
Topology of Complex Networks:
Models and Analysis

A thesis submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy

by

Corrie Jacobien Carstens
Bachelor of Science, Master of Science

School of Mathematical and Geospatial Sciences
College of Science, Engineering and Health

RMIT University

January 2016

Declaration

I certify that except where due acknowledgement has been made, the work is that of the
author alone; the work has not been submitted previously, in whole or in part, to qualify
for any other academic award; the content of the thesis/project is the result of work which
has been carried out since the official commencement date of the approved research pro-
gram; any editorial work, paid or unpaid, carried out by a third party is acknowledged;
and, ethics procedures and guidelines have been followed.

Corrie Jacobien Carstens

11 January 2016

i

Dedication

To my parents Paul en Afke, who always encourage me, no matter what I do or where I
go. Their optimism and support have allowed me to chase my dreams.

iii

Acknowledgements

I am very grateful to my supervisor Professor Kathy Horadam, who has encouraged and
guided me, and who has provided me with invaluable feedback throughout this project.
Her energy and enthusiasm are an inspiration to me. I would also like to thank the
additional members of my supervising team: Associate Professor Asha Rao for listening
to every milestone talk twice, Dr. Miro Kraetzl for his confidence in my capacity, and
Darren Boulton for his diligent review of my work.

I have been very lucky to meet, gain advice from and work with several inspiring people
throughout this project. In particular I would like to express my gratitude to Assistant
Professor Craig Westerland, Dr. Dallas Warren, Dr. Vanessa Robins, Dr. Stephen Davis,
Professor Lewi Stone, Dr. Giovanni Strona and Dr. Annabell Berger. I would like to
thank the members of RMIT’s Complex Networks Journal Club for many interesting
discussions and the members of our school’s Writing Group for their detailed feedback
and collegial support.

Thanks to my friends and family, near and far, for both distracting and encouraging
me. Thanks to our dog Freda for strictly enforcing outdoor time and the happiness she
brings. Finally I want to thank my dear husband Mike, for encouraging me to undertake
this research, for moving to Melbourne with me and for his continuous support and
unconditional love. Dankjewel lieverd.

I gratefully acknowledge the financial support of RMIT’s School of Graduate Research
and the Australian Department of Defence. I have been lucky to be part of the IDTC
program which provided me with the opportunity to undertake course work, attend
conferences and a supportive nationwide cohort.

v

Summary

There is a large variety of real-world phenomena that can be modelled and analysed as
networks. Part of this variety is reflected in the diversity of network classes that are used
to model these phenomena. However, the differences between network classes are not
always taken into account in their analysis. This thesis carefully addresses how to deal
with distinct classes of networks in two different contexts.

First, the switching model is a well-known model that has been used to randomise
different classes of networks, and is typically referred to as the switching model. We
argue that really we should be talking about a family of switching models. We show
that it is important to distinguish between the switching model with respect to different
classes of networks, because ignoring this distinction has lead to biased sampling. Given
that the most common use of the switching model is as a null-model, it is critical that
it samples without bias. We provide a comprehensive analysis of the switching model
with respect to nine classes of networks and prove under which conditions sampling is
unbiased for each class.

Recently the Curveball algorithm was introduced as a faster approach to network ran-
domisation. We prove that the Curveball algorithm samples without bias; a position
that was previously implied, but unproven. Furthermore, we show that the Curveball
algorithm provides a flexible framework for network randomisation by introducing five
variations with respect to different network classes.

We then compare the switching models and Curveball algorithms to several other random
network models. As a result of our findings, we recommend using the configuration
model for multi-graphs with self-loops, the Curveball algorithm for networks without

vii

multiple edges or without self-loops and the ordered switching model for directed acyclic
networks.

Second, we extend the theory of the popular technique of motif analysis to directed
acyclic networks. Directed acyclic networks are an important class of networks. We
establish experimentally that there is no difference in the motifs detected by existing
motif analysis methods and our customised method. However, we show that there
are differences in the detected anti-motifs. Hence, we recommend taking into ac-
count the acyclic nature of directed acyclic networks when running motif finding ex-
periments.

Network science is a young and active field of research. Most existing network measures
originate in statistical mechanics and focus on statistics of local network properties. Such
statistics have proven very useful. However, they do not capture the complete structure
of a network. In this thesis we present experimental results on two novel network analysis
techniques.

First, at the local level, we show that the neighbourhood of a node is highly distinctive
and has the potential to match unidentified entities across networks. Our motivation
is the identification of individuals across dark social networks hidden in recorded net-
works.

Second, we present results of one of the first studies of the application of persistent
homology to network analysis. This recently introduced technique from topological data
analysis offers a new perspective on networks: it describes the mesoscopic structure of
a network.

Finally, we used persistent homology for a classification problem in pharmaceutical sci-
ence. This is a novel application of persistent homology. Our analysis shows that per-
sistent homology is a promising approach for the classification of the phase behaviour
of lipid formulations.

viii

Contents

Acknowledgments v

Summary vii

List of Publications Arising xiii

1. Introduction 1
1.1. Network science definitions . 5
1.2. Edge set differences and Eulerian paths 10
1.3. Markov chains . 16
1.4. Topology . 20
1.5. Topological data analysis . 22

1.5.1. Simplicial homology . 23
1.5.2. Persistent homology . 27
1.5.3. Common constructions of filtrations 32
1.5.4. Persistence landscapes . 34

2. Switching models 37
2.1. Switching models for simple directed networks 40

2.1.1. Irreducibility . 45
2.1.2. Aperiodicity . 46
2.1.3. Detailed balance equations . 47

2.2. Switching models for different network classes 48
2.2.1. Irreducibility . 52
2.2.2. Aperiodicity . 59
2.2.3. Detailed balance equations . 62

ix

Contents

2.3. MFinder implementation flaw . 71
2.4. The ordered switching model . 76

2.4.1. Irreducibility . 77
2.4.2. Aperiodicity . 81
2.4.3. Detailed balance equations . 82

2.5. Conclusion . 82

3. Run-time of random network models 85
3.1. Alternative Markov chains . 86

3.1.1. Definitions . 87
3.1.2. Mixing times . 91
3.1.3. Run-times . 94
3.1.4. A formula for change in mobility 99

3.2. The configuration model . 101
3.3. Conclusion . 105

4. Curveball algorithms 107
4.1. The Curveball Algorithm . 108

4.1.1. Description of the Curveball algorithm 109
4.1.2. Modifying the Curveball algorithm 113
4.1.3. Numerical results . 116

4.2. Curveball algorithms for directed networks 118
4.3. Curveball algorithms for undirected networks 124
4.4. The run-time of the Curveball algorithm 129
4.5. Conclusion . 131

5. Local network properties 133
5.1. Motifs in directed acyclic networks . 134

5.1.1. Three-node motifs in directed acyclic networks 137
5.1.2. Null-models for motifs in directed acyclic networks 140
5.1.3. Motif experiments in citation networks 142

5.2. Neighbourhood distinctiveness . 145
5.2.1. Influence neighbourhoods . 146
5.2.2. Experiments in communication and citation networks 148

5.3. Conclusion . 150

x

Contents

6. Topological data analysis for networks 151
6.1. Literature review . 152
6.2. Simplicial complexes for relational data 154
6.3. Network homology . 157
6.4. Constructing filtrations from networks 161
6.5. Persistent homology of collaboration networks 163

6.5.1. Collaboration network of network scientists 165
6.5.2. Physics collaboration networks . 175

6.6. Conclusion . 176

7. Topological data analysis of lipid formulations 179
7.1. Context and problem description . 181
7.2. Lipid formulation data set . 183
7.3. Analysing four distinct phases . 185
7.4. A simple classifier . 196
7.5. Hierarchical clustering . 198
7.6. Conclusion . 201

8. Conclusion 203

Appendices 209

A. Data Sets 211
A.1. Astrophysics: collaboration network . 211
A.2. C. Elegans: neural network . 211
A.3. CiteSeer Archive: citation network . 212
A.4. Condensed matter: collaboration network 213
A.5. Enron: email communication network . 213
A.6. High energy physics - theory: collaboration network 214
A.7. High energy physics - theory: citation network 214
A.8. High energy physics - phenomenology: citation network 215
A.9. Network Science: collaboration network 215
A.10.US airport data: transport network . 216
A.11.Zachary’s karate club: social network . 216

xi

Contents

B. Software 219
B.1. Developed . 219

B.1.1. Curveball style algorithms . 219
B.1.2. HomViz: Homology Visualizer . 219
B.1.3. JavaPlex pbc extension . 220
B.1.4. Persistence Landscapes Wrapper 221
B.1.5. Random directed acyclic networks 221
B.1.6. Switching Models . 221

B.2. Used . 222
B.2.1. Curveball algorithm . 222
B.2.2. Gephi . 222
B.2.3. igraph . 222
B.2.4. JavaPlex . 222
B.2.5. MFinder . 223
B.2.6. Persistence Landscape Toolbox 223
B.2.7. VMD . 223

C. State graphs 225
C.1. Regular directed networks on three vertices 227

C.1.1. 1-regular and 2-regular networks on three vertices 227
C.2. Regular directed networks on four vertices 229

C.2.1. 1-regular and 3-regular on four vertices 229
C.2.2. 2-regular on four vertices . 231

C.3. Regular directed graph on five vertices 233
C.3.1. 1-regular and 4-regular on five vertices 233
C.3.2. 2-regular and 3-regular on five vertices 235

C.4. Regular directed networks on six vertices 237
C.4.1. 2-regular and 4-regular networks on six vertices 237
C.4.2. 3-regular networks on six vertices 239

D. Lipid formulations 241

Bibliography 261

xii

List of Publications Arising

1. C. J. Carstens. Proof of uniform sampling of binary matrices with fixed row sums
and column sums for the fast curveball algorithm. Physical Review E, 91:042812,
2015

2. A. Hecker, C. J. Carstens, and K. J. Horadam. Neighbourhood distinctiveness: An
initial study. In Complex Networks VI, volume 597 of Studies in Computational
Intelligence, pages 99–110. Springer International Publishing, 2015

3. C. J. Carstens. A uniform random graph model for directed acyclic networks and
its effect on motif-finding. Journal of Complex Networks, 2:419–430, 2014

4. C. J. Carstens. Motifs in directed acyclic networks. In Signal-Image Technology
Internet-Based Systems (SITIS), 2013 International Conference on, pages 605–
611, 2013

5. J. Jeffers, K. J. Horadam, C. J. Carstens, A. Rao, and S. Boztas. Influence neigh-
bourhoods in CiteSeer: A case study. In Signal-Image Technology Internet-Based
Systems (SITIS), 2013 International Conference on, pages 612–618, 2013

6. C. J. Carstens and K. J. Horadam. Persistent homology of collaboration networks.
Mathematical problems in engineering, 2013. Article ID 815035, 7 pages, 2013

xiii

List of Figures

1.1. Symmetric edge set difference . 11
1.2. Alternating, direction-alternating trails 13
1.3. Illustration of a construction needed in the proof of Lemma 1.2.12 15
1.4. Partitions of a closed alternating direction-alternating trail 16
1.5. Example of a finite Markov chain . 17
1.6. Aperiodicity of irreducible Markov chains 18
1.7. The Köningsberg bridge problem . 20
1.8. Examples of spaces and their Betti numbers 25
1.9. A triangle with labelled simplices . 26
1.10. Illustration of persistent homology . 28
1.11. A filtration of a line and its persistence barcode 29
1.12. The persistence barcode and persistence diagram 30
1.13. A filtration of a simplicial complex and its persistence barcode 31
1.14. Two point clouds. 32
1.15. Vietoris-Rips complex filtration . 34
1.16. Illustration of the persistence landscape 35

2.1. Illustration of the directed switch . 39
2.2. Illustration of a directed switch between two networks 41
2.3. An example of a state graph of the switching model with respect to G3 . 42
2.4. State graphs corresponding to different interpretations of the switching

model . 43
2.5. Example of a reducible state graph of the switching model with respect

to G3 . 46

xv

List of Figures

2.6. Example of a periodic state graph of the switching model with respect to
G3 . 48

2.7. Illustration of the undirected switch . 50
2.8. Examples of graphs for which the switching model with respect to G2 has

reducible Markov chain . 56
2.9. A sequence of switches that replaces a triangle by three self-loops 58
2.10. A sequence of switches that replaces a triangle by three self-loops 59
2.11. Seven configurations of two edges in an undirected network 60
2.12. Three configurations of the edge set difference between undirected graphs

that differ by a switch . 64
2.13. The 17 simple undirected graphs with degree sequence k = (1, 1, 3, 3, 2, 2) 73
2.14. Example of an erroneous state graph corresponding to the implementation

of the switching model found in MFinder 74
2.15. Histograms showing bias in samples of random undirected networks pro-

duced by MFinder . 76
2.16. Examples of the symmetric edge set difference between directed acyclic

networks . 78
2.17. Illustration of different cases discussed in Lemma 2.4.2 79

3.1. Illustration of a condition that guarantees aperiodicity of Markov chains
similar to that of the switching model with respect to directed networks . 88

3.2. The state graphs of four different Markov chains 89
3.3. Comparison of perturbation scores for four Markov chains 94
3.4. Comparison of steps in the switching model to steps in other Markov chains 98
3.5. Illustration of 32 different configurations of 3 × 3 binary matrices 100
3.6. Comparison of the mixing time of the switching model and the Expand

and Contract method . 103

4.1. Illustration of the Curveball algorithm 110
4.2. Example of the difference between the state graph of the Curveball algo-

rithm and the state graph of the switching model 111
4.3. Illustration of a condition for aperiodicity of the Curveball algorithm . . 114
4.4. Example of biased sampling due to removal of no-trade row-pairs 115
4.5. Transition probabilities of the Curveball algorithm without repeated states116

xvi

List of Figures

4.6. Comparison of the perturbation scores of the Curveball algorithm and the
Good-Shuffle algorithm . 118

4.7. Comparison of the perturbation scores of the Simple Curveball algorithm
and the switching model with respect to G3 122

4.8. Illustration of the Curveball algorithm with respect to G8 123
4.9. Illustration of the Simple Undirected Curveball algorithm 125
4.10. Illustration of a trade in the Undirected Simple Curveball algorithm that

corresponds to an undirected switch . 126
4.11. Comparison of perturbation scores of the Simple Undirected Curveball

algorithm and the switching model with respect to G1 128

5.1. Three and four node patterns in directed acyclic networks 137
5.2. Illustration of relation between three node pattern counts and the degree

sequence of a directed acyclic network . 138
5.3. Illustration of the effect of choosing a topological ordering of a directed

acyclic network on the state space of the ordered switching model 141
5.4. Cyclic directed three node patterns . 144
5.5. Ten neighbourhoods in the Enron network 146
5.6. Ten neighbourhoods in the CiteSeer network 147
5.7. Distinctiveness of neighbourhoods within Enron and CiteSeer networks . 149

6.1. Illustration of the difference between the labelled complex of a bipartite
network and the clique complex of the one-mode projection of a bipartite
network . 156

6.2. Zachary’s karate club. 158
6.3. The 2-skeleton and the homological backbone of the clique complex of

Zachary’s karate club . 159
6.4. The nodes involved in 2-dimensional homology classes in the clique com-

plex of Zachary’s karate club . 160
6.5. Illustration of a network with its weights distributed according to Gra-

novetter’s theory of strong and weak ties 164
6.6. Illustration of the final step in the weighted clique rank filtration of the

network science collaboration network . 166
6.7. Plot of the number of connected components throughout the weighted

clique rank filtration of the network science collaboration network 167

xvii

List of Figures

6.8. Illustration of the first homology classes that appear throughout the
weighted clique rank filtration of the network science collaboration network169

6.9. Illustration of three different random networks based on the network sci-
ence collaboration network . 170

6.10. Illustration of the three potential cycles in a weighted 4-clique 172
6.11. Comparison of the 1-dimensional persistence landscape of the networks

science collaboration network and three random networks 174

7.1. Illustration of four different types of phase behaviour 181
7.2. Schematic representation of a surfactant and a micelle 182
7.3. Illustration of two surfactant molecules 183
7.4. Illustration of the point clouds corresponding to the surfactant headgroups

of four systems . 185
7.5. Persistence diagrams of the Vietoris-Rips filtration of point clouds corre-

sponding to the surfactant headgroups of four systems 187
7.6. Heat maps of landscape distances for the surfactant headgroup point clouds190
7.7. Illustration of the point clouds corresponding to the location of water in

four systems . 192
7.8. Persistence diagrams of the Vietoris-Rips filtration of point clouds corre-

sponding to the water in four systems . 193
7.9. Heat maps of landscape distances for the water point clouds 194
7.10. Heat map and dendrogram corresponding to distances based on the per-

sistent homology of surfactant headgroup point clouds 199
7.11. Heat map and dendrogram corresponding to distances based on the per-

sistent homology of water point clouds 200

B.1. Screenshot of HomViz software . 220

C.1. Adjacency matrix and incidence matrix 225
C.2. ΨCB for 1- and 2-regular directed networks (n = 3) 227
C.3. Isomorphism classes of 1- and 2-regular directed networks (n = 3) 228
C.4. ΨCB for 1- and 2-biregular bipartite networks (n = 6) 228
C.5. ΨCB for 1- and 3-regular directed networks (n = 4) 229
C.6. Isomorphism classes of 3-regular directed networks (n = 4) 230
C.7. ΨCB for 1- and 3-biregular bipartite networks (n = 8) 230

xviii

List of Figures

C.8. ΨCB for 2-regular directed networks (n = 4) 231
C.9. Isomorphism classes of 2-regular directed networks (n = 4) 232
C.10.ΨCB for 2-biregular bipartite networks (n = 8) 232
C.11.ΨCB for 1- and 4-regular directed networks (n = 5) 233
C.12.Isomorphism classes of 1-regular directed networks (n = 5) 234
C.13.Isomorphism classes of 2-regular directed networks (n = 5) and 2-biregular

bipartite networks n = 10 . 235
C.14.1-Neighbourhoods in ΨCB for 2- and 3-regular directed networks (n = 5)

and 2- and 3-biregular bipartite networks (n = 10) 236
C.15.2-Neighbourhoods in ΨCB for 2- and 3-regular directed networks (n = 5)

and 2- and 3-biregular bipartite networks (n = 10) 236
C.16.Isomorphism classes of 2-biregular bipartite networks (n = 12) 237
C.17.1-Neighbourhoods in ΨCB for 2- and 4-biregular bipartite networks (n = 12)238
C.18.Isomorphism classes of 3-biregular bipartite networks (n = 12) 239
C.19.1-Neighbourhoods in ΨCB for 3-biregular bipartite networks (n = 12) . . 240

D.1. Visualisation of lipid formulations 1-12 242
D.2. Visualisation of lipid formulations 13-24 243
D.3. Visualisation of lipid formulations 25-36 244
D.4. Visualisation of lipid formulations 37-46 245

xix

List of Tables

1.1. Family of network classes . 7

2.1. Family of network classes . 49
2.2. Properties of the switching model with respect to a family of network classes 51

3.1. Comparison of mixing times of four Markov chains 93

4.1. Comparison of mixing times and run-times of the Curveball algorithm
and Good-Shuffle algorithm . 117

4.2. Comparison of the run-times of two Curveball algorithms to the run-times
of two switching models . 130

5.1. Comparison of three random network models for directed acyclic networks 141
5.2. Results of motif finding experiment in HEP-th network 144
5.3. Results of motif finding experiment in HEP-ph network 145
5.4. Partitioning of the databases by number of recipients (Enron) or citations

(CiteSeer). 148

6.1. Betti numbers of the clique complex of Zachary’s karate club 158
6.2. Properties of four collaboration networks 175
6.3. Results on 2-dimensional homology of three collaboration networks . . . 176

7.1. Sizes of point clouds extracted from lipid formulation data 184
7.2. The accuracy of nine classifiers based on different distance measures . . . 197
7.3. Confusion matrix for classifier based on dsurf 197
7.4. Confusion matrix for classifier based on dwater 198

C.1. Comparison of ΨCB for small k-regular networks 226

xxi

List of Tables

D.1. Details for the lipid formulations studied in Chapter 7 246

xxii

1. Introduction

Networks have become an increasingly popular way to model a wide range of real world
phenomena. For instance, the structure of our brains, the spread of a computer virus
and the effect of a species’ extinction can all be described using the language of networks.
Our brain is made out of interconnected neurons, a computer virus moves on a network
of email addresses and the predator-prey relationships between species reveal a network
of dependencies. There are countless other examples of the relevance of networks to
daily life.

This thesis reviews existing tools and develops new ways to derive meaning from net-
works. In particular, it presents research on three topics related to network science:
random network models, the analysis of local network properties and the application of
tools from topological data analysis in network science.

The interdisciplinary nature of network science results in a large variety of networks.
Some networks have relations that are symmetric, such as those in a contact net-
work. Others are directed, like predator-prey relations. Some systems are modelled
most naturally as weighted networks, for instance the network of air-travel or trade
networks. Dealing with different classes of networks is a central theme throughout this
thesis.

Random network models

Random network models have played a central role in the development of network sci-
ence, and they are important in two key respects. On the one hand, they have helped
understand and predict typical network phenomena, as observed in both random net-

1

1. Introduction

works and real networks. On the other hand, they have helped identify and highlight
structural features of real networks that do not occur in random networks and can
not be explained by randomness. These models have evolved with the field of net-
work science, by incrementally incorporating structural properties observed in real net-
works.

A substantial part of this thesis is dedicated to random network models that fix the
degree sequence of a network and, in particular to their use as null-models. It is very
important for a null-model to sample without bias. However, it has proven difficult to
develop truly unbiased random network models that produce simple networks with fixed
degree sequence.

The switching model is a random network model that has mainly been used in the
motif finding literature and in ecological network studies. However, the definition of
the switching model in the literature is imprecise in two respects: the implementation
of the model remains ambiguous and no distinction is made between the treatment of
different network classes. In several cases, this imprecision has lead to biased sam-
pling.

This thesis addresses both issues by introducing precise definitions for a family of switch-
ing models. We refer to the switching model with respect to G when it is used to ran-
domize any specific class of networks G. We give a detailed discussion of the proper-
ties of the switching model with respect to nine different network classes, and prove
that for some of these classes small adjustments are necessary to ensure unbiased sam-
pling.

The switching model is a Markov chain based approach to network randomisation. A
drawback of this type of model is that it is generally unknown how many steps are
needed to reach the stationary distribution. We analyse the run-time of the switch-
ing model and compare it to the run-time of a range of alternative random network
models. Of particular interest is the comparison with the configuration model, a con-
ceptually different method that is much faster since it constructs a random network
from scratch. We point out, however, that this method introduces features that can be
undesirable.

2

Recently, the Curveball algorithm has been introduced as a fast alternative to the switch-
ing model with respect to directed networks. The Curveball algorithm was shown to
sample without bias for specific examples, but its general behaviour has not been anal-
ysed. Similarly to the switching model, it is important for the Curveball algorithm to
sample without bias, since it too is used as a null-model. We reformulate the Curve-
ball algorithm to reveal its underlying Markov chain, and prove that it indeed samples
without bias. Furthermore we introduce variations on the Curveball algorithm, pro-
viding a more general framework, for the randomisation of additional classes of net-
works.

Local network properties

A common approach to derive meaning from a network is to analyse and summarize
its local properties. For instance, two examples of such local statistics and their global
summary are the node degree and degree sequence, and the local and global clustering
coefficient. Techniques based on local network properties have proven very useful for the
analysis of networks. Network motifs are another example of a popular method for the
analysis of networks based on local properties.

Directed acyclic networks form an important class of networks that appear in many
applications. The best known example of directed acyclic networks is that of citation
networks. Other examples include patent networks, networks of dependencies in software
and of lemmas, axioms and theorems in pure mathematics, as well as biological networks
such as predator-prey networks. The existing definition of a motif does not take into
account the acyclic nature of this class of networks. We extend the theory of motif
finding to apply to directed acyclic networks.

Intuitively it is clear that we can learn a lot about a node by studying all the nodes
that it is related to. Neighbourhood analysis is a natural approach to the study of local
network properties. We are interested in using the neighbourhood of a node to identify
the node itself. Our interest is motivated by identifying persons who wish to remain
unidentified by analysing their relations. For this purpose, we present experimental
results on the distinctiveness of the neighbourhood of a node in different information
networks.

3

1. Introduction

Topological data analysis

The analysis of networks based on local properties is very useful. However, local prop-
erties do not capture the complete structure of a network. We show that persistent
homology, a technique from the field of topological data analysis, is very suited to the
analysis of networks and offers an additional measure of the mesoscopic structure of a
network. We present experimental results on the use of persistent homology as a measure
for weighted networks, in particular we analyse a collection of collaboration networks.
We show that persistent homology brings a novel approach to the analysis of weighted
networks. Furthermore we show that it has the potential to do the same for bipartite
networks and temporal networks.

Finally we discuss a novel application of topological data analysis. We show that persis-
tent homology is a promising approach to the analysis and classification of lipid formu-
lations. Lipid formulations have applications in pharmaceutical science, where they are
used to improve the rate of absorbency of certain drugs. They are currently analysed
and classified manually: a time consuming and error-prone approach that would benefit
from a more automated process of analysis

This thesis is organised as follows. The current chapter introduces terminology and
known results needed throughout the rest of the thesis. It discusses topics in network
science, some theoretical properties of Markov chains and the field of topological data
analysis. Section 1.2 contains original proofs about ‘Eulerian’ properties of the edge set
difference of certain directed graphs.

Chapters 2, 3, and 4 of this thesis are dedicated to random network models. These
chapters mostly contain theoretical results.

Chapter 2 presents our definitions and analysis of the switching model with respect to
nine classes of networks. Furthermore it presents our proofs of unbiased sampling for
the nine (adjusted) versions of the switching model.

Chapter 3 discusses the run-time of the switching model with respect to directed net-
works. We compare the run-time of the switching model to that of several alternative

4

1.1. Network science definitions

Markov chain models, the configuration model and the recently introduced Expand and
Contract method.

Chapter 4 proves that the original Curveball algorithm (with respect to directed net-
works) samples without bias. In addition, we introduce new variations of the Curveball
algorithm for the randomisation of five additional network classes. For the most impor-
tant variations of the Curveball algorithm, we show that sampling is fast and prove that
sampling is unbiased.

In the remaining part of the thesis, Chapters 5, 6 and 7, we present mostly experimental
work.

In Chapter 5 we analyse how the well-known technique of motif detection can be applied
to the class of directed acyclic networks. Furthermore we investigate the distinctiveness
of neighbourhoods within communication and information networks.

In Chapter 6 we present our findings on the application of persistent homology to the
analysis of weighted social networks. We also present a more general survey of the utility
of persistent homology to the analysis of networks.

Chapter 7 presents our work on the analysis and classification of lipid formulations.

Finally, Chapter 8 summarizes the thesis’s contributions to the literature and discusses
interesting directions for further research.

1.1. Network science definitions

Network science borrows a lot of terminology and notation from graph theory. The terms
network and graph are often used interchangeably and describe the same mathematical
object. However, the term network is more often used in applied settings, when describ-
ing a real-world phenomena, whereas the term graph is more often used in theoretical
context. We adhere to this convention within this thesis.

5

1. Introduction

A network is a collection of nodes and links. Nodes correspond to the parts of the system
under study, whereas links correspond to the connections or relations between the parts.
When working with networked data, it becomes apparent that there are some subtle
and some obvious structural differences between them. For instance, the relationships
in a network may have a direction associated with them or be mutual. There may be
weights associated to the relationship or there may be multiple connections between
nodes. We now introduce some of the main classes of networks that we work with in
this thesis.

In graph theory, a network is known as a graph, its nodes as vertices and its links as
edges. In the remainder of this section we will use this more mathematical terminol-
ogy.

Definition 1.1.1. A graph is a pair G = (V,E), where V is a set of vertices and E is a
set of unordered pairs of vertices {u, v}, representing the undirected edges of the graph.
Similarly, a directed graph is a pair G = (V,E), where E is a set of ordered pairs of
vertices (u, v). We say that (u, v) is an edge from u to v and call u the source or tail
of the edge and v the target or head.

All graphs in this thesis have a finite number of vertices, n, and a finite number of edges
m. We will write V = {v1, . . . , vn} for the set of vertices of a graph and E = {e1, . . . em}
for the set of edges of a graph.

Definition 1.1.2. A self-loop is an edge from a vertex to itself: {v, v} or (v, v). A
simple (directed) graph is a (directed) graph that does not contain any self-loops.

Informally, a multigraph is a graph where each pair of vertices may be connected by
more than one edge.

Definition 1.1.3. A multigraph is a triple G = (V,E, J) where V is a set of vertices,
E is a set of edges and J is the incidence map. This map sends each edge e ∈ E to a
two-element subset of V corresponding to the endpoints of e. Two edges e and e′ are
called parallel if J(e) = J(e′). Directed multigraphs are similarly defined.

To summarize, the table below establishes eight network classes that we will be work-

6

1.1. Network science definitions

ing with throughout the thesis. We follow the conventions used in network science.
However, in graph theory, these classes may be known by different terminology as indi-
cated.

Class Network Science Graph Theory Multiple Directed Self loops

G1 Simple graph Graph No No No
G2 Graph Graph/Pseudograph No No Yes
G3 Simple directed graph Digraph No Yes No
G4 Directed graph Digraph/Pseudodigraph No Yes Yes
G5 Multigraph, no self-loops Multigraph Yes No No
G6 Multigraph Pseudograph Yes No Yes
G7 Directed multigraph, no self-loops Multidigraph Yes Yes No
G8 Directed multigraph Pseudodigraph Yes Yes Yes

Table 1.1.: Eight network classes that we will be working with throughout this thesis.

Definition 1.1.4. A walk in a graph G = (V,E) is a sequence of edges e1, . . . , el such
that there are vertices v0, . . . , vl ∈ V with ei = {vi−1, vi} for each i. A closed walk is
a walk with v0 = vl. A trail is a walk with no repeated edges. A trail that starts and
ends at the same vertex is a closed trail. A path is a trail where all vertices vi are
distinct. A closed trail with l ≥ 3 and all vertices distinct (except for v0 = vl) is called
a cycle.

For a directed graph, the definitions of a walk, trail, path, and cycle are the same as
above, ignoring the directions on the edges. The following definitions take edge direction
into account.

Definition 1.1.5. A directed walk in a directed graph G = (V,E) is a sequence of
edges e1, . . . , el such that there are vertices v0, . . . , vl ∈ V with ei = (vi−1, vi) for each
i ∈ {1, . . . , l − 1}. A directed trail is a directed walk with no repeated edges. A
directed path is a directed walk with all vertices distinct and a directed cycle is a
directed trail with v0 = vl and all other vertices distinct.

Definition 1.1.6. A directed acyclic graph is a simple directed graph that does not
contain any directed cycles.

Definition 1.1.7. A topological ordering of a directed graph G = (V,E) is an or-
dering of its vertices V = (v1, . . . , vn) such that for each edge (vi, vj) ∈ E the indices
satisfy i > j.

7

1. Introduction

A directed graph allows a topological ordering if it is directed acyclic [116]. This ordering
is normally not unique. The converse holds as well: a directed graph that allows a
topological ordering is acyclic. Clearly, such a graph can not contain a directed cycle,
since it is impossible for all edges (vi, vj) in a directed cycle to have the property i >

j.

Proposition 1.1.8. A directed graph allows a topological ordering if and only if it is
directed acyclic.

We now introduce some of the terminology that is commonly used to describe graphs
and that will be used throughout this thesis.

Definition 1.1.9. A graph G is connected if for any pair of vertices u, v there is a
walk from u to v. A directed graph G is connected if the underlying graph is, and is
strongly connected if for any pair of vertices there is a directed walk from u to v.

Definition 1.1.10. Let G = (V,E) be a graph, G′ = (V ′, E ′) is a subgraph of G if G′

is a graph and V ′ ⊆ V and E ′ ⊆ E.

Definition 1.1.11. Let G = (V,E) be a graph and let V ′ ⊆ V be a set of vertices of
G. The subgraph induced by V ′ or the induced subgraph on V ′ is the subgraph
with vertices V ′ and edges all edges of G between vertices in V ′.

Instead of representing a graph as a pair of sets, it can also be represented as a ma-
trix.

Definition 1.1.12. Let G = (V,E) be a graph, an edge is adjacent to a vertex v ∈ V
if it is of the form {v, x}. The adjacency matrix A of a graph G is a binary n × n
matrix. For directed graphs Aij equals one if there is an edge from vi to vj and equals
zero otherwise. For undirected graphs Aij = Aji equals one if there is an edge between
i and j and zero otherwise.

Definition 1.1.13. Let G = (V,E) be a graph. Vertices u, v ∈ V are neighbours if
there is an edge connecting them. In directed networks a vertex has both in-neighbours,
vertices connected by incoming edges, and out-neighbours, vertices connected by out-
going edges.

Definition 1.1.14. Let G = (V,E) be a graph and let v ∈ V . The neighbourhood

8

1.1. Network science definitions

of v is the graph induced by the neighbours of v, but excluding v itself, and is denoted
by N(v). This subgraph is sometimes referred to as the open neighbourhood of v. The
closed neighbourhood of v is the graph induced by v and its neighbours. This graph is
sometimes referred to as the ego-network of v. There are analogous definitions for the
in-neighbourhood and out-neighbourhood in the directed case.

An important characteristic of a vertex is the number of edges that are adjacent to
it.

Definition 1.1.15. Let G = (V,E) be a graph and let v ∈ V . The degree of v is
the number of edges adjacent to v. The degree of v is denoted by k(v). The sequence
k(v1), . . . , k(vn) is called the degree sequence of G.

Definition 1.1.16. Let G = (V,E) be a directed graph. The in-degree, kin(v) of a
vertex v ∈ V equals the number of edges of which it is the head, that is the number of
edges of the form (x, v). Similarly, the out-degree, kout(v) of v is the number of edges
(v, x) of which it is the tail. Finally the total degree, k(v), of the v is the sum of its
in-degree and out-degree. The sequences kin(v1), . . . , kin(vn); kout(v1), . . . , kout(vn) and
k(v1) . . . k(vn) are called the in-degree sequence, out-degree sequence and degree
sequence of G respectively.

The degree sequence of a graph is a sequence of integers. Not all sequences of integers
correspond to the degree sequence of a graph.

Definition 1.1.17. A sequence of integers k is called a graphical degree sequence
if there exists a graph G with degree sequence equal to k. The graph G is called a
realization of the degree sequence. Similarly a pair of sequences of integers is called
graphical if there exists a directed graph with those sequences as its in-degree and out-
degree sequence.

We now define a few special classes of graphs.

Definition 1.1.18. The n-cycle, denoted by Cn, is the undirected graph with nodes
v1, . . . , vn and edges {vi, vi+1(mod n)} where i ∈ {1 . . . n}.

Definition 1.1.19. The complete graph on n nodes, Kn, is the undirected graph
where all distinct vertices are adjacent. This graph is also referred to as the n-clique.

9

1. Introduction

It contains n(n−1)/2 edges.

The next two classes of networks that we discuss are both random network. Networks
from this class are defined as the outcome of a stochastic process.

