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Abstract

Operational Modal Analysis (OMA) is a promising candidate for flutter testing and
Structural Health Monitoring (SHM) of aircraft wings that are passively excited by wind
loads. However, no studies have been published where OMA is tested in transonic flows,
which is the dominant condition for large civil aircraft and is characterised by complex
and unique aerodynamic phenomena. We use data from the HIRENASD large-scale wind
tunnel experiment to automatically extract modal parameters from an ambiently excited
wing operated in the transonic regime using two OMA methods: Stochastic Subspace
Identification (SSI) and Frequency Domain Decomposition (FDD). The system response
is evaluated based on accelerometer measurements. The excitation is investigated from
surface pressure measurements. The forcing function is shown to be non-white, non-
stationary and contaminated by narrow-banded transonic disturbances. All these prop-
erties violate fundamental OMA assumptions about the forcing function. Despite this,
all physical modes in the investigated frequency range were successfully identified, and
in addition transonic pressure waves were identified as physical modes as well. The SSI
method showed superior identification capabilities for the investigated case. The inves-
tigation shows that complex transonic flows can interfere with OMA. This can make
existing approaches for modal tracking unsuitable for their application to aircraft wings
operated in the transonic flight regime. Approaches to separate the true physical modes
from the transonic disturbances are discussed.

Keywords: operational modal analysis; modal parameters; flutter; structural health
monitoring; HIRENASD; transonic

1. Introduction

In recent years significant progress has been made in developing and refining modal
parameter identification methods that use environmental loads as the primary source
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of structural excitation. Those methods are today known under the name Operational
Modal Analysis (OMA) [1]. Modal parameters identified with OMA have been shown
to be suitable for Structural Health Monitoring (SHM) of large civil engineering struc-
tures [2]. However, only limited publications have investigated the application of similar
techniques to aircraft wings, and there is a lack of knowledge across a range of critical
areas.

Abdelghani et al. [3] investigated an output-only subspace-based damage detection algo-
rithm using a Paris MS760 airplane in a Ground Vibration Test (GVT). They showed
that it is possible to detect small mass (2%) and stiffness changes (blocked and released
ailerons). The structure was artificially excited at two points with random white signals.
Mevel et al. [4], Debille and Peeters [5] and Peeters et al. [6] extracted natural frequencies
and damping ratios from in-flight data, thereby showing that it is essentially possible to
track some modal parameters during aircraft operation. However, they only published
limited quantitative results and no informations about the flight conditions.

The application of OMA to transonic flow has not been previously demonstrated. This
is significant as transonic flow not only involves complex aerodynamic phenomena, but
is the dominant flight regime for large passenger transport aircraft. As such, the perfor-
mance of the various OMA techniques and their associated autonomous mode detection
algorithms has not been characterised. For example, Stochastic Subspace Identifica-
tion (SSI) is considered to be one of the most powerful parametric time-domain system
identification methods [7], which was investigated in a variety of output-only damage
detection or SHM studies [2][8]. The vast majority of hitherto proposed SSI-based auto-
matic modal parameter extraction methods for SSI try to automatize the interpretation
of the consistency or stabilization diagram [9]. In contrast, Frequency Domain Decom-
position (FDD) is a non-parametric frequency-domain method, which is an extension
of the classic Peak Picking (PP) approach and was studied for damage detection and
SHM as well [8][10]. Modal parameters are automatically detected by searching for local
maxima of the first singular value and subsequently checking the modal coherence in the
vicinity of the peaks [11]. It is not known how the different mathematical foundations
of automatic SSI and FDD perform for transonic flow excitation and whether there are
any limitations of the techniques within this unique context. In addition, no wing-based
OMA publications have used input load measurements to gain critical insight into the
aerodynamic excitation.

This study focuses on modal parameter extraction from a large-scale wind tunnel wing
model excited by transonic flow. Modal parameters (natural frequencies, mode shapes
and damping ratios) are extracted from dynamic measurements of the High Reynolds
Number Aerostructural Dynamics (HIRENASD) wind tunnel model using two OMA-
techniques: FDD and SSI. Previous studies have shown that a periodic pressure wave
builds at the surface of the HIRENASD wing, when operated in the transonic flow
regime [12]. The properties of this transonic phenomenon and its interaction with the
elastic structure are studied in detail in this work within the context of the OMA tech-
niques. The identified natural frequencies are compared to existing Experimental Modal
Analysis (EMA) and Finite Element Method (FEM) results. The Angle Of Attack
(AOA)-variability of the identified modal properties as well as the AOA-variability of
the encountered transonic pressure waves are examined. These findings are assessed in
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the context of SHM for aircraft structures.

2. Methods

2.1. HIRENASD model and data

A dataset from the HIRENASD wind tunnel experiment is used for the present inves-
tigation. The HIRENASD project was a study of an elastic wing model in the tran-
sonic regime carried out in 2006. The tests were conducted at the European Transonic
Wind tunnel (ETW). The aeroelastic behavior of a fixed-wing model was investigated
at Reynolds and Mach numbers that are typically encountered by large aircraft in cruise
flight. The wing was equipped with 9 functional accelerometers whose positions are
shown in figure 1a and 205 functional pressure sensors distributed over 7 span-wise sec-
tions, which are shown in figure 1b.

The 1.3 m semispan wing model was developed with Mach-number and Reynolds-number
similarity in mind. The structure was designed to withstand the high aerodynamic loads and,
at the same time, to allow for well measurable deformations. Other design goals were well
separated fundamental eigenmodes, the ability to artificially excite the structure in a wide
frequency range and operability under cryogenic conditions. According to Korsch et al. [13]
the desired static and dynamic system properties were attained in an iterative design process
using academic and commercial finite element analysis and fluid-structure interaction tools.
Detailed information about the experiment, the design goals and the iterative process of
development were published in [12, 13].

x-1245.21

Nr. 1072

:

= s @ ° O

cceleration sensor positions. (b) Pressure sensor positions. Only the measurements from the
circled pressure sensors are used in this investigation.

Positions of accelerometers ©s 7

A,

(a)

Figure 1: Accelerometer and pressure sensor positions and labels (adapted from [14]).

In this study results from a single 41 second measurement at a fixed operation point are
investigated. The dataset was recorded at 279 K total temperature and 136 kPa total
pressure. The freestream Mach number was set to 0.8 resulting in a mean chord-based
Reynolds number of 7 x 105 (¢;.y = 0.3445 m). The AOA was slowly changed during
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Figure 2: AOA time-history. Figure 3: System identification from output-only measurements.

the recording window from —2.1° to +4.2° at a rate of change of ~ 0.18°/s (figure
2). The dataset was separated into two non-overlapping blocks with a duration of 17.95
seconds each. The split was performed to confine the non-stationary influence of the
AOA-sweep and to be able to assess the variation of the identification process. The block
size is chosen to include approximately 500 recurrences of the lowest natural frequency
to allow for a statistically valid identification. Additional investigations with a further
subdivided dataset were conducted to examine the natural frequency evolution with
increasing AOA.

Modal parameters were extracted using the commercial software ARTeMIS Modal [15].
Linear trends were removed, the data were processed through a low-pass filter with a
cut-off frequency of 480 Hz and subsequently decimated to a sampling rate of 1000 Hz.
The resolution for the Curve-fit Frequency Domain Decomposition (CFDD) spectral
density estimation was set to 2048 lines in the investigated frequency range. Only modes
that were automatically detected by the investigated algorithms are presented throughout
the paper, thus the suitability of the investigated techniques for automatic OMA can be
assessed.

The pressure measurements were contaminated by alternating current disturbances at
multiples of 100 Hz (200 Hz, 300 Hz, ...). The affected frequency lines were replaced by
least square fits through the neighboring frequency lines in all affected figures.

2.2. Operational Modal Analysis

In general the stochastic unobserved load in OMA is assumed to be stationary, ergodic
and zero mean during the derivation of the investigated OMA methods. Furthermore the
input load is assumed to have a constant Power Spectral Density (PSD) in the frequency
range of interest (band-limited white noise) [16]. Figure 3 shows the relationship between
the presumed excitation and the measured response. Any deviation from the required
white excitation can be represented through an excitation filter, if the excitation can
be represented by a linear, time-invariant system. System identification with OMA will
then identify a joined system consisting of the excitation filter response and the structural
system response. The interaction between the excitation and the structural system is a
key focus of this work and is discussed in detail in section 3.1 and 3.2.

2.2.1. Stochastic Subspace Identification

Several studies showed that SSI can be considered to be one of the most sophisticated

OMA-techniques available today [16][17]. The idea of the approach is to extract a state-

space representation of the linear, time-invariant physical model by orthogonal projection
4
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of block Hankel matrices, followed by Singular Value Decomposition (SVD) and regres-
sion.

The major steps in SSI are to arrange the individual discrete signals y;[n] into a single

data matrix Y[n] = [y1[n],y2[n], - -+ ,yz[n]]". Then the data matrix Y is rearranged into
a Block Hankel matrix H.

Y[:,1: N — 2s]
Y[:,2: N —2s+1] H,

=" = {Hf] (1)
Y[:,2s: N]

The orthogonal projection of the future Hy into the past H, produces the projection
matrix O, where 2s is the total data shift.

0= H;H' (H,H") " H, (2)

O is further decomposed using SVD.

ot wfy

1 1
U;S7 and SZViT can be related to the state space representation of a linear, time-
invariant discrete time physical system
z[n + 1] = Az[n] + w[n] (4)
y[n] = Cz[n] + v[n] ()
where z[n] is the discrete state space vector, A is the dynamic stiffness matrix, which
completely describes the dynamic system. C' is the output matrix, which describes the

transformation of the internal state x[n] to the measurements y[n|. w[n| and v[n] are
unmeasured stationary, zero mean, white noise vectors.

The output matrix estimate C can immediately be extracted from the observability

1 N
matrix by taking the first L rows from U;.57 and the system matrix estimate A can be
extracted from the observability matrix by blockwise regression.

Finally, estimates for natural frequencies f;, damping ratios &; and mode shapes ¢; can
be extracted from A using an eigenvalue decomposition

A=V lu]v (6)

and proper scaling ® = CU, \; = 1/T - In(u;), w; = |\i| and & = Re(\;)/ |\l
5)
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2.2.2. Frequency Domain Decomposition

The second OMA method used to extract modal parameter from the HIRENASD exper-
imental data is Curve-fit Frequency Domain Decomposition. FDD was first presented by
Brincker et al. [18]. The basic idea is to decompose the Cross Spectral Density Matrix
(CSDM) estimate G, using SVD.

Gylw] = U [w] S [w] V" [w] (7)

For lightly damped structures only a limited number of modes (typically one or two) will
significantly contribute to the system response at a certain frequency wy. Therefore, in
the vicinity of the kth natural angular frequency wy, the first singular vector u [wy] is
an estimate of the corresponding mode shape (ﬁk. The first singular value s; [w] can then
be interpreted as PSD of the Single Degree-of-Freedom (SDOF) system [18].

With the classic FDD approach it is only possible to manually estimate natural frequen-
cies and mode shapes. A technique to estimate damping ratios in the time-domain was
later proposed by Brincker et al. [19] and today is known as Enhanced Frequency Domain
Decomposition (EFDD). Jacobsen et al. [20] proposed the CFDD algorithm, which relo-
cates the damping estimation process back to the frequency domain, thereby improving
the natural frequency and damping ratio estimation.

3. Results and Discussion

3.1. The turbulent and transonic wind excitation

The large number of pressure gauges at the surface of the HIRENASD wing allows for a
detailed investigation of the input loads. Traditionally the input loads are not measured
in OMA but rather are represented by the model described in section 2.2. Wind excitation
is assumed to perfectly obey the OMA assumptions [21]. In this section it is discussed in
what respect the real transonic wind loads deviate from the ideal stochastic model and
how these deviations influence the modal parameter identification.

Figure 4 shows c,-PSD-estimates from four surface pressure sensors (see figure 4 for
labels and figure 1b for locations). The wing was slowly rotated during the measurement
period. As a consequence the surface pressure distribution and power vary with time
and the OMA ergodicity and stationarity assumptions are not fulfilled. Benveniste and
Mevel [22] showed that subspace algorithms will converge to the true eigenstructure
despite nonstationaries in the excitation. Of course, the “true eigenstructure” may be
velocity-dependent or may depend on the static preload of the structure, as in fact is the
case for a wing operated at different velocities [23] or AOAs [24].

Strong and narrow-banded peaks at 129 Hz are visible in every PSD estimate. Additional
peaks at 258 Hz and 387 Hz are visible in some PSD estimates as well. Ballmann et al. [12]
showed the peak at 129 Hz to be a transonic phenomenon, which they call an upstream
running pressure wave. The occurrence of additional or secondary pressure waves was not

6
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Figure 4: cp-PSD content throughout the AOA-sweep . Dashed lines indicate an w™!-trend.

reported. The SVD of the CSDM from 18 pressure sensors (the application of the FDD
algorithm to the pressure data) reveals more of the true nature of the pressure wave (figure
5). The frequency investigated by Ballmann et al. [12] is in fact only the fundamental
frequency of a family of pressure waves which occur at multiples of the fundamental
pressure wave frequency. The SVD also reveals a second group of significantly weaker
pressure waves, which have the same distance between each other (129 Hz) but are shifted
against the previously described group by 27 Hz (156 Hz, 285 Hz, 414 Hz). 27 Hz also
happens to be the first fundamental bending mode frequency of the wing and a strong
and broad elongation can be seen in the SVD-diagram at 27 Hz as well. This indicates
that a complex interaction between the eigenmovement of the system and the transonic
flow seems to be at work and further investigation is necessary to reveal the true nature
of this phenomenon.

The key conclusion from the analysis is that the occurrence of narrow-banded distur-
bances clearly violates the OMA band-limited white noise assumption. Hence, the exci-
tation will be part of the identified system in accordance with figure 3 and the pressure
waves will be identified as system poles. Whether the full system behavior of the pressure
waves can be modelled using a linear, time-invariant filter is questionable. This question
will be further evaluated in section 3.2, where the results of the modal identification are

presented.
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Figure 5: SVD of the CSDM from the 18 pressure sensors highlighted in figure 1b.

3.2. Modal parameter identification — evaluation and analysis

In table 1 OMA results are compared to hammer impact modal analysis data and the
results of a numerical modal analysis. The wing was extensively tested using hammer
impact, sine sweep and harmonic excitation EMA before deployment to ETW. The re-
sults have been published in Korsch et al. [13]. Natural frequencies and damping ratios
obtained from the hammer impact tests are included in table 1. Furthermore, HIREN-
ASD data are used as a test case in the Aeroelastic Prediction Workshop (AePW) [25].
In this context an already available FEM model was further enhanced and validated
by Wieseman et al. [26]. The natural frequencies obtained from the numerical model
are also included in table 1. The EMA and FEM results are associated with the modes
extracted from OMA by natural frequency correlation and qualitative mode-shape com-
parison.

Table 1: Natural frequencies and damping ratios identified from accelerometer data using SSI, CFDD
hammer impact test data from Korsch et al. [13] and FEM data from Wieseman et al. [26]. B stands
for bending, T for torsion, F for a for-and-aft in-plane bending mode and P for a pressure-wave induced
oscillation. MCF is the Mode Complexity Factor.

SSI acc 1-half SSI acc 2-half CFDD acc 2-half Impact FEM
Mode f MCF f MCF f MCF f f
[Hz] (%] [%]  [Hz] %] [%] [sz (%] (%] _[Hz] [%]  [Hz]
1B 26.61 3.16 0.01 2713 3.01 0.00 2724 321 0.00 25.75 0.07 25.55
2B 7860 158 0.26 79.55 1.85 0.16 79.33 140 0.08 71.11 0.27 80.25
1F 118.90 3.97 6.06 111.66 0.34 106.19
1P 128.74  0.46 84.85
1P 129.27 0.15 72.63 128.76 0.18 73.75
2P 160.76 1.88 14.99 156.45 3.94 28.42
3B 168.81 198 0.37 167.33 224 096 167.67 094 0.44 149.34 0.71 160.35
4B 235.58 279 1.10 236.23 1.86 096 237.11 091 0.33 242.00
2F 250.88  3.17 56.73 252.23
3P 259.33 0.75 0.59 257.39 0.34 9.17 258.74 0.23 1.47
1T 266.22 1.03 0.86 264.98 140 0.13 263.15 0.26 271.88
5B 349.26 2.88 11.00 345.70 1.57 3.22 364.45 0.06 11.49 354.16
2T 423.49 0.70 1.11 422.76 0.81 1.49 42233 0.76 1.46 437.83

The first row in table 1 points out the dominant type of movement for the respective

mode shape. The data in the columns SST acc 1-half, SSI acc 2-half and CFDD acc 2-half

were identified from the first and the second half of the accelerometer dataset using the
8
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SSI and CFDD method. The FEM results correspond quite well with the observed OMA
results. The only modes identified by OMA that could not be associated to FEM-modes
are 1P, 2P and 3P but these can clearly be related to sharp peaks in the excitation spec-
tra (figure 5). Hence, as anticipated in the discussion of section 3.1, the pressure waves
are detected as part of the identified system. All natural frequencies identified under
operational conditions in ETW are higher than the frequencies measured during the dy-
namic qualification tests described in Korsch et al. [13]. This indicates a stiffer clamping
in ETW than under laboratory conditions. The damping obtained under operational
conditions is dominated by aerodynamic forces and therefore is significantly higher than
the damping measured during the hammer impact tests. The for-and-aft bending modes
(1F, 2F) should not be detectable with the out-of-plane accelerometers but cross-axis
sensor interference seems to be strong enough to induce a detectable output.

To investigate the AOA-variability the dataset was subdivided into four equally sized
subsets and modal parameters were estimated for each individual set. Figure 6 shows
the change in relative frequency for these four datasets. The individual natural fre-
quencies are normalized to the frequency identified from the first subset. The errorbars
indicate how strong the frequencies vary at different model orders in the stabilization
diagram. Especially the lower natural frequencies show a significant AOA-dependency.
The AOA-variability cannot be explained by linear aerodynamic or structural theory and
most likely is the result of structural geometric nonlinearity. A modal analysis is always
a linearization about the current system deformation state. The deformation introduced
by the AOA-change seems to be large enough to cause a detectable change in natural
frequencies. This effect has been described for high-aspect-ratio wings, where it is sig-
nificantly more pronounced [24] but will of course occur in any cantilever-like structure
subjected to significant static deformation. A distinct AOA-dependency could not be
detected for damping ratios, mode shapes or mode shape complexities.
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Figure 6: Evolution of natural frequency estimates with increasing AOA.

Only 2P shows a non-monotonic behavior in figure 6. 1P and 3P were not added to the
diagram because both modes split into multiple modes with increasing AOA, whereby
the gap between the identified frequencies reaches 2 Hz. The Mode Complexity Factors
(MCEFs) for all modes that are associated with pressure waves are more than an order
of magnitude larger than the MCFs of the wing modes (table 1). The MCF will be 0%
for real mode shapes and 100% for fully imaginary modes [15]. The detected pressure
wave mode shapes change with increasing AOA, in contrast to the mode shapes of the
wing (figure 7). According to Ballmann et al. [12] the area covered by the pressure wave
9



and its amplitude significantly increases with AOA, which is in line with our findings of

strongly changing mode shapes. These findings show that the pressure wave excitation

has multiple non-linear characteristics and therefore cannot be represented by a linear,
230 time-invariant system.
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Figure 7: The visualization shows the Modal Assurance Criterion (MAC). A value (color) of 1 (black)
means that the two mode shapes match exactly whereas a value of 0 (white) means that the mode shapes
are completely uncorrelated.
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Figure 8: The figure shows Singular Value frequency-plots for accelerometer data.

3.8. Automatic CFDD vs. SSI

Table 1 shows a comparison between modes identified with SSI and CFDD. Significantly
less modes have been automatically detected using CFDD. Figure 7b shows that whenever
mode shapes are detected by the CFDD method they are practically identical to the mode

25 shapes identified with SSI. The only exception is the fifth bending mode (5B) where the
MAC is only 0.93.

The automatic CFDD algorithm was not able to detect any of the pressure wave modes.
CFDD relies on an automatic mode detection algorithm where singular vectors at neigh-
bouring spectral lines are compared with the singular vector of the local first singular
20 value maximum using the MAC [11]. 1P for example is not detected because the peak is
very sharp and the singular vectors are changing rapidly throughout the frequency range.

10
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Figure 7a shows that the mode shapes of 3P and 1T strongly interact and correlate and
further investigation showed that the algorithm always selects the higher peak to be the
single peak of the whole 3P-1T-region. The CFDD identification was also applied to the
further subdivided accelerometer datasets and overall showed a less reliable identification
behavior. 3P and 1T were identified twice each but never both from the same dataset.
4B was identified once, and 5B thrice. The investigated automatic SSI algorithm is based
on the comparison of modes detected from different system orders [15]. This approach is
actually not limited to SSI-methods but can be used with any parametric system identi-
fication method where the system order is used as a parameter [9]. This approach does
not rely on a comparison at neighboring spectral lines and therefore allows the detec-
tion of very narrow-banded disturbances, as long as they are identified at multiple (or
consecutive) system orders.

The findings here are consistent with the findings of another study where CFDD and the
SSI method are compared for the identification of a wind-excited cantilever beam [27].
There it was found that the Stochastic Subspace Identification - Canonical Variate Anal-
ysis (SSI-CVA) method has superior mode detection capabilities for modes which are
in the near proximity to other modes with significantly larger energy levels. The same
was found to be true for weakly excited modes, that barely were above the noise floor.
The results here demonstrate that, in addition, automatic SSI-algorithms seem to be
inherently better suited for the detection of very narrow-banded disturbances.

3.4. Discussion

In section 3.1 it was seen that the wind excitation is contaminated by pressure waves and
in section 3.2 it was shown that some of these pressure waves are identified as part of the
physical system. From the perspective of SHM this kind of effect needs to be separated
from nearby real physical modes which are part of the damage-sensitive feature vector.
The obvious solution is to measure the surface pressure at representative locations and
separate physical and non-physical modes based on a partial input load measurement.
Another way is to ignore modes with a significant MCF when extracting and comparing
damage-sensitive features. As aerodynamic damping is non-proportional and damage
often results in a non-linear system behavior this possibility may limit the applicability
of modal parameter-based damage assessment. A third solution is to mark modes with a
damping ratio below a certain threshold as non-physical. Damping estimates for 1P and
3P are nearly an order of magnitude lower than the detected damping for the physical
modes. But this was not found to be true for 2P and there are flight conditions where
the damping ratio of natural modes can become very small (i.e. flutter). Furthermore
structural damage is known to alter the dissipate behavior of structures. Finally the
singular value behavior for 1P and 3P in the SVD-plot shown in figure 8 significantly
differs from the behavior of the surrounding modes. In contrast to the physical modes,
where only one or two singular values peak in the vicinity of the detected mode, for 1P
and 3P all singular values show a local maxima. But again, this was not found to be
true for 2P.

In section 3.2 the natural frequency AOA-dependency was investigated. Studies where
natural frequencies have been used for damage detection have shown that especially
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lower-natural frequencies have a very low sensitivity even to significant damage [28].
With respect to SHM for fixed-wings this means that either the AOA needs to be part
of the operational and environmental variability considerations or that lower-natural
modes should be skipped from the set of damage-sensitive features altogether. On the
other hand, the nearly ideal MAC values between the 1-half and 2-half datasets in figure
7 show that the MAC seems to be less sensitive to AOA-changes. This makes MAC and
maybe other mode shape related indicators good damage-sensitive feature candidates for
fixed-wing SHM.

There are important differences between the investigated model and an aircraft wing.
First, the HIRENASD experiment was developed with Mach-number and Reynolds-
number similarity in mind. The structure was designed to withstand the high aerody-
namic loads and to have clearly separated modes [13]. Thus, whereas real large aircraft
have a high modal density in the very low frequency range (up to 16 elastic modes in 2 Hz
according to Lau et al. [29]), the modes of the HIRENASD wing are well spread over a
broad frequency band and are easier to detect. Second, there are fundamental differences
between the dynamic excitation in a wind tunnel and in-flight. The wind tunnel model is
excited by boundary layer turbulence and facility-dependent freestream turbulence. An
aircraft in-flight is excited by boundary layer turbulence and atmospheric turbulence.
Information about the freestream turbulence in ETW was not available. Hence, it was
not possible to separate the freestream contribution from the boundary layer contribu-
tion. No wing surface pressure measurements from a large aircraft in-flight are available
in the open literature to address these aspects.

Despite the described differences, multiple key similarities exist between the investigated
wind tunnel model and a large aircraft wing. The outer shape of the structure is identical,
except for a scaling factor. In both cases the system in question is a cantilever-type
structure. The excitation is comparable, if not identical. Based on these similarities and
the findings in this study there is reasonable ground to presume that a high number
of modal parameters can be extracted from output-only acceleration measurements of a
large aircraft wing and that these parameters can be used as damage-sensitive features
in [.."! J]a SHM system.

4. Conclusions

Modal parameters were successfully and automatically extracted from the HIRENASD
fixed-wing wind tunnel model, which was operated in the transonic flow regime.

Surface pressure measurements revealed the wind-excitation to be non-white, non-station-
ary and moreover to include strong and narrow-banded transonic pressure waves. These
disturbances dynamically interfered with the wing structure and were sometimes identi-
fied as structural system modes by the investigated OMA methods. Further investigation
showed these pressure waves to be partially recognizable from output-only measurements
by their very small damping ratio, the high mode shape complexity and the deviating
singular value behavior when compared to real physical modes.

lremoved: an
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Two different methods have been investigated for OMA: SSI and CFDD. A compari-
son with EMA and FEM data showed that only the SSI-method was able to detect all
out-of-plane bending and torsional modes in the investigated frequency range. Further-
more, only the automatic SSI method was able to reliably detect the narrow-banded
transonic pressure waves. The discussion showed this to be an inherent advantage of
automatic modal parameter identification methods that are based on parametric system
identification methods, like SSI.

The wing model was slowly rotated throughout the measurement period. Natural fre-
quencies were shown to have a dependency on AOA, particularly at lower frequencies,
which was attributed to a structural geometric nonlinearity. Mode shapes, damping ra-
tios and mode shape complexities showed no distinct AOA-dependency. The pressure
waves, on the other hand, were strongly influenced by the AOA and the system behavior
was shown to be nonlinear in several ways.
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