
Thank

Citatio

See th

Version

Copyri

Link to

you for do

on:

is record i

n:

ght Statem

o Published

wnloading

in the RMI

ment: ©

d Version:

 this docum

IT Researc

ment from

ch Reposit

the RMIT R

ory at:

Research RRepository

PLEASE DO NOT REMOVE THIS PAGE

 Sun, C, Xue, F, Liu, H and Zhang, X 2016, 'A path-aware approach to mutant reduction in
mutation testing', Information and Software Technology, pp. 1-17.

https://researchbank.rmit.edu.au/view/rmit:35931

Accepted Manuscript

 2016 Elsevier B.V. All rights reserved
 Creative Commons Attribution-NonCommercial-NoDerivatives
 4.0 International License.

 http://dx.doi.org/10.1016/j.infsof.2016.02.006

http://researchbank.rmit.edu.au/

ARTICLE IN PRESS

JID: INFSOF [m5G; March 10, 2016;10:12]

Information and Software Technology 0 0 0 (2016) 1–17

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

A path-aware approach to mutant reduction in mutation testing

Chang-ai Sun

a , ∗, Feifei Xue

a , Huai Liu

b , Xiangyu Zhang

c

a School of Computer and Communication Engineering, University of Science and Technology Beijing, China
b Australia-India Research Centre for Automation Software Engineering, RMIT University, Melbourne, Australia
c Department of Computer Science, Purdue University, West Lafayette, IN, USA

a r t i c l e i n f o

Article history:

Received 1 August 2015

Revised 15 February 2016

Accepted 22 February 2016

Available online xxx

Keywords:

Mutation testing

Selective mutation testing

Control flow

Path depth

a b s t r a c t

Context : Mutation testing, which systematically generates a set of mutants by seeding various faults into

the base program under test, is a popular technique for evaluating the effectiveness of a testing method.

However, it normally requires the execution of a large amount of mutants and thus incurs a high cost.

Objective : A common way to decrease the cost of mutation testing is mutant reduction, which selects a

subset of representative mutants. In this paper, we propose a new mutant reduction approach from the

perspective of program structure.

Method : Our approach attempts to explore path information of the program under test, and select mu-

tants that are as diverse as possible with respect to the paths they cover. We define two path-aware

heuristic rules, namely module-depth and loop-depth rules, and combine them with statement- and

operator-based mutation selection to develop four mutant reduction strategies.

Results : We evaluated the cost-effectiveness of our mutant reduction strategies against random mutant

selection on 11 real-life C programs with varying sizes and sampling ratios. Our empirical studies show

that two of our mutant reduction strategies, which primarily rely on the path-aware heuristic rules, are

more effective and systematic than pure random mutant selection strategy in terms of selecting more

representative mutants. In addition, among all four strategies, the one giving loop-depth the highest pri-

ority has the highest effectiveness.

Conclusion : In general, our path-aware approach can reduce the number of mutants without jeopardizing

its effectiveness, and thus significantly enhance the overall cost-effectiveness of mutation testing. Our

approach is particularly useful for the mutation testing on large-scale complex programs that normally

involve a huge amount of mutants with diverse fault characteristics.

© 2016 Elsevier B.V. All rights reserved.

1

n

a

q

s

t

a

a

a

b

7

(

o

i

b

s

m

p

f

t

d

t

b

h

0

. Introduction

Mutation testing, basically a fault-based software testing tech-

ique [1,2] , was originally proposed to measure the adequacy of

 given test suite and help design new test cases to improve the

uality of the test suite. It has been used for different purposes,

uch as the generation of test cases and oracles [3] , fault localiza-

ion [4] , etc. Fig. 1 shows the principle of mutation testing. Given

 base program, different variants, namely mutants, can be gener-

ted by seeding various faults through mutation operators. Once

 test case shows different behaviors between a mutant and the

ase program, the mutant is said to be killed by the test case (in
∗ Corresponding author. Tel.: +861062332931; fax: +861062332873.

E-mail addresses: casun@ustb.edu.cn , changai_sun2002@hotmail.com (C.-a. Sun),

29045626@qq.com (F. Xue), huai.liu@rmit.edu.au (H. Liu), xyzhang@cs.purdue.edu

X. Zhang).

a

g

v

t

c

ttp://dx.doi.org/10.1016/j.infsof.2016.02.006

950-5849/© 2016 Elsevier B.V. All rights reserved.

Please cite this article as: C.-a. Sun et al., A path-aware approach to

Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.02.006
ther words, the related fault is detected). Apparently, a test suite

s regarded as effective if it can kill as many mutants as possi-

le (i.e. large mutation scores). A number of studies [5–7] have

hown that compared with manually fault-seeded programs, auto-

atically generated mutants are more similar to the real-life faulty

rogram. Thus, mutation testing has been acknowledged as an ef-

ective technique for evaluating the fault-detection capability of a

esting method.

However, the real-world application of mutation testing is hin-

ered by some drawbacks, such as the existence of equivalent mu-

ants, lack of appropriate automated tools, etc. One major draw-

ack is the high cost: Due to the large number of mutation oper-

tors and possible locations to apply these operators into the pro-

ram, a huge volume of mutants are generated to guarantee that

arious faults are covered as many as possible. The execution of all

hese mutants is quite time-consuming, and the test result verifi-

ation on mutants is a non-trivial task.
mutant reduction in mutation testing, Information and Software

http://dx.doi.org/10.1016/j.infsof.2016.02.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
mailto:casun@ustb.edu.cn
mailto:changai_sun2002@hotmail.com
mailto:729045626@qq.com
mailto:huai.liu@rmit.edu.au
mailto:xyzhang@cs.purdue.edu
http://dx.doi.org/10.1016/j.infsof.2016.02.006
http://dx.doi.org/10.1016/j.infsof.2016.02.006

2 C.-a. Sun et al. / Information and Software Technology 0 0 0 (2016) 1–17

ARTICLE IN PRESS

JID: INFSOF [m5G; March 10, 2016;10:12]

Fig. 1. Principle of mutation testing.

i

p

u

u

a

D

t

i

D

m

t

c

o

D

M⎧⎨
⎩

i

t

a

Some effort s have been made to decrease the cost of muta-

tion testing by reducing the number of mutants. Mathur and Wong

[8] proposed random mutant selection, which is simple and effi-

cient in execution. However, random selection may discard some

mutants that are difficult to be killed, and thus affect the qual-

ity of test suite that is designed based on the selected mutants. A

more systematic approach called operator-based mutant selection

[9] was proposed to select a subset of mutants based on certain

(not all) mutation operators. Nevertheless, some recent studies [10]

showed that the operator-based strategy is actually not superior to

random selection.

In this paper, we propose a new mutant reduction approach.

Instead of mutation operators, we conjecture that the fault charac-

teristics (in particular, how different a fault is to be detected) are

more related to the location of the fault, especially how deep the

fault location is in terms of program paths. Therefore, we explore

the mutant reduction based on the program structure. In particu-

lar, our work makes the following four contributions:

(I) A path-aware approach to mutant reduction is proposed,

which explores mutant reduction from the perspective of

the path depth in the program under test;

(II) We present four heuristic rules for mutant reduction, two

of which are path-aware, one statement-based, and one

operator-based;

(III) Four mutant reduction strategies are developed with differ-

ent priorities among the heuristic rules; and

(IV) The effectiveness of the mutant reduction strategies are

evaluated through an empirical study based on 11 real-life

programs. It is shown that two strategies giving higher pri-

orities to path-aware rules are superior to random mutant

selection, and are more effective than the other two giving

higher priorities to statement- or operator-based rules.

The rest of this paper is organized as follows. In Section 2 , we

introduce the underlying concepts and techniques. In Section 3 ,

we describe our heuristic rules and the mutant reduction strate-

gies. We present the design and setting of our empirical study in

Section 4 , and discuss the experimental results in Section 5 . The

work related to our study is discussed in Section 6 . Finally, we con-

clude the paper in Section 7 .

2. Preliminaries and terminology

In this section, we introduce the basic concepts and preliminar-

ies that will be used by path-aware mutant reduction technique.

All concepts are illustrated using an example program implement-
Please cite this article as: C.-a. Sun et al., A path-aware approach to

Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.02.006
ng heap sort, as shown in Fig. 2 . The function call diagram of the

rogram is given in Fig. 3 .

Practically, a program is often composed of a number of mod-

les, such as functions in C programs. We distinguish these mod-

les into caller and callee based on the invoking relationship

mong them [11] .

efinition 1. If module m directly invokes module n , module m is

ermed as the caller and module n the callee. The invoking relation

s represented as m → n .

efinition 2. Callers (m) refers to the set of direct callers of module

 , that is, Cal l ers (m) = { x | x → m } .
For example, in the heap sort program (Figs. 2 and 3), f 1 → f 2 ,

hat is, between modules f 1 and f 2 , f 1 is the caller, while f 2 is the

allee. According to Fig. 3 , we can get the following:

• Cal l ers (f 1) = ∅ .
• Cal l ers (f 2) = { f 1 } .
• Cal l ers (f 3) = { f 1 } .
• Cal l ers (f 4) = { f 2 } .
• Cal l ers (f 5) = { f 2 , f 4 } .

We now define the module depth MD (m i) of a module m i based

n the invoking relation among modules.

efinition 3. For a module m i ,

D (m i) =

0 ; Cal l ers (m i) = ∅
max

(
MD (m j | m j ∈ Cal l ers (m i))

)
+ 1 ; Cal l ers (m i) � = ∅

For the heap sort program, we have the following calculations:

• Since Cal l ers (f 1) = ∅ , MD (f 1) = 0 .
• Since Cal l ers (f 2) = { f 1 } , MD (f 2) = max (MD (f 1)) + 1 = 0 + 1 =

1 .
• Since Cal l ers (f 3) = { f 1 } , MD (f 3) = max (MD (f 1)) + 1 = 0 + 1 =

1 .
• Since Cal l ers (f 4) = { f 2 } , MD (f 4) = max (MD (f 2)) + 1 = 1 + 1 =

2 .
• Since Cal l ers (f 5) = { f 2 , f 4 } , MD (f 5) = max (MD (f 2) , MD (f 4)) +

1 = max (1 , 2) + 1 = 2 + 1 = 3 .

