  from a Gaussian distribution with variance 𝜎1
2   

 

𝜎2
2 = κ + 𝑦1𝜎1

2 + 𝛼1𝜀1
2                      (16) 

Sample 𝜀2 from a Gaussian distribution with variance 𝜎2
2   

 

𝜎𝑁
2 = κ + 𝑦1𝜎𝑁−1

2 + 𝛼1𝜀𝑁−1
2                    (17) 

Sample 𝜀𝑁  from a Gaussian distribution with variance 𝜎𝑁
2. 

 

The next chapter describes the first continuous-time model of this thesis as applied to 

forecasting electricity prices in NEM. As Geometric Brownian Motion (GBM) forms the part 

of other continuous-time models of mean-reverting and mean-reverting jump diffusion models 

via its Brownian motion property, its inclusion in this study is thought to be appropriate. 

Consequently, it is presented first. 
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CHAPTER 6 - GEOMETRIC BROWNIAN MOTION 

Diffusion-type Stochastic Differential Equations (SDE) have been the standard approach to 

modelling price processes that are stochastic in nature. The Geometric Brownian Motion 

(GBM) is the simplest and most common example of a diffusion-type SDE. Many economic 

analyses have used implicit and explicit assumptions that a quantity that changes over time 

with uncertainty follows a GBM (i.e Black-Scholes options pricing formula).  

 

The GBM process, which was introduced to finance by Samuelson (1965) (sometimes also 

called the lognormal growth process) has gained wide acceptance as a valid model for the 

growth in the price of financial instruments over time. Under this model, the Black-Scholes 

formulas for pricing European call and put options, as well as their variations for a few of the 

more complex derivatives, provide relatively simple analytical evaluation of asymmetric risks.  

 

INTRODUCTION TO BROWNIAN MOTION PROCESS 

A stochastic process {𝑧(𝑡), 𝑡 ≥ 0} follows a Brownian motion process if it exhibits the 

following properties; 

I. The change in the value of z, (∆𝑧), over a time interval of length ∆𝑡 is proportional to 

the square root of ∆𝑡 where the multiplier is random. Specifically, ∆𝑧 = 𝑧(𝑡 + ∆𝑡) −

𝑧(𝑡) = 𝜀√∆𝑡, where 𝜀 is a standard normal variable. Hence values of ∆𝑧 follow a 

Gaussian distribution with mean 0 and variance equal to the change in time over which 

∆𝑧 is measured. 

II. The changes in the value of 𝑧(𝑡) for any two non-overlapping intervals of time are 

independent. 
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Using ordinary calculus where it is typical to proceed from small changes to the limit as the 

small changes come closer to zero; the Wiener process30 is the limit as ∆𝑡 → 0 of the process 

described above for 𝑧(𝑡).  

 

The standard Brownian motion process has a drift rate of zero and a variance of one. The drift 

rate of zero means that the expected value of 𝑧 at any future time is equal to the current value. 

The variance of one means that variance of the change in 𝑧 in a time interval of length t is equal 

to T.  

 

GEOMETRIC BROWNIAN MOTION PROCESS 

An SDE is represented by an equation of the form: 

 

dWtXtbdtXtadX ttt ),(),(                     (18) 

 

with a deterministic component defined by the function ),( tXta , the instantaneous drift is 

defined by function ),( tXtb . The stochastic differential, dWt , represents an infinitesimal 

increment of Brownian motion. Stochastic component of this differential, Wt , is called the 

Wiener process.  

 

The formal definition of the process in Equation 18 comes from writing down its integral 

representation as follows; 

                                                           
30 A Wiener process is a type of Markov process in which the mean change in the value of the variable is zero 

with the variance of change is equal to one per unit of time. A Markov process is a particular type of stochastic 

process where only the present value for a variable is relevant for predicting the future. In Markov process, the 

past history of the variable and the way the present emerged from the past are irrelevant. This process was first 

applied in biology to describe the motion of a particle that is subject to a large number of small molecular shocks 

and was called Brownian motion (Hull, 2000) and the mathematical definition of the process was later developed 

by Wiener (Ross, 1999).  
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 

t

t

t

t

ssstt dWXsbdsXsaXX
0 0

0 ),(),(                  (19) 

 

This representation defines the right-hand stochastic integral in terms of a limit of sums 

including finite Brownian increments. This leads to the Ito calculus. A straightforward 

aplication of Ito’s Lemma yields the solution; 

 

𝑋(𝑡) = 𝑒𝑙𝑜𝑔𝑥0+𝜇̂𝑡+𝜎𝑊(𝑡) = 𝑥0𝑒𝜇̂𝑡+𝜎𝑊(𝑡)                (20) 

 

where 𝜇̂ = 𝜇 −
1

2
𝜎2 and hence 𝑋(𝑡) is lognormally distributed, with 

𝐸(𝑋(𝑡)) = 𝑥0𝑒𝜇𝑡                   (21) 

𝑉𝐴𝑅(𝑋(𝑡)) = 𝑥0
2𝑒2𝜇𝑡(𝑒𝜎2𝑡 − 1)                 (22) 

𝑓(𝑡, 𝑥) =
1

𝜎𝑥√2𝜋𝑡
𝑒−(𝑙𝑜𝑔𝑥−𝑙𝑜𝑔𝑥0−𝜇̂𝑡)2/2𝜎2𝑡                (23) 

 

for 𝑝 ∈ [0,1] the p-th percentile is 𝑥0𝑒𝜇̂𝑡+𝑁−1(𝑝)𝜎√𝑡 

 

A solution to Equation 20 is called a stochastic process, which can be thought of as being 

indexed by t  and the different realizations of Brownian motion. Hence, for a fixed t , 𝑋𝑡 is then 

a random variable and for a fixed realization of Brownian motion, one obtains a sample path 

for 𝑋𝑡.  

 

As SDEs with explicit solutions are rare, unlike Ordinary Differential Equations (ODE), there 

are a variety of methods for approximating solutions using discretization31. Euler’s method is 

                                                           
31Discretization is the process of transferring continuous models and equations into discrete counterparts. This 

process is usually carried out as a first step toward making them suitable for numerical evaluation and 

implementation. 

http://en.wikipedia.org/wiki/Continuous_function
http://en.wiktionary.org/wiki/discrete


  

119 
 

the simplest and is a straight forward extension of the ODE technique. For a discretization step 

size of t and tnttn  0  the Euler’s method approximation to nn XtY  , is given as follows; 

 

nnnnnn WYtbtYtatY  ),(),(1                    (24) 

 

where 00 XY  is the initial condition32. Increments of the Wiener process, 
nn ttn WWW 

1

, 

can then be simulated using pseudo randomly generated normal variants, since by the defining 

properties of Brownian motion, ),0( tNW j

n  for Mj ,...,1 . Each discretization step for 

Euler’s method thus requires M  random normals. This is essentially a simulation process.  

 

However, generating forecast of a particular SDE via a large number of simulations has its 

drawbacks. The forecast value as the result of these simulations become the mean of these large 

number of repetitions and the meaning process naturally smooths out the fluctuations of the 

particular SDE’s price path.  

 

MODELLING ELECTRICITY PRICES WITH GBM PROCESS 

This study applies the following GBM model to electricity prices from each region of NEM. 

 

𝑑𝑋𝑡 = 𝜇𝑋𝑡𝑑𝑡 + 𝜎𝑋𝑡𝑑𝑊𝑡                    (25) 

 

                                                           
32 Detailed mathematical representation of Euler Scheme is described in Appendix 4. 
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The first term of the equation implies that 𝑋 has an expected drift rate of 𝜇 per unit of time, 

whereas the second term can be regarded as adding variability to the path followed by 𝑋. The 

amount of this variability is 𝜎 times the differential of the Brownian motion process. Thus for 

a small interval of time, the change in the value of 𝑋 is given by; 

 

∆𝑥 = 𝜇∆𝑡 + 𝜎𝜀√∆𝑡 .                     (26) 

 

Note that ∆𝑥 has a Gaussian distribution with mean 𝜇∆𝑡 and variance 𝜎2∆𝑡. 

 

Modelling electricity prices with GBM processes does not reflect the main stylised features of 

electricity prices series. The GBM process by construction follows a price trajectory with an 

increasing trend (as 𝑑𝑋𝑡 = 𝜇𝑋𝑡𝑑𝑡 + 𝜎𝑋𝑡𝑑𝑊𝑡 suggests) and it cannot capture large jumps 

prevalent in electricity prices. Therefore, the forecast generated with GBM processes are 

expected to have large errors. However, the inclusion of such processes in this thesis is 

appropriate as the GBM process is the foundation for other SDE processes that can capture the 

stylised features of electricity prices.  

 

PARAMETERISATION OF THE GBM PROCESS 

The parameters of the GBM model, namely the annualized mean and measure of volatility 

processes were estimated using the in-sample data of the study. The constructed GBM models 

for each region of the NEM produced sample paths of simulated state variables driven by 

Brownian motion sources of risk over consecutive observation periods.  
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SIMULATION OF THE GBM PROCESS 

GBM like any other SDEs needs to be simulated in order to estimate the quantities of interest 

as its analytical solutions are rare. More technically, it can be put that the aim is to compute 

𝐸[𝑓(𝑋𝑇)] where 𝑋𝑡 satisfies: 

 

𝑑𝑋𝑡 = 𝜇𝑋𝑡𝑑𝑡 + 𝜎𝑋𝑡𝑑𝑊𝑡                          (27) 

 

The solution to above equation is given by; 

 

𝑋𝑡 = 𝑋0exp ((𝜇 −
𝜎2

2
) 𝑇 + 𝜎𝑊𝑡)                  (28) 

 

Recognize that 𝑋𝑡 depends on the Brownian motion only through the Brownian motion’s 

terminal value, 𝑊𝑡, which introduces randomness to the function. This implies that even if the 

analytical solution of the equation cannot be achieved, the estimation of it is possible by 

simulating 𝑊𝑡 directly. For that reason, the GBM models constructed for each region of the 

NEM in this study are simulated via MATLAB’s simBySolution method. MATLAB’s 

simBySolution33 method is an approximate analytic solution obtained by applying the Euler 

Scheme to the transformed (using Ito's formula) logarithmic process. Appendix 3 gives a brief 

review of stochastic calculus and Ito's Lemma along with some thoughts on solving stochastic 

differential equations while Appendix 4 provides an overview on simulating SDEs. 

 

                                                           
33 The simBySolution method simulates n-sample paths of n-correlated state variables, driven by Brownian motion 

sources of risk over n-consecutive observation periods, approximating continuous-time Hull-White/Vasicek 

(HWV) and Geometric Brownian Motion (GBM) short-rate models by an approximation of the closed-form 

solution. Specifically, the architecture allows one to simulate correlated paths of any number of state variables 

driven by a vector-valued Brownian motion of arbitrary dimensionality, thereby approximating the underlying 

multivariate continuous-time process by a vector-valued stochastic difference equation. 
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With the assistance of this method, simulation of the state vector 𝑋𝑡 using an approximation of 

the closed-form solution of diagonal-drift models is performed. It is important to note that when 

evaluating the expressions, Matlab’s simBySolution assumes that all model parameters are 

piecewise-constant over each simulation period. In general, this is not the exact solution to the 

models, because the probability distributions of the simulated and true state vectors are 

identical only for piecewise-constant parameters. When parameters are piecewise-constant 

over each observation period, the simulated process is exact for the observation times at which 

𝑋𝑡 is sampled (Matlab, 2012). 

 

The results of the GBM simulation over a three month horizon (90 days) for each region of the 

NEM are illustrated in the following graph (for the out-of-sample period of this study that is 

01/06/2010 to 29/08/2010). The price path is for 90 days horizon, which is the typical duration 

of Asian options on electricity spot prices widely used in Australian electricity over-the-counter 

derivatives market. The price paths presented in the following charts are the result of taking 

the average of 10,000 GBM simulated paths. 

 

Figure 11 Price Forecast with GBM Specification for All Regions of NEM 

 
Source: Author’s calculations. 
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As expected, simulated price paths tend to increase for each region of the NEM by time interval 

with some degree of randomness, which is caused by the Weiner process. This is an undesirable 

characteristic of any forecast model as electricity prices in NEM tend not to increase with time; 

in fact the prices tend to revert to its long-term mean over time. This property of the GBM 

based forecast can be seen in the Figures 11 to 15, which depict the forecast values of the price 

series by each region of the NEM. 

 

Therefore, the empirical evidence of modelling electricity prices with pure GBM process in 

NEM strengthens the unsuitability of modelling electricity prices with this process. This is due 

to the fact that simulations based on GBM over a 90 days horizon appear to overestimate the 

true price paths of the actual electricity prices for all regions of the NEM.  

 

Figure 12 Price Forecast with GBM Specification for NSW 

 
Source: Author’s calculations. 
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Figure 13 Price Forecast with GBM Specification for QLD 

 
Source: Author’s calculations. 

Figure 14 Price Forecast with GBM Specification for SA 

 
Source: Author’s calculations. 

Figure 15 Price Forecast with GBM Specification for TAS 

 
Source: Author’s calculations. 
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Figure 16 Price Forecast with GBM Specification for VIC 

 
Source: Author’s calculations. 

 

Understanding this undesirable property of GBM process in forecasting electricity prices can 

further be enhanced by examining the following chart, which presents a visual comparison of 

actual log prices in the New South Wales (NSW) region along with the simulated prices based 

on GBM process. It is evident that the pure GBM model fails to capture two spikes in a 90 days 

period and tends to overshoot the actual price path over the study horizon. 

Figure 17 Comparative Performance of GBM forecast  

 
Source: Author’s calculations. 
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EVALUATION OF FORECAST PERFORMANCE  

This section evaluates the forecasting performance of the GBM model. The purpose of this 

section is to see if GBM model’s forecast errors are within the reasonable limit of expectations 

or whether these errors are unreasonably large and require an improvement in the statistical 

models and process of producing these forecasts.  

 

Further to graphical evidence set out earlier showing the inappropriateness of forecasting 

electricity prices with GBM process, Table 8 demonstrates the forecast accuracy statistics for 

each region of the NEM.  

 

Table 8 Comparative Forecast Performance Measures 

 GBM Model Benchmark Model 

 NSW VIC QLD SA TAS NSW VIC QLD SA TAS 

ME -1.420 -2.482 -1.389 -2.223 -2.280 -0.02 -0.094 -0.183 -0.127 -0.272 

MSE 3.122 7.407 2.717 7.323 8.292 0.107 0.056 0.112 0.226 0.366 

RMSE 1.767 2.721 1.648 2.706 2.879 0.328 0.238 0.336 0.475 0.605 

MAE 1.446 2.482 1.389 2.251 2.286 0.184 0.191 0.202 0.263 0.442 

MPE -51.102 -75.794 -48.612 -135.722 -70.415 -1.442 -3.251 -8.001 -36.955 -9.782 

MAPE 43.997 75.794 48.612 136.722 70.548 5.123 5.833 8.570 40.553 12.778 

Theil’s U 0.213 0.294 0.217 0.296 0.308 0.048 0.035 0.053 0.069 0.085 

Source: Authors calculations. General rule: smaller the magnitude more accurate the model is. 

 

It is evident that the root mean square error (RMSE) based on forecast with GBM process is 

the lowest for the Queensland (QLD) region (1.648) followed by the  NSW region (1.767). The 

values of RMSE for other regions of the electricity network are found to be 2.721 for Victoria 

(VIC), 2.706 for South Australia (SA) and 2.879 for TAS. The RMSE values are much higher 

than the forecast accuracy statistics based on the simple AR(1)-GARCH(1) specification as the 
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benchmark model. The benchmark model’s RMSE is quantitatively higher than the basic GBM 

model for each market region of the NEM measured by RMSE. The AR-GARCH model used 

in this study has RMSE scores of 0.328 for New South Wales (NSW), 0.238 for Victoria (VIC), 

0.336 for Queensland (QLD), 0.475 for SA and 0.605 for Tasmania (TAS).  

 

In brief, empirical evidence suggests that a simple GBM model lacks the ability to model two 

main characteristics of the electricity prices in NEM; one being the tendency to revert to long-

run mean levels and the second being the inability to characterize the spikes. When a price 

jump occurs, the pure GBM process assumes that the new price level is a normal event and it 

would proceed randomly via a continuous diffusion process with no memory of prior price 

levels. Modelling electricity prices via pure GBM process yields a distribution of future prices 

that has a variance that increases without bound as the horizon increases.  

 

These results are in line with Johnson and Barz (1999) who concluded that arithmetic and 

geometric Brownian processes are unsuitable in modelling electricity prices. Johnson and Barz 

(1999) evaluated the effectiveness of a number of SDE based models in electricity price 

modelling, including arithmetic and Geometric Brownian motion processes along with mean-

reverting diffusion processes known as Ornstein-Uhlenbeck process (first proposed by Vasicek 

(1977). Johnson and Barz (1999)) concluded that the geometric mean reverting jump-diffusion 

model gave the best performance and all models without jumps (arithmetic and geometric 

Brownian processes) were inappropriate in modelling electricity prices. This was due to the 

fact that when a price spike occurred, GBM would assume that the new price level is a normal 

event and it would proceed randomly via continuous diffusion process with no consideration 

of prior price levels. 
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The first continuous-time model examined in this thesis is the GBM model. As GBM forms a 

part of other SDE models of mean-reverting, mean-reverting jump diffusion and regime 

switching models via its Brownian motion property, its inclusion in this study is thought to be 

appropriate. However, a more realistic and accurate model from an SDE family of models that 

can reflect the mean-reverting characteristic of electricity prices in NEM needs to be tested. 

Such a model is presented in the next chapter. 
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CHAPTER 7 - MEAN REVERTING MODEL 

A number of studies have indicated that electricity prices tend to revert to its long-term 

equilibrium price level (see for example; Philipovic 1998, Clewlow and Strickland 2000, Lucia 

and Schwartz 2002). According to Deng (2000) the economic intuition behind the mean 

reverting process is that when the price of electricity is high its supply tends to increase thus 

putting a downward pressure on the prices whereas when the price is low the supply of 

electricity tends to decrease thus providing an upward lift to prices.  

 

Hence, mean reversion can be viewed as the statistical phenomenon stating that the greater the 

deviation of a random variant from its mean, the greater the probability that the next measured 

variant will deviate far less. Kaminski (1999), Lucia and Schwartz (2002) and Huisman and 

Mahieu (2003) showed the existence of this phenomena in electricity prices with rescaled range 

analysis, de-trended fluctuation analysis, average wavelet coefficient and periodogram 

regression methods.  

 

Hence, modelling electricity prices with Mean-Reverting models that have in-built mean 

reverting characteristics are naturally attractive as they can explicitly capture the economic 

phenomena outlined earlier that when prices are too high, supply of electricity will increase, 

producing equilibrium in prices. On the contrary, when prices are too low, there would be a 

decrease in supply of electricity pushing prices back to their long-term equilibrium34.  

 

                                                           
34 At the wholesale level, this is due to the generator diversity as explored in Chapter 2.  

http://mathworld.wolfram.com/RandomVariate.html
http://mathworld.wolfram.com/Mean.html
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AN INTRODUCTION MEAN-REVERTING MODEL 

Although the mean-reverting phenomenon appears to violate the definition of independent 

events, it simply reflects the fact that the probability density function 𝑃(𝑥) of any random 

variable 𝑥, by definition, is non-negative over every interval and integrates to one over the 

interval (−∞, ∞). Thus, as 𝑥 moves away from the mean, the proportion of the distribution 

that lies closer to the mean than 𝑥 increases continuously (Weisstein, 2012) Formally, this can 

be stated as; 

 

∫ 𝑃(𝑥)𝑑𝑥 > ∫ 𝑃(𝑥)𝑑𝑥
𝜇+𝑗

𝜇−𝑗

𝜇+𝑖

𝜇−1
                   (29) 

for i > j > 0 

 

Mean-Reverting models originally proposed for specifying interest rate dynamics by Vasicek 

(1977). Henceforth they were commonly referred to as Vasicek models. This model is also 

referred to as arithmetic Ornstein-Uhlenbeck process and described by the following Stochastic 

Differential Equation (SDE): 

 

𝑑𝑋𝑡 = (𝜇 − 𝛽𝑋𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡                    (30) 

= 𝛽(𝐿 − 𝑋𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡                   (31) 

 

where 𝑊𝑡 is a Wiener process that models the continuous inflow of randomness into the system. 

The standard deviation parameter,𝜎, determines the volatility of the price process and in a way 

characterises the amplitude of the instantaneous randomness inflow. The parameters 𝛽(speed 

of mean-reversion), 𝐿 (long-term mean level) and 𝑊𝑡, together with 𝑋𝑡, characterize the price 

dynamics.  

 

http://mathworld.wolfram.com/IndependentEvents.html
http://mathworld.wolfram.com/IndependentEvents.html
http://mathworld.wolfram.com/ProbabilityDensityFunction.html
http://mathworld.wolfram.com/Mean.html
http://en.wikipedia.org/wiki/Wiener_process
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Volatility_(finance)
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Mean reversion in this chapter is modelled by having a drift term that is negative if the spot 

electricity prices are higher than the mean reversion level and positive if it is lower. This 

representation is a one-factor model and it reverts to the long-term mean 𝐿 =
𝜇

𝛽
 with 𝛽 being 

the magnitude of the speed of mean-reversion whereas the second term in the above 

representation is the volatility of the process.  

 

The explicit solution to the SDE represented in Equation (32) between any two periods 𝑠 and 

𝑡, with ts 0 , can be derived from the solution to the general Ornstein-Uhlenbeck SDE 

representation as follows; 

 

𝑋𝑡 = 𝐿(1 − 𝑒−𝛽(𝑡−𝑠)) + 𝑥𝑠𝑒−𝛽(𝑡−𝑠) + 𝜎𝑒−𝛽𝑡 ∫ 𝑒𝛽𝑢𝑡

𝑠
𝑑𝑊𝑡               (32) 

 

and the discrete time version of this equation, on a time grid ,...,,0 210 ttt  with time step 

1 ii ttt  is given by; 

 

)()()( 1 iii ttbxctx                         (33) 

 

where the coefficients are; 𝑐 = 𝐿(1 − 𝑒−𝛽 t ) and 𝑏 = 𝑒−𝛽 t and )(t  is a Gaussian white 

noise.  

 

Finally, the long term variance (future trajectories of 𝑋𝑡 converge around the long term mean 

with such variance after a long time) can be derived via Ito isometry as; 

 

𝛿 = 𝜎√(1 − 𝑒−2𝛽 t )/2𝛽                   (34) 
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where if one uses the Euler scheme to discretise the equation this would lead to t , 

which is the same (first order in t ) as the above. 

MODELLING PRICES IN NEM WITH THE MEAN-REVERTING MODEL 

Higgs and Worthington (2010) were the first to model electricity prices in NEM by mean-

reverting process. The deterministic component of their model accounted for predictable 

regularities while the stochastic component was derived following de Jong (2006). The main 

conclusion of this study was the existence of strong mean reversion in electricity prices after a 

price spike than in a normal period, which is in parallel with international experience (i.e. 

Kaminski, 1997), and price volatility that is more than fourteen times higher in spike periods 

than in normal periods.  

 

This chapter builds upon the study of Higgs and Worthington (2010) by modelling the 

electricity wholesale prices with Mean-Reverting model. Further, this chapter also presents an 

application of Monte Carlo simulation in generating forecast values based on the mean-

reversion process. It then compares the forecast accuracy measures of the simulated model with 

the chosen benchmark model of this thesis. 

 

PARAMETERISATION OF THE MEAN-REVERTING MODEL 

The discrete form of the mean-reverting process is used to calibrate the model developed in 

this chapter. This discrete form is an exact formulation of an AR(1) process. Having 10 b  

when 0 < 𝛽 implies that this AR(1) process is stationary and mean-reverting to a long-term 

mean given by 𝐿. This can also be confirmed by computing the mean and variance of the 

process as the distribution of 𝑋𝑡 is Gaussian, therefore it is characterized by its first two 
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moments. The conditional mean and variance of 𝑋𝑡 given )(sx , in which )(sx is the initial value 

at period s, can be derived from the Ornstein-Uhlenbeck SDE as follows; 

 

𝐸(𝑋𝑡) = 𝐿 + (𝑥𝑠 − 𝐿)𝑒−𝛽(𝑡−𝑠)                  (35) 

 

𝑉𝑎𝑟(𝑋𝑡) =
𝜎2

2𝛽
(1 − 𝑒−2𝛽(𝑡−𝑠))

                  (36) 

 

Consequently, as time increases, the mean tends to the long-term value 𝐿 and the variance 

remains bounded (unlike geometric Brownian motion), implying mean reversion. In other 

words, the long-term distribution of the Ornstein-Uhlenbeck is stationary and is Gaussian with 

𝐿 as mean and  √𝜎2/2𝛽  as standard deviation.  

 

Modelling electricity prices with an SDE representation that captures the mean-reversion 

characteristics of the price process is a relatively simple task (as compared to more advanced 

SDE specifications like Jump-Diffusion models) as there are only three parameters that need 

to be estimated. These parameters are;  

1. Speed of mean reversion,  

2. Long-run mean and,  

3. Measure of the volatility process.  

 

There are a number of techniques that can be used to estimate the speed of mean reversion (i.e. 

weighted or unweighted autoregression, quasi-maximum likelihood approach, generalised 

method of moments or methods based on Laplace transform) however; the ordinary least 

squares method is the only method that directly estimates the mean-reverting parameter 

whereas all other methods are based on the joint estimation of all parameters (Gourieroux and 
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Monfort, 2010). Therefore, in estimating the speed of mean reversion of the mean-reverting 

prices process, ordinary least squares method is used in this thesis. 

 

This is attained by performing a linear regression between the log prices and their first 

difference as follows; 

 

𝑑𝑋𝑡

𝑑𝑡
= −𝛽𝑋𝑡 + 𝛽𝐿 +

𝜎

𝑑𝑡
𝑑𝑊𝑡                    (37) 

 

The speed of mean reversion, 𝛽, is calculated from the coefficients of a linear fit (b) in Equation 

25, scaled by the time interval parameter35. The price data used in this study are average hourly 

pool price observations sourced directly from AEMO for the period of 01/06/2006 to 

29/08/2010. The data from 01/06/2006 to 31/05/2010 are used to estimate the parameters of 

the models while the period from  01/06/2010 to 29/08/2010 are used to derive out-of-sample 

forecast accuracy statistics.  

 

In this unmodified mean-reversion specification as in GBM specification, volatility term is set 

to a constant, despite the fact that empirical evidence suggests that electricity prices exhibit 

heteroskedasticity36. The analysis of the descriptive statistics, as summarized in Chapter 2, 

demonstrates that the distributions of prices are significantly non-Gaussian for all regions of 

NEM. The price series in all of the electricity regions are positively skewed and leptokurtic. 

This extreme fat-tailed characteristic is consistent with the findings of earlier studies (Huisman 

                                                           
35 See Yu (2009) for a detailed explanation of estimating mean-reversion parameters in continuous time. 
36 The speed at which electricity prices revert to their long run levels may depend on several factors such as the 

weather, magnitude and direction of the price shocks.  
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and Huurman 2003, Higgs and Worthington 2005, Thomas et al. 2011) and is likely to be driven 

by the prevalence of extremely high prices. 

 

Table 9 shows the parameter estimates of the Mean-Reverting model for each region of the 

NEM.  As is seen, the mean reversion rate, β , ranges between 99.5 to 157.3. Higher mean 

reversion rates indicate a region where electricity prices are relatively more volatile. Further, 

mean reversion parameters are positive for all regions of NEM corresponding to a price process 

where prices decline to their long-run mean levels after rising to very high ranges as denoted 

by  L.   

 

Table 9 Parameter Estimates of the Mean-Reverting Model 

 NSW VIC QLD SA TAS 

𝜷 122.411 99.539 138.196 157.253 109.204 

𝑳 3.555 3.726 3.477 3.620 3.726 

𝝈 7.783 6.883 8.652 9.783 6.883 

Source: Author’s calculations. 

 

The speed of mean reversion parameter represents the annualised rate at which the underlying 

short-term price returns to its expected long-run equilibrium value. Hence the inverse of the 

speed of mean reversion rate gives the actual time scale over which mean reversion occurs. For 

example, a mean-reversion rate of 122.411 corresponds to an electricity price process whose 

price reverts to its expected value over the course of three days as is the case for NSW region37. 

In fact, the regions of QLD and SA have the greatest mean reversion rates in NEM suggesting 

                                                           
37 Calculated  as 365/122.411=2.98 
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a relatively shorter number of days for spiked prices to return to long-run mean levels as 

compared to other regions in NEM.  

 

It is also interesting to note that the regions with higher mean reversion rates have the highest 

annualised volatility measures, which points to the fact that these regions maybe the least 

mature electricity markets in NEM. The main implication of this finding with regard to 

attaining accurate electricity forecast is that this relatively higher volatility term causes greater 

forecast errors in the models developed in this thesis. 

 

SIMULATION OF THE MEAN-REVERTING MODEL  

In order to estimate the future quantities of interest, this chapter uses Monte-Carlo simulations.. 

The need for Monte Carlo simulations to estimate a future quantity of interest is due to the 

difficulties of finding an explicit solution to the SDE that represents the mean-reversion 

phenomena (Kloeden and Platen, 1992). 

 

Suppose that the computation of 𝐸[𝑓(𝑋𝑇)] where 𝑋𝑡 satisfies: 

 

𝑑𝑋𝑡 = 𝛽(𝐿 − 𝑋𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡                   (38) 

 

where the distribution of 𝑋𝑡  is unknown. The solution to the equation above is given by the 

following representation; 

 

𝑋𝑇 = 𝑋𝑡 + exp(𝛽𝑇) [𝑋0 − 𝑋𝑡] + 𝜎exp (𝛽𝑇) ∫ exp(𝛽𝑠) 𝑑𝑊𝑠
𝑇

0
              (39) 
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It is important to note that unlike the case in solutions to GBM process, 𝑋𝑇 now depends on 

the entire path of the Brownian motion. This means that the computation of an unbiased 

estimate of the future quantities of 𝑋𝑇 by first simulating the entire path of the Brownian motion 

is not possible since it is only possible to simulate the latter at discrete intervals of time. In the 

previous chapter on forecasting electricity prices with Geometric Brownian Motion 

simulations, it was stated that 𝑋𝑇 depends only on the Brownian motion’ terminal value, 𝑑𝑊𝑡. 

In the case of Mean-Reverting SDE representation, the distribution of 𝑋𝑇 is assumed to be as 

Gaussian, which places the issue to the context where the future quantities of 𝑋𝑇 can be derived 

by simulating 𝑋𝑇 directly (Glasserman, 2003). 