Definition 1.1.20. There are two types of undirected Erdős-Rényi random network
models [39, 40]. The first, G(n,m), produces random networks with n vertices and m

edges. Edges are chosen uniformly at random from the collection of all n(n−1)/2 possible
edges. In the second model, G(n, p), it is not the number of edges m that is fixed,
but the probability p of an edge being present between vertices. This model again
produces random networks with n vertices, but now an edge is placed between each
distinct vertex pair with independent probability p. Directed Erdős-Rényi random
network models are defined analogously, with n(n− 1) potential edges.

1.2. Edge set differences and Eulerian paths

We now introduce the symmetric edge set difference of graphs [21]. We prove that the
edge set difference of two simple directed graphs with equal degree sequences has some
nice ‘Eulerian’ properties [16]. These properties will be needed in Chapter 2. The proofs
of Lemmas 1.2.2, 1.2.11 and 1.2.12 are original work.

Definition 1.2.1. Let G = (V,E) and G′ = (V ′, E ′) be two graphs. The symmetric
edge set difference of G and G′ is defined as E∆E ′ := (E\E ′) ∪ (E ′\E). We write
G∆G′ for the graph with vertices V ∪ V ′ and edge set E∆E ′.

We will be interested in the symmetric edge set of graphs with the same set of vertices.
We may think of G∆G′ as a 2-edge-coloured graph, i.e. a graph where each edge has one
of two colours corresponding to whether the edge is in E\E ′ or in E ′\E. We will refer to
these colours as red and blue as is customary [11] (see Figure 1.1). We will denote the
number of red and blue edges adjacent to v by kred(v) and kblue(v) respectively. From
now on edge-coloured refers to 2-edge-coloured.

We will be interested in the graph G∆G′ of two simple directed networks G and G′

10

1.2. Edge set differences and Eulerian paths

G G∆G′ G′

1

Figure 1.1.: Two graphs G and G′ on the same vertex set, and their symmetric edge set differ-
ence graph G∆G′. Edges from G are coloured red and edges from G′ blue.

with equal in-degree and out-degree sequence. We first observe the following basic
property.

Lemma 1.2.2. Let G = (V,E) and G′ = (V,E ′) be distinct directed networks with
equal degree sequences. Let G∆G′ = (V,E∆E ′). For every vertex v ∈ V the red
and blue in and out degrees are equal in G∆G′. More precisely kinred(v) = kinblue(v) and
koutred(v) = koutblue(v) for all vertices v ∈ V .

Proof. Assume there exists a vertex v ∈ V with kinred(v) 6= kinblue(v), then the in-degree
of v in G is not equal to the in-degree of v in G′ which is a contradiction. The case of
outgoing edges follows similarly.

Corollary 1.2.3. Let G = (V,E) and G′ = (V,E ′) be distinct directed networks with
equal degree sequences. The symmetric edge set difference E∆E ′ has even cardinality.

Proof.
|E∆E ′| =

∑
i

kin(vi) =
∑
i

kinred(vi) +
∑
i

kinblue(vi) = 2
∑
i

kinred(vi).

In the remainder of this section we show that any edge-coloured graph with the property,
kinred(v) = kinblue(v) and koutred(v) = koutblue(v) for all vertices v allows a type of Eulerian
tour.

11

1. Introduction

Definition 1.2.4. An Eulerian trail of a graph G is a trail that visits each edge of
G (exactly once, of course). An Eulerian tour is a closed Eulerian trail. A graph
that contains an Eulerian tour is called Eulerian. There are analoguous definitions for
directed graphs with the additional requirement that the trails are directed trails.

The following theorem about Eulerian graphs is referred to as Euler’s theorem. This
theorem is a basic result in graph theory and can be found in almost every book on the
topic. The theorem as stated below as well as its proof can be found in [62, Theorem
1.3.1].

Theorem 1.2.5. Let G be a connected multigraph without self-loops. Then the following
statements are equivalent: (1) G is Eulerian, (2) each vertex of G has even degree, and
(3) the edge set of G can be partitioned into cycles.

This theorem holds equally well for connected multigraphs since the insertion of self-loops
does not change any of the three properties. Inserted self-loops can be added to a Eule-
rian tour since every vertex has to be visited at least once. A vertex with even degree, still
has even degree after adding a self-loop and each self-loop forms a cycle by itself. There is
a similar theorem for directed graphs [62, Theorem 1.6.1].

Theorem 1.2.6. Let G be a connected directed multigraph without self-loops. Then the
following statements are equivalent: (1) G is directed Eulerian, (2) each vertex of G has
the same in-degree as out-degree, i.e. kin(v) = kout(v) for every v ∈ V , and (3) the edge
set of G can be partitioned into directed cycles.

Again, this theorem holds equally well for directed multigraphs. There is a similar
theorem for edge-coloured graphs. To state this theorem, we first need to introduce the
concept of an alternating Eulerian trail.

Definition 1.2.7. An alternating trail in an edge-coloured graph G = (V,E) is a trail
(e1, . . . , el) where the colour of ei differs from the colour of ei+1 for all i ∈ 1, . . . , l − 1.
An alternating Eulerian trail of an edge-coloured graph G is an alternating trail that
visits every edge exactly once, and an alternating Eulerian tour is a closed alternating
Eulerian trail where e1 and el have different colours.

12

1.2. Edge set differences and Eulerian paths

A more general version of the following theorem was proved in [13, Theorem 2].

Theorem 1.2.8. An edge-coloured simple graph G has an alternating Eulerian tour if
and only if G is connected and kred(v) = kblue(v) for all vertices v.

In the setting that we are interested in, i.e. in that of a simple directed edge-coloured
graph with kinred(v) = kinblue(v) and koutred(v) = koutblue(v) for all vertices v, the type of Eulerian
path defined next is most natural.

Figure 1.2.: (a) An alternating, direction-alternating trail: e1, . . . , e10. (b) A closed alternating,
direction-alternating trail: e1, e2, e3, e4, e5, e6.

Definition 1.2.9. An alternating direction-alternating trail in a directed edge-
coloured graph G = (V,E) is a trail e1, . . . , el where the colour and the direction of ei
differs from the colour and the direction of ei+1 for all i ∈ 1, . . . , l − 1. An alternating
direction-alternating Eulerian tour is a closed alternating direction-alternating trail
that visits all edges of G and that starts and ends with edges of different colour and
direction.

Notice that an alternating direction-alternating trail in an edge-coloured graph traverses
all red edges in one direction and all blue edges in the opposite direction (see Figure
1.2).

Definition 1.2.10. A closed alternating direction-alternating trail e1, . . . , el is minimal
if its only proper closed alternating direction-alternating sub-trail ei, . . . , ei+k, is the trail
itself.

Minimal closed alternating direction-alternating trails have the following property.

13

1. Introduction

Lemma 1.2.11. A minimal closed alternating direction-alternating trail in a directed
edge-coloured graph traverses each vertex at most twice and vertices that are traversed
twice are left and re-entered by edges of the same colour (or equally are left and re-
entered in opposite directions).

Proof. Let C be a closed alternating trail that traverses a vertex v twice, i.e. C = e1,
. . . , ei−1, ei, . . . , ej−1, ej, . . . , el with ei−1, ei, ej−1 and ej all adjacent to v. If ei and
ej−1 have different colours, then C contains two proper alternating subcycles: C ′ = e1,
. . . , ei−1, ej, . . . , el and C ′′ = ei, . . . , ej−1 and hence C is not minimal. If a vertex v is
traversed more than twice, then there always is a sequence of edges in C starting with a
red edge from v and ending with a blue edge to v, and hence by the argument above C is
not minimal. Thus a minimal closed alternating direction-alternating trail can traverse
each vertex at most twice.

We can now state the following lemma about closed alternating direction-alternating
Eulerian trails in edge-coloured graphs, analogous to properties (2) and (3) of Theorem
1.2.5.

Lemma 1.2.12. Let G = (V,E) be a connected edge-coloured simple directed graph.
The following statements are equivalent.

1. For each vertex of G both kinred(v) = kinblue(v) and koutred(v) = koutblue(v).

2. The edge set of G can be partitioned into minimal closed alternating direction-
alternating trails.

Proof. (1)⇒ (2): Define a simple edge-coloured undirected graph Ḡ = (V̄ , Ē) as follows.
Let V ′ = {v ∈ V |kout(v) > 0} and let V ′′ = {v ∈ V |kin(v) > 0}. Let Ḡ be the bipartite
graph with vertex set the disjoint union of V ′ and V ′′ and edges {v′, v′′}, v′ ∈ V ′ and
v′′ ∈ V ′′ if (v′, v′′) ∈ E. Let p : E → Ē be the map that sends e = (vi, vj) to ē = {v′i, v′′j }.
By construction, p is a bijection. Let the edges of Ḡ be coloured using the colours of E
and this bijection. Figure 1.3 is an illustration of this construction.

14

1.2. Edge set differences and Eulerian paths

Figure 1.3.: (a) A simple 2-edge coloured graph G with kinred(v) = kinblue(v) and koutred(v) =
koutblue(v). (b) The bipartite graph Ḡ with kred(v) = kblue(v).

For each vertex v′ ∈ V ′ we find kred(v′) = koutred(v) = koutblue(v) = kblue(v′). Similarly
each vertex v′′ ∈ V ′′ has kred(v′′) = kblue(v′′). Hence, by Theorem 1.2.8 each connected
component of Ḡ contains a closed alternating Eulerian trail. Let C̄ be a closed alternating
trail in Ḡ, using the function p−1 we obtain a closed alternating trail C in G. The trail C̄
alternates between vertices in V ′ and V ′′, which implies that C is direction-alternating
in G, and thus C is an alternating direction-alternating cycle. This implies that the
edge set of G can be partitioned into closed alternating direction-alternating trails. By
induction, we may split these trails to obtain a partition of E into minimal closed
alternating direction-alternating trails.

(2) ⇒ (1): If the edge set of G partitions into closed alternating direction-alternating
cycles, then we can find the in-degrees and out-degrees of each vertex by counting the
traversals in each of these cycles. For each closed alternating direction-alternating trail
we find that a traversal of a vertex v either increases both kinred(v) and kinblue or koutred(v)
and koutblue by one. Hence we find that kinred(v) = kinblue and koutred(v) = koutblue for each vertex
v ∈ V .

Combining Lemmas 1.2.2 and 1.2.12 we obtain the following corollary.

Corollary 1.2.13. The symmetric edge set difference of two simple directed graphs
with equal in-degree and out-degree sequences can be partitioned into minimal closed
alternating direction-alternating trails.

Notice that such a partitioning is not necessarily unique as shown in Figure 1.4.

15

1. Introduction

Figure 1.4.: (a) A closed alternating direction-alternating trail C = (v1, v2, v3, v8, v9, v6, v7,
v8, v5, v2, v4, v6, v1). (b)-(c) Two distinct partitions of C into minimal closed
alternating direction-alternating trails.

1.3. Markov chains

The random network models to be described in Chapter 2 and Chapter 3 correspond
to finite discrete-time Markov chains. In this section we present some well-known basic
results about finite discrete-time Markov chains. For a more in depth treatment of the
subject we refer the reader to [83].

Definition 1.3.1. A discrete stochastic process is a collection of random variables
Xt, indexed by a discrete time variable t, that develop over time according to probabilistic
rules. A stochastic process has the Markov property or memoryless property if
the probability of each state in the sequence only depends on its immediate predecessor,
that is if

P (Xt+1 = x|Xt = xt, . . . , X1 = x1) = P (Xt+1 = x|Xt = xt).

A discrete-time Markov chain is a discrete stochastic process with the Markov prop-
erty. The random variables Xt can take on a set of possible different values. This set is
called the state space of the Markov chain. A Markov chain is called finite if its state
space is.

Definition 1.3.2. Let {Xt} be a finite discrete-time Markov chain. For each pair
of states xi and xj in the state space, the transition probability pij from xi to xj

is the probability of moving to state xj given we are in state xi. That is pij equals
P (Xt+1 = xj|Xt = xi). The Markov property implies that the transition matrix,
P = [pij], defines the Markov chain. The transition matrix is a s× s matrix where s is
the size of the state space.

16

1.3. Markov chains

Figure 1.5 shows a simple example of a Markov chain with only four states in its state
space. The vertices correspond to the possible states and edge labels indicate the tran-
sition probabilities between states. This representation of the Markov chain as a graph
is referred to as the state graph of a Markov chain.

x1 x2 x3

x4

p12 = 0.4

p14 = 0.6

p21 = 0.5

p23 = 0.5

p32 = 0.8

p43 = 1

p33 = 0.2

1Figure 1.5.: The state graph of a finite Markov chain on four states: x1, x2, x3, x4.

The transition matrix can be used to find the limiting behaviour of a Markov chain. For
a chain starting at state xi the probability of being at state xj after k steps is (eiP k)j,
with ei = (0, . . . , 1, . . . , 0) the i-th unit vector. If the limit limN→∞ P

N exists then the
limiting behaviour is described by ei limN→∞ P

N . The transition matrix of the Markov
chain in Figure 1.5 and its limit are

P =

0 0.4 0 0.6

0.5 0 0.5 0
0 0.8 0.2 0
0 0 1 0

 , lim
N→∞

PN =

5/28 5/14 5/14 3/28

5/28 5/14 5/14 3/28

5/28 5/14 5/14 3/28

5/28 5/14 5/14 3/28

 .

This Markov chain thus converges to the distribution (5/28, 5/14, 5/14, 3/28); it is most likely
to end up in state x2 or x3, no matter what the initial state.

Most of the Markov chains that we will discuss, have a state space that is too large to
compute the corresponding transition matrix. Fortunately we can make use of a well-
known theoretical result to derive the stationary distributions of these Markov chains,
without explicitly finding the transition matrix. We now introduce some definitions
needed to state this result, i.e. to state Theorem 1.3.6.

17

1. Introduction

Definition 1.3.3. A Markov chain is irreducible if its state graph is strongly con-
nected.

Definition 1.3.4. A state x in a Markov chain is k-periodic if the greatest common
divisor of the length of walks starting and ending at x equals k. A Markov chain is
k-periodic if every state is.

Definition 1.3.5. A Markov chain is called aperiodic iff all its states are 1-periodic.

Notice that a finite irreducible Markov chain is aperiodic if one of its states is (see Figure
1.6).

Figure 1.6.: Let X be an aperiodic state in an irreducible state graph. There are closed walks
w1, . . . , wn starting and ending at X of length li = |wi| such that gcd(l1, . . . , ln) =
1. For any other state, Y there are walks c1 from Y to X and c2 from X to Y .
Let l = |c1| + |c2| be the sum of their lengths, then gcd(l, l + l1, . . . , l + ln) = 1,
and hence Y is also an aperiodic state.

A proof of the following theorem can be found in [83, Theorem 7.10].

Theorem 1.3.6. A finite irreducible and aperiodic Markov chain converges to a unique
stationary distribution. If there exists a probability distribution π on its state space such
that the detailed balance equations

πipij = πjpji for all i, j, (1.1)

are satisfied, then π is this unique stationary distribution.

18

1.3. Markov chains

In Chapters 2 and 4 we will be interested in Markov chains that converge to the uniform
distribution. Notice that this is the case under the following conditions.

Corollary 1.3.7. A finite irreducible and aperiodic Markov chain converges to the
uniform distribution if the simplified detailed balance equations hold

pij = pji for all i, j. (1.2)

There are finite irreducible aperiodic Markov chains that converge to the uniform dis-
tribution for which the simplified detailed balance equations do not hold. An example
is the Markov chain on three states with transition probabilities p11 = p12 = p22 = p23 =
p31 = p33 = 1/2, and p13 = p21 = p32 = 0.

The mixing time of a Markov chain quantifies the number of steps needed for the chain
to get close to its stationary distribution. We use total variational distance to measure
how close a Markov chain is to its stationary distribution.

Definition 1.3.8. The total variation distance between two discrete probability
distributions p and q on X is given by

dvar(p, q) = 1
2
∑
x∈X
|p(x)− q(x)|

Definition 1.3.9. The mixing time, τ(ε), of a Markov chain with stationary distri-
bution π is defined as follows. For each state xi in the Markov chain, find the minimum
number of steps τi(ε) such that dvar(eiP τi(ε), π) < ε. Then τ(ε) is defined as maxi τi(ε).

The following informal definition of a rapidly mixing Markov chain can be found in [18].
The idea was first introduced in [2].

Definition 1.3.10. A Markov chain is called rapidly mixing if the size of its state
space is exponential in some input data size, whereas the mixing time is bounded by a
polynomial.

19

1. Introduction

1.4. Topology

Topology and networks are closely related. Both the field of topology and graph the-
ory are sometimes said to have originated from the famous ‘bridges of Köningsberg’
paper by Euler in 1736 [42]. The problem that Euler solves in this paper is the fol-
lowing: Köningsberg is a city with a central island, which is connected to other parts
of the city by bridges (see Figure 1.71). The citizens of Köningsberg want to organise
a parade through their city that crosses every bridge exactly once, however they do
not seem to be able to find such a route. Euler proves that this is in fact impossi-
ble.

Figure 1.7.: (a) The city of Köningsberg in 1651 and the corresponding network representation.
(b)-(c) Two different embeddings of the same network.

Euler realised that in order to solve this problem, it is very useful to represent the
problem as what we now know as a multigraph (Definition 1.1.3). He represented land
masses as vertices, and bridges as edges between them. He found that the size of the
land masses, the length of the bridges and the exact location of the bridges were all
irrelevant to the problem. The only thing that did matter, was which pairs of land masses
where connected and by how many bridges, i.e. exactly the information represented in
a multigraph.

1map by Merian-Erben 1652 http:\\www.preussenchronik.de\bild jsp\key=bild kathe2.html

20

1.4. Topology

He proved that a ‘parade’ through the city would only be possible if this multigraph has
either no, or exactly two vertices of odd degree. In the latter case the parade has to
start and end at the vertices of odd degree. The reason for this is that whenever we visit
a landmass during the parade, we have to arrive and leave via different bridges, hence
an even number of bridges is ‘used’ whenever we visit a land mass. These ‘routes’ that
visit every edge in a graph exactly once are now referred to as Eulerian trails, which we
have discussed in detail in Section 1.2.

The crucial point here is that the existence or non-existence of a Eulerian trail only
depends on the connectivity information of the network. That is, it only depends on
the way in which vertices are connected by edges, regardless of the geometry of the
underlying problem. The topology of a network refers exactly to the structural prop-
erties that are inherent to its combinatorial structure. A network is a purely topo-
logical object, since the only information that is stored is this connectivity informa-
tion.

Notice that for some real-world networks, nodes do have a physical location. For in-
stance, the position of neurons in brain networks, and the coordinates of intersections
in traffic networks. Networks where each node has coordinates associated with it are
referred to as spatial networks. Most of the networks analysed in this thesis are not
(considered as) spatial networks. However, in Chapter 7, where we construct net-
works based on coordinates of molecules, the geometry of the data plays an important
role.

For non-spatial networks, it can be misleading to plot networks in the plane. When doing
so, a layout algorithm decides where to position the nodes of the network. However, a
network does not prescribe positions for its nodes, it only contains information about
the edges between them. When visualizing a network, technically we are embedding it
in the plane R2 and hence giving it a geometry. That is, we assign a map e : G→ R2 to
the network G. The geometric information, such as the position of the nodes and the
distance between the nodes, is not intrinsic to the graph, it depends on the choice of the
embedding e.

Topological properties of a network however, are intrinsic. No matter how the network

21

1. Introduction

is drawn, its connectivity remains the same. For instance, the topology of the networks in
Figure 1.7(b) and (c) is equal whereas their geometry is quite different.

1.5. Topological data analysis

Topological data analysis (TDA) is a relatively new field of research. It builds on the
rich theory from algebraic topology to understand and classify data. In this section we
discuss one specific tool from TDA, persistent homology, and how it can be used to
analyse point clouds. A point cloud is data that is represented as a set of points in
Rn.

There are several good reasons to expect that (algebraic) topology may be useful in
the analysis of point clouds. Firstly, topology is the branch of mathematics that deals
with qualitative geometric information; it describes the connectivity of spaces. In data
analysis we are often interested in such qualitative information. For instance, finding the
number of clusters in a data set is a classical problem. Secondly, the notion of distance
between data points is often constructed in some intuitive rather than strictly theoretical
way. It is thus very useful that topological properties are much less sensitive to the choice
of a metric than purely geometrical properties. Thirdly, the chosen coordinates for a
point cloud are often unnatural. Topology measures properties that do not depend on the
choice of coordinates. Finally, summaries are more valuable than individual parameter
choices, and the functorality that is central to algebraic topology allows us to map the
relation between geometric objects to a relation between the objects we use to describe
them [22].

The remainder of this section is organised as follows. We first give the definition of simpli-
cial homology, a homology theory that is combinatorial in nature and hence very suitable
for computations. We then give the definition of persistent homology. Finally we discuss
how point cloud data can be analysed using persistent homology.

22

1.5. Topological data analysis

1.5.1. Simplicial homology

One of the main goals of algebraic topology is constructing algebraic invariants of topo-
logical spaces. That is, associating algebraic structures, such as groups, rings and mod-
ules, to topological spaces in such a way that homeomorphic spaces have the same
algebraic structure associated to them. The homology groups of a topological space are
such invariants. There are several ways to define the homology groups of a topological
space that result in the same groups [50].

In general, it is hard to compute the homology groups of a topological space. In this the-
sis, we only use simplicial homology, which is a variant of homology that is suitable for
computations. Simplicial homology is only defined for topological spaces that have a sim-
plicial structure, that is, it is only defined for simplicial complexes.

Simplicial homology assigns a group Hi(X) to a simplicial complex X for i ∈ N∪{0}. To
compute these groups we do not need to know the topology of a simplicial complex, it is
sufficient to know its combinatorial structure. Therefore, to simplify things, we will only
deal with abstract simplicial complexes. From now on we will use the terms simplicial
complex and abstract simplicial complex interchangeably.

Definition 1.5.1. An abstract simplicial complex is a collection ∆ of finite sets
such that for each σ ∈ ∆ and τ ⊂ σ, the set τ is also in ∆. An element σ ∈ ∆ is called
a simplex. The dimension of a simplex σ is |σ| − 1. The union of all simplices of ∆
is called the vertex set V of ∆. The dimension of a complex is the supremum of the
dimension of its simplices.

A 0-simplex, short for 0-dimensional simplex, is a set of size one. We think of a 0-simplex
as a vertex. A 1-simplex is a set of two vertices, and we think of it as an edge. Similarly
a 2-simplex is a set of three vertices and can be thought of as a triangular surface and a
3-simplex can be thought of as a solid tetrahedron. In this thesis we will only deal with
finite abstract simplicial complexes.

Definition 1.5.2. Let ∆ be a simplicial complex. Its k-skeleton, ∆k, is the simplicial
complex that contains all simplices σ ∈ ∆ of dimension smaller than or equal to k.

23

1. Introduction

Example 1.5.3. A simple undirected graph G = (V,E) is equivalent to a 1-dimensional
simplicial complex ∆ = V ∪ E.

Homology groups Hi(X) are defined with integer coefficients. However, it is possible to
define homology groups Hi(X;G) with coefficients in any group G. In this thesis we
always use G = Z2 and write Hi(X) instead of Hi(X;Z2).

Definition 1.5.4. Let X be an abstract simplicial complex. We define Cp(X) as the
vector space over Z2 with basis the p-simplices of X: {σi}i∈I . Elements in Cp(X)
are called p-chains and are formal linear sums ∑i∈I niσi with ni ∈ Z2. They can
simply be written as ∑j∈J σj with J = {i ∈ I|ni = 1}. We define a boundary map
∂p : Cp(X)→ Cp−1(X) on the basis elements of Cp

∂p(v0, . . . , vp) 7→
p∑
i=0

(v0, . . . , v̂i, . . . , vp)

where the hat indicates removing vertex vi to obtain a face of the simplex. A key
property of the boundary map is that ∂ ◦ ∂ = 0 as derived below.

∂p−1∂p(v0, . . . , vp) =
∑
j<i

∑
i

(v0, . . . , v̂j, . . . , v̂i, . . . , vp) +
∑
j>i

∑
i

(v0, . . . , v̂i, . . . , v̂j, . . . , vp)

= 2
∑
j<i

∑
i

(v0, . . . , v̂j, . . . , v̂i, . . . , vp)

= 0.

In particular, ∂ ◦ ∂ = 0 implies that the image of ∂p+1 is a subset of the kernel of ∂p.
These subsets play such an important role in homology that they are given names; the
cycles Zp(X) = Ker ∂p and the boundaries Bp(X) = Im∂p+1. We just showed that
Bp(X) ⊆ Zp(X) ⊆ Cp(X). The p-th homology group of X is then defined by

Hp(X) = Zp(X)/Bp(X).

By definition ∂ is a linear map, and hence bothBp(X) and Zp(X) are subspaces of Cp(X).
This implies that Hp(X) = Zβp

2 , the integer βp is called the p-th Betti number of X.

The homology groups Hi(X) of a d-dimensional simplicial complex are trivial for i > d,
since Ci(X) = 0 for i > d. Homology is a functor, this means that a map f : X → Y

induces a homomorphism in homology f∗ : H(X)→ H(Y).

24

1.5. Topological data analysis

Figure 1.8.: The zeroth Betti number of a space corresponds to its number of connected com-
ponents. (a) A circle has one connected component and contains one loop, going
around the circle. Hence β0 = 1 and β1 = 1. (b) For two circles there are two
connected components and each circle contains one loop, hence β0 = 2 and β1 = 2.
(c) A figure eight has one connected component and two cycles, thus β0 = 1 and
β1 = 2. (d) A sphere (hollow on the inside), consists of one connected component
and encloses a void, namely the inside of the sphere. There are no non-trivial
loops, since any loop drawn on the surface can be continuously deformed to a
point on the surface of the sphere. Hence β0 = 1, β1 = 0 and β2 = 1. (e) Finally, a
torus has one connected component, two non-trivial loops as indicated in red and
blue and it encloses a void, hence β0 = 1, β1 = 2 and β2 = 1.

It is well known that the zeroth Betti number, β0, corresponds to the number of con-
nected components of a space [50]. Informally, the i-th dimensional Betti number counts
the number of i-dimensional holes in a space. We should think of these holes as the space
enclosed by a i-dimensional sphere Si. The 1-dimensional sphere S1 is a circle, and 1-
dimensional homology classes are often discussed in terms of loops in the space. The
first Betti number, β1 roughly counts the number of loops in a space. The 2-dimensional
sphere, S2, is the space that we often just refer to as the sphere, it encloses a void. The
second Betti number, β2 roughly counts the number of voids in a space. There are higher
dimensional analogues, but in this thesis we focus on low-dimensional homology. Figure
1.8 gives some examples of spaces and their Betti numbers.

There are algorithms available to compute simplicial homology groups. In [86, Chap-
ter 1.§11] an algorithm for computing simplicial homology with integer coefficients is
discussed. Computing simplicial homology with coefficients in a field such as Z2 is

25

1. Introduction

easier. Whether computing simplicial homology with integer coefficients or with field
coefficients, in both cases the linear boundary maps are represented as matrices with
respect to bases which are the p-simplexes of X. Using a reduction algorithm these
matrices are brought into normal form. The homology groups can then be read off these
matrices.

When taking homology with coefficients in a field F, the reduction algorithm corre-
sponds to Gaussian elimination to obtain the reduced row echelon form. Now the
p-th Betti number, βp, equals dim(Ker ∂p) − dim(Im∂p+1). We can find dim(Ker ∂p)
by counting the number of zero-columns in the reduced row echelon form of ∂p and
dim(Im∂p+1) equals the number of non-zero rows of the reduced row echelon form of
∂p+1.

Example 1.5.5. As a simple example we compute the Betti numbers for a triangle
(see Figure 1.9) with coefficients in Z2. The corresponding chain groups and boundary

x

y z

a

b

c

1

Figure 1.9.: A triangle with labelled simplices.

maps are given below.

0 ∂2=0−−−→ Z2〈a, b, c〉
∂1=
(1 1 0

0 1 1
1 0 1

)
−−−−−−−→ Z2〈x, y, z〉

∂0=0−−−→ 0

We use Gaussian elimination to obtain the reduced row echelon form of ∂1.
1 1 0
0 1 1
1 0 1

(x,y,z)

(a,b,c)

=

1 1 0
0 1 1
0 1 1

(x,y,x+z)

(a,b,c)

=

1 0 1
0 1 1
0 0 0

(x+y,y,x+y+z)

(a,b,c)

=

1 0 0
0 1 0
0 0 0

(x+y,y,x+y+z)

(a+c,b+c,c)

.

We thus find

β0(T) = dim(Ker∂0)− dim(Im∂1) = 3− 2 = 1

β1(T) = dim(Ker∂1)− dim(Im∂2) = 1− 0 = 1.

26

1.5. Topological data analysis

1.5.2. Persistent homology

Instead of computing the homology of a single simplicial complex, persistent homology
computes the homology groups for a filtration of a simplicial complex X. The defini-
tions in this and following sections are based on Carlsson’s paper [22] and the book by
Edelsbrunner and Harer [35].

Definition 1.5.6. A filtration {Xi} of a space X is a sequence of spaces, X0, X1, . . . Xn

such that X0 = ∅, Xn = X and Xi−1 is a subspace of Xi for all i. We denote the inclusion
maps between these spaces by ιi : Xi ↪→ Xi+1.

In each dimension i we obtain a sequence of vector spaces Hp(Xi) and homomorphisms
induced by the inclusion maps

0 ι∗−→ Hp(X1) ι∗−→ Hp(X2) ι∗−→ . . .
ι∗−→ Hp(Xn−1) ι∗−→ Hp(Xn).

Notice that for any pair of indices i < j there is an inclusion map ιi,j from Xi to
Xj.

Definition 1.5.7. Let {Xi}ni=0 be a filtration of X. The p-th persistent homology
groups H i,j

p (X) are the images of the homomorphisms induced by the inclusion map,
that is H i,j

p (X) = Im ιi,j∗ , for 0 ≤ i < j ≤ n. The corresponding p-th persistent Betti
numbers are the ranks of these groups, βi,jp = rankH i,j

p (X).

Notice that H i,i
p (X) = Hp(Xi). The persistent homology groups H i,j

p (X) consist of the
classes in Hp(Xi) that are still ‘alive’ i.e., that are nonzero in Xj. An equivalent definition
for the k-th persistent homology groups is H i,j

p = Zp(Xi)/(Bp(Xj) ∩ Zp(Xi)), in other
words, the p-dimensional cycles in Xi that have not become a boundary in the filtration
from Xi to Xj. This is well-defined since both Bp(Xj) and Zp(Xi) (by inclusion) are
subspaces of Cp(Xj).

For a homology class a in Hp(Xi), we say that it is born at i if it is not in H i−1,i
p (X), in

other words, if it is not in the image of Hp(Xi−1). For a class a that is born at i, we say
it dies at j if it merges with an older class in Xj. That is, if ιi,j−1

∗ (a) /∈ H i−1,j−1
p (X) but

ιi,j∗ (a) ∈ H i−1,j
p (X), see Figure 1.10. The rule that we say that the younger class dies

when two classes merge, is called the Elder rule [35].

27

1. Introduction

Figure 1.10.: Each ellipse represents a vector space, the shaded area shows the image of
Hp(Xi−1) under the maps ιi,−∗ . The class a is born at i, since it does not lie
in the image of Hp(Xi−1). The class a dies at j since this is the first time it does
lie in the image of Hp(Xi−1).

A homology class that is born at i and dies at j has persistence j−i. If a class never dies
it is said to persist, and its persistence is infinity. We may associate a birth-death pair,
(i, j) or (i,∞), to each homology class that appears in a filtration. The fundamental
lemma of persistent homology tells us that all information about the persistent homology
groups in a filtration are given by these birth-death pairs. A major advantage is that
these birth-death pairs are much easier to visualize and understand than the collection
of persistent homology groups H i,j

p . One way of representing the birth-death pairs is the
persistence barcode.

Definition 1.5.8. The persistence barcode of a filtration {Xi} is a collection of intervals
(bj, dj) with bj ∈ N, dj ∈ N ∪ {∞}, corresponding to the births and deaths of homology
classes in the persistent homology groups of {Xi}.

Example 1.5.9. Let {Xi} be the filtration illustrated in Figure 1.11(a). This filtration
only has homology in dimension zero. The homology class corresponding to the con-
nected component v1 is born at i = 1 and persists throughout the filtration. At i = 2
a second homology class corresponding to the connected component of v2 is born. This
homology class merges with the the older class v1 at i = 3. Similarly there is a class born
at i = 3 and i = 4, and these die at i = 4 and i = 5 respectively. The corresponding
barcode is shown in Figure 1.11(b). Without the Elder rule, the barcode associated to
this filtration would not be uniquely defined. For instance, the barcode in Figure 1.11(c)
would offer an alternative.

28

1.5. Topological data analysis

Figure 1.11.: (a) A simple filtration of a line. (b) The unique persistence barcode of this
filtration. (c) An alternative barcode that does not obey the Elder rule.

An alternative way of representing birth-death pairs is the persistence diagram.

Definition 1.5.10. The persistence diagram of a filtration {Xi} is a multiset of points
(bi, di) ∈ R̄2, where R̄ = R∪{±∞}. These points correspond to the births and deaths of
homology classes in the persistent homology groups of {Xi}. The multiplicity of (bi, di)
is given by the number of distinct homology classes that are born at bi and die at di. For
technical reasons all points on the diagonal are included with infinite multiplicity. The
persistence diagram is visualised as a collection of points in the plane and the diagonal
(x, x).

Both the barcode and the persistence diagram illustrate the same information: the birth-
death pairs (bi, di) corresponding to the persistent homology groups of a filtration of a
space X.

An advantage of the barcode representation is that if there are multiple classes with
the same birth and death pair, they are represented as bars of equal length, whereas
this results in overlapping points in the persistence diagram. Long bars in the barcode
representation correspond to classes that persist for a long time, which are the most
important classes. In the persistence diagram, important classes are slightly harder to
spot, since they correspond to points with a large vertical distance to the line y =
x.

The barcode representation can become rather cumbersome when there are a lot of

29

1. Introduction

Figure 1.12.: Different visualizations of the collection of intervals {(1,∞), (2, 3), (3, 4.5), (4, 5)}.
(a) In the barcode representation each interval is represented as a bar with x-
coordinates its birth and death. The longer a bar the more important the corre-
sponding topological feature. (b) We obtain the persistence diagram by rotating
each bar by 90 degrees around its starting point and shifting it vertically such that
its y-coordinate corresponds to the birth, the top of each bar then corresponds
to the point (bi, di). (c) The persistence diagram of a collection of intervals dis-
plays each interval as the point (bi, di) in R2. The further the vertical distance
of a point from the line y = x the more important the corresponding topological
feature.

barcodes, since it expands vertically for each additional homology class. An advantage
of the persistence diagram in this case is that it always takes up a fixed amount of space.
Furthermore, the persistence diagram always looks exactly the same for a given set of
birth- and death-pairs, whereas the barcode looks different depending on the order in
which we draw the bars. It is often easier to detect a pattern using the persistence
diagram.

We finish this section by discussing a more complicated persistent homology computa-
tion.

Example 1.5.11. Let {Xi} be the filtration depicted in Figure 1.13. The four vertices
a, b, c and d in X1 correspond to four 0-dimensional homology classes. Only one persists
to the end of the filtration, the others die at X2 where all components are merged into
one. No other 0-dimensional classes appear during the filtration, since there is only one
connected component in all the following simplicial complexes.