Note that there may exist recursive calls among modules, which

n turn results in a cycle in the function call diagram. In this situa-

ion, we can break the cycle from the back edges in recursive calls,

s discussed in [11] .
mutant reduction in mutation testing, Information and Software

http://dx.doi.org/10.1016/j.infsof.2016.02.006

C.-a. Sun et al. / Information and Software Technology 0 0 0 (2016) 1–17 3

ARTICLE IN PRESS

JID: INFSOF [m5G; March 10, 2016;10:12]

Fig. 2. Heap sort program.

Please cite this article as: C.-a. Sun et al., A path-aware approach to mutant reduction in mutation testing, Information and Software

Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.02.006

http://dx.doi.org/10.1016/j.infsof.2016.02.006

4 C.-a. Sun et al. / Information and Software Technology 0 0 0 (2016) 1–17

ARTICLE IN PRESS

JID: INFSOF [m5G; March 10, 2016;10:12]

f1

f2 f3

f4

f5

f1: main()
f2: heap_sort()
f3: print_arr()
f4: build_max_heap()
f5: adjust_max_heap()

Fig. 3. Function call diagram of heap sort program.

d

i

S

D

b

a

c

B

D

b

i

B

D

H

c

N

l

o

D

L

t

3

n

A module is often composed of a number of hierarchical blocks,

which can be defined based on the program dependence graph

(PDG) [12 , 13] . The nodes in the PDG include statements and pred-

icate expressions, and edges include data dependencies or control

dependencies. We further group these nodes into BasicBlock, Op-

tionBlock , and LoopBlock .

Definition 4. BasicBlock is defined as a segment of continuous ex-

ecutable statements:

BasicBlock =

{

Statement i, ··· , j

∣∣∣
(

i ≤ j

)
∧

(
¬ n.

(
(n < i)

∧ (Statement n ≺ Statement i)
))

∧

(
¬ m.

(
(m > j)

∧ (Statement j ≺ Statement m

)
))}

,

where Statement i represents the i th logic statement in the pro-

gram; Statement i , ���, j refers to the segment composed by program

lines from i to j; Statement x ≺Statement y means that Statement y will

be executed if and only if Statement x is executed.

Definition 5. OptionBlock selects a region Region i for execution un-

der predicate expression ϕ:

OptionBlock = (ϕ) ≺ Region i ,

where ϕ is a predicate expression whose value is evaluated to

be False or True; Region i refers to a control dependence region

which is a BasicBlock, OptionBlock , and LoopBlock , or their compos-

ite; Region i is executed only if ϕ is evaluated to be True.

Definition 6. LoopBlock repeats the execution of a region Region i
when the loop predicate expression ϕ is satisfied:

LoopBlock = ((ϕ) ≺ Region i)
+ ,

where ϕ is a predicate expression whose value is evaluated to

be False or True; Region i refers to a control dependence region

which is a BasicBlock, OptionBlock , and LoopBlock , or their compos-

ite; Region i is executed only if predicate expression ϕ is evaluated

to be True.

As an illustration, let us look at the function “ad-

just_max_heap()” (f 5 in Fig. 3), it is divided into ten blocks

(B 1 , B 2 , . . . , B 10). Block B 9 , which refers to the segment composed

of Statements 36–40, is a BasicBlock . This is because Statements 37,

38, 39, and 40 will be executed if and only if Statements 36, 37,

38, and 39 are executed, respectively. B 4 is an OptionBlock because

Block B 4 will be executed only if the condition “left < = length &&

datas[left] > datas[i]” is true. B is a LoopBlock because its control
1

Please cite this article as: C.-a. Sun et al., A path-aware approach to

Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.02.006
ependence regions (such as B 2 , B 3 , etc.) are repeatedly executed

nside the while loop.

We classify relationship between two continuous blocks into

ubBlock and NextBlock .

efinition 7. Given two blocks Block i and Block j , Block j is said to

e the SubBlock of Block i (denoted as Block j ∈ SubBlock (Block i)) if

nd only if Block j is control dependent on Block i .

From Fig. 2 , we can observe that blocks B 2 , B 3 , B 6 , and B 8 are

ontrol dependent on B 1 , that is, B 2 , B 3 , B 6 , and B 8 are the Sub-

locks of B 1 .

efinition 8. Given two blocks Block i and Block j , Block j is said to

e the NextBlock of Block i (denoted as Bl ock j = NextBl ock (Bl ock i))

f and only if Block i is immediately post-dominated by Block j .

In the running example, B 3 will be executed immediately after

 2 is executed. Thus, we can say that B 3 is the NextBlock of B 2 .

efinition 9. Given a block Block i , we define its hierarchy

ierarchy (Block i) by means of the set of parent blocks and prede-

essor blocks, namely

{ Bl ock j | Bl ock i ∈ SubBl ock (Bl ock j) ∨ Bl ock i = NextBl ock (Bl ock j) } .
As discussed above, we have B 2 , B 3 ∈ SubBlock (B 1) and B 3 =

extBlock (B 2) . Then, according to Definition 9 , we can get the fol-

owing:

• Hierarchy (B 1) = ∅ .
• Hierarchy (B 2) = { B 1 } .
• Hierarchy (B 3) = { B 1 , B 2 } .

We now define the loop/branch depth LD (b i) of block b i based

n the relations among blocks.

efinition 10. Given a block b i ,

D (b i) =

⎧ ⎪ ⎨

⎪ ⎩

0 ; Hierarchy (b i) = ∅
LD (b j) ; Hierarchy (b i) � = ∅ ∧ b i = NextBlock (b j)
LD (b j) + 1 ; Hierarchy (b i) � = ∅ ∧ b i ∈ SubBlock (b j)

For the heap sort program, we can have the following according

o Definition 10 :

• LD (B 1) = 0 , because Hierarchy (B 1) = ∅ .
• LD (B 2) = 1 , because B 2 ∈ SubBlock (B 1) and LD (B 1) = 0 .
• LD (B 3) = 1 , because either (B 3 ∈ SubBlock (B 1) and LD (B 1) = 0)

or (B 3 = NextBlock (B 2) and LD (B 2) = 1).

. Path-aware mutant reduction approach

There are two basic intuitions behind our path-aware approach,

amely depth and diversity.

(1) Depth

According to the code coverage theory, if a test case tc ex-

ecutes a certain control dependence depth S p of a program

path, it should also execute all the depths S q ≤ S p on the

same path. Suppose that two mutants M u and M

′
u are as-

sociated with different faults on S p and S q , respectively. It

is obvious that if tc can cover the faulty statement of M u ,

it will definitely also cover the faulty statement of M

′
u , but

not vice versa. In other words, M u is superior to M

′
u with

respect to the chance of executing faulty statements. If only

one mutant can be used, we should select M u but not M

′
u . In

this sense, we should give higher priorities to the mutants

whose associated faults are in the deeper locations.
mutant reduction in mutation testing, Information and Software

http://dx.doi.org/10.1016/j.infsof.2016.02.006

C.-a. Sun et al. / Information and Software Technology 0 0 0 (2016) 1–17 5

ARTICLE IN PRESS

JID: INFSOF [m5G; March 10, 2016;10:12]

3

P

i

t

c

m

a

b

o

o

e

L

l

t

S

n

f

d

p

l

R

∅

w

S

R

M

,

{
R

M

i

f

L

d

R

M

m

t

{

o

w

e

s

i

[

3

t

r

o

f

e

t

t

o

t

d

d

a

m

p

r

I

n

a

t

s

a

i

p

h

g

h

3

t

g

a
(2) Diversity

A program fault is associated with various characteristics,

such as fault location, fault type, etc. These fault character-

istics, in turn, affect the behaviors of a program. Previous

studies [14] have shown that many mutants can have similar

or even equivalent behaviors. It is quite challenging to select

a subset of mutants that are as diverse as possible in terms

of their behaviors and that can be considered as representa-

tive of the set of all possible mutants. In our approach, the

diversity among selected mutants is achieved by considering

different heuristic rules.

.1. Heuristic rules

Traditional mutation analysis is defined as a 5-tuple [15] : T = <

, S, D, L, A >, where P is the base program, S is a specification, D

s a domain of interest, L = (l 1 , l 2 , . . . , l i , . . . , l n) is a n -tuple of loca-

ions in P , and A = (A 1 , A 2 , . . . , A i , . . . , A n) is an alternative set asso-

iated with location L . Sun et al. [16] proposed a distribution-award

utation analysis, which extends the tradition mutation analysis to

 6-tuple E = < P, S, D, L, A, p r >, where p r is the occurrence proba-

ility of each alternative a i, j of A i , and 0 ≤ j ≤ | A i |, where A i is a set

f possible alternatives (or faults simulated by applicable mutation

perators), and | A i | denotes the number of applicable mutation op-

rators.

In our approach, we extend L in the tuple T to L = <

oc, MD, LD >, where Loc = (l 1 , l 2 , . . . , l i , . . . , l n) contains the faults

ocations, MD (l i) represents the module depth of l i , and LD (l i) refers

o the loop/branch depth of l i . MD (l i) and LD (l i) are defined in

ection 2 . In other words, besides the fault locations (which are

ormally represented by the statement numbers for the seeded

aults), we also make use of the depth values, which, in turn, are

erived from the program path structure. In this sense, our ap-

roach is developed based on a “path-aware” notion.

We now define four heuristic rules for mutant selection as fol-

ows.

ule 1 (module depth) . Assume the initial mutant set Mutant md =
 . Given a certain module depth S m

, for a mutant v i , if MD (l i) > S m

,

e add v i into Mutant md . Finally, we have M utant md = { v i | M D (l i) >

 m

} .
ule 2 (loop/branch depth) . Assume the initial mutant set

utant ld = ∅ . Given a certain loop/branch depth S l , for a mutant v i
 if LD (l i) > S l , we add v i into Mutant ld . Finally, we have Mutant ld =
 v i | LD (l i) > S l } .
ule 3 (statement selection) . Assume the initial mutant set

utant stm

= ∅ and the fault location set L = ∅ . For a mutant v i ,

f Location (v i) �∈ L (where Location (v i) denotes the location of the

ault in v i), we add v i into Mutant stm

. L is further updated L =
 ∪ { Location (v i) } . Such a process is repeated until L = Loc (Loc is

efined above).

ule 4 (operator selection) . Assume the initial mutant set

utant op = ∅ and a set of operators OP = { op 1 , op 2 , . . . , op k } . For a

utant v i , if Type (v i) ∈ OP (where Type (v i) represents the operator

ype of v i), we add v i into Mutant op . Finally, we have Mutant op =
 v i | T ype (l i) ∈ OP } .