 

In deriving the Mean-Reverting models developed for each region of the NEM, similar to 

construction of GBM models as in the previous chapter, MATLAB’s Hull-White-Vasicek 

(HWV) constructor38 is used. This constructor creates and displays HWV objects, which derive 

from SDE with drift rate expressed in mean-reverting form classes. The state variables in this 

constructor are driven by Brownian motion sources of risk over consecutive observation 

periods, approximating continuous-time HWV stochastic processes with Gaussian diffusions 

(Matlab 2012). In this chapter, the Mean-Reverting models constructed by this constructor are 

simulated via MATLAB’s simBySolution method (this method is explained in the preceding 

section on GBM modeling). 

 

Figure 18 illustrates a sample simulated path generated via a mean-reversion model for NSW 

region. As is seen, the mean-reversion model generates random prices deviating from the long-

run mean. This observation is very different from the earlier findings based on GBM model 

                                                           
38 A constructor is a special function that creates an instance of the class. Typically, constructor methods accept 

input arguments to assign the data stored in properties and always return an initialized object. 



  

138 
 

where the existence of mean-reversion does not feature. This finding is expected as random 

deviations from the mean increase by time in the context of GBM model making it inefficient 

in modelling electricity prices. 

Figure 18 A Simulated Price Path with Mean-Reverting Model 

 
Source: Author’s calculations. 

 

Figure 19 shows the electricity price forecast generated by the Mean-Reverting model for all 

regions of NEM for the same time horizon. Price forecast are based on an implementation of 

Monte Carlo simulations where the result of the many simulations of the mean-reversion 

process containing the random variable is averaged, approximating to the real mean. 

 

Monte Carlo simulation is a numerical method used to construct probability distributions based 

on underlying distributions. In a Monte Carlo simulation, random variables are simulated with 

a random number generator and expected values are approximated by computed averages. It is 

often employed in finance to solve stochastic differential equations such as the Black Scholes 

equation for pricing stock options. 
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The basic tenet of Monte Carlo simulation is that there is a stochastic variable in an equation 

that can be sampled many times over. In Monte Carlo simulation, one generates a set of suitable 

sample paths 𝑋𝑇 on [0, T]. For each sample path, there is a sample path solution to the stochastic 

differential equation on [0, T]. One then estimates the 𝑋𝑇 by computing the mean-sum over the 

large finite set of approximate sample solutions. Appendix 3 gives an overview of Monte Carlo 

simulations in the context of stochastic differential equations. 

 

Figure 19 shows that simulated price series quickly revert to their long-run equilibrium as 

indicated by the upward convex move. The upward convex move at the beginning of the 

forecast horizon shows how long it takes prices to reach their long-run mean levels. As 

expected, this upward convex is greatest for the regions of QLD and TAS where the mean-

reversion parameters were estimated to be the highest.  

 

The main reason why this upward move occurs in the forecast horizon is due to the fact that 

the in-sample period of the empirical data ends in a period (31/05/2010, Monday) where 

electricity prices were trading at a lower rate than their long-run mean. Once the predicted 

prices reach their long-run mean levels, they tend to present rather a constant price level (albeit 

with minor fluctuations).  
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Figure 19 Electricity Price Forecast with Mean-Reverting Process for All Regions of NEM 

 
Source: Author’s calculations. 

 

The empirical evidence of modelling electricity prices in NEM with Mean-Reverting model 

strengthens the unsuitability of modelling electricity prices with this stochastic diffusion 

process. This is due to the fact that simulations based on a mean-reverting model over 90 days 

horizon seem not to represent the true price paths of the electricity prices as the simulated paths 

fail to capture the jumps prevalent in the price series (for a visual inspection see Figure 19).  

 

This is attributable to the assumptions of the mean-reverting process where the conditional 

distribution of the electricity prices is Gaussian, which rather underestimates the large 

movements in the price series. Another shortcoming of predicting electricity prices with mean-

reverting process is that it assumes non-negativity of the prices. The literature in Australian 

electricity prices as well as international markets pointed out the fact that there are negative 

price occurrences in the markets. 

 

It may be useful at this point to analyse the historic prices for each region of NEM along with 

forecast prices depicted in the same graph. The following graphs illustrate the actual and 
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simulated prices for each region of the NEM. In these figures, the average of 10,000 simulated 

paths is taken as the point in time forecast value.  

 

As is seen, Mean-Reversion model, first of all, fails to simulate the observed time series 

characteristics of electricity prices in generating spikes. Secondly, the model also tends to 

overestimate the general price trend as the forecast values are mostly above the actual prices. 

The second point is the function of time horizon where forecasts are being based. In other 

words, rate of mean reversion will result in forecasts to be above mean when the general price 

levels are relatively lower such as in winter times39. 

 

Figure 20 Electricity Price Forecast with Mean-Reverting Model for NSW 

 
Source: Author’s calculations. 

 

 

 

 

 

 

                                                           
39 It was discussed earlier in this thesis that summer months in Australia coincides with relatively high price 

levels due to widespread use of air-conditioning by end users and vice versa. 
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Figure 21 Electricity Price Forecast with Mean-Reverting Model for VIC 

 
Source: Author’s calculations. 

Figure 22 Electricity Price Forecast with Mean-Reverting Model for SA 

 
Source: Author’s calculations. 

Figure 23 Electricity Price Forecast with Mean-Reverting Model for QLD 

 
Source: Author’s calculations. 
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Figure 24 Electricity Price Forecast with Mean-Reverting Model for TAS 

 
Source: Author’s calculations. 

 

EVALUATION OF FORECAST PERFORMANCE 

In this section evaluation of forecast performance of the Mean-Reverting model is presented. 

The aim of this section is to observe if the Mean-Reverting model’s forecast errors are within 

the reasonable limit of expectations or whether these errors are unreasonably large and require 

an improvement in the statistical models and process of producing these forecasts. 

 

Significant improvements can be noticed in this model’s fit as compared to the forecast 

generated with GBM model in the previous chapter. RMSE decreased to about one-sixth in 

some regions and MPE and MAPE also showed dramatic improvements as compared to the 

GBM model. 
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Table 10 Comparative Forecast Performance Measures 

 GBM Model Mean-Reverting Model 

 NSW VIC QLD SA TAS NSW VIC QLD SA TAS 

ME -1.420 -2.482 -1.389 -2.223 -2.280 -0.185 -0.228 -0.414 -0.259 -0.312 

MSE 3.122 7.407 2.717 7.323 8.292 0.145 0.101 0.242 0.248 0.382 

RMSE 1.767 2.721 1.648 2.706 2.879 0.381 0.318 0.492 0.498 0.618 

MAE 1.446 2.482 1.389 2.251 2.286 0.280 0.269 0.414 0.309 0.475 

MPE -51.102 -75.794 -48.612 -135.722 -70.415 -6.249 -7.309 -15.628 -41.385 -10.958 

MAPE 43.997 75.794 48.612 136.722 70.548 8.170 8.348 15.628 42.648 13.782 

Theil’s U 0.213 0.294 0.217 0.296 0.308 0.055 0.046 0.075 0.071 0.086 

Source: Authors calculations. General rule: smaller the magnitude more accurate the model is. 

 

To formally assess the accuracy of the forecast generated by the Mean-Reverting model as 

compared to the benchmark model, accuracy statistics are presented in Table 11 below. 

 

Table 11 Comparative Forecast Performance Measures 

 Mean-Reverting Model Benchmark Model 

 NSW VIC QLD SA TAS NSW VIC QLD SA TAS 

ME -0.185 -0.228 -0.414 -0.259 -0.312 -0.02 -0.094 -0.183 -0.127 -0.272 

MSE 0.145 0.101 0.242 0.248 0.382 0.107 0.056 0.112 0.226 0.366 

RMSE 0.381 0.318 0.492 0.498 0.618 0.328 0.238 0.336 0.475 0.605 

MAE 0.280 0.269 0.414 0.309 0.475 0.184 0.191 0.202 0.263 0.442 

MPE -6.249 -7.309 -15.628 -41.385 -10.958 -1.442 -3.251 -8.001 -36.955 -9.782 

MAPE 8.170 8.348 15.628 42.648 13.782 5.123 5.833 8.570 40.553 12.778 

Theil’s U 0.055 0.046 0.075 0.071 0.086 0.048 0.035 0.053 0.069 0.085 

Source: Authors calculations. General rule: smaller the magnitude more accurate the model is 

 

The benchmark AR(1)-GARCH(1) model has been modelled based on the in-sample data of 

the study reported in this chapter. The results of the AR(1)-GARCH(1) simulations over a 

three-month horizon (90 days) for each region of NEM are determined as the result of an 

average of 10,000 simulated paths. The AR(1)-GARCH(1) model has RMSE scores of 0.328 
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for NSW, 0.238 for VIC, 0.336 for QLD, 0.475 for SA and 0.605 for TAS. This model also 

performed better in terms of Theil’s U statistic, indicating that the proposed model is as good 

as the naïve model in all the regions of NEM. This model has Theil’s U statistic of 0.048 for 

NSW, 0.035 for VIC, 0.053 for QLD, 0.069 for SA and 0.085 for TAS. 

 

The Mean-Reverting model presented in this chapter reflects findings by Pilipovic (1998), 

Clewlow and Strickland (2000), Lucia and Schwartz (2002) and Huisman and Mahieu (2003), 

amongst others, that electricity prices tend to fluctuate around some long-term equilibrium 

price level, reflecting the marginal cost of producing electricity.  

 

Stochastic diffusion models of this kind that incorporate mean reversion go a long way in 

capturing the nature of electricity prices; notably their tendency to randomly oscillate away 

from, and over time back towards a price level determined by the cost of production. The 

advantages of mean reversion spot forecast and option pricing models over their Black-Scholes 

counterparts have the potential as traders and risk managers are able to assign greater accuracy 

to their models or at a minimum to their model assumptions. 

 

In conclusion, evidence found in this chapter suggests that Mean-Reverting model has superior 

performance than a simple GBM model in forecasting electricity spot prices in NEM measured 

by widely accepted forecast evaluation methods. For instance, the RMSE statistics showed 

significant drops in mean-reverting model as compared to GBM model in all regions of the 

NEM. The drop in the values of this statistic was about eight times in some instances (the 

RMSE value dropped about 4.6 times for NSW and about 8.5 times for VIC). However, 

modelling electricity prices with a pure mean-reverting model lacks the ability to model a main 

characteristic of the electricity prices in NEM; the inability to characterize price spikes. 
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Therefore, the next chapter will examine a continuous-time model that incorporates the stylised 

feature of electricity prices, namely sudden and infrequent jumps. 
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CHAPTER 8 – MEAN-REVERTING AND JUMP-DIFFUSION MODEL 

The main stylized features of electricity prices are; mean reversion, jumpy and highly volatile 

nature of the series (Kaminski, 1997). Previous chapters of this thesis show that both Geometric 

Brownian Motion (GBM) and Mean-Reverting models result in a degree of bias in forecasting 

electricity prices. GBM by construction is not an adequate specification in modelling electricity 

prices as it trends upward unlike the spot electricity prices. Whilst the Mean-Reverting model 

captures the mean reverting dynamics of the electricity price series adequately, it nevertheless 

fails to account for infrequent and large jumps prevalent in electricity prices.  

 

Modelling electricity prices with Mean-Reverting model are intuitive as they explicitly capture 

the economic mechanism where electricity supply is intrinsically linked to prices. That is when 

prices are below equilibrium, supply of electricity decreases, pushing prices back to their long-

term equilibrium and vice-versa40.  

 

As described in the Introduction Chapter, the electricity market is made of different suppliers. 

The types of suppliers that are most sensitive to changes in prices are peak-plants.  The recovery 

of capital costs on peak-plants, through market prices, have to be achieved over a relatively 

few hours of operation. This will enable the construction of low capital/high operating plants 

for peaking purposes and the over-recovery of marginal costs in operation, with the 

consequences that prices are much higher in peaks. 

 

The presence of price jumps is an important characteristic of electricity price series in NEM. 

On a half-hourly price interval, the maximum price of electricity per megawatt-hour can go up 

                                                           

40 At the wholesale level, this is due to the generator diversity as explored in Chapter 1. 
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to $12,500 from its mean level of around $40. Jumps in the electricity price series are due to 

fluctuations in the amount of electricity load demanded by consumers. These fluctuations are 

generally caused by extreme weather conditions, generation outages, or transmission failures. 

These jumps are as short lived, as when the weather phenomenon or the outage is over, the 

prices fall back to their normal levels (Simonsen et al., 2004).  

 

The Mean-Reverting and Jump-Diffusion model evaluated in this chapter captures both the 

jumpy behaviours and the mean-reverting nature of the price series. Understanding the nature 

of spikes at the wholesale level is of great importance for the market players including 

consumers of electricity as these spikes lead to price increases for those who use it as an end 

product. Thus incorporation of jumps in electricity price modelling is expected to result in more 

adequate forecast models. Hence, wholesalers and end-users of electricity would benefit from 

enhanced forecast models. 

 

Early modelling approaches involved modifications of models that allowed for the spiky 

feature of the price series (Kaminski 1997, Johnson and Barz 1999). These models utilised the 

mean-reverting specifications similar to the one described in the previous chapter with an 

addition of a jump component; a Poisson process41 with given intensity and Log-Gaussian 

distribution of jump sizes.  

 

                                                           
41 The Poisson process is a stochastic process which counts the number of events and the time that these events 

occur in a given time interval. The time between each pair of consecutive events has an exponential distribution 

with an intensity parameter and each of these inter-arrival times is assumed to be independent of other inter-arrival 

times. 
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A general specification of a jump diffusion model involves a Stochastic Differential Equation 

(SDE), governing the dynamics of the price process. This general process can be represented 

as; 

 

),(),(),( tXdqdWttXdttXdP tttt  
                 (39)

 

 

Brownian motion process (Wt ) in this representation accounts for random fluctuations around 

the long term mean ( dttX t ),( ) whilst the jump process ( ),( tXq t ) accounts for infrequent 

and large jumps. The jump process is defined as a compound Poisson process42 with given 

intensity and severity of spikes independent of Brownian motion process (Wt ). 

 

The price data used in this study are average hourly pool price observations sourced directly 

from Australian Electricity Market Operator (AEMO) for the period of 01/06/2006 to 

29/08/2010. The data from 01/06/2006 to 31/05/2010 are used to estimate the parameters of 

the models while the period from  01/06/2010 to 29/08/2010 are used to derive out-of-sample 

forecast accuracy statistics. 

 

                                                           
42 The standard Poisson processes has limitations in developing realistic electricity price models as its jumps are 

of constant size. Compound Poisson processes allow jump processes to have random jump sizes. Let (𝑍𝑘) 𝑘 ≥ 1 

denote an 𝑖. 𝑖. 𝑑. sequence of random variables with probability distribution v(dy), independent of the Poisson 

process.  

𝑃(𝑍𝑘 ∈ [𝑎, 𝑏]) = ∫ 𝑣(𝑑𝑦)

𝑏

𝑎

 

where −∞ < 𝑎 ≤ 𝑏 < ∞ 

Then the process 𝑌𝑡 = ∑ 𝑍𝑘
𝑁𝑡
𝑘=1  is called a compound Poisson process. 



  

150 
 

In this chapter, model parameters of the Mean-Reverting and Jump-Diffusion model are 

estimated by using the in-sample data (01/06/2006 to 31/05/2010) consistent with the 

presentation of previous chapters. In order to estimate the future quantities of interest, this 

chapter uses Monte-Carlo simulations. The need for Monte Carlo simulations to estimate a 

future quantity of interest is due to the difficulties of finding an explicit solution to SDE that 

represents the Mean-Reverting and Jump-Diffusion specification.  

 

The Monte Carlo simulation is a numerical method to construct probability sampling 

distributions based on underlying distributions. In a Monte Carlo simulation, random variables 

are simulated with a random number generator and expected values are approximated by 

computed averages. It is often employed in finance to solve stochastic differential equations 

such as the Black Scholes equation for pricing stock options.  The basic tenet of Monte Carlo 

simulation is that there is a stochastic variable in an equation that can be sampled many times 

over. In Monte Carlo simulation, one generates a set of suitable sample paths 𝑋𝑇 on [0, T]. For 

each sample path, there is a sample path solution to the stochastic differential equation on 

[0, T]. One then estimates the 𝑋𝑇 by computing the mean-sum over a large finite set of 

approximate sample solutions. Appendix 4 gives an overview of Monte Carlo simulations in 

the context of stochastic differential equations. 

  

MODELLING ELECTRICITY PRICES WITH MEAN-REVERTING AND JUMP-
DIFFUSION MODELS 

Consistent with the representation of earlier continuous-time models developed in the previous 

chapters, the Mean-Reverting and Jump-Diffusion model of this chapter takes the following 

form: 

 

𝑑𝑋𝑡 = (𝜇 − 𝛽𝑋𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡         (40)
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𝑋𝑡 = 𝛽(𝐿 − 𝑋𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡 ),( tXdq t        (41) 

 

where 𝑊𝑡 is a Wiener process that models the continuous inflow of randomness into the system. 

The standard deviation parameter,𝜎, determines the volatility of the price process and in a way 

characterizes the amplitude of the instantaneous randomness inflow. The parameters 𝛽(speed 

of mean-reversion), 𝐿 (long-term mean level) and 𝜎(random variation), together with 𝑑𝑞 (jump 

component) characterize the price dynamics.  

 

The explicit solution to the SDE represented in Equation (41) above between any two periods 

𝑠 and 𝑡, with ts 0 , can be derived from the solution to the general Ornstein-Uhlenbeck 

SDE representation as follows; 

 

𝑋𝑡 = 𝐿(1 − 𝑒−𝛽(𝑡−𝑠)) + 𝑥𝑠𝑒−𝛽(𝑡−𝑠) + 𝜎𝑒−𝛽𝑡 ∫ 𝑒𝛽𝑢𝑡

𝑠
𝑑𝑊𝑡               (42) 

 

and the discrete time version of this equation, on a time grid ,...,,0 210 ttt  with time step 

1 ii ttt  is given by; )()()( 1 iii ttbxctx    where the coefficients are; 𝑐 = 𝐿(1 −

𝑒−𝛽 t ) and 𝑏 = 𝑒−𝛽 t and )(t  is a Gaussian white noise.  

 

Finally, the long term variance (future trajectories of 𝑋𝑡 converge around the long term mean 

with such variance after a long time) can be derived via Ito isometry as; 

 

𝛿 = 𝜎√(1 − 𝑒−2𝛽 t )/2𝛽                         (43) 

 

http://en.wikipedia.org/wiki/Wiener_process
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Volatility_(finance)
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where if one uses the Euler scheme to discretise the equation this would lead to t , 

which is the same (first order in t ) as the above (Menaldi, 2008). 

 

The first term of the Equation (41) implies that 𝑋 has an expected drift rate of 𝛽(𝐿 − 𝑋𝑡)𝑑𝑡 per 

unit of time whereas the second term can be regarded as adding variability to the path followed 

by 𝑋𝑡. The amount of this variability is 𝜎 times the differential of the Brownian motion process. 

The third term of the equation 𝑑𝑞(𝑋𝑡, 𝑡) generates jumps based on compound Poisson process.  

 

Mean reversion part of the Equation (41), 𝑋𝑡 = 𝛽(𝐿 − 𝑋𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡 , is modelled based on 

jump-free data. The jump component of the model is estimated from the log-prices by a two-

step procedure. Firstly, all jumps are removed from the price series. Following Weron (2006)43, 

price increments exceeding 2.5 standard deviations of the mean are considered as spikes. Then, 

secondly, the intensity and the distribution of the magnitude of the jumps are estimated from 

these few selected points in deriving the Poisson process of the Equation (41), 𝑑𝑞(𝑋𝑡 , t). The 

filtering procedure adopted resulted in 43 spikes in NSW, 37 spikes in VIC, 34 spikes in SA, 

40 spikes in QLD and 22 spikes in TAS region. These spikes constituted around one to two 

and a half percentage of the whole sample. 

 

The mean reversion part of the above Equation (41) is modelled by having a drift term that is 

negative if the spot electricity prices are higher than the mean reversion level and positive if it 

is lower. This representation is a one-factor model and it reverts to the long-term mean 𝐿 =
𝜇

𝛽
 

                                                           
43 Previous investigations have used other methods of identifying jumps. One of the approaches is to consider 

jumps as price moves that are outside 90 per cent prediction intervals implied by Gaussian distribution (Borovkova 

and Permana, 2004) or the method applied by Geman and Roncoroni (2006) that filtered price data using different 

thresholds, choosing the one that leads to the best calibration of their model. 
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with 𝛽 being the magnitude of the speed of mean-reversion whereas the second term in 

Equation (41), 𝜎𝑑𝑊𝑡, is the volatility of the price process.  

 

The main assumption of the Mean-Reverting and Jump-Diffusion model as presented in this 

chapter is that positive jumps are always followed by a negative jump of the same magnitude. 

This assumption is similar to the one taken in Weron et. al (2004). When modelling electricity 

prices in NEM, this assumption is a satisfactory approximation as spikes do not typically last 

more than a day. This assumption of positive jumps are always followed by a negative jump of 

the same magnitude is fulfilled by letting the stochastic part in Equation (33), 𝛽(𝐿 − 𝑋𝑡)𝑑𝑡 +

𝜎𝑑𝑊𝑡, be independent of the jump component, 𝑑𝑞(𝑋𝑡, t). The process of separating the jump 

component from the stochastic component can be represented in the following form: 

 

tttt XdqJd 
                      (44) 

 

where tX  is the mean-reverting stochastic diffusion specification of Equation (41). The random 

variable responsible for spike severity ( tJ ) is set to be a lognormal random variable 

𝑙𝑜𝑔   𝐽𝑡~𝑁(𝜇, 𝜌2) and 𝑞𝑡 to be a Poisson random variable with intensity, 𝜅. In this specification, 

jumps that occur at time 𝑡 disappear immediately in the next period generating a spiky 

behaviour and do not require a high mean-reversion rate to bounce back (Weron et al, 2004).
 

 

PARAMETERISATION OF THE MEAN-REVERTING AND JUMP-DIFFUSION 
MODEL 

There are a relatively large number of parameters to be estimated for the Mean-Reverting and 

Jump-Diffusion model as compared to models of GBM and Mean-Reverting models of the 
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previous chapters. According to Weron (2006), the estimation of these parameters from a small 

number of observations with a Maximum-Likelihood (ML) method is rather problematic. ML 

estimates based on small numbers of observations for the jump component will potentially be 

unstable as it tends to converge on the smallest and most frequent spike component of the price 

series. However, in electricity price modelling, the aim is to capture the irregular, large jump 

components.  

 

Therefore, following Weron (2006) this chapter takes a hybrid approach in calibrating the 

parameters of the Mean-Reverting and Jump-Diffusion model. Weron (2006) extracted the 

jump events’ frequency (intensity) by simple counting and its distributional parameters (mean 

and standard deviation) after filtering the jumps from the mean-reverting component by the 

filtering procedure. This process described the severity of the jumps. The data points left out 

by jumps are then filled in by the mid-points of neighbouring data points. This process provided 

a filtered (jump-free) price series.  

 

The calibration of the mean reverting parameters is then performed by conducting a linear 

regression between the log prices and their first difference, as follows; 

 

𝑑𝑋𝑡

𝑑𝑡
= −𝛽𝑋𝑡 + 𝛽𝐿 +

𝜎

𝑑𝑡
𝑑𝑊𝑡                     (45) 

 

The speed of mean reversion, 𝛽, is calculated from the coefficients of a linear fit (b) in Equation 

35, scaled by the time interval parameter44. In this specification, the volatility term is set to a 

                                                           
44 See Yu (2009) for a detail explanation of estimating mean-reversion parameters in continuous time. 
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constant, despite the fact that empirical evidence suggests that electricity prices exhibit 

heteroskedasticity.  

 

Table 12 shows the parameter estimates of the model for each region of the NEM. The speed 

of mean reversion (𝛽) and the long-run mean level (𝐿) are calculated from the coefficients of a 

linear fit scaled by the time interval parameter. The speed of the mean reversion parameter 

represents the annualised rate at which the underlying short-term price returns to its expected 

long-run equilibrium value. Hence the inverse of the speed of mean reversion rate gives the 

actual time scale over which mean reversion occurs.  

 

For example, a mean-reversion rate of 72.033 corresponds to an electricity price process whose 

price reverts to its expected value over the course of five days as is the case for NSW region45. 

In fact, the regions of QLD and SA have the greatest mean reversion rates in NEM suggesting 

relatively shorter number of days for spiked prices to return to long-run mean levels as 

compared to other regions in NEM. These mean-reversion rate estimates are consistent with 

the parameter estimates derived in the preceding chapter. 

 

The mean reversion parameters are found to be positive for all regions of NEM and ranges 

from 65.3 to 89.3, highlighting the evolution of mean-reversion in electricity price series. The 

fact that they are positive for all regions of NEM implies that prices decline to their long-run 

mean levels after jumps occur. Higher mean reversion rates indicate a region where electricity 

prices are relatively more volatile.  

                                                           
45 365/72.033=5.067 
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As is seen in Table 12, the highest intensity parameter is found in NSW region followed by 

QLD region. TAS region on the other hand has the lowest intensity of jump statistic46, 

indicating that the probability of price spikes occurring in any given day seems to be lower 

than it occurring in other regions of the NEM. The jump component is represented by the 

Poisson process with an intensity parameter, which is well approximated by a simple binary 

probability (q=intensity*dt) of a jump and (1-q) for no jump.  

 

It is also interesting to note that the regions with higher mean reversion rates have the highest 

annualised volatility measures, which points to the fact that these regions may be the least 

mature electricity markets in NEM. High volatility indicates a relatively immature market 

where suppliers’ infrastructure is not yet able to meet the changing demand levels instantly.  

 

Table 12 Parameter Estimates for Mean-Reverting Jump Diffusion Model 

 NSW VIC QLD SA TAS 

𝜷 72.033 69.168 85.575 89.303 65.274 

𝑳 3.506 3.528 3.430 3.562 3.712 

𝝈 4.565 4.639 5.278 5.295 4.731 

  0.0308 0.0253 0.0273 0.0232 0.0150 

  4.7825 5.8090 4.4318 5.5788 5.6725 

q  0.961 1.116 0.707 1.818 2.826 

Source: Authors calculations.  

 

                                                           

46 The intensity of the jump parameter ( ) has the dimensions of 1/dt, and it identifies the mean number of jumps 

per time interval, which in the context of this study, is 1/1461. 
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SIMULATION OF PRICES WITH MEAN-REVERTING AND JUMP-DIFFUSION 
MODEL 

In order to estimate the future quantities of interest, this chapter uses Monte-Carlo simulations. 

The need for Monte Carlo simulations to estimate a future quantity of interest is due to the 

difficulties of finding an explicit solution to the SDE that represents the mean-reversion 

phenomena (Kloeden and Platen, 1992). This approach is similar to the approach taken in 

previous chapters. 

 

Figure 25 shows a sample path generated via the Mean-Reverting Jump-Diffusion model for 

the NSW region. As is seen, the mean-reverting component of the model generates random 

prices deviating from the long-run mean but on average these prices revert back to the long-

run mean levels. The jump component of the model on the other hand generates spikes that last 

for a day at varying degrees of magnitude.  

 

Figure 25 A Simulated Price Path for Mean-Reverting and Jump-Diffusion Model 

 
Source: Authors calculations.  
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Figure 26 on the other hand shows the electricity price forecast generated by the Mean-

Reverting Jump-Diffusion model for all regions of the NEM for up to three months. The 

forecast values are an average of 10,000 simulated paths. As is seen, simulated price series 

quickly revert to their long-run equilibrium similar to mean-reverting model described in the 

previous chapter.  

 

Figure 26 Price Forecast for NEM regions with Mean-Reverting and Jump-Diffusion Model 

 
Source: Authors calculations.  

 

The upward convex move at the beginning of the forecast horizon shows how long it takes 

prices to reach their long-run mean levels. This upward move is the natural result of seasonal 

dynamics of electricity prices in NEM. The spot price at the last day of the in-sample-period 

forms the staring value in the following figure. The simulated values present an immediate 

upward move to their long run mean levels as the last month of the in-sample-period is a winter 

month (the electricity prices tend to be lower in winter months as compared to summer 

months).  
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Figures 27 to 31 on the other hand show the actual and simulated prices for each of the NEM 

regions. As is seen, Mean-Reverting and Jump-Diffusion model generates forecast values that 

resemble the forecast values generated by the Mean-Reverting model from the previous 

chapter. This may suggest that the Mean-Reverting and Jump-Diffusion model, despite its 

complex calibration process and theoretical advantage, does not perform better on face value 

then the simpler Mean-Reverting model.  

 

However, it is expected that this model reduces the variance of the forecasts and performs better 

in terms of its forecast accuracy measures i.e. root mean squared error (RMSE). It is also 

important to acknowledge here that the forecast prices are bias estimators of the actuals. 

 

Figure 27 Price Forecast for NSW with Mean-Reverting and Jump-Diffusion Model 

 
Source: Author’s calculations.  
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Figure 28 Price Forecast for VIC with Mean-Reverting and Jump-Diffusion Model 

 
Source: Author’s calculations.  

Figure 29 Price Forecast for SA with Mean-Reverting and Jump-Diffusion Model 

 
Source: Author’s calculations.  

Figure 30 Price Forecast for QLD with Mean-Reverting and Jump-Diffusion Model 

 
Source: Authors calculations.  
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Figure 31 Price Forecast for TAS with Mean-Reverting and Jump-Diffusion Model 

 
Source: Authors calculations.  

 

The expected superior performance of the Mean-Reverting and Jump-Diffusion model over 

GBM and Mean-Reverting models is in its ability to capture the price spikes prevalent in 

electricity prices in NEM. However, the magnitude and timing of these spikes do not 

necessarily align with the actual price spikes that occur. This can be clearly seen in Figure 32.  

Figure 32 Actual vs simulated prices with Mean-Reverting and Jump-Diffusion Model 

 
Source: Authors calculations.  

 



  

162 
 

EVALUATION OF FORECAST PERFORMANCE 

In this chapter evaluation of the forecasting performance of the Mean-Reverting and Jump-

Diffusion model is presented. The aim of this chapter is to observe if the model’s forecast errors 

are within the reasonable limit of expectations or whether these errors are unreasonably large 

and require an improvement in the statistical models and process of producing these forecasts. 

To formally assess the accuracy of the forecast generated by the Mean-Reverting and Jump-

Diffusion model, forecast accuracy statistics are produced for each region of the NEM.  

 

Table 13 shows the comparative forecast measures of the Mean-Reverting and Jump-Diffusion 

model with the Mean-Reverting model from the previous chapter. As is observed, the 

comparative analysis of these models shows a mixed picture. RMSE of the model shows 

declines in the regions of NSW and QLD as compared to the RMSE based on the mean-

reverting model by about 0.7 per cent and 3 per cent, respectively. However, in the regions of 

VIC, SA and TAS, the application of Mean-Reverting Jump-Diffusion model does not result 

in improvements in RMSE values. RMSE values in these regions actually show deterioration 

in the range of 0.3 per cent to 4 per cent.  