30

1.5. Topological data analysis

Figure 1.13.: A filtration of a simplicial complex and its persistent homology intervals repre-
sented as a barcode. Blue bars correspond to 0-dimensional homology classes, red
bars to 1-dimensional homology classes and green bars to 2-dimensional homology
classes.

At X2 a 1-dimensional homology class is born. This class can be represented by the
cycle [a, b] + [a, c] + [b, c]. This cycle dies at X3 where it becomes the boundary of face
A. At X4 another cycle is born which can be represented by [b, c] + [b, d] + [c, d]. It may
look as though there is a second homology class that can be represented by the cycle,
[a, c] + [a, d] + [c, d]. In fact, these cycles respresent the same homology class, since one
can be obtained from the other by adding boundaries of faces. That is, [b, c]+[b, d]+[c, d]
= [a, c] + [a, d] + [c, d] + ∂(A) + ∂(B), where A = [a, b, c] and B = [a, b, d].

Another 1-dimensional homology class is born at X5, it can be represented by [b, d] +
[b, e]+[d, e]. It appears as though a class represented by [b, e]+[e, c]+[c, b] is also born at
X5. However this class is equivalent to the sum of the two previously mentioned classes.
That is, [b, c] + [b, d] + [c, d] + [b, d] + [b, e] + [d, e] + ∂([c, d, e]) = [b, c] + [c, d] + [b, e] +
[d, e] + [c, d] + [d, e] + [e, c] = [b, c] + [b, e] + [e, c].

The homology class represented by [b, d] + [b, e] + [d, e] dies at X6 when it merges with
[b, c] + [b, d] + [c, d] since [b, d] + [b, e] + [d, e] = [b, c] + [b, d] + [c, d] + ∂(C) + ∂(D). In X7

this 1-dimensional homology class dies.

31

1. Introduction

In X7, a 2-dimensional homology class is born, corresponding to the hole inside. In
X8 another 2-dimensional homology class is born, since the inside of X8 is now divided
into two compartements by the triangle [b, c, d]. Both these classes die in X9 where the
tetrahedra [a, b, c, d] and [b, c, d, e] are added to the space.

1.5.3. Common constructions of filtrations

The construction of a filtration depends on the problem at hand. There are two common
ways in which filtrations are obtained: one method constructs a filtration of simplicial
complexes from a point cloud whereas the other method constructs a filtration from a
simplicial complex and a suitable real valued function on the simplicial complex. We
now discuss these methods in more detail.

When constructing a filtration of simplicial complexes from a discrete set of points, the
idea is to recover some of the underlying structure of the point cloud. For example,
we would like to be able to detect that the point cloud in Figure 1.14(a) contains one
loop and that the point cloud in Figure 1.14(b) consists of three connected compo-
nents.

Figure 1.14.: Two point clouds.

The following two constructions are often used to obtain a simplicial complex from a
point cloud that reflects the underlying topological structure: the Cech complex and the
Vietoris Rips complex.

Definition 1.5.12. The Cech complex C(X, ε) of a metric space (X, d) is the simplicial
complex ∆ with vertices X and simplices {xk, . . . , xl} ∈ ∆ if ∩li=kB(xi, ε) 6= ∅, where

32

1.5. Topological data analysis

B(x, ε) is the open ball of radius ε centred at x with respect to the metric d.

The following theorem [22, Theorem 2.4] tells us that the Cech complex is a very good
candidate to find the topology of the space underlying a point cloud.

Theorem 1.5.13. Let M be a compact Riemannian manifold. Then there is a positive
number e such that C(M, ε) is homotopy equivalent to M whenever ε ≤ e. Furthermore,
for every ε ≤ e, there is a finite subset V ⊂ M such that the subcomplex C(V, ε) ⊆
C(M, ε) is also homotopy equivalent to M .

Unfortunately the Cech complex is computationally expensive. The Vietoris-Rips com-
plex does not approximate the underlying space as well, but is much easier to com-
pute.

Definition 1.5.14. The Vietoris-Rips complex V R(X, ε) of a metric space (X, d) is
the simplicial complex with vertices X and simplices σi = {xi1 , . . . , xid} if the pairwise
distance d(xik , xil) is less than or equal to ε for all xik and xil .

Notice that the 1-dimensional subcomplex of the Vietoris-Rips complex defines the whole
complex. We only need to compute the pair-wise distance of each pair of points of the
point cloud to be able to construct the complete simplicial complex. Notice that a 1-
dimensional subcomplex of a simplicial complex is a network.

Both these constructions associate a simplicial complex to a point cloud and the param-
eter ε. Furthermore, whenever ε < ε′ the Cech and Vietoris-Rips complex corresponding
to ε are subcomplexes of the Cech and Vietoris-Rips complex corresponding to ε′ re-
spectively. Thus, for an ascending sequence of values ε1 < ε2 <, . . . , < εn we obtain
filtrations:

∅ ⊂ C(X, ε1) ⊆ C(X, ε2) ⊆ · · · ⊆ C(X, εn)

and
∅ ⊆ V R(X, ε1) ⊆, V R(X, ε2) ⊆ · · · ⊆ V R(X, εn).

Figure 1.15 shows a simple Vietoris-Rips filtration based on this construction.

33

1. Introduction

Figure 1.15.: Vietoris-Rips complex filtration of the point cloud X1, using the Euclidean metric.

1.5.4. Persistence landscapes

Persistent homology gives us qualitative insight into the topology of a space. However
in order to compare or classify spaces, we need to develop some statistical tools for
persistent homology. There are several distance measures to compare persistence bar-
codes and diagrams. The two distance measures that are most commonly used are the
Bottleneck distance and Wasserstein distance [35].

In this thesis we instead use the landscape distance between persistence landscapes
[20, 19]. The reason we use this measure, is that persistence landscapes allow basic
operations like subtraction, addition and calculating the mean. Efforts are being made
to define similar concepts for the persistence diagram [118]. However, the approach via
the persistence landscape appears more straightforward.

Definition 1.5.15. Let B = {(bi, di)} be a collection of birth-death pairs. For each
pair let f(bi,di) be the piecewise linear function f(bi,di) : R→ [0,∞] defined by

f(bi,di)(x) =

0 if x /∈ (b, d)

x− b if x ∈ (b, b+d2)

−x+ d if x ∈ (b+d2 , d)

These piecewise linear functions are used to define the persistence landscape of a collec-

34

1.5. Topological data analysis

tion of birth-death pairs.

Figure 1.16.: (a) A persistence barcode and the corresponding piecewise linear functions for
each birth-death pair. (b)-(d) The corresponding landscape functions λ1, λ2 and
λ3.

Definition 1.5.16. The persistence landscape of a collection of birth-death pairs
{[bi, di]} is a set of functions λk : R → R such that λk(x) is the k-th largest value of
{f(bi,di)(x)} and zero if the k-th largest value does not exist.

In Chapters 6 and 7 we make use of average persistence landscapes and the Lp per-
sistence landscape distance. For their respective definition we refer to [19].

35

2. Switching models

Random network models have played a central role in the development of network sci-
ence. The first thorough study of the topic was by Erdős and Rényi in two theoretical
papers around 1960 [39, 40]. The class of random networks analysed in these papers
is now referred to as Erdős-Rényi random graphs. With great foresight, they already
mention that their random network model may be used as a crude model of real-world
networks:

“In fact, the evolution of graphs may be considered as a rather simplified
model of the evolution of certain real communication-nets (railway, road or
electric network systems, etc.) of a country or some other unit. (Of course, if
one aims at describing such a real situation, one should replace the hypothesis
of equiprobability of all connections by some more realistic hypothesis.)” [40]

There are several reasons why random network models have been a popular area of
research. Firstly, they are an interesting object of study in themselves and provide a
rich theory as established by Erdős and Rényi . Secondly, and perhaps more interestingly
in the context of network science, random networks can be used to model real networks
and provide us with explanations of complex phenomena. Finally, random networks can
be used as a null-model: by comparing real networks to random networks important
properties of real networks may be revealed.

Before we continue, it is about time to give a definition of a random network model.

Definition 2.0.1. A random network model or random graph is a graph sampled
according to a given probability distribution from a collection of graphs. This collection

37

2. Switching models

of graphs is called the graph ensemble.

The simple Erdős-Rényi random network model successfully explains certain phenomena
observed in real-world networks, however, generally speaking it turns out not to be a
very realistic model of real-world networks. Two big discoveries in network science show
how real networks differ from Erdős-Rényi random graphs. Firstly, many real networks
have the small-world property [120] and secondly their distribution of vertex degrees is
scale-free [12]. After these discoveries a lot of research has gone into incorporating these
properties into random graph models [95, 84, 93, 6].

Here, we focus on random network models that incorporate the scale-free property,
because this property has a big impact on the structure of a network. The models that
we discuss in fact fix the degree sequence of random networks. Our main motivation
to study such random network models, is to use them as a null-model while analysing
networked data. For this reason, we are not just interested in a method that can generate
networks with a fixed degree sequence, we require a method that does so in an unbiased
way.

It is hard to generate truly unbiased samples of networks with fixed degree sequences.
Existing random network models that achieve this fall into two categories: the ‘fill
methods’ and methods based on Markov chains. Fill methods construct a network,
starting with just nodes and adding edges one at a time until reaching the desired
in-degree and out-degree distribution [112, 84, 95]. These methods are generally fast.
However they either produce a biased sample or only rarely produce a network that is
not a multigraph [69, 25].

Methods based on Markov chains are known under many different names, such as the
switching model, re-wiring model, swap model and trade model. These methods do not
construct a network, instead they randomize a given network by repeatedly making small
changes. Care must be taken when implementing these models, as it has been shown
that certain versions of these models sample with bias [103, 6, 69, 81, 79, 70]. However,
when correctly implemented, a method known as the switching model has been shown to
sample uniformly [6, 79]. The disadvantage of these methods is that they are generally
much slower than the ‘fill methods’. The speed of the switching algorithm is discussed

38

in more detail in Chapter 3.

x u

y v

x u

y v

1Figure 2.1.: For directed networks, a switch consists of removing two edges (x, y) and (u, v)
and inserting two edges (x, v) and (u, y).

The switching model randomizes a network by repeatedly switching edges. For directed
networks, a switch consists of the removal of two edges, say (x, y) and (u, v) and the
insertion of two new edges (x, v) and (u, y) (see Figure 2.1). This operation changes the
topology of a network, while maintaining the in-degree and out-degree of each node. The
switching model repeatedly switches edges, until a network is ‘sufficiently randomised’,
resulting in a random network with fixed degree sequence. In the remainder of this chap-
ter, all networks are assumed to contain at least two edges.

This simple description of the switching model is similar to the description found in
the literature [78, 82]. The lack of preciseness in this definition causes inconsistencies.
Firstly, ambiguities in this definition lead to different implementations of the model. And
secondly, the switching model has been used for different classes of networks, without
properly addressing fundamental differences between them.

This chapter discusses several Markov chain based methods for randomizing networks
with fixed degree sequence. In Section 2.1 we discuss different interpretations of the
switching model with respect to simple directed networks, and give a precise definition
of the preferred method. In Section 2.2 we present an overview of the family of switching
models for several network classes. In Section 2.3 we discuss a problem in the imple-
mentation of switching models for undirected networks. In Section 2.4 we introduce the
ordered switching model for the class of directed acyclic networks. We finish the chapter
with our conclusion in Section 2.5.

My contributions to the literature in this chapter are the following.

39

2. Switching models

• Introducing a more precise definition for the switching model.

• Compiling an overview of the properties of the switching model with respect to
eight different network classes, and the derivation of the stationary distribution
for some of these classes.

• Adjusting the switching model with respect to certain classes of networks, to ensure
convergence to the uniform distribution.

• Detecting an error in the implementation of the switching model with respect
to undirected networks in MFinder (Appendix B.2.5). MFinder is the software
package that accompanies the seminal paper on network motifs by Milo et al. [82].

• Introducing the ordered switching model for directed acyclic networks, and proving
that it produces unbiased samples. These results are published in [25].

2.1. Switching models for simple directed networks

Throughout this section all networks will be simple directed networks. We discuss the
switching model with respect to these networks in Markov chain terminology (see Section
1.3). Theorem 1.3.6 is used to analyse the convergence properties of the switching model.
Before starting this analysis, we discuss the ambiguity in the current definition of the
switching model, and introduce a more precise definition. We define a directed switch
as follows.

Definition 2.1.1. There exists a directed switch from network Gi = (Vi, Ei) to Gj =
(Vj, Ej) iff Vj = Vi, Ei 6= Ej and there are two edges (x, y) and (u, v) in Ei such that
Ej = (Ei\{(x, y), (u, v)}) ∪ {(x, v), (u, y)}.

The symmetric edge set difference (see Definition 1.2.1) of two networks Gi, Gj that
differ by a directed switch is thus Ei∆Ej = {(x, y), (u, v)} ∪ {(x, v), (u, y)}. Figure 2.2
illustrates the directed switch between two networks, as a diagram of their symmet-

40

2.1. Switching models for simple directed networks

Figure 2.2.: The network on the right is obtained by removing the two edges (x, y) and (u, v)
from the network on the left and inserting the two edges (x, v) and (u, y), in other
words by applying a directed switch. Similarly the network on the left can be
obtained by applying the reversed switch. The diagram in the middle illustrates
this switch by indicating which edges have to be removed from a network (in the
colour of the network itself) and which edges have to be inserted into the network
(in the colour of the other network) to obtain the other network.

ric edge set difference. This type of diagram will be used repeatedly throughout this
chapter.

As discussed in the introduction, the ambiguity in the definition of ‘the’ switching model
leads to two common interpretations [6, 79]. These interpretations correspond to two
different Markov chains defined on the same state space, but that differ in their tran-
sition probabilities. To make this statement concrete, we now analyse in detail a small
example.

Example 2.1.2. Let G1 be a directed network with five vertices V = {1, 2, 3, 4, 5}
and four edges E1 = {(1, 4), (2, 3), (4, 2), (4, 5)} (Figure 2.3 top-left). It has in-degree
sequence kin = (0, 1, 1, 1, 1) and out-degree sequence kout = (1, 1, 0, 2, 0). There are
exactly five simple directed networks with these degree sequences. Figure 2.3 shows
these networks and the directed switches (if any) between them.

In the first interpretation of the switching model, the Markov chain changes state in
every step. If Gi is the current state, the next state is a neighbour of Gi chosen at
random. The transition probability pij from state Gi to Gj is 1/k(Gi), where k(Gi) is
the degree of Gi (Figure 2.4(a)). This Markov chain can be described by the matrix of
transition probabilities P below, and the limiting distribution can be found by taking

41

2. Switching models

Figure 2.3.: There are exactly five simple networks realizing the degree sequences kin =
(0, 1, 1, 1, 1) and kout = (1, 1, 0, 2, 0). Neighbouring realizations differ by a switch,
as indicated by the diagram on the edge.

the limit of PN .

P =

0 1/2 0 1/2 0
1/3 0 1/3 0 1/3

0 1/2 0 0 1/2

1/2 0 0 0 1/2

0 1/3 1/3 1/3 0

, lim

N→∞
PN =

1/6 1/4 1/6 1/6 1/4

1/6 1/4 1/6 1/6 1/4

1/6 1/4 1/6 1/6 1/4

1/6 1/4 1/6 1/6 1/4

1/6 1/4 1/6 1/6 1/4

.

This Markov chain converges to the distribution π = (1/6, 1/4, 1/4, 1/6, 1/6). Thus sampling
using this Markov chain is not uniform: it is more likely to sample networks G2 and G5

than the other networks.

In the second interpretation, the Markov chain contains repeated states. At each step, a
pair of edges of Gi is randomly selected; if switching these edges results in another simple
directed network, then the resulting network is the next state, else Gi is repeated. In this
case the probability of transitioning to a neighbouring state is given by the probability
of selecting the edge pair corresponding to a directed switch. Thus, if Gi and Gj differ
by a directed switch the transition probability equals 1/M where M equals the number of
edge pairs in Gi, i.e. M = m(m−1)/2. The probability of staying at Gi then is (M−k(Gi))/M

(Figure 2.4(b)). This Markov chain does converge to the uniform distribution, as can

42

2.1. Switching models for simple directed networks

Figure 2.4.: (a) The state graph corresponding to the first interpretation of the switching model
in Figure 2.3. (b) The state graph corresponding to the second interpretation of
the switching model. The edge weights correspond to the transition probability
from source to target state. The stationary distribution is displayed on the nodes.

be seen by taking the limit of the transition matrix.

P =

2/3 1/6 0 1/6 0
1/6 1/2 1/6 0 1/6

0 1/6 2/3 0 1/6

1/6 0 0 2/3 1/6

0 1/6 1/6 1/6 1/2

, lim

N→∞
PN = 1

5

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

Since the switching model is often used as a null-model, it is desirable to obtain a uni-
form sample from the network ensemble. In the example above, the Markov Chain
that includes repeated states achieves this, and is the preferred model. The issue of
non-uniform sampling for the switching model without repeated states has been ad-
dressed repeatedly in the literature [6, 79, 107]. When writing code to implement the
switching model, it is important to be aware of this issue. From an algorithmic point
of view, a particularly useful way of describing the difference between the two imple-
mentations is in terms of fixing the performed number of switches (no repeated states)
versus fixing the performed number of attempted switches (repeated states) [79]. The
pseudo-code below shows how little difference there is between these two implementa-
tions.

43

2. Switching models

Switching model excluding repeated states

The number of switches is fixed to be N,

we only increment i when a switch is made.

for(i in 1:N){

edgePair = getRandomEdgePair (G)

if(switchIsAllowed (G, edgePair)){

G = switch (G, edgePair)

i = i+1

}

}

Switching model including repeated states

The number of attempted switches is fixed

to be N, we increment i regardless of

whether a switch is made or not.

for(i in 1:N){

edgePair = getRandomEdgePair (G)

if(switchIsAllowed (G, edgePair)){

G = switch (G, edgePair)

}

i = i+1

}

From now on, when discussing switching models for simple directed networks, we will
mean the switching model that includes repeated states. To avoid any ambiguity, we
define the switching model as follows.

Definition 2.1.3. Let G be a simple directed network. The switching model for G
with respect to simple directed networks is defined by a Markov chain starting at
G. The states of this Markov chain are all the simple directed networks that have the
same degree sequences as G. If there exists a directed switch between two states Gi and
Gj then the transition probability pij is the probability of selecting the corresponding
unique edge pair. There are M = m(m−1)/2 edge pairs to choose from, with m the total

44

2.1. Switching models for simple directed networks

number of edges of G. The resulting probabilities are

pij =

1
M

if there exists a directed switch between Gi and Gj

1− k(Gi)
M

if j = i

0 otherwise

.

Example 2.1.2 shows that this Markov chain converges to the uniform distribution for a
particular choice of G. A question that arises naturally is whether this switching model
converges to the uniform distribution for any simple directed network? The remainder
of this section addresses this question.

We show that the switching model as defined here almost always has the uniform dis-
tribution as its stationary distribution. This can be proven using Theorem 1.3.6, i.e. by
checking that this finite Markov chain is irreducible, aperiodic and satisfies the simplified
detailed balance equations.

2.1.1. Irreducibility

Irreducibility of a Markov chain is equivalent to the corresponding state graph being
strongly connected (Definition 1.3.3). Figure 2.5 shows the most basic example of a
network for which the switching model with respect to simple directed networks has a
reducible Markov chain. The two realizations of the degree sequences kin = (1, 1, 1) and
kout = (1, 1, 1) contain no edge pair that is allowed to be switched, since switching any
edge pair produces a self loop. The probability of staying in each state equals 1 and the
corresponding state graph is disconnected.

In [17] graphical degree sequences for which the Markov chain is irreducible are de-
fined as arc-swap sequences. An algorithm is given to find whether a given degree
sequence is an arc-swap sequence or not. Furthermore, an additional switch may be
introduced to obtain a irreducible Markov chain. This will be discussed in detail in
Section 2.2.1.

45

2. Switching models

1

2 3

G1

1

2 3

G2

p11 = 1 p22 = 1

1Figure 2.5.: The two simple directed networks that realize kin = (1, 1, 1) and kout = (1, 1, 1).
Each network contains three pairs of edges, but no pair can be switched, since
a switch would introduce a self-loop. The Markov chain corresponding to these
sequences is reducible: its state graph is disconnected. Thus the switching model
does not sample uniformly at random.

2.1.2. Aperiodicity

The class of simple directed networks for which the switching model has a periodic
Markov chain is pathological. A Markov chain is trivially aperiodic if states have a
non-zero probability to be repeated. This is the case for states in the switching model
of most simple directed networks G. It is enough to require that G contains at least one
vertex with total degree at least two. Lemma 2.1.4 below shows that this condition is
necessary and sufficient.

Lemma 2.1.4. Let G be a simple directed network. The Markov chain of the switching
model for G with respect to simple directed networks is aperiodic if and only if G contains
a vertex v with total degree at least two.

Proof. We first show that the Markov chain is aperiodic when G contains a vertex v of
total degree at least two. We show that the probability pii of repeating any state Gi is
larger than zero. This is the probability of selecting an edge pair in Gi such that the
network resulting from the corresponding directed switch, Gj, either equals Gi or is not
simple. Since all Gi have the same degree sequence as G, v has degree at least two in
Gi. If v has an incoming and an outgoing edge then switching this edge pair results in a
network that contains a self-loop and thus is not simple. Otherwise, if v has either two
incoming or two outgoing edges, the corresponding directed switches result in Gi.

46

2.1. Switching models for simple directed networks

To prove the reverse claim, we use proof by contrapositive: we show that if G does not
contain a vertex v with total degree at least two, then the Markov chain is periodic. If
G does not contain a vertex v with total degree at least two then G is a disjoint union
of single vertices and single edges. We ignore the single vertices since the switching
model leaves these invariant. Thus the interesting part of G is a collection of single
edges {(s1, t1), (s2, t2), . . . , (sm, tm)}. We can represent G as the ordered tuple T =
(t1, t2, . . . , tm). The set of simple directed networks with the same degree sequences
corresponds to all permutations of T . For instance, if (ti1 , ti2 , . . . , tim) is a permutation
of T , then the network with edge set {(s1, ti1), (s2, ti2), . . . , (sm, tim)} is simple directed
and has the same degree sequence as G.

A directed switch corresponds to a transposition of two elements in (t1, t2, . . . , tm). The
identity is an even permutation and can thus only be obtained as the composition of an
even number of transpositions.

This precisely means that any sequence of networks in the Markov chain starting and
ending at a network Gi has to be of even length. The chain is periodic with period
two.

An example of a simple directed network with vertex degree at most one and thus with
2-periodic state graph is shown in Figure 2.6.

2.1.3. Detailed balance equations

The transition probabilities of the switching model with respect to simple directed net-
works always satisfy the simplified detailed balance equations. This can easily be seen
from the symmetry in the definition: if there exists a directed switch between networks
Gi and Gj then pij = 1/M = pji. In fact the construction of this chain corresponds exactly
to the Metropolis chain for uniform sampling [83, 48].

To summarize: the Markov chain corresponding to the switching method with respect to
simple directed networks always satisfies the simplified detailed balance equations and is

47

2. Switching models

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

1

Figure 2.6.: The state graph for simple directed networks with degree sequences kin =
(0, 0, 0, 1, 1, 1) and kout = (1, 1, 1, 0, 0, 0) is bipartite. The corresponding Markov
chain is periodic with period two.

irreducible and aperiodic for most networks. In practice, all networks of interest result
in an aperiodic, irreducible Markov chain.

The next section discusses the convergence properties of switching models with respect
to different network classes. It also discusses a variation of the switching model for simple
directed networks that is irreducible for all simple directed networks.

2.2. Switching models for different network classes

In this section we describe the switching model with respect to the network classes in
Table 2.1. The switching model discussed in the previous section randomized networks
from class G3. We first describe the switching model with respect to the other three
classes of directed networks (G4, G7, G8) in Table 2.1. We then describe the switching
model with respect to the four classes of undirected networks (G1,G2,G5,G6). Finally we
discuss the convergence properties of the Markov chains corresponding to the switching
model with respect to these classes.

48

2.2. Switching models for different network classes

Class Name Multiple Directed Self loops

G1 Simple undirected No No No
G2 Undirected No No Yes
G3 Simple directed No Yes No
G4 Directed No Yes Yes
G5 Undirected multigraphs without self loops Yes No No
G6 Undirected multigraphs Yes No Yes
G7 Directed multigraphs without self loops Yes Yes No
G8 Directed multigraphs Yes Yes Yes

Table 2.1.: Some basic classes of networks on which switching models can be defined. For each
class of networks it needs to be determined separately whether or not the switching
method converges to sampling from the uniform distribution.

Definition 2.1.3 can be generalized to describe switching models for all directed network
classes in Table 2.1. In a sense, the switching model simplifies for these classes, since
more of the edge pairs are allowed to be switched: that is when switched the resulting
network is more likely to be of the same class since self-loops or multiple edges are now
allowed.

Definition 2.2.1. Let G be a network in Gk where k equals 3, 4, 7 or 8. The switching
model for G with respect to Gk is defined by a Markov chain starting at G. The states
of this Markov chain are all the networks in Gk that have the same degree sequences as
G. If there exists a directed switch between Gi and Gj then the transition probability
pij is the probability of selecting an edge pair corresponding to this switch.

To formulate the switching model with respect to undirected networks we first define an
undirected switch.

Definition 2.2.2. There exists a switch from the undirected network Gi = (Vi, Ei) to
the undirected network Gj = (Vj, Ej) iff Vj = Vi, Ei 6= Ej and there are two edges {x, y}
and {u, v} in Ei such that either Ej = (Ei\{{x, y}, {u, v}}) ∪ {{x, v}, {u, y}} (switch
1) or Ej = (Ei\{{x, y}, {u, v}}) ∪ {{x, u}, {y, v}} (switch 2), see Figure 2.7.

Notice that if network Gi and Gj differ by switch 1, then x 6= u and y 6= v, since Ei 6= Ej.

49

2. Switching models

x

y v

u x

y v

ux

y v

u

switch 1 switch 2

Figure 2.7.: For undirected networks, there are two possible switches for each pair of edges
{x, y} and {u, v}.

Similarly if Gi and Gj differ by switch 2 then x 6= v and y 6= u.

In a sense, this definition of a switch is not precise. We could restrict to switch 1 only ,
since switch 2 is just switch 1 where one edge is labelled in reverse order. However, the
reason that we do mention both switches is that it is important to realise that selecting
an edge pair does not correspond to selecting a switch, there are two potential switches
for each pair of edges. This is important for two reasons. Firstly, when implementing
the switching algorithm for undirected networks, it is most likely that edges are stored
with vertices in fixed order. In other words whenever we select the undirected edge
{x, y} = {y, x} we will get the edge as the same ordered pair of vertices. Thus, if only
switch 1 is implemented, we only ever move by switch 1 and never by switch 2. This
results in biased sampling, as discussed in Section 2.3. In fact, the implementation of the
switching model for undirected networks in MFinder B.2.5 that was used in the famous
motif paper [82] was implemented this way. Thus, results obtained prior to its recent
correction1, can not be relied on. Secondly, in order to find the transition probabilities
for the Markov chain, we need to take into account that switch 1 and switch 2 may
result in different networks.

We now define switching models with respect to the undirected network classes in Table
2.1 (G1,G2,G5,G6).

Definition 2.2.3. Let G be a network from a specific class G ∈ {G1,G2,G5,G6} of
undirected networks. The switching model for G with respect to G is defined by a

1MFinder was updated on 28/05/2015 and can be downloaded from
http://wws.weizmann.ac.il/mcb/UriAlon/download/network-motif-software.

50

2.2. Switching models for different network classes

Markov chain starting at G. The states of this Markov chain are all the networks that
have the same degree sequence as G. If Gi, Gj ∈ G and there exists a switch between
Gi and Gj then the transition probability pij is the probability of selecting an edge pair
and picking switch 1 or switch 2 (with equal probability), corresponding to this switch.

Now that we have precise definitions for the switching model with respect to the classes
in Table 2.1, we want to know if and under which conditions these switching mod-
els sample uniformly. As in Section 2.1, we proceed by finding the conditions un-
der which the corresponding Markov chains are irreducible, aperiodic and satisfy the
simplified detailed balance equations. Table 2.2 summarizes the results of this Sec-
tion.

Class Irreducible Aperiodic pij = pji Uniform Adjusted uniform version

G1 Yes [117, 38] Yes Yes Yes -
G2 No Yes No4 No No
G3 No3 [103, 17] Yes1 Yes No Yes
G4 Yes [110, 103, 17] Yes2 Yes Yes -
G5 Yes [37, 49] Yes No4 No Yes
G6 Yes [37] Yes No4 No Yes
G7 No3 Yes1 No4 No Yes
G8 Yes Yes2 No4 No Yes

Table 2.2.: Properties of the Markov chains corresponding to switching methods with respect
to the classes of networks defined in Table 2.1. 1If the network contains at least
one vertex with total degree two or more. 2If the network contains at least one
vertex with in-degree two or more or out-degree two or more. 3The introduction
of an additional switch will result in an irreducible Markov chain. 4Acceptance
probabilities can be introduced to ensure the detailed balance equations hold.

Some of the results in Table 2.2 can be found in the literature. For classes G1,G4,G5

and G6 it has been shown previously that the Markov chain is irreducible. We discuss
these results in more detail below. We have already discussed the properties of the
switching model with respect to class G3 in Section 2.1. Finally we will show that
the Markov chains for the switching model with respect to G2 and G7 are not always
irreducible and prove that the Markov chain of the switching model with respect to G8

51

2. Switching models

is.

We have already seen in Lemma 2.1.4 that the Markov chain for the switching model
with respect to G3 is aperiodic for practically all simple directed networks. Below we
prove aperiodicity of the Markov chain corresponding to the switching model for any
undirected network with respect to any of the classes G1,G2,G5 and G6. We also prove
aperiodicity for the remaining directed classes of networks under very mild conditions
on G.

Finally, we derive the transition probabilities and detailed balance equations for the
classes in Table 2.2. In Section 2.1 we already showed that the switching model with
respect to G3 satisfies the simplified detailed balance equations. We now show that the
same holds for the switching models with respect to classes G1 and G4. However, the
switching models with respect to classes G2,G5,G6,G7 and G8 do not satisfy the simplified
detailed balance conditions. For these classes, we derive the stationary distributions
of the corresponding switching models, and show that these are not quite uniform.
We then introduce small modifications to these switching models to ensure uniform
sampling.

2.2.1. Irreducibility

Irreducibility of a Markov chain is equivalent to the corresponding state graph Ψ being
strongly connected (Definition 1.3.3). Since both the directed and undirected switch are
symmetric moves, it is enough to show that Ψ is connected. This is often the hardest
property to prove in demonstrating that the chain has a stationary distribution. In fact,
as can be seen from Table 2.2, it does not always hold.

The following two statements are equivalent:

1. The state graph corresponding to the switching method for a graph G = (V,E) ∈
Gi with respect to class Gi is connected.

52

2.2. Switching models for different network classes

2. For any two graphs G′ = (V,E ′), and G′′ = (V,E ′′) with degree sequence(s) equal
to those of G, there exists a sequence of graphs G′ = G0, . . . , Gk = G′′ with Gj ∈ Gi
for every j and |Ej∆Ej+1| = 4.

The requirements that each Gj has degree sequence equal to G, is a graph of class Gi
and that |Ej∆Ej+1| = 4, together imply that there exists a switch between Gj and Gj+1

with respect to Gi.

We first discuss class G8 since in a sense this is the simplest case for the directed network
classes. Afterwards we will discuss known results from the literature and finally we
investigate the situation for classes G2 and G7.

Lemma 2.2.4. Let G = (V,E), G′ = (V,E ′) ∈ G8 be distinct graphs with equal in-
degree and out-degree sequences. There exists a sequence of graphs G = G0, . . . , Gk = G′

such that Gi ∈ G8 and |Ei∆Ei+1| = 4 for all i ∈ (0, . . . k − 1).

Proof. The edge set difference E∆E ′ has even cardinality: |E∆E ′| = 2κ (Corollary
1.2.3). We prove the lemma by induction on κ. Let κ > 2 and let (v1, v2) ∈ E\E ′, then
there exist edges (v1, v3) and (v4, v2) in E\E ′ with v3 6= v2 and v4 6= v1. Let G∗ be the
graph with vertices V and edges E∗ = (E ′\{(v1, v3), (v4, v2)}) ∪ {(v1, v2), (v4, v3)} then
G∗ ∈ G8, |E∗∆E ′| = 4 and |E∗∆E| ≤ 2κ− 2.

For directed network classes different from G8 the proof of Lemma 2.2.4 no longer works:
there is no guarantee that G∗ is a graph from the same class. In other words, the
switch from G′ to G∗ might not be allowed, e.g. if it introduces multiple edges or
self-loops.

The proof of Lemma 2.2.4 holds equally well for G6, undirected multigraphs that may
include self-loops. Again, regardless of the switch, the resulting graph will be a member
of G6. For the other classes of networks in Table 2.2 the question is more complicated
to answer.

Statements analogous to Lemma 2.2.4 with respect to classes G1,G3,G4,G5,G6 have

53

2. Switching models

previously been discussed in the literature. In 1981, both Taylor [117, Theorem 2.1]
and Eggleton and Holton [38, Theorem 5] showed that for any two finite simple undi-
rected networks G and H with equal degree sequence, there is a sequence of switches
from G to H (i.e. the Markov chain for G1 is irreducible). Hakimi [49], and Eggle-
ton and Holton [37] had previously proven this result with respect to classes G5 and
G6.

In 1963 Ryser [110, Theorem 3.1] proved that for any pair of binary matrices, A and
B, with equal row sums and column sums, there is a sequence of binary matrices A =
M1, . . . ,Mk = B such that consecutive pair of matrices differs in exactly one switch
(interchange). This result implies that the Markov chain for the switching model with
respect to G4 is irreducible: directed networks with fixed degree sequences have binary
adjacency matrices with equal row sums and column sums and a directed switch in a
network corresponds to a switch in its adjacency matrix. Rao et al. [103] later gave
an alternative proof. Furthermore they showed that for the class of simple directed
networks (i.e. G3), the Markov chain of the switching model is not always irreducible.
This is also shown in [17] where the class of networks for which the Markov chain is
reducible is classified. The simplest example is the directed 3-cycle, as shown in Figure
2.5.

The Markov chain corresponding to the switching model with respect to class G7 is not
always irreducible. The same issue arises as for G3, it is not always possible to reverse
the direction of a directed 3-cycle. Again the simplest example is the graph consisting
of just a directed 3-cycle as shown in Figure 2.5.

The switching models with respect to classes G3 and G7 may be altered to include tri-
angle reorientations [17, 3-cycle reorientation], [103, hexagonal move], [108, triangle
swap].

Definition 2.2.5. There exists a triangle reorientation from network Gi = (Vi, Ej)
to Gj = (Vj, Ej) iff Vj = Vi, Ei 6= Ej and there are three edges (x, y), (y, z) and (z, x) in
Ei such that Ej = (Ei\{(x, y), (y, z), (z, x)}) ∪ {(x, z), (z, y), (y, x)}.