Among the above four rules, Rules 1 and 2 are directly based

n the intuitions of our path-aware approach. According to Rule 3 ,

e aim to cover different statements as many as possible; how-

ver, it does not well reflect the “depth” intuition discussed above,

o we do not consider it as one path-aware heuristic rule. Rule 4

s actually the traditional operator-based mutant selection strategy

9] .
Please cite this article as: C.-a. Sun et al., A path-aware approach to

Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.02.006
.2. Mutant reduction strategies

In order to better achieve the “diversity” intuition, we propose

he combinatorial usage of the above four heuristic rules in mutant

eduction. We can have various strategies based on different orders

f priorities in using these rules. In this study, we focus on the

ollowing four typical strategies.

md-ld-op strategy

According to the depth first search algorithm, we firstly se-

lect a set of mutants Mutant md based on the “module depth”

heuristic rule. Then we extend Mutant md to Mutant md−ld

using the “loop/branch depth” rule. Finally, we apply the

“operator selection” rule and get Mutant md −ld −op based on

Mutant md−ld .

ld-md-op strategy

The selection process of the ld-md-op strategy is very sim-

ilar to that of the md-ld-op strategy, except that the prior-

ity order between “module depth” and “loop/branch depth”

is swapped. The mutant set corresponding to the ld-md-op

strategy is named as Mutant ld −md −op .

stm-ld-md strategy

In this strategy, the “statement selection” rule has the high-

est priority, that is, we need to first ensure that each state-

ment is covered by selected mutants at least once accord-

ing to the breadth first search algorithm. Then we select the

mutants based on “loop/branch depth” and “ module depth”

rules, and finally, get the mutant sets Mutant stm −ld−md .

op-ld-md strategy

The selection process of the op-ld-md strategy is very simi-

lar to that of the md-ld-op strategy, except that the first ap-

plied rule is “operator selection” not “statement selection”.

The mutant set corresponding to the op-ld-md strategy is

named as Mutant op−ld−md .

Algorithm 1 describes the sketched procedure of md-ld-op strat-

gy. In Step I (Lines 1–3): the algorithm first sets the sampling ra-

io, initializes mutant sets to null, and set mutant number counter

o 0; In Step II (Lines 6–13): it selects mutants into Mutant md based

n the “module depth” heuristic rule; In Step III (Lines 5–21): if

he number of selected mutants is smaller than the specified re-

uction rate, it appends more mutants based on the “loop/branch

epth” heuristic rule; otherwise, it returns the selected mutant set,

nd terminates; In Step IV (Lines 4–29): if the number of selected

utants is still smaller than the specified reduction rate, it ap-

ends more mutants based on the “operator selection” heuristic

ule; otherwise, it returns the selected mutant set, and terminates;

n Step V (Lines 30–35): if the number of selected mutants does

ot satisfy the sampling ratio, more mutants are randomly selected

nd appended; otherwise, it outputs the selected mutant set, and

erminates.

Similar algorithms can be obtained for other strategies. It

hould be also noted that there exist other possible strategies, such

s md-ld-stm, stm-md-ld , and op-md-ld , based on different order-

ngs of heuristic rules. Our investigation showed that the most im-

ortant rule in a mutant reduction strategy is the one with the

ighest priority. Therefore, we only studied the above four strate-

ies, each of which gives the highest priority to every of the four

euristic rules, respectively.

.3. Illustration

For ease of understanding, we illustrate our proposed heuris-

ic rules and mutant reduction strategies based on a real-life pro-

ram, namely tcas , which was also used in our empirical study,

s to be introduced in Section 4 . Fig. 4 shows a mutant of tcas ,
mutant reduction in mutation testing, Information and Software

http://dx.doi.org/10.1016/j.infsof.2016.02.006

6 C.-a. Sun et al. / Information and Software Technology 0 0 0 (2016) 1–17

ARTICLE IN PRESS

JID: INFSOF [m5G; March 10, 2016;10:12]

Fig. 4. A mutant of tcas .

Table 1

A summary of a set of 10 mutants in tcas program.

Mutant no. Mutation

operator

Description Location

(Line no.)

Module

depth (MD)

Loop/Branch

depth (LD)

331 OLNG ‘(!(Down_Separation > = ALIM()))’ ⇒ ‘!(!(Down_Separation > = ALIM())))’ 67 2 2

425 ORRN ‘ > = ’ ⇒ ‘ < ’ 71 2 2

908 CRCR ‘Inhibit_Biased_Climb() > Down_Separation’ ⇒ ‘Inhibit_Biased_Climb() > 0’ 81 2 1

1565 CRCR ‘Own_Tracked_Alt < Other_Tracked_Alt’ ⇒ ‘0 < Other_Tracked_Alt’ 96 3 1

1655 CCCR ‘alt_sep = 1’ ⇒ ‘alt_sep = 600’ 123 1 4

1784 CRCR ‘else if (need_upward_RA)’ ⇒ ‘else if (0)’ 122 1 3

1913 OLLN ‘&&’ ⇒ ‘ ‖ ’ 118 1 2

2065 SRSR ‘alt_sep = 2;’ ⇒ ‘return alt_sep;’ 125 1 5

2081 SSDL ‘alt_sep = 2;’ ⇒ ‘;’ 125 1 6

3427 SSDL ‘Two_of_Three_Reports_Valid = atoi(argv[3]);’ ⇒ ‘;’ 147 0 1

Fig. 5. Function call diagram of tcas program.

s

n

f

where the associated fault is located in Line 62 in the function

Non_Crossing_Biased_Climb() .

We can calculate the loop/branch depth for all five blocks

(denoted by B 1 , B 2 , . . . , B 5) in the function Non_Crossing_Biased_

Climb() , according to the definition of loop/branch depth (Defini-

tion 11) given in Section 2 . B 1 is a BasicBlock that has an empty

set of parent blocks and preceding blocks, that is, Hierarchy (B 1) =
∅ ; therefore, LD (B 1) = 0 . Given that B 2 = NextBlock (B 1) and B 5 =
NextBlock (B 2) , we can calculate LD (B 5) = LD (B 2) = LD (B 1) = 0 .

Since B 3 ∈ SubBlock (B 2) and B 4 ∈ SubBlock (B 2), we can have

LD (B 4) = LD (B 3) = LD (B 2) + 1 = 1 .

We can also calculate the module depth of different func-

tions in tcas , as shown in Fig. 5 . Based on Definition 3 given

in Section 2 , we can get MD (f 1) = 0 , MD (f 2) = 1 , MD (f 3) =
1 , MD (f 4) = 2 , and MD (f 6) = 2 . Then, MD (f 5) can be calculated

as max (MD (f 3) , MD (f 4) , MD (f 6)) + 1 = 3 . Similarly, MD (f 8) = 3 ,

MD (f 9) = 3 , and MD (f 7) = 3 .

For the mutant given in Fig. 4 , since its associated fault is lo-

cated in B 4 of f 4 , its corresponding module depth and loop/branch

depth are 2 (that is, MD (f 4)) and 1 (that is, LD (B 3)), respectively.

To further illustrate our heuristic rules and mutant reduction

strategies, we randomly choose ten mutants for tcas , as summa-

rized in Table 1 . In the table, the “Mutant No” column shows the

unique identity of the mutant, the “Mutation Operator” column in-

dicates which operator is applied, the “Description” column gives

detailed operation on the mutant, the “Location (Line No)” column

shows the location of fault in terms of the line number, the “Mod-

ule Depth (MD)” column and the “Loop/Branch Depth (LD)” column

show the module depth and loop/branch depth of the mutant, re-

Please cite this article as: C.-a. Sun et al., A path-aware approach to

Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.02.006
pectively. Details of how to generate mutants will be given in the

ext Section 4 .

Given the set of these ten mutants, our heuristic rules work as

ollows:

• For the Rule 1 – module depth : We assume the initial mutant

set Mutant md = ∅ , and set the module depth S m

= 1 . For exam-

ple, Mutant #331 has the module depth of 2, which is larger

than S m

, so it is added into Mutant . However, the module
md

mutant reduction in mutation testing, Information and Software

http://dx.doi.org/10.1016/j.infsof.2016.02.006

C.-a. Sun et al. / Information and Software Technology 0 0 0 (2016) 1–17 7

ARTICLE IN PRESS

JID: INFSOF [m5G; March 10, 2016;10:12]

Algorithm 1 md-ld-op mutant reduction strategy.