Table 13 Forecast accuracy statistics for Mean-Reverting and Jump-Diffusion Model 

 NSW VIC QLD SA TAS NSW VIC QLD SA TAS 

 Mean-Reverting Model Mean-Reverting and Jump-Diffusion Model 

ME -0.185 -0.228 -0.414 -0.259 -0.312 -0.197 -0.247 -0.398 -0.266 -0.330 

MSE 0.145 0.101 0.242 0.248 0.382 0.143 0.110 0.227 0.263 0.384 

RMSE 0.381 0.318 0.492 0.498 0.618 0.378 0.332 0.476 0.512 0.620 

MAE 0.280 0.269 0.414 0.309 0.475 0.286 0.285 0.398 0.335 0.484 

MPE -6.249 -7.309 -15.628 -41.385 -10.958 -6.607 -7.950 -14.899 -38.497 -11.555 

MAPE 8.170 8.348 15.628 42.648 13.782 8.396 8.913 14.899 40.153 14.314 

Theil’s U 0.055 0.046 0.075 0.071 0.086 0.054 0.048 0.073 0.073 0.087 

Source: Authors calculations. General rule: smaller the magnitude more accurate the model is. 
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Furthermore, RMSE values of the model are found to be indicating a poorer performance as 

compared to the RMSE values of the benchmark model. A simple AR(1)-GARCH(1) model 

has been modelled based on the in-sample data of the study reported in this chapter. The results 

of the AR(1)-GARCH(1) simulations over a three-month horizon (90 days) for each region of 

NEM are determined as the result of an average of 10,000 simulated paths. 

 

The benchmark model has RMSE scores of 0.328 for NSW, 0.238 for VIC, 0.336 for QLD, 

0.475 for SA and 0.605 for TAS. Therefore, its RMSE is quantitatively higher than that of other 

models. Benchmark model also performs better in terms of Theil’s U statistic, indicating that 

it is as good as the naïve model in all the regions of NEM. This model has Theil’s U statistic 

of 0.048 for NSW, 0.035 for VIC, 0.053 for QLD, 0.069 for SA and 0.085 for TAS. 

 

Table 14 Comparative Forecast Performance Measures 

 Mean-Reverting and Jump-Diffusion Model Benchmark Model 

 NSW VIC QLD SA TAS NSW VIC QLD SA TAS 

ME -0.197 -0.247 -0.398 -0.266 -0.330 -0.02 -0.094 -0.183 -0.127 -0.272 

MSE 0.143 0.110 0.227 0.263 0.384 0.107 0.056 0.112 0.226 0.366 

RMSE 0.378 0.332 0.476 0.512 0.620 0.328 0.238 0.336 0.475 0.605 

MAE 0.286 0.285 0.398 0.335 0.484 0.184 0.191 0.202 0.263 0.442 

MPE -6.607 -7.950 -14.899 -38.497 -11.555 -1.442 -3.251 -8.001 -36.955 -9.782 

MAPE 8.396 8.913 14.899 40.153 14.314 5.123 5.833 8.570 40.553 12.778 

Theil’s U 0.054 0.048 0.073 0.073 0.087 0.048 0.035 0.053 0.069 0.085 

Source: Authors calculations. General rule: smaller the magnitude more accurate the model is. 

 

In conclusion, forecasting electricity prices in NEM with a Mean-Reverting and Jump- 

Diffusion model performs better than the GBM model but it provides mixed results when 

compared to relatively simpler Mean-Reverting model. However, Mean-Reverting and Jump-



  

164 
 

Diffusion model has theoretical superiority over the simpler Mean-Reversion model. In 

forecasts based on the Mean-Reverting and Jump Diffusion model, one identifies large and 

small jumps with some jump clusters. The GBM and the Mean-Reverting models fail to 

simulate these jumpy characteristics prevalent in NEM.  

 

The Mean-Reverting and Jump-Diffusion model performs better as it identifies jumps and the 

magnitude of these jumps resembles the observed time series. Nevertheless, closer examination 

of the empirical price trajectories reveals that the differences between the magnitude jumps and 

timing are quite different when compared to actual price series. 

 

These differences can be attributed to a number of areas in the model development. First of all, 

Mean-Reverting and Jump-Diffusion model assumes the diffusion process to be independent 

of the Poisson component, but this is not the case for electricity prices in NEM. Prices in NEM 

are unlikely to spike at off-peak periods where demand and price are very low. A solution to 

this problem could be forcing the jump sizes proportional to the current spot prices. Secondly, 

it is known that electricity prices are seasonal therefore; applying a homogenous compound 

Poisson process to model the jump component may not be optimal. Using a non-homogenous 

Poisson process with a deterministic periodic intensity function could be a solution to this issue. 

However, the problem with the application of this method is the scarcity of spikes identified 

by the filtering procedures.  

 

Overall, empirical evidence suggests that the Mean-Reverting and Jump-Diffusion model’s 

performance is superior to basic GBM and Mean-Reverting models in forecasting electricity 

spot prices despite the fact that the jump component of this SDE based forecast model fails to 

capture the magnitude and timing of the spikes in the electricity price series. Therefore, an 
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application of a model that captures the dynamics of the jumpy and mean-reverting 

characteristics of the price series better than the Mean-Reverting and Jump-Diffusion model is 

the aim of the next chapter. Markov Regime-Switching models are one way to capture such 

specifications that capture both the mean-reverting and the jumpy characteristics of the prices 

series. In the next chapter, results of a comparison with the Mean-Reverting and Jump-

Diffusion model is likely to provide valuable insight in choosing the most effective forecast 

model in NEM. 
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CHAPTER 9 MARKOV REGIME-SWITCHING MODEL 

AN INTRODUCTION TO MARKOV REGIME-SWITCHING MODEL 

The fundamental idea behind a regime-switching process is to model the observed stochastic 

behaviour of a time-series by two or more separate regimes with different underlying processes. 

The separate regimes of a Markov Regime-Switching model are determined by an 

unobservable variable where one cannot be certain that a particular regime has occurred at a 

particular point in time, but one can assign probabilities of their occurrences. The switching 

process between the regimes is captured by time varying estimates of the conditional 

probability of each state and an estimate of a constant matrix of state transition probabilities. 

 

The regime variables are assumed to follow a first order Markov chain where the transition 

probabilities for the two regimes are assumed to be constant. Denoted by ( Q ) the probability 

of switching from regime i  at time t  to regime j  at time fort ,1 }2,1{, ji , the matrix of 

transition probabilities ( ijq ) can be written as; 
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Markov property suggests that the current state j  at time t  of a Markov chain depends on the 

past only through the most recent value i : 

 

)(),( 121 iRjRRiRjR ttttt                       (47)
 

 

This is also known as first order Markov process. This means that the probability of being in 

the ith regime at time t depends only on the regime at time t-1 and not on the regimes that 

occurred at ith times such as t-2, t-3, etc. The transition probabilities determine the probability 
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of being in a certain regime at time t given a certain regime t time t-1. By the Markov property 

the regimes at times t-2, t-3, etc. are irrelevant for this transition property. 

 

In contrast to linear model specifications that assume stationarity, Markov Regime-Switching 

models are based on a mixture of parametric distributions that depend on unobserved state 

variables. In this context, the Regime-Switching or Markov Regime-Switching models seem 

to be an adequate non-linear alternative to linear time series models. This model involves 

multiple structures (equations) that can characterize the time series behaviours in different 

regimes. By permitting switching between these structures, this model is able to capture more 

complex dynamic patterns.  

 

Markov Regime-Switching models also differ from the models of structural changes. While 

the former allows for frequent changes at random time points, the latter admits only occasion 

and exogenous changes. The Markov Regime-Switching model is therefore suitable for 

describing correlated data that exhibit distinct dynamic patterns during different time periods. 

 

Goldfield and Quandt (1973) were the first to introduce Markov-switching regressions. 

Hamilton (1990, 1994) calculated all the variables of interest of the Markov Regime-Switching 

processes as a by-product of an iterative algorithm similar to a Kalman filter algorithm47. 

Hamilton’s seminal work popularised the application of the Markov Regime-Switching 

processes in macro-economic modelling. In this study, the Markov Regime-Switching process 

was applied to model the probability of a recession in the U.S. economy, which was assumed 

to be alternating between two unobserved states of high growth and slow growth according to 

                                                           
47 The Kalman filter is a recursive estimator. This means that only the estimated state from the previous time step 

and the current measurement are needed to compute the estimate for the current state. 

http://en.wikipedia.org/wiki/Infinite_impulse_response
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a Markov chain process. This model assumed constant transition probabilities for the 

unobserved states, which in turn imply constant expected durations in the various regimes.  

 

Markov Regime-Switching models also allow the study of the general characterizations of 

moment and stationary conditions. For instance, Tjostheim (1986), Yang (2000), Timmermann 

(2000) and Francq and Zakoian (2001) studied the general characterisations of moment and 

stationary conditions of the Markov Regime-Switching processes. 

 

Markov Regime-Switching models have also been employed in modelling heteroskedasticity 

in time series. For instance, Hamilton and Susmel (1994), Gray (1996), and Klaassen (2002) 

combine Markov Regime-Switching and ARCH specifications into a switching-ARCH 

(SWARCH) that embeds ARCH models within different regimes. The advantage of these 

models is that they capture conditional heteroskedasticity that is not captured by traditional 

GARCH specifications. 

 

The Markov Regime-Switching specifications allow more accurate estimation of electricity 

price dynamics than the ones considered so far. The findings of this study are quite similar to 

earlier findings in the literature. For example, the two-regime model of Weron et al. (2004) 

included log-normally distributed spikes whereas Bierbrauer et al. (2004) found that using 

Pareto distributed spikes  overestimated the spike sizes. This study concluded that the best 

model is the one with Log-Gaussian spikes in terms of its statistical properties, closely followed 

by the model with Gaussian spikes. The findings of this study also support the earlier findings 

of the literature as the Markov Regime-Switching specification with Gaussian and Log-

Gaussian distributed spikes have variances much smaller than the specification with Pareto 

distributed spikes of the spike regimes. It is important to note that Weron & Misiorek (2008) 
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showed that in models based on log-prices (like the models developed in this study), the 

calibration scheme generally assigns all extreme prices to the spike regime, no matter whether 

they truly are spikes or only artificial sudden drops (due to taking the logarithm of small 

values).  

 

MARKOV REGIME-SWITCHING MODELS IN ELECTRICITY PRICE MODELLING  

The previous chapter demonstrated the inability of Mean-Reverting and Jump-Diffusion 

models in capturing consecutive price spikes in NEM. These models generally do not allow 

consecutive spikes. In particular, they allow for spikes that last for more than just one time 

period (an hour, a day), without the disadvantage of rapid mean-reversion after a jump as 

generally observed in Jump-Diffusion models. Markov Regime-Switching processes on the 

other hand are capable of modelling consecutive price jumps.  

 

However, it is important to understand that capturing the exact timing of a spike is not possible 

with these processes similar to previously examined models. These processes merely generate 

spikes in the forecast horizon and as a consequence minimise the variance of the conditional 

mean of the series accurately. That is to say that Markov Regime-Switching models like the 

previously investigated continuous-time based processes are likely to succeed in generating 

spikes and mean-reversion characteristics of the electricity price series but it is not likely to 

capture the exact timing of the spike occurrences.  

 

Markov Regime-Switching models have widely been recognised in the electricity modelling 

literature. Either and Mount (1998) applied a Markov Regime-Switching model in a two state 

specification in which both regimes were governed by AR(1) processes with homoscedasticity 

and heteroskedasticity. They used data from Victoria (Australia) and United States electricity 
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markets and confirmed the existence of different means and variances in the two regimes. 

Huisman and Mahieu (2003) applied a three regimes model to electricity prices.  

 

The base regime of this model described the normal electricity prices dynamics while the initial 

jump regime attempted to capture the sudden increase or decrease in prices. The jump reversal 

regime as the third regime of this model described how the prices move back to the normal 

regime after the initial jump. In fact, this three regime specification was quite similar to the 

simpler jump-diffusion specification developed in the previous section where the prices tend 

to revert to their long-run mean levels after the initial spike. However, the difference is in how 

the prices revert to their long-run mean levels. The previous chapter’s Jump-Diffusion 

specification forces prices to revert to pre-specified long-run mean levels whereas the three-

regime specification of Huisman and Mahieu (2001) models the parameters of this reversal 

probabilistically. Therefore they have the potential to capture the dynamics of mean-reversion 

after jumps occur. 

 

The transition matrix of this regime-switching specification is illustrated as; 
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This model, however, did not allow for consecutive spikes, which are commonly observed in 

electricity price data. Huisman and de Jong (2003) later relaxed this specification and proposed 

a model with two regimes; a mean-reverting AR(1) and a spike regime. The third regime in 

this approach is unnecessary as the prices are assumed to be independent of each other in two 

regimes. They suggested that the spike regime can be modelled with a Gaussian distribution 

for which the mean and variance are higher than those of mean-reverting base regime. 
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However, the heavy-tailed nature of electricity prices required extension of these models. 

Weron (2004) and Bierbrauer et al. (2004) modelled the spike regimes with Log-Gaussian and 

Pareto distributions, while de Jong (2006) considered Poisson driven spike regime dynamics.  

 

The adequacy of these models in terms of their forecasting ability has been rarely tested. 

Haldrup and Nielsen (2006) found that a Markov Regime-Switching Seasonal Autoregressive 

Fractionally Integrated Moving Average (ARFIMA) model outperforms a seasonal ARFIMA 

model when applied to electricity prices in NordPool. Kosater and Mosler (2006) compared to 

a regime switching specification (driven by two AR(1) processes) to an AR(1) model using 

electricity prices from the German EEX market. This study found that in the short term both 

models performed alike but over a long run Markov Regime-Switching model outperforms the 

model with the single AR(1) specification.  These results were also similar to findings of 

Misiorek et al. (2006).  

 

MODELLING ELECTRICITY PRICES WITH MARKOV REGIME-SWITCHING 
MODELS IN NEM 

In this chapter, electricity prices in NEM are modelled with Markov Regime-Switching models 

with four separate spike regimes. These spike regimes are characterised by Gaussian, log-

Normal, Pareto48 distributions and a mean-reverting process. The switching mechanism 

between the states in these specifications is assumed to be governed by an unobserved random 

variable that has the Markov property.  

 

                                                           
48 Since spikes happen very rarely but usually are of great magnitude the use of heavy-tailed distributions (Log-

Normal, Pareto) are also considered in the literature (see Weron and Janczura, 2010).  
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Markov Regime-Switching models are frequently discussed in the literature however in this 

chapter; the focus goes beyond the mere estimation process and takes account of the forecasting 

ability of the Markov Regime-Switching models in NEM.  

 

This forecast process aims at generating forecast future values of electricity prices that 

minimise the variance of the mean. In other words, Markov Regime-Switching models like the 

previously investigated continuous-time models are likely to succeed in generating spikes and 

mean-reversion characteristics of the electricity price series but they are not likely to capture 

the exact timing of the spike occurrences.  

 

Extending the previously developed model of Mean-Reverting and Jump-Diffusion model with 

Markov Regime-Switching approach is theoretically sound as Markov Regime-Switching 

specification allows for consecutive spikes, which are not allowed in the jump-diffusion model 

of the previous section. Another difference between the Mean-Reverting and Jump-Diffusion 

forecast model employed in the preceding chapter and the Markov Regime-Switching model 

developed here is that the probability of jumps is no longer fixed, but dependent on the current 

regime processes. In practice, the current regime is not directly observable, but determined 

through an adaptive probabilistic process. That is to say that the Markov Regime-Switching 

model of this section is an extension of the Mean-Reverting and Jump-Diffusion model of the 

previous chapter in the sense that it has Markov Regime-Switching probabilities that 

stochastically adapt themselves to the previously observed prices.  

 

There are a variety of possibilities in fitting a Markov Regime-Switching model to electricity 

price data. This is due to the fact that there could be a number of regimes (two, three or more) 
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and a number of different stochastic processes for the price series in each of these regimes. The 

literature has many examples that choose alternative distributions for the spike regime.  

 

The modelling of electricity prices in this section are performed as follows; 

 

𝑑𝑌𝑡,1 = (𝑐1 − 𝛽1𝑌𝑡,1)𝑑𝑡 + 𝜎1𝑑𝑊𝑡                  (49) 

 

where 𝑐1is the long-run mean level, 𝛽 is the mean-reversion rate and 𝜎1 is the volatility term 

of the process. The Brownian motion process is represented by 𝑊𝑡 in the base-regime dynamic. 

This model is assumed to have normally distributed homoscedastic errors.  

 

The dynamics of this model in the spike regime follows three different distributions: 

1. Gaussian 𝑌𝑡,2~𝑁(𝑐2, 𝜎2
2)                  (50) 

2. Log-Gaussianlog (𝑌𝑡,2)~𝑁(𝑐2, 𝜎2
2)                 (51) 

3. Pareto  𝑌𝑡,2~𝐹𝑃𝑎𝑟𝑒𝑡𝑜(𝑐2, 𝜎2
2) = 1 − (

𝑐2

𝑥
)𝜎2

2
                (52) 

 

These distributions incorporate the heavy-tailed features of electricity prices in NEM. The 

heavy-tailed characteristics of electricity prices in NEM were investigated in Chapter 3 of this 

thesis. This chapter also models the spike regime as a mean-reverting process as: 

 

𝑑𝑌𝑡,2 = (𝑐2 − 𝛽2𝑌𝑡,2)𝑑𝑡 + 𝜎2𝑑𝑊𝑡                 (53) 

 

where 𝑐2 is the long-run mean level, 𝛽2 is the mean-reversion rate and 𝜎2 is the volatility term 

of the process. The Brownian motion process is represented by 𝑊𝑡 in the base-regime dynamic. 

This model is assumed to have normally distributed homoscedastic errors.  

 

When interpreting the results of Markov Regime-Switching models it is important to note that 

the regime that governs the process is not observable and must be inferred from the available 

data. It is not possible to observe which regime currently governs the process and then adopt 
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the estimate of Markov regime property for that regime as being the one that is commensurate 

with the prevailing conditions in the market. Rather, the identity of the regime in question is 

inferred from the observable data. Inferences about which regime governs the process at a 

particular point in time are summarised in the form of regime probabilities. Regime 

probabilities are discussed in the next section.  

 

PARAMETERISATION OF THE MARKOV REGIME-SWITCHING MODEL 

Calibration of Markov Regime-Switching models is non-trivial. The regimes are latent hence 

they are not directly observable. The challenge in parameterising the model lies in the 

unobservable nature of the regimes. Hamilton (1990) introduced the application of 

Expectation-Maximization (EM) algorithm where the whole set of parameters   is estimated 

by an iterative two-step procedure.  

 

This study follows Hamilton’s approach in calibrating the parameters of the models. The EM 

algorithm can be described as follows;  

 

Step 1- The EM algorithm involves the conditional probabilities );,...,( 1 Tt PPjR   for the 

process being in regime j  at time t  to be derived based on starting values of 
)0(^

  for the 

parameter vector   of the underlying stochastic processes. This process involves Maximum 

Likelihood (ML) estimation. 

 

Step 2- Estimating new and more accurate ML estimates   for all model parameters by using 

the parameters derived in step one occurs in this step. Each iteration of the EM algorithm 

generates new estimates 
)1(^ n

 and each iteration cycle increases the log-likelihood function. 

Therefore the limit of this sequence of estimates reaches a maximum of the log-likelihood 
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function. The EM algorithm is simplified considerably when the errors are assumed to be 

normally distributed in each regime.  

 

The ML estimation is complicated by the fact that the estimation of conditional regime 

probabilities49 as it requires a sub-iteration at each step of the EM algorithm to maximize the 

log-likelihood function. Considering the complexity of the log-likelihood function and the 

relatively large number of parameters to be estimated, the selection of starting values are 

critical for the convergence of the likelihood estimation (Alexander, 2008). 

 

In calibrating the Markov Regime-Switching models in this chapter, this study utilised the EM 

algorithm as applied by Hamilton (1990). Appendix 5 provides a detailed description of the 

EM algorithm.  

 

REGIME PROBABILITIES BY NEM REGIONS 
Two-regime model for NSW 

Table 15 presents the estimated parameters and transition probabilities of the Markov Regime-

Switching model for the NSW region. From left to right in Table 11, the parameter estimates 

are presented. The mean-reversion parameter for the base regime dynamics is denoted as 𝛽𝑖 

and  𝛼𝑖 and 𝜎𝑖
2 are the mean and standard deviation of both the base and spike regime dynamics. 

Panel B in Table 11 presents the transition probabilities of the Markov Regime-Switching 

model along with its expected values and its variances where 𝐸(𝑌𝑡,𝑖) is the expected value and 

𝑉𝑎𝑟(𝑌𝑡,𝑖) denotes the variance of the 𝐸(𝑌𝑡,𝑖). The term 𝑞𝑖𝑖 is the probability of remaining in the 

same regime in the next time step whilst  𝑃(𝑅 = 𝑖) is the unconditional probability of being in 

regime 𝑖.  

 

                                                           

49 The literature generally sets regression coefficients and error standard deviations to be equal to their values 

from a standard linear regression at their starting values and also sets the transition probabilities to 0.5 i.e. Weron 

(2006). This section applies a similar approach in setting the initial values of the EM algorithm.  
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Table 15 Regime Probabilities, NSW region 

Panel A Panel B 

Parameter estimates Statistics 

Regime 𝛽𝑖 𝛼𝑖 𝜎𝑖
2 𝐸(𝑌𝑡,𝑖) 𝑉𝑎𝑟(𝑌𝑡,𝑖) 𝑞𝑖𝑖 𝑃(𝑅 = 𝑖) 

Two regime model with Gaussian spikes  

Base 0.26264 1.04591 0.20859 3.98225 0.45714 0.93099 0.54594 

Spike - 3.24289 0.02287 3.24289 0.02287 0.91702 0.45406 

Two regime model with Log-Gaussian spikes  

Base 0.12840 0.43870 0.02651 3.41663 0.11031 0.95143 0.86027 

Spike - 1.41089 0.03912 4.18058 0.69733 0.70096 0.13973 

Two regime model with Pareto spikes  

Base 0.12178 0.42256 0.02957 3.46995 0.12927 0.95320 0.88732 

Spike - 2.31062 2.62973 4.63621 29.94805 0.63148 0.11268 

Two regime model with mean-reverting 
process for spikes 

 

Base 0.13450 0.46011 0.02701 3.42092 0.10764 0.95411 0.86550 

Spike 0.77423 3.27204 0.79544 4.22617 0.83816 0.70472 0.13450 
Source: Author’s calculations. 

 

In the base regime the mean-reversion parameter, denoted by β
i
, is positive for all 

specifications considered in this study and ranges from 0.12178 (two-regime model with Pareto 

spikes) to 0.26264 (two-regime model with Gaussian spikes). The mean-reversion parameters 

found in this section are consistent with the parameters derived in previously discussed models 

of Mean-Reverting and Mean-Reverting and Jump Diffusion models. Once again, this reveals 

the importance of mean-reversion in electricity price dynamics and the quicker the return of 

prices from some extreme position to equilibrium. This explanation is consistent with Higgs 

and Worthington (2009).  

 

The estimated volatility coefficients, denoted by σi
2, in the base regime range from 0.02651 

for the two-regime model with Log-Gaussian spikes to 0.20859 for the  two-regime model with 

Gaussian spikes. This indicates that volatility in electricity markets, once price spikes are 

excluded, is actually quite low. This is in line with the findings of Higgs and Worthington 

(2009). 
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In all specifications, the probability of remaining in the base regime in the next time step is 

very high. However the probability of remaining in the spike regime in the next time step, 

denoted by qii in Table 11, is also relatively high. The probabilities of being in the spike 

regimes in the next time step for each model are 0.93099 for the specification with Gaussian 

spikes, 0.95143 for the specification with Log-Gaussian spikes, 0.95320 for the specification 

with Pareto spikes and 0.95411 for the specification with mean-reverting spikes. The 

probability of a spike therefore varies from 6.901 per cent for the specification with Gaussian 

spikes, 4.857 per cent for the specification with Log-Gaussian spikes, 4.68 per cent for the 

specification with Pareto spikes and 4.589 per cent for the specification with mean-reverting 

spikes. 

 

It is important to note that the model with Pareto spikes gives the lowest probability of being 

in the spike regime for the next step. Hence it can be said that a heavy tailed distribution such 

as Pareto gives lower probabilities for being in the spike regime and a higher variance as 

evidenced in Table 15. This finding is in line with Weron and Misiorek (2008). 

 

The unconditional probability of being in the spike regime, denoted by𝑃(𝑅 = 𝑖), is smaller 

than the unconditional probabilities of being in the base regimes of each specification. 

However, the unconditional probabilities of being in the spike regimes are quite low for the 

specifications with log-Normal, Pareto and Mean-Reverting spikes as compared to the 

specification with Gaussian spikes. The last column of Table 15 presents the unconditional 

probabilities of being in the base and spike regimes. 

 

The following figures illustrate the transition probabilities of all the specifications described in 

the Table 15. The bottom panels of these figures reveal the probabilities that an observation 
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comes from the spike regime. The top presents the data identified as belonging to the spike 

regime (i.e. having Pr(spike)>0.5). These figures can be interpreted through a recursive 

process. Supposing there has been a series of high prices over the previous days then the model 

would assign a high probability to the process being governed by the spike regime. In other 

words, it is much more likely that a series of high prices would be generated by the spike regime 

than by the base regime.  

 

In the case of average prices being observed the next day, there could be two possibilities; (1) 

the process remains in the spike regime and this just happens to be a low volatility observation 

or, (2) there has been a switch to the base regime. Because it is difficult to be certain on the 

basis of one observation, the probability of being in the spike regime is likely to reduce 

marginally. If the following observation is a large price increase, the model will conclude that 

no switch has occurred and the process remains in the spike regime. If, however, the moderate 

price increase is followed by more moderate observations, the model will conclude that a 

switch has occurred and that the process is unlikely to be in the spike regime.  
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Figure 33 Regime Probabilities (NSW), Gaussian spikes 

 
Source: Author’s calculations. 

 

The estimated regimes of electricity prices in the NSW region shows that the model with 

Gaussian spikes tends to underestimate the spike severity but it overestimates the number of 

spikes. It incorrectly identifies the data as being in the spike regime when in fact the data may 

be in a base regime. There are also instances where the model does not identify large 

movements in the prices as being in a spike regime. Perhaps, the most important observation 

based on this model is that the mean of the price series in the base regime is greater than the 

mean of the prices series in the spike regime. This is contrary to the stylised characteristics of 

electricity prices in NEM. 
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Figure 34 Regime Probabilities (NSW), Log-Gaussian spikes 

 
Source: Author’s calculations. 

 

While the Markov Regime-Switching model with Gaussian spikes generates a higher mean for 

the prices series in the base regime than the spike regime, the model with Log-Gaussian spikes 

tend to be more accurate and produce a mean of the price series in the spike regime higher than 

the mean of the prices series in the base regime. This model also tends to identify large price 

moves as spikes in the NSW region more accurately than the previous model. 
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Figure 35 Regime Probabilities (NSW), Pareto spikes 

 
Source: Author’s calculations. 

 

The Markov Regime-Switching model specification with Pareto spikes performs relatively 

well in identifying the large prices moves as spikes and assigns these observations as being in 

the spike regime. This model by its nature identifies less numbers of spikes as compared to the 

model specification with Log-Gaussian spikes. This is due to the fact that it identifies more 

extreme price moves as a spike. Therefore the mean of the price series identified as being in 

the spike regime is higher than the price series identified by the model specification with Log-

Gaussian spikes. 
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Figure 36 Regime Probabilities (NSW), Mean-Reverting Spikes 

 

Source: Author’s calculations. 

 

The estimated regimes of electricity prices in the NSW region shows that the model with mean-

reverting spikes tends to identify the price series being in either of the base and spike regimes 

similar to the model specification with Log-Gaussian spikes. The model generates a mean of 

the price series in the spike regime higher than the mean of the prices series in the base regime. 

This model also tends to identify large price moves as spikes in the NSW region more 

accurately than the previous model specification with Gaussian spikes. 

 

As is seen, the visual representation of the Markov Regime-Switching specifications illustrates 

the essential features of these models were unlike jump-diffusion models, these models allow 

for consecutive spikes in a natural way.  
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Two-regime model for VIC 

Estimated parameters and transition probabilities of the Markov Regime-Switching model for 

the VIC region is presented in Table 16. As defined before, the parameter estimates are 

presented in Panel A where β
i
 is the mean-reversion parameter for the base regime dynamics, 

αi and σi
2 are the mean and standard deviation of both the base and spike regime dynamics. 

Panel B of Table 16 has the transition probabilities of the Markov Regime-Switching model 

with its expected values and variances similar to Table 15. 

Table 16 Regime Probabilities, VIC Region 

Panel A Panel B 

Parameter estimates Statistics 

Regime β 𝑐𝑖 𝜎𝑖
2 𝐸(𝑌𝑡,𝑖) 𝑉𝑎𝑟(𝑌𝑡,𝑖) 𝑞𝑖𝑖 𝑃(𝑅 = 𝑖) 

Two regime model with Gaussian spikes  

Base 0.28484 1.06916 0.16614 3.75348 0.34007 0.97267 0.68731 

Spike - 3.23473 0.02891 3.23473 0.02891 0.93993 0.31269 

Two regime model with Log-Gaussian spikes  

Base 0.15592 0.54018 0.04073 3.46446 0.14167 0.97095 0.91677 

Spike - 1.43350 0.04382 4.28626 0.82296 0.67999 0.08323 

Two regime model with Pareto spikes  

Base 0.15963   0.55659   0.04413     3.48681      0.15021        0.97650   0.94074 

Spike - 1.52049   2.19054     6.39912      56.16433        0.62685   0.05926 

Two regime model with mean-reverting 
process for spikes 

 

Base 0.15839 0.54897 0.04099 3.46591 0.14051 0.97250 0.91908 

Spike 0.77783 3.37063 0.91146 4.33336 0.95878 0.68763 0.08092 
Source: Author’s calculations. 

 

In the base regime the mean-reversion parameter, denoted by β
i
, is significant and positive 

for all specifications considered in this study and ranges from 0.15839 (two-regime model with 

mean-reverting spikes) to 0.28484 (two-regime model with Gaussian spikes). The estimated 

volatility coefficients, denoted by σi
2, in the base regime range from 0.04073 for the two-

regime model with Log-Gaussian spikes to 0.16614 for two-regime model with Gaussian 

spikes. The magnitudes of volatilities are smaller than the volatilities presented for the NSW 

region. This implies a less volatile spot electricity market for the VIC region. 
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In all specifications, the probability of remaining in the base regime in the next time step is 

very high. However the probability of remaining in the spike regime in the next time step, 

denoted by qii in Table 16 is also relatively high. The probabilities of being in the spike regimes 

in the next time step for each model are 0.93993 for the specification with Gaussian spikes, 

0.67999 for the specification with Log-Gaussian spikes, 0.62685 for the specification with 

Pareto spikes and 0.68763 for the specification with mean-reverting spikes. The probability of 

a spike therefore varies between 2.733 per cent for the specification with Gaussian spikes, 

2.905 per cent for the specification with Log-Gaussian spikes, 2.35 percent for the specification 

with Pareto spikes and 2.75 per cent for the specification with mean-reverting spikes. The 

unconditional probability of being in the spike regime, denoted by P(R = i), is smaller than 

the unconditional probabilities of being in the base regimes of each specification. However, 

the unconditional probabilities of being in the spike regimes are quite low for the specifications 

with log-Normal, Pareto and Mean-Reverting spikes as compared to the specification with 

Gaussian spikes.  

 

Analogous to graphs plotted earlier for the NSW region, the following graphs reveal the 

probabilities that an observation comes from the spike regime at the bottom panels whilst the 

top panels are reserved for the time series displayed with observations identified as belonging 

to the spike regime for the VIC region. The following figures illustrate the estimated regimes 

of electricity prices in the VIC region. Figure 37 shows that the model with Gaussian spikes 

tends to underestimate the spike severity but it overestimates the number of spikes similar to 

the case for the NSW region. It incorrectly identifies the data as being in the spike regime when 

in fact the data may be in a base regime. While the Markov Regime-Switching model with 

Gaussian spikes generates a higher mean for the prices series in the base regime than the spike 

regime, the model with Log-Gaussian spikes tend to be more accurate and produce a mean of 
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the price series in the spike regime higher than the mean of the prices series in the base regime. 

This model also tends to identify large price moves as spikes in the VIC region more accurately 

than the previous model. The Markov Regime-Switching model specification with Pareto 

spikes performs  relatively well in identifying the large price moves as spikes and assigns these 

observations as being in the spike regime.  

 

The regimes of electricity prices in the VIC region shows that the model with mean-reverting 

spikes tends to identify a price series being in either of the base and spike regimes similar to 

the model specification with Log-Gaussian spikes. The model tends to identify large price 

moves as spikes in the VIC region more accurately than the previous model specification with 

Gaussian spikes. 

Figure 37 Regime Probabilities (VIC), Gaussian Spikes 

 
Source: Author’s calculations. 
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Figure 38 Regime Probabilities (VIC), Log-Gaussian Spikes 

 
Source: Author’s calculations. 

Figure 39 Regime Probabilities (VIC), Pareto Spikes 

 
Source: Author’s calculations 
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Figure 40 Regime Probabilities (VIC), Mean-Reverting Spikes 

 
Source: Author’s calculations. 

 

Two-regime model for QLD 

Table 17 has the same interpretation as previous tables of this section.  

Table 17 Regime Probabilities, QLD Region 

Panel A Panel B 

Parameter estimates Statistics 

Regime β 𝑐𝑖 𝜎𝑖
2 𝐸(𝑌𝑡,𝑖) 𝑉𝑎𝑟(𝑌𝑡,𝑖) 𝑞𝑖𝑖 𝑃(𝑅 = 𝑖) 

Two regime model with Gaussian spikes  

Base 0.39312 1.53176 0.27629 3.89645 0.43737 0.92859 0.49326 

Spike - 3.15728 0.02852 3.15728 0.02852 0.93049 0.50674 

Two regime model with Log-Gaussian spikes  

Base 0.10432 0.34459 0.02487 3.30311 0.12576 0.92693 0.78337 

Spike - 1.35463 0.03565 3.94503 0.56483 0.73578 0.21663 

Two regime model with Pareto spikes  

Base 0.13174   0.44593   0.03422     3.38485      0.13902        0.94587   0.86344 

Spike - 1.82675   2.30358     5.08991      81.85773        0.65774   0.13656 

Two regime model with mean-reverting 
process for spikes 

 

Base 0.12334 0.40750 0.02514 3.30377 0.10859 0.93294 0.78453 

Spike 0.69581 2.77532 0.63532 3.98860 0.70011 0.75582 0.21547 
Source: Author’s calculations. 
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The following figures illustrate the estimated regimes of electricity prices in QLD region. They 

show that the model with Gaussian spikes tends to underestimate the spike severity but it 

overestimates the number of spikes. It incorrectly identifies the data as being in the spike 

regime when in fact the data may be in a base regime.  

 

While the Markov Regime-Switching model with Gaussian spikes generates a higher mean for 

the prices series in the base regime than the spike regime, the model with Log-Gaussian spikes 

tends to be more accurate and produce a mean of the price series in the spike regime higher 

than the mean of the prices series in the base regime. This model also tends to identify large 

price moves as spikes in the QLD region more accurately than the previous model.  

 

Figure 41 Regime Probabilities (QLD), Gaussian Spikes 

  

Source: Author’s calculations. 
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Figure 42 Regime Probabilities (QLD), Log-Gaussian Spikes 

 
Source: Author’s calculations. 

 

The Markov Regime-Switching model specification with Pareto spikes performs a relatively 

good performance in identifying the large price moves as spikes and assigns these observations 

as being in the spike regime. The regimes of electricity prices in the QLD region shows that 

the model with mean-reverting spikes tends to identify the price series being in either of the 

base and spike regimes similar to the model specification with Log-Gaussian spikes. The model 

tends to identify large price moves as spikes in the QLD region more accurately than the 

previous model specification with Gaussian spikes. 
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Figure 43 Regime Probabilities (QLD), Pareto Spikes 

 
Source: Author’s calculations. 

Figure 44 Regime Probabilities (QLD), Mean-Reverting Spikes 

 

Source: Author’s calculations 
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Two-regime model for SA region 

Table 18 has the same interpretation as previous tables of this section.  

Table 18 Regime Probabilities, SA Region 

Panel A Panel B 

Parameter estimates Statistics 

Regime β 𝑐𝑖 𝜎𝑖
2 𝔼(𝑌𝑡,𝑖) 𝑉𝑎𝑟(𝑌𝑡,𝑖) 𝑞𝑖𝑖 ℙ(𝑅 = 𝑖) 

Two regime model with Gaussian spikes  

Base 0.44463 1.89545 0.72784 4.26297 1.05245 0.85222 0.25270 

Spike - 3.44800 0.07424 3.44800 0.07424 0.95003 0.74730 

Two regime model with Log-Gaussian spikes  

Base 0.14354 0.50507 0.04056 3.51860 0.15222 0.95468 0.88424 

Spike - 1.40443 0.07697 4.23302 1.43373 0.65386 0.11576 

Two regime model with Pareto spikes  

Base 0.13174   0.44593   0.03422     3.38485      0.13902        0.94587   0.86344 

Spike - 1.82675   2.30358     5.08991      81.85773        0.65774   0.13656 

Two regime model with mean-reverting 
process for spikes 

 

Base 0.15335 0.53942 0.04145 3.51748 0.14639 0.95873 0.89273 

Spike 0.80509 3.47740 1.64159 4.31926 1.70641 0.65654 0.10727 
Source: Author’s calculations 

 

The following figures illustrate the estimated regimes of electricity prices in the SA region. 

They show that the model with Gaussian spikes tends to underestimate the spike severity but 

it overestimates the number of spikes. It incorrectly identifies the data as being in the spike 

regime when in fact the data may be in a base regime. While the Markov Regime-Switching 

model with Gaussian spikes generates a higher mean for the prices series in the base regime 

than the spike regime. The model with Log-Gaussian spikes tends to be more accurate and 

produces a mean of the price series in the spike regime higher than the mean of the prices series 

in the base regime. This model also tends to identify large price moves as spikes in the SA 

region more accurately than the previous model.  

 

The Markov Regime-Switching model specification with Pareto spikes performs a relatively 

solid performance in identifying the large price moves as spikes and assigns these observations 

as being in the spike regime. The regimes of electricity prices in the SA region shows that the 
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model with mean-reverting spikes tends to identify the price series being in either of the base 

and spike regimes similar to the model specification with Log-Gaussian spikes. The model 

tends to identify large price moves as spikes in the SA region more accurately than the previous 

model specification with Gaussian spikes. 

 
Figure 45 Regime Probabilities (SA), Gaussian Spikes 

 

Source: Author’s calculations 
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Figure 46 Regime Probabilities (SA), Log-Gaussian Spikes 

 

Source: Author’s calculations 

Figure 47 Regime Probabilities (SA), Pareto Spikes 

 

Source: Author’s calculations 
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Figure 48 Regime Probabilities (SA), Mean-Reverting Spikes 

 

Source: Author’s calculations 

 

Two-regime model for TAS 

Table 19 has the same interpretation as previous tables of this section.  
 

Table 19 Regime Probabilities, TAS Region 

Panel A Panel B 

Parameter estimates Statistics 

Regime β 𝑐𝑖 𝜎𝑖
2 𝐸(𝑌𝑡,𝑖) 𝑉𝑎𝑟(𝑌𝑡,𝑖) 𝑞𝑖𝑖 𝑃(𝑅 = 𝑖) 

Two regime model with Gaussian spikes  

Base 0.09533 0.35138 0.02745 3.68603 0.15120 0.94139 0.85936 

Spike - 3.79380 0.86474 3.79380 0.86474 0.64185 0.14064 

Two regime model with Log-Gaussian spikes  

Base 0.09924 0.36730 0.02808 3.70112 0.14884 0.94609 0.86334 

Spike - 1.29108 0.07348 3.77280 1.08526 0.65942 0.13666 

Two regime model with Pareto spikes  

Base 0.12349   0.45794   0.03709     3.70824      0.16004        0.96597   0.92214 

Spike - 0.91009   1.21788     12.32732      153.2012        0.59703   0.07786 

Two regime model with mean-reverting 
process for spikes 

 

Base 0.09447 0.34840 0.02562 3.68789 0.14231 0.93976 0.82909 

Spike 0.45932 1.74582 0.58090 3.80091 0.82087 0.70778 0.17091 
Source: Author’s calculations. 

200 400 600 800 1000 1200 1400
0

2

4

6

8
D

at
a

 

 

spike

base

200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

P
r(

sp
ik

e)



  

195 
 

Figure 49 Regime Probabilities (TAS), Gaussian Spikes 

 

Source: Author’s calculations. 

 

The estimated regimes of electricity prices in the TAS region shows that the model with 

Gaussian spikes tends to underestimate the spike severity but it overestimates the number of 

spikes. It incorrectly identifies the data as being in the spike regime when in fact the data may 

be in a base regime. There are also instances where the model does not identify large 

movements in the prices as being in a spike regime.  

 

Perhaps, the most important observation based on this model is that the mean price series in 

the base regime is greater than the mean price series in the spike regime. This is contrary to the 

stylised characteristics of electricity prices in NEM. 
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Figure 50 Regime Probabilities (TAS), Log-Gaussian Spikes 

 

Source: Author’s calculations. 

 

While the Markov Regime-Switching model with Gaussian spikes generates a higher mean for 

the price series in the base regime than the spike regime, the model with Log-Gaussian spikes 

tends to be more accurate and produces a mean of the price series in spike regime higher than 

the mean of the price series in the base regime. This model also tends to identify large price 

moves as spikes in the TAS region more accurately than the previous model. 

 

 

 

 

 

 

200 400 600 800 1000 1200 1400
0

2

4

6

8
D

a
ta

 

 

spike

base

200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

P
r(

s
p
ik

e
)



  

197 
 

Figure 51 Regime Probabilities (TAS), Pareto Spikes 

 

Source: Author’s calculations 

 

The Markov Regime-Switching model specification with Pareto spikes perform a relatively 

solid performance in identifying the large price moves as spikes and assign these observations 

as being in the spike regime. This model, by its nature, identifies less numbers of spikes as 

compared to the model specification with Log-Gaussian spikes. This is due to the fact that it 

identifies more extreme price moves as a spike. Therefore the mean of the price series identified 

as being in the spike regime is higher than the price series identified by the model specification 

with Log-Gaussian spikes. 
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Figure 52 Regime Probabilities (TAS), Mean-Reverting Spikes 

 

Source: Author’s calculations. 

 

The estimated regimes of electricity prices in the TAS region shows that the model with mean-

reverting spikes tends to identify the price series being in either of the base and spike regimes 

similar to the model specification with Log-Gaussian spikes. The model generates a mean of 

the price series in the spike regime higher than the mean of the prices series in the base regime. 

This model also tends to identify large price moves as spikes in the TAS region more accurately 

than the previous model specification with Gaussian spikes. 

 

This section utilised Markov Regime-Switching models with two separate regimes (base and 

spike regimes) in modelling electricity prices in NEM. Whilst all of the SDE based models 

previously discussed in this study are useful in modelling spot prices, only the Markov Regime-
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Switching model fully accounts for the high volatility, mean-reversion and consecutive spike-

prone behaviour of electricity markets.  

 

A number of salient features of this model are useful for understanding the price dynamics in 

NEM. The unconditional probabilities of a price spike on any particular day ranges between 

10 to about 50 percent in NEM, depending on the chosen spike regime and region of the NEM. 

However, while these spikes are frequent, they are short-lived. In fact, prices generally revert 

faster when returning from spike periods than in normal periods. This is clearly seen in the top 

panel of the figures presented above. Secondly, price spikes account for much of the volatility 

in electricity spot prices. Third, there is great variation in the magnitude of spikes in NEM, 

with spikes being generally largest in SA and smallest in QLD. However, price spikes are less 

uniform in the QLD market, suggesting a higher degree of uncertainty in general price levels.  

 

Estimated parameters based on empirical data are meaningful and can be interpreted as distinct 

between the different phases of volatility behaviour prevalent in electricity prices in NEM. 

Markov Regime-Switching specifications presented in this section lead to different results in 

terms of the probabilities of being in the base and spike regimes in the next steps and 

unconditional probabilities of being in those regimes. In all specifications except the model 

with Gaussian spikes, variance estimates for spike regimes 𝑉𝑎𝑟(𝑌𝑡,𝑖) are higher than the 

variance estimates for base regimes 𝑉𝑎𝑟(𝑌𝑡,𝑖) for all the regions of NEM. This indicates a 

variance level higher for spike regimes than for base regimes. This is an important finding from 

a price risk management perspective as it indicates that prices in spike regimes tend to have a 

higher variance, which in turn results in higher management costs.  
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The Markov Regime-Switching models applied in this section are useful tools in modelling 

electricity price dynamics in NEM as they provide logical paths to classify regime changes. 

These regime changes are of utmost importance for the NEM market players in managing their 

price risk. Market players’ costs in managing their price risk will be reduced with better 

understanding of the price regimes. Accurate estimation of the regimes allows the generators 

to estimate their bids for production, which in turn contributes to more effective wholesale 

pricing in NEM. 

 

SIMULATION OF MARKOV REGIME-SWITCHING MODEL 

Higgs and Worthington (2010) modelled electricity prices in NEM with Markov Regime-

Switching models. The main limitation of their study was the restrictive assumption regarding 

spike behaviour. The methodology they employed followed a three-regime structure proposed 

by Huisman and Mahieu (2003) where a normal regime, a jump regime created by the spike 

and a jump reversal regime where the price returns to the normal level were considered. 

Accordingly, there is no allowance for consecutive spikes that may arise.  

 

The model of Markov Regime-Switching specifications with Gaussian and Log-Gaussian 

spikes developed in this study allows consecutive spikes in a natural way following the 

suggestions put forward by de Jong and Huisman (2002), Bierbrauer et al. (2004) and de Jong 

(2006). The consecutive spikes generated by the Markov Regime-Switching models of this 

study are realised in the lower panels of the regime probability figures, depicted earlier. In these 

figures, the probabilities of being in the spike regime are grouped together (𝑃{𝑅𝑡 = 2} > 0.5).  
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The models of Markov Regime-Switching models described in this chapter are simulated 

following the approach taken in Janczura and Weron (2010).The simulation process generated 

a number of trajectories of a Markov Regime-Switching model with two independent regimes; 

(i) Mean-reverting process in the base regime and, 

(ii) Gaussian and a Log-Gaussian distributed spike regimes.  

 

The simulation algorithm utilised consists of the transition matrix, model parameters and 

probabilities classifying the first observation to one of the regimes. The choice of the mean-

reverting process in the base regime in simulating the price series reflects the fundamental 

characteristics of electricity prices in NEM. The spike regime of the model is simulated with 

Gaussian and Log-Gaussian distributions. The simulation of the spike regimes with the mean-

reverting process is not considered as model parameters estimated for the model. The mean-

reverting spikes are remarkably similar with the model with Log-Gaussian spikes as described 

previously. Similarly, simulation of the spike regime with Pareto distribution is not 

contemplated here as the parameter estimates of this model provide extremely high variance in 

all the regions of NEM. 

 

The procedure followed in this section provided three months future point forecast values as 

the average of 10,000 simulations. The following charts illustrate an average of 10,000 sample 

paths generated via a Markov Regime-Switching model with Gaussian and Log-Gaussian 

spikes for the NSW region. As is seen, Markov Regime-Switching models generate random 

prices deviating from the long-run mean but on average these prices revert back to the long-

run mean levels.  

 

The noticeable difference in the mean of simulated values between the two specifications is 

due to moment characteristics of the distributions applied. The expected value of the Log-
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Gaussian distribution is smaller than the expected value of the Gaussian distribution. The 

differences in the mean values of the simulations are attributed to this. 

 

Figure 53 A Simulated Path with a Markov Regime Switching Model 

 
Source: Author’s calculations. 

 

The following charts illustrate a sample path generated via the Markov Regime-Switching 

model where the spike regimes are modelled with Gaussian and Log-Gaussian distributions for 

the NSW region. Figure 54 illustrates the sample path of a Monte-Carlo simulation of a Markov 

Regime-Switching specification with spikes distributed normally whilst Figure 55 illustrates 

the sample path of a Monte-Carlo simulation of a Markov Regime-Switching specification with 

spikes distributed log-normally for a period of 90 days. As is seen, the mean-reverting 

component of the model generates random prices deviating from the long-run mean but on 

average these prices revert back to the long-run mean levels. The spike component of the model 

generates spikes that last for a number of days with varying degrees of magnitude. As is evident 

from the charts below, unlike mean-reverting jump-diffusion models, the Markov Regime-

Switching models also allow for consecutive spikes. It is this characteristic that makes Markov 
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Regime-Switching models superior to simpler jump-diffusion specifications of previous 

sections of this thesis.  

 

Figure 54 A Simulated Price Path with Spikes Distributed as Gaussian 

 

Source: Author’s calculations. 

Figure 55 A Simulated Price Path with Spikes Distributed as Log-Normal 

 

Source: Author’s calculations. 
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Electricity price forecasts generated by the Markov Regime-Switching model with Gaussian 

and Log-Gaussian spike processes for all regions of the NEM are presented in charts 56 and 

57 for a forecast horizon of up to three months. The forecast values are an average of 10,000 

simulations. As is seen, the simulated price series tend to be around the long-run mean levels. 

The spot price for the last day of the in-sample-period forms the starting value in the following 

figures.  

 

Figure 56 Price Forecast for All Regions of NEM (Spikes dist. Gaussian) 

 
Source: Author’s calculations. 

Figure 57 Price Forecast for All Regions of NEM (Spikes dist. Log-Normal) 

 
Source: Author’s calculations 
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The simulations generated reflect the mean-reversion dynamics of electricity prices. This is 

achieved through modelling the base dynamics via a Mean-Reverting model. The distinction 

of modelling electricity prices with Markov Regime-Switching models as compared to the 

Mean-Reverting and Jump-Diffusion model is the spike formation mechanism. In the jump-

diffusion model, it is the compound Poisson process that generates spikes whereas in the 

Markov Regime-Switching model, the specification itself is able to produce spikes that last for 

more than a day. 

 

The Markov Regime-Switching model despite its complex calibration process and theoretic 

advantage does not perform better on face value then the simpler mean-reverting and mean-

reverting jump-diffusion models. The superiority of the Markov Regime-Switching 

specifications over other previously examined continuous-time models is that it captures the 

consecutive price spikes prevalent in electricity prices. However, the magnitude and timing of 

these spikes does not align with the actual price spikes that occur.  

 

Figures 58 and 59 show the forecast fit to the in-sample data of the study whilst Figure 60 

illustrates the actual versus simulated price trajectories of the Markov Regime-Switching 

models with spikes distributed both normally and log-normally. The empirical evidence of 

modelling with Mean-Reverting and Jump-Diffusion models shows that the jump component 

of this continuous-time model fails to capture the magnitude and timing of spikes in the 

electricity price series. Simulations based on this continuous-time specification over the 90 day 

forecast horizon do not represent the true price paths of the electricity prices. It is also 

acknowledged that the forecast prices are bias estimators. 
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Figure 58 Markov Regime-Switching Model with Spikes Dist. as Gaussian (NSW) 

 
Source: Author’s calculations. 

Figure 59 Markov Regime-Switching Model with Spikes Dist. as Log-Gaussian for (NSW) 

 
Source: Author’s calculations. 
Figure 60 Actual versus Simulated Price Paths for NSW  

 

Source: Author’s calculations. 
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The models investigated in this chapter produce estimates for transition probabilities that can 

be interpreted according to market behaviour. Simulated trajectories show similarity with real 

price data. However, it is found that the number of price spikes or extreme events produced by 

simulations of the estimated models is higher than what could be observed in real price data.  

 

In the next section, a formal evaluation of the forecasting performance of the Markov Regime-

Switching model is presented. The purpose of the next section is to see if the Markov Regime-

Switching model’s forecast errors are within reasonable limits or whether these errors are too 

large. 

 

EVALUATION OF FORECAST PERFORMANCE 

The following discussion evaluates the forecasting performance of the Markov Regime-

Switching models. The purpose of this section is to see if this model’s forecast errors are within 

the reasonable limit of expectations or whether these errors are unreasonably large and require 

an improvement in the statistical models and processes. The models built in this section possess 

two regimes; base regime and spike regime. The probabilities to stay in one regime or to move 

from one regime to another were derived. 

 

To formally assess the accuracy of the forecast values generated by the mean-reverting jump-

diffusion model, forecast accuracy statistics are produced for each region of the NEM in a 

similar fashion to previous sections.  

 

The forecast performance measures are Mean Error (ME), Mean Absolute Error (MAE), Mean 

Squared Error (MSE), Root Mean Square Error (RMSE), Mean Percentage Error (MPE), Mean 

Absolute Percentage Error (MAPE) and Theil’s U. Although, there are a number of forecast 
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accuracy measures produced here, the following discussion is based on the RMSE as this is 

focused on large errors.  

 

As electricity prices spike and revert to long-run mean levels quickly, the forecast values 

generated by the Markov Regime-Switching models are subject to large errors. It is important 

to note that RMSE is the most widely used measure in the literature for its statistical properties 

as it places a greater penalty on large forecast errors than the MAE. 

 

The empirical analyses of the models in terms of forecast performance provide encouraging 

results. As is seen ion Table 20, the models generally provide better RMSE values compared 

to other SDE based models examined in this study. The model with Gaussian spikes has RMSE 

of 0.43 for NSW, 0.54 for VIC, 0.5 for QLD, 0.52 for SA and 0.61 for TAS regions. These 

RMSE values are generally better than previously examined continuous-time models.  

 

The actual improvements in forecast performance emerge with the modelling of the spikes 

process with Log-Gaussian distribution. The Markov Regime-Switching model with Log-

Gaussian spikes provide RMSE of 0.36 for NSW, 0.31 for VIC, 0.46 for QLD, 0.5 for SA and 

0.61 for TAS. These values are significant improvements in forecast accuracies when 

compared to the Markov Regime-Switching model with Gaussian spikes and all other 

previously examined continuous-time models. It is important to note that the main aim of the 

simulated models in this thesis is to minimise the variance of the expected mean values. The 

Markov Regime-Switching specifications so far does this more effective than previously 

examined continuous-time models as measured by RMSE. 
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Table 20 Forecast Accuracy Statistics for Markov Regime-Switching Model 

 NSW VIC QLD SA TAS 

 Modeling with Log-Gaussian spikes 

Mean error -0.17439 -0.22096 -0.38398 -0.25533 -0.33779 

Mean square error 0.13165 0.09748 0.21570 0.25499 0.37934 

Root mean square error 0.362846 0.312226 0.464438 0.504971 0.61591 

Mean absolute error 0.26592 0.26503 0.38397 0.32826 0.48248 

Mean percentage error -1.96315 -7.13073 -14.4449 -37.8101 -11.7423 

Mean absolute percentage error 2.36153 8.26027 14.4449 39.54846 14.2447 

Theil’s U 0.05274 0.04566 0.07156 0.07239 0.08688 

 Modelling with Gaussian spikes 

Mean error -0.29777 -0.33613 -0.44163 -0.29947 -0.33188 

Mean square error 0.19280 0.29653 0.25724 0.27763 0.38190 

Root mean square error 0.43909 0.54455 0.50718 0.52690 0.61798 

Mean absolute error 0.37268 0.37107 0.44162 0.36173 0.48125 

Mean percentage error -9.61508 -10.634 -16.2979 -39.3879 -11.586 

Mean absolute percentage error 11.07722 11.51137 16.29794 40.86051 14.1878 

Theil’s U 0.06270 0.07811 0.07747 0.07506 0.08725 

Source: Author’s calculations. 

 

Comparison of these models’ forecast accuracy with the benchmark model however indicates 

that the benchmark model outperforms Markov Regime-Switching specifications for each 

market region of the NEM measured by root mean square errors (RMSE). The AR-GARCH 

model used in this study has RMSE scores of 0.328 for New South Wales (NSW), 0.238 for 

Victoria (VIC), 0.336 for Queensland (QLD), 0.475 for SA and 0.605 for Tasmania (TAS).  

 

Markov Regime-Switching model fully accounts for the high volatility, mean-reversion and 

spike-prone behaviour that is so characteristic of electricity prices in NEM. A number of salient 
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features are found in this model and these are useful for understanding the price dynamics in 

NEM. First, the probability of a price spike on any particular day ranges between two per cent 

to nearly eight per cent in separate regions of NEM depending on the model specifications. 

Second, price spikes account for much of the volatility in electricity spot prices. Volatility 

measures in base regimes are actually quite low albeit varies between the regions of NEM and 

the specific Markov Regime-Switching specification considered. These volatilities seem to 

reflect the marginal cost of production. Third, there is great variation in the magnitude of spikes 

in NEM, with spikes being generally largest in the SA and smallest in the QLD regions.  

 

The forecasting of electricity prices in NEM with Markov Regime-Switching model in this 

chapter is restricted to a simple specification for the base regime process. The base regime is 

modelled with a mean-reverting specification with constant variance. Several studies like 

Janczura and Weron (2010) highlight the importance of more complex specifications. 

Furthermore, the seasonalities prevalent in the electricity price series in NEM makes the 

incorporation of time varying transition probabilities a necessary property of the Markov 

Regime-Switching models.   
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CHAPTER 10 -MODELLING ELECTRICITY PRICES WITH EVT AND 
COPULA FUNCTIONS 

Electricity spot prices are characteristically non-Gaussian. Importantly they are among the 

most volatile commodities in the world as electricity cannot be stored, has limited 

transportability and has restricted arbitrage transactions.  Previous investigations, presented in 

earlier chapters, into modelling Australian electricity prices are generally limited in scope as 

they have primarily considered techniques that are characterised either by Gaussian 

assumptions or ignored the price dependencies amongst the interconnected regions of the 

National Electricity Market (NEM).  

 

In this chapter this shortfall is addressed by using Extreme Value Theory (EVT) and Copula 

functions. The approach used in this chapter models electricity prices in NEM with EVT and 

generates price forecasts using a Copula method.  

 

EVT shifts the focus to the heavy-tailed characteristics of electricity prices whereas Copula 

functions are suitable to generate multivariate forecast values as they reflect the dependencies 

present in electricity prices within the NEM. Essentially, the model developed in this chapter 

has two components: 

1. Application of EVT to wholesale electricity prices 

2. Simulation of the EVT treated model with Copula functions 

 

As noted in Chapter 2, electricity in NEM is subject to transfers between the regions of the 

NEM (integrated electricity organisations are able to service their customers with electricity 

produced from different regions of the NEM) and this is believed to influence price formation. 

NEM consists of separate but interconnected regions, meaning wholesalers located in a specific 

region can import and/or exports loads from other regions of the NEM. In theory, a wholesaler 
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can purchase electricity from generators located in other regions when there is high demand in 

their region or when the prices are lower in other regions. This arrangement naturally implies 

interdependencies in electricity prices between the regions of the NEM. 

 

The following sections demonstrate the need for a non-linear electricity price modelling 

approach that takes into account the price interdependencies between the regions of the NEM. 

Then, a brief introduction to EVT and copula functions is provided separately followed by an 

empirical investigation of electricity price modelling with EVT and Copula functions. Lastly, 

findings are discussed along with future research directions.   

 

INTRODUCTION 

Price Interrelations and Non-Linearity in NEM  
Dependence structure of price series in NEM 

NEM comprises five interconnected regions with major generation and demand centres. 

According to the Australian Energy Management Organisation (AEMO), interconnectors50 

import electricity into a region when demand is higher than can be met by local generators, or 

when the price of electricity in an adjoining region is low enough to displace the local supply.  

 

Figure 61 shows NEM’s interregional trade relationships. The import and export data covers 

the period from 1998-99 to 2008-09. The left axis shows the imported/exported quantity of 

electricity as a proportion of total electricity demand for all the regions of the NEM.  

 

As is seen in Figure 61, the New South Wales (NSW) region is a net importer of electricity. 

The NSW region imported over 10 per cent of its electricity requirements from 2002-03 to 

                                                           
50 High-voltage transmission lines that transport electricity between adjacent NEM regions. 



  

213 
 

2006-07, but this rate fell to around seven per cent in 2007-08 and 2008-09. This high level of 

import dependency is due to the fact that the region relies on local base-load generation, and 

has limited peaking capacity at times of high demand. This naturally puts upward pressure on 

prices in peak periods, making imports a competitive alternative. 

Figure 61 Intra-Regional Electricity Trade in NEM 

 
Source: State of the Energy Market 2009, Australian Energy Regulator 

 

The Victorian region is a net exporter of electricity because it has a substantially low cost base-

load capacity. In 2008-09, Victoria’s net electricity exports were equivalent to around 8 per 

cent of the region’s consumption.  

 

Queensland’s region installed capacity exceeds its peak demand for electricity by around 3400 

MW, making it a significant net exporter (AER, 2009). As Figure 60 shows net exports from 

Queensland rose steadily from 2001-02, reaching around 13 per cent of the state’s electricity 

consumption in 2006-07. However, this figure fell to slightly below 10 per cent of consumption 

in 2008-09.  
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South Australia on the other hand historically is the most import dependent region in the NEM, 

which imported over 25 per cent of its energy requirements in the period of 1998-99 to 2008-

09. This reflects the region’s relatively higher fuel costs, which results in high cost generation. 

New investment in generation (mostly in wind capacity) has significantly reduced South 

Australia’s net imports since 2005-06 (AER, 2009). The state was a net exporter for the first 

time in 2007-08, but recorded net imports of around two per cent of electricity consumption in 

2008-09.  

 

Lastly, Tasmania has been a net importer since its interconnection with the NEM in 2006. It 

imported over 25 per cent of its electricity requirements in 2008-09, partly because drought 

constrained its ability to generate hydroelectricity (AER, 2009). 

 

This physical interconnection between the regions of the NEM suggests price and volatility 

interrelationships. Efficiency and effectiveness of inter-regional trade in facilitating energy 

price risk management has been a long standing focus for the NEM participants. The issues 

raised in relation to this aspect of energy trading within the NEM are complex due to the 

interrelationship between the physical market and operation of financial markets. Due to the 

regional structure of the NEM, inter-regional risks are assumed by market participants 

managing their load risks or using their contracting positions in one region to support retail 

activities in another region.  

 

There are various risk management products and techniques available to NEM market 

participants to manage inter-regional risks i.e. inter-regional swaps and options, or intra-

regional hedges. Energy trading entities within the NEM operate highly structured multi-region 

portfolios that utilise a combination of swaps and options to manage dynamically changing 
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inter-regional risk arising from price changes within the NEM (KPMG, 2006). Therefore, it is 

believed that a modelling approach that fails to capture the price inter-dependencies amongst 

the separate regions of the NEM would be subject to incorrect model specification. It is 

noteworthy to reiterate that the price differences between regions can arise due to numerous 

factors including: 

 Generator (unplanned) and transmission outages; 

 Physical limitations of the interconnecting links between regions; and 

 Generators’ bidding behaviour and interventions that affect the spot price setting 

process. 

 

Correlation Analysis of Electricity Price Series in NEM 

The following table demonstrates the existing dependence structure of price series between the 

regions of the NEM measured with Pearson correlation coefficients.  The greatest coefficients 

are prevalent in between the regions of New South Wales (NSW) and Queensland (QLD) 

(0.751), NSW and Victoria (VIC) (0.703) and South Australia (SA) and VIC (0.776). These 

coefficients are found to be significant at one per cent significance.  

 

This correlation structure is in line with the findings of Higgs (2009) who examined the inter-

relationships of electricity prices and price volatility in the NEM regions of NSW, QLD, SA 

and VIC. This study examined eight years of half-hourly data and consisted of three different 

conditional correlation multivariate GARCH models. It demonstrated that price and price 

volatility inter-relationships in the regions of the NEM are best described by the dynamic 

conditional correlation multivariate GARCH specification. 
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Table 21 Pearson Correlation Coefficients 

 NSW QLD SA TAS VIC 

NSW 1.000 .751** .490** .455** .703** 

QLD  1.000 .389** .383** .587** 

SA   1.000 .461** .776** 

TAS    1.000 .574 

VIC     1.000 
Source: Author’s calculations. 

 

Importantly, Higgs (2009) observed that higher conditional correlations exist between the well-

connected markets, namely: New South Wales and Queensland; New South Wales and 

Victoria; and South Australia and Victoria. An important conclusion reached by this study was 

that the interconnectivity between the regions of the NEM have fostered a nationally integrated 

and stable spot electricity market, thus indicating that the interconnected markets are 

informationally efficient.  

 

Further on the dependence structure of the price series, Table 2251 demonstrates the cross 

correlations at different lags between the interconnected regions of the NEM, namely between 

the regions of New South Wales and Queensland; New South Wales and Victoria; and South 

Australia and Victoria. Standard errors are derived based on the assumption that the series are 

not cross correlated and that one of the series is white noise. These cross correlations at 

different lags between the highly interconnected markets of the NEM further provide evidence 

that electricity prices amongst the regions of the NEM tend to be interconnected supporting the 

views of Higgs (2009). In all of the pairs, the greatest correlation is observed on the day (lag 

0). This correlation declines as the lags increase. 

 

 

 

 

 

                                                           
51 The graphical representation of this table is also provided in the Appendix 11. 
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Table 22 Cross Correlations 

  Series Pair: SA with VIC Series Pair: NSW with QLD Series Pair: NSW with VIC 

Lag Cross Correlation  Cross Correlation  Cross Correlation  

7 0.406  0.33  0.426  

6 0.354  0.324  0.377  

5 0.326  0.27  0.343  

4 0.342  0.277  0.371  

3 0.349  0.299  0.413  

2 0.395  0.355  0.481  

1 0.547  0.506  0.633  

0 0.751  0.776  0.703  

1 0.58  0.578  0.521  

2 0.423  0.376  0.41  

3 0.388  0.333  0.374  

4 0.368  0.3  0.4  

5 0.355  0.301  0.406  

6 0.401  0.345  0.401  

7 0.427  0.362  0.409  

Source: Author’s calculations. 

 

Correlation coefficients as presented above (between the prices of all regions of the NEM) and 

the recent literature show that there is a degree of price interdependency between the regions 

of the NEM. Therefore, electricity price forecast models that take this price interdependency 

into consideration are likely to overcome the incorrect model specification issues as compared 

to the price forecast models that ignore that price interdependencies exist within the NEM.  

 

Furthermore, understanding the pricing relationships between the regions of the NEM would 

enable better understanding of the dynamics of electricity pricing. This is also likely to throw 

light on the efficiency of pricing in the NEM. 

 

Non-Linearity of Electricity Prices in NEM 

An examination of non-linearity in electricity prices was performed by Wild et al. (2010) who 

applied Portmanteau correlation, bicorrelation, and tricorrelation tests to detect nonlinear serial 

dependence in electricity price series in the NEM. They found strong evidence of non-linear 

serial dependence in electricity prices.  
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The finding that non-linearity was present could rule out many classes of linear models that are 

widely applied to electricity price modelling i.e. mean-reverting models.  It is argued that the 

presence of third and fourth-order non-linear serial dependence in electricity prices makes 

models that employ a linear structure, or assume a pure noise input, such as the mean-reverting 

jump-diffusion models problematic. This dependence structure violates both the normality and 

Markovian assumptions underpinning conventional stochastic differential equation (SDE) 

based models. 

 

INTRODUCTION TO EXTREME VALUE THEORY (EVT) 

Extreme Value Theory is a powerful and fairly robust framework to study the tail behaviour of 

a distribution asymptotically52. The main purpose of this theory is to provide asymptotic 

models which can model the tails of a distribution (Bystrom, 2005). EVT reduces the focus 

from modelling the whole distribution to modelling of the tail behaviour. Hence the symmetry 

assumption of the Gaussian distribution is examined directly by estimating the left and right 

tails separately. A critical assumption of the EVT is that extreme prices are independently and 

identically distributed (Nystrom and Skoglund, 2002).  

 

Fisher and Tippett (1928) were pioneers of EVT followed by Gnedenko (1943), Gumbel 

(1958), Balkema and de Haan (1974) and Pickands (1975). Most recently, Embrechts et al. 

(1997), Reiss and Thomas (1997), Beirlant et al. (1996) and McNeil and Frey (2000) applied 

EVT to insurance problems. Bystrom (2005) applied EVT to investigate the tails of the price 

distribution of hourly electricity spot prices in NordPool in an attempt to capture the extreme 

price behaviour better than conventional electricity price model. Rozario (2002) derived Value-

at-risk (VaR) for Victorian half-hourly electricity returns using a threshold based EVT model 

                                                           
52 Asymptotic theory is a generic framework for assessment of properties of estimators and statistical tests. Within 

this framework it is typically assumed that the sample size grows indefinitely, and the properties of statistical 

procedures are evaluated in the limit as sample size approaches to infinity. EVT has a fundamental role when 

modelling the maxima of a random variable. This role is similar to the role of Central Limit Theorem when 

modelling the sums of random variables. In both cases, the theory states what the limiting distributions are. 

http://en.wikipedia.org/wiki/Estimator
http://en.wikipedia.org/wiki/Statistical_test
http://en.wikipedia.org/wiki/Sample_size
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whereas Chan and Gray (2006) used EVT to measure Value at Risk for daily spot electricity 

prices in five different electricity markets around the globe including Victoria.  

 

There are two commonly used ways in identifying extremes in the data; block maxima and 

threshold methods. The limit law for the block maxima with the size of the subsample is given 

by the following theorem of Fisher and Tippett (1928) and Gnedenko (1943); 

 

Let (𝑋𝑛) be a sequence of 𝑖. 𝑖. 𝑑. random variables. If there exists constants 𝑐𝑛 > 0, 𝑑𝑛 ∈ 𝑅 and 

some non-degenerate distribution function H such that 
𝑀𝑛−𝑑𝑛

𝑐𝑛
 

𝑑
→  𝐻, then H belongs to one of 

following three extreme value distributions: 

 

Frechet, Φ𝛼(𝑥) = {
0, 𝑥 ≤ 0

𝑒−(−𝑥)−𝛼, 𝑥 > 0
                              (54) 

 

Weibull, Φ𝛼(𝑥) = {𝑒−(−𝑥)𝛼, 𝑥 ≤ 0
1, 𝑥 > 0

                             (55) 

 

Gumbel, Ʌ(𝑥) = 𝑒−(−𝑥)−𝛼, 𝑥 ∈ 𝑅                              (56) 

 

for 𝛼 > 0 

 

Von Mises (1936) and Jenkinson (1955) showed one-parameter generalisations of these 

standard distributions as; 

 

𝐻𝜉(𝑥) = {
𝑒−(1+𝜉𝑥)−1/𝜉

, 𝑖𝑓 𝜉 ≠ 0

𝑒−𝑒−𝑥
, 𝑖𝑓 𝜉 = 0

                             (57) 

 

This generalisation is known as Generalised Extreme Value (GEV) distribution and obtained 

by setting 𝜉 = 𝛼−1 for the Frechet distribution, 𝜉 = −𝛼−1 for the Weibull distribution and by 

interpreting the Gumbel distribution as the limit case for 𝜉 = 0. 

Secondly, the Peaks-over-Threshold (POT) method is a threshold method where in the absence 

of a known distribution function (𝐹) of a random variable (𝑋), the interest lies in estimating the 

distribution function 𝐹(𝑢) of values of x above a certain threshold (𝑢).  
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The distribution function 𝐹(𝑢) is called the Conditional Excess Distribution Function (CEDF) 

and is defined as; 

 

𝐹𝑢(𝑦) = 𝑃(𝑋 − 𝑢 ≤ 𝑦|𝑥 > 𝑢), 0 ≤ 𝑦 ≤ 𝑥𝐹 − 𝑢                           (58) 

 

where X is a random variable, u is a given threshold, 𝑦 =  𝑥 − 𝑢 are the excesses and 𝑥𝐹 ≤

∞ is the right end point of 𝐹. This can be written in terms of 𝐹 as; 

 

𝐹𝑢(𝑦) =
𝐹(𝑢+𝑦)−𝐹(𝑢)

1−𝐹(𝑢)
=

𝐹(𝑥)−𝐹(𝑢)

1−𝐹(𝑢)
                             (59) 

 

The realizations of the random variable 𝑋 lie mainly between 0 and 𝑢 and therefore the 

estimation of F in this interval is straightforward. The estimation of the portion 𝐹(𝑢) however 

might be difficult as there are in general very few observations in this area. Similar to the block 

maxima method, which provides a choice of an optimal block length, the POT method relies 

on a reasonable choice of threshold.  

 

A threshold value that is too low and the asymptotic theory is no longer met, too high a 

threshold value and one does not have enough data points to estimate the parameters in the 

excess distribution (Bystrom, 2005). 

 

EVT provides a powerful result about the CEDF. This is stated by the following theorem of 

Pickands (1975), Balkema and de Haan (1974); 

 

For a large class of underlying distribution function (𝐹) the conditional excess distribution 

function 𝐹𝑢(𝑦), for a large 𝑢, is well approximated by 𝐹𝑢(𝑦) ≈ 𝐺𝜉,𝜎(𝑦), 𝑢 → ∞. 

 

where 𝐺𝜉,𝜎(𝑦) = {
1 − (1 +

𝜉

𝜎
𝑦)

−1
𝜉⁄

 𝑖𝑓 𝜉 ≠ 0 

1 − 𝑒
−𝑦

𝜎⁄               𝑖𝑓 𝜉 = 0

                 (60) 

for 𝑦 ∈ [0, (𝑥𝐹 − 𝑢)]𝑖𝑓 𝜉 ≥ 0 and 𝑦 ∈ [0, −
𝜎

𝜉
] 𝑖𝑓 𝜉 < 0. 𝐺𝜉,𝜎 is called the Generalised Pareto 

Distribution (GPD). 
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AN INTRODUCTION TO COPULA FUNCTIONS 

Copulas are functions that join multivariate distributions53 to their univariate margins. Copulas 

are useful when the form of the marginal distributions54 are known (as in the case of electricity 

prices in the NEM), but the joint distributions are not. Copulas allow the creation of a joint 

distribution, permitting for modelling of dependence between electricity prices in all the 

regions of the NEM.  

 

A d-dimensional copula is a d-dimensional distribution function on [0,1]𝑑 with standard 

uniform marginal distributions. Sklar’s Theorem states that 𝐹1 …𝐹𝑑 can be written as;  

 

))(),...,((),...,( 111 ddd xFxFCxxF 
                  (61)

 

 

for some copula 𝐶, which is uniquely determined on [0,1]𝑑 for distributions 𝐹 with absolutely 

continuous margins (Nelsen, 1999). Conversely any copula 𝐶 may be used to join any 

collection of univariate distribution functions 𝐹1 …𝐹𝑑 using the above equation to create a 

multivariate distribution function 𝐹 with margins 𝐹1 …𝐹𝑑 (Demarta and McNeil, 2005).  

 

Copula approach to modelling of multivariate density functions have a number of advantages 

over traditional approaches based on the representation of such probabilities as 𝐹(𝑥, 𝑦). First 

of all, copulas are flexible, because they allow fitting the dependence structure separately from 

the marginal distributions. This is a superior modelling strategy, especially in situations where 

the dependence structure is the interest. With traditional representations, by contrast, one 

                                                           
53 Given two random variables X and Y that are defined on the same probability space, the joint distribution for 

X and Y defines the probability of events defined in terms of both X and Y. In the case of only two random 

variables, this is called a bivariate distribution, but the concept generalizes to any number of random variables, 

giving a multivariate distribution. The equation for joint probability is different for both dependent and 

independent events. 
54A marginal density ("marginal distribution" in the discrete case) is found by integrating (or summing in the 

discrete case) over the domain of one of the other variables in the joint distribution. 

http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Probability_space
http://en.wikipedia.org/wiki/Marginal_density
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cannot get at the dependence structure without also having to make assumptions about marginal 

distributions, and there is the related problem that dependence parameters are sometimes 

present in the marginals.  

 

Furthermore, Copula functions allow separating the modelling of dependence from the 

modelling of the marginals to fit different marginal distributions to different random variables. 

By comparison, traditional approaches require fitting the same marginals to all random 

variables.  

 

Last but not least, copula approaches also make for greater flexibility as they provide greater 

choice over the type of dependence structure (Dowd, 2008). There are a number of Copula 

functions identified and used in modelling. Some of the most commonly used copulas are; 

Gaussian copula, Student’s t-copula, Clayton copula, Frank copula, and Gumbel copula.  

 

Student’s t-copula captures the fat-tailed features of the price series therefore it is quite suitable 

in modelling electricity prices in the NEM. The multivariate t-copula is defined as; 

 

𝐶𝑝(𝑢, 𝑣) = 𝑇𝑝,𝑛(𝑡𝑛
−1(𝑢), 𝑡𝑛

−1(𝑣))                             (62) 

and 

 

 𝑐𝑝(𝑢, 𝑣) =
1

√1−𝑝2

𝛤(
𝑛+2

2
)𝛤(

𝑛

2
)(1+

1

𝑛
𝜓Ω−1𝜓)

−
𝑛+2

2

(𝛤(
𝑛+2

2
))2 ∏ (1+

1

𝑛
𝜓𝑖

2)
−

𝑛+1
22

𝑖=1

                            (63) 

 

where 𝜓 = (𝑡𝑛
−1(𝑢), 𝑡𝑛

−1(𝑣))′ and 𝑇𝑝,𝑛 is the bivariate Student-t cumulative distribution 

function with n degrees of freedom and correlation 𝑝. 

 

While Archimedean (Clayton, Frank or Gumbel) copulas are calculated over a closed-form 

solution and do not need to be represented by an application of multivariate distribution using 
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Sklar’s theorem.  Elliptical (Gaussian or Student-t) copulas are derived via simulations of these 

multivariate distributions. A caveat of elliptical copulas is that the upper and lower tail 

dependence, being informative on joint extreme realizations, is identical, due to their radial 

symmetric shape. In addition, a Gaussian copula has no tail dependence at all (Bradley and 

Taqqu, 2003), and this is the main argument against its use in this study.  

 

Furthermore, a number of studies such as Mashaal and Zeevi (2002) and Breymann et al. (2003) 

showed that the empirical fit for the Student-t is superior to the Gaussian copula as Student-t 

captures the dependent extreme values better. A Student-t has uniform marginal distributions 

similar to a Gaussian copula and the rank correlations in a t-copula are also the same for a 

Gaussian copula. However, Student-t captures the dependence structure better even though its 

components have the same ranking correlation with the Gaussian copula. 

 

MODELLING ELECTRICITY PRICES WITH EVT IN NEM 

The development of the model characterised by EVT in this section follows a similar procedure 

as to Bystrom (2005) who investigated the tails of electricity spot returns from NordPool. 

Bystrom (2005) pre-filtered the returns data from NordPool with AR-GARCH model to 

achieve ... dii  process before applying peaks-over-thresholds (POT) method to model the 

electricity return series.  

 

Electricity prices in the NEM are characterized by volatility clustering and therefore a set of 

individually identically distributed ... dii  residuals firstly need to be generated before applying 

EVT to data empirically. This procedure will meet an important assumption of EVT.  



  

224 
 

The dependency structure of the price series in each region of the NEM as indicated by the 

auto-correlation functions55 (ACF) of the prices and squared prices reveals a degree of auto-

correlation and persistence in variance. These configurations suggest that a GARCH approach 

is an appropriate means of conditioning the data to yield near ... dii  residuals before applying 

EVT to the price series. Furthermore, an exponential GARCH (EGARCH) specification is 

thought to be a suitable specification in filtering the electricity prices in NEM. Higgs and 

Worthington (2005) earlier identified asymmetric volatility response in electricity prices in the 

NEM. They pointed out that the volatility tends to rise in response to ‘good news’ for traders 

(proxied by positive price spikes) and fall in response to ‘bad news’ (negative spikes)’, which 

is a perverse asymmetry that runs counter to the effects generally observed in conventional 

financial markets. This leverage effects can be captured by an EGARCH specification. 

 

Filtering Residuals via AR-EGARCH 

Parameter estimation of AR-EGARCH model 

The following table summarizes the parameter estimates that pertain to the AR-EGARCH 

model with t-distributed errors. The rationale for this is due to the fact that the empirical 

evidence rejects the normality assumption of electricity prices (Bystrom, 2000).  

 
Table 23 Parameter Estimates for the AR-EGARCH model 

Conditional mean parameters of the AR-EGARCH model 

 NSW QLD SA TAS VIC 

C 0.515 0.5321 0.6608 0.3324 0.5507 

α 0.8481 0.8372 0.8111 0.9095 0.8396 

Conditional variance parameters of the AR-EGARCH model 

ω -1.0723 -0.4011 -0.5206 -0.3613 -1.2227 

Β 0.5015 0.7301 0.4837 0.8152 0.4866 

α 0.5899 0.7062 1.0508 0.7445 0.6570 
  0.3237 0.371 -0.0168 -0.0136 -0.0205 

Source: Author’s calculations. 

                                                           
55 See Appendix 11 for the ACFs. 
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Both mean and conditional variance parameters are positive and some of these parameters are 

not significantly lower than one. These findings are in line with previous study of Bystrom 

(2005). 

 

Estimated parameters of the model further demonstrate that there is strong evidence of a 

GARCH effect in all regions of the NEM. Moreover, estimate of the leverage parameter 

suggests a strong positive leverage effect for the regions of NSW (0.3237), QLD (0.371) and 

negative leverage effects for SA (-0.0168), TAS (-0.0136) and VIC (-0.0205). The evidence of 

this inverse leverage effect indicates that the asymmetry parameter of the AR-EGARCH 

process was positive and significant. This indicates that positive shocks to prices amplify the 

conditional variance of the process more so than negative shocks.  

 

Application of AR-EGARCH 

To produce a series of ... dii observations, firstly, fitting a first order autoregressive model to the 

conditional mean of the prices of each region is performed as; 

 

                   (64)
 

 

where 
p ,...,1
are the parameters of the model, c is constant and t is the white noise with 

zero mean and variance 2

 . 

 

Secondly, an EGARCH model to the conditional variance is also fitted as;  

 

)log())(()log( 2

1111

2

  ttttt zzEz 
                         (65)

 

 

ttXcAR    )1()1(



  

226 
 

where 1 tttz   denotes the standardized residuals and   is the leverage parameter. 

The first order autoregressive component of the model compensates for autocorrelation, while 

the EGARCH component compensates for heteroskedasticity present in the price series. Then, 

modelling of the standardized residuals of each series is performed as a standardized Student’s 

t-distribution to compensate for the fat tails associated with electricity prices in the NEM.  

 

This filtering process allows for asymmetries in the relationship between prices and volatility. 

In particularly for 0  positive shocks will have a bigger impact on future volatility than 

negative shocks of the same magnitude. By parameterising the logarithm of the conditional 

variance as opposed to the conditional variance, the EGARCH model also avoids complexities 

from having to ensure that the process remains positive. However, this logarithmic 

transformation complicates the construction of unbiased forecasts for the level of future 

variances as pointed out by Bollerslev (1986).  

 
Table 24 Summary Statistics for the Raw and Standardized Residuals 

Summary statistics on the AR-EGARCH residuals 

 NSW QLD SA TAS VIC 
Median -0.00129 0.00502 -0.05589 -0.0147 -0.03497 
Mean 0.02483 0.03366 -0.00136 -0.00331 -0.00167 
Standard deviation 0.01097 0.46964 0.01339 0.00950 0.00975 
Skewness 0.81734 0.62135 2.99437 0.34199 1.96076 
Kurtosis 20.83138 19.0961 21.82069 11.6469 22.67336 
Ljung-Box Q(7) 127.851 145.534 92.460 131.65 103.733 
Ljung-Box Q(15) 163.292 164.211 126.809 295.728 194.198 
Ljung-Box Q(24) 200.651 190.041 154.271 389.694 251.812 

Summary statistics on the standardized AR-EGARCH residuals 
 NSW QLD SA TAS VIC 
Median -0.0287 0.008912 -0.11382 -0.0299 -0.11922 
Mean 0.12212 0.11086 -0.01326 -0.01556 -0.00998 
Standard deviation 0.94243 0.75939 0.83371 1.01040 1.00588 
Skewness 4.80218 2.73582 3.26500 0.06520 3.07418 
Kurtosis 52.29163 45.17197 23.49221 16.99184 23.11349 
Ljung-Box Q(7) 77.505 52.555 107.731 178.345 132.883 
Ljung-Box Q(15) 119.888 78.8111 186.95 406.316 266.359 
Ljung-Box Q(24) 181.368 125.968 239.843 505.604 354.271 

Source: Author’s calculations. 
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The filtering process developed aims to provide the data that meets the assumptions of EVT, 

mainly the precondition that the data should be  𝑖. 𝑖. 𝑑. before the application of EVT. Summary 

statistics of the AR-EGARCH filtered residuals are shown in Table 24 for both non-

standardised and standardised residuals. The standardised residuals are better suited than the 

raw residuals for checking the assumptions on the random errors as they are designed to 

overcome the problem of different variances of the raw residuals.  

 

Ljung-Box Q56 statistics at 0.1 significance levels are also reported in the table above. The test 

results suggest the acceptance of null hypothesis of model adequacy at significance level of 

0.1. The hypothesis being tested in Ljung-Box Q is that the residuals have no autocorrelation. 

As is seen from the table on summary statistics of both raw and standardized residuals, 

standardizing the residuals caused declines in the test statistic’s value for the regions of NSW 

and QLD whereas it increased the value of the test statistic in the other regions of the NEM. 

Ljung-Box Q test at different lags indicate that there is still some degree of autocorrelation 

present in the data. The standardisation of the residuals takes care of the issue of different 

variances, but nothing changes with regard to autocorrelation between the residuals. It can be 

seen that the dependence between the standardised residuals is exactly the same as the 

autocorrelation between the raw residuals.  

                                                           

56 Ljung-Box Q is a test of the null hypothesis that the ACF does not differ from zero, up to lag k. It is evaluated 

as a chi-square with k - m degrees of freedom, where k is the number of lags examined and m is the number of 

parameters estimated. More formally; 

𝑄 = 𝑁(𝑁 + 2) ∑
𝑟𝑘

2(𝜀)

𝑁−𝑘

𝐿
𝑘=1   

where N is the sample size, L is the number of autocorrelations included in the statistics, and 𝑟𝑘
2 is the squared 

sample autocorrelation of residual series at lag k. Under the null hypothesis of model accuracy, the test statistics 

are asymptotically distributed.  
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In light of this remaining autocorrelation (EVT pre-condition that the data should be 𝑖. 𝑖. 𝑑. ), a 

robust method for testing independence is required before proceeding with the application of 

EVT to the electricity price series in the NEM. Appendix 7 describes the Brock-Dechert-

Scheinkman (BDS) test for independence, as described in Brock et al. (1996).  

 

In short, the BDS test is a portmanteau test for time based dependence in a series and can be 

used for testing against a variety of possible deviations from independence including linear 

dependence, non-linear dependence, or chaos. This test can be applied to a series of estimated 

residuals to check whether the residuals are independently and identically distributed.  BDS 

test rejects that the series is 𝑖. 𝑖. 𝑑.. The rejection of 𝑖. 𝑖. 𝑑. standardised residuals presents 

problems when applying EVT to electricity price series as one of the important assumptions of 

the EVT is violated. Therefore, the findings of this chapter will be interpreted cautiously. 

Filtering and standardising the residuals from each series resulted in near zero-mean, unit 

variance, and near ... dii  series upon which EVT estimation of the sample Cumulative 

Distribution Function (CDF) tails is based. This desirable but not perfect process can be 

examined in Appendix 8 that compares the model residuals and the corresponding conditional 

standard deviations filtered from the raw prices for all regions of the NEM. 

 

Figures 62 to 71 display the ACFs of the standardized residuals to the corresponding ACFs for 

the series. These graphical representations reveal that the standardized residuals are now closer 

to be approximately ... dii and suitable for EVT modelling.  

 

However, one realises that while the residuals seem statistically uncorrelated they are not 

identically distributed and a closer visual inspection of the figures shows that the residuals are 

not independent and identically distributed through time.  
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Figure 62 Sample ACF of Standardised Residuals (NSW) 

 
Source: Author’s calculations. 
Figure 63 Sample ACF of Squared Standardised Residuals (NSW) 

 
Source: Author’s calculations. 
Figure 64 Sample ACF of Standardised Residuals (QLD) 

 
Source: Author’s calculations. 
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Figure 65 Sample ACF of Squared Standardised Residuals (QLD) 

 
Source: Author’s calculations. 
Figure 66 Sample ACF of Standardised Residuals (SA) 

 
Source: Author’s calculations. 
Figure 67 Sample Autocorrelation Function of Squared Standardised Residuals for SA 

 
Source: Author’s calculations. 
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Figure 68 Sample ACF of Standardised Residuals (TAS) 

 
Source: Author’s calculations. 
Figure 69 Sample ACF of Squared Standardised Residuals (TAS) 

 
Source: Author’s calculations. 
Figure 70 Sample ACF of Standardised Residuals (VIC) 

 
Source: Author’s calculations. 
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Figure 71 Sample ACF of Standardised Residuals (VIC) 

 
Source: Author’s calculations. 

 

Application of POT to Residuals 

In applying EVT to the standardised residuals, the method adopted in this section is the Peak-

over-Threshold (POT) method following McNeil and Frey (2000). This method identifies 

extreme standardised residuals that exceed a chosen threshold of 10 per cent57 and models these 

extremes at each tail separately from non-extreme standardised residuals. This is in line with 

Chan and Grey’s (2006) findings such that exceedances aggregate approximately 10 per cent 

of the sample in Victorian daily spot electricity prices.  

 

However, it is important to note that there is a trade-off when choosing the size of the 

exceedances. If it is too small then the model will have too few observations in the tail resulting 

in large variance in estimators for the parameters in the Generalised Pareto Distribution (GPD) 

and if it is too large the fundamental model assumption of POT may be violated.  

                                                           
57 McNeil and Frey (2001) had chosen approximately 10 per cent of the sample as exceedances. This study also 

uses ten per cent as the chosen threshold. 
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More specifically, let u denote the threshold beyond which observations of z are considered 

exceedances. The scale of the exceedances then is given by uzy ii  , for
yNi ,...1 , where 

yN  is the total number of exceedances in the sample. The distribution of y, for a given threshold

u , is given by; 

 

)|Pr()( uzyuzyFu   
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                               (66)

 

 

This equation gives the probability that z exceeds the threshold u  by an amount no greater than 

y , given z exceeds u . Balkema and de Haan (1974) and Picklands (1975) showed that, for a 

sufficiently high u , )(yFu can be approximated by the Generalised Pareto Distribution (GPD), 

which is defined as; 
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where  and 0v are shape and scale parameters, respectively. 

 

Parameterisation of POT and GPD Fit 

The estimation of the parameters of the POT method is implemented by following Nystrom 

and Skoglund (2002) where given the exceedances in each tail; optimisation of the negative 

log-likelihood function is performed to estimate the shape and scale parameters of the GPD. It 
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is important to note that the maximum likelihood estimator is based on the assumption that the 

tail under consideration follows a GPD.  

 

The following table shows the maximum likelihood estimates of the shape and scale 

parameters, derived by fitting the GPD to the standardized residuals.  

 

Table 25 Tail Parameter Estimates of the GPD 

 NSW VIC QLD SA TAS 

 Upper tail parameters 
  0.5507 0.4450 0.4317 0.8074 0.3072 

v  0.5222 0.6024 0.533 0.3411 0.4964 

 Lower tail parameters 
  0.1016 0.0550 0.2366 0.2071 0.2869 

v  0.3202 0.4116 0.2134 0.2447 0.3835 

Source: Author’s calculations. 

 

As is seen, the shape parameters are positive in each region at both tails suggesting the 

standardized residuals are heavy tailed. When   is greater than zero then the distribution has 

heavy tails. For instance, Pareto and Student’s t distributions fall in this category. For normally 

distributed variables the tail shape parameter equals zero where the distribution has thin tails 

and an infinite number of existing moments. If it is smaller than zero, the distribution has a 

finite upper limit, and therefore no long tail. For example, the uniform distribution is bounded 

and has a negative tail shape parameter. 

 

Furthermore, the following graphs show the three distinct areas of the empirical cumulative 

distribution function (ECDF)58 of prices for each region of the NEM. The empirical distribution 

function is the CDF associated with the empirical measure of the sample.  

                                                           
58 The idea behind the empirical CDF is that it is a function that assigns probability to each of the observations in 

a sample. Its graph has a stair-step appearance. If a sample comes from a distribution in a parametric family (such 
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Figure 72 Empirical Cumulative Distribution Function (NSW) 

 
Source: Author’s calculations. 

Figure 73 Empirical Cumulative Distribution Function (QLD) 

 
Source: Author’s calculations. 

 

 

                                                           
as a Gaussian distribution), its empirical CDF is likely to resemble the parametric distribution. If not, its empirical 

distribution still gives an estimate of the CDF for the distribution that generated the data. 
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Figure 74 Empirical Cumulative Distribution Function (SA) 

 

Source: Author’s calculations. 

 

Figure 75 Empirical Cumulative Distribution Function (TAS) 

 

Source: Author’s calculations. 
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Figure 76 Empirical Cumulative Distribution Function (VIC) 

 

Source: Author’s calculations. 

 

As it was stated earlier, there are two approaches to fit the tail of a sample ECDF to one of the 

possible distribution functions. The first method relies on approximating a distribution from a 

block maxima series while the second method relies on sampling points from the data set that 

exceeds a certain threshold. This method is generally referred to as the POT method and is the 

method used in generating the ECDFs in this study. The ECDFs generated in this study provide 

a graphical representation of the probability distribution of a random vector without implying 

any prior assumption concerning the form of this distribution.  The Pareto tails at both the lower 

and upper ends and the non-parametric kernel-smoothed interior59 construct a composite semi-

parametric CDF for each region of the NEM. 

                                                           

59 Kernel smoothing is a non-parametric estimation method of the probability density function of a distribution. 

In dimension 1, the kernel smoothed probability density function 𝑝̂ has the following expression, where K is the 

univariate kernel, n the numerical sample size and (𝑋1, … , 𝑋𝑛) ∈ ℝ the univariate random sample with ∀𝑖 , 𝑋𝑖 ∈

ℝ ∶  

 𝑝̂(𝑥) =
1

𝑛ℎ
∑ 𝐾(

𝑥 − 𝑋𝑖

ℎ

𝑛

𝑖=1

) 
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A central motivation for computing probability distribution functions from observed data is to 

understand how the distribution implied by market prices differs from a theoretical distribution. 

As is known, if the normal linear model holds, the standardised residuals will have 

approximately Gaussian distributions and approximately 95 per cent of the standardised 

residuals should therefore be between -2 and +2, and almost all should be between -3 and +3. 

However, as the above ECDFs depicts, this is not the case for each market region of the NEM 

as standardised residuals take values from -10 to 16. This analysis further strengthens the 

existence of fat tail behaviour in electricity price series. 

 

Additionally, the figures in Appendix 10 assess the GPD fit for each region of the NEM, by 

plotting the empirical CDF of the upper tail exceedances of the residuals along with the CDF 

fitted by the GPD. The CDF of the GPD in these figures are parameterized as: 

 

𝐹(𝑦) = 1 − (1 +
 γ

β
)

−
1


                              (68) 

 

where γ ≥ 0, β > 0,  > −0.5 for exceedances (y), tail index parameter (zeta), and scale 

parameter (beta). 

 

                                                           
The kernel K is a function satisfying∫ 𝐾(𝑥)𝑑𝑥 = 1. Usually, K is chosen to be a unimodal probability density 

function that is symmetric about 0. The parameter h is called the bandwidth. In dimension    𝑑 > 1 , the kernel 

may be defined as a product kernel  𝐾𝑑, as follows where 𝑥 = (𝑥1, … , 𝑥𝑖) ∈ ℝ𝑑 :  𝐾𝑑(𝑥) = ∐ 𝐾(𝑥𝑗
𝑗=𝑑
𝑗=1 ) which 

leads to the kernel smoothed probability density function in dimension d, where  (𝑋1, … , 𝑋𝑛)  is the d-variate 

random sample which components are denoted  (𝑋𝑖 = 𝑋𝑖1, … , 𝑋𝑖𝑑) ∶ 

𝑝̂(𝑥)
1

𝑁 ∏ ℎ𝑗
𝑗=𝑑
𝑗=1

∑ 𝐾𝑑(
𝑥1−𝑋𝑖1

ℎ1

, … ,
𝑥𝑑 − 𝑋𝑖𝑑

ℎ𝑑

𝑁

𝑖=1

) 
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Although only 10 per cent of the standardised residuals are used, the fitted distribution closely 

follows the exceedances data, so the GPD model seems to be a good choice for modelling 

electricity spot prices in the NEM. 

 

SIMULATION OF THE EVT MODEL WITH COPULA FUNCTIONS 

The literature has earlier examples that pointed out the weaknesses in traditional Monte Carlo 

simulations in modelling electricity prices. For example, Lucia and Schwartz (2002) applied 

EVT to electricity prices to assess the level of tail fatness in series followed by comparison of 

the Monte Carlo simulation results based on Gaussian and Student-t distributions. Their 

simulation results improved upon the ones from the Gaussian distribution, as the Student-t price 

patterns resemble more closely the underlying price pattern of electricity prices.  

 

This study showed the normality assumption that researchers and practitioners often make in 

their simulation or valuation method is not appropriate and prone to lead to erroneous 

conclusions. This further strengthens the view taken in this section in simulating the electricity 

prices data modelled with the assistance of EVT.  

 

In this chapter, the residuals of the GPD model are simulated with Copula functions. As 

previously mentioned, Copula functions allow modelling of price and volatility dependencies, 

which exist in the regions of the NEM. The copula functions also provide a multivariate 

approach to modelling electricity prices in the NEM.  

 

Copula approach is used to describe the dependence between multiple variables in this study. 

It is used to model the dependencies of electricity prices in the NEM. Dependence modelling 

with Copula functions is widely used in applications of credit risk assessment and actuarial 
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analysis but it is a fairly new approach to modelling electricity spot prices via copulas, which 

represent the dependence structure implicit in a multivariate t-distribution60. 

Parameterisation of the Student t-Copula 

In estimating the parameters of the t-copula, this section follows Bouyé et al. (2000) where the 

parameter vector α of the t-copula is performed by first transforming the data ),...,( 1

t

N

t xx into 

uniform variates through CDFs ),...,( 1

t

N

t uu . Then, the estimation of the copula parameters are 

performed as; 

 







T

t

t

N

t

n

t uuuc
1

1 );,...,,...,(lnmaxarg                              (69)

     

 

 

The above equation is defined a as canonical maximum likelihood method (CML) by Bouyé et 

al. (2000) due to its basis on the empirical distributions rather than assumptions of the 

parametric form of the marginal distributions (α could be viewed as the maximum likelihood 

estimator given the observed margins).  

 

Kendall's rank correlation provides a distribution free test of independence and a measure of 

the strength of dependence between two variables. Spearman's rank correlation is satisfactory 

for testing a null hypothesis of independence between two variables but it is difficult to interpret 

when the null hypothesis is rejected. Kendall's rank correlation improves upon this by reflecting 

the strength of the dependence between the variables being compared.  

                                                           

60 It is important to note that a difficulty with the use of multivariate copulas such as the t-copula though is that 

there is only one parameter to control tail association (different pairs of variates might have different tail 

association) and it has symmetric tail dependency. This symmetry means that when the dependency parameter is 

assumed to be constant, large joint positive realisations have the same probability of occurrence than large joint 

negative realisations (Jondeau and Rockinger, 2002).  
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Kendall’s tau measure of a pair (X,Y) can be defined as the difference between the probabilities 

of concordance and discordance for two independent pairs (X1,Y1) and (X2,Y2) each with 

distribution H.  That is: 

 

𝜏𝑋𝑌 = Pr{(𝑋1 − 𝑋2)(𝑌1 − 𝑌2) > 0} − {(𝑋1 − 𝑋2)(𝑌1 − 𝑌2) < 0}                     (70) 

 

These probabilities can be evaluated by integrating over the distribution of (𝑋1 − 𝑋2). 

Therefore, in terms of copulas, Kendall’s tau becomes; 

 

𝜏𝐶 = 4 ∫ ∫ 𝐶(𝑢, 𝑣)𝑑𝐶(𝑢, 𝑣) − 1
1

0

1

0
                  (71) 

 

where C is the copula associated to (X, Y) (Trivedi and Zimmer, 2006). 

 

The following tables comparatively show the estimated Kendall’s tau values for all the regions 

of the NEM. Kendall’s tau estimates indicate that the application of Student-t copula over 

Gaussian copula is more appropriate as Kendall’s tau measures have greater values based on 

Student-t copula indicating a better dependency fit. 

 

Table 26 Parameter Estimates of the Student t-Copula 

 NSW VIC QLD SA TAS 

NSW 1 0.944 0.900 0.882 0.689 

VIC  1 0.824 0.954 0.768 

QLD   1 0.750 0.614 

SA    1 0.747 

TAS     1 

Source: Author’s calculations. 
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Table 27 Parameter Estimates of the Gaussian Copula 

 NSW VIC QLD SA TAS 

NSW 1 0.853 0.821 0.730 0.599 

VIC  1 0.692 0.896 0.692 

QLD   1 0.565 0.499 

SA    1 0.646 

TAS     1 

Source: Author’s calculations. 

 

Kendall’s tau estimates between the regions of NSW and VIC, NSW and QLD, VIC and SA 

and NSW and SA are the greatest based on Student t-copula. It is important to note that the 

estimates suggest a similar pattern to the relationships suggested by Pearson correlation 

measures. 

 

Simulation of the EVT Model with Student-T Copula 

The simulation of t-copula involves generating samples from a multivariate t-distribution based 

on a pair from the Student t-copula and then inverting it to cumulative distribution samples. 

This section follows the same approach set by Bowman and Azzalini (1997) in simulating the 

EVT treated residuals for each region of the NEM. Then as the last step in generating forecast 

price series, the re-introduction of the autocorrelation and heteroskedasticity observed in the 

original price series was performed by using the simulated standardised residuals as near ... dii

input noise process through another set of simulation processes. Ultimately, this simulation 

process aims at generating forecast future values of electricity prices that minimises the 

variance of the mean. 

 

EVALUATION OF FORECAST PERFORMANCE  

The results of the Student t-copula simulations over the three month horizon (90 days) for each 

region of the NEM are illustrated in the following graph for the period 01/06/2010 to 
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29/08/2010. The parameterisation of the model is based on the in-sample period chosen for this 

study and is the same as all other models previously discussed.  

 

In this study, the price path is for ninety days horizon; the same horizon used as in diffusion 

type models earlier, allowing easy interpretation of performance comparisons between the 

various models constructed in this thesis. The price paths presented in the following charts are 

the result of mean of 10,000 simulated paths.  

 

As is seen from Figure 77, simulated price series revert to long-run equilibrium price level. 

This long-run mean is a higher long-run mean than the one found by continuous-time models, 

which were discussed in earlier chapters of this thesis. This is due to the fact that EVT shifts 

the focus to the tails of the data.  

 

Figure 77 Price Forecast with EVT-Copula Simulations for All Regions of NEM 

 

Source: Author’s calculations. 
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Furthermore, the simulated price series for each region of the NEM tends to fluctuate in tandem 

most of the time throughout the forecast horizon. This is due to the fact that copula functions 

reflect the dependencies that exist amongst the regions of the NEM.  

 

Whilst the figure above demonstrates the mean of 10,000 simulated paths for all regions of the 

NEM, the following figure illustrates the electricity price forecast generated by the Student-t 

copula simulations for NSW. As is seen, this modelling approach fails to replicate the observed 

time series’ characteristics of the electricity prices in particularly, generating price spikes.  

 

However, the model seems to capture the mean-reverting characteristics of the electricity prices 

(albeit with a higher long-run mean level) similar to mean-reverting jump diffusion and regime 

switching models.  

Figure 78 A Simulated Price Path versus Actual Prices 

 

Source: Author’s calculations. 

 

Despite the theoretical superiority of EVT and copula approaches to modelling electricity 

prices, graphical assessment of the out-of-sample forecast values seem to be underperforming 
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even the simpler mean-reverting jump-diffusion in mimicking the stylised facts of the 

electricity prices prevalent in the NEM. The simulation of the dynamics of the EVT treated 

prices certainly has desirable properties; however this approach fails to perform better than the 

previous two models investigated in this thesis, namely the Mean-Reverting Jump-Diffusion 

and Markov Regime-Switching models at face value.  

 

This may be attributed to the structure of the NEM, i.e. it’s not perfectly informationally 

efficient market structure. However, as the market matures each year and planned Government 

investments in electricity infrastructure projects roll-out with the capacity to enhance market 

interconnectivity, the AR-EGARCH-EVT specification simulated with copula functions is 

believed to be a robust tool in forecasting electricity prices in NEM. This is due to the fact that 

copula functions reflect the dependencies that exist amongst the regions of the NEM. 

 

Following the presentation format of the previous models’ performance evaluation, the 

subsequent information describes the in-sample data and forecast generated for each region of 

the NEM. The Figures 79 to 83 demonstrate the price forecast generated for each of the market 

regions of the NEM. In order to assess the forecast accuracy of the model, the average of 10,000 

simulated paths are taken as the point forecast value similar to earlier models presented in this 

section. 
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Figure 79 Price Forecast with EVT-Copula Model (NSW) 

 
Source: Author’s calculations. 
Figure 80 Price Forecast with EVT-Copula Model for VIC 

 
Source: Author’s calculations. 
Figure 81 Price Forecast with EVT-Copula Model (QLD) 

 
Source: Author’s calculations. 
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Figure 82 Price Forecast with EVT-Copula Model (SA) 

 

Source: Author’s calculations. 

Figure 83 Price Forecast with EVT-Copula Model (TAS) 

 

Source: Author’s calculations. 

 

In the next section an evaluation of the forecasting performance of the EVT based Copula 

simulations is presented. The purpose of the next section is to see if the model’s forecast errors 

are within reasonable limits or whether these errors are too large. 
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FORECAST PERFORMANCE STATISTICS 

The following discussion evaluates the forecasting performance of the EVT based Copula 

simulations in forecasting electricity wholesale prices in the NEM. The purpose of this section 

is to see if this model’s forecast errors are within the reasonable limit of expectations or whether 

these errors are unreasonably large and require an improvement in the statistical models and 

process of producing these forecasts. To assess the accuracy of the forecast generated by the 

modelling approach taken in this chapter, formal forecast accuracy statistics are produced for 

each region of the NEM.  

 

Forecast accuracy statistics are produced for each region of the NEM in a similar fashion to 

previous sections. These measures are Mean Error (ME), Mean Absolute Error (MAE), Mean 

Squared Error (MSE), Root Mean Square Error (RMSE), Mean Percentage Error (MPE), Mean 

Absolute Percentage Error (MAPE) and Theil’s U.  Although, there is a number of forecast 

accuracy measures produced here, the following discussion is based on the RMSE as RMSE’s 

focus is on large errors. As electricity prices spike and revert to its long-run mean levels 

quickly, the forecast values generated by the model are subject to large errors. It is important 

to note that RMSE is the most widely used measure in the literature for its statistical properties 

as it places greater penalty on large forecast errors than the MAE. 

 

Table 28 demonstrates the forecast accuracy statistics of this model along with the accuracy 

statistics produced for the benchmarking model. The RMSE of this model shows increases in 

all the regions of NEM as compared to the benchmark model. Despite its theoretical superiority 

and complexity, this model does not produce out-of-sample forecast values that are better than 

the benchmark model. However, it is interesting to note that the simulation process with 

Student t-copula function results in best values of RMSE the electricity regions of NSW and 
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VIC suggesting a more integrated electricity market in these two regions. Comparison of these 

models’ forecast accuracy with the benchmark model indicates that the benchmark model 

outperforms EVT based Copula simulations for each market region of the NEM as measured 

by RMSE. Benchmark model61 used in this study has RMSE scores of 0.328 for NSW, 0.238 

for VIC, 0.336 for QLD, 0.475 for SA and 0.605 for TAS.  

 

Table 28 Forecast Accuracy measures for EVT-Copula Model 

 NSW VIC QLD SA TAS 

Benchmark Model 
Mean error -0.02573 -0.09435 -0.18307 -0.12713 -0.27293 

Mean square error 0.10766 0.05666 0.1129 0.22619 0.36621 

Root mean square error 0.32812 0.23804 0.33600 0.4756 0.60515 

Mean absolute error 0.18430 0.19122 0.20202 0.26372 0.44279 

Mean percentage error -1.44263 -3.25139 -8.0017 -36.9556- -9.78207 

Mean absolute percentage error 5.12366 5.83328 8.57096 40.55399 12.77883 

Theil’s U 0.04849 0.03525 0.05349 0.06926 0.08525 

EVT-Copula Functions Simulation Model 

Mean error -0.433 -0.343 -0.6437 -0.554 -0.368 

Mean square error 0.300 0.169 0.4954 0.517 0.412 

Root mean square error 0.548 0.411 0.7039 0.719 0.642 

Mean absolute error 0.503 0.370 0.6437 0.589 0.515 

Mean percentage error -4.290 -10.855 -23.1056 -48.959 -12.730 

Mean absolute percentage error 4.558 11.534 23.1056 49.743 15.306 

Theil’s U 0.076 0.059 0.1043 0.098 0.090 

Source: Author’s calculations. 

 

                                                           
61 See Appendix 5 for details 
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CONCLUSION 

This chapter investigated modelling electricity spot prices in all five market regions of the 

NEM with a unique approach. The extreme nature of price changes in the NEM regions leads 

to prices that are non-Gaussian and highly volatile. In order to model extreme price changes, 

the methodology undertaken in this section is to filter the spot price series with an AR-

EGARCH model and then apply EVT to standardised residuals. This technique allows the 

leverage effects in conditional volatility to be modelled and produce near identically 

independently distributed standardised model residuals. These residuals seem to behave better 

than raw residuals in terms of independence. Lastly, POT method was utilised in modelling 

extreme tails of daily electricity spot prices.  

 

This chapter finds that the POT method accurately models the extreme values of the electricity 

prices with in-sample and out-of-sample evaluation of forecast providing support for EVT 

based modelling of electricity prices.  

 

A unique approach to simulating electricity prices in NEM is also adopted in this chapter. 

Given the dependence structure both in prices and volatility in the NEM, copula approach is 

utilised to capture the extreme prices occurring simultaneously in different market regions of 

the NEM. This approach captures the non-linear measures of dependence present in electricity 

prices in the NEM. This approach allows modelling of the dependence between regional 

electricity markets as a time varying rather than a constant measure.  

 

A particular use of this model is in estimating derivatives pricing. The most common over-the-

counter derivative instrument in the NEM is Asian options. The Gaussian assumption of 

traditional option pricing models fails in accommodating for extreme observations in tails. 
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They also disregard the price and volatility interactions between the inter-connected regions of 

the NEM in generating forecast.  

 

The model explored in this chapter provides an alternative solution to market participants in 

valuing derivative instruments that consider both the extreme values and time varying 

dependency widespread in electricity prices. With the assistance of this model, the participants 

in the NEM could generate long-term price forecasts that are a reflection of the extreme and 

fat tails of the data and the interconnectivity of the NEM regions.  

 

This approach to modelling electricity spot prices will be of significant importance over the 

next decade as the regions of the NEM co-integrate further as planned infrastructure 

investments roll-out. This approach also avoids the estimation complexities present in mean-

reverting jump-diffusion models. However, it fails to match the accuracy of the forecast 

generated with these techniques. 
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CHAPTER 11 -DISCUSSION AND CONCLUSION 

The aim of this thesis was to assess whether there was any advantage in using forecast models 

that explicitly capture the stylised features of the data under investigation. This assessment was 

made in the context of the Australian National Electricity Market (NEM). It was believed that 

the accuracy of the price forecast models can be improved by explicitly modelling the stylised 

features of electricity wholesale spot prices. The stylised features modelled in this thesis were: 

mean-reversion, sudden short-lived, consecutive jumps and heavy tails. 

 

When employing models that captured these stylised features they necessarily became more 

complex often containing a greater number of parameters which combine to mimic these non-

trivial behaviours. Throughout this thesis adherence to the principle of parsimony was 

maintained, that is if two models generated effectively the same forecast performance then the 

simpler one was preferred whether it contained the stylised features or not. 

 

This investigation was important as it was believed that a better understanding of what models 

are more useful has the potential to lead to more accurate price forecasts which will result in 

less volatility in market prices leading to more efficient markets.  More efficient markets in 

turn will result in better outcomes for end users. Further, by assessing models that captured 

various stylised features it was also possible to infer the importance of particular features.  

 

As is stated in the introductory chapter, the forecasting of electricity prices is important for 

both the physical and financial participants in the electricity industry for the following reasons: 

1. Generators are required to bid in advance, thus accurate price forecasting is necessary if 

optimal bidding strategies are to be formulated. More accurate electricity price forecasting 

will allow market participants to develop more efficient and successful business strategies, 
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real and financial asset valuations and improve their price risk management.  Modelling 

prices accurately is important for production assets such as generators. This is particularly 

true for peaking plants, whose value may be entirely dependent on the existence of price 

spikes that facilitate the recovery of high marginal costs and the recouping of fixed costs 

over very short running periods. Generators can also use the information on prices to 

measure the potential competition from other suppliers or the potential opportunity of 

servicing customers in other regions. 

2. Generators need to plan ahead for capacity building purposes (peak and off-peak 

generators have varying input requirements for production) therefore efficient price 

forecasting allows efficiency in planning of supplies. 

3. Traders need to take positions both at over the counter and at the Sydney Futures 

Exchange Board (SFEB) therefore accurate forecasting of spot prices are important for 

derivatives pricing. 

4. The distribution of electricity is a public regulated monopoly; therefore there are also 

many government policy implications. For instance, having accurate electricity price 

forecasts is also of interest to government policy makers. Wholesale electricity prices 

influence the contract prices at the retail level, which in turn impacts upon the final prices 

for consumers.  End-users are concerned with the better modelling of prices because of cost 

efficiencies associated with load shedding during peak periods, while retailers can benefit 

from improved forecasting of volatility to hedge against upside price risk. Also, potential 

benefits to households are expected to be realised via reduced prices at the retail level. 

In summary, a better understanding of effective electricity price forecasting is believed to help 

all market participants to develop more efficient strategies, for example it will assist firms in 

formulating business strategies, real and financial asset valuations and improve their price risk 

management. Also, price forecasting is an important aspect of the industry as generators bid to 
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the market operator to be granted the rights to supply electricity to the grid. Ineffective bids 

results in revenue losses for generators. For instance, bidding a low price to get the electricity 

to the grid will result in lost revenue if the market price is above the bid price and vice versa. 

 

An important feature of wholesale electricity spot prices is that they are highly volatile due to 

non-storability, limited transportability, restricted arbitrage transactions and imperfect price 

forecasting techniques. As such the nature of the electricity time series is not the same as 

traditional stock prices. In addition they are recognised as being spikier, showing extreme 

volatility and exhibiting more rapid mean-reverting behaviour than stock prices. These factors 

contribute to the imperfect forecast techniques commonly applied to electricity wholesale 

prices. 

  

Mean-reversion, sporadic spikiness, and non-Gaussian manifesting in positive skewness and 

leptokurtosis as stylised features of electricity. Therefore any forecasting model that fails to 

capture these features likely result in relatively larger forecast errors (albeit on occasions). 

Consequently this thesis investigated the explicit incorporation of the stylised features of data 

into the forecasting models.  Specifically, the stylised features of mean-reversion, sudden and 

short-lived jumps, occasional consecutive jumps and non-Gaussian manifested as heavy tails 

were examined. 

It was expected that by explicitly modelling the stylised features of the electricity wholesale 

spot prices, forecast accuracy can be improved when compared to baseline models commonly 

used in quantitative finance. Engle’s AR-GARCH model is chosen to be the standard approach 

in forecasting price series and was taken as the benchmark model in this thesis.  
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This thesis employed models from two distinct model classes which by construction captured 

the stylised characteristics of electricity prices: linear non-linear modelling methods to answer 

the following research questions: 

1. Are forecast models generated by continuous-time models more accurate than traditional 

AR-GARCH model? 

2. Are forecast models generated by non-linear models more accurate than traditional AR-

GARCH model? 

 

Continuous time models were consisted of Geometric Brownian Motion (GBM), Mean-

Reverting, and Mean-Reverting and Jump-Diffusion models, which accounted for the mean-

reversion and sudden, short-lived jumpy characteristics of the electricity price data as prevalent 

in the NEM. Non-linear models of Markov Regime-Switching and Extreme Value Theory 

(EVT) based models accounted for the consecutive jumps and non-Gaussian prevalent in NEM. 

 

It was found that the benchmark model (AR-GARCH) outperformed all continuous-time and 

non-linear models in short-term (90 days) forecasts. This assessment was made by comparing 

the forecasts’ Root Mean Square Error (RMSE) values across all regions of the NEM. This 

relatively superior performance of the benchmark model over other models investigated was 

mainly due to its ability to capture the serial dependence and varying degree of variance 

prevalent in the data.  

 

The following sections will explain the findings of this thesis in greater detail. However, a brief 

overview of the data is believed to be useful before the presentation of forecast evaluations. 
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BRIEF BACKGROUND TO THE DATA 

There are five market regions in the National Electricity Market (NEM) and this thesis 

investigated time series data from each region of the NEM. The regions of NEM considered in 

this thesis were New South Wales (NSW), Victoria (VIC), Queensland (QLD), South Australia 

(SA), and Tasmania (TAS). The data was collated from Australian Energy Market Operator 

(AEMO). AEMO collates and reports average daily observations for each price for the five 

market regions of NEM. 

 

The price data used in this thesis were average hourly pool price observations sourced directly 

from AEMO for the period of 01/06/2006 to 29/08/2010 for the regions of NSW, VIC, SA, 

QLD and TAS. The data from 01/06/2006 to 31/05/2010 were used to estimate the parameters 

of the models while the period from  01/06/2010 to 29/08/2010 were used to derive out-of-

sample forecast accuracy statistics. As stated in the introductory chapter, the rationale behind 

choosing this sample period was due to Tasmania’s entry to AEMO towards the end of 2005, 

as such data prior to this date was not available.  

 

Average daily reported price values for each region, expressed in Australian dollars per 

megawatt hour (MWh) for each day constituted the empirical data of this study. Although the 

highest frequency of electricity spot prices in the NEM are quoted as half-hourly, daily average 

prices are of significant importance to market players. The most common derivative instrument 

in electricity markets is Asian options, which is priced by average daily prices. 

 

In fitting the data, logarithm to base prices was used due to the fact that in time series analysis 

this transformation is often considered to stabilise the variance of a series (Luetkepohl, 2012). 

Log specification was only a problem in the presence of non-positive prices. There were so few 
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instances of negative prices in the NEM. In these cases, the average of nearby points in the 

series replaced the data points in the in-sample data used where log prices were not defined. 

Specifically there was one instance of negative price occurrence in Victoria, 12 in Tasmania 

and two in South Australia.  

 

Analysis of the descriptive statistics, as demonstrated in Chapter 3, showed that the distribution 

of prices is significantly non-Gaussian for all regions of the NEM as consistent with the existing 

literature. The price series in all of the electricity regions were positively skewed and 

leptokurtic. This extreme fat-tailed characteristic was consistent with the findings of earlier 

studies and was likely to be driven by the prevalence of extremely high prices.  

 

Electricity price series in the NEM were found to exhibit extreme price spikes and were found 

to be prevalent even at the daily intervals. The formal normality and unit root tests as presented 

in Chapter 3 confirmed the non-Gaussian and stationary nature of the price series. Additionally, 

Wald-Wolfowitz Runs test indicated the importance of modelling electricity prices in Australia 

in an attempt to reduce risk management costs. One appreciates that in inefficient markets; 

traders can possibly make a difference with advanced models in managing their risks and 

exploring profit taking opportunities.  

 

CONTRIBUTION TO THE LITERATURE 

Wholesale electricity spot prices in the NEM are highly volatile due to non-storability, limited 

transportability, restricted arbitrage transactions and imperfect price forecasting techniques. As 

such the nature of the electricity time series is not the same as traditional stock prices. 

Typically, they are spikier, show extreme volatility and exhibit a rapid mean-reverting pattern 

(Bunn 2004). Mean-reversion, the presence of jumps, and non-Gaussian manifested as positive 
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skewness and leptokurtosis are the main stylised features of electricity. Therefore, it was 

believed that any forecasting model that fails to capture the stylised features of electricity prices 

will likely result in large forecast errors. 

 

Consequently this thesis investigated the explicit incorporation of the stylised features of data 

in forecasting electricity prices in NEM. The stylised features of electricity price data that were 

explicitly accounted for in the models presented in this thesis were; mean-reversion, sudden, 

short-lived, occasional consecutive jumps and non-Gaussian manifested as heavy tails. 

 

It was believed that by explicitly modelling the stylised features of electricity prices, forecast 

accuracy can be improved upon baseline models commonly used in quantitative finance. This 

thesis investigated the forecasting ability of two distinct modelling approaches which by 

construction capture the stylised characteristics of electricity prices. Namely, these were linear 

continuous time and non-linear modelling methods. The AR-GARCH model is chosen to be 

the standard approach in forecasting price series (Engle, 2001) and was taken as the benchmark 

model in this thesis.  

 

More specifically, this thesis aimed to answer the following research questions: 

1- Are forecast models generated by continuous-time models more accurate than 

traditional AR-GARCH model? 

2- Are forecast models generated by non-linear models more accurate than traditional AR-

GARCH model? 

 

In both instances the models were chosen to reflect the stylised features of the data. 
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Continuous-Time Models 

The overwhelming majority of electricity-pricing models are adaptations of popular models for 

price or returns from the financial econometrics literature that have been augmented to capture 

the idiosyncratic time-series properties of electricity prices, albeit with varying degrees of 

success (Weron, 2006). Evidence suggests that using models based on Stochastic Differential 

Equation (SDE) otherwise known as continuous-time models provide a much better fit to 

electricity prices then the Autoregressive models (Lucia and Schwartz 2002, Huisman and 

Mahieu 2003, Weron and Misiorek et al. 2006).  

 

The continuous time-models examined in this thesis were; Geometric Brownian Motion 

(GBM), Mean-Reverting, and Mean-Reverting and Jump-Diffusion models. The inclusion of 

GBM in this thesis was mainly due to it being the foundation for the other continuous time 

models investigated in this study.  

 

Another two continuous-time models captured some of the main stylised features of electricity 

prices. The Mean-Reverting model captured the mean-reversion (tendency of electricity prices 

to revert back to their long-term average over time) characteristics of electricity prices whilst 

Mean-Reverting and Jump-Diffusion model incorporated the sudden jumps prevalent in 

electricity wholesale prices.  

 

Continuous-time models were ordered such that each successive model extended the one 

preceding it. Note that each extension addressed a stylised feature of the data therefore the a-

priori expectation was that the forecasting performance will improve. 

Non-Linear Models 



  

260 
 

The inclusion of the non-linear approach to forecasting Australian electricity prices was 

performed with the application of Markov Regime-Switching model and the combination of 

Extreme Value Theory (EVT) and Copula functions.  

 

The Markov Regime-Switching model was a non-linear modelling tool that was able to capture 

consecutive spikes prevalent in Australian electricity prices that the Mean-Reverting and Jump-

Diffusion models failed to capture. The EVT model on the other hand captured the heavy tails 

present in electricity price data. The forecasts based on the EVT model were built upon the 

application of Copula functions as these functions model the interdependence of prices within 

the separate regions of the Australian electricity markets.  

 

Forecast Methodology 

To summarise, in total six econometric models were applied in this thesis and their short-term 

forecast performances (90 days) were compared with each other and with the chosen 

benchmark model (AR-GARCH). The price data used in this study were average hourly pool 

price observations sourced directly from AEMO for the period of 01/06/2006 to 29/08/2010. 

The data from 01/06/2006 to 31/05/2010 (in-sample data) were used to estimate the parameters 

of the models while the period from 01/06/2010 to 29/08/2010 (out-of-sample data) were used 

to derive out-of-sample forecast accuracy statistics.  
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The models examined in this thesis were; 

Table 29 List of Econometric Models 

 

 

Each model under investigation mimicked a known characteristic of electricity prices. Mean-

Reverting model replicated the mean reversion feature of price series whilst Mean-Reverting 

and Jump-Diffusion model incorporated jumpy features of price series along with mean-

reversion. Markov Regime-Switching model on the other hand incorporated the consecutive 

jumps prevalent in the NEM in its formation. Finally EVT based model replicated the 

nonlinear, heavy tailed nature of the electricity price series. 

 

In this study, each continuous-time and the Markov Regime-Switching model was simulated 

using the Euler approximation method. This method simulated sample paths of correlated state 

variables driven by Brownian motion sources of changes over consecutive observation periods 

and thus approximating continuous-time stochastic processes.  

• AR(1)-GARCH(1) 

Benchmark Model

• Geometric Brownian Motion

• Mean-Reverting Model 

• Mean-Reverting Jump Diffusion Model

Continous-time Models

• Non-Linear Models

• Markov Regime-Switching models with spike distributions modelled with

-Gaussian distribution

-Log-Gaussian distribution

• Extreme Value Theory and Copula functions.

Non-linear Models
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EVT based forecast models on the other hand were simulated with Copula functions, returning 

random vectors generated from a t-copula with linear correlation parameters. This method 

generated a set of simulations from a bivariate t-copula and each column of the simulation sets 

is a sample from a uniform marginal distribution.  

 

The aim of these studies was to characterise the electricity prices use of Autoregressive and 

Mean-Reverting models and only employed data from one market region of the Australian 

National Electricity Market (NEM). However, the focus of these studies was limited to stylising 

the behaviours of electricity prices in the NEM hence the focus was never on the forecast ability 

of conventional models. The models as investigated in this thesis were more sophisticated than 

conventional models as they captured the non-linear and extreme features of electricity prices 

in a forecast application.  

 

COMPARATIVE FORECAST PERFORMANCE ANALYSIS 

This thesis investigated a number of models that represent the stylised characteristics of 

electricity prices in the NEM. These stylised characteristics were non-Gaussian, mean-

reversion and the jumpy nature of prices. In addition, the evidence of co-dependence in prices 

between the separate regions of the NEM has been an emerging theme in the literature (Wild 

et al., 2010). Therefore this unique constituent of electricity prices was also incorporated in one 

of the modelling applications developed in this thesis.  

 

The inclusion of GBM in this thesis is mainly due to it being the foundation for the other 

continuous-time models considered in this study. The other two continuous-time models 

captured particular stylised features of electricity prices. Markov Regime-Switching model was 

presented as the fourth forecast model in this thesis. EVT based forecast approach to modelling 
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prices in the NEM (and its Copula centric simulation method) was another unique contribution 

of this thesis to the literature. This model allowed capturing the fat-tailed nature of electricity 

price series in addition to incorporating price co-dependencies between interconnected regions 

of the NEM. 

 

As can be appreciated, it was essential to take a consistent view of what is to be forecast and 

to make sure that forecasts being compared were based on the same data. Therefore, formal 

forecast accuracy statistics were calculated and presented for each model investigated in this 

thesis across all regions of the NEM.  

 

Figure 84 presents the RMSE values of each model investigated by separate regions of the 

NEM. As is seen, Markov Regime-Switching model with spike processes modelled as Log-

Gaussian distribution had the lowest RMSE values across all continuous-time and non-linear 

models investigated in this thesis. The relative performance of the Markov-Regime Switching 

model is persistent in all NEM regions. Nevertheless, this model had slightly higher RMSE 

values then the benchmark model as is seen from Figure 84. The benchmark model of this 

study outperformed all models investigated in this study across all regions of the NEM. 
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Figure 84 RMSE Values of All Models by NEM Regions 

 

Source: Author’s calculations. 

 

1-Short-term forecast accuracy of GBM Model  

As is seen in Figure 84, forecast accuracy statistics for the GBM model as measured by RMSE 

indicate the following values; 1.767 for NSW, 2.722 for VIC, 1.648 for QLD, 2.706 for SA 

and 2.88 for TAS regions. These RMSE values indicate a relatively large error in forecasts, 

which suggests that the GBM model as investigated in this thesis was a relatively ineffective 

forecast model. This maybe because it did not account any stylised features of the price series. 
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The observed poor performance of the GBM model is in line with Johnson and Barz (1999) 

who concluded that arithmetic and geometric Brownian processes are unsuitable in modelling 

electricity prices. Johnson and Barz (1999) evaluated the effectiveness of a number of SDE 

based models in electricity price modelling, including arithmetic and GBM processes along 

with mean-reverting diffusion processes known as Ornstein-Uhlenbeck process (first proposed 

by Vasicek (1977)). Johnson and Barz (1999)) concluded that the Geometric Mean-Reverting 

Jump-Diffusion model gave the best performance and all models without jumps (Arithmetic 

and Geometric Brownian Motion processes) were inappropriate in modelling electricity prices.  

 

This was attributed to the fact that when a price spike occurred, the GBM would assume that 

the new price level is a normal event and it would proceed randomly via a continuous diffusion 

process with no consideration of prior price levels.  

 

2-Short-term forecast accuracy of Mean-Reverting Model  

The models investigated in this thesis were in an order such that each successive model 

extended the one preceding it. Consequently, the Mean-Reverting model was expected to 

perform better than the GBM model as it addressed a stylised feature of the data.  

 

Subsequently, it was found that the Mean-Reverting model investigated in this thesis performed 

in a superior manner to the investigated GBM model in forecasting electricity prices. The 

RMSE values as presented in Figure 84 are significantly less with this model as compared to 

the GBM model in all regions of the NEM. RMSE statistics based on the Mean-Reverting 

model indicated the following values for each of the NEM regions; 0.382 for New South Wales 

(NSW), 0.318 for Victoria (VIC), 0.498 for Queensland (QLD), 0.499 for South Australia (SA) 

and 0.619 for Tasmania (TAS) regions. This decline in the values of RMSE is about eight times 
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in some instances (the RMSE value dropped about 4.6 times for NSW and about 8.5 times for 

VIC) when compared to RMSE values attained via the GBM model.  

 

However, comparison of the Mean-Reverting model’s forecast accuracy with the benchmark 

model chosen for this study indicated that the benchmark model outperformed the Mean-

Reverting model for each region of the NEM as measured by RMSE. The AR-GARCH model 

used in this study had RMSE scores (in order of region sizes) of 0.328 for NSW, 0.238 for 

VIC, 0.336 for QLD, 0.475 for SA and 0.605 for TAS. These values are slightly lower than the 

values obtained via the Mean-Reverting model hence indicating a superior forecast 

performance for the benchmark model. 

 

The relative poor performance of the forecast generated via the Mean-Reverting model as 

compared to the benchmark model is attributed to the fact that the benchmark model handles 

the serial dependence and the varying variance prevalent in electricity data better than the 

Mean-Reverting model. Despite that fact that the Mean-Reverting model mimicked the mean-

reversion feature of the data well in generating short-term forecasts. 

 

3-Short-term forecast accuracy of Mean-Reverting and Jump-Diffusion Model  

It is believed that adding a jump component to Mean-Reverting model to capture the jumpy 

behaviour of electricity prices has theoretical superiority over the simpler Mean-Reverting and 

GBM models. Mean-Reverting and Jump-Diffusion model as investigated in this thesis was an 

extension of the previously studied continuous-time models of GBM and Mean-Reverting 

models. This model was shown to be superior as it captured some of the main stylised features 

of the data, namely; the sudden and short-lived jumps in data.  
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Nonetheless, a closer examination of the forecast prices revealed that the differences between 

the magnitude of jumps and timing were quite different when compared to actual price series. 

Figure 84 presents the RMSE values of the forecast prices, which indicated; 0.378 for NSW, 

0.333 for VIC, 0.477 for QLD, 0.513 for SA and 0.62 for TAS regions. Forecast accuracy of 

this model revealed improvements in forecast made for the regions of NSW and QLD as 

compared to previously studied Mean-Reverting model by approximately 0.7 per cent and 3 

per cent, respectively.  

 

However, in the regions of VIC, SA and TAS, the application of Mean-Reverting and Jump-

Diffusion models did not result in more accurate forecasts. RMSE values in these regions 

actually showed deterioration in the range of 0.3 per cent to 4 per cent. However, comparison 

of the Mean-Reverting model’s forecast accuracy with the benchmark model chosen for this 

study indicated that the benchmark model outperformed the Mean-Reverting and Jump-

Diffusion model for each region of the NEM as measured by RMSE. The benchmark model 

used in this study had RMSE scores (in order of region sizes) of 0.328 for NSW, 0.238 for 

VIC, 0.336 for QLD, 0.475 for SA and 0.605 for TAS.  

 

In brief, it was found that forecasting electricity prices in the NEM with a Mean-Reverting and 

Jump-Diffusion model out-performed GBM but it provided mixed results when compared to 

Mean-Reverting model. The relative poor performance of the forecast generated via this model 

as compared to the benchmark model is attributed to the fact that the benchmark model handles 

the serial dependence and the varying variance prevalent in electricity data more accurately 

than the Mean-Reverting and Jump-Diffusion model. Also, this relative underperformance of 
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the Mean-Reverting and Jump-Diffusion model62 is partly attributed to its less than perfect 

ability to capture the timing and magnitude of spikes prevalent in the data.  

4-Short-term forecast accuracy of Markov Regime-Switching Model  

Modelling the mean-reverting and sudden, short-lived jumpy features of electricity prices in 

the NEM with a Mean-Reverting and Jump-Diffusion model was found to be less than perfect 

as the timing and magnitude of spikes are hard to be captured by these specifications. Markov 

Regime-Switching models have such specifications that capture both the mean-reverting and 

the jumpy features of electricity prices more accurate than Mean-Reverting and Jump-

Diffusion models. 

 

Markov Regime-Switching models as investigated in this thesis revealed a number of salient 

features, which are importantly useful for understanding the price dynamics of the NEM. First 

of all, it is found that the probability of a price spike on any particular day ranges between two 

per cent to nearly eight per cent63 in separate regions of the NEM depending on the model 

specifications. Secondly, price spikes were found to account for much of the volatility in 

electricity spot prices. Hence, volatility measures in base regimes were found to be actually 

quite low albeit varying between the regions of NEM and the specific Markov Regime-

Switching model considered. In forecasting electricity prices in the NEM with Markov 

Regime-Switching models as investigated in this thesis, base regime is modelled with a mean-

reverting specification with constant variance whilst spike regimes are modelled with a number 

of different distributions. Accordingly, these volatilities seemed to reflect the marginal cost of 

                                                           
62 While the analytic fundamentals and features of the Jump-Diffusion models are well established, the issue of 

how accurately the model can be calibrated to historical data remains the weakness of the model. These models 

are challenging to calibrate also because of the large number of parameters that must be determined, many of 

which are time dependent. 
63 See Chapter 3. 
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production. Lastly, a great variation in the magnitude of spikes was found in the NEM, with 

spikes being generally largest in SA and smallest in QLD.  

 

Figure 84 presents that Markov Regime-Switching model with Gaussian distributions had 

RMSE of 0.439 for NSW, 0.545 for VIC, 0.507 for QLD, 0.527 for SA and 0.618 for TAS 

regions. These RMSE values were found to be smaller than other SDE based models as 

previously examined, indicating a relatively superior performance of the Markov Regime-

Switching model.  

 

Nevertheless, tangible improvements in forecast performance with this model arose with the 

modelling of the spike process with a Log-Gaussian distribution. Markov Regime-Switching 

model with spike process was modelled with a Log-Gaussian distribution provided RMSE 

scores (in order of region sizes) of 0.363 for NSW, 0.312 for VIC, 0.464 for QLD, 0.505 for 

SA and 0.616 for TAS as is seen in Figure 84. These were significant improvements in forecast 

accuracies when compared to the Markov Regime-Switching model with Gaussian spikes and 

all other SDE based models as previously investigated in this thesis. It is important to note that 

the main aim of the simulated models in this thesis is to minimise the variance of the expected 

mean values. Markov Regime-Switching models do this well compared to other SDE 

specifications, as measured by RMSE. 

 

However, comparison of the model’s forecast accuracy with the benchmark model chosen for 

this study indicated that the Markov Regime-Switching model underperforms the benchmark 

model for each region of the NEM as measured by RMSE.  The relative underperformance of 

the forecast generated via the Markov Regime-Switching model as compared to the benchmark 
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model is attributed to the fact that the benchmark model handles the serial dependence and the 

varying variance prevalent in electricity data better than the Markov Regime-Switching model. 

5-Short-term forecast accuracy of Extreme Value Theory Model  

The extreme nature of price changes, manifesting as sudden and short-lived jumps, in the NEM 

leads to prices that are non-Gaussian and highly volatile. This feature of the data under 

investigation in this thesis set the requirement for a model that captured the extremities at the 

long tail.  

 

In order to model this feature, EVT was applied to the data. It was found that the EVT method 

accurately modelled the extreme values of the electricity prices with evaluation of forecast 

providing support for EVT based modelling of electricity prices. To generate forecast 

electricity price values, this thesis applied a unique approach to the simulation of data, which 

was modelled with the aid of EVT. Given the dependence structure both in prices and volatility 

in the NEM, it was hypothesised that Copula approach captures the non-linear measures of 

dependence present in electricity prices. This approach also allowed modelling of the 

dependence between the different NEM regions as a time varying rather than a constant 

measure.  

 

Figure 84 shows the RMSE values for the forecast model based on a combination of EVT and 

Copula functions. As is seen from Figure 84, these values are slightly worse as compared to all 

the models investigated in this study (except GBM model) across all regions of the NEM. 

RMSE scores (in order of region sizes) of this mode1 were found as; 0.548 for NSW, 0.41 for 

VIC, 0.704 for QLD, 0.719 for SA and 0.642 for TAS regions.  
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Finally, comparison of the models’ forecast accuracy with the benchmark model indicates that 

the benchmark model outperformed the forecast generated via EVT-Copula model for each 

market region of the NEM. The AR-GARCH model used in this study had RMSE scores (in 

order of region sizes) of 0.328 for NSW, 0.238 for VIC, 0.336 for QLD, 0.475 for SA and 

0.605 for TAS.  

 

This relative underperformance of the EVT- Copula model was attributed to two underlying 

facts as discussed in the previous chapter. First of all, the filtering procedure applied in this 

study failed to achieve perfectly identical and independent distributed errors. Secondly, even 

though the regional interconnectors work towards an interconnected electricity market in the 

NEM, the market is not fully efficient in terms of price and volatility interdependencies 

therefore the application of Copula functions in simulating price series were thought to result 

in less accurate than hypothesised. Moreover, it was believed that the benchmark model 

handled the serial dependence and the varying variance prevalent in electricity data better than 

the EVT-Copula model. 

 

OVERALL SUMMARY OF THE COMPARATIVE ACCURACIES 

Comparative performance evaluations of each model investigated in this thesis showed that the 

benchmark model provides superior short-term forecasting ability. 

 

Continuous-time and the Markov Regime-Switching models were found to be capable of 

modelling the mean-reversion and sudden but short-lived jumps prevalent in electricity prices. 

Markov Regime-Switching models were found to be successful in generating spikes and mean-

reversion features of electricity prices but they failed to capture the exact timing of the spike 

occurrences. Having said that, in generating accurate short-term forecast, they did not 
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outperform the benchmark model. Similarly, the forecast generated by the combination of EVT 

and Copula functions performed quite poorly as compared to the benchmark model. 

 

It is believed that more accurate short-term forecast ability of Markov Regime-Switching 

models over all other models examined in this thesis is due to its ability to model spike regimes 

as separate processes to the base regime. This property also overcomes the parameter 

estimation problems of Jump-Diffusion models, which model the spikes and the base regimes 

distinctly.  

 

These results are also in line with the findings of Higgs and Worthington (2008) who applied 

three different mean-reverting jump diffusion models to electricity price series in an attempt to 

determine the best spot price model applicable in all of the NEM regions. The models they 

utilised were a basic stochastic model, a mean-reverting model and a Markov Regime-

Switching model. Their results showed that the Markov Regime-Switching model outperforms 

the basic stochastic and mean-reverting models. 

 

Table 30 presents a number of forecast accuracy statistics by NEM regions for each model 

investigated in this thesis. These statistics as shown in this chapter aimed to provide a 

comprehensive view of the short-term forecast accuracy of the models investigated.  
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Table 30 Comparative Forecast Accuracy Measures of All Models by Regions of NEM 

    ME MSE RMSE MAE MPE MAPE Theil's U 

NSW GBM -1.421 3.122 1.767 1.446 -51.102 43.998 0.214 

Mean-reverting -0.185 0.146 0.382 0.281 -6.249 8.17 0.055 

Mean-reverting jump-diffusion -0.198 0.143 0.378 0.286 -6.608 8.396 0.055 

Markov Regime-Switching(Gaussian spikes) -0.298 0.193 0.439 0.373 -9.615 11.077 0.063 

Markov Regime-Switching(Log-Gaussian spikes) -0.174 0.132 0.363 0.266 -1.963 2.362 0.053 

AR-EGARCH-EVT -0.434 0.301 0.548 0.503 -4.29 4.558 0.077 

 Benchmark Model -0.02 0.107 0.328 0.184 -1.442 5.123 0.048 

VIC GBM -2.482 7.407 2.722 2.482 -75.794 75.794 0.295 

Mean-reverting -0.228 0.101 0.318 0.269 -7.31 8.349 0.046 

Mean-reverting jump-diffusion -0.248 0.111 0.333 0.286 -7.95 8.913 0.048 

Markov Regime-Switching(Gaussian spikes) -0.336 0.297 0.545 0.371 -10.634 11.511 0.078 

Markov Regime-Switching(Log-Gaussian spikes) -0.221 0.097 0.312 0.265 -7.131 8.26 0.046 

AR-EGARCH-EVT -0.341 0.168 0.41 0.368 -10.78 11.46 0.059 

 Benchmark Model -0.094 0.056 0.238 0.191 -3.251 5.833 0.035 

QLD GBM -1.389 2.717 1.648 1.389 -48.612 48.612 0.218 

Mean-reverting -0.414 0.243 0.493 0.414 -15.629 15.629 0.076 

Mean-reverting jump-diffusion -0.398 0.227 0.477 0.398 -14.899 14.899 0.073 

Markov Regime-Switching(Gaussian spikes) -0.442 0.257 0.507 0.442 -16.298 16.298 0.077 

Markov Regime-Switching(Log-Gaussian spikes) -0.384 0.216 0.464 0.384 -14.445 14.445 0.072 

AR-EGARCH-EVT -0.644 0.495 0.704 0.644 -23.106 23.106 0.104 

 Benchmark Model -0.183 0.112 0.336 0.202 -8.001 8.570 0.053 

SA GBM -2.224 7.323 2.706 2.252 -135.72 136.42 0.297 

Mean-reverting -0.259 0.249 0.499 0.31 -41.385 42.649 0.071 

Mean-reverting jump-diffusion -0.266 0.263 0.513 0.336 -38.497 40.153 0.073 

Markov Regime-Switching(Gaussian spikes) -0.299 0.278 0.527 0.362 -39.388 40.861 0.075 

Markov Regime-Switching(Log-Gaussian spikes) -0.255 0.255 0.505 0.328 -37.81 39.548 0.072 

AR-EGARCH-EVT -0.544 0.518 0.719 0.589 -48.96 49.743 0.099 

 Benchmark Model -0.127 0.226 0.475 0.263 -36.955 40.553 0.069 

TAS GBM -2.281 8.293 2.88 2.286 -70.415 70.548 0.308 

Mean-reverting -0.313 0.383 0.619 0.475 -10.958 13.782 0.087 

Mean-reverting jump-diffusion -0.33 0.385 0.62 0.484 -11.556 14.135 0.088 

Markov Regime-Switching(Gaussian spikes) -0.332 0.382 0.618 0.481 -11.586 14.188 0.087 

Markov Regime-Switching(Log-Gaussian spikes) -0.338 0.379 0.616 0.482 -11.742 14.242 0.087 

AR-EGARCH-EVT -0.369 0.412 0.642 0.515 -12.731 15.307 0.09 

 Benchmark Model -0.272 0.366 0.605 0.442 -9.782 12.778 0.085 

Source: Author’s calculations 

 

The RMSE based on forecast with GBM process is the lowest for the Queensland (QLD) region 

(1.648) followed by the NSW region (1.767). The values of RMSE for other regions of the 

electricity network are found to be 2.721 for Victoria (VIC), 2.706 for South Australia (SA) 
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and 2.879 for TAS. These RMSE values are much higher than the forecast accuracy statistics 

based on the benchmark model. The benchmark model outperforms basic GBM model for each 

market region of the NEM measured by RMSE.  

 

Significant improvements can be noticed in RMSE values based on the Mean-Reverting model 

as compared to GBM based forecasts. For instance, the RMSE statistics showed significant 

drops in mean-reverting model as compared to GBM model in all regions of the NEM. The 

drop in the values of this statistic was about eight times in some instances (the RMSE value 

dropped about 4.6 times for NSW and about 8.5 times for VIC).  

 

As it can be observed from Table 30, the comparative performance analysis of the Mean-

Reverting and Mean-Reverting Jump-Diffusion models shows a mixed picture. The RMSE of 

the Mean-Reverting Jump-Diffusion model indicate declines in NSW and QLD as compared 

to the RMSE of the Mean-Reverting model by about 0.7 per cent and 3 per cent, respectively. 

However, in VIC, SA and TAS, the application of Mean-Reverting Jump-Diffusion model does 

not result in any improvements in RMSE values. Furthermore, RMSE of the model are found 

to have poor performance as compared to the benchmark model. 

 

The Markov Regime-Switching models generally provide better RMSE values compared to 

other models examined in this study. The Markov Regime-Switching model with Gaussian 

spikes has RMSE of 0.43 for NSW, 0.54 for VIC, 0.5 for QLD, 0.52 for SA and 0.61 for TAS 

regions. The noteworthy improvements in forecast performance emerge with the modelling of 

the spikes process with Log-Gaussian distribution though. The Markov Regime-Switching 

model with Log-Gaussian spikes result in RMSE of 0.36 for NSW, 0.31 for VIC, 0.46 for QLD, 

0.5 for SA and 0.61 for TAS. It is important to note that the main aim of the simulated models 
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in this thesis is to minimise the variance of the expected mean values. The Markov Regime-

Switching specifications so far does this more effective than previously examined continuous-

time models. Comparison of these models’ forecast accuracy with the benchmark model 

however indicates that the benchmark model outperforms Markov Regime-Switching 

specifications for each market region of the NEM measured by root mean square errors 

(RMSE). The AR-GARCH model used in this study has RMSE scores of 0.328 for New South 

Wales (NSW), 0.238 for Victoria (VIC), 0.336 for Queensland (QLD), 0.475 for SA and 0.605 

for Tasmania (TAS).  

 

In terms of the forecast accuracy of the Copula model, the RMSE values show deterioration in 

all regions of NEM. Despite its theoretical superiority and complexity, this model does not 

produce out-of-sample forecast values that are better than the benchmark model. However, it 

is interesting to note that the simulation process with Student t-copula function results in best 

values of RMSE the electricity regions of NSW and VIC suggesting a more integrated 

electricity market in these two regions. 

 

AREAS OF FUTURE RESEARCH 
Areas of future research in relation to enhancing the forecast accuracy of the models 

investigated in this thesis can be described under a number of broad areas. The following 

sections describe the broad issues under each section and give directions for future researchers 

to investigate those. It is believed that more accurate electricity price forecasts can mostly be 

done with improvements in these areas.  

Simulations 

The simulation processes performed in this thesis for both continuous-time and Markov 

Regime-Switching models were based on the Euler-Maruyama method. Although this method 
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for ordinary differential equations (ODE) has order one, the strong order for the Euler-

Maruyama method for stochastic differential equations is 1/2. This was proved in Gikhman 

and Skorokhod (1972). This difference in strong order indicates that the Euler method has 

larger mean errors compared to Milstein method. Hence, simulation of SDE based models with 

the Milstein method rather than the Euler method may result in more accurate forecast values. 

This is an area of future research that may be conducted in an effort to enhance the forecast 

accuracy of the models investigated in this thesis. 

 

Parameter estimation 

Models estimated in this thesis have a large number of parameters. The accurate estimate of 

these parameters provides an important area for researchers. As is appreciated, parameter 

estimates must be interpreted in light of the experience and knowledge of the conditions in the 

market at the time. All continuous-time models as studied in this thesis apart from GBM64 

utilised some complex parameter estimation methods that may be subject to interpretation and 

may be enhanced at the discretion of the researcher.  

 

Mean-Reverting Model 

The parameters of the Mean-Reverting model as were estimated via an ordinary least squares 

(OLS) method where the speed of mean reversion and long-run mean level are calculated from 

the coefficients of a linear fit between the log prices and their first difference scaled by the time 

interval parameter. This was rather a less complex way of estimating the parameters of the 

mean-reverting model.  

                                                           
64 The mean and standard deviation of the in-sample data are used as the parameters of the GBM specification in 

this study. This implies constant mean and variance even though electricity prices in the NEM present 

heteroskasdicity. 

 



  

277 
 

The literature has examples of slightly more complex estimation procedures like Maximum 

Likelihood Estimator (MLE) and MLE with Jack-knife techniques. For instance, Geman and 

Roncoroni (2006) estimated the parameters of their model by an estimator based on the exact 

likelihood of the unknown process with respect to a prior process chosen as a reference within 

the same class. The estimator is provided by the parameter vector maximising this process over 

a suitable domain.  

 

It is argued that this method has two major advantages:  

 analytical form of the exact likelihood function under continuous time observations can 

be computed for nearly all semi-martingales through a generalised version of the 

Girsanov theorem and  

 discrete sample estimator converges to the continuous sample one and a well-

established estimation theory exists in this latter case.  

 

Equally, incorporating the heteroskasdicity present in the data into these estimates is important. 

It is expected that more complex parameter estimation methods are likely to increase the 

forecast performance for the Mean-Reverting model and this area presents opportunities for 

further research. 

 

Mean-Reverting and Jump-Diffusion Model 

Mean-Reverting and Jump-Diffusion model as investigated in this thesis had a large number 

of parameters. The parameter estimation process poses the greatest challenge in estimating the 

model. The chosen parameter estimation method for this model was a hybrid approach as 

suggested by Weron (2006). Furthermore, another undesirable property of the MLE method in 

calibrating jump-diffusion processes was that it tends to converge on the smallest and most 
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frequent spike component of the price series whereas the aim of this thesis is to capture the 

lower frequency, large jump components.  

 

Secondly, another difficulty in estimating the parameters of the Mean-Reverting and Jump-

Diffusion model arose from the difficulty in estimating the continuous time jump processes 

from discretely sampled data. The literature has some examples of innovative methods in 

estimating the model parameters such as the application of partial maximum likelihood 

estimation based on Fourier inversion of the conditional characteristic function (CCF) or the 

quasi-maximum likelihood estimation based on conditional moments captured from 

derivatives of the CCF evaluated at zero (Weron, 2006). Hence, application of these more 

complex parameter estimation methods are likely to improve the forecast accuracy of the 

Mean-Reverting and Jump-Diffusion model and this area poses challenges for future 

researchers. 

 

Markov Regime-Switching Model 

Parameter estimation of Markov Regime-Switching models as investigated in this thesis were 

performed via the application of Expectation-Maximization (EM) algorithm where the whole 

set of parameters was estimated by an iterative two-step procedure. The variable transformation 

and the derivation of the maximum likelihood estimates are not straightforward in an EM 

algorithm. A solution to this could be the implementation of an extension proposed by Kim 

(1994). This extension casts the Markov Regime-Switching model into a state space model and 

presents a new filtering and smoothing algorithm. The major contribution of this extension 

would be allowing a broader class model to be estimated and increase computing smoothed 

probabilities.  
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Furthermore, an EM algorithm allows setting the initial parameters differently for each time 

the algorithm is run. Therefore, it is accepted that the starting values of the transition 

probabilities impact on the final outcome of the model. Hence, experimenting with starting 

values of the initial transition probabilities may assist finding the optimal starting values and 

hence improve forecast accuracy of Markov Regime-Switching models. 

 

Extreme Value Theory and Copula functions 

Despite the theoretical superiority of the forecast model that combines EVT with Copula 

functions suggested that this model fails to outperform the SDE based techniques except the 

GBM model. This relatively poor performance of the model is attributed to its failure to obtain 

identically and independently (𝑖. 𝑖. 𝑑.) errors when the data were treated with the AR(1)-

EGARCH(1) model.  

 

Therefore, a filtering procedure that achieves 𝑖. 𝑖. 𝑑. errors would add significant value to the 

forecast accuracy of this model. Starting a formal lag specification inclusion into the filtering 

procedure could be the first step towards achieving  𝑖. 𝑖. 𝑑. errors. Also, employing an efficient 

estimator such as Hill estimator to determine the threshold value levels65 could potentially 

enhance the forecast performance of the model. Therefore, it is suggested here that further 

research should aim at addressing these areas. 

 

Times Series Approach 

The approach taken in this thesis in forecasting electricity price series is in essence a time-

series model with no exogenous variables. In other words, models investigated in this thesis 

                                                           
65 This study uses a 10 per cent threshold value in determining the extremes of the tail data. 
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did not incorporate any non-price data. Therefore, models used in this thesis may benefit from 

the introduction of fundamental variables as exogenous input to the models.  

 

For instance, the jump parameters may be included as functions of load, generation capacity or 

reserve margins as spikes occur when the system is significantly constrained. As was explored 

in an earlier chapter on price formation, weather plays an important role in determining 

electricity prices. Under certain weather (i.e. heat-waves) conditions when the majority of the 

generation dispatched, transmission congestion or outages lead to price spikes. This suggests 

that temperature could be incorporated as a fundamental variable into the models in future 

work.  

 

Data Frequency 

Through the use of daily data, the set of models investigated in this thesis set the shortest 

duration of a spike to one day. In many instances, short-duration spikes may also occur in half-

hourly prices, but these are often averaged away in daily prices. This is especially important 

because the spiking behaviour in electricity markets appears to exhibit strong time variation, 

with spikes being relatively more common in peak daylight times. Specification of intraday 

data may provide a logical resolution to these as yet unexplored features and sets an area of 

further research. 
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APPENDIX 1 KOLMOGOROV–SMIRNOV TEST 
Kolmogorov–Smirnov test 

Kolmogorov–Smirnov test (K–S test) is a nonparametric test for the equality of continuous, 

one-dimensional probability distributions that can be used to compare a sample with a reference 

probability distribution. The Kolmogorov–Smirnov statistic quantifies a distance between the 

empirical distribution function of the sample and the cumulative distribution function of the 

reference distribution, or between the empirical distribution functions of two samples.  

 

Kolmogorov–Smirnov test is defined by letting 𝑥1, … , 𝑥𝑚 be observations on continuous i.i.d. 

random values 𝑋1, … , 𝑋𝑚 with a cumulative distribution function F. Then 𝐻0: 𝐹(𝑥) = 𝐹0(𝑥) 

for all x, where 𝐹0 is a known cumulative distribution function. The Kolmogorov–Smirnov test 

relies on the fact that the value of the sample cumulative density function is an asymptotically 

normally distributed. 

 

Kolmogorov–Smirnov test indicates that the electricity price series in Australia are non-

Gaussian as the test statistics are greater than the critical value, which then results in rejecting 

the null hypothesis that the distribution is of the expected form. The results from both Jarque-

Bera and Kolmogorov-Smirnov tests support the idea that non-conventional modelling 

techniques that do not rely on the assumption of normal distribution should be used to forecast 

electricity prices in NEM. 

Table 31 One-Sample Kolmogorov-Smirnov Tests 

  NSW VIC QLD SA TAS 

Kolmogrov-Smirnov Z statistic 5.018 2.182 3.610 4.848 5.409 

Probability 0.000 0.000 0.000 0.000 0.000 
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APPENDIX 2- OVERVIEW OF THE FORECAST ACCURACY MEASURES 
 

The literature has a number of widely accepted forecast accuracy measures as there are several 

statistical methods available to evaluate forecast performance. The following section lists the 

commonly used forecast accuracy measures. It is important to note that root mean squared error 

(RMSE) is the most widely used measure in the literature for its statistical properties. MSE 

places a greater penalty on large forecast errors than the mean absolute error (MAE) and the 

MSE and MAE may overcome the cancellation of positive and negative errors limitation of the 

mean error (ME), but they fail to provide information on forecasting accuracy relative to the 

scale of the series examined.  

 

Mean Squared Error 

The mean squared error is an accuracy measure computed by squaring the individual error for 

each item in a data set and then finding the average or mean value of the sum of those squares. 

It is represented by the following equation: 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑎𝑡 − 𝑓𝑡)2𝑛

𝑡=1                    (72) 

where; 

a = actual end of year outcome  

f = forecast outcomes  

t = time reference [i.e. t is now, (t-1) is last year, (t+1) is next year] usually reported as a 

subscript reference (e.g. t, t-1)  

n = the number of time periods. 

 

Mean Percentage Error 

The average of percentage errors by which forecasts differ from outcomes. 
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𝑀𝑃𝐸 =
1

𝑛
∑

(𝑎𝑡−𝑓𝑡)

𝑎𝑡

𝑛
𝑡−1 ∗ 100                   (73) 

 

Mean Absolute Error 

The mean absolute percentage error is the mean or average of the sum of all of the percentage 

errors for a given data set taken without regard to sign so as to avoid the problem of positive 

and negative values cancelling one another. It is represented by the following equation: 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |(𝑎𝑡 − 𝑓𝑡)|𝑛

𝑡=1                     (74) 

 

Mean Absolute Percentage Error 

 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|(𝑎𝑡−𝑓𝑡)|

𝑎𝑡

𝑛
𝑡−1 ∗ 100                  (75) 

 

The average of absolute percentage amount by which forecasts differ from outcomes 

 

Theil’s U statistics 

The U-statistic is an accuracy measure that emphasises the importance of large errors (as well 

as providing a relative basis for comparison with naïve forecasting methods. Theil’s U-statistic 

can be interpreted as dividing the RMSE of the proposed forecasting method by the RMSE of 

a no-change (naïve, U=1) model. If U is equal to 1, it means that the proposed model is as good 

as the naïve model. If U is greater than 1, there is no point in using the proposed forecasting 

model since a naïve method would produce better results. It is represented as: 
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𝑈 =
√∑ (𝑎𝑡−𝑓𝑡)2𝑛

𝑡=1

√∑ 𝑎𝑡
2𝑛

𝑡=1 +∑ 𝑓𝑡
2𝑛

𝑡=1

                               (76) 

 

All of the forecast accuracy measures described are subject to interpretation. For example, a 

simple dollar amount of mean or mean squared error would provide some useful information 

for a particular variable, however, the mean percentage error means the relative errors can be 

compared across a number of variables. Ignoring the sign of the error term by adopting absolute 

changes, one gets an idea of the magnitude of the errors generated by the forecasting 

techniques.  
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APPENDIX 3- OVERVIEW OF STOCHASTIC CALCULUS 

Let 𝑆𝑡 be the time of a particular asset. It is known that if 𝑆𝑡~𝐺𝐵𝑀(𝜇, 𝜎2), then 

 

 𝑆𝑡 = 𝑆0𝑒
(𝜇−

𝜎2

2
)𝑡+𝜎𝛽𝑡

                        (77) 

 

where 𝛽𝑡 is the Brownian motion driving the asset price. An alternative possibility is to use a 

stochastic differential equation (SDE) to describe the evolution of 𝑆𝑡. In this case it is written 

 

𝑆𝑡 = 𝑆0 + ∫ 𝜇𝑆𝑢𝑑𝑢
𝑡

0
+ ∫ 𝜎𝑆𝑢𝑑𝛽𝑢

𝑡

0
                  (78) 

 

Or shortly, 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝛽𝑡         

 

A number of observations are in order. The SDE defined by (78) can be shown to be well 

defined. In particular, while the first integral on the right-hand-side of (78) is a regular Riemann 

integral, the second integral is a stochastic integral. Without going into any technical details, it 

is interpreted as: 

 

∫ 𝜎𝑆𝑢𝑑𝛽𝑢 = lim
ℎ→0

∑ 𝜎𝑆𝑡𝑖−1

𝑡

0
(𝛽𝑡𝑖

− 𝛽𝑡𝑖−1
)                 (79) 

 

where ℎ = 𝑚𝑎𝑥𝑖|𝑡𝑖 − 𝑡𝑖−1| is the width of the partition. The important feature (79) is that the 

𝑆𝑡 terms are evaluated at the left-hand point of the intervals. This feature is extremely important 

in finance as it may be interpreted as modelling the inability of people to see into the future. In 

general, it can be interpreted the stochastic integral, ∫ 𝑋(𝑢, 𝛽𝑢)𝑑𝛽𝑢, so that 
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∫ 𝑋(𝑢, 𝛽𝑢)𝑑𝛽𝑢 =
𝑡

0
lim
ℎ→0

∑ 𝑋(𝑡𝑖−1, 𝛽𝑡𝑖−1
)( 𝛽𝑡𝑖

− 𝛽𝑡𝑖−1
)                        (80) 

 

In general it is often convenient to model asset prices and interest rates as SDEs. Another 

example is given by the assumption that 𝑋𝑡 = log (𝑆𝑡) is an Ornstein-Uhlenbeck (OU) process. 

In particular this means that 𝑑𝑋𝑡 = −𝛾(𝑋𝑡 − 𝛼)𝑑𝑡 + 𝜎𝑑𝛽𝑡 

where 𝛾, 𝛼 𝑎𝑛𝑑 𝜎  are non-negative constants. 

 

Ito’s Lemma: Suppose 𝑥𝑡 is an Ito process with 𝑑𝑥𝑡 = 𝛼(𝑥, 𝑡)𝑑𝑡 + 𝑏(𝑥, 𝑡)𝑑𝛽𝑡.  

Let 𝑦𝑡 = 𝐹(𝑥, 𝑡) then 𝑑𝑦𝑡 = (
𝜕𝐹

𝜕𝑥
𝛼 +

𝜕𝐹

𝜕𝑡
+

1

2
 
𝜕2𝐹

𝜕𝑥2 𝑏2) 𝑑𝑡 +
𝜕𝐹

𝜕𝑥
𝑏𝑑𝛽𝑡                         (81) 
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APPENDIX 4- SIMULATION OF STOCHASTIC DIFFERENTIAL 

EQUATIONS 
 

Defining an SDE of the form: 𝑑𝑋𝑡 = 𝜇(𝑡, 𝑋𝑡)𝑑𝑡 + 𝜎(𝑡, 𝑋𝑡)𝑑𝐵𝑡 

 

To simulate values of 𝑋𝑡 (as there is no explicit solution for it or its distribution can not be 

determined), what is meant actually is to simulate a discretised version of the SDE. In 

particular, a discretised process, {𝑋ℎ, 𝑋2ℎ, … , 𝑋𝑚ℎ}, where m is the number of time steps, h is 

a constant and mh=T. The smaller the value of h, the closer our discretised path will be to the 

continuous-time path in the simulation. The Euler scheme satisfies; 

𝑿𝑘ℎ = 𝑿(𝑘−1)ℎ + 𝜇 ((𝑘 − 1)ℎ, 𝑿(𝑘−1)ℎ) ℎ + 𝜎((𝑘 − 1)ℎ, 𝑿(𝑘−1)ℎ)√ℎ 𝑍𝑘 

where 𝑍𝑘 are identically and independently distributed N(0,1). Estimation of 𝜃 ≔ 𝐸[𝑓(𝑋𝑇)] 

using the Euler scheme for a fixed number of paths, n, and discretization interval, h, is 

performed with the following algorithm: 

𝑡 = 0; 𝑿 = 𝑋0 

𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑛 

𝑓𝑜𝑟 𝑘 = 1 𝑡𝑜
𝑇

ℎ
= 𝑚 

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑍~𝑁(0,1) 

𝑠𝑒𝑡 𝑿 = 𝑿 + 𝜇(𝑡, 𝑿)ℎ + 𝜎(𝑡, 𝑿)√ℎ 𝑍 

𝑠𝑒𝑡 𝑡 = 𝑡 + ℎ 

𝑒𝑛𝑑 𝑓𝑜𝑟 

𝑠𝑒𝑡 𝑓𝑗 = 𝑓(𝑿) 

𝑒𝑛𝑑 𝑓𝑜𝑟 

𝑠𝑒𝑡 𝜽𝑛 = (𝑓1 + ⋯ + 𝑓𝑛))/𝑛 
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𝑠𝑒𝑡 𝝈𝑛
2 = ∑ (𝑓𝑗

𝑛

𝑗=1
− 𝜽𝑛)2/(𝑛 − 1) 

𝑠𝑒𝑡 𝑎𝑝𝑝𝑟𝑜𝑥. 100(1 − 𝛼)% 𝐶𝐼 = 𝜃𝑛 ± 𝑧
1−𝛼/2

𝜶𝑛

√𝑛

 

To minimise the discretisation error, there is a need for generating intermediate values𝑋𝑖ℎ. 

Also, to estimate 𝜃 = 𝐸[𝑓 (𝑋𝑡1
, … , 𝑋𝑡𝑝

)] in general, one needs to keep track of(𝑋𝑡1
, … , 𝑋𝑡𝑝1

) 

inside the inner for-loop of the algorithm above. 

 

Discretisation error 

The discretisation error is defined by 𝐷 ≔ |𝐸[𝑓(𝑋𝑇)] − 𝐸[𝑓(𝑿𝑻)]| and it is very important 

when simulating SDEs to ensure that D is sufficiently small. Otherwise, the estimate of 𝜽𝑛 will 

be a biased estimate of 𝐸[𝑓(𝑋𝑇)], the quantity of interest.  

 

Simulating a multidimensional SDE 

In the multidimensional case, 𝑿𝒕, 𝐵𝑡, and 𝜇(𝑡, 𝑿𝒕) in the above equation are vectors, and 

𝜎(𝑡, 𝑿𝒕) is a matrix. This arises when there are multiple SDEs in the model. 

 

Simulating SDEs: Jump-Diffusion models 

 
The following discusses how to approximately simulate certain types of jump-diffusion 

processes when exact simulation is impossible. This discussion is based on Glasserman (2003). 

 

First discretise time and utilise an Euler-type scheme. Let 𝑁𝑡 be a Poisson process, 𝑊𝑡 a 

standard Brownian motion and 𝑌 = 𝑓{𝑌1, 𝑌2, … } a sequence of IID random variables. Further, 

assume 𝑁𝑡 , 𝑊𝑡 and 𝑌 are all independent of one another. Consider now a jump-diffusion model 

of the form 

𝑑𝑋𝑡 = 𝜇(𝑋𝑡)𝑑𝑡 + 𝜎(𝑋𝑡) + 𝜎𝑊𝑡 + 𝑐(𝑋𝑡, 𝑌𝑦𝑁𝑡+1
)𝑑𝑁𝑡                                                           (82) 
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𝑋𝑡 represents the time t value of an underlying state variable. Then the approximate simulation 

of a path of 𝑋𝑡 on [0,T] is performed as follows: 

1. Define an initial grid 0, ℎ, 2ℎ, … , 𝑚ℎ = 𝑡  

2. Since the Poisson process, 𝑁𝑡 is independent of 𝑊𝑡, we can imagine that we first 

simulate the jump times of the process in [0,T]. Let these times be 𝜏1, … , 𝜏𝑁𝑇
 noting of 

course that 𝑁𝑡 will vary from sample path to sample path. 

3. We now  create a combined time grid, 0 = 𝑡0, 𝑡1, … , 𝑡𝑀 = 𝑇 consisting of the original 

𝑚ℎ + 1 + 𝑁𝑇 

4.  We then approximately simulate 𝑋𝑡 at points on the combined grid. 
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APPENDIX 5- EXPECTATION MAXIMIZATION ALGORITHM 
 

Given the initial parameter values of:  

  

𝜃(0) = (𝛼𝑖
(0)

, 𝛽𝑖
(0)

, 𝜎𝑖
(0)

, 𝑃(0))                   (83) 

 

In the first step of the iterative procedure (the E-step) inferences about the state processes are 

derived. Since 𝑅𝑡 is latent and not directly observable, only the expected values of the state 

process, given the observation vector 𝐸(𝑅𝑡=𝑖|𝑥1, 𝑥1, … , 𝑥𝑇; 𝜃), can be calculated. These 

expectations result in the so called smoothed inferences, i.e. the conditional probabilities 

𝑃(𝑅𝑡 = 𝑗||𝑥1, 𝑥1, … , 𝑥𝑇; 𝜃) for the process being in regime j at time t.  

 

In the second step (the M-step) new maximum likelihood estimates of the parameter vector θ, 

based on the smoothed inferences obtained in the E-step, are calculated. Both steps are 

reoperated until the local maximum of the likelihood function is reached. 

 

i. The E-step 

Let 𝑥𝑡 = (𝑥1, … , 𝑥𝑡). The E-step consists of the following steps: 

 

1-filtering: based on Bayes rule for 𝑡 = 1,2, … , 𝑇 iterate on equations: 

 

𝑃(𝑅𝑡 = 𝑖|𝑥𝑡; 𝜃(𝑛)) =
𝑃(𝑅𝑡=𝑖|𝑥𝑡−1;𝜃(𝑛))𝑓(𝑥𝑡|𝑅𝑡=𝑖;𝑥𝑡−1;𝜃(𝑛)

∑ 𝑃(𝑅𝑡=𝑖|2
𝑖=1 𝑥𝑡−1;𝜃(𝑛)𝑓(𝑥𝑡|𝑅𝑡=𝑖;𝑥𝑡−1;𝜃(𝑛))

                           (84) 

 

where 𝑓(𝑥𝑡|𝑅𝑡 = 𝑖; 𝑥𝑡−1; 𝜃(𝑛)) is the density of the underlying process at time t conditional 

that the process was in regime  (𝑖 ∈ 1,2) , and 
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𝑃(𝑅𝑡+1 = 𝑖|𝑥𝑡; 𝜃(𝑛)) = ∑ 𝑝𝑗𝑖
(𝑛)

𝑃(𝑅𝑡
2
𝑗=1 = 𝑗|𝑥𝑡; 𝜃(𝑛))                          (85) 

 

Until 𝑃(𝑅𝑇 = 𝑖|𝑥𝑇; 𝜃(𝑛)) is calculated. 

 

2-Smoothing: for 𝑡 = 𝑇 − 1, 𝑇 − 2, … ,1 iterate on 

𝑃(𝑅𝑡 = 𝑖|𝑥𝑇; 𝜃(𝑛)) = ∑
𝑃(𝑅𝑡=𝑖|𝑥𝑡;𝜃(𝑛))𝑃(𝑅𝑡+1=𝑗|𝑥𝑇;𝜃(𝑛))𝑝𝑖𝑗

(𝑛)

𝑃(𝑅𝑡+1=𝑖|𝑥𝑡;𝜃(𝑛))

2
𝑗=1                           (86) 

 

The above procedure requires the derivation of 𝑓(𝑥𝑡|𝑅𝑡 = 𝑖; 𝑥𝑡−1; 𝜃(𝑛)) used in the filtering 

part. This model definition implies that 𝑋𝑡 given 𝑋𝑡−1 has a conditional Gaussian distribution 

with mean 𝛼𝑖 + (1 − 𝛽𝑖)𝑋𝑡−1 and standard deviation 𝜎𝑖|𝑋𝑡−1|𝛾𝑖. Given by the following 

probability density function: 

 

𝑓(𝑥𝑡|𝑅𝑡 = 𝑖; 𝑥𝑡−1; 𝜃(𝑛)) =
1

√2𝜋𝜎
𝑖
(𝑛)

|𝑥𝑡−1|(𝑛)

                            (87) 

 

exp {−
(𝑥𝑡−(1−𝛽𝑖

(𝑛)
)𝑥𝑡−1−𝛼𝑖

(𝑛)
)

2

2(𝜎
𝑖
(𝑛)

)
2

|𝑥𝑡−1|2(𝑛)
}                             (88) 

 

ii. The M-step 

In the second step of the EM algorithm, new and more exact ML estimates 𝜃(𝑛+1) for all model 

parameters are calculated. Compared to standard ML estimation, where for a given probability 

distribution function (𝑓) the log-likelihood function (∑ log 𝑓(𝑥𝑡
𝑇
𝑡=1 , 𝜃(𝑛))) is maximised, here 

each component of this sum has to be weighted with the corresponding smoothed inference, 

since each observation (𝑥𝑡) belongs to the ith regime with probability, (𝑃(𝑅𝑡 = 𝑖|𝑥𝑡−1; 𝜃(𝑛))). 



  

292 
 

In particular, for the model defined by Equation (88), explicit formulas for the estimates are 

provided in the following Lemma. 

 

Lemma 1. The ML estimates for the parameters of the model defined by equation above are 

given by the following formulas: 

 

𝛼𝑖 =
∑ [𝑃(𝑅𝑡=𝑖|𝑇

𝑡=2 𝑥𝑇;𝜃(𝑛))|𝑥𝑡−1|−2(𝑥𝑡−(1−𝛽𝑖)𝑥𝑡−1)]

∑ [𝑃(𝑅𝑡=𝑖|𝑇
𝑡=2 𝑥𝑇;𝜃(𝑛)|𝑥𝑡−1|−2                             (89) 

 

𝛽𝑖 =
∑ {𝑃(𝑅𝑡=𝑖|𝑥𝑇;𝜃(𝑛)𝑥𝑡−1|𝑥𝑡−1|−2𝐵1}𝑇

𝑡=2

∑ [𝑃(𝑅𝑡=𝑖|𝑇
𝑡=2 𝑥𝑇;𝜃(𝑛)𝑥𝑡−1|𝑥𝑡−1|−2𝐵2]

                             (90) 

 

𝐵1 = 𝑥𝑡 − 𝑥𝑡−1 −
∑ 𝑃(𝑅𝑡=𝑖|𝑥𝑇;𝜃(𝑛))|𝑥𝑡−1|−2(𝑥𝑡−𝑥𝑡−1)𝑇

𝑡=2

∑ 𝑃(𝑅𝑡=𝑖|𝑥𝑇;𝜃(𝑛))|𝑥𝑡−1|−2𝑇
𝑡=2

                           (91) 

 

𝐵2 =
∑ 𝑃(𝑅𝑡=𝑖|𝑥𝑇;𝜃(𝑛))𝑥𝑡−1|𝑥𝑡−1|−2)𝑇

𝑡=2

∑ 𝑃(𝑅𝑡=𝑖|𝑥𝑇;𝜃(𝑛))|𝑥𝑡−1|−2𝑇
𝑡=2

− 𝑥𝑡−1 (92) 

 

𝜎𝑖
2 =

∑ {𝑃(𝑅𝑡=𝑖|𝑥𝑇;𝜃(𝑛))|𝑥𝑡−1|−2(𝑥𝑡−𝛼𝑖−(1−𝛽𝑖)𝑥𝑡−1)}2𝑇
𝑡=2

∑ 𝑃(𝑅𝑡=𝑖|𝑥𝑇;𝜃(𝑛))𝑇
𝑡=2

 (93) 

 

Finally, in the last part of the M-step, the transition probabilities are estimated according to the 

following formula: 

 

𝑝𝑖𝑗
(𝑛+1)

=
∑ 𝑃(𝑅𝑡=𝑗,𝑅𝑡−1=𝑖|𝑥𝑇;𝜃(𝑛))𝑇

𝑡=2

∑ 𝑃(𝑅𝑡−1=𝑖|𝑥𝑇;𝜃(𝑛))𝑇
𝑡=2

=   (94) 

 

=
∑ 𝑃(𝑅𝑡=𝑗|𝑥𝑇;𝜃(𝑛))

𝑝
𝑖𝑗
(𝑛)

𝑃(𝑅𝑡−1=𝑖|𝑥𝑡;𝜃(𝑛))

𝑃(𝑅𝑡−1=𝑗|𝑥𝑡;𝜃(𝑛))

𝑇
𝑡=2

∑ 𝑃(𝑅𝑡−1=𝑖|𝑥𝑇;𝜃(𝑛))𝑇
𝑡=2

   (95) 
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where 𝑝𝑖𝑗
(𝑛)

 is the transition probability from the previous iteration. All values obtained in the 

M-step are then used as a new parameter vector 𝜃(𝑛+1) = (𝛼𝑖, 𝛽𝑖, 𝜎𝑖, 𝑃(𝑛+1)) , 𝑖 = 1,2, in the 

next iteration of the E-step. 
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APPENDIX 6- BROCK-DECHERT-SCHEINKMAN (BDS) TEST FOR 
INDEPENDENCE 
 

This part carries out the BDS test for independence, as described in Brock, Dechert, 

Scheinkman and LeBaron (1996). The BDS test is a portmanteau test for time based 

dependence in a series and can be used for testing against a variety of possible deviations from 

independence including linear dependence, non-linear dependence, or chaos. This test can be 

applied to a series of estimated residuals to check whether the residuals are independently and 

identically distributed.  In particular, when the BDS test is applied to the residuals from a fitted 

linear time series model, the BDS test can be used to detect the remaining dependence and the 

presence of an omitted nonlinear structure.  

 

The BDS test takes its roots from the concept of correlation integral. The correlation integral 

at embedding dimension m can be estimated by: 

 

𝐶𝑚,𝜖 =
2

𝑇𝑚(𝑇𝑚 − 1)
∑ 𝐼(𝑥𝑡

𝑚, 𝑥𝑠
𝑚; 𝜖)

𝑚≤ 𝑠< 𝑡≤𝑇 

 

 

where 𝑇𝑚 = 𝑇 − 𝑚 + 1 𝑎𝑛𝑑 𝐼𝐼(𝑥𝑡
𝑚, 𝑥𝑠

𝑚; 𝜖) is an indicator function which is equal to one if 

|𝑥𝑡−𝑖 − 𝑥𝑠−𝑖|< 𝜖 𝑓𝑜𝑟 𝑖 = 0,1, … , 𝑚 − 1 and zero otherwise.  

 

Correlation integral estimates the probability that any two m-dimensional points are within a 

distance of 𝜖 of each other. That is, it estimates the joint probability; Pr(|𝑥𝑡 − 𝑥𝑠|< 𝜖, |𝑥𝑡−1 −

𝑥𝑠−1|< 𝜖, … , |𝑥𝑡−𝑚+1 < 𝑥𝑠−𝑚+1|< 𝜖) 

 

If 𝑥𝑡 are 𝑖. 𝑖. 𝑑. this probability should be equal to the following in the limiting case: 𝐶1,𝜖
𝑚 =

Pr (|𝑥𝑡 − 𝑥𝑠|< 𝜖)
𝑚
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Brock et. al. (1996) defines the BDS statistic as follows: 𝑉𝑚,𝜖 = √𝑇 
𝐶𝑚,𝜖−𝐶1,𝜖

𝑚

𝑠𝑚,𝜖
 ,where 𝑠𝑚,𝜖 is the 

standard deviation of √𝑇(𝐶𝑚,𝜖 − 𝐶1,𝜖
𝑚 ) and can be estimated consistently. Under moderate 

regularity conditions, BDS statistic converges in distribution to 𝑁(0,1) so the null hypothesis 

of 𝑖. 𝑖. 𝑑. is rejected at the 5% significance level whenever|𝑉𝑚,𝜖|> 1.96. The results of the BDS 

test for each region of the NEM at different dimensions are provided in the following table. 

The z-statistic is the BDS-statistic divided by the standard error. It is the final result that is used 

for the hypothesis test and its probability values that the given z-statistic would be observed 

from 𝑖. 𝑖. 𝑑. data.  

Table 32 BDS Parameter Estimates 

 

Source: Author’s calculations. 

  

NEM Region Dimension BDS Statistic Std. Error z-Statistic Prob.

2 0.007 0.003 2.805 0.005

3 0.012 0.004 3.001 0.003

4 0.016 0.005 3.344 0.001

5 0.018 0.005 3.489 0.001

6 0.018 0.005 3.738 0.000

2 0.016 0.002 7.525 0.000

3 0.020 0.003 5.795 0.000

4 0.019 0.004 4.694 0.000

5 0.016 0.004 3.838 0.000

6 0.014 0.004 3.316 0.001

2 0.006 0.003 2.078 0.038

3 0.011 0.004 2.693 0.007

4 0.014 0.005 2.826 0.005

5 0.016 0.005 3.011 0.003

6 0.016 0.005 3.171 0.002

2 0.020 0.002 8.357 0.000

3 0.025 0.004 6.674 0.000

4 0.024 0.004 5.475 0.000

5 0.023 0.005 4.936 0.000

6 0.020 0.004 4.446 0.000

2 0.017 0.002 7.671 0.000

3 0.025 0.004 7.221 0.000

4 0.029 0.004 6.889 0.000

5 0.031 0.004 7.104 0.000

6 0.029 0.004 6.947 0.000

NSW

VIC

QLD

SA

TAS
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APPENDIX 7- CONDITIONAL STANDARD DEVIATIONS AND 
STANDARDISED RESIDUALS 
 

Figure 85 Conditional Standard Deviations, NSW 

 
Source: Author’s calculations. 

 

Figure 86 Conditional Standard Deviations, VIC 

 
Source: Author’s calculations. 
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Figure 87 Conditional Standard Deviations, QLD 

 
Source: Author’s calculations. 

 

Figure 88 Conditional Standard Deviations, SA 

 
Source: Author’s calculations. 
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Figure 89 Conditional Standard Deviations, TAS 

 

Source: Author’s calculations. 
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APPENDIX 8- FILTERED RESIDUALS AND CONDITIONAL STANDARD 
DEVIATIONS  
 
Figure 90 Filtered Residuals, NSW 

 

Source: Author’s calculations. 

 

Figure 91 Filtered Residuals, VIC 

 

Source: Author’s calculations. 
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Figure 92 Filtered Residuals, QLD 

 

Source: Author’s calculations. 

 

Figure 93 Filtered Residuals, SA 

 

Source: Author’s calculations. 
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Figure 94 Filtered Residuals, TAS 

 

Source: Author’s calculations. 
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APPENDIX 9- COMPARISON OF GPD FITTED CDF WITH ECDF 
 
Figure 95 Empirical Cumulative Distribution Function, NSW 

 

Source: Author’s calculations. 

 

Figure 96 Empirical Cumulative Distribution Function, VIC 

 

Source: Author’s calculations. 
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Figure 97 Empirical Cumulative Distribution Function, QLD 

 

Source: Author’s calculations. 

 

Figure 98 Empirical Cumulative Distribution Function, SA 

 Source: Author’s calculations. 
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Figure 99 Empirical Cumulative Distribution Function, TAS 

 

Source: Author’s calculations. 
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APPENDIX 10- CROSS CORRELATION FUNCTIONS 
 

Figure 100 Cross Correlation Functions, NSW with QLD 

 
Source: Author’s calculations. 

 

Figure 101 Cross Correlation Functions, SA with VIC 

 
Source: Author’s calculations. 
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Figure 102 Cross Correlation Functions, NSW with VIC 

 
Source: Author’s calculations. 
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APPENDIX 11- SAMPLE ACFs, DAILY AND SQUARED PRICES 
 
Figure 103 Autocorrelation Functions (Daily log prices), NSW 

 

Source: Author’s calculations. 

 

Figure 104 Autocorrelation Functions (Squared daily log prices), NSW 

 

Source: Author’s calculations. 
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Figure 105 Autocorrelation Functions (Daily log prices), QLD 

 

Source: Author’s calculations. 

 

Figure 106 Autocorrelation Functions (Squared daily log prices), QLD 

 

Source: Author’s calculations. 
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Figure 107 Autocorrelation Functions (Squared daily log prices), SA 

 

Source: Author’s calculations. 

 

Figure 108 Autocorrelation Functions (Squared daily log prices), SA 

 

Source: Author’s calculations. 
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Figure 109 Autocorrelation Functions (Daily log prices), TAS 

 

Source: Author’s calculations. 

 

Figure 110 Autocorrelation Functions (Squared daily log prices), TAS 

 

Source: Author’s calculations. 
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Figure 111 Autocorrelation Functions (Daily log prices), VIC 

 

Source: Author’s calculations. 

 

Figure 112 Autocorrelation Functions (Squared daily log prices), VIC 

 

Source: Author’s calculations. 
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