If Gi = (V,Ei) and Gj = (V,Ej) are distinct directed networks with equal degree

54

2.2. Switching models for different network classes

sequence, then they either differ by a directed switch or they differ by a triangle move
or they differ by more than six edges. That is, Gi and Gj can not differ by a directed
switch and a triangle reorientation at the same time. Hence, the definition of the triangle
enriched switching model below is well-defined.

Definition 2.2.6. Let G be a network in Gk where k equals 3 or 7. The triangle
enriched switching model for G with respect to Gk is defined by a Markov chain
starting at G. The states of this Markov chain are all the networks in Gk that have the
same degree sequences as G. If there exists a directed switch between Gi and Gj then
the transition probability pij is the probability of selecting an edge pair corresponding
to this switch. If there exists a triangle reorientation between Gi and Gj then the
transition probability pij is the probability of selecting any one of the three edge pairs
corresponding to the triangle reorientation.

The Markov chain of the triangle enriched switching model with respect to G3 is irre-
ducible [16, Lemma 3.4]. The proof of this Lemma can be extended to apply to the
easier case with respect to G7.

The triangle enriched switching model is not just a theoretical construction. It can
be implemented as follows for networks in G3 or G7. If Gi = (V,Ei) is the current
state of the Markov chain, then we may obtain the next state in the chain as follows.
Randomly select two edges (x, y) and (u, v) from Ei. If either x = u or y = v do
nothing (i.e. repeat the current state). If y = u and (v, x) ∈ Ei, reorient the triangle
(x, y), (y, v), (v, x) provided that the resulting graph is valid (i.e. it does not contain
multiple edges if switching w.r.t. G3)). Similarly if x = v and (y, u) ∈ Ei, attempt to
reorient the triangle (x, y), (y, u), (u, x). Otherwise, all four vertices are distinct and we
attempt the regular directed switch. Notice that this works since a triangle reorientation
is uniquely defined by two edges.

The Markov chain corresponding to the switching model with respect to class G2 is not
always irreducible. Below we list a few networks for which this Markov chain is reducible.
We are currently not aware of conditions on G ∈ G2 that would ensure irreducibility of
this Markov chain.

Example 2.2.7. The Markov chain of the switching method for the n-cycle Cn (Def-

55

2. Switching models

inition 1.1.18) with respect to G2 is reducible. The degree sequence of Cn equals
k = (2, . . . , 2). A different graph realization of this degree sequence is the a graph
with a self loop at each vertex. For this graph no edge pair is allowed to be switched
since this would introduce a multiple edge. Indeed, this Markov chain is reducible (see
Figure 2.8(a)).

Figure 2.8.: Examples of graphs for which the switching model with respect to G2 has reducible
Markov chain. The networks on the left in (a)-(c) do not contain any edge pairs
that can be switched without creating multiple edges. However there is at least one
different graph realization of the same degree sequence as depicted on the right.
(a) Two graph realizations of the degree sequence k = (2, 2, 2, 2, 2): a network with
five vertices with self-loops and the 5-cycle C5. (b) Two graph realizations of the
degree sequence k = (4, 4, 4, 4, 4): the 5-clique K5 and the network where the red
triangle has been removed and three self-loops have been inserted. (c) Two graph
realizations of the degree sequence k = (6, 4, 4, 4, 6). (d) Two graph realizations of
the degree sequence k = (1, 1, 8, 4, 4, 4, 8, 1, 1). The only switches in the network
on the left that do not introduce multiple edges are between edges adjacent to
vertices of degree 1. Such switches result in isomorphic networks but never in the
network on the right.

Example 2.2.8. The Markov chain of the switching method for the n-clique Kn (Defi-
nition 1.1.19) with n > 2, with respect to G2 is reducible. None of the edge pairs of Kn

are allowed to be switched, since this would introduce a multiple edge. However, there
exist other graph realizations of the same degree sequence in G2. Indeed, the network
where one triangle of Kn is removed and three self-loops on the corresponding vertices
are added, is such a network (see Figure 2.8(b)).

Example 2.2.9. Let G be a network in G2 on n > 3 vertices with an edge between each
pair of vertices. In other words Kn is a subgraph of G. Furthermore, let at least one
and at most n− 3 of these vertices have a self-loop. The Markov chain corresponding to
the switching model for G with respect to G2 is reducible. No edge pair of G is allowed

56

2.2. Switching models for different network classes

to be switched, as this would introduce multiple edges. However, there is at least one
other network in G2 with the same degree sequence. Indeed, since there are at least
three vertices in G without self-loops, a network that differs from G by replacing the
connections between three such vertices by three self-loops, is such a network (see Figure
2.8(c)).

Example 2.2.10. Let G be a network in G2 with n + n′ vertices V ∪ W where the
vertices V form an n-clique. Let at least one and at most n − 3 of these vertices have
a self-loop. Let each vertex w ∈ W have degree one and be connected to some vertex
in V that has a self-loop. The Markov chain for the switching model of G with respect
to G2 is reducible. The only edge pairs in G that can be switched without introducing
multiple edges are of the form {vi, wj}. Such switches always result in an isomorphic
network. However, there exists at least one other realization of the degree sequence of
G that is not isomorphic to G. A network that differs from G by replacing a triangle in
the n-clique by three self-loops is such a network (see Figure 2.8(d)).

One can attempt to define a ‘triangle enriched switching method’ with respect to G2.
The additional triangle move would replace a triangle with three self-loops. However,
the reverse move, from three self-loops to a triangle, is not uniquely defined by two
edges. Selecting a third loop to attempt the reverse move will cause an asymmetry for
the detailed balance equations.

It is reasonable to expect that nearly all undirected networks obtained from real world
data will have irreducible Markov chains. In each of the Examples 2.2.7, 2.2.8, 2.2.9
and 2.2.10 the reducibility of the Markov chain arises from the fact that no sequence of
switches can be found that replaces a triangle by three self-loops, e.g. any such sequence
of switches would introduce a multiple edge at a certain point. Below we show that this
problem is resolved when a graph contains just one additional edge with one of two basic
properties.

Example 2.2.11. Let G = (V,E) ∈ G2 be a graph that contains the triangle {v1, v2},
{v2, v3}, {v3, v1} such that G′ = (V,E ′), the graph where this triangle has been replaced
by three self-loops

E ′ = (E\{{v1, v2}, {v2, v3}, {v3, v1}}) ∪ {{v1, v1}, {v2, v2}, {v3, v3}},

57

2. Switching models

is also in G2.

First, if G contains a vertex vi that is connected to at least one and at most two of the
vertices v1, v2 and v3, then there is a sequence of switches from G to G′. To see this:
Assume that vi is connected to v1 but not to v3. The following sequence of switches
results in G′ (Figure 2.9).

{vi, v1}{v1, v3} → {v1, v1}{v3, vi}

{v1, v2}{v2, v3} → {v2, v2}{v1, v3}

{v1, v3}{v3, vi} → {v3, v3}{v1, vi}

v1

v2 v3

vi

1
Figure 2.9.: The sequence of switches that replaces a triangle by three self-loops in the presence

of an edge {v1, vi} with vi not connected to v3. Solid lines indicate edges in the
graph, dashed lines indicate that there is no edge.

Second, if G contains an edge {vi, vj} such that there is an edge in the triangle that has
at most one connection to {vi, vj} then there exists a sequence of switches from G to
G′. To see this: Assume that {vi, vj} has at most one connection to {v2, v3}, specifically
assume that neither vi nor vj is connected to v3 and furthermore that vi is not connected
to v2. The following sequence of switches transforms G to G′ (Figure 2.10).

{v2, v3}{vi, vj} → {v2, vi}{v3, vj}

{v1, v2}{v1, v3} → {v1, v1}{v2, v3}

{v2, v3}{v2, vi} → {v2, v2}{v3, vi}

{v3, vi}{v3, vj} → {v3, v3}{vi, vj}

58

2.2. Switching models for different network classes

v1

v2 v3

vi vj

1
Figure 2.10.: The sequence of switches that replaces a triangle by three self-loops in the pres-

ence of an edge {vi, vj} that has at most one connection to one of the edges of
the triangle. Solid lines indicate edges in the graph, dashed lines indicate that
there is no edge.

To summarize, the Markov chain corresponding to the switching models with respect
to classes G1,G4,G5,G6 and G8 is always irreducible. For classes G3 and G7 the Markov
chain might be reducible, however the triangle enriched switching models with respect
to classes G3 and G7 do always have an irreducible Markov chain. Finally the Markov
chain corresponding to the switching method with respect to G2 is not always irre-
ducible, but it is reasonable to expect it to be irreducible for most undirected net-
works.

2.2.2. Aperiodicity

Let G be one of the classes G1,G2,G5 and G6. The switching model for G with respect
to G is aperiodic as shown in the lemma below.

Lemma 2.2.12. Let G be any undirected network. If G ∈ Gi, then the switching model
for G with respect to Gi is aperiodic for i ∈ {1, 2, 5, 6}.

Proof. Let {x, y} and {u, v} be distinct edges in G. There are seven different configu-
rations (Figure 2.11): one where x = y = u = v (A), three with two distinct vertices
(B)-(D), two on three vertices (E) and (F) and one on four distinct vertices (G). Note
that (H) and (I) are equal to (G) up to relabelling of the vertices.

We now show for each of these configurations, that if G contains the configuration the
state graph of the switching model is aperiodic.

59

2. Switching models

A

x

B

x

y
C

x

y
D

x

y

I

x

y

u

v

G

x

y

u

v

H

x

y

u

v
F

x

y z
E

x

y z

Figure 2.11.: Seven different configurations of two edges in an undirected network.

A: If G contains two edges at {x, x} then switching the two edges does not alter the
network and thus corresponds to a self-loop in the state graph.

B: If G contains configuration B then we are either switching with respect to G2 or
with respect to G6. In the former case, we are not allowed to switch the two edges,
thus there is a self-loop in the state graph. In the latter case, switching results in
configuration C, call the new network G′. Switch 2 results in configuration B, but
switch 1 does not alter G′, resulting in a self-loop in the state graph.

C: See configuration B.

D: Switching the two edges does not alter the network, and thus there is a self-loop
in the state graph.

E: Switch 1 for edges {x, y} and {x, z} does not alter the network.

F: Switching the two edges results in configuration E and the resulting state has a
self-loop in the state graph.

G-I: If G contains configuration G-I, i.e. if x, y, u and v are all distinct, then we distin-
guish between the following two cases. (i) The induced subgraph of G on x, y, u

and v contains only two edges. In this case, there is a path of length three in
the state graph, as shown in Figure 2.11 - thus the state graph is aperiodic since
gcd(3,2)=1. (ii) The induced subgraph of G on x, y, u and v contains more than
two edges. For class G5 or G6 this does not change the argument of case (i). How-

60

2.2. Switching models for different network classes

ever for class G1 or G2, either switch 1 or switch 2 introduces a multiple edge,
and we thus find a self-loop in the state graph, since the switch that introduces a
multiple edge is not allowed.

A similar result holds for the directed network classes: G3,G4,G7, and G8.

Lemma 2.2.13. Let G be a directed network containing at least one vertex with total
degree greater than or equal to two. If G ∈ Gi, then the switching model with respect
to Gi is aperiodic for i = {3, 7}.

Proof. For class G3 this result was proved in Lemma 2.1.4. This proof can be seen to
hold for class G7 as well.

For the two classes of networks that include self-loops, we have the following Lemma.

Lemma 2.2.14. Let G ∈ Gi with i ∈ {4, 8}. The switching model with respect to G
is aperiodic if and only if G contains at least one vertex with out-degree or in-degree
greater than or equal to two.

Proof. If G contains a vertex with out-degree or in-degree greater or equal to two, then
switching two incoming or two outgoing edges does not alter G and the Markov chain
is aperiodic.

To prove the reverse claim, we use proof by contraposition. We show that if G does not
contain a vertex v with in-degree or out-degree at least two, then the Markov chain is
periodic. In this case, G is a union of chains of edges (vi1 , vi2), (vi2 , vi3), . . . , (vik−1 , vik),
and vertices with self-loops, and singleton vertices. We ignore the single vertices since the
switching model leaves these invariant. Thus the interesting part of G is a collection of
single edges {(s1, t1), (s2, t2), . . . , (sm, tm)} where ti may be equal to si. We can represent
G as the ordered tuple T = (t1, t2, . . . , tm). The set of directed networks with the same
degree sequences corresponds to all permutations of T .

61

2. Switching models

A directed switch corresponds to a transposition of two elements in (t1, t2, . . . , tm). The
identity is an even permutation and can thus only be obtained as the composition of an
even number of transpositions.

2.2.3. Detailed balance equations

In this section we derive the distributions π that satisfy the detailed balance equa-
tions for the switching model with respect to each of the network classes in Table
2.1.

We have already seen that the simplified detailed balance equations hold for the switching
model with respect to G3. The reason that they are satisfied is two-fold, firstly the
probability of selecting an edge pair corresponding to a switch was 1/M for any edge pair
and secondly the edge pair corresponding to a switch was unique. In other words, if there
exists a directed switch between two directed networks Gi and Gj, then pij = 1/M = pji.
The same is true for the switching model with respect to G4.

The simplified balance equations also hold for the switching model with respect to G1.
The transition probability pij between two distinct networks Gi and Gj is non-zero if
and only if there exists a switch between the two networks. This switch corresponds
to the selection of an edge pair together with either switch 1 or switch 2. Thus the
transition probabilities pij and pji are both equal to 1/2M and the simplified detailed
balance equations hold.

For the remaining classes, the simplified detailed balance equations no longer hold. We
show that the detailed balance equations hold for distributions that are close to being
uniform. Hence, by Theorem 1.3.6, these distributions are the stationary distributions
of the corresponding switching models. Our approach is to first derive the transition
probabilities of the switching model with respect to a given network class, then to define
a candidate stationary distribution and to show that the detailed balance equations
hold. Finally for each of these classes we introduce an adjusted switching model that
does converge to the uniform distribution. We now discuss the general framework for

62

2.2. Switching models for different network classes

adjusting these switching models.

The adjusted switching models make use of acceptance probabilities, which were also used
in [31]. We will be introducing acceptance probabilities to force the simplified detailed
balance equations to hold.

Definition 2.2.15. We may adjust a Markov chain {Xi}i∈I by introducing acceptance
probabilities aij, i 6= j ∈ I. Let pij be the transition probabilities of the original Markov
chain. We obtain a new Markov chain {X ′i} by accepting a move from Xi to Xj with
probability aij. The transition probabilities of this Markov chain are given by

p′ij =

pijaij if i 6= j

1−∑k,k 6=i p
′
ik if i = j.

We now derive the transition probabilities of the switching model with respect to class
G2.

Lemma 2.2.16. Let Gi and Gj be two networks in G2 with equal degree sequences and
let αk equal the number of self-loops in Gk. The transition probability pij from Gi to
Gj is given by

pij =

1
2M if |Ei∆Ej| = 4 and αi = αj or αi = αj − 1
1
M

if |Ei∆Ej| = 4 and αi = αj + 1

1−∑k,k 6=i pik if j = i

0 otherwise.

As usual M = m(m−1)
2 with m the number of edges of Gi.

Proof. When there exists a switch betweenGi andGj, or in other words, when |Ei∆Ej| =
4, there are exactly two possible configuration for Ei∆Ej, see Figure 2.12(b) and (c). If
αi = αj − 1 then the edge set difference looks like configuration (b) with the red edge
pair in Ei and the blue edge pair in Ej. The probability of selecting the red edge pair
equals 1/M as usual. Either switch 1 or switch 2, but not both, results in network Gj

and thus pij = 1/2M. If αi = αj, then the edge set difference looks like configuration
(c). Again either switch 1 or switch 2, but not both, results in Gj and thus pij = 1/2M.

63

2. Switching models

Finally, if αi = αj + 1, the edge set difference looks like configuration (b) with the blue
edges in Ei. In this case, both switch 1 and switch 2 result in Gj, and thus pij = 1/M.

(a) (b) (c)

x

y

x

u v

x u

y v

Figure 2.12.: Let Gi = (V,Ei) and Gj = (V,Ej) be two undirected (multi)graphs with the same
degree sequence. If their symmetric edge set difference, Ei∆Ej , consists of four
edges, then there are exactly three possible configurations. These configurations
are shown above. Notice that the difference between the number of self-loops αi
in Gi and number of self-loops αj in Gj is at most two.

Lemma 2.2.17. Let G ∈ G2. For any Gi ∈ G2 with the same degree sequence as G, let
αi equal the number of self-loops in Gi. Let Πi = 1

2
αi and let πi = Πi/

∑
j

Πj. Then the
detailed balance equations hold for π.

Proof. If there exists a switch between Gi and Gj, then the difference in number of
self-loops αi in Gi and number of self-loops αj in Gj is at most one. If αi = αj we find
πipij = πjpji trivially. If αi 6= αj we may assume αi = αj + 1 and

πipij = 1/
∑

k
Πk (1/2)αi 1/M

= 1/
∑

k
Πk (1/2)αj+1 1/M

= 1/
∑

k
Πk (1/2)αj 1/2M

= πjpji.

We define the adjusted switching model with respect to G2 as the Markov chain
obtained by introducing acceptance probabilities aij, where aij = 1/2 if αi = αj + 1
and aij = 1 otherwise. The adjusted switching model satisfies the simplified detailed
balance equations and hence converges to the uniform distribution (if the Markov chain

64

2.2. Switching models for different network classes

is irreducible). To implement these acceptance probabilities we need to accept each
switch of the form {x, x}, {u, v} to {x, u}, {x, v} with probability 0.5 or else repeat the
current state.

Next we look at class G5: undirected multigraphs without self-loops. Networks in this
class may have multiple edges. This causes the transition probabilities to differ from
those in Lemma 2.2.16; there may be several edge pairs that, when switched, result in
the same network.

Lemma 2.2.18. Let Gi and Gj be two networks in G5 with equal degree sequence. The
transition probability pij from Gi to Gj is given by

pij =

Ai
xyA

i
uv

2M if Ej = Ei\{{x, y}, {u, v}} ∪ {{x, v}, {u, y}}

or Ej = Ei\{{x, y}, {u, v}} ∪ {{x, u}, {y, v}}

1−∑k,k 6=i pik if i = j

0 otherwise,

where [Aikl] is the weighted adjacency matrix of the network Gi.

Proof. If there exists a switch between Gi and Gj, then the configuration of their edge
set difference Ei∆Ej is the configuration in Figure 2.12(c). Without loss of generality
we may assume that the red edges {x, y} and {u, v} are in Ei. The transition probability
pij depends on the multiplicity of the edges {x, y} and {u, v} in Gi. It is not hard to see
that there are AixyAiuv distinct edge pairs {x, y} and {u, v}. Either switch 1 or switch 2,
but not both, results in Gj and thus pij = Ai

xyA
i
uv/2M.

Lemma 2.2.19. Let G ∈ G5 be an undirected multigraph without self-loops. For any
Gi ∈ G5 with the same degree sequence as G, let

βi = 1∏
k<lA

i
kl!

where [Aikl] is the weighted adjacency matrix corresponding to Gi. Then πi = βi/
∑

r
βr is

the stationary distribution for the switching model for G with respect to G5.

Proof. Using the transition probabilities from Lemma 2.2.18 we now derive the detailed
balance equations. Let Gi = (V,Ei) ∈ G5 and Gj = (V,Ej) ∈ G5 with the same degree

65

2. Switching models

sequence as G. Without loss of generality we assume that Ej = Ei\{{x, y}, {u, v}} ∪
{{x, v}, {u, y}}. Let Ai{rs} equal Airs. Hence Ai{rs} is also equal to Aisr, since the network
is undirected. Also let,

Ki = 1
2M

1∑
r βr

1∏
k<l,{k,l}/∈Ei∆Ej

Ai{kl}!

and notice that Ki equals Kj. Then,

πipij = βi∑
r βr

Ai{xy}A
i
{uv}

2M

= Ki

Ai{xy}A
i
{uv}

Ai{xy}!Ai{uv}!Ai{xv}!Ai{uy}!

= Ki
1

(Ai{xy} − 1)!(Ai{uv} − 1)!Ai{xv}!Ai{uy}!

= Ki
1

Aj{xy}!A
j
{uv}!(A

j
{xv} − 1)!(Aj{uy} − 1)!

= Kj

Aj{xv}A
j
{uy}

Aj{xy}!A
j
{uv}!A

j
{xv}!A

j
{uy}!

= πjpji

We define the adjusted switching model with respect to G5 as the Markov chain
obtained from the switching model by introducing acceptance probabilities aij. If
there exists a directed switch between Gi and Gj, i.e. if Ej = Ei\{{x, y}, {u, v}} ∪
{{x, v}, {u, y}}, then we let aij = 1/Ai

xyA
i
uv otherwise aij = 1. These acceptance prob-

abilities ensure the simplified detailed balance equations are satisfied and hence imply
convergence to the uniform distribution.

Next, we look at the class of undirected multigraphs, G6. This class of networks has the
most complicated transition probabilities.

Lemma 2.2.20. Let Gi and Gj be two networks in G6 with equal degree sequence. The

66

2.2. Switching models for different network classes

transition probability pij from Gi to Gj is given by

pij =

Ai
xyA

i
uv

M
if |Ei∆Ej| = 4 and αi > αj,

Ai
xyA

i
uv

2M if |Ei∆Ej| = 4 and αi = αj or αi = αj − 1,
Ai

xy(Ai
uv−1)

4M if |Ei∆Ej| = 4 and αi = αj − 2,

0 otherwise.

where {x, y} and {u, v} are edges in Ei\Ej.

Proof. If there exists a switch between Gi and Gj, then the edge set difference Ei∆Ej
corresponds to one of the three configurations in Figure 2.12.

If αi > αj, then the edge set difference looks like configuration (a) or (b) with the blue
edges in Ei. In case of configuration (a), the probability of switching to Gj corresponds
to the probability of selecting an edge pair {x, x}, {y, y}, which indeed is Ai

xxA
i
yy/M. We

do not need to divide this by 2, since both switch 1 and switch 2 result in Gj. Similarly,
for configuration (b), the probability of selecting an edge pair {x, x} and {u, v} equals
Ai

xxA
i
uv/M and we do not need to divide this by 2 since both switch 1 and switch 2 result

in Gj.

For αi = αj, see the argument of Lemma 2.2.18.

If αi = αj − 1 then the edge set difference looks like configuration (b) with the red edge
pair in Ei. The probability of selecting this edge pair is Ai

xuA
i
xv/M. To find the transition

probability we have to divide this probability by 2, since only switch 1 or switch 2 but
not both, results in Gj.

Finally if αi = αj − 2, the edge set difference looks like configuration (a) with the red
edges in Ei. Here the probability of selecting an edge pair {x, y} and {x, y} equals
Ai

xy(Ai
xy−1)/2M, since there are Ai

xy(Ai
xy−1)/2 such edge pairs. This probability needs to be

divided by 2, since only switch 1 or switch 2 but not both results in Gj. Indeed we find
pij = Ai

xy(Ai
xy−1)/4M.

Lemma 2.2.21. Let G ∈ G6, for any Gi ∈ G6 with the same degree sequence as G, let

67

2. Switching models

αi be its number of self-loops and

βi = 1∏
k≤lA

i
kl!
.

Let Πi = 1
2
αiβi and let πi = Πi/

∑
j

Πj. Then the detailed balance equations hold for π.

Proof. If there exists a switch between Gi and Gj then |αi − αj| equals either 0,1, or 2.
Suppose αi − αj equals 0 or 1. Without loss of generality we assume that the vertices
are labelled such that Ej = Ei\{{x, y}, {u, v}} ∪ {{x, v}, {u, y}}. When αi = αj the
derivation mimics the derivation in the proof of Lemma 2.2.19. Now let αi = αj + 1. By
Lemma 2.2.20 we find

pij =
Ai{xy}A

i
{uv}

M

and

pji =
Aj{xv}A

i
{uy}

2M .

Let
Li = 1

2M
1∑

r
1
2
αrβr

1∏
k≤l,{k,l}/∈Ei∆Ej

Ai{kl}!
,

and notice that Li = Lj. Now, using the transition probabilities found in Lemma 2.2.20
we derive:

πipij =
1
2
αiβi∑

r
1
2
αrβr

Ai{xy}A
i
{uv}

M

= Li
1

2αi

2Ai{xy}Ai{uv}
Ai{xy}!Ai{uv}!Ai{xv}!Ai{uy}!

= Li
1

2αj+1
2

(Ai{xy} − 1)!(Ai{uv} − 1)!Ai{xv}!Ai{uy}!

= Li
1

2αj

1
Aj{xy}!A

j
{uv}!(A

j
{xv} − 1)!(Aj{uy} − 1)!

= Lj
1

2αj

Aj{xv}A
j
{uy}

Aj{xy}!A
j
{uv}!A

j
{xv}!A

j
{uy}!

=
1
2
αjβj∑
r

1
2
αrβr

Aj{xv}A
j
{uy}

2M
= πjpji

68

2.2. Switching models for different network classes

Finally, assume that αi = αj + 2. Without loss of generality we assume that Ej =
Ei\{{x, x}, {y, y}} ∪ {{x, y}, {x, y}}. Let

Ki = 1
2M

1∑
r

1
2
αrβr

1∏
k≤l,{k,l}/∈Ei∆Ej

Ai{kl}!
,

and notice that Ki = Kj. Then,

πipij =
1
2
αiβi∑

r
1
2
αrβr

Ai{xx}A
i
{yy}

M

= Ki
1

2αi

2Ai{xx}Ai{yy}
Ai{xx}!Ai{yy}!Ai{xy}!

= Ki
1

2αj+2
2

(Ai{xx} − 1)!(Ai{yy} − 1)!Ai{xy}!

= Ki
1

2αj+1
1

Aj{xx}!A
j
{yy}!(A

j
{xy} − 2)!

= Kj
1

2αj+1

Aj{xy}(A
j
{xy} − 1)

Aj{xx}!A
j
{yy}!A

j
{xy}!

=
1
2
αjβj∑
r

1
2
αrβr

Aj{xy}(A
j
{xy} − 1)

4M
= πjpji.

Again we may introduce acceptance probabilities aij to obtain the adjusted switching
method with respect to G6. In this case we define the acceptance probabilities as
follows. Let Gi and Gj differ by a directed switch, and let Ej = Ei\{{x, y}, {u, v}} ∪
{{x, v}, {u, y}}, then

aij =

1
Ai

xyA
i
uv

if αi ≤ αj

1
2Ai

xyA
i
uv

if αi = αj + 1
1

4Ai
xyA

i
uv

if αi = αj + 2

In all other situations aij = 1. These acceptance probabilities ensure that the uniform
distribution is the stationary distribution of this Markov chain.

Finally, we inspect the detailed balance equations for the remaining classes of directed
networks, G7 and G8.

69

2. Switching models

Lemma 2.2.22. Let Gi and Gj be two directed networks in G7 with equal degree
sequences. The transition probability pij from Gi to Gj is given by

pij =

Ai
xyA

i
uv

M
if Ej = Ei\{(x, y), (u, v)} ∪ {(x, v), (u, y)}

1−∑k,k 6=i pik if i = j

0 otherwise.

Proof. IfGi andGj differ by a directed switch, we may assume that Ej = Ei\{(x, y), (u, v)}∪
{(x, v), (u, y)}. The probability of selecting an edge pair (x, y), (u, v) in Gi equals
Ai

xyA
i
uv/M. This is the transition probability from Gi to Gj.

Lemma 2.2.23. Let G ∈ G7 be a directed network without self-loops. For any Gi ∈ G7

with the same degree sequence as G, and with adjacency matrix Ai, let

βi = 1∏
klA

i
kl!
.

The switching model with respect to G7 satisfies the detailed balance equations for
πi = βi/

∑
r
βr.

Proof. The proof is analogous to the proof of Lemma 2.2.19.

For directed networks, there are no special probabilities for self-loops unlike in undirected
networks. An edge pair corresponds to a unique switch, regardless of whether the edges
involved are self-loops or not. Thus, the above lemma holds for G8 as well.

Again we can introduce acceptance probabilities to obtain the adjusted switching
method with respect to G7 and G8. We define the acceptance probabilities as follows.
LetGi andGj differ by a directed switch, and let Ej = Ei\{(x, y), (u, v)}∪{(x, v), (u, y)},
then aij = 1/Ai

xyA
i
uv, otherwise aij = 1. These acceptance probabilities ensure that the

stationary distribution is the uniform distribution.

Finally, the triangle enriched switching models do not change the discussion for the
detailed balance equation. If two networks Gi and Gj differ by a triangle reorientation

70

2.3. MFinder implementation flaw

the transition probabilities pij and pji are zero in the (adjusted) switching method and are
both equal to 3/M for the triangle enriched switching model.

To conclude, the switching model for a network G with respect to class G1 converges to
the uniform distribution regardless of G. The switching model with respect to G4 and
the adjusted switching model with respect to G8 converge to the uniform distribution
for networks that contain at least one vertex with in-degree two or more, or out-degree
two or more. The adjusted switching models with respect to classes G5 and G6 both
converge to the uniform distribution for any G. The triangle enriched switching model
with respect to G3 and the adjusted triangle enriched switching model with respect to G7

converge to the uniform distribution for all networks G that contain at least one vertex
of degree two. Finally, we expect the adjusted switching model with respect to G2 to
converge to the uniform distribution for most networks. However, we have shown that
it does not do so for all networks; there are classes of networks for which its Markov
chain is reducible.

The random network models discussed in this section have been implemented and are
publicly available, see Appendix B.1.6 for more details on this software.

2.3. MFinder implementation flaw

We now describe an issue in the implementation of the switching method with respect to
undirected networks in MFinder2. MFinder is a software package that detects motifs [82]
by comparing a network to a collection of random networks, by default generated using
the switching model. We first describe the implementation of the switching method with
respect to G2 as found in MFinder, then point out the issue, and finally show how this
issue leads to biased sampling.

The switching method with respect to undirected networks as implemented in MFinder,
takes as its input an edge list and the number N of switches to attempt. It then iterates

2As downloaded from http://wws.weizmann.ac.il/mcb/UriAlon/download/network-motif-software on
8 March 2015

71

2. Switching models

through the following steps until the number of attempts equalsN .

(a) randomly select two edges from the edge list, call these {x, y} and {u, v},

(b) if neither of the edges {x, v} and {u, y} is already present in the graph and if neither
is a self-loop, then replace the original edges with {x, v} and {u, y}, otherwise do
nothing,

(c) add one to the number of attempts.

The reason that this implementation produces biased samples is that edges are stored
with fixed vertex order. If the two edges {x, y} = {y, x} and {u, v} = {v, u} are retrieved
as (x, y) and (u, v) then switch 1 to {x, v} and {u, y} is attempted, but never switch
2 to {x, u} and {y, v} (Figure 2.7). In other words, restricting to switch 1 and storing
the edges with ordered vertices, corresponds to treating undirected networks as directed
networks, and only switching targets.

Specifically, when storing undirected edges as ordered pairs, the following steps need to
be implemented:

(a) randomly select two edges from the edge list, call these {x, y} and {u, v},

(b0) select either switch 1 or switch 2 (Figure 2.7) with probability 0.5

(b1) if switch 1: If neither of the edges {x, v} and {u, y} is already present in the graph
and if neither is a self-loop, then replace the original edges with {x, v} and {u, y},
otherwise do nothing.

(b2) or if switch 2: If neither of the edges {x, u} and {y, v} is already present in the
graph and if neither is a self-loop, then replace the original edges with {x, u} and
{y, v}, otherwise do nothing.

(c) add one to the number of attempts.

72

2.3. MFinder implementation flaw

It is not immediately clear that neglecting to attempt switch 2 leads to biased sampling.
We now discuss a specific example theoretically, and prove that indeed sampling will
be biased. We then confirm experimentally that MFinder produces biased samples as
predicted. Depending on the vertex order in the edge list, the sample is moderately to
extremely biased.

Example 2.3.1. Let G1 be a network with six vertices v1, . . . , v6 and six edges {v1, v3},
{v2, v4}, {v3, v4}, {v3, v5}, {v4, v6} and {v5, v6}. There are 17 simple undirected networks
with the same degree sequence as G1 as displayed in Figure 2.13.

Figure 2.13.: The 17 simple undirected graphs with degree sequence k = (1, 1, 3, 3, 2, 2).

We first look at a worst-case scenario, where the only switch that is being attempted,
switch 1, is not allowed for any of the edge pairs (Figure 2.14(b)).

(v1, v3), (v4, v2), (v4, v3), (v4, v6), (v5, v3), (v5, v6)

One can check that for any edge pair, applying switch 1 either does not alter the network
(when the edges have the same source or the same target) or introduces a self-loop or a
multiple edge. Thus, any ‘random’ sample generated by this method will consist of only
network G1 itself.

The second case we discuss samples from a slightly larger subset of the 17 networks. Let

73

2. Switching models

Figure 2.14.: (a) The undirected network G1. (b)-(d) Three directed networks corresponding to
storing G1 with different vertex orderings: (b) {(v1, v3), (v4, v2), (v4, v3), (v4, v6),
(v5, v3), (v5, v6)}, and (c) {(v3, v1), (v4, v2), (v4, v3), (v4, v6), (v5, v3), (v5, v6)} and
(d) {(v1, v3), (v4, v2), (v3, v4), (v6, v4), (v3, v5), (v5, v6)}. (e) The structure of the
state graph corresponding to the randomisation method for undirected networks
found in MFinder with edgelist as in (d). In this state graph, many of the 17
undirected networks correspond to several states. This is indicated by the colors
and labels. For visual clarity we have not depicted self-loops in the state graph.

the edge list be stored as below (Figure 2.14(c)).

(v3, v1), (v4, v2), (v4, v3), (v4, v6), (v5, v3), (v5, v6)

Switching using just switch 1 is again very restricted. By checking all edge-pairs in G1

and the networks obtained by switching edges in G1, we find that only five of the 17
networks can be reached. This implies that the MFinder algorithm only samples the
networks G1, G7, G10, G13 and G14.

Our third and final case shows that even when the MFinder algorithm is able to sample
from the full set of seventeen networks, the sample may still be biased. This is the case
when the edge list is stored with the following vertex orders (Figure 2.14(d)).

(v1, v3), (v4, v2), (v3, v4), (v6, v4), (v3, v5), (v5, v6)

R code was written to recursively find the allowed switches for each network and hence
the state graph as shown in Figure 2.14(e).

74

2.3. MFinder implementation flaw

The problem in this case is that not all networks are uniquely represented by an ordered
edge list. For instance network G2 in Figure 2.13 can be represented by the following
two edge lists with distinct vertex orderings.

(v1, v6), (v4, v5), (v5, v3), (v3, v4), (v3, v2), (v6, v4) (2.1)

(v1, v6), (v4, v3), (v5, v4), (v3, v5), (v3, v2), (v6, v4) (2.2)

Similarly network G3 in Figure 2.13 can be represented by the following three edge lists.