1: Set a real number 0 < x < 100 to decide x of Mcount mutants

will be selected, where Mcount refers to the number of all gen-

erated mutants

2: Initialize an integer Count = 0

3: Initialize mutant sets M utant md = M utant md−ld =

Mutant md −ld −op = ∅
4: while Mutant md −ld −op have not covered all operator types in OP

do

5: for all ld = S l−max , S l−max − 1 , . . . , 1 (ld means the

loop/branch depth, while S l−max refers to the maximum

loop/branch depth of the program under test) do

6: for all md = S m −max , S m −max − 1 , . . . , 1 (md means the mod-

ule depth, while S m −max refers to the maximum module

depth of the program under test) do

7: if Count < Mcount × x % then

8: Add the mutant on md into Mutant md

9: Increment Count by 1

10: else

11: Output M utant md −ld −op = M utant md and terminate

12: end if

13: end for

14: M utant md−ld = M utant md

15: if Count < Mcount × x % then

16: Add the mutant on ld into Mutant md−ld

17: Increment Count by 1

18: else

19: Output M utant md −ld −op = M utant md−ld and terminate

20: end if

21: end for

22: M utant md −ld −op = M utant md−ld

23: if Count < Mcount × x % then

24: Add the mutant on ld into Mutant md −ld −op

25: Increment Count by 1

26: else

27: Output Mutant md −ld −op and terminate

28: end if

29: end while

30: while Count < Mcount × x % do

31: Randomly select a mutant and add it into Mutant md −ld −op

32: Increment Count by 1

33: end while

34: Output M utant md −ld −op = M utant md−ld and terminate

e

s

O

u

(

t

r

t

t

w

m

t

n

s

n

w

t

4

c

a

a

s

4

s

all
depth of Mutant #3427 is 0 < S m

, so we will not select it into

Mutant md . After applying Rule 1 to all mutants in Table 1 , we

have Mutant md = { 331 , 425 , 908 , 1565 } .
• For the Rule 2 – loop/branch depth : We assume the initial mu-

tant set Mutant ld = ∅ , and set the module depth S l = 3 . For

example, Mutant #1655 has loop/branch depth of 4, which

is larger than S l , so it is added into Mutant ld . However, the

loop/branch depth of Mutant #331 is 2 < S l , so it cannot be

selected into Mutant ld . After applying Rule 2 to all mutants in

Table 1 , we finally have Mutant ld = { 1655 , 2065 , 2081 } .
• For the Rule 3 – statement selection : We assume the initial mu-

tant set Mutant stm

= ∅ and the fault location set L = ∅ . Suppose

that the fault location of Mutant #2065 (that is, Line 125) is not

in L . It will be added into Mutant stm

and L = { 125 } . Then, Mu-

tant #2081 is associated with a fault location (that is, Line 125),

which is already in L , so it cannot be selected into Mutant stm

.

Such a process is repeated until L = Loc, and we finally have

Mutant stm

= { 331 , 425 , 908 , 1565 , 1655 , 1784 , 1913 , 2065 , 3427 }
and L = { 67 , 71 , 81 , 96 , 123 , 122 , 118 , 125 , 147 } .
Please cite this article as: C.-a. Sun et al., A path-aware approach to

Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.02.006
• For the Rule 4 – operator selection : We assume the ini-

tial mutant set Mutant op = ∅ , and the operator set is OP =
{ C RC R, SSDL } . For example, Mutant #908 is associated with the

mutation operator of type CRCR, which is in OP , so it is added

into Mutant op . After applying Rule 4 to all mutants in Table 1 ,

we finally have Mutant op = { 908 , 1565 , 1784 , 2081 , 3427 } .
In the following, we illustrate how to utilize the md-ld-op strat-

gy to select a subset of mutants from those listed in Table 1 . As-

ume that we set the sampling ratio as 50%, S m

= 2 , S l = 3 , and

P = { C RC R, SSDL } . We first construct Mutant md based on the mod-

le depth: Only Mutant #1565 is associated with a module depth

3) larger than S m

, so we have Mutant md = { 1565 } . We then ex-

end Mutant md to Mutant md−ld : There are three mutants (Mutants

1655, #2065, and #2081) that satisfying the loop/branch depth

ule (that is, they are associated with the loop/branch depth larger

han S l ; as a result, Mutant md−ld = { 1565 , 1655 , 2065 , 2081 } . Since

he size of Mutant md−ld (that is, 4) is smaller than 50% × 10 = 5 ,

e need to apply the operator selection rule to select another

utant (say, Mutant #1784) to further extending Mutant md−ld

o Mutant md −ld −op = { 1565 , 1784 , 1655 , 2065 , 2081 } . It should be

oted that multiple mutants may satisfy a certain rule, and in this

tudy, we randomly choose some of them to obtain the required

umber of mutants. The other three mutant reduction strategies

ork in a similar way, except the different order of applied heuris-

ic rules.

. Empirical study

We have conducted an empirical study to validate the appli-

ability and effectiveness of the four mutant reduction strategies,

nd compare cost-effectiveness of our mutant reduction strategies

gainst random mutant selection. The design and settings of the

tudy are introduced in this section.

.1. Research questions

Our empirical study was designed to answer the following re-

earch questions:

RQ1 What is the ranking among the four mutant reduction

strategies with regard to the effectiveness of mutant reduc-

tion?

As discussed above, each mutant reduction strategy gives the

highest priority to each of the four heuristic rules. The rank-

ing among strategies will also imply the ranking among the

heuristic rules, and thus help us decide which rule is the

best one and thus should be paid the most attention to.

RQ2 Is the proposed path-aware mutant reduction approach

more effective than the random selection technique?

Random selection is not only a popular mutant reduction

technique, but has also been justified to have comparable ef-

fectiveness to the more systematic operator-based approach

[10] . Therefore, if our path-aware approach is shown to be

superior to random selection, it is very likely to be quite ef-

fective in mutant reduction.

RQ3 Can the path-aware approach help reduce the number of

mutants without jeopardizing the effectiveness of mutation

testing?

Suppose that a mutant reduction strategy selects a subset

of mutants Mu reduced from the whole set of mutants Mu all .

Given any test suite TS that can kill all mutants in Mu reduced ,

if TS can also kill all mutants in Mu all , we can say that the

mutants in Mu reduced is sufficiently representative of those in

Mu all , and thus the effectiveness of mutation testing is not

jeopardized at all. Apparently, the more mutants TS can kill

in Mu , the better the mutation reduction strategy is.
mutant reduction in mutation testing, Information and Software

http://dx.doi.org/10.1016/j.infsof.2016.02.006

8 C.-a. Sun et al. / Information and Software Technology 0 0 0 (2016) 1–17

ARTICLE IN PRESS

JID: INFSOF [m5G; March 10, 2016;10:12]

Table 2

Object programs.

Object program Basic functionality LOC Number of mutants Size of

Generated by Proteum Removed equivalent mutants test pool

print_tokens Lexical analyzer 483 5044 448 4130

print_tokens2 Lxical analyzer 402 4689 513 4115

replace Search and replace tool 516 10,135 723 5542

schedule Priority scheduler 299 1884 101 2650

schedule2 Priority scheduler 297 2716 128 2710

tcas Collision avoidance system 138 2616 127 1052

tot_info Statistics for matrix 346 4625 213 1608

bubble Sorting algorithm 24 183 2 75

minmax Max and min values 33 152 5 60

nextdate Date of next day 83 501 40 377

triangle Triangle type 23 191 9 188

t

n

t

p

d

l

p

m

t

t

t

T

f

T

c

m

m

w

fi

c

b

m

F

f

1

4

p

[

c

t

m

i

“

c

s

t

i

t

c

i

p

t

g

4.2. Variables and measures

4.2.1. Independent variables

The independent variable in our study is the mutant reduction

strategy. All four strategies proposed in Section 3 were chosen and

evaluated in the experiments. In addition, we selected the random

mutant selection as the baseline technique for comparison.

4.2.2. Dependent variables

We used the mutation score as the metric for RQ1, RQ2, and

RQ3. Suppose that there are N all mutants, among which there are

N eq equivalent mutants (the mutants that show exactly the same

behaviors as the base program given any possible input). If a test

suite TS can kill N k mutants (N k ≤ N all − N eq), the mutation score of

TS is defined as

mutation score =

N k

N all − N eq
× 100% . (1)

In our experiment, for a given subset of mutants Mu reduced se-

lected by a mutant reduction strategy, we constructed a test suite

TS that can achieve 100% mutation score on Mu reduced . Then we

applied TS to test all mutants Mu all , and measured TS ’s mutation

score MS all on Mu all . The ideal case is MS all = 100 , which means

that Mu reduced is sufficiently representative of Mu all . Obviously, the

higher MS all is, the more effective a mutant reduction strategy is.

4.3. Object programs

We selected two sets of programs as the objects for our empir-

ical study. One set contains the famous seven Siemens programs

[17] , namely print_tokens , print_tokens2 , replace ,
schedule , schedule2 , tcas , and tot_info , which we down-

loaded from software-artifact infrastructure repository [18] . The

other set consists of four scientific programs, namely bubble ,
minmax , nextdate , and triangle . All object programs are

written in the C language. The first three columns in Table 2

summarize the basic information of these programs.

4.4. Mutant generation

We made use of Proteum [19] , a C program mutation tool, to

generate mutants for each object program. Though there are totally

108 mutation operators in Proteum, only 50 of them were suitable

to our object programs. Some generated mutants were syntacti-

cally incorrect and thus incurred compiling errors, so they were

eliminated. In our study, we only focused on the mutants whose

associated faults are in single locations.

To exclude those equivalent mutants, we first ran all test cases

(their generation process is reported in the next Section 4.5) on
Please cite this article as: C.-a. Sun et al., A path-aware approach to

Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.02.006
he mutants generated by Proteum. For those mutants that could

ot be killed by any test case, we then manually checked whether

hey are equivalent ones or not. To reduce uncertainty in the ex-

eriment, each identified equivalent mutant was cross-checked by

ifferent individuals. Finally, we excluded those confirmed equiva-

ent mutants from our experiments.

Recently, a simple yet effective technique, namely trivial com-

iler equivalence (TCE), has been proposed for detecting equivalent

utants by comparing the object code of each mutant with that of

he base program. We have tried to use the TCE technique to iden-

ify the equivalent mutants in our experiments. However, we found

hat the TCE technique was not applicable to our empirical studies.

he mutation tool we used (i.e., Proteum) generates meta-mutants

rom which we cannot access object code for each single mutant.

he unavailability of object code significantly restricted the appli-

ability of the TCE technique for the generated mutants. Further-

ore, the current mutation tool for TCE (namely Milu) supports 19

utation operators, while Proteum supports 108 operators, among

hich, 50 were used in our study. In other words, it is very dif-

cult, if not impossible, to use the current TCE technique to pre-

isely identify the equivalent mutants from the mutants generated

y Proteum in our experiments.

Columns 4 and 5 in Table 2 give the numbers of all generated

utants and removed equivalent mutants for each object program.

rom the table, we can observe that the number of mutants used

or each program is 4596, 4176, 9412, 1783, 2588, 2489, 4412, 181,

47, 461, and 182, respectively.

.5. Test case generation

Each of the seven Siemens programs is associated with a test

ool composed of thousands of test cases [17] . In the original work

17] , each test pool was constructed through two steps. First, the

ategory-partition method [20] was applied to generate some ini-

ial test cases. Then, the initial test pool was extended by adding

ore test cases based on dataflow and controlflow coverage test-

ng techniques [21] such that each exercisable element including

branch”, “predicate”, and “define and use association (DU)” was

overed by at least 30 different test cases (that is, the coverage for

tatement, branch, predicate, and DU is 100%). In other words, each

est pool was designed to achieve 100% coverage for the DU, pred-

cate , and branch criteria. In our study, we made use of the same

est pools for the Siemens programs. Similar steps were taken to

onstruct the test pools for the other four scientific programs, that

s, initial test cases generated based on functional specifications

lus extra test cases constructed according to various coverage cri-

eria. The number of test cases in the test pool for each object pro-

ram is given in the last column of Table 2 .
mutant reduction in mutation testing, Information and Software

http://dx.doi.org/10.1016/j.infsof.2016.02.006

C.-a. Sun et al. / Information and Software Technology 0 0 0 (2016) 1–17 9

ARTICLE IN PRESS

JID: INFSOF [m5G; March 10, 2016;10:12]

Table 3

Bonferroni mean separation tests for comparing five strategies on all mutants for each object program.

(a) print_tokens (b) print_tokens2 (c) replace (d) schedule

Group Strategy Group Strategy Group Strategy Group Strategy

A ld-md-op A ld-md-op A ld-md-op A ld-md-op

B C md-ld-op A md-ld-op B md-ld-op B md-ld-op

C D random B random B C random B random

C D op-ld-md B C stm-ld-md B C op-ld-md B stm-ld-md

D stm-ld-md C op-ld-md C stm-ld-md B op-ld-md

(e) schedule2 (f) tcas (g) tot_info (h) bubble

Group Strategy Group Strategy Group Strategy Group Strategy

A ld-md-op A ld-md-op A ld-md-op A ld-md-op

B md-ld-op B md-ld-op A B md-ld-op B md-ld-op

C random B C random A B C random B stm-ld-md

C D stm-ld-md C D stm-ld-md B C stm-ld-md B op-ld-md

D op-ld-md D op-ld-md C op-ld-md B random

(i) minmax (j) nextdate (k) triangle

Group Strategy Group Strategy Group Strategy

A ld-md-op A ld-md-op A ld-md-op

A md-ld-op A md-ld-op B md-ld-op

B stm-ld-md A B random C random

B random B stm-ld-md C stm-ld-md

B op-ld-md B op-ld-md C op-ld-md

4

4

4

4

t

a

c

e

4

w

l

t

o

t

t

p

t

w

4

O

t

r

4

m

1

h

a

o

5

5

s

m

p

s

s

i

i

m

m

b

s

t

a

e

d

t

w

j

w
.6. Experiment design

The basic procedure of our experiment is as follows.

(a) Select an object program, which is associated with a set of

all non-equivalent mutants, Mu all ;

(b) Set a real number 0 < x < 100, where x % represents the

sampling ratio of mutants;

(c) Apply one mutant reduction strategy (md-ld-op, ld-md-op,

stm-ld-md, op-ld-md , or random selection) to select x % of all

the mutants, that is, to get a subset of mutants, Mu reduced .

(d) Construct a test suite TS using random testing technique,

that is, randomly select test cases from the test pool for

the object program until all mutants in Mu reduced have been

killed.

(e) Apply TS to test all the mutants in Mu all and calculate the

mutation score MS all .

In our experiment, the value of x in Step (b) was set as 1, 2, 3,

, 5, 10, 20, 50, and 80.

.7. Threats to validity

.7.1. Internal validity

The major threat to internal validity is with the implementa-

ions of the mutant reduction strategies, which required a moder-

te amount of programming work. All the source code has been

ross-checked by different individuals. We are confident that the

xperiments were conducted correctly.

.7.2. External validity

The threat to external validity concerns about to what extent

e can generalize our results. In this pilot study, we have se-

ected 11 object programs, whose sizes are small. Though consis-

ent results were shown in all these objects, we cannot say that

ur conclusions are applicable to any type of programs, especially

hose with a large scale. In the future, it is necessary to improve

he external validity by comprehensively evaluating the proposed

ath-aware approach on various large-sized programs. In addition,

hough tens of mutation operators have been used in our study, it

as very difficult, if not impossible, to cover all types of faults.
Please cite this article as: C.-a. Sun et al., A path-aware approach to

Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.02.006
.7.3. Construct validity

The threat to construct validity is related to the measurement.

ur main metric, mutation score, is the most popular metric in

he context of mutation testing, and has been used in almost all

elated studies.

.7.4. Conclusion validity

In our experiment, we have examined the effectiveness of each

utant reduction strategy with nine different sampling ratios on

1 object programs. Thus, we have sufficient experimental data to

elp us draw conclusions with high confidence. In addition, we

lso used statistical testing to verify the statistical significance of

ur results.

. Experimental results

.1. Results on all mutants

Our experimental results are presented in Figs. 6 and 7 . Fig. 6

hows the comparison of performance (measured by MS all) on all

utants (excluding those not killed by any test case in the test

ool) of each object program among the five mutant reduction

trategies (md-ld-op, ld-md-op, stm-ld-md, op-ld-md , and random

election); while Fig. 7 shows the performance comparison on each

ndividual sampling ratio (that is, x %). In the figures, the box plot

s used to display the distribution of experimental data. The upper,

iddle, and lower lines of each box represent the third quartile,

edian, and first quartile values of MS all , respectively. The top and

ottom whiskers refer to the maximum and minimum values, re-

pectively. The mean value of MS all for each strategy is denoted by

he round dot.

From Figs. 6 and 7 , we can observe that the ld-md-op strategy

lways has the best performance in all cases. The md-ld-op strat-

gy provides the second best performance; while it is difficult to

istinguish the other three strategies.

We further conducted a statistical analysis to verify the statis-

ical significance of our results. Bonferroni means separation tests

ere run to rank the five strategies in each case (that is, each ob-

ect program or each sampling ratio). After the tests, all strategies

ere classified into different groups, as shown in Tables 3 and 4 . If
mutant reduction in mutation testing, Information and Software

http://dx.doi.org/10.1016/j.infsof.2016.02.006

10 C.-a. Sun et al. / Information and Software Technology 0 0 0 (2016) 1–17

ARTICLE IN PRESS

JID: INFSOF [m5G; March 10, 2016;10:12]

Fig. 6. Comparison of MS all on all mutants among five strategies on each object program.

Please cite this article as: C.-a. Sun et al., A path-aware approach to mutant reduction in mutation testing, Information and Software

Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.02.006

http://dx.doi.org/10.1016/j.infsof.2016.02.006

C.-a. Sun et al. / Information and Software Technology 0 0 0 (2016) 1–17 11

ARTICLE IN PRESS

JID: INFSOF [m5G; March 10, 2016;10:12]

Fig. 7. Comparison of MS all on all mutants among five strategies on each sampling ratio.

Table 4

Bonferroni mean separation tests for comparing five strategies on all mutants for each sampling ratio.

(a) 1% (b) 2% (c) 3% (d) 4% (e) 5%

Group Strategy Group Strategy Group Strategy Group Strategy Group Strategy

A ld-md-op A ld-md-op A ld-md-op A ld-md-op A ld-md-op

A B md-ld-op A md-ld-op A md-ld-op A md-ld-op A md-ld-op

B stm-ld-md B stm-ld-md B random B random B random

B op-ld-md B random B stm-ld-md B op-ld-md B stm-ld-md

B random B op-ld-md B op-ld-md B stm-ld-md B op-ld-md

(f) 10% (g) 20% (h) 50% (i) 80%

Group Strategy Group Strategy Group Strategy Group Strategy

A ld-md-op A ld-md-op A ld-md-op A ld-md-op

A B md-ld-op A md-ld-op A B md-ld-op A B md-ld-op

B random A B stm-ld-md B op-ld-md A B op-ld-md

B op-ld-md B random B random B stm-ld-md

B stm-ld-md B op-ld-md B stm-ld-md B random

Please cite this article as: C.-a. Sun et al., A path-aware approach to mutant reduction in mutation testing, Information and Software

Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.02.006

http://dx.doi.org/10.1016/j.infsof.2016.02.006

12 C.-a. Sun et al. / Information and Software Technology 0 0 0 (2016) 1–17

ARTICLE IN PRESS

JID: INFSOF [m5G; March 10, 2016;10:12]

Table 5

The number of stubborn mutants for each object pro-

gram.

Object program Number of stubborn mutants

print_tokens 7

print_tokens2 19

replace 59

schedule 8

schedule2 10

tcas 34

tot_info 12

bubble 17

minmax 17

nextdate 26

triangle 29

5

s

6

v

l

t

b

a

l

p

p

t

t

p

p

c

e

2

a

s

m

m

a

m

l
some strategies are in the same group, it implies that performance

difference among them is not statistically significant. On the other

hand, two strategies being in different groups means that their

performances are significantly different. Note that one strategy can

be classified into multiple groups. For example, in Table 4 (a), the

ld-md-op strategy only belongs to Group A, the stm-ld-md, op-ld-

md , and random strategies belong to Group B, but the md-ld-op

strategy belongs to both Groups A and B. This grouping means

that we cannot statistically distinguish the ld-md-op and md-ld-op

strategies (Group A); nor can we statistically distinguish the md-

ld-op, stm-ld-md, op-ld-md , and random strategies (Group B); how-

ever, the ld-md-op strategy is statistically different from the stm-

ld-md, op-ld-md , and random strategies (Group A vs. Group B). It

can be observed that in most cases, the ld-md-op strategy signifi-

cantly outperformed the three non-path-aware techniques (stm-ld-

md, op-ld-md , and random). Though the performance of the md-ld-

op strategy is normally better than those of the three non-path-

aware techniques, their performance difference was not statisti-

cally significant in some cases (such as for the bubble program

and the 10% sampling ratio).

5.2. Results on “stubborn” mutants

We observed from Figs. 6 and 7 that all strategies had very high

mutation scores. In other words, many of the mutants used in our

study are actually easy to be killed by most of test cases. Such

“easy-to-kill” mutants are not very useful, as they cannot provide

much information in distinguishing the quality of test cases and

the effectiveness of different testing techniques, and also may in-

troduce noise to the results. Therefore, it is more interesting to fo-

cus on those “stubborn” mutants, which are associated with low

failure ratios (in other words, only a small part of test cases in the

pool can kill the mutants). To do that, we conducted an extended

experiment. In the experiment, we first removed those easy-to-kill

mutants that can be killed by the random strategy with the sam-

ple ratio of 1%, and the remaining mutants are so-called stubborn

mutants. We then investigated the effectiveness of our approach

on the stubborn mutants. Table 5 gives the number of “stubborn”

mutants for each object program.

The experimental results on the stubborn mutants are summa-

rized in Figs. 8 and 9 . The corresponding statistical analysis is re-

ported in Tables 6 and 7 . We made the similar observations on

the stubborn mutants: the ld-md-op strategy always performed the

best among all five techniques, and its performance was signifi-

cantly better than other techniques in most cases; the md-ld-op

strategy had the second best performance, but in some cases, it

could not significantly outperform the three non-path-aware tech-

niques (stm-ld-md, op-ld-md , and random); we could not statis-

tically distinguish the performance of the three non-path-aware

techniques.
Please cite this article as: C.-a. Sun et al., A path-aware approach to

Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.02.006
.3. Answers to research questions

Based on our experimental results shown in the previous two

ections, we can answer our research questions as follows:

Answer to RQ1 Among all four proposed strategies, ld-md-op

was by far the best strategy, followed by md-ld-op . We can-

not statistically distinguish stm-ld-md and op-ld-md , the per-

formances of which were not significantly different from

that of random strategy. The ranking among the strategies

implies that the loop/branch depth was the best heuristic

rule for mutant reduction. The module depth, which is a bit

coarser than the loop/branch depth, was also a good mutant

reduction rule.

Answer to RQ2 ld-md-op and md-ld-op are the two strategies

that give the highest priorities to the path-aware heuris-

tic rules (that is, Rule 1 – module depth and Rule 2

– loop/branch depth), and thus can be considered to be

the path-aware mutant reduction techniques. Both of them

showed significantly higher effectiveness than the ran-

dom selection technique. However, the other two strategies,

which give the highest priorities to the statement selection

and operator selection rules, respectively, even could not

outperform the random strategy, which is consistent with

previous studies on comparison between operator-based and

random selection techniques [10] .

Answer to RQ3 Though no strategy could achieve the ideal case

(that is, MS all = 100% for all situations), the two path-aware

mutant reduction techniques, namely ld-md-op and md-ld-

op , normally delivered fairly high values of MS all . In other

words, these two techniques were able to select a subset of

representative mutants from all mutants such that the effec-

tiveness of mutation testing would not be jeopardized too

much. Compared with them, the other two proposed strate-

gies, namely stm-ld-md and op-ld-md , could only deliver a

performance comparable to that of random selection strat-

egy, which implies that they are not very effective in select-

ing representative mutants.

. Related work

A lot of research has been conducted on mutation testing from

arious perspectives [22] . In this section, we focus on the work re-

ated to the cost reduction for mutation testing.

One major way to decrease the cost of mutation testing is mu-

ant reduction. A straightforward approach for reducing the num-

er of mutants is to randomly select part of mutants [23] . Mathur

nd Wong [8] systematically investigated the random mutant se-

ection strategy, and gave some guidelines on the appropriate sam-

ling size for random selection. More recently, Zhang at al. [10]

roposed the so-called double random selection strategy, and jus-

ified that their method is fairly effective.

A more systematic mutant reduction approach is to select mu-

ants based on part of mutation operators, which was first pro-

osed by Mathur [9] . Offutt et al. [24] conducted a series of ex-

eriments and explicitly suggested that some mutation operators

ould be discarded in mutation testing without jeopardizing the

ffectiveness too much. Wong and Mathur [25] investigated all the

2 mutation operators in the ancient mutation testing tool Mothra,

nd identified two typical operators, based on which highly repre-

entative mutants could be selected. Offutt et al. [26] conducted

ore experiments on FORTRAN 77 programs, and pointed out five

utation operators that were sufficient by themselves to gener-

te a subset of mutants with similar effectiveness to all possible

utants. Namin et al. [27] considered the mutation operator se-

ection as a statistical problem, and used the rigorous statistical
mutant reduction in mutation testing, Information and Software

http://dx.doi.org/10.1016/j.infsof.2016.02.006

C.-a. Sun et al. / Information and Software Technology 0 0 0 (2016) 1–17 13

ARTICLE IN PRESS

JID: INFSOF [m5G; March 10, 2016;10:12]

Fig. 8. Comparison of MS all on stubborn mutants among five strategies on each object program.

Please cite this article as: C.-a. Sun et al., A path-aware approach to mutant reduction in mutation testing, Information and Software

Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.02.006

http://dx.doi.org/10.1016/j.infsof.2016.02.006

14 C.-a. Sun et al. / Information and Software Technology 0 0 0 (2016) 1–17

ARTICLE IN PRESS

JID: INFSOF [m5G; March 10, 2016;10:12]

Fig. 9. Comparison of MS all on stubborn mutants among five strategies on each sampling ratio.

f

t

b

s

e

d

r

s

m

m

“

fi

c

t

o

t

o

e
analysis to identify 28 typical mutation operators from all the 108

mutation operators in Proteum. Vincenzi et al. [28] proposed a

family of incremental techniques to select part of mutation oper-

ators for unit and integration testing. These techniques could sig-

nificantly reduce the number of mutants without jeopardizing the

mutation scores. Just and Schweiggert [29] investigated three typ-

ical mutation operators for Java programs, and found that the ex-

istence of “redundant mutants” may affect both the efficiency and

the quality of mutation testing. They also gave some guidelines on

how to remove these redundant mutants and thus to improve the

cost-effectiveness of mutation testing. Delamaro et al. [30] investi-

gated the effectiveness of one-op mutation (that is, the mutation

technique with only one powerful operator), and observed that

the statement deletion operator (SDL) might be “the most cost-

effective” mutation operators for C programs.

Some research has also been conducted to compare the random

selection and operator-based selection. Zhang et al. [10] reported

an experiment based on the seven Siemens programs, which

demonstrated that random mutant selection could be equally ef-
Please cite this article as: C.-a. Sun et al., A path-aware approach to

Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.02.006
ective as operator-based selection given the same number of mu-

ants are selected. Gligoric and Zhang [31] investigated operator-

ased mutant selection for concurrent programs, and their results

howed that selection based on parallel mutation operators could

ffectively reduce the number of mutants and outperformed ran-

om selection. Zhang et al. [32] studied the combination of the

andom selection and operator-based mutant selection, and ob-

erved that the random selection guided by certain program ele-

ents could be more effective than pure operator-based selection.

The use of high order mutation is a relatively new approach to

utant reduction. Jia and Harman [33] introduced the concept of

subsuming” high order mutant, which is harder to kill than any

rst order mutant used for constructing it. Polo et al. [34] has fo-

used on the two order mutants on the research. They proposed

hree algorithms to combine the first-order mutants into second-

rder mutants. Papadakis et al. [35] conducted an empirical study

o compare the first and second order mutation techniques, and

bserved that though the first order mutation is normally more

ffective than the second order mutation, the cost of the second
mutant reduction in mutation testing, Information and Software

http://dx.doi.org/10.1016/j.infsof.2016.02.006

C.-a. Sun et al. / Information and Software Technology 0 0 0 (2016) 1–17 15

ARTICLE IN PRESS

JID: INFSOF [m5G; March 10, 2016;10:12]

Table 6

Bonferroni mean separation tests for comparing five strategies on stubborn mutants for each object program.

(a) print_tokens (b) print_tokens2 (c) replace (d) schedule

Group Strategy Group Strategy Group Strategy Group Strategy

A ld-md-op A ld-md-op A ld-md-op A ld-md-op

B md-ld-op A md-ld-op B md-ld-op B md-ld-op

B C op-ld-md B random B C stm-ld-md B C stm-ld-md

B C stm-ld-md B stm-ld-md B C random C random

C random B op-ld-md C op-ld-md C op-ld-md

(e) schedule2 (f) tcas (g) tot_info (h) bubble

Group Strategy Group Strategy Group Strategy Group Strategy

A ld-md-op A ld-md-op A ld-md-op A ld-md-op

B md-ld-op B md-ld-op B md-ld-op B md-ld-op

B C stm-ld-md C random B C random B stm-ld-md

B C op-ld-md C stm-ld-md B C op-ld-md B op-ld-md

C random C op-ld-md C stm-ld-md B random

(i) minmax (j) nextdate (k) triangle

Group Strategy Group Strategy Group Strategy

A ld-md-op A ld-md-op A ld-md-op

A md-ld-op A md-ld-op B md-ld-op

B stm-ld-md A B random C random

C random B C stm-ld-md C stm-ld-md

C op-ld-md C op-ld-md C op-ld-md

Table 7

Bonferroni mean separation tests for comparing five strategies on stubborn mutants for each sampling ratio.

(a) 1% (b) 2% (c) 3% (d) 4%

Group Strategy Group Strategy Group Strategy Group Strategy

A ld-md-op A ld-md-op A ld-md-op A ld-md-op

B md-ld-op B md-ld-op B md-ld-op B md-ld-op

C stm-ld-md C stm-ld-md B random C stm-ld-m

C op-ld-md C D random C stm-ld-md C random

C random D op-ld-md C op-ld-md C op-ld-md

(e) 5% (f) 10% (g) 20% (h) 50%

Group Strategy Group Strategy Group Strategy Group Strategy

A ld-md-op A ld-md-op A ld-md-op A ld-md-op

B md-ld-op B md-ld-op B md-ld-op B md-ld-op

C random B C stm-ld-md B C stm-ld-md B stm-ld-md

C stm-ld-m C op-ld-md B C random B C op-ld-md

C op-ld-md C random C op-ld-md C random

(i) 80%

Group Strategy

A ld-md-op

B md-ld-op

B op-ld-md

B stm-ld-md

B random

o

b

c

(

c

o

c

u

r

r

[

i

c

e

f

d

u

m

l

o

p

l

t

b

p

c

t

q

o
rder mutation is lower especially due to the much smaller num-

er of equivalent mutants. Harman et al. [36] studied the effi-

iency and effectiveness of strong subsuming high order mutants

SSHOM). It was shown that the SSHOM technique could signifi-

antly reduce the number of mutants (up to 45% fewer than first

rder mutation), and some easy-to-kill first order mutants could be

ombined to construct “stubborn” SSHOMs, which would be very

seful in mutation testing. There also exist other types of mutant

eduction strategies in the literature, such as the clustering algo-

ithm based selection [37] and the domain reduction technique

38] .

The existence of equivalent mutants is also a critical factor

ncurring the high cost of mutation testing: It is often time-

onsuming and labor-intensive to decide whether a mutant is

quivalent to the base program. Offutt and Craft [39] proposed a
Please cite this article as: C.-a. Sun et al., A path-aware approach to

Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.02.006
amily of algorithms for identifying equivalent mutants based on

ata flow analysis and compiler optimization. Hierons et al. [40]

sed the program slicing technique to help detect the equivalent

utants as well as to directly decrease the number of equiva-

ent mutants to be generated. Yao et al. [41] conducted a series

f experiments, and found that some mutation operators tend to

roduce many equivalent mutants, while others can generate a

ot of “stubborn” mutants (that is, those non-equivalent but hard-

o-kill mutants). They suggested that mutation operators should

e prioritized according to the equivalence and stubbornness. Pa-

adakis et al. [42] investigated the effectiveness of mutant classifi-

ation techniques in isolating equivalent mutants. It was observed

hat mutant classification could have high effectiveness when low-

uality test suites were used. Kintis et al. [43] made use of sec-

nd order mutation to isolate the first order equivalent mutants.
mutant reduction in mutation testing, Information and Software

http://dx.doi.org/10.1016/j.infsof.2016.02.006

16 C.-a. Sun et al. / Information and Software Technology 0 0 0 (2016) 1–17

ARTICLE IN PRESS

JID: INFSOF [m5G; March 10, 2016;10:12]

t

d

p

A

F

u

M

2

C

t

l

t

R

Papadakis et al. [44] introduced a novel technique for detecting

equivalent mutants, namely trivial compiler equivalence (TCE), and

conducted a large-sacle empirical study to evaluate the effective-

ness of TCE. It was found that TCE was able to remove 28% of all

generated mutants, with 7% being equivalent mutants and 21% du-

plicated mutants (that is, those mutants showing the same failure

behaviors as others).

Another way to reduce the cost of mutation testing is to opti-

mize the execution time. Delamaro et al. [19] made use of instru-

mentation in compilers to reduce the mutant generation and com-

piling time. Untch et al. [45] proposed a schema-based approach,

which can generate one single meta-mutant that contains all mu-

tants. Ma et al. [46] further combined the schema-based approach

with byte-code translation technique, which allowed the mutants

to be directly executed and thus saved the compiling time. A novel

regression mutation testing technique called ReMT [47] was pro-

posed to improve the efficiency of mutation testing during soft-

ware evolution process. Zhang et al. [48] developed another tech-

nique called FaMT that minimizes and prioritizes test cases for

each mutant such that the mutation testing results could be col-

lected more quickly. In some mutation testing tools [49,50] , cover-

age information was explored to prevent redundant executions of

some mutants, and thus to decrease the overall time of mutation

testing.

Papadakis and Malevris [51] also applied the information about

the program paths in mutation testing. They proposed a path

based approach for generating test cases that are effective in killing

mutants. Different from their work, our study makes use of the

path information in the selection of a subset of representative

mutants. Though both studies can ultimately improve the cost-

effectiveness of mutation testing, they address different problems

from different perspectives.

7. Conclusion

Mutation testing is a popularly used technique for evaluating

the effectiveness of a testing method. However, it incurs a high

cost mainly due to the large amount of mutants it generates and

executes. Some approaches have been proposed to reduce the cost

of mutation testing by selecting a subset of mutants, such as ran-

dom selection and operator-based selection. In this paper, differ-

ent from all previous work, we proposed a new mutant reduction

approach, from the perspective of the path depth in the program

under test. We presented two path-aware heuristic rules as well

as the statement and operator selection rules, and developed four

mutant reduction strategies that are associated with different pri-

ority orders of the selection rules. The effectiveness of the new

strategies were evaluated via an empirical study on 11 real-world

C programs. It was observed that two strategies, which give high-

est priorities to the path-aware rules, could select representative

mutants that were more effective and precise than those selected

in a random manner. It was also shown that these two strategies

outperformed the other two strategies, which mainly rely on state-

ment or operator selection rules. In brief, the proposed path-aware

approach is a better technique in mutant reduction than the tradi-

tional random and/or operator-based selection approaches. There-

fore, the work presented in this paper advances mutation testing

by further reducing the number for mutants without jeopardizing

its fault detection effectiveness.

In this pilot study, we only examined two path-aware heuristic

rules and four mutant reduction strategies. It is important to con-

tinue the work to investigate more heuristic rules and design more

precise reduction strategies. The mutant reduction is particularly

useful if the program under test is large in scale and complex in

structure (which implies the corresponding mutation testing will

be very costly). Thus, future work must be conducted to evaluate
Please cite this article as: C.-a. Sun et al., A path-aware approach to

Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.02.006
he applicability and effectiveness of our path-aware mutant re-

uction approach on more large-scale programs from various ap-

lication domains.

cknowledgment

This research is supported by the National Natural Science

oundation of China under Grant No. 61370061 , the Beijing Nat-

ral Science Foundation of China (Grant No. 4162040), the Beijing

unicipal Training Program for Excellent Talents under Grant No.

012D0 090 060 0 0 0 02, and the Fundamental Research Funds for the

entral Universities under Grant No. FRF-SD-12-015A. Thanks to

he anonymous reviewers who provided useful suggestions on ear-

ier version of this paper. All correspondence should be addressed

o both Chang-ai Sun and Huai Liu.

eferences

[1] R.G. Hamlet , Testing programs with the aid of a compiler, IEEE Trans. Softw.

Eng. 3 (4) (1977) 279–290 .
[2] R.A. DeMillo , R.J. Lipton , F.G. Sayward , Hints on test data selection: help for the

practicing programmer, IEEE Comput. 11 (4) (1978) 34–41 .

[3] G. Fraser , A. Zeller , Mutation-driven generation of unit tests and oracles, in:
Proceedings of the 19th International Symposium on Software Testing and

Analysis (ISSTA 2010), 2010, pp. 147–158 .
[4] M. Papadakis , Y. Le Traon , Metallaxis-FL: Mutation-based fault localization,

Softw. Test., Verific. Reliab 25 (5-7) (2015) 605–628 .
[5] A.J. Offutt , R.H. Untch , Mutation 20 0 0: uniting the orthogonal, in: Mutation

Testing for the New Century, Kluwer Academic Publishers, 2001, pp. 34–44 .
[6] J.H. Andrews , L.C. Briand , Y. Labiche , Is mutation an appropriate tool for testing

experiments? in: Proceedings of the 27th International Conference on Software

Engineering (ICSE 2005), 2005, pp. 402–411 .
[7] R. Just , D. Jalali , L. Inozemtseva , M.D. Ernst , R. Holmes , G. Fraser , Are mu-

tants a valid substitute for real faults in software testing? in: Proceedings of
the Symposium on the Foundations of Software Engineering (FSE 2014), 2014,

pp. 654–665 .
[8] A.P. Mathur , W.E. Wong , An empirical comparison of data flow and muta-

tion-based test adequacy criteria, Softw. Test., Verific. Reliab. 4 (1) (1993) 9–31 .

[9] A.P. Mathur , Performance, effectiveness, and reliability issues in software test-
ing, in: Proceedings of the 5th International Computer, Software and Applica-

tions Conference (COMPSAC 1991), 1991, pp. 604–605 .
[10] L. Zhang , S.-S. Hou , J.-J. Hu , T. Xie , H. Mei , Is operator-based mutant selection

superior to random mutant selection? in: Proceedings of the 32nd Interna-
tional Conference on Software Engineering (ICSE 2010), 2010, pp. 435–4 4 4 .

[11] C. Sun , C. Liu , M. Jin , Effective wove algorithm for software structure graph, J.

Beijing Univ. Aeronaut. Astronaut. 26 (6) (20 0 0) 705–709 .
[12] J. Ferrante , K.J. Ottenstein , J.D. Warren , The program dependence graph and its

use in optimization, ACM Trans. Program. Lang. Syst. 9 (3) (1987) 319–349 .
[13] Z. Lin , X. Zhang , Deriving input syntactic structure from execution, in: Pro-

ceedings of the 16th ACM SIGSOFT International Symposium on Foundations
of Software Engineering (FSE 2008), 2008, pp. 83–93 .

[14] H. Liu , F.-C. Kuo , T.Y. Chen , Comparison of adaptive random testing and random

testing under various testing and debugging scenarios, Softw.: Pract. Exp. 42
(8) (2012) 1055–1074 .

[15] L. Morell , A theory of fault-based testing, IEEE Trans. Softw. Eng. 16 (8) (1990)
844–857 .

[16] C. Sun , G. Wang , MujavaX: a distribution-aware mutation generation system
for java, J. Comput. Res. Dev. 51 (4) (2014) 874–881 .

[17] M. Hutchins , H. Foster , T. Goradia , T. Ostrand , Experiments on the effectiveness

of dataflow- and controlflow-based test adequacy criteria, in: Proceedings of
the 16th International Conference on Software Engineering (ICSE 1994), 1994,

pp. 191–200 .
[18] H. Do , S.G. Elbaum , G. Rothermel , Supporting controlled experimentation with

testing techniques: an infrastructure and its potential impact, Empir. Softw.
Eng.: Int. J. 10 (4) (2005) 405–435 .

[19] M.E. Delamaro , J.C. Maldonado , Proteum — a tool for the assessment of test

adequacy for C programs, in: Proceedings of the Conference on Performability
in Computing Systems (PCS 1996), 1996, pp. 79–95 .

[20] T.J. Ostrand , M.J. Balcer , The category-partition method for specifying and gen-
erating fuctional tests, Communn. ACM 31 (6) (1988) 676–686 .

[21] H. Zhu , P.A.V. Hall , J.H.R. May , Software unit test coverage and adequacy, ACM
Comput. Surv. 29 (4) (1997) 366–427 .

[22] Y. Jia , M. Harman , An analysis and survey of the development of mutation test-
ing, IEEE Trans. Softw. Eng. 37 (5) (2011) 649–678 .

[23] A.T. Acree Jr. , On Mutation, Georgia Institute of Technology, 1980 Ph.D. thesis .

[24] A.J. Offutt , G. Rothermel , C. Zapf , An experimental evaluation of selective mu-
tation, in: Proceedings of the 15th International Conference on Software Engi-

neering (ICSE 1993), 1993, pp. 100–107 .
[25] E.W. Wong , A.P. Mathur , Reducing the cost of mutation testing: an empirical

study, J. Syst. Softw. 31 (3) (1995) 185–196 .
mutant reduction in mutation testing, Information and Software

http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.13039/501100005089
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0004a
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0004a
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0004a
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0015
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0015
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0015
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0024
http://dx.doi.org/10.1016/j.infsof.2016.02.006

C.-a. Sun et al. / Information and Software Technology 0 0 0 (2016) 1–17 17

ARTICLE IN PRESS

JID: INFSOF [m5G; March 10, 2016;10:12]

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

26] A .J. Offutt , A . Lee , G. Rothermel , R.H. Untch , C. Zapf , An experimental determi-
nation of sufficient mutant operators, ACM Trans. Softw. Eng. Methodol. 5 (2)

(1996) 99–118 .
[27] A.S. Namin , J.H. Andrews , D.J. Murdoch , Sufficient mutation operators for mea-

suring test effectiveness, in: Proceedings of the 30th International Conference
on Software Engineering (ICSE 2008), 2008, pp. 351–360 .

28] A.M.R. Vincenzi , J.C. Maldonado , E.F. Barbosa , M.E. Delamaro , Unit and inte-
gration testing strategies for C programs using mutation, Softw. Test., Verific.

Reliab. 11 (3) (2001) 24 9–26 8 .

29] R. Just , F. Schweiggert , Higher accuracy and lower run time: efficient mutation
analysis using non-redundant mutation operators, Softw. Test., Verific. Reliab

25 (5-7) (2015) 490–507 .
30] M.E. Delamaro , L. Deng , V.H.S. Durelli , N. Li , J. Offutt , Experimental evaluation

of SDL and one-op mutation for C, in: Proceedings of the 2014 IEEE Interna-
tional Conference on Software Testing, Verification, and Validation (ICST 2014),

2014, pp. 203–212 .

[31] M. Gligoric , L. Zhang , Selective mutation testing for concurrent code, in: Pro-
ceedings of the 2013 International Symposium on Software Testing and Anal-

ysis (ISSTA 2013), 2013, pp. 224–234 .
32] L. Zhang , M. Gligoric , D. Marinov , S. Khurshid , Operator-based and random mu-

tant selection: better together, in: Proceedings of the 28th Automated Software
Engineering (ASE 2013), 2013, pp. 92–102 .

[33] Y. Jia , M. Harman , Constructing subtle faults using higher order mutation test-

ing, in: Proceedings of the 8th International Working Conference on Source
Code Analysis and Manipulation (SCAM 2008), 2008, pp. 249–258 .

34] M. Polo , M. Piattini , I. Garcia-Rodriguez , Decreasing the cost of mutation test-
ing with second-order mutants, Softw. Test., Verific. Reliab. 19 (2) (2009)

111–131 .
[35] M. Papadakis , N. Malevris , An empirical evaluation of the first and second or-

der mutation testing strategies, in: Proceedings of the 3rd International Con-

ference on Software Testing, Verification, and Validation Workshops (ICSTW),
2010, pp. 90–99 .

36] M. Harman , Y. Jia , P. Reales Mateo , M. Polo , Angels and monsters: an empir-
ical investigation of potential test effectiveness and efficiency improvement

from strongly subsuming higher order mutation, in: Proceedings of the 29th
ACM/IEEE International Conference on Automated Software Engineering (ASE

2014), 2014, pp. 397–408 .

[37] S. Hussain , Mutation Clustering, King’s College London, 2008 Ph.D. thesis .
38] C. Ji , Z. Chen , B. Xu , Z. Zhao , A novel method of mutation clustering based

on domain analysis, in: Proceedings of the 21st International Conference on
Software Engineering and Knowledge Engineering (SEKE 20 09), 20 09, pp. 1–3 .
Please cite this article as: C.-a. Sun et al., A path-aware approach to

Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.02.006
39] A.J. Offutt , W.M. Craft , Using compiler optimization techniques to detect equiv-
alent mutants, Softw. Test., Verific. Reliab. 4 (3) (1994) 131–154 .

40] R. Hierons , M. Harman , S. Danicic , Using program slicing to assist in the detec-
tion of equivalent mutants, Softw. Test., Verific. Reliab. 9 (4) (1999) 233–262 .

[41] X. Yao , M. Harman , Y. Jia , A study of equivalent and stubborn mutation opera-
tors using human analysis of equivalence, in: Proceedings of the 36th Interna-

tional Conference on Software Engineering (ICSE 2014), 2014, pp. 919–930 .
42] M. Papadakis , M. Delamaro , Y. Le Traon , Mitigating the effects of equivalent

mutants with mutant classification strategies, Sci. Comput. Program. 95, Part 3

(2014) 298–319 .
43] M. Kintis , M. Papadakis , N. Malevris , Employing second-order mutation for

isolating first-order equivalent mutants, Softw. Test., Verific. Reliab. 25 (5-7)
(2015) 508–535 .

44] M. Papadakis , Y. Jia , M. Harman , Y. Le Traon , Trivial compiler equivalence: a
large scale empirical study of a simple, fast and effective equivalent mutant

detection technique, in: Proceedings of the 37th International Conference on

Software Engineering (ICSE 2015), 2015, pp. 936–946 .
45] R.H. Untch , A.J. Offutt , M.J. Harrold , Mutation analysis using mutant schemata,

in: Proceedings of the 1993 International Symposium on Software Testing and
Analysis (ISSTA 1993), 1993, pp. 139–148 .

46] Y.S. Ma , A.J. Offutt , Y.R. Kwon , MuJava: an automated class mutation system,
Softw. Test., Verific. Reliab. 15 (2) (2005) 97–133 .

[47] L. Zhang , D. Marinov , L. Zhang , S. Khurshid , Regression mutation testing, in:

Proceedings of the 2012 International Symposium on Software Testing and
Analysis (ISSTA 2012), 2012, pp. 331–341 .

48] L. Zhang , D. Marinov , S. Khurshid , Faster mutation testing inspired by test pri-
oritization and reduction, in: Proceedings of the 2013 International Symposium

on Software Testing and Analysis (ISSTA 2013), 2013, pp. 235–245 .
49] D. Schuler , A. Zeller , Javalanche: efficient mutation testing for Java, in: Pro-

ceedings of the 7th Joint Meeting of the European Software Engineering Con-

ference and the ACM SIGSOFT Symposium on The Foundations of Software En-
gineering (ESEC/FSE2009), 2009, pp. 297–298 .

50] R. Just , F. Schweiggert , G.M. Kapfhammer , MAJOR: an efficient and extensible
tool for mutation analysis in a Java compiler, in: Proceedings of the 2011 26th

IEEE/ACM International Conference on Automated Software Engineering (ASE
2011), 2011, pp. 612–615 .

[51] M. Papadakis , N. Malevris , Mutation based test case generation via a path se-

lection strategy, Inf. Softw. Technol. 54 (9) (2012) 915–932 .
mutant reduction in mutation testing, Information and Software

http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0026
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0026
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0026
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0026
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0027a
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0027a
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0027a
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0029
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0029
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0029
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0030
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0030
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0030
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0030
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0030
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0032
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0032
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0032
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0032
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0033
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0033
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0033
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0035
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0035
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0038
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0038
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0038
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0038
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0040a
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0040a
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0040a
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0040a
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0041
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0041
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0041
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0041
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0041
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0043
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0043
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0043
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0043
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0045
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0045
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0045
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0045
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0046
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0046
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0046
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0047
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0047
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0047
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0047
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0048
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0048
http://refhub.elsevier.com/S0950-5849(16)30024-6/sbref0048
http://dx.doi.org/10.1016/j.infsof.2016.02.006

	Liu, H - A path- aware approach to mutant - n2006060229.pdf
	Iyer-Raniga, Usha- n2006046404- A greenhouse gas.pdf
	Abstract
	Introduction
	Method
	Unit of assessment and system boundary
	Inventory
	Impact assessment

	Results
	Discussion
	Limitations
	Exclusion of travel
	Partition methodology
	Stadium life time and attendance
	Exclusion of upstream construction processes

	Conclusion
	Acknowledgement
	Funding
	References

	muReduc - IST16 (1).pdf
	A path-aware approach to mutant reduction in mutation testing
	1 Introduction
	2 Preliminaries and terminology
	3 Path-aware mutant reduction approach
	3.1 Heuristic rules
	3.2 Mutant reduction strategies
	3.3 Illustration

	4 Empirical study
	4.1 Research questions
	4.2 Variables and measures
	4.2.1 Independent variables
	4.2.2 Dependent variables

	4.3 Object programs
	4.4 Mutant generation
	4.5 Test case generation
	4.6 Experiment design
	4.7 Threats to validity
	4.7.1 Internal validity
	4.7.2 External validity
	4.7.3 Construct validity
	4.7.4 Conclusion validity

	5 Experimental results
	5.1 Results on all mutants
	5.2 Results on “stubborn” mutants
	5.3 Answers to research questions

	6 Related work
	7 Conclusion
	 Acknowledgment
	 References

	Due Diligence Record Log.pdf
	Iyer-Raniga, Usha- n2006046404- A greenhouse gas.pdf
	Abstract
	Introduction
	Method
	Unit of assessment and system boundary
	Inventory
	Impact assessment

	Results
	Discussion
	Limitations
	Exclusion of travel
	Partition methodology
	Stadium life time and attendance
	Exclusion of upstream construction processes

	Conclusion
	Acknowledgement
	Funding
	References