(v1, v2), (v6, v4), (v3, v6), (v3, v4), (v4, v5), (v5, v3) (2.3)

(v1, v2), (v6, v4), (v3, v6), (v3, v5), (v4, v3), (v5, v4) (2.4)

(v1, v2), (v6, v3), (v3, v4), (v3, v5), (v4, v6), (v5, v4) (2.5)

The Markov chain corresponding to MFinder’s undirected network randomisation algo-
rithm corresponds to a random walk on the state graph in Figure 2.14(e). The Markov
chain is irreducible and aperiodic; its state graph is connected and each state has a
non-zero probability of being repeated. The probability of moving from one state to its
neighbour is the probability of selecting the corresponding ‘directed’ switch and equals
1/M. Here M = m(m−1)/2 and m = 6, the number of edges of G. The Markov chain
converges to a stationary distribution π, and π is the uniform distribution on the states.
However, some states in this state space correspond to the same undirected network. We
thus find that MFinder samples undirected networks from the probability distribution:

(1/28, 1/14, 3/28, 1/14, 1/28, 1/28, 1/14, 1/28, 1/14, 1/14, 1/28, 1/28, 1/14, 1/28, 1/14, 1/14, 1/14).

To show that MFinder indeed produces samples according to the distributions we de-
scribed in this example, we wrote several scripts. The resulting samples are displayed
in Figure 2.15.

I have contacted the authors of [82] and this oversight has been fixed. A new version of
MFinder is now available (see Appendix B.2.5).

75

2. Switching models

Figure 2.15.: Histograms of samples of N random undirected networks produced by MFinder.
(a) Input network G1 labelled as in Figure 2.14(b), N = 1000. (b) Input network
G1 labelled as in Figure 2.14(c), N = 1000. (c) Input network G1 labelled as in
Figure 2.14(d), N = 10000.

2.4. The ordered switching model

In this section we discuss the switching model for yet another class of networks, the
class of directed acyclic networks. This is an important class of networks that occurs
in biology, computer science, engineering, pure mathematics and statistics [67]. It is a
subclass of networks in G3 with the property that they do not contain directed cycles
(Definition 1.1.6). Examples of directed acyclic networks include citation networks,
patent networks, causal structures and family trees.

After our careful definition in Section 2.1, it is straightforward to define the ordered
switching model: the switching model with respect to directed acyclic networks. Re-
call from Proposition 1.1.8 that such networks admit a topological ordering of their
vertices.

Definition 2.4.1. LetG be a directed acyclic network. The ordered switching model
for G is defined by a Markov chain starting at G. The states of this Markov chain are
all the directed acyclic networks that have the same degree sequences and the same
topological ordering as G. If there exists a directed switch between Gi and Gj then the
transition probability pij is the probability of selecting the corresponding unique edge

76

2.4. The ordered switching model

pair. That is

pij =

1
M

if there exists a directed switch between Gi and Gj

1− k(Gi)
M

if j = i

0 otherwise

,

with M = m(m−1)/2 as usual.

We will use Theorem 1.3.6 to show that the ordered switching model converges to the
uniform distribution for most directed acyclic networks.

2.4.1. Irreducibility

We now prove that the Markov chain corresponding to the ordered switching model
is irreducible. To do so, let G = (V,E) and G′ = (V ′, E ′) be two directed acyclic
networks with V = V ′, that have equal degree sequences and equal topological order-
ing. For such graphs we show that there exists a sequence of directed acyclic networks
G = G0, G1, . . . , Gk = G′ such that each Gi has the same degree sequences and al-
lows the same topological ordering as G and G′, and furthermore each consecutive
pair of networks Gi and Gi+1 differs by a directed switch. The approach we take to
prove this is similar to the approach in [16] for simple directed networks: we use in-
duction on the size of the symmetric edge set difference E∆E ′ of G and G′ (Definition
1.2.1).

The graph G∆G′ has some nice properties due to the fact that G and G′ have equal
degree sequences. In particular we have seen that E∆E ′ partitions into minimal closed
alternating direction-alternating trails (see Lemmas 1.2.2 and 1.2.12) and that the ver-
tices visited by such a trail are entered at most once through an incoming edge and at
most once through an outgoing edge (Lemma 1.2.11). We now show that a minimal
closed alternating direction-alternating trail contains five consecutive distinct vertices if
it is of length greater than 4. Notice that the graph G∆G′ allows the same topological
ordering as G and G′.

77

2. Switching models

G = (V,E)

(a) (b)

G' = (V,E') G G' E E' = 4 E E' = 6

Figure 2.16.: (a) An example of two directed acyclic realizations, G and G′ of kin =
(1, 2, 2, 1, 0, 1, 0), kout = (0, 1, 1, 1, 1, 2, 1), drawn such that the topological order-
ing corresponds to the order from bottom to top. These two networks differ in
exactly one directed switch, which is equivalent to |E∆E′| = 4. Grey edges repre-
sent edges present in both E and E′, red edges represent edges in E\E′ and blue
edges represent edges in E′\E. (b) Examples of symmetric edge set differences
with four and six edges respectively.

Lemma 2.4.2. Let G = (V,E) and G′ = (V,E ′) be distinct directed acyclic networks
with equal degree sequences, and let V = (v1, . . . , vn) be a topological ordering for both.
Let C be a closed alternating direction-alternating trail in G∆G′. If C is minimal and
|C| > 4 then C contains five consecutive distinct vertices.

Proof. We will prove this by contradiction. So let us assume that C is a minimal closed
alternating direction-alternating trail with |C| > 4 and C does not contain five distinct
consecutive vertices.

Let vimax ∈ C be the vertex with the highest index in C. There are distinct ver-
tices vi0 , vi1 such that (vimax , vi0) ∈ E\E ′ and (vimax , vi1) ∈ E ′\E. We may write
C = vi0 , vimax , vi1 , . . . , vi0 .

First assume that the next vertex, vi2 , in C is not equal to vi0 . This implies that
vi0 , vi1 , vimax and vi2 are all distinct, since (vi2 , vi1) ∈ E\E ′ and (vimax , vi1) ∈ E ′\E. The
next vertex vi3 , with (vi2 , vi3) ∈ E ′\E can not be equal to vi2 or to vi1 (since (vi2 , vi1) ∈
E). It is also different from vimax , since vimax can not have incoming edges in G∆G′.
Thus, if vi2 6= vi0 then vi3 = vi0 since otherwise there would be five distinct consecutive
vertices in C (Figure 2.17(a)). But if vi3 = vi0 then vi0 , vimax , vi1 , vi2 , vi0 is a proper
closed alternating direction-alternating subtrail of C (Figure 2.17(b), contradicting our
assumption that C is minimal.

78

2.4. The ordered switching model

So C has to start with vi0 , vimax , vi1 , vi0 . The next vertex, call it vi2 , with (vi0 , vi2) ∈ E ′\E
has to be different from all previous vertices: obviously vi2 6= vi0 , it can not be equal
to vi1 since (vi0 , vi1) ∈ E\E ′ and it can not be equal to Vimax since imax > i0 (see also
Figure 2.17(c)). Note that i0 > i2 since V is the topological ordering of G and G′.

Let vi3 be the next vertex on the trail with (vi3 , vi2) ∈ E\E ′. Hence vi3 6= vi2 , furthermore
vi3 6= vi0 since (vi0 , vi2) ∈ E ′\E and vi3 6= vimax since vimax can only be entered through an
outgoing edge once. Thus vi3 has to be equal to vi1 , since otherwise vimax , vi1 , vi0 , vi2 , vi3

are five distinct consecutive vertices.

Repeating this argument, we find that our alternating cycle is of the form

vi0 , vimax , vi1 , vi0 , vi2 , vi1 , vi3 , vi2 , vi4 , vi3 , . . . , vij , vi0 .

This implies that i0 > i1 > i3 > i5 . . . and i0 > i2 > i4 > In particular i0 > ij, but
(vij , vi0) ∈ E ′\E, giving a contradiction.

vimax

vi0

vi1

vi2

vi3

vimax

vi0

vi1

vi2

vimax

vi0

vi1

vi2

vi3

(a) (b) (c)

Figure 2.17.: The different cases discussed in Lemma 2.4.2. (a) The case where vi2 6=
vi0 and vi3 6= vi0 . (b) The case where vi2 6= vi0 and vi3 =
vi0 . (c) The case where vi2 6= vi0 , and we have a cycle of the form
vi0 , vimax , vi1 , vi0 , vi2 , vi1 , vi3 , vi2 , vi4 , vi3 , . . . , vij , vi0 .

With Lemma 2.4.2 in hand we are now ready to prove irreducibility of the Markov chain
of the ordered switching model.

Lemma 2.4.3. Let G = (V,E) be a directed acyclic network with a topological order-
ing. Let G be the set of all directed acyclic networks with vertices V , the same degree
sequences as G and that allow the same topological ordering. Then for any network
G′ ∈ G, there exists a sequence G = G0, G1, . . . , Gk = G′ of networks such that each
Gi is an element of G with edge set differences, Ei∆Ei+1, of each consecutive pair of
networks, of size 4.

79

2. Switching models

Proof. We prove the lemma by strong induction on the size of the symmetric edge set
difference |E∆E ′| = 2κ. The base case, κ = 2, is trivial, since we may use the sequence
G0 = G,G1 = G′.

Assume that we can find such sequences for all pairs of networks G,G′ ∈ G with
|E∆E ′| = 2κ and κ ≤ l. We show this implies the statement is true for G,G′ ∈ G
with |E∆E ′| = 2l + 2.

From Lemma 1.2.12 we know that the symmetric edge set difference E∆E ′ of G and G′

partitions into minimal closed alternating direction-alternating trails. We can distinguish
between the following two cases.

1. There are at least two minimal closed alternating direction-alternating trails in
G∆G′.

Let C be one such minimal closed alternating direction-alternating trail. Then
|C| ≤ 2l. Define E∗ = (E\(E ∩ C)) ∪ (E ′ ∩ C). The corresponding network
G∗ = (V,E∗) has the same in-degree and out-degree sequence as G and respects
the topological ordering V . Now |E∆E∗| = |C| ≤ 2l and |E∗∆E ′| = |E∆E ′| −
|C| ≤ 2l. Hence, by induction, we can find sequences G = G0, . . . , Gj = G∗ and
G∗ = G′0, . . . , G

′
k = G′ that satisfy the required properties. Concatenating the

two sequences results in a sequence from G to G′ with each Gi ∈ G and each two
consecutive networks differing by a switch.

2. The edge set difference E∆E ′ contains exactly one minimal closed alternating
direction-alternating trail.

We call this trail C, and hence |C| = 2l+ 2. By Lemma 2.4.2, C contains five con-
secutive distinct vertices, label them vi1 , vi2 , vi3 , vi4 , vi5 . Without loss of generality
assume (vi1 , vi2), (vi3 , vi4) ∈ E and (vi3 , vi2), (vi5 , vi4) ∈ E ′. We may also assume
i1 > i4, since if i1 < i4, then i5 > i2 which is analogous.

We may now distinguish the following three cases:

80

2.4. The ordered switching model

a. (vi1 , vi4) /∈ E

Let E∗ = (E\{(vi1 , vi2), (vi3 , vi4)}) ∪ {(vi1 , vi4), (vi3 , vi2)}. Now |E∆E∗| = 4
and |E∗∆E ′| ≤ 2l− 2. By induction we can find a sequence of networks from
G∗ = (V,E∗) to G′, concatenating this with G results in a suitable sequence
of networks from G to G′.

b. (vi1 , vi4) ∈ E\E ′

This can not be the case since this would imply that vi4 has two incoming
edges in E\E ′, contradicting the fact that C is minimal (Lemma 1.2.11).

c. (vi1 , vi4) ∈ E ∩ E ′

Let E∗ = (E ′\{(vi1 , vi4), (vi3 , vi2)}) ∪ {(vi1 , vi2), (vi3 , vi4)}. Now |E∗∆E ′| = 4
and |E∆E∗| = 2l. By induction we can find a sequence of networks from G

to G∗ = (V,E∗). Concatenating this sequence with G′ results in a suitable
sequence of networks from G to G′.

This finishes the proof.

2.4.2. Aperiodicity

Recall from Lemma 2.1.4 that the switching model for simple directed networks is ape-
riodic for networks that have at least one vertex of total degree 2 or more. For such
networks, there is a non-zero probability of repeating any state, which trivially implies
aperiodicity of the corresponding Markov chain. The ordered switching model allows
only a subset of the switches that are allowed by the switching model with respect to
simple directed networks. Hence, it is clearly also aperiodic for networks G that contain
at least one vertex with total degree 2 or more.

81

2. Switching models

2.4.3. Detailed balance equations

It is straightforward to see that the simplified detailed balance equations hold: for
any two neighbouring states Gi and Gj, the transition probabilities pij and pji equal
1/M.

To summarize, we have defined a switching model for the class of directed acyclic net-
works. We have shown that the corresponding Markov chain is irreducible, aperiodic
and satisfies the simplified detailed balance equations for almost all directed acyclic
networks. Hence we have proven the following theorem.

Theorem 2.4.4. Let G be a directed acyclic network that contains a vertex v of total
degree at least two. The Markov chain corresponding to the switching model for G with
respect to directed acyclic networks, converges to the uniform distribution.

2.5. Conclusion

In this chapter we have discussed a family of switching models in detail. We intro-
duced a precise definition of the switching model with respect to nine different classes
of networks. For each network class, we found conditions under which the correspond-
ing switching model converges to a stationary distribution and derived this distribution.
When necessary, we introduced acceptance probabilities, such that the resulting adjusted
switching model converges to the uniform distribution.

We showed how our precise definition of switching models resolves ambiguities found in
previous definitions. We found and resolved an error in a well-known software package.
Finally we produced R code that implements all versions of the switching model that
are discussed in this chapter.

One of the strengths of the switching model is its simplicity: it is a simple procedure
of edge swaps that randomizes networks while fixing their degree sequence(s). In this
chapter, we showed that when treated carefully, the switching model can be used to draw

82

2.5. Conclusion

uniform samples from a variety of network classes. This makes the switching model an
attractive candidate for a null-model.

However, so far we have ignored one crucial question about the switching models: how
many switches do we need to attempt, in order to obtain a truly random network? Or,
in other words, how many steps does the corresponding Markov chain need to take to
reach its stationary distribution. This question is generally hard to answer, and is the
main focus of Chapter 3.

Perhaps the choice to include classes G5−G8 in our analysis seems somewhat unnatural:
most real-world networks do not contain multiple edges, or are not modelled as multi-
graphs. The reason that we included these classes is two-fold.

Firstly, the switching model is simplest when randomizing multigraphs (G6,G8), since all
pairs of edges are allowed to be switched. In a sense, this is the most natural setting for
the switching model.

Secondly, the configuration model [84, 95] produces almost uniform [94, Section 13.2]
samples from G6 and G8. It was recently suggested that combining the configuration
model and a Markov chain model could be a faster way to obtain a truly random network
from, for instance, classes G1 and G3 [133]. We also discuss this Expand and Contract
method in more detail in Chapter 3.

83

3. Run-time of random network models

In this chapter we compare the run-times of several random network models. We look
at several Markov chain models as well as the configuration model and the recently
introduced Expand and Contract model. The mixing time of a Markov chain is needed
to estimate its run-time. It is generally very complicated to estimate the mixing time. In
1999, Kannan et al. conjectured that the switching model mixes rapidly and proved that
it does for regular bipartite networks [66]. Their claim has since also been proven for
regular [46] and semi-regular [41] networks.1 However, there is no proof for the general
case.

All random network models discussed in this chapter randomise directed networks, i.e.
networks in class G4. In the remainder of this chapter we will refer to the switching
model with respect to G4 as the switching model.

In Section 3.1 we compare three Markov chain models to the switching model. The
Markov chain models that we discuss, only differ from the switching model in their non-
zero transition probabilities. That is, they allow the same set of moves as the switching
model. We show that the switching model is currently the best performing model in
terms of run-time and in fact is optimal given the structure of the state graph. In Section
3.2 we compare the switching model to the configuration model and discuss advantages
and drawbacks of both models. We also discuss the Expand and Contract model [133]

1Regular bipartite networks are bipartite networks for which all nodes in the primary node set have
equal degree and all nodes in the secondary node set have equal degree. Regular directed networks
are networks in which all nodes have the same in-degree as well as the same out-degree (which are
necessarily equal). Semi-regular networks are networks where all nodes have the same in-degree but
their out-degree may differ (or vice versa).

85

3. Run-time of random network models

and show that in practice, it does not improve on the run-time of the switching model.
We finish this chapter with our conlcusions in Section 3.3.

My contributions to the area in this chapter are the following.

• Comparison of several random network models in terms of their state graph and
run-time. These results are not yet published.

• Derivation of a simple formula for the change in mobility of a state after applying
a switch. This result has not yet been published.

3.1. Alternative Markov chains

In Chapter 2 we discussed the switching model in detail. The definition given there (Def-
inition 2.2.1) was phrased in such a way that the implementation of the model is implied.
That is, by specifying the transition probabilities in terms of selecting edge pairs, we
left no ambiguity for the implementation of the algorithm.

The Markov chains that we discuss in this section are defined in a more theoretical way.
That is, it is not clear from their definition alone, how they should be implemented. After
studying their implementations (if available) or implementing the algorithms ourselves,
we found that even though theoretically these Markov chains converge faster than the
switching model, in practice they run slower. We show that the switching model already
runs at optimal speed.

Some of the algorithms we discuss here were originally defined for simple directed net-
works. Here we discuss versions of these algorithms where self-loops are allowed to be
formed, since this clarifies our argument. However, our argument holds equally well for
the run-times of these models with respect to simple directed networks.

86

3.1. Alternative Markov chains

3.1.1. Definitions

The three models that we discuss here are (1) a Markov chain model introduced by Rao
et al. [103] which we will refer to as Rao’s model, (2) a ‘canonical’ model introduced by
Coolen and Roberts [31, 108, 107] which we will refer to as the canonical model, and (3)
the ‘switch and add’ model that was introduced by Artzy-Randrup and Stone [6] which
we will refer to as the switch and add model.

The random network models that we discuss here are Markov chains with the same
states and the same moves as the switching model.

Definition 3.1.1. LetXi be a state of a finite Markov chain with transition probabilities
{pij}. The set of states that can be reached from Xi, that is {Xj | i 6= j, pij 6= 0}, is
referred to as the set of moves from Xi. The number of moves from a state Xi is called
the mobility of the state and denoted by mi [108].

Since these models have the same sets of moves as the switching model, the struc-
ture of their state graphs is almost exactly equal to that of the switching model. If
two distinct states are connected in the state graph of the switching model then they
are also connected in the Markov chains corresponding to these methods. However,
some of the states that have a non-zero probability of being repeated in the switch-
ing model have a zero probability of being repeated in these models. Hence the state
graphs may differ in the number of self-loops. The main difference between these
models and the switching model is in the value of their non-zero transition probabil-
ities.

As some of these state graphs do not include any repeated states we will need the
following lemma to ensure aperiodicity.

Lemma 3.1.2. Let G = (V,E) be a directed network that contains three edges (u1, v1),
(u2, v2), (u2, v3) with u1 6= u2, v1 /∈ {v2, v3} and {(u1, v2), (u1, v3), (u2, v1)} ∩E = ∅. The
state graph Ψ of the switching model for G is aperiodic even after removing all self-loops.

Proof. The state graph Ψ is connected and finite, hence it is enough to show that it

87

3. Run-time of random network models

u1

v1 v2

u2

v3

G

u1

v1 v2

u2

v3

u1

v1 v2

u2

v3

1Figure 3.1.: For each state in this figure, there is a closed path of length three starting and
ending at the state, as well as paths of length two. Hence each state is aperiodic
(Lemma 3.1.2). Coloured edges indicate edges that are present in each network,
grey dashed edges are not present in the networks.

contains one aperiodic state. G corresponds to an aperiodic state since there is a path
of length three starting and ending at G given by the following sequence of switches,
corresponding to moving clockwise from G in Figure 3.1.

{(u1, v1), (u2, v3)} → {(u1, v3), (u2, v1)},

{(u1, v3), (u2, v2)} → {(u1, v2), (u2, v3)},

{(u1, v2), (u2, v1)} → {(u1, v1), (u2, v2)}.

In the rest of this section we assume that all networks satisfy the conditions of Lemma
3.1.2. The definitions that we give for the random network models are rephrased in a
way that simplifies their comparison. We only focus on the run-time of these algorithms.
However, this was not necessarily the original reason to create these algorithms. For
instance the canonical model was introduced to allow for several different sampling
distributions. For more information and context for each of these algorithms we refer
the reader to the original papers [6, 108, 103].

The first Markov chain that we discuss, was introduced by Rao et al. in 1996 [103]. In
fact Rao et al. introduce three closely related methods.

88

3.1. Alternative Markov chains

1

3

2
1

3

2

1

3

2

1

3

2
1

3

2

(a)

1/5 1/5

1/5

1/5 1/5

1/2 1/2

1/3

1/2 1/2

1/6

(b)

1/6

1/6

1/6

1/6

1/6 1/6

1/6

1/5 1/5

1/5

1/5 1/5

1/4 1/4

1/4 1/4

1/4

(c)

1/4

1/4

1/4

1/4

1/4 1/4

1/4

1/5 1/5

1/5

1/5 1/5

11/21 11/21

3/7

11/21 11/21

1/6

(d)

1/7

1/6

1/7

1/6

1/7 1/7

1/6

3/16 3/16

1/4

3/16 3/16

1/3

1/3

1/3

1/3

1/4

1/4

1/4

1/4

1/3

(e)

1/3 1/3

1/3

1

Figure 3.2.: (a) The structure of the state graph of the switching model for networks with
kin = kout = (1, 1, 2). (b)-(e) The state graphs of four different Markov chains:
(b) The switching model, (c) Rao’s model with m = 4, (d) the canonical model and
(e) the switch and add model. Edge labels correspond to transition probabilities
and node labels to the stationary distribution of the Markov chains.

Definition 3.1.3. Let G be a directed network. Rao’s model for randomising G is
defined by a Markov chain starting at G. The states of this Markov chain are all the
directed networks with the same degree sequences as G. If there exists a directed switch
between Gi and Gj then the transition probability pij is given by 1

m
, where m equals

maxi(mi) or an estimate of maxi(mi), and mi is the mobility of Gi.

Figure 3.2(c) shows the state graph and transition probabilities for a simple example,
with m = maxi(mi) = 4.

In Rao’s model, all non-zero transition probabilities are equal to 1/m. Notice that when m
equals maxi(mi), then this is the maximum transition probability for which ∑j 6=i pij ≤ 1
for all i. The state graph of this Markov chain is aperiodic and irreducible. When m =
maxi(mi) the simplified detailed balance equations hold, and hence, like the switching
model, Rao’s model converges to the uniform distribution.

The difference between the three methods introduced by Rao et al. lies in the determi-
nation of (an estimate) of m = maxi(mi). The first method introduced in [103, method

89

3. Run-time of random network models

I] uses an estimate for m that we will denote by m̃. This leads to sampling from a
distribution with probabilities proportional to max(mi, m̃). Notice that the sampling
is uniform if m̃ ≥ m. The second method [103, Method II] is no longer a Markov
chain, the probability of a switch is again set to be 1/m̃, however m̃ is updated to mi

if mi > m̃. The authors prove that this stochastic process converges to the uniform
distribution. Intuitively this makes sense, since after a certain number of switches m̃
should be a constant, which turns the chain into a Markov chain. Finally their third
method [103, Method III] is a combination of methods I and II, where a number of
switches is executed to obtain a good estimate for m and then method I is used with
this estimate. Figure 3.2(c)) shows the state graph of the Markov chain with m̃ = m

for a small network. In the remainder of this chapter we assume that we know the true
maximum m.

The next model that we discuss is the canonical model as introduced in [108]. For a
discussion of this method with respect to undirected networks, we refer the reader to
[31]. The formulation of the canonical method is slightly more complicated than that of
the switching model. This added complexity does however make it is easy to adjust the
model to be more sophisticated. For instance, the authors show that the model is easily
adjusted to incorporate degree-degree correlations.

Definition 3.1.4. Let G be a directed network. The canonical model for randomising
G is defined by a Markov chain starting at G. The states of this Markov chain are all the
directed networks with the same degree sequences as G. If there exists a directed switch
between Gi and Gj then the transition probability pij is given by (1/mi)(mi/mi+mj), with
mi the mobility of Gi. The probability 1/mi corresponds to the probability of selecting a
move from the set of all possible moves at Gi. The probability mi/mi+mj is the probability
of accepting the selected move.

The acceptance probabilities in the canonical model are chosen such that the simplified
detailed balance equations hold:

pij = 1
mi

mi

mi +mj

= 1
mi +mj

= 1
mj

mj

mi +mj

= pji.

Figure 3.2(d) shows the transition probabilities of this Markov chain for a small example.
Hence, this Markov chain also converges to the uniform distribution.

90

3.1. Alternative Markov chains

Finally we discuss the switch and add model as introduced in [6]. This model is slightly
different from the other models in that it involves an additional step after running the
Markov chain.

Definition 3.1.5. Let G be a directed network. The switch and add model for
randomising G is defined by a two-stage process involving a Markov chain starting at
G and a weighting step. The states of this Markov chain are all the directed networks
with the same degree sequences as G. If there exists a directed switch between Gi and
Gj then the transition probability pij is given by 1

mi
with mi the mobility of Gi. The

probability 1
mi

corresponds to the probability of selecting a move from the set of all
possible moves at Gi. To ensure uniform sampling, the weighting step repeats each state
a number of times inversely proportional to its mobility.

The Markov chain component of the switch and add model converges to a distribution
in which states with high mobility are more probable then states with low mobility (see
Example 2.1.2 and Figure 3.2(e)). The introduction of a weighting step is a clever way
to ensure the final distribution is unbiased.

We now have four different Markov chains at our disposal that all converge to the uniform
distribution on sets of labelled directed networks with fixed degree sequences. In the
next two sections we focus on the mixing time and the run-time of these algorithms, to
find out which one is fastest and hence most practical.

3.1.2. Mixing times

In order to create uniform samples using Markov chain based random network models,
we need to run a Markov chain until it reaches its uniform distribution. The mixing
time, τ(ε) of a Markov chain gives us an indication of how many steps are needed to
get within a distance ε from this stationary distribution (see Definition 1.3.9). To find
out how long a Markov chain will actually run, we need to multiply its mixing time by
the time it takes to run each step. We define ts(N) as the step run-time for N steps;
that is the time it takes to run N steps in a chain. The product τ(ε)ts(1) gives us an
estimate of how long it will take in practice for the Markov chain to reach its stationary

91

3. Run-time of random network models

distribution.

It is generally hard to determine the mixing time of Markov chains. In practice, the
switching model is stopped after a rather arbitrary number of switching attempts [105].
However, for small networks, we can compute the complete state graph and it is possible
to calculate the exact mixing time.

In general it is understood that Markov chains with high probability of repeating states
have a higher mixing time than ones with lower probability of repeating states [6]. The
probability of repeating a state Gi is psii = 1−mi/M for the switching model, prii = 1−mi/m

for Rao’s model, pcii = 1 −∑j,|Ei∩Ej |=4 1/mi+mj for the canonical model and psaii = 0 for
the switch and add model. Notice that due to the assumptions in Lemma 3.1.2 mi has
to be smaller than M since switching an edge pair {(u2, x), (u2, y)} results in the same
network. This implies m < M too. Thus, both prii and psaii are always smaller than psii.
The probability pcii is not necessarily smaller than psii. Hence we generally expect that
the switch and add model and Rao’s model have smaller mixing time than the switching
model.

We ran an experiment to obtain the state graphs of the Markov chain for 15 small
directed networks. This was done by recursively enlisting all neighbouring states of
each known state, until no new states are found. We then computed the transition
probabilities for each of the four methods. Finally we determined the exact mixing times
for each chain by taking powers of the transition matrices.

Table 3.1 shows that for small state graphs, the mixing time of the switching model is
nearly always larger than that of Rao’s model, the canonical model and the switch and
add model. Notice that especially for the larger examples the mixing time of the switch-
ing model is much larger than that of the other models. These results are consistent
with the theoretical expectations.

Most networks of interest are much larger than the examples tested above. For larger
networks, the mixing time can not be computed explicitly and needs to be estimated.
We do this by measuring the perturbation of the networks in the Markov chain with
respect to the initial network [115].

92

3.1. Alternative Markov chains

Networks Mixing Times τ(ε)
kin kout # realizations Switching Switch and add Canonical Rao
201 111 3 1 20 10 20
121 121 5 19 33 21 10
122 221 5 37 33 21 10
1022 1112 12 30 26 33 15
0222 2112 15 44 20 36 20
1213 2131 13 78 23 40 25
2321 2231 24 89 20 46 20
21003 11112 22 40 17 42 21
22111 11113 150 50 33 63 36
31220 03221 24 89 20 46 20
22212 32130 136 79 27 60 36
11323 30142 21 173 20 49 29
32213 14321 148 154 34 74 49
12531 31143 5 283 33 21 10
33223 31333 828 143 34 76 37

Table 3.1.: Mixing times of the four different Markov chains for small networks. Here ε = 10−6.
For each small network, the best performing model(s), i.e. with lowest mixing time,
is highlighted in green, and worst performing model(s) in red.

Definition 3.1.6. Let Gi = (V,Ei) and Gj = (V,Ej) be two directed networks with
m = |Ei| = |Ej|. We define the perturbation score of Gi and Gj as

sp(Gi, Gj) = |Ei∩Ej |/m.

In terms of the adjacency matrices Ai and Aj of Gi and Gj the perturbation score
corresponds to the fraction of ones that are common to Ai and Aj. The perturbation
score can also be generalized to non-square matrices.

The mixing time can now be approximated by the step at which the perturbation score
stabilizes. Figure 3.3 shows the perturbation scores of the first 3000 networks in Markov
chains for an Erdős-Rényi random network and a power-law random network2. No-

2Note that in the Barábasi-Albert model m equals the number of edges added at each step, not the

93

3. Run-time of random network models

tice that for both the switch and add model and Rao’s model, the perturbation score
stabilizes faster than that of the switching model.

Figure 3.3.: (a) Perturbation scores for a G(n, p) Erdős-Rényi random network: n=100, p=0.05
and (b) perturbation scores for a Barábasi-Albert network with n=100, m=5 [12].

Our comparison of mixing times shows that the switch and add model, and Rao’s model
generally mix slightly faster than the switching model. However, so far we have ignored
the step run-time of all methods. In the next section we compare the step run-time and
overall run-time of these four methods.

3.1.3. Run-times

In this section we show that with currently available implementations, the three Markov
chains, as defined in Section 3.1.1, are unlikely to improve on the run-time of the switch-
ing model.

The outline of our argument is as follows, (1) the three alternative Markov chains rely
on being able to select an allowed switch uniformly at random in each step. (2) There
are several methods available for selecting a switch uniformly at random, but the fastest
available method selects a switch by randomly checking pairs of edges until an allowed
switch is found. (3) Using this method corresponds to a grouping of the steps in the

total number of edges in the network

94

3.1. Alternative Markov chains

Markov chain of the switching model, and hence is unlikely to improve on the run-time
of the switching model.

(1) To see that all three alternative Markov chains rely on being able to select an allowed
switch uniformly at random, see Definitions 3.1.3, 3.1.4 and 3.1.5. Notice that for each
of these models, a transition probability is defined given there exists a directed switch
between two networks. However, none of these methods mentions how to select such a
switch when running the Markov chain. They all assume that it is possible to select an
allowed switch (a move from the set of available moves) for the current state at random,
and then accept it with the given transition probability.

By inspecting the implementations of these models where available, we found that the
selection of a random move is done by trial and error. That is, edge pairs are selected
at random until a pair is found that is allowed to be switched. We can think of two
alternative methods to select a move at random.

(2) We now discuss these alternative methods and show that neither outperforms the
trial and error method mentioned above.

First, after discussions with Prof. Lewi Stone and Dr. Yael Artzy-Randrup a different
method for randomly selecting allowed moves emerged: compute the mobility mi of
the current state, randomly pick a number k between 1 and mi and enlist all allowed
switches until we find the k-th allowed switch. Enlisting allowed switches is done by
going through all edge pairs in a certain order, while checking if the edges are allowed to
be switched. To save time, this should be done from either the beginning of the list or
the end of the list, depending on whether k is larger or smaller than half the mobility.
We now compare the speed of this method to that of the trial and error method. To
do so we derive the expected number of edge pairs that need to be checked in each
case.

For the trial and error method, we argue that the number of failures (i.e. selecting an
edge pair that is not allowed to be switched) before the first success (finding an edge pair
that can be switched) follows a geometric distribution.

95

3. Run-time of random network models

Definition 3.1.7. The geometric distribution is the discrete probability distribution
of the number X of Bernoulli trials, needed to get one success. Let p be the probability
of success for each Bernoulli trial, then the geometric distribution is given by:

P (X = k) = (1− p)(k−1)p.

The expected value of the geometric distribution equals 1/p.

For the ‘trial and error’ method, the random selection of an edge pair corresponds to a
Bernoulli trial. The probability of success p equals mi/M, since there are mi edge pairs
that are allowed to be switched corresponding to successes, out of a total of M edge
pairs. Hence the expected number of edge pairs that need to be checked by this trial
and error method equals M/mi.

We now discuss the speed of the method where edge pairs are checked until the k-th
switch is found. First of all, for this method the mobility of a state mi needs to be
computed. The fastest way to find the mobility of the networks in the Markov chain is
by using a formula that calculates the change in mobility after each switch and updates
the mobility accordingly [108]. In [108] formulas are introduced to calculate the change
in mobility for simple directed networks. In Section 3.1.4 we derive a much simpler
formula for directed networks. Calculating the change in mobility is generally speaking
very fast, and hence we ignore it in our comparison.

The number of edge pairs needed to be checked before finding the k-th switch follows a
negative hypergeometric distribution.

Definition 3.1.8. The negative hypergeometric distribution is the discrete proba-
bility distribution of the number of selections required until the k-th success is obtained,
when sampling without replacement from a set of L objects of which K are successes.
The hypergeometric distribution is given by:

P (X = x) =

(
K
k−1

)(
L−K
x−k

)
(
L
x−1

) K − k + 1
L− x+ 1

and its expected value equals k L+1/K+1.

We make the assumption that the allowed switches are spread evenly throughout the list

96

3.1. Alternative Markov chains

of edge pairs. Hence, there are M/2 different edge pairs to select from, that is L = M/2.
Out of these mi

2 correspond to successes, an edge pair allowed to be switched, and K =
mi/2. Thus the expected number of edge pairs we need to check equals

k
M
2 + 1
mi

2 + 1 = k
M + 2
mi + 2 .

The expected value for k equals mi/4 since if k > mi

2 we start from the end of the list.
Hence the expected number of pairs to be checked for the ‘enlisting method’ equals
(mi/4)(M+2/mi+2).

Now, if the mobility of a network in the Markov chain is greater than or equal to six,
the expected number of edge pairs to check is greater for the the enlisting method than
for trial and error method. At mi = 6,

(mi/4)(M+2/mi+2) = 6
4
M + 2

8 = 3
16M + 3

8 >
M

6 = M

mi

Hence, the trial and error method is usually faster, since mi will almost always be greater
than five.

Second, we can think of at least one other potential method for the random selection
of moves. Instead of enlisting all allowed switches at each step, we could store the
allowed switches in memory, and update them after applying a switch. For this method
there is a trade-off between speed and memory, since all allowed switches need to be
stored in memory. At this stage we are not aware of a method to update the allowed
switches in a network after applying a switch and hence we were not able to test this
approach. This method may be a worthwhile approach, however one has to keep in
mind that the number of allowed switches in a network can be huge. For instance, we
found over a million allowed switches for a relatively small G(n, p) Erdős-Rényi random
network with 100 nodes and p = 0.2. We expect that updating this list will be very
slow.

We now show that by using the trial and error method of selecting an allowed switch, the
three alternative Markov chains are unlikely to improve on the run-time of the switching
model.

97

3. Run-time of random network models

(3) Selecting an allowed switch by trial and error, is exactly what the switching model
does. That is, at each step in the Markov chain of the switching model, an edge pair
is selected at random and switched if possible. Finding an allowed switch by trial and
error within each step of the Markov chain just corresponds to grouping the steps, as
illustrated in Figure 3.4.

Figure 3.4.: Conceptual illustration of twelve steps in a switching model. At each step a pair,
{ei, fi}, of edges is selected. Red edge pairs are not allowed to switch, whereas
green edge pairs are. Using the trial and error method for the three alternative
Markov chains corresponds to a grouping of the steps of the switching model. That
is, for the same sequence of randomly selected edge pairs, a step does not finish
until an allowed switch is found. Thus, the above sequence of attempted switches
corresponds to just four steps in the three alternative Markov chains.

The repeated states that increase the mixing time of the switching model as compared to
the three alternative Markov chains, are thus still present in these three Markov chains
when using the trial and error method to select an allowed switch. The only difference is
that they are now ‘hidden’ within the steps of the Markov chain. This implies that the
run-time of these alternative models is unlikely to be faster than that of the switching
model.

Both the switch and add model and the canonical model in addition need to compute
the mobility of states, slowing them down as compared to the switching model. Fur-
thermore, for both the canonical model and Rao’s model, once a move is found, it is not
always accepted, which is likely to further slow down these methods as compared to the
switching model.

98

3.1. Alternative Markov chains

To summarize, with currently available algorithms, the run-time of the switching model
is unlikely to be improved on by the three Markov chains discussed here. In fact, all
Markov chains that allow the same set of moves (i.e. allowed switches) as the switching
model, are slowed down by repeated states just as much as the switching model is. Unless
we find a faster way to randomly select a move, it is unlikely to see an improvement on
the run-time of the switching model by a Markov chain with the same set of moves as
the switching model.

In Section 4.1 we discuss another random network model that does converge faster
than the switching model, the Curveball algorithm. The state graph of the Markov
chain corresponding to the Curveball algorithm is structurally different from that of the
switching model.

3.1.4. A formula for change in mobility

In this section we derive a formula for the change in mobility caused by applying one
directed switch. This formula is useful in for instance the canonical model. Our formula
simplifies the one found in [108].

Lemma 3.1.9. Let Gi and Gj be two directed networks with the same labelled node
set {1, 2, . . . , n} and that differ by the directed switch {(x, y), (u, v)} to {(x, v), (u, y)}.
Let mi be the mobility of Gi and let A be the adjacency matrix of Gi. The mobility of
Gj is given by

mj = mi +
∑
r∈R̄

∑
c∈C̄

(−1)Arv+Arc+Auc

where R̄ = {r ∈ {1, . . . , n}\{x, u}|Ary 6= Arv} and C̄ = {c ∈ {1, . . . , n}\{y, v}|Axc 6=
Auc}.

Proof. The directed switch between Gi and Gj corresponds to the following change in
the adjacency matrix A of Gi.

99

3. Run-time of random network models

y v
. . .

... . . .
... . .

.

x . . . 1 . . . 0 . . .
...

...
. . .

...
...

u . . . 0 . . . 1 . . .

. .
.

...
. . .

y v
. . .

... . . .
... . .

.

x . . . 0 . . . 1 . . .
...

...
. . .

...
...

u . . . 1 . . . 0 . . .

. .
.

...
. . .

Let r be a row different from x and u and c a column different from y and v. There are
32 distinct configurations as depicted in Figure 3.5.

Figure 3.5.: There are 32 different 3 × 3 binary matrices with fixed entries in positions
(x, y), (x, v), (u, y), and (u, v). For each of these configurations, we can count
the number of allowed switches. We are interested in the difference between this
number and the allowed number of switches for the configuration where (x, y) and
(u, v) are switched, i.e. where (x, y) = (u, v) = 0 and (x, v) = (u, y) = 1. For most
of these configurations, the number of allowed switches remains equal. The only
configurations where the number of allowed switches changes are the highlighted
ones: it either increases by one (green) or decreases by one (red).

One can check directly that the highlighted configurations are the only configurations
where applying the directed switch changes the number of allowed switches in the con-
figuration. For instance applying the switch to the top right configuration results in
the number of switches increasing from three ({(x, y), (u, v)}, {(x, c), (u, v)}, {(r, y),
(u, v)}) to four ({(x, v), (u, y)}, {(x, v), (r, y)}, {(x, c), (u, y)}, {(x, c), (r, y)}). In the
configurations that are not highlighted, the allowed switches change, but the number of

100

3.2. The configuration model

switches remains equal.

Notice that the eight highlighted configurations are exactly the configurations where
Axc 6= Auc and Ary 6= Arv. The configurations highlighted with red have the property
that applying the switch reduces the number of allowed switches in the configuration
from four to three. The configurations highlighted with green on the other hand have the
property that applying the switch increases the number of allowed switches from three
to four. Furthermore, the configurations highlighted with red all have the property that
the sum Auc+Arv+Arc is an odd number, whereas this sum is even for the configurations
highlighted with green.

This finishes the proof of the Lemma.

3.2. The configuration model

The configuration model [95, 84] is a random network model that is often used to generate
random networks with a given degree sequence. It generates a network with a given
degree sequence from scratch, as opposed to Markov chain models, which randomize a
given network by repeatedly making small changes.

The idea of the configuration model is simple. Given the degree sequence of an undirected
network, assign to each node vi exactly ki ‘stubs’, where ki is the degree of the node as
usual. Now pair up these stubs randomly to form edges. The result is a network with
the desired degree sequence. The directed case is nearly identical: assign to each node
‘in-stubs’ and ‘out-stubs’ and pair these at random.

The configuration model is often used as a null-model for simple directed networks or
simple undirected networks. However, it does not avoid the creation of self-loops or
multiple edges, and in fact often generates networks that contain many multiple edges
[56, 69]. That is, it actually samples from G6 or G8.

In the limit of large network size, the probability of sampling a network with multi-

101

3. Run-time of random network models

ple edges becomes negligible [94, Section 13.2]. However, in practice, when working
with finite networks, one hardly ever obtains a simple network from the configuration
model.

The fact that in practice the configuration model almost always generates multigraphs
makes it unsuitable as a null-model for simple networks. Typically you want to ob-
tain a large sample of random networks to compare to the original network. Using
the configuration model to do so would take an impractically long time. However, the
configuration model has theoretical properties that allow for the analytical derivation
of certain network properties. This is of course extremely useful for hypothesis test-
ing.

The configuration model, as opposed to the switching model and other Markov chains,
has the nice property that the network that is generated is not correlated to the original
network, since it builds a network from scratch. Furthermore, it runs much faster than
the switching model. One run is enough to generate a random network 3.

A recent preprint suggests to combine the configuration model and a Markov chain model
to obtain a random simple network (Zhao [133]). Roughly, this Expand and Contract
method works as follows. Let G ∈ G1 and let S ⊂ G1 be the set of simple undirected
networks with degree sequence equal to that of G. Similarly let S ′ ⊂ G6 be the set
of undirected multigraphs with degree sequence equal to that of G. Define a partition
S0tS1t· · ·tSk of S ′ where Si is the set of networks which contain a total of i multiple-
edges and self-loops, so that S0 = S. The sampling process then follows the following
steps. (1) Randomly sample a network H from S ′ using the configuration model. (2)
Run a Markov chain with respect to S ′, for instance the switching model with respect
to G6, starting at H, but prefer moves that go down in the partition, i.e. that reduce
the number of self-loops and multiple edges. Stop the Markov chain as soon as you
have found a network in S0 ⊂ G1. Zhao proves that this method results in uniform
sampling.

3The configuration model actually does not sample each labelled network with equal probability.
However, the probability of sampling any given network can be derived analytically [94, Section
13.2]

102

3.2. The configuration model

(a) Erdős-Rényi random net-
works

(b) US airlines network (c) C. Elegans neural network

Figure 3.6.: (a) The perturbation scores for five Erdős-Rényi random networks (G(n, p)) for
different edge densities p. We use the stabilisation of the perturbation score as
an estimate for the Markov chain reaching its stationary distribution. The circles
indicate the number of steps needed for the Expand and Contract method to reach
a simple network. (b) The same type of plot for the US airlines network. (c) The
perturbation scores of the Markov chain of the switching model for randomising
the C. Elegans neural network.

This method combines the strengths of the configuration model and the switching model:
it uses the speed of the configuration model to generate a random multigraph that is not
at all correlated to the original network, and then uses the flexibility of the switching
model to obtain a simple network.

We now discuss experiments that compare the run-time of the Expand and Contract
method to the run-time of the switching model. We want to know how many steps are
needed in part (2) of the Expand and Contract method to obtain a simple network.
In particular, we want to know how this compares to the mixing time of the switching
model, i.e. the number of steps the switching model needs to take before reaching
the uniform distribution. We ran the Expand and Contract method and the switching
model on seven different networks; five G(n, p) random networks with n = 100 and p

varying between 0.1 and 0.5, and two real networks, a US transportation network (see
Appendix A.10) and the neural network of C. Elegans (see Appendix A.2). We use the
stabilisation of the perturbation score as an estimate for the number of steps needed for
the switching model to reach its stationary distribution. Figure 3.6 shows the results

103

3. Run-time of random network models

from our experiments.

Notice that for sparse G(n, p) Erdős-Rényi random networks (p = 0.1, p = 0.2), the
Expand and Contract method needs somewhat fewer steps to reach a simple network
than the switching model needs to reach its stationary distribution. For the Erdős-Rényi
networks with p = 0.3 and p = 0.4 the number of steps for both models is of the same
order. However for the dense network p = 0.5 it takes many more steps for the Expand
and Contract method to find a simple network than it does for the switching model to
reach its stationary distribution.

For the US airport network (Figure 3.6(b)) the switching model reaches its stationary
distribution in fewer steps than are needed for the Expand and Contract method to ob-
tain a simple network. For the neural network of C. Elegans, the switching model reaches
its stationary distribution at approximately the same number of steps as it takes the
Expand and Contract method to obtain a simple network.

These experiments indicate that the number of attempted switches needed to obtain a
simple network from the initial multigraph is of a similar order as the number of steps
needed for the switching model to reach its stationary distribution. However, in certain
cases, the Expand and Contract method needs significantly more steps to obtain a simple
network. It appears that the larger and the denser the network, the longer the Expand
and Contract method takes to find a simple network. This is not surprising, since the
run-time is correlated with the probability of selecting multiple edges for switches. In a
large or a dense network this probability can be very small.

Our findings indicate that the Expand and Contract method generally does not improve
on the run-time of the switching method. However, compared to the switching method,
it has the advantage that the random networks it produces are in no way related to the
network that is being randomised. The reason for this is that in its first step it uses the
configuration model to build a network from scratch.

104

3.3. Conclusion

3.3. Conclusion

We discussed three alternative Markov chain models to the switching model for the
randomization of networks. These models are very similar to the switching model as
they allow the same set of moves for each state of the Markov chain. However, they
differ in their transition probabilities. We showed that even though these models may
have faster mixing times than the switching model, their run-time is unlikely to improve
on that of the switching model. This apparent contradiction is explained by the fact
that these alternative Markov chains ‘hide’ switching attempts inside each step of the
Markov chain. We showed that with current techniques, the run-time of the switching
model is likely to be the fastest among Markov chains that allow the same set of moves
(i.e. allowed switches) as the switching model.

The configuration model is a very fast and useful alternative random network model
and should be preferred in cases where a multigraph or a network with fewer edges is
not regarded as a problem. However, if a simple network with exactly the same number of
nodes and edges is sought, then the switching model is more suitable.

The Expand and Contract method, which promises to combine the strengths of both the
configuration model and the switching model, does not seem to improve on the speed of
the switching model in general. Specifically, it seems impractical for dense networks and
for large networks. We have verified this experimentally, however, it would be very useful
to have theoretical results about their relative runtimes.

The Expand and Contract method uses the configuration model as its first step, hence it
similarly produces random networks that are in no way related to the original network.
This is an advantage compared to the switching model, because it is unknown how many
steps are necessary for the switching model to produces a truly uncorrelated network.
In situations where it is practical to use the Expand and Contract method, i.e. where
the time it takes to find a simple network is not prohibitive, it may be the preferred
choice of null-model.

However, the Expand and Contract method has so far only appeared in a preprint,

105

3. Run-time of random network models

and hence care must be taken in adopting this method. In particular, we recommend
thorough checks of the claim that it samples without bias.

None of the alternative random network models presented in this chapter improved signif-
icantly on the speed of the switching model with respect to simple networks. In the next
chapter we will discuss a different Markov chain model that does.

106

4. Curveball algorithms

In Chapter 3 we discussed the run-time of Markov chains designed to randomise directed
networks (G4). In this Chapter we discuss a recently introduced model that improves on
the speed of the switching model: the Curveball algorithm [115].

We show that the Curveball algorithm corresponds to a Markov chain with a different
state graph from that of the switching model. In fact, we show that the state graph of
the switching model with respect to G4 is a subgraph of the state graph of the Curveball
algorithm. We present a proof that the Curveball algorithm converges to the uniform
distribution. This proof is published in [26].

Furthermore, we show that, similarly to the switching model, the Curveball algorithm
provides us with a flexible framework for network randomization. We define variations
of the Curveball algorithm to randomize networks in classes G1,G3,G5,G7 and G8. We
will refer to the Curveball algorithm with respect to G4 as the (original) Curveball
algorithm, the Curveball algorithm with respect to G3 as the Simple Curveball algorithm
and the Curveball algorithm with respect to G1 as the Simple Undirected Curveball
algorithm.

This chapter is organised as follows; Section 4.1 describes the Curveball algorithm and
presents the proof for uniform sampling. Section 4.2 discusses three variations of the
original Curveball algorithm for the randomization of several directed network classes.
Section 4.3 discusses two variations of the Curveball algorithm for the randomization of
undirected networks. In Section 4.4 we discuss the run-time of the Curveball algorithm.
Finally, we draw conclusions in Section 4.5.

107

4. Curveball algorithms

My contributions in this chapter are the following.

• Rephrasing the Curveball algorithm in terms of Markov chain language and proving
that it converges to the uniform distribution. This result is published in [26].

• Introducing three new versions of the Curveball algorithm for directed networks,
including the Simple Curveball algorithm, an adjusted version of the Curveball
algorithm that randomizes simple directed networks. This work is in collaboration
with Dr. Giovanni Strona, and has not yet been published.

• Introducing algorithms similar to the Curveball algorithm for the randomization
of undirected networks without self-loops (G3,G7). This work has not yet been
published.

4.1. The Curveball Algorithm

We now discuss the Curveball algorithm, a random network model for directed networks
with fixed degree sequence. The Curveball algorithm was introduced in [115] and was
shown to converge to its stationary distribution much faster than the switching model.
Strona et al. claimed that this algorithm samples uniformly and supported their claim
by numerical experiments. This section presents a proof of unbiased sampling for the
Curveball algorithm.

The Curveball algorithm was developed to randomize binary matrices with fixed row
and column sums. The special case of square matrices corresponds to randomizing a
directed network with fixed degree sequence. In other words, the Curveball algorithm
may be used to randomize networks from class G4. The original Curveball algorithm
can not be used to randomize undirected networks, since the randomization steps do
not preserve the symmetry of the adjacency matrix of an undirected network. How-
ever, we will introduce versions of the Curveball algorithm with respect to undirected
networks in Section 4.3. We will describe the Curveball algorithm in terms of binary ma-

108

4.1. The Curveball Algorithm

trices, keeping in mind that we are actually interested in using it to randomize directed
networks.

This Section is organised as follows, we first describe the Curveball algorithm and
the corresponding Markov chain. We compare it to the switching model with re-
spect to G4 and use the similarities between the two algorithms to prove that the
Curveball algorithm samples uniformly. Finally we discuss two modifications of the
Curveball algorithm and their impact on the convergence speed and stationary distri-
bution.

4.1.1. Description of the Curveball algorithm

The Curveball algorithm randomizes a binary matrix A using the following steps: (a)
transform A into sets of indices, Ai, for each row i, corresponding to ones in that row 1,
(b) select two of these sets Ai and Aj at random, (c) compare the sets and let Ai−j be
all indices that are in Ai but not in Aj. Similarly define Aj−i. (d) Create a new sets A′i
by removing Ai−j from Ai and adding the same number of elements randomly chosen
from Ai−j ∪Aj−i. Combine Aj\Aj−i with the remaining elements of Ai−j ∪Aj−i to form
A′j

2. (e) Reiterate step (b)-(d) a certain number of times and (f) form a new matrix
from the resulting sets. An example is given in Figure 4.1.

We will refer to one iteration of step (b)-(d) as a trade and the number of exchanged
indices, |A′i\Ai| = |A′j\Aj| as the size of the trade. Notice that after each iteration
of steps (b)-(d) we can form a binary matrix with the same row and column sums as
A.

The Curveball algorithm for a binary matrix A corresponds to a finite discrete-time
Markov chain with state space all binary matrices with row and column sums equal
to those of A. One iteration of step (b)-(d) corresponds to a transition to the next

1Depending on the dimensions of the matrix it may be faster to make sets based on the columns and
depending on the number of zeros and ones in the matrix it may be faster to make sets of the zeros.

2This explicit description of step (d) is based on the implementation of the Curveball algorithm (see
Appendix B.2.1)

109

4. Curveball algorithms

Figure 4.1.: A trade in the Curveball algorithm consists of (a) converting a binary matrix into
sets of indices, Ai, for each row i. In step (b) two rows are selected, in this case
row 1 and 3. (c) The set differences A1−3 and A3−1 are extracted. (d) The set B1

is formed by removing A1−3 from A1 and adding |A1−3| elements randomly chosen
from A1−3 ∪ A3−1, in this case {2, 3, 4}. B3 is formed by removing A3−1 from A3

and adding the remaining elements of A1−3∪A3−1. Step (f) converts the resulting
sets of indices Bi into the matrix B.

state. Notice that it is possible for consecutive matrices to be equal, since either Ai−j
or Aj−i could be empty, and even if they are not, the elements randomly selected from
Ai−j ∪ Aj−i to create A′i could be exactly the elements in Ai−j. This Markov chain is
uniquely described by its transition matrix P = [PAB], with PAB the transition prob-
ability from state A to B, for all states. For the Curveball algorithm, this probability
is non-zero if A and B differ in exactly two rows or if they are identical, otherwise it
is zero. The transition probabilities correspond to the probability of selecting the spe-
cific trade that transforms A into B. In Section 4.1.1 we derive an explicit formula for
PAB.

Comparison to the switching method

The proof of uniform sampling for the Curveball algorithm is similar to the proof of
uniform sampling for the switching model with respect to class G4. As mentioned in
[115], the Curveball algorithm and switching method are ‘in a sense closely related’.
Not only do they correspond to Markov chains on the same state space, every switch of
the switching model corresponds to a trade in the Curveball algorithm and every trade

110

4.1. The Curveball Algorithm

in the Curveball algorithm corresponds to a sequence of switches, potentially of length
zero, of the switching model. This implies that the state graph of the switching model is
a subgraph of the state graph of the Curveball algorithm. For an illustration see Figure
4.2. In the next section we exploit this similarity to prove that the Curveball algorithm
samples uniformly.

Figure 4.2.: (a) There are six different matrices with row sums (2, 2) and column sums
(1, 1, 1, 1). (b) The structure of the state graph for the switching method. Notice
that there are no switches between state A and F, between state B and E, and
between state C and D since these pairs of matrices differ in two switches. (c) The
structure of the state graph of the Curveball algorithm. There are trades between
A and F, between state B and E, and between state C and D.

Proof of uniform sampling

We start this Section by showing that the Markov chain corresponding to the Curveball
algorithm is irreducible and aperiodic. We then derive the transition probabilities and
show that the simplified detailed balance equations hold.

Lemma 4.1.1. The Markov chain corresponding to the Curveball algorithm is irre-
ducible.

Proof. The state graph of the Curveball algorithm is strongly connected since it has a
strongly connected subgraph that includes all its nodes. This is the subgraph corre-
sponding to the state graph of the switching model.

Lemma 4.1.2. The Markov chain corresponding to the Curveball algorithm is aperi-
odic.

111

4. Curveball algorithms

Proof. The Markov chain corresponding to the Curveball algorithm is trivially aperiodic
since step (d) ensures that there is a non-zero probability to repeat each state.

It remains to show that the simplified balance equations hold. To do so, we first derive
the transition probabilities.

Lemma 4.1.3. Let A and B be two binary matrices with equal row and column sums.
The transition probability PAB from A to B is given by

PAB =

2
r(r−1)

si!sj !
(si+sj)! if A and B differ only in row i and j,

1−∑C,C 6=A PAC if A = B,

0 otherwise.

with r the number of rows of A and si = |Ai−j| and sj = |Aj−i| 3.

Proof. The probability of selecting row i and j for a trade is 2/r(r−1). In step (d) the set
Ai−j, of indices in row i but not in row j, is taken from Ai and put together with the set
Aj−i taken from Aj. The resulting set is shuffled, the first si elements are returned to
Ai, and the remaining sj elements to Aj. The probability that shuffling results in state
B, equals the inverse of the number of ways you can select si unordered elements from
a set of si + sj elements. This probability is exactly (si+sj)!/si!sj !.

Notice that PAB only depends on r, si and sj. It is straightforward to see that these are
equal for the reversed trade, and thus PAB = PBA, (see also Figure 4.4(a)). Theorem
4.1.4 follows from Corollary 1.3.7.

Theorem 4.1.4. The Markov chain corresponding to the Curveball algorithm converges
to the uniform distribution.

3These formulae for the transition probabilities are not in correspondence with those presented in
[115] for the small example of matrices with row and column sum equal to (1, 2, 1). However, these
formulae correspond to the algorithm as found in the Supplementary code of [115]. The probabilities
presented in [115] correspond to the Good-Shuffle algorithm discussed in Section 4.1.2.

112

4.1. The Curveball Algorithm

4.1.2. Modifying the Curveball algorithm

In this section we discuss the effect of two modifications of the Curveball algorithm.
When the probabilities of repeating states are high, the mixing time of a Markov chain
increases [6]. It is thus desirable to refrain from unnecessary repetitions. The following
two situations cause repeated states in the Curveball algorithm: firstly, when two rows
are selected that do not allow any trades and secondly when the shuffling of Ai−j ∪Aj−i
results in sets A′i = Ai and A′j = Aj, in other words, when this shuffling leaves row i

and j unchanged. We will refer to the former as no-trade row-pairs and to the latter as
no-trade shuffles.

Excluding no-trade Shuffles

We first show that the Curveball algorithm may be adjusted by excluding no-trade
shuffles, and that this modification does not affect random sampling for all matrices
except a pathological class P of matrices. The no-trade shuffles can be removed by
modifying step (d). Instead of always accepting the newly created sets A′i and A′j, this
step should be repeated until A′i 6= Ai and A′j 6= Aj, in other words until an actual trade
has been made. The transition probability for distinct neighbouring states A and B

then becomes
PAB = 2

r(r − 1)
si!sj!

(si + sj)!− (si!sj!)
Again PAB only depends on r, si and sj and thus PAB = PBA. Furthermore, this Markov
chain is irreducible by the same argument as before. Finally, we need to find out un-
der which conditions this chain is aperiodic. The argument for the aperiodicity of the
Curveball algorithm can not be used, since it relied on the inclusion of no-trade shuf-
fles.

Lemma 4.1.5. Let P be the class of matrices with column sums (1, . . . , 1, 0, . . . , 0, r, . . . , r)
with exactly r columns summing to 1, up to reordering of columns. Here r is the num-
ber of rows of the matrix. The Markov chain corresponding to the Curveball algorithm
excluding no-trade shuffles for a matrix A is periodic if and only if A ∈ P .

113

4. Curveball algorithms

Proof. It is clear that the Markov chain is aperiodic if A contains no-trade row-pairs.
Furthermore, if A contains a row-pair i, j such that max(|Ai−j|, |Aj−i|) > 1 then there
are two states that differ from A by exactly one trade, and that also differ from each
other by a trade. This is illustrated in Figure 4.3 and implies that the Markov chain is
aperiodic.

1 0 0
1 10

100
11 0

10 0
1 10

Figure 4.3.: When a matrix A contains two rows i and j with max(|Ai−j |, |Aj−i|) > 1 it con-
tains, up to row permutations, a submatrix of one of the forms above. This implies
that there is a path of three trades as well as a path of two trades starting and
ending at A. Thus state A is aperiodic.

Thus the only matrices A for which the Markov chain could potentially be periodic are
those for with |Ai−j| = |Aj−i| = 1 for all row-pairs i and j. Such matrices correspond,
up to permutations of the columns, to an identity matrix and columns of all ones or all
zeros. These are exactly the matrices in class P .

To see that the Markov chain is indeed periodic for matrices A ∈ P , notice that columns
consisting of all ones or all zeroes are left invariant by the Curveball algorithm. Thus
without loss of generality we may assume that A is an r by r identity matrix. It is easy
to see that each trade corresponds to a column-swap, in other words a transposition of
columns. The identity permutation is even and can thus only be formed by an even
number of transpositions of columns, which means exactly that this Markov chain is
2-periodic.

To summarize, no-trade shuffles may almost always be removed from the Curveball
algorithm without affecting the stationary distribution of the Markov chain. In practice
all matrices of interest are randomized without bias. From now on, we will refer to
this modified Curveball algorithm, for matrices not in P , as the Good-shuffle Curveball
algorithm 4.

4The Good-Shuffle algorithm is publicly available, see Appendix B.1.1

114

4.1. The Curveball Algorithm

Excluding no-trade row-pairs

Figure 4.4.: (a) When all repeated states are excluded from the Curveball algorithm, PAB is not
always equal to PBA. In this example, both A1−2 and A2−1 contain two elements,
thus s1 = s2 = 2. There are two row pairs in A that can make trades, resulting in
PAB = 1/10. This does not equal PBA, since there are three row pairs in B that
can make trades and hence PBA = 1/15. (b) The number of binary matrices with
row sums (2, 2, 2) and column sums (2, 1, 2, 1) in a biased sample, generated by the
modified Curveball algorithm, where all repeated states are excluded. The sample
consists of 10,000 matrices sampled at every 1,000th trade of the Markov chain.

We now show that repeats caused by no-trade row-pairs should not be excluded from the
Curveball algorithm, otherwise sampling is no longer guaranteed to be uniform. This
is in contradiction with a comment made by Strona. et al that removing all repeated
states does not affect the Curveball algorithm. Their argument is made plausible by
presenting the transition matrix of a single example where all repeats are removed [115,
Supplementary Information, Table 1]. However, it is a coincidence that sampling is
uniform for this example. We give another example to show that in general sampling
may be biased.

To remove repeats caused by no-trade row-pairs, step (b) is modified: instead of ran-
domly selecting any row-pair, randomly select a row-pair that can make trades. The tran-
sition probability for distinct neighbouring statesA andB then becomes

PAB = 1
ptr(A)

si!sj!
((si + sj)!− si!sj!)

with ptr(A) the number of row-pairs in A that can make trades. In this Markov chain,
PAB is no longer guaranteed to equal PBA. See Figure 4.4(b) for an example where

115

4. Curveball algorithms

Figure 4.5.: The transition probabilities of the Curveball algorithm without repeated states,
for all matrices with row sums (2, 2, 2) and column sums (2, 1, 2, 1).

they differ. Figure 4.5 shows all binary matrices with row sums (2, 2, 2) and column
sums (2, 1, 2, 1), and the transition probabilities for the Curveball algorithm without
repeated states (i.e. without no-trade row-pairs and no-trade shuffles). The Markov
chain corresponding to this example is irreducible and aperiodic, as can be checked from
its transition matrix in Figure 4.5. Furthermore, one can verify that the detailed bal-
ance equations hold for π = 1/42(2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3). Thus, the Markov
chain converges to π and not to the uniform distribution. It is less likely to gener-
ate matrix A, F or K than the other matrices, as shown experimentally in Figure
4.4(b).

4.1.3. Numerical results

We now compare the performance of the Curveball and the Good-Shuffle Curveball
algorithm. In Table 4.1 the mixing time (see Definition 1.3.9) and step runtime (see
Section 3.1.2) of the Curveball and Good-Shuffle algorithms are listed for nine small
matrices. The Good-Shuffle Curveball algorithm generally mixes faster, which can be
explained by the exclusion of some of the repeated states. However, there is a trade-off in
terms of step runtime, since step (d) is more complicated for the Good-Shuffle algorithm.
Indeed, Table 4.1 clearly shows that the step runtime is longer for the modified algorithm
than for the original algorithm. Overall, the Good-Shuffle algorithm almost always
outperforms the original Curveball algorithm.

116

4.1. The Curveball Algorithm

Curveball Good-Shuffle
Row Column State Mixing Step Total Mixing Step Total
sums sums count τ(ε) ts(n) ts(τ(ε)) τ(ε) ts(n) ts(τ(ε))
1,2,1 1,2,1 5 33 0.668 0.022 19 0.888 0.017
2,2,1,1 1,2,1,2 34 48 0.704 0.034 30 0.963 0.029
3,1,3 2,2,2,1 7 74 0.520 0.038 54 0.628 0.034
2,2,2,2 1,1,4,2 12 35 0.734 0.026 13 1.104 0.014
2,1,0,2,1 3,1,0,1,1 18 95 0.528 0.050 59 0.655 0.039
3,2,1,1,1 1,1,3,2,1 141 95 0.821 0.082 69 0.875 0.060
2,2,0,3,2 2,2,3,1,1 120 99 0.539 0.053 77 0.710 0.055
1,1,4,2,2 2,3,2,1,2 198 101 0.666 0.067 75 0.874 0.066
3,1,2,4,3 2,4,2,3,2 237 92 0.647 0.059 64 0.855 0.055

Table 4.1.: Mixing times and run times of the Curveball and Good-Shuffle algorithms for nine
small matrices. Here ε = 10−6 and n = 1000. The total run-times are approximate,
computed from the mixing and step times. Specifically ts(τ(ε)) is computed as the
product of τ(ε) and ts(n)/n.

Most matrices of interest are much larger than the above examples. Besides, if all
matrices with given row and column sum can be enumerated, there is no need to
use a Markov chain; sampling can be done directly. For larger matrices, the mix-
ing time needs to be estimated. This can be done by measuring the perturbation of
each matrix in the Markov chain with respect to the initial matrix (see Section 3.1.2).
The mixing time is approximated by the step at which the perturbation score stabi-
lizes.

Figure 4.6 shows that for a 10 × 10 matrix, the perturbation scores of the Curveball
and Good-Shuffle algorithm stabilize at roughly the same time. For a 100× 100 matrix
the perturbation scores are indistinguishable. This suggests that for larger matrices,
it takes roughly the same number of steps to reach the uniform distribution for both
algorithms. There is a good explanation for this: the sizes si and sj of the sets Ai−j and
Aj−i are larger for larger matrices. For large si and sj, the difference between transition
probabilities

PGood−Shuffle
AB − PCurveball

AB = 2
r(r − 1)

(
si!sj!

(si + sj)!− (si!sj!)
− si!sj!

(si + sj)!

)
,

117

4. Curveball algorithms

Curveball,
Curveball,
Curveball,
Curveball,
Curveball,

Good-Shuffle with p=0.5
Good-Shuffle with p=0.4
Good-Shuffle with p=0.3
Good-Shuffle with p=0.2
Good-Shuffle with p=0.1

Curveball,
Curveball,
Curveball,
Curveball,
Curveball,

Good-Shuffle with p=0.5
Good-Shuffle with p=0.4
Good-Shuffle with p=0.3
Good-Shuffle with p=0.2
Good-Shuffle with p=0.1

Figure 4.6.: Due to the large variance in perturbation scores for different runs of each Markov
chain, average perturbation scores over 100 runs are shown. (a) Five random
10 × 10 binary matrices were created, by letting each matrix entry be one with
probability either 0.1, 0.2, 0.3, 0.4 or 0.5. For each matrix, the perturbation
scores of the Curveball and Good-Shuffle algorithm stabilize at roughly the same
point, after about 50 steps. (b) The same experiment was repeated for 100× 100
matrices, here the perturbation scores of the Curveball and Good-Shuffle algorithm
are indistinguishable.

becomes negligible, since si!sj!� (si + sj)!.

The step runtime of the Good-Shuffle algorithm is still longer than that of the Curve-
ball algorithm. Thus, the Curveball algorithm runs faster than the Good-Shuffle algo-
rithm.

4.2. Curveball algorithms for directed networks

We first focus on simple directed networks, i.e. class G3 from Chapter 2. We would
like to use the fast Curveball method, instead of the switching model, to randomize
such networks. However, certain trades of the Curveball algorithm will create self-
loops (trades that introduce diagonal elements in the adjacency matrix). By making
a small adjustment to the Curveball algorithm, we can use it as a random network
model for simple directed networks (G3). We call this algorithm the Simple Curveball
algorithm.

118

4.2. Curveball algorithms for directed networks

The Curveball algorithm was designed to randomize binary matrices. Here we are in-
terested in randomizing the n × n adjacency matrix A of a simple directed network
G = (V,E), where n is the number of nodes in the network. The matrix A has zeroes
on its diagonal, since G does not contain self-loops. We now describe the Simple Curve-
ball algorithm, which only differs from the Curveball algorithm in step (c) (see Section
4.1.1).

The Simple Curveball algorithm uses the following steps. Let A be the adjacency matrix
of a simple directed network G. (a) Transform A into sets of indices, Ai for each row i,
corresponding to the ones in that row. Note that Ai does not contain i. (b) Select two of
these sets Ai and Aj at random. (c) Compare these sets and let Ai−j be all indices that
are in Ai but that are not in Aj and that are not equal to j. Similarly define Aj−i. (d)
Create a new set Bi by removing Ai−j from Ai and adding the same number of elements
randomly chosen from Ai−j ∪ Aj−i. Combine Aj\Aj−i with the remaining elements of
Ai−j ∪ Aj−i to form Bj. (e) Reiterate step (b)-(d) N times, for a certain fixed number
N , and (f) form a new matrix from the resulting sets.

It is important to notice the following two properties of the Simple Curveball algorithm.
Firstly, the trades that are absent in the Simple Curveball algorithm as compared to
the Curveball algorithm are exactly those that introduce self-loops. That is, the indices
that would introduce self-loops are explicitly absent from a trade: Ai−j does not contain
j. Secondly, any switch in the switching model with respect to G3 corresponds to a
trade of size one in the Simple Curveball algorithm: if (x, y) and (u, v) are allowed to
be switched, then y ∈ Ax−u and v ∈ Au−x. Hence, if row x and row u are selected for a
trade, there is a non-zero probability that this trade coincides with the switch to (x, v)
and (u, y). We now derive the transition probabilities of the Simple Curveball algorithm,
in order to find its stationary distribution.

Lemma 4.2.1. Let A and B be two n × n binary matrices with zero diagonal and
equal row and column sums. The transition probability PAB from A to B, in the Simple

119

4. Curveball algorithms

Curveball algorithm, is given by

PAB =

2
n(n−1)

si!sj !
(si+sj)! if A and B differ only in row i and j,

1−∑C,C 6=A PAC if A = B,

0 otherwise.

Here si = |Ai−j| and sj = |Aj−i|.

Proof. The probability of transitioning from a state A to another state B that differs in
a trade between row i and j can be found as follows. The probability of selecting row i

and j equals 2/n(n−1). The probability that shuffling Ai−j ∪Aj−i results in state B equals
the inverse of the number of ways you can select si unordered elements from a set of
si + sj elements. This probability equals si!sj !/(si+sj)!.

Theorem 4.2.2. Let G ∈ G3. If the Markov chain corresponding to the switching model
for G with respect to G3 is irreducible, then the Markov chain of the Simple Curveball
algorithm converges to the uniform distribution on all simple directed networks with the
same degree sequences as G.

Proof. The state graph of the switching model with respect to G3 is a subgraph of the
state graph of the Simple Curveball algorithm. Hence, irreducibility for this version of
the switching model implies irreducibility for the Markov chain of the Simple Curveball
algorithm. The Markov chain of the Simple Curveball algorithm is always aperiodic,
since there is a non-zero probability of repeating each state, due to no-trade shuffles (see
Section 4.1.2). Finally the simplified detailed balance equations hold due to an argument
similar to that for the Curveball algorithm.

The Markov chain of the Simple Curveball algorithm is not always irreducible. For
instance, it is reducible for the directed 3-cycle (see Figure 2.5). For completeness, we
discuss how this issue can be resolved. However, for most networks, the Markov chain
of the Simple Curveball algorithm will be irreducible.

120

4.2. Curveball algorithms for directed networks

We may introduce a triangle reorientation move (see Definition 2.2.5). The Adjusted
Simple Curveball algorithm attempts a trade with probability pt (for a chosen fixed pt)
and a triangle reorientation move with probability 1− pt. A triangle reorientation move
proceeds as follows. (a) Randomly select a set Ai. (b) Randomly select an element j
from Ai. (b) Randomly select an element k from Aj. (c) If k 6= i, i ∈ Ak, i /∈ Aj,
j /∈ Ak and k /∈ Ai then replace j by k in Ai, replace k by i in Aj and replace i by j in
Ak.

Lemma 4.2.3. The transition probabilities PAB of the Adjusted Simple Curveball al-
gorithm are given by

PAB =

pt
2

n(n−1)
si!sj !

(si+sj)! if A and B differ in a trade between

row i and j,

(1− pt) 1
n

(
1

|Ai||Aj | + 1
|Aj ||Ak|

+ 1
|Aj ||Ai|

)
if A and B differ in a triangle re-

orientation involving rows i, j, k,

1−∑C 6=A PAC if A = B,

0 otherwise.

Proof. The probability of transitioning from a state A to another state B that differ
in a triangle reorientation from (i, j), (j, k), (k, i) to (i, k), (k, j), (j, i) can be found as
follows. First notice that there are three different ways of selecting this triangle move,
corresponding to selecting set Ai, Aj or Ak in step (a). In each case, the probability
of attempting a triangle reorientation is equal to 1− pt and the probability of selecting
the set equal 1/n. Now if we selected set Ai, then the probability of selecting j ∈ Ai

equals 1/|Ai| and the probability of selecting k ∈ Aj equals 1/|Aj |. Similarly, for set Aj, the
probability of selecting k ∈ Aj and i ∈ Ak equals 1/|Aj ||Ak| and for set Ak, the probability
of selecting i ∈ Ak and j ∈ Ai equals 1/|Ak||Ai|. Hence the total probability of switching
from A to B equals (1− pt) 1

n

(
1

|Ai||Aj | + 1
|Aj ||Ak|

+ 1
|Aj ||Ai|

)
.

In particular the simplified detailed balance equations hold for the Adjusted Simple
Curveball algorithm.

We ran experiments to verify that the Simple Curveball algorithm converges to its sta-

121

4. Curveball algorithms

Figure 4.7.: The perturbation score at each step in the Simple Curveball algorithm (solid) and
the switching model with respect to G3 (dashed) as compared to the initial net-
work. We randomise five Erdős-Rényi random networks G(n, p) with different edge
densities p. The perturbation score stabilizes much earlier for the Simple Curve-
ball algorithm than for the switching algorithm, indicating faster convergence to
the stationary distribution.

tionary distribution faster than the switching model with respect to G3 does. We use
the perturbation score as an estimate of the mixing time (see Section 3.1.2). Figure 4.7
shows that indeed it converges faster, especially for networks with high edge density. The
Curveball algorithm furthermore has shorter step run-times than the switching model,
making it faster still (see Section 4.4). We recommend using the Simple Curveball algo-
rithm instead of the switching model for the randomization of simple directed networks,
especially when randomizing large or dense networks.

Next we look at the Curveball algorithm for directed multigraphs, classes G7 and G8.
The adjacency matrix of a multigraph is no longer binary, it may contain other positive
integers besides 0 and 1. The main difference from the Curveball algorithm is that we
no longer have sets of indices, Ai, instead we obtain multi-sets, where indices may occur
more than once. We will use square brackets, [], to denote a multiset. We write |[]| for
the size of a multiset taking into account the multiplicity of elements. Similarly to the
switching model with respect to G8, the Curveball algorithm simplifies for the class of
multigraphs.

The Curveball algorithm with respect to G8 randomizes a matrix A using the following
steps: (a) transform A into multisets of indices, Ai, for each row i, corresponding to
non-zeroes in that row, (b) select two of these multisets Ai and Aj at random, (c) create

122

4.2. Curveball algorithms for directed networks

a new multiset Bi by randomly selecting |Ai| indices from Ai ∪ Aj, and let Bj be the
multiset of remaining indices. (d) Reiterate steps (b) and (c) N times, for a certain
fixed number N , and (e) form a new matrix from the resulting multisets. Figure 4.8
illustrates this algorithm.

Figure 4.8.: A trade in the Curveball algorithm with respect to G8 consists of (a) converting
the adjacency matrix A of a directed multigraph into multisets of indices, Ai, for
each row i. In step (b) two rows are selected, in this case row 1 and 3. (c) Let Bi
be a multiset of |Ai| randomly selected elements from the multiset Ai∪Aj . Let Bj
be the multiset of remaining elements from Ai∪Aj . Steps (b) and (c) are repeated
N times, before using step (e) to convert the resulting multisets of indices Bi to
the matrix B.

We may similarly define the Curveball algorithm with respect to directed multigraphs
without self-loops (G7). The steps to randomize a matrix A with zeros on its diagonal
are: (a) transform A into multisets of indices, Ai, for each row i, corresponding to non-
zeroes in that row. Notice that i /∈ Ai. (b) Select two of these multisets Ai and Aj at
random. (c) Let Ai−j be the multiset Ai with all occurrences of j removed. Similarly
define Aj−i. (d) Create a new multiset Bi by removing Ai−j from Ai and adding |Ai−j|
randomly selected elements from Ai−j∪Aj−i. Let Bj be the multiset formed by removing
Aj−i from Aj and adding the remaining indices of Ai−j∪Aj−i. (e) Reiterate steps (b)-(d)
N times, for a certain fixed number N , and (f) form a new matrix from the resulting
multisets.

123

4. Curveball algorithms

We will not derive the stationary distributions for the Curveball algorithms with respect
to classes G7 and G8. However, we give an outline of how this could be done. To check
irreducibility of the Markov chain, we can use the irreducibility of the Markov chain of
the switching model. Every switch in the switching model with respect to classes G7 and
G8 can again be shown to correspond to a trade of size one in the corresponding Curveball
algorithm. Aperiodicity of the Markov chain follows from each state having a non-zero
probability of being repeated (a no-trade shuffle). Finally the transition probabilities
will need to be derived to find the stationary distribution. Notice that the simplified
detailed balance equations no longer hold. For instance, in Figure 4.8 the trade from A

to B is more likely than the trade from B to A since there are multiple ways of selecting
the trade (due to 2 occurring with multiplicity 2 in A1).

4.3. Curveball algorithms for undirected networks

With a little more effort, the Curveball algorithm can also be used to randomize simple
undirected networks (G1). We define the Simple Undirected Curveball algorithm as
follows.

Let A be the (symmetric) adjacency matrix of a simple undirected network G. (a)
Transform A into sets of indices, Ai for each row i, corresponding to the ones in that
row. (b) Select two of these sets Ai and Aj at random. (c) Compare these sets and let
Ai−j be all indices that are in Ai but that are not in Aj and that are not equal to j.
Similarly define Aj−i. (d) Create a new set Bi by removing Ai−j from Ai and adding the
same number of elements randomly chosen from Ai−j∪Aj−i. Combine Aj\Aj−i with the
remaining elements of Ai−j ∪Aj−i to form Bj. (d′) For each index k ∈ Bi\Ai, replace j
by i in Bk, similarly for each l ∈ Bj\Aj, replace i by j in Bl. (e) Reiterate step (b)-(d)
N times, for a certain fixed number N , and (f) form a new matrix from the resulting
sets.

Notice that step (d′) is well-defined: k ∈ Bi\Ai implies k /∈ Ai and k ∈ Aj. Furthermore,
since A is symmetric, this also implies that i /∈ Ak and j ∈ Ak, thus we can replace j by
i in Ak to obtain Bk. Similarly l ∈ Bj\Aj implies that i is an element of Al and that

124

4.3. Curveball algorithms for undirected networks

Figure 4.9.: A trade in the Simple Undirected Curveball algorithm consists of (a) converting a
symmetric adjacency matrix of an undirected network into a sets of indices, Ai, for
each row i. In step (b) two rows are selected, in this case row 2 and 3. In step (c) the
sets A2−3 = {1, 3, 4}\({2, 4, 5}∪{3}) = {1} and A3−2 = {2, 4, 5}\({1, 3, 4}∪{2}) =
{5} are extracted. (d) The set B2 is formed by removing A2−3 from A2 and adding
|A2−3| elements randomly selected from A2−3 ∪ A3−2. Similarly B3 is formed by
removing A3−2 from A3 and adding the remaining elements of A2−3∪A3−2. In this
case we obtain B2 = {3, 4, 5} and B3 = {1, 2, 4}. (d′) To ensure the matrix remains
symmetric, we need to update the rows corresponding to the indices involved in
the trade. In this case indices 1 and 5 were traded. We update row 1 by replacing
index 2 by 3 and we update row 5 by replacing the index 3 by 2. We now obtain
sets of indices corresponding to another symmetric matrix. In step (e) of the
algorithm the steps (b),(c),(d) and(d′) are repeated. Step (f) builds a symmetric
matrix from the resulting sets of indices.

j is not. And thus, replacing i by j in Al is well-defined. Step (d′) ensures that B is a
symmetric matrix.

Also notice that, similarly to the Simple Curveball algorithm, the Simple Undirected
Curveball algorithm does not introduce any self-loops. This is achieved by explicitly
removing the indices that would introduce self-loops from trades. That is, if present, j
is removed from Ai and i from Aj. Figure 4.9 illustrates the Simple Undirected Curveball
algorithm.

We now show that the state graph of the switching model with respect to G1 is a subgraph
of the state graph of the Simple Undirected Curveball algorithm.

125

4. Curveball algorithms

Lemma 4.3.1. Let G,G′ ∈ G1 such that G and G′ differ by a switch. There is a trade
of size one in the Simple Undirected Curveball algorithm from G to G′.

Proof. Without loss of generality we may assume that G and G′ differ by a switch
from {x, y} and {u, v} to {x, v} and {u, y}. Let A be the adjacency matrix of G, then
y ∈ Ax−u since the edge {x, y} is an edge of G, the edge {u, y} is not and y can not be
equal to u since {u, y} ∈ E ′ and G′ is a simple network. Similarly we find that v ∈ Au−x
and hence the trade that swaps y and v between rows x and u results in the network
G′.

For an illustration, see Figure 4.10.

Figure 4.10.: Both switch 1 and switch 2 can be realized by the Simple Undirected Curveball
algorithm. Switch 1 is realised by either selecting row 1 and 3, or row 2 and 4 in
matrix A (if the shuffling results in the unique trade of size 1). Similarly switch
2 is realised by either selecting row 1 and 4, or row 2 and 3.

In fact, Figure 4.10 shows that for each switch in the switching model, there are two dif-
ferent trades of size 1 in the Simple Undirected Curveball algorithm.

Lemma 4.3.2. Let A and B be two symmetric n×n binary matrices with zero diagonal
and equal row and column sums. The transition probability PAB from A to B, in the

126

4.3. Curveball algorithms for undirected networks

Simple Undirected Curveball algorithm, is given by

PAB =

2
n(n−1)

(
si!sj !

(si+sj)! + sk!sl!
(sk+sl)!

)
if A and B differ by a trade of size one, between rows

i and j, involving columns k and l,

2
n(n−1)

si!sj !
(si+sj)! if A and B differ in a trade of size more than one

between row i and row j,

1−∑C,C 6=A PAC if A = B,

0 otherwise.

with si = |Ai−j|, sj = |Aj−i|, sk = |Ak−l| and sl = |Al−k|.

Proof. When matrices A and B differ by a trade of size 1 between rows i and j and
involving columns k and l, then they also differ by a trade of size 1 between rows k and
l involving columns i and j. Hence, we need to add the probabilities of selecting either
one of these trades. When A and B differ in trade of size larger than one, there is just
one unique row-pair that corresponds to this trade, hence we find the usual transition
probability.

Theorem 4.3.3. Let G ∈ G1. If the Markov chain corresponding to the switching model
for G with respect to G1 is irreducible, then the Markov chain of the Simple Undirected
Curveball algorithm converges to the uniform distribution on all simple directed networks
with the same degree sequences as G.

Proof. The state graph of the switching model with respect to G1 is a subgraph of the
state graph of the Simple Undirected Curveball algorithm. Hence, irreducibility for this
version of the switching model implies irreducibility for the Markov chain of the Simple
Undirected Curveball algorithm. The Simple Undirected Curveball algorithm is always
aperiodic, since there is a non-zero probability of repeating each state, due to no-trade
shuffles (see Section 4.1.2). Finally the simplified detailed balance equations hold due
to an argument similar to that for the Curveball algorithm.

We ran experiments to verify that the Simple Undirected Curveball algorithm converges
to its stationary distribution faster than the switching model does. Figure 4.11 indicates

127

4. Curveball algorithms

Figure 4.11.: The perturbation score at each step in the Simple Undirected Curveball algorithm
(solid) and the switching model with respect to G1 (dashed) as compared to an
initial network. We randomise five Erdős-Rényi random networks G(n, p) with
different p. The Simple Undirected Curveball algorithm converges faster than the
switching model with respect to G1.

that it does indeed, in particular for networks with high edge density. We recommend
using the Simple Undirected Curveball algorithm instead of the switching model for
the randomization of simple undirected networks, especially when randomizing large or
dense networks.

Finally, we introduce the Curveball algorithm with respect to G5, multigraphs without
self-loops. Similarly as for directed multigraphs, sets of indices are replaced by multisets.
This algorithm randomizes a symmetric matrix with positive integers and zeroes on its
diagonal using the following steps. (a) Transform a matrix into multisets of indices Ai
for each row. Notice that i /∈ Ai. (b) Select two multisets Ai and Aj at random. (c)
Form the multisets Ai−j and Aj−i by removing all occurrences of j from Ai and all
occurrences of i from Aj respectively. (d) Form a new multiset Bi by removing Ai−j

from Ai and adding |Ai−j| randomly selected elements from Ai−j ∪Aj−i and form Bj by
removing Aj−i from Aj and adding the remaining elements from Ai−j ∪Aj−i. (e) Repeat
steps (b)-(d) a certain number of times and (f) form a new symmetric matrix from the
resulting multisets.

We do not derive the stationary distribution for the Curveball algorithm with respect to
G5. As for the Curveball algorithm with respect to directed multi-graphs, the simplified
detailed balance equations will no longer hold.

128

4.4. The run-time of the Curveball algorithm

4.4. The run-time of the Curveball algorithm

So far, we have only discussed the speed of the Curveball algorithms in terms of their
mixing time. The original Curveball algorithm mixes faster than the switching model
[115, 106]. Similarly, the Simple Curveball algorithm (see Section 4.2) and the Simple
Undirected Curveball algorithm (see Section 4.3) mix faster than the switching model
with respect to classes G3 and G1 respectively. However, as observed in Section 3.1.2,
in order to compare the run-time of Markov chains, we also need to take into account
the step run-time of the algorithms. In this section we show that the step run-time
of the Curveball algorithms is significantly shorter than that of the switching mod-
els. These two properties of Curveball algorithms, the short step-run time and the fast
mixing time, result in algorithms which run dramatically faster than switching mod-
els.

Here, we compare the step run-time of the original Curveball and Simple Curveball algo-
rithm to the step run-time of the switching model with respect to G4 and G3 respectively.
To do so, we randomise three different real-world directed networks: the neural network
of C. Elegans (see Appendix A.2), the Enron email network (see Appendix A.5) and
a network of air traffic between airports in the US (see Appendix A.10). If present,
we remove multiple edges and self-loops before running the Markov chains, so that we
start with a simple network. For each Markov chain and each network, we measured
the run-time of taking 1000 steps, that is, for attempting either 1000 trades or 1000
switches. Table 4.2 shows the results of this experiment.

The step run-time of the Curveball algorithm is significantly shorter than that of the
switching model for the three directed networks. We are not certain what causes this
difference, but expect it has to do with the fact that the Curveball algorithm works
with adjacency sets, whereas the switching model uses the adjacency matrix. Ad-
jacency sets are known to be an efficient storage structure for networks [94, Section
9.4].

Even though experimentally it is clear that the mixing time of the Curveball algorithms
is much faster than that of the switching model, there is no theoretical proof of this.

129

4. Curveball algorithms

Networks Step-runtimes ts(1000) in seconds
Name n m Curveball G3 Curveball G4 Switching G3 Switching G4

C. Elegans 297 2345 0.569 1.045 9.488 9.612
Enron 22477 53285 0.540 0.528 116.576 117.427
US airports 755 8228 1.453 1.038 281.818 284.814

Table 4.2.: The run-time in seconds for executing 1000 steps with the Curveball algorithm (see
Appendix B.1.1 and switching model (see Appendix B.1.6) with respect to classes
G3 and G4 for three different simple directed networks. The Curveball algorithm is
always by far faster than the switching model.

There are few theoretical results available for rapid mixing of the switching model. Recall
that a Markov chain is called rapid mixing if its mixing time is bounded by a polynomial
expression (Definition 1.3.10). For the special case of regular and semi-regular networks
[41, 65, 46], the polynomial upper bound for the mixing time was found using a multi-
commodity flow argument [60, 111]. These proofs rely on defining a special class of
paths between all states in the state graph. Paths are chosen in such a way that the
load on each edge (the number of paths it takes part in) is relatively small. The mixing
time can then be bounded from above in terms of a product of these edge loads and the
inverse of their transition probabilities.

Unfortunately the multi-commodity flow method can not be used to prove rapid mixing
for the Curveball algorithm. The same class of paths could be used, but the argument
breaks down when estimating the transition probabilities. The reason for this is that
the transition probabilities in the Curveball algorithm can be exponentially small with
respect to the number of vertices n in a network, leading to an exponential factor in the
upper bound.

We do not believe that the small transition probabilities are an actual obstruction to
fast mixing of the Curveball algorithms, since each state also has a corresponding ex-
ponential number of neighbouring states. The fastest mixing Markov chain on N states
has the complete graph as its state graph, with all transition probabilities equal to 1/N.
With an exponentially large state space, these probabilities are also exponentially small.
Intuitively, the Curveball algorithm is much closer to this optimal situation than the

130

4.5. Conclusion

switching method.

It appears that an altogether different method is needed to find a theoretical upper
bound for the mixing time of the Curveball algorithm. This is a difficult, but important
open problem. The Curveball algorithm seems to be a step in the right direction for the
fast generation of random directed networks. In Appendix C we illustrate several state
graphs of the Curveball algorithm for regular graphs of small size. We hope that the
symmetry of these state graphs may be exploited to estimate mixing times. This is left
as future work.

4.5. Conclusion

We started this chapter by discussing the original Curveball algorithm and proving
that it converges to the uniform distribution. We recommend the use of the Curveball
algorithm for the randomization of directed networks (G4), as it is currently the fastest
method to produce unbiased samples. Furthermore, it is best to leave the Curveball
algorithm as it is, with inclusion of all repeated states.

We also introduced several different versions of the Curveball algorithm, thereby show-
ing that the idea of the Curveball algorithm provides us with a flexible framework for
network randomization. The most important of these algorithms are the Simple and
Simple Undirected Curveball algorithm, since both classes of networks are common to
find in applications. We show that the Simple (Undirected) Curveball algorithm con-
verges to the uniform distribution and that it does so faster than the switching model.
We recommend the use of these models over that of respective versions of the switch-
ing model. For completeness we also introduced the Curveball algorithm for several
multigraph classes, that is for classes G5,G7 and G8.

We have not yet extended the Curveball algorithm to undirected networks with self-
loops. We do believe it is possible to define such an extension, however preliminary
study shows it needs to be a little more subtle than the extensions discussed in this
chapter. This is left as future work.

131

4. Curveball algorithms

It may be worthwhile to combine the Expand and Contract method (see Section 3.2)
with the Curveball method, to ensure that the generated random networks are in no
way related to the original network. To combine these methods we need versions of
the Curveball algorithm with respect with respect to G6 for undirected networks and
with respect to G8 for directed networks. We introduced the Curveball method with
respect to G8. However the Curveball algorithm with respect to G6 is left as future
work.

Finally we pointed out why current techniques can not be used for formal proof of rapid
mixing of the Curveball algorithm. Developing new techniques and proving rapid mixing
is an interesting open problem. We are excited about the prospect of using the symmetry
displayed by (parts of) the state graph of the Curveball algorithm (see Appendix C) to
attempt to prove rapid mixing.

132

5. Local network properties

In this chapter we discuss network statistics based on local network properties. By
local we mean small subgraphs of the network. Specifically we look at network mo-
tifs and the neighbourhoods of nodes. This chapter contains mostly experimental re-
sults.

Network motifs [82] break complex networks into small building blocks and are a popular
tool for the analysis of local network properties [128, 32, 127, 4, 3]. Here we investigate
the use of this technique for a specific class of networks: directed acyclic networks. This
is an important class of networks that appears in many applications. The best known ex-
ample is that of citation networks. Other examples include patent networks, networks of
dependencies in software as well as dependencies of lemmas, axioms and theorems in pure
mathematics, and even biological networks such as predator-prey networks [67]. Section
5.1 discusses our work on motifs in directed acyclic graphs.

Intuitively, it is clear that the neighbourhood of a node can provide us with valuable
information about the node itself. For instance, we can learn a lot about someone from
knowing her friends and we can roughly derive the topic of a paper from its references.
Many interesting applications of neighbourhood analysis can be found in the literature.
For instance, structural features can be used to classify different roles in networks [52].
In [10] the structure of the neighbourhood of Facebook users, i.e. the network of their
Facebook friends, is analysed to find their partner as well as to predict whether or not the
relationship will be lasting. And in [32], the quality of a Wikipedia article is successfully
predicted by analysing the motifs in the network of edits made to the article (the edit
neighbourhood).

133

5. Local network properties

Here we discuss a different application of neighbourhood analysis: the identification of
nodes for discovery. An example of a real scenario where discovery is important and the
neighbourhood may help, is when a person of interest to authorities uses an unidentified
mobile phone in order to remain untraceable, but still makes calls to other phones that
are identified. Section 5.2 discusses our experimental work on the topic of neighbourhood
distinctiveness and matching neighbourhoods.

My contributions to the literature in this chapter are the following:

• Derivation of a formula which relates the number of occurrences of the four distinct
3-node patterns in directed acyclic networks. This result is published in [24].

• Motif finding experiments in citation networks. These results are published in [24]
and [25].

• Experimental work on the distinctiveness of neighbourhoods. This work was done
in collaboration with the Information Security and Network Science Research
Group at RMIT University. The results are published in [59] and [51].

5.1. Motifs in directed acyclic networks

Motifs were first introduced in [82] and are defined as “recurring significant patterns of
interconnections in a network”. Motifs were shown to define classes of networks, and it
was argued that these classes relate to the functioning of a network. Motifs have since
been a popular method of analysing local network structure [128, 32, 127, 4, 3] and the
idea has been extended in several ways [80, 131]. However, prior to the introduction of
motifs, similar local network analysis techniques had been used in social network analysis
for a long time [53].

Before continuing our investigation of motifs, we introduce a mathematical definition of
motifs. We first formalise the notion of a ‘pattern of interconnections’.

134

5.1. Motifs in directed acyclic networks

Definition 5.1.1. Let G ∈ G be a network in class G, and let {mk
i } be the set of

isomorphism classes of connected networks in G on exactly k nodes. We refer to these
isomorphism classes as k-node patterns (with respect to G).

Definition 5.1.2. Let G = (V,E) be a network in class G, and let mk
i be a k-node

pattern with respect to G. The number of occurrences, cki , of mk
i in G equals the

number of k-node sets in V for which the induced subgraph in G is in the isomorphism
class mk

i .

We will use the notation mi instead of mk
i and ci instead of cki , when either the number of

nodes is irrelevant, or when the number of nodes is clear from the context.

In the literature, varying criteria are used to determine if a subgraph is a motif [82,
80, 127]. We combine criteria to introduce the following stricter definition of a mo-
tif.

Definition 5.1.3. Let G be a class of networks and let G ∈ G. Choose a random network
model M rnd for G. Let mi be a pattern with respect to G and let ci be the number of
occurrences of mi in G and c̄rndi the average number of occurrences in a sample of random
networks generated by M rnd. The pattern mi is a motif of the network G if

1. the probability that it appears in a random network generated by M rnd an equal
or greater number of times than in G is less than 0.01 [82], and

2. its Z score is higher than 2 [127], and

3. the number of times it appears in G is significantly higher than in the random
networks, that is ci − c̄irnd > 0.1c̄irnd [82].

In [82] a subgraph needs to occur at least 4 times to be considered as a network motif.
In the empirical networks that we analysed, subgraphs occur much more often than this,
so we do not use this criteria.

The criteria that are used to classify anti-motifs are not discussed to a great extent
in the literature. In [80] an anti-motif is defined as “a significantly under-represented

135

5. Local network properties

subgraph”. We introduce a definition of an anti-motif here, analogous to the criteria
above for a motif.

Definition 5.1.4. Let G be a class of networks and let G ∈ G. Choose a random
network model M rnd for G. Let mi be a pattern with respect to G and let ci be the
number of occurrences of mi in G and c̄rndi the average number of occurrences in a
sample of random networks generated by M rnd. The pattern mi is an anti-motif of G
if

1. the probability of it appearing in a random network generated by M rnd an equal
or smaller number of times than in G is less than 0.01, and

2. its Z score is lower than −2, and

3. the number of times it appears in G is significantly lower than in the random
networks, that is c̄irnd − ci > 0.1c̄irnd.

It is clear from Definition 5.1.3 that the choice of a null-model influences the patterns
that will or will not be considered as significant, and be keyed as a network motif. The
standard choice of null-model is the switching model [82, 81, 78, 121] that we discussed
in Chapter 2.

There has been some criticism of [82]. For instance, in [5] it was argued that the
patterns that were detected as motifs in [82] could be explained by a preference for local
connections instead of network functioning. However, this criticism does not indicate a
problem with the motif analysis technique, but with the interpretation of results obtained
from it.

The dependence on a choice of null-model has been another debated issue [5, 131].
Depending on the random network model, certain network properties will be present in
the random networks but other network properties will not be present. This may lead to
certain patterns being judged significant, that in fact could be explained by a different
null-model. This issue can be avoided by carefully selecting a null model and by being
aware of its limitations.

136

5.1. Motifs in directed acyclic networks

The rest of this section is organised as follows. Subsection 5.1.1 discusses properties spe-
cific to motifs in directed acyclic networks. Subsection 5.1.2 discusses the dependence
of motifs on null-models and introduces the different null-models used in our exper-
iments. Finally, Subsection 5.1.3 presents experimental results on motifs in citation
networks.

5.1.1. Three-node motifs in directed acyclic networks

The motifs discussed in [82] are motifs with respect to simple networks (G1 and G3).
We are interested in motifs in directed acyclic networks, a subset of the networks in G3.
The main difference between motif detection in directed acyclic networks and motifs in
simple directed networks, is that there are fewer k-node patterns with respect to directed
acyclic networks. Due to computational constraints, motif analysis usually focusses on
3-node and 4-node patterns. Figure 5.1 depicts all distinct 3-node and 4-node patterns
that can appear as subgraphs of directed acyclic networks.

Figure 5.1.: All three node and four node patterns that may be found as subgraphs of directed
acyclic networks. There are four three node patterns, labelled m3

1,m
3
2,m

3
3 and m3

4.
There are 24 four node patterns, m4

1, ...,m
4
24.

We restrict our attention to the four three node patterns m3
1,m

3
2,m

3
3,m

3
4. From now on

we will use the notation m1,m2,m3 and m4 for these four patterns. Pattern m4 is called a
feedforward loop. Notice that patterns are counted as induced subgraphs (see Definition

137

5. Local network properties

5.1.2). In particular, the occurrence of the feedforward pattern does not contribute to the
count of patterns m1,m2 and m3: these are subgraphs of m4 but not induced subgraphs.
We now derive a formula relating the number of occurrences of three node patterns to
the degree sequences of a directed acyclic graph.

Lemma 5.1.5. Let c1, c2, c3 and c4 be the number of times pattern m1,m2,m3 and m4

occur in a simple directed acyclic graph G. Let kin and kout denote the in-degree and
out-degree sequence of G respectively. The following formulas hold

c1 =
n∑
i=1

kini (kini − 1)
2 − c4

c2 =
n∑
i=1

kini k
out
i − c4

c3 =
n∑
i=1

kouti (kouti − 1)
2 − c4.

(5.1)

Proof. We first show that these formulas hold when G does not contain any feedforward
loops, that is when c4 = 0. In this case, the formulas are the result of a simple count. For
a node v with in-degree kin(v) we find kin(v)(kin(v)− 1)/2 pairs of incoming edges (see
Figure 5.2), resulting in the formula for c1. Similarly we obtain the formula for c3. For
a node v with both incoming and outgoing edges we obtain kin(v)kout(v) combinations
of an incoming and outgoing edge, resulting in the formula for c2 (see Figure 5.2).

Figure 5.2.: Node A contributes koutA (koutA −1)/2 = 3 to c3. Node C contributes kinC (kinC −1)/2 =
6 to c1. Node B contributes koutB (koutB − 1)/2 = 1 to c3, kinB (kinB − 1)/2 = 3 to c2

and kinB k
out
B = 6 to c3.

Now let G be a graph that does contain feedforward loops. We need to correct our count
for each feedforward loop; since a feedforward loop contains the three other motifs as a
sub-motif, we need to subtract c4 from each of the other counts.

138

5.1. Motifs in directed acyclic networks

Corollary 5.1.6. Let G and G′ be simple directed acyclic networks with equal degree
sequences. There is an integer z ∈ Z such that the following relations hold

c1 = c′1 + z

c2 = c′2 + z

c3 = c′3 + z

c4 = c′4 − z.

(5.2)

where c′i is the number of occurrences of pattern mi in G′.

Proof. Let z = c′4 − c4, then by Lemma 5.1.5

c1 − c′1 = (
n∑
i=1

kini (kini − 1)
2 − c4)− (

n∑
i=1

kini (kini − 1)
2 − c′4) = c′4 − c4 = z,

similarly we may derive c2 − c′2 = z and c3 − c′3 = z.

We defined the ordered switching model (Definition 2.4.1) to randomise directed acyclic
networks. That is, the ordered switching model generates random directed acyclic net-
works with fixed degree sequences. Combining this property of the ordered switching
model with Corollary 5.1.6 we obtain the following result.

Corollary 5.1.7. Let G be a simple directed acyclic network and let {Grnd} be a
collection of networks randomised by the ordered switching model for G. Let ci be the
number of occurrences of pattern mi in G. Let c̄rndi be the average number of occurrences
of pattern mi in {Grnd} and let σi be the standard deviation. Then the following relations
hold

(i) c1 − c̄rnd1 = c2 − c̄rnd2 = c3 − c̄rnd3 = c̄rnd4 − c4, and

(ii) σ1 = σ2 = σ3 = σ4.

139

5. Local network properties

5.1.2. Null-models for motifs in directed acyclic networks

It is clear from Definition 5.1.3 that the choice of a null-model has an impact on which
patterns are labelled as motifs. As we are interested in motifs in directed acyclic net-
works, it is natural to use a random network model for directed acyclic networks. We
investigate the impact of using three different null-models: the switching method with
respect to simple directed networks (see Definition 2.1.3), the ordered switching method
(see Definition 2.4.1) and the null-model introduced in [67]. For simplicity, we will refer
to the former as the switching model and the latter as the Karrer-Newman model in the
rest of this section.

The switching model treats citation networks as directed networks. In other words,
it does not respect the topological ordering of the nodes. Edges (x, y) and (u, v) are
swapped even if u < y or x < v. It is possible that a different topological order-
ing of the resulting graph exists, but it is also possible that directed cycles are intro-
duced.

The Karrer-Newman model does maintain the topological order of directed acyclic net-
works. This model is a variation on the configuration model (see Section 3.2). It con-
structs a directed acyclic network with the same in-degree and out-degree sequence as
the original network. However, it may construct a network that contains multiple edges.
In fact, in our experiments this method never produced a network without multiple
edges and often the number of multiple edges was high.

Both the switching model and the Karrer-Newman model maintain the degree sequences
of a directed acyclic graph and randomize the edges. However these algorithms create
networks that are inherently different from the original network. The Karrer-Newman
algorithm allows multiple edges between nodes, whereas the switching algorithm allows
edges that do not respect the topological ordering of the network and can create directed
cycles.

This motivated us to develop the ordered switching model (see Definition 2.4.1) The
ordered switching model overcomes these issues, randomizing a directed acyclic network

140

5.1. Motifs in directed acyclic networks

while fixing its degree sequences and topological ordering.

Figure 5.3.: (a) A directed acyclic graph without topological ordering. (b) A topological or-
dering of the graph with kin = (2, 0, 2, 1, 1, 0) and kout = (0, 1, 1, 1, 1, 2). (c) A
different topological ordering with kin = (2, 2, 1, 1, 0, 0) and kout = (0, 1, 1, 1, 1, 2).
(d) There are exactly two directed acyclic graph realisations of the degree se-
quences in (b). (e) There are 14 directed acyclic graph realisations of the degree
sequences in (c), one of which is depicted here.

Both the Karrer-Newman algorithm and the ordered switching method require a topo-
logical ordering of the nodes as input. Often the problem at hand will specify this
ordering, e.g. the publication dates in case of citation network. Even if the topologi-
cal ordering is unknown, there are efficient algorithms to find an ordering [64, 1]. It is
important to realize that the chosen ordering influences the possible outcomes of both
the Karrer-Newman algorithm and the switching method. This is illustrated in Figure
5.3.

Model acyclic simple uniform speed

Karrer-Newman yes no quasi [94, Section 13.2] fast∗

Switching no yes yes (See Table 2.2) slow∗

Ordered switching yes yes yes (Theorem 2.4.4) slow∗

Table 5.1.: Comparison of the three random network models discussed in this Chapter. ∗ See
the discussion in Section 3.2.

Table 5.1 summarizes the properties of these three network randomisation methods.

141

5. Local network properties

5.1.3. Motif experiments in citation networks

We ran motif finding experiments on two directed acyclic citation networks: hep-th
(see Appendix A.7) and hep-ph (see Appendix A.8). Vertices correspond to papers and
edges point from citing paper to cited paper. For each paper, we have a corresponding
publication date. Edges only point ‘backwards in time’, i.e. the citing paper is always
published more recently than the cited paper.

Unfortunately, the publication dates associated with papers only provide a starting point
for a topological ordering: the majority of papers share their publication date with at
least one other paper. Any permutation of papers with the same publication date results
in a valid topological ordering. For instance, if the initial ordering is ((v1, t1), (v2, t1),
(v3, t1), (v4, t2), (v5, t2), (v6, t3), (v7, t3)) then V = (v2, v3, v1, v4, v5, v7, v6) is another
valid topological ordering. In this case there are 3! orderings for the first three nodes and
2! orderings for both pairs (v4, v5) and (v6, v7). In total there are 24 different topological
orderings for this small set of nodes. Both the citation networks that we analysed contain
many repeating publication dates resulting in a huge number of topological orderings.
There are over 1021659 distinct topological orderings for the theoretical physics network
and over 1021622 for the phenomenological physics network.

The chosen topological ordering influences the possible outcomes of the Karrer-Newman
and ordered switching algorithm (see Figure 5.3). Therefore, to avoid sampling from one
graph ensemble alone, a topological ordering was chosen uniformly at random before each
run of both algorithms. This was done by selecting a permutation for each sequence of
repeating dates. The random network ensembles consist of 1000 networks each, so only a
small number of the possible topological orderings are sampled. At this stage we do not
know exactly how this affects the results. However, we expect that the impact of these
different topological orderings is small, since the changes are restricted to reshuffling the
order of papers published on the same date. In the theoretical network the biggest set of
papers with the same publication date consists of 43 papers and in the phenomenological
network of 44 papers.

We used the following software in our experiments: MFinder1.2 (see Appendix B.2.5)

142

5.1. Motifs in directed acyclic networks

to generate random networks with the switching model, our own implementation of the
Karrer-Newman algorithm (see Appendix B.1.5), a modified version of MFinder1.2 (see
Appendix B.1.5) to generate random networks with the ordered switching model, and the
R library igraph (see Appendix B.2.3) to count three node patterns.

Table 5.2 shows the number of occurrences of directed acyclic three node patterns in the
theoretical citation network as well as the average pattern counts in the three random
graph ensembles. The average number of occurrences of all patterns is higher for the
ordered switching method than for the other two methods. This was to be expected,
since in the networks randomised by the switching model, certain triplets of nodes form
connected patterns that are not acyclic, hence reducing the number of triplets that do
form acyclic patterns. For the Karrer-Newman method, the difference in pattern counts
can be attributed to multiple edges being treated as single edges by the motif counting
algorithm, thus in effect reducing the number of edges. On average there were 3747
multiple edges in these random networks.

Notice that, for the ordered switching method, the difference between ci and c̄rndi equals
1,364,629 and the standard deviation σi equals 943, for all four patterns as dictated by
Corollary 5.1.7.

When we introduced our definitions of motifs and anti-motifs (Definitions 5.1.3 and
5.1.4) we mentioned that, as opposed to [82], we do not require patterns to occur at
least 4 times to be considered a motif. The reason for us to exclude this criteria is that
it is always satisfied for the motifs detected in our experiments. It hence does not make
a difference to our results. However, in the case of anti-motifs, requiring a minimal
number of occurrences would make a difference in our data. The non-acyclic patterns
do not occur at all in our data, but do occur in the randomised networks generated by
the switching model.

Even though there are differences in pattern counts for the three different random net-
work models, the directed acyclic patterns that are motifs and anti-motifs are the same.
The feedforward loop (m4) is a motif and patterns m2 and m3 are anti-motifs. However,
for the switching model, which randomizes with respect to G3, there are also occur-
rences of other (cyclic) patterns. Figure 5.4 shows the nine additional cyclic patterns,

143

5. Local network properties

Figure 5.4.: The nine cyclic 3-node patterns that may occur in simple directed networks (G3),
in addition to the four directed acyclic 3-node patterns illustrated in Figure 5.1.

mc
1, . . . ,m

c
9 that can appear in simple directed networks. Patternsmc

1,m
c
2,m

c
3,m

c
4,m

c
5,m

c
6

and mc
7 are all classified as anti-motifs. For each of these patterns, the probability p of a

pattern appearing an equal or smaller number of times in the random networks than in
the real network equals 0. Pattern mc

5 is the most significant anti-motif with a Z score
of −43.

c1 c2 c3 c4

HEP-th (real network) 22567810 5943062 4098942 1469679

Karrer-Newman
21266991
±47922

7018270
±9022

5229368
±6192

94858
±827

Switching
23868779
± 9040

7204695
±11078

5457398
±3129

80223
±791

Ordered Switching
23932439
± 943

7307691
±943

5463571
±943

105050
± 943

Table 5.2.: The number of times pattern m1,m2,m3 and m4 were found in the theoretical
physics network and the average number (± s.d.) of times they were found in the
three random network ensembles. Each random network ensemble consisted of 1000
graphs.

The findings for the phenomenological physics citation network are similar to the findings
for the theoretical citation network. Pattern counts are higher for the networks generated
by the ordered switching model than the networks generated by the other two random
network models. In this case the average number of multiple edges in the Karrer-Newman
random graph ensemble was 1241. Pattern m2 and m3 are anti-motifs, and the feedfor-
ward loop (m4) is a motif. When using the switching model as a null-model, patterns
mc

1,m
c
2,m

c
3,m

c
5,m

c
6 and mc

7 are identified as anti-motifs (p = 0). The most significant of
these anti-motifs is pattern mc

5 with a Z score of −27.

144

5.2. Neighbourhood distinctiveness

c1 c2 c3 c4

HEP-ph (real network) 9035618 3853645 3884377 976048

Karrer-Newman
9804897
±7067

4753445
±2103

4757988
±3146

26156
±215

Switching
9977282
±1624

4784925
±2410

4830385
±1020

22511
±187

Ordered Switching
9984869
±212

4802896
±212

4833628
±212

26797
±212

Table 5.3.: The number of times pattern m1,m2,m3 and m4 were found in the phenomenolog-
ical physics network and the average number (± s.d.) of times they were found in
three random graph ensembles, all consisting of 1000 graphs.

The abundance of feedforward loops in citation networks may seem surprising at first,
but has previously been observed [30] and explained in [130]. The authors’ explanation
of this abundance is two-fold; firstly, cited papers are often on a similar topic as the
citing paper and secondly, scientists often navigate the literature by following citations
and references.

5.2. Neighbourhood distinctiveness

In this section we investigate the potential for using neighbourhood attributes to match
unidentified entities across networks. The motivation is to identify individuals across
the dark social networks that underlie recorded networks [88]. There are many sets of
large databases that contain overlapping and complementary information. For instance,
a social network example is the Twitter, Facebook and LinkedIn databases and a biblio-
graphic example is the CiteSeer, DBLP, Google Scholar and Scopus databases.

Sometimes the same entity appears in multiple databases but with a different description,
either due to errors or to the data having inherent differences, such as user names
within different social media databases. Matching across databases at the instance level
(also termed reference reconciliation), that is, matching different individual descriptions

145

5. Local network properties

referring to the same real-world entity, is important for both discovery and database
management [43, 28, 71, 98].

Figure 5.5.: Ten out-neighbourhoods in the Enron network, each with exactly 39 nodes.

Our focus here is discovery: sometimes entities represent humans or organisations op-
erating incognito or under several aliases, for either legal or illegal reasons. From this
perspective it is natural to investigate the context of an entity: those entities in a
database that are directly linked or related to it [28], and further, to investigate their
inter linkages (eg. [71, Figure 1]), i.e. in network terms, the neighbourhood of a node
(see Definition 1.1.14).

In Subsection 5.2.1 we introduce the concept of an influence neighbourhood in a commu-
nication network and a citation network. In Subsection 5.2.2 we discuss our experiments
on the distinctiveness of these influence neighbourhoods.

5.2.1. Influence neighbourhoods

In a citation network the in-neighbourhood (Definition 1.1.14) of a paper corresponds to
the subnetwork of papers that were directly influenced by the paper. In a communica-
tion network the out-neighbourhood (Definition 1.1.14) of a sender corresponds to the
subnetwork of receivers that were directly influenced by the communication. We will
refer to both the in-neighbourhood of a paper and the out-neighbourhood of an email
contact as their influence neighbourhood.

146

5.2. Neighbourhood distinctiveness

We first check our approach with an Enron email database, since it is a publicly available
directed communication network in which a subset of people in the underlying social
network were acting illegally. The CiteSeer network was selected to test if we can used
the influence neighbourhood to match entities across databases. In [51], my collaborators
describe experiments that match papers in the CiteSeer database to papers in a different
citation database.

We show experimentally that these influence neighbourhoods are highly distinctive in
both the Enron email database (see Appendix A.5) and the CiteSeer citation network
(see Appendix A.3). Figure 5.5 shows ten influence neighbourhoods in the Enron email
network, all with exactly 39 nodes. Figure 5.6 shows ten influence neighbourhoods in
the CiteSeer citation network, all with exactly 130 nodes. Visually the structures of
these neighbourhoods are quite distinctive.

Figure 5.6.: Ten in-neighbourhoods in the CiteSeer network, each with exactly 130 nodes.

In order to measure the distinctiveness of neighbourhoods it is necessary to have a
measure of either their similarity or their difference. We use the Jaccard distance (Def-
inition 5.2.1) to measure the dissimilarity of the influence neighbourhoods. This metric
is a simple measure of difference in labelled nodes. In essence this is the ground truth.
If the nodes are uncertainly labelled then metrics which are structural or fuzzy would
be necessary.

Definition 5.2.1. Let A and B be finite sets. The Jaccard distance between A and B

is defined as:
dJ(A,B) = 1− |A ∩B|/|A ∪B|.

147

5. Local network properties

5.2.2. Experiments in communication and citation networks

We ran two experiments to test if the influence neighbourhoods in the CiteSeer and
Enron networks are distinctive. We partitioned the papers in the CiteSeer database by
citation number (in-degree) into ranges that increase exponentially, see Table 5.4. The
smaller Enron database was similarly partitioned by out-degree, for comparison.

For the first experiment, 100 nodes were selected from each of the partitions listed in
Table 5.4 (with replacement if necessary). Each node was paired with 1,000 nodes,
randomly selected from the whole database excluding the node itself, and the Jaccard
distance between them was calculated.

For both the Enron network and the CiteSeer network, the cumulative relative frequency
drops from 1 very rapidly. For the Enron network, out of the 1,000,000 random pairings
only 15 pairs are found with Jaccard distance 0, all in Partition 2, only 858 pairs with
Jaccard distance below 0.7 and only 8968 pairs below 0.9. For the CiteSeer network,
out of the 1,100,000 random pairings 0 pairs are found with Jaccard distance 0, only 6
below 0.7 and only 46 pairs below 0.9.

Partition k Range Enron CiteSeer
1 1 8711 51949
2 2-3 3270 50823
3 4-7 1320 40313
4 8-15 528 26669
5 16-31 214 14510
6 32-63 98 6700
7 64-127 56 2543
8 128-255 41 793
9 256-511 9 207
10 512-1023 1 43
11 ≥ 1024 0 8

Table 5.4.: Partitioning of the databases by number of recipients (Enron) or citations (Cite-
Seer).

148

5.2. Neighbourhood distinctiveness

For our second experiment we look at worst-case matching, where neighbourhoods are
guaranteed to overlap. Again, we chose 100 nodes randomly from each partition, and
then matched each of the nodes to all of the nodes in the database that had at least one
common neighbour with the selected node. This means only node pairs which are most
likely to have a low Jaccard distance are tested.

For the Enron network, out of the 531,714 nearby pairings only 759 pairs are found with
Jaccard distance of 0, and all of these are in Partitions 1 and 2. There are only 3781
pairs with Jaccard distance below 0.7 and 30,957 pairs with Jaccard distance below 0.9.
For the CiteSeer network, out of the 537,932 nearby pairings 0 pairs are found with
Jaccard distance of 0, only 54 pairs with Jaccard distance below 0.7 and 1163 pairs with
Jaccard distance below 0.9.

Jaccard distance

(c) CiteSeer random false matches1

0.8

0.6

0.4

0.2

0

C
um

ul
at

iv
e

fre
qu

en
cy

0.7 0.8 0.9 1

Partition 1
Partition 2
Partition 3
Partition 4
Partition 5
Partition 6

Partition 8
Partition 9

Partition 11
Partition 10

Partition 7

(d) CiteSeer nearby matches

Jaccard distance

0.7 0.8 0.9 10.4 0.5 0.6

1

0.8

0.6

0.4

0.2

0

C
um

ul
at

iv
e

fre
qu

en
cy

Partition 1
Partition 2
Partition 3
Partition 4
Partition 5
Partition 6

Partition 8
Partition 9

Partition 11
Partition 10

Partition 7

Jaccard distance

(a) Enron random false matches1

0.8

0.6

0.4

0.2

0

C
um

ul
at

iv
e

fre
qu

en
cy

0.7 0.8 0.9 1

Partition 1
Partition 2
Partition 3
Partition 4
Partition 5
Partition 6

Partition 8
Partition 9
Partition 10

Partition 7

(b) Enron nearby matches

Jaccard distance

0.7 0.8 0.9 10.4 0.5 0.6

1

0.8

0.6

0.4

0.2

0

C
um

ul
at

iv
e

fre
qu

en
cy

Partition 1
Partition 2
Partition 3
Partition 4
Partition 5
Partition 6

Partition 8
Partition 9
Partition 10

Partition 7

Figure 5.7.: Distinctiveness of neighbourhoods within Enron and CiteSeer networks

The cumulative distributions are shown in Figure 5.7. We conclude the neighbourhoods
are highly distinctive in each of these databases, and distinctive in similar ways. So,
citation networks are reasonable proxies for the type of networks we are interested in.
These CiteSeer results appear in [59], in the rest of this paper my collaborators showed
that the Jaccard distance between influence neighbourhoods is a promising approach
for matching nodes across databases. This approach relies on being able to (partially)

149

5. Local network properties

match node labels across the networks.

The Enron and CiteSeer comparison appears in [51]. Based on this, my collaborators
present results of a similar but more elaborate experiment, that confirms that influence
neighbourhoods of nodes can be used to match nodes across databases, provided there is
a substantial number of nodes for which labels can be matched.

5.3. Conclusion

We discussed our work on motif finding in directed acyclic networks. We showed that
regardless of what null-model was used, the patterns identified as motifs in a set of
citation networks remained constant. The average pattern counts in random network
ensembles generated by the three different models differed, but not so much as to classify
different patterns as directed acyclic motifs or anti-motifs. However, the switching model
did find redundant directed cyclic anti-motifs. The feedforward loop was found to be
a motif in the two citation networks. The abundance of feedforward loops in citation
networks was observed previously in [30] and [130].

We recommend using the ordered switching model to randomize directed acyclic net-
works, since it is the only random network model that generates directed acyclic net-
works with fixed degree sequence uniformly at random. A possible problem with the
ordered switching algorithm is that it can be slow (see also Chapter 3). It would be
interesting to develop a Curveball style algorithm (see Chapter 4) for directed acyclic
networks.

We have demonstrated that the influence neighbourhood is highly likely to differentiate
one paper from another within the CiteSeer database. Similarly the influence neigh-
bourhood of an email address in the Enron email network is highly likely to differentiate
one person from another. The influence neighbourhood shows initial promise for good
matching performance across databases. Further experimental results are discussed in
[59, 51].

150

6. Topological data analysis for
networks

In this chapter we discuss recent developments in the topological data analysis of net-
works. Topological data analysis has emerged over the past 15 years and has found
many applications in the analysis of point cloud data, image and shape analysis [22, 23,
109, 87, 29]. For an introduction to topological data analysis and in particular persistent
homology, see Section 1.5.

More recently, several papers have been published in which ideas from topological data
analysis are used in the analysis of complex networks [27, 33, 55, 99, 101, 74, 15]. This
brings a new approach to the study of complex networks. Most existing network mea-
sures originate in statistical mechanics and focus on statistics of local network properties.
For instance, the node degree, the clustering coefficient and motifs fall in this category.
Such statistics have proven very useful. However, they do not capture the complete
structure of a network. Topological data analysis provides an additional network met-
ric.

The persistent homology of a network differs from other network metrics in three crucial
ways. Firstly, homology reveals information on the mesoscopic structure of a network
that local statistics do not provide. Secondly, the idea of representing relations as a
network can be enriched by using simplicial complexes. Finally, a parametrised family
of networks can be analysed as a single object. This reveals features that would be over-
looked by analysing networks at a single parameter value.

The aim of this chapter is two-fold. Firstly we provide an overview of the three aspects

151

6. Topological data analysis for networks

of persistent homology mentioned above, with respect to the current literature. Secondly
we describe our experimental results for collaboration networks.

The rest of this chapter is organised as follows. Section 6.1 discusses the current literature
on topological data analysis for networks and how it relates to our experimental work.
Section 6.2 discusses how simplicial complexes can be used in the study of relational data.
Section 6.3 discusses the interpretation of the Betti numbers for networks and simplicial
complexes associated to networks. Section 6.4 discusses different ways to filter networks
and the simplicial complexes associated to networks. In Section 6.5 our results from a
case study on collaboration networks are discussed. Finally Section 6.6 discusses our
conclusions and points out potential future directions.

My contributions to the literature as discussed in this chapter are outlined below.

• Presenting an overview of the current literature on, and techniques available in
topological data analysis of networks.

• One of the first case studies where persistent homology is used to analyse a weighted
network. Some of the results discussed here have been published in [27].

In the remainder of this chapter we will use the term cycle to refer to a generator of
a 1-dimensional homology class, not to the graph theoretical concept as in Definition
1.1.4.

6.1. Literature review

The earliest application of persistent homology to a network related problem that we
know of, studies the coverage of a domain for sensor networks [44, 33]. Ideas from
persistent homology were used to find out if a given domain is covered by sensors of
which the location is unknown. Each sensor has local information about nearby sensors
and the boundary of the domain. The authors use homology and ideas from persistence
to answer this coverage question.

152

6.1. Literature review

Our interest in persistent homology is to use it as an additional statistic in the analysis of
complex networks. This is more similar to the work by Horak et al. [55], where persistent
homology is used to distinguish networks generated by different random network models.
However, the filtration used in that work does not fully capture the idea of persistence.
In fact, it does not show interesting features in addition to the clique structure of a
network, which can be studied without referring to homological concepts [100]. We
discuss this in more detail in Section 6.4.

The work by Lee et al. [74, 73, 75] successfully uses persistent homology and single
linkage clustering to classify functional brain networks into three different categories:
ADHD, autism spectrum disorder and control. In their work the zeroth Betti number
and the corresponding single linkage dendrogram are used to analyse weighted networks.
The filtration they used is based on edge weights and does capture the idea of persis-
tence.

We combined the ideas from Lee et al. and Horak et al. by using both the weighted net-
work filtration and the clique complex construction. That is, we computed the persistent
homology groups of the filtration of clique complexes of threshold networks.

After some of the results of this chapter were published [27], we became aware of a
paper [100] that also uses persistent homology for network analysis. In that paper,
three different constructions to obtain a filtration from a network are discussed. The
most effective one was the same as the filtration we had used to analyse collaboration
networks. The other two methods were: firstly associating a metric with the nodes of
the network (i.e. shortest path distance) and treating the nodes as points of a pointcloud
with the given metric, and secondly the k-skeleton filtration that was introduced in [55].
It was found that when using the metric construction, persistent homology points out
an optimal threshold at which to measure homology. However, tracking the homology
over a range of distances did not provide additional information. The authors also found
that the k-skeleton filtration gave little information beside the clique structure of the
network.

The persistent homology of the most effective filtration, the clique complexes of the
threshold filtration, was named the weighted clique rank homology [100]. In a

153

6. Topological data analysis for networks

later paper [101] by the same authors, weighted clique rank homology is further in-
vestigated. They found two distinct classes of networks, one with cycle distributions
that are markedly different from randomized versions of the network and one with cycle
distributions very close to random versions.

Other recent applications of persistent homology in network analysis are analysing differ-
ent states of brain networks [99] and predicting survival rates in cancer based on protein
interaction networks [15].

6.2. Simplicial complexes for relational data

The use of simplicial complexes (see Definition 1.5.1) to study relational data dates back
to Atkins [7] in the early 1970s. Simplicial complexes can be seen as a generalization
of networks. A 1-dimensional simplicial complex is equivalent to a simple undirected
network, with each 1-simplex corresponding to an edge. In addition, higher dimen-
sional simplicial complexes can also encode relations between three or more entities.
A nice consequence is that all statistics for simplicial complexes are also statistics for
networks.

Recently the use of simplicial complexes for relational data analysis has seen a re-
newed interest [123, 129, 124, 85, 77, 47, 76]. In [77] the statistical properties of
simplicial complexes associated to complex networks were investigated. Several con-
structions were used to associate simplicial complexes to networks (see also [61]) but
the resulting statistics did not differ significantly between different constructions. We
therefore follow the authors in focussing on the simplest construction: the clique com-
plex.

Definition 6.2.1. Let G = (V,E) be a simple undirected network. The clique com-
plex C(G) of G is the simplicial complex with vertices V , and simplices corresponding
to the cliques of G. That is, for each k-clique in G there is a k − 1 simplex on the
corresponding k vertices in C(G).

154

6.2. Simplicial complexes for relational data

Notice that the clique complex is indeed a simplicial complex. Any subset of vertices of
a simplex is by definition itself a simplex, since any subset of vertices of a k-clique is an
l-clique (with l ≤ k).

The kind of information most obviously contained in the clique complex of a network is
edge density. Densely connected areas are represented as higher dimensional struc-
tures, in a sense merging such areas into single entities. We will discuss the rela-
tion to other network properties and homological measures in more detail in Section
6.3.

Perhaps a more natural setting in which to encode relational data as a simplicial complex
is found in the study of bipartite networks [85, 124]. Bipartite networks represent a
relation between two distinct sets of objects. There are many examples of such relations,
such as actors playing in movies, scientists writing papers, consumers buying products
and people attending events.

Definition 6.2.2. A bipartite network is a network G = (V,E) with nodes that can
be partitioned in a set of primary and secondary nodes V = P tS in such a way that all
edges are of the form {p, s} with p ∈ P and s ∈ S. We will sometimes use the notation
G = (P, S,E).

It is common to analyse bipartite networks as simple non-bipartite networks by project-
ing the network onto the most interesting type of its nodes [96, 134, 135]. This is called
the one-mode projection of a bipartite network.

Definition 6.2.3. Let G = (P, S,E) be a bipartite network. The (unweighted) one-
mode projection of G onto P is the network GP = (P,EP) with nodes P and {p1, p2} ∈
EP if and only if p1 and p2 share a neighbour in G. We can similarly define GS, the
(unweighted) one-mode projection of G onto S1.

The one-mode projection of a bipartite network loses some information of the network.

1In Section 6.5 we analyse collaboration networks. These networks are constructed as the one-mode
projection of bipartite networks with weights assigned to their edges. The weights are chosen in
such a way to reflect the strength of each relation [90]. Note that this is not the only commonly
used assignment of weights (another is the number of common neighbours).

155

6. Topological data analysis for networks

Take for instance collaboration networks: the one-mode projection of a bipartite net-
work of scientists writing papers. In a collaboration network, scientists are connected
by an edge if they have co-authored at least one paper. In such a network, triangles are
ambiguous. A triangle, connecting three scientists, could represent three collaborations,
each written by a distinct pair of scientists. However, it could equally well represent
a single paper co-authored by the three scientists. This information can quite natu-
rally be incorporated in a simplicial complex. By simply inserting higher dimensional
faces corresponding to collaborations between three or more authors [85] we can distin-
guish between these situations. We use the terminology found in [123] to define this
construction.

Figure 6.1.: The one-mode projection and its associated clique complex can not distinguish
between the following two situations. (a) Three scientists have written one paper
together. (b) Three scientists who have coauthored three papers pair-wise. The
labelled complex does distinguish between these two situations.

Definition 6.2.4. Let G = (P, S,E) be a bipartite network. The labelled complex
∆P (G) associated to G with respect to P has vertices P and simplices σs = N(s),
s ∈ S (Definition 1.1.14) together with all faces of these simplices. That is, each simplex
corresponds to the nodes related to a node s ∈ S (its neighbours). Similarly we may
define ∆S(G).

Notice that the one-mode projection of G onto P is the 1-skeleton of ∆P (G). As such,
the labelled complex truly generalizes the one-mode projection of a bipartite network.
Figure 6.1 shows the difference between the clique complex associated to the one-mode
projection of a bipartite network and the labelled complex associated to a bipartite
network.

156

6.3. Network homology

An interesting fact about these labelled complexes is that the homology groups of ∆P (G)
are equal to those of ∆S(G). In [124] this is exploited to simplify homology computations
and to find the homological backbone of such simplicial complexes.

For completeness we mention that it is possible to construct a simplicial complex for
non-bipartite networks in a similar fashion.

Definition 6.2.5. Let G = (V,E) be an undirected network. The neighbourhood
complex of G is the simplicial complex with vertices V and simplices σv = N(v),
v ∈ V , together with all faces of these simplices. Similarly for G = (V,E) a directed
network, the out-neighbourhood complex and in-neighbourhood complex are
defined as the complexes with vertices V and simplices σv = N out(v) or σv = N in(v),
v ∈ V , together with all faces of these simplices, respectively.

6.3. Network homology

We limit our attention to low-dimensional homology groups. These groups are easiest
to interpret, fastest to compute and contain a wealth of information. We will make use
of the following well-known facts (see Section 1.5.1). Firstly, the homology groups of a
d-dimensional simplicial complex are trivial in dimension d+1 and higher. Secondly, the
i-th homology group of a simplicial complex only depends on the i + 1-skeleton of the
simplicial complex, that is Hi(X) = Hi(Xi+1) with Xi the i-skeleton of X. We discuss
the interpretation of the zeroth, first and second homology groups of the skeleta of a
clique complex. We use the famous network known as Zachary’s karate club (Appendix
A.11) as an illustrative example.

Zachary’s karate club is a network representing the friendships between 34 members of a
karate club as illustrated in Figure 6.2. To analyse the low-dimensional homology groups
of its clique complex, K, we built the 3-skeleton, K3 of K. This simplicial complex
consists of 34 0-simplices (vertices), 78 1-simplices (edges), 45 2-simplices (triangles)
and 11 3-simplices (tetrahedra). Table 6.1 gives an overview of the Betti numbers of the
skeleta of this clique complex.

157

6. Topological data analysis for networks

Figure 6.2.: Zachary’s karate club.

Skeleton β0 β1 β2

K0 34 0 0
K1 1 45 0
K2 1 9 9
K3 1 9 0

Table 6.1.: Betti numbers of the clique complex K of Zachary’s karate club. Notice that
βi(Xj) = 0 when i > j since the homology groups of a j-dimensional complex are
trivial in dimension j + 1 and higher. Furthermore βi(Kj) = βi(Ki+1) for all j > i

since the i-th homology group of a simplicial complex only depends on its i + 1-
skeleton. Hence, the highlighted cells are the only cells that contain interesting
information.

The 0-skeleton of a clique complex of a network corresponds to the nodes of the network.
Its zeroth Betti number equals the number of connected components, in other words the
number of nodes n. For Zachary’s karate club β0(K0) equals 34.

The 1-skeleton of the clique complex of a network is the network itself. The Betti
numbers can only be non-trivial in dimension zero and one. By measuring the homology
in these dimensions we obtain information on the number of connected components
of a network (zeroth Betti number) as well as the number of independent cycles in
the network (first Betti number). The first Betti number is strongly correlated with
the number of triangles in a network and hence measures a type of clustering. In our

158

6.3. Network homology

example, Zachary’s karate club consists of a single connected component, and hence
β0(K1) = 1. The first Betti number of the network equals 45. In this case, the first Betti
number equals the number of triangles in the network, however this is not a general rule.
In general the first Betti number can be higher or lower than the number of triangles in
a network. For instance the 4-cycle, C4 has first Betti number equal to one, but does
not contain any triangles. The 4-clique K4 on the other hand contains four triangles but
has first Betti number three; it only contains three independent cycles, any triangle can
be obtained by ‘adding’ the other three.

Figure 6.3.: (a) The 2-skeleton of the clique complex of Zachary’s karate club. This simplicial
complex has first Betti number equal to 9; the corresponding cycles are highlighted.
(b) The homological backbone of the network. The backbone includes only edges
that contribute to the first homology group of the clique complex.

If we instead analyse the homological properties of the 2-skeleton of the clique com-
plex, we obtain information not readily measured by current network statistics. The
0-dimensional homology groups do not change, as they only depend on the unchanged 1-
skeleton of the simplicial complex. However, the 1-dimensional homology group changes
dramatically, since every triangle will be ‘filled in’, i.e. a surface, in the clique complex.
This causes many cycles to disappear and the first Betti number to be much lower.
The first Betti number now measures the independent cycles in the network that are
more than three edges long, and not filled by cross-links. These cycles in a sense form
structural holes and can be seen as a backbone of the network [99, 124]. The additional
structure offered by the clique complex reveals an interesting new measure of the topol-
ogy of the network. Figure 6.3 shows the nine cycles that generate the first homology
group of the clique complex of Zachary’s karate club.

159

6. Topological data analysis for networks

Figure 6.4.: The 2-skeleton of the clique complex (see Figure 6.3) has non-trivial 2-dimensional
homology, its second Betti number equals 9. (a) The nodes involved in 2-
dimensional homology classes. (b) In this case, each 2-dimensional homology class
corresponds to a tetrahedron, or a 4-clique. There are two classes generated by
the group of yellow nodes, and seven by the pink nodes. None of these homology
classes will exist in the 3-skeleton of the clique complex, since all cliques will be
filled in by solid tetrahedra.

The second Betti number of the 2-skeleton corresponds to the number of voids and
is dominated by empty tetrahedra. As such the second Betti number roughly corre-
sponds to the number of 4-cliques in the network, and gives us a measure of strong
local clusters in the network. Figure 6.4 shows the nodes and triangles that corre-
spond to these voids for the 2-skeleton of the clique complex of Zachary’s karate club
network.

Finally the second Betti number of the 3-skeleton of a clique complex corresponds to
voids that are larger than tetrahedra. All tetrahedra are now solid and thus no longer
correspond to 2-dimensional homology classes. In fact, the simplest structure corre-
sponding to a void in (the 3-skeleton of) a clique complex is the surface formed by an
octahedron. This can be seen by realizing that all ‘great circles’ of such a void need to
be of at least length four. For the clique complex of Zachary’s karate club network no
such higher dimensional voids are present.

160

6.4. Constructing filtrations from networks

6.4. Constructing filtrations from networks

The type of network filtration that is suitable to use in persistent homology computations
depends on the application at hand. Several different filtrations have been discussed in
the literature. Horak et al. [55] use the following filtration based on the skeleta of the
clique complex of a network.

Definition 6.4.1. Let K be a d-dimensional simplicial complex. The skeletal filtra-
tion of K is given by

∅ ⊂ K0 ⊂ · · · ⊂ Kd = K

where Ki is the i-skeleton of K.

As mentioned briefly in the introduction to this chapter, this filtration does not truly
capture the idea of persistence. In particular, it follows from our remarks in the previous
section that any homology class in this filtration either lives forever or dies one step after
being born, since any i-dimensional homology class that dies, dies as a boundary of a
i+ 1-dimensional simplex (see for Example Table 6.1).

In the work of Lee et al. [74, 73] the philosophy behind persistent homology was captured
much better. The neural networks analysed in this work are weighted networks. Usually
these networks are converted to binary networks by selecting a suitable threshold and
only considering edges that are stronger than this threshold. Lee et al. introduce a
weighted filtration to analyse brain networks at multiple scales. They focus on the
zeroth Betti number, monitoring how the connected components merge throughout the
filtration.

Definition 6.4.2. Let G = (V,E,w) be a weighted network with w : E → R>0. The
threshold network G(w∗) = (V,E(w∗)) contains all edges e ∈ E with weight greater
than or equal to w∗, that is with w(e) ≥ w∗. Write the elements of w(E) in descending
order: w1, w2, . . . , wk. The weighted network filtration of G is defined by

∅ ⊂ G(w1) ⊂ G(w2) ⊂ · · · ⊂ G(wk) = G.

Changing the threshold weight for a threshold network is like changing the resolution at

161

6. Topological data analysis for networks

which a network is analysed [97].

In our analysis of weighted collaboration networks we use a similar construction. How-
ever we enrich the filtration by associating the clique complex to each of the networks
in the weighted network filtration. A network filtration can always be extended to a
filtration of the clique complex of the network. In fact, this is the same construction
as that of the complexes in the Vietoris-Rips filtration of a point cloud from its 1-
dimensional subcomplex (Definition 1.5.14). We define the clique complex filtration as
follows.

Definition 6.4.3. Let {Gi}ki=0 be a filtration of a network G. The clique complex
filtration of C(G) is defined as

∅ ⊆ C(G1) ⊆ C(G2) ⊆ · · · ⊆ C(Gk).

Petri et al. [101] independently came up with the idea of combining the weighted
network filtration and the clique filtration to analyse weighted networks. We adopt
their terminology and will refer to this filtration as the weighted clique rank filtra-
tion.

Although the following filtrations are not used in this thesis, we introduce them for the
sake of completeness and future applications.

Similarly to filtering weighted networks by their weight, we introduce a time based
filtration for networks that are growing over time.

Definition 6.4.4. Let G = (V,E, t) be a growing temporal network with time function
t : V ∪ E → R>0 such that for all edges (x, y) ∈ E we have t(x), t(y) ≤ t((x, y)). The
accumulated network G(t∗) [54] at time t∗ is the network with nodes V (t∗) = {v ∈
V | t(v) ≤ t∗} and edges E(t∗) = {e ∈ E | t(e) ≤ t∗}. Write the elements of t(E) in
ascending order: t1, t2, . . . , tk. We define the temporal network filtration of G as

∅ ⊆ G(t1) ⊆ G(t2) ⊆ · · · ⊆ G(tk) = G.

As with the weighted network filtration, this construction can be extended to a filtration

162

6.5. Persistent homology of collaboration networks

of the clique complex of G. We will refer to this filtration as the temporal clique rank
filtration.

As a final example, we define the weighted labelled filtration that can be obtained from
a bipartite network.

Definition 6.4.5. Let G = (P, S,E) be a bipartite network. The weighted labelled
complex associated to G with respect to P has vertices P and simplices the unique2

simplices of the labelled complex ∆P (G). We associate a weight w(σ) to each simplex
by summing over the number of times it appears as a face of a simplex in ∆P (G).
Let w1, w2, . . . , wk be the finite list of these weights in ascending order. We obtain a
filtration by thresholding the weighted labelled complex at different weights, and call it
the weighted labelled filtration.

6.5. Persistent homology of collaboration networks

Most of the results of the thesis discussed in this section are published in [27]. We analyse
collaboration networks as a proxy for social networks [89, 91]. A collaboration network
has nodes corresponding to scientists and edges corresponding to co-authored papers.
In fact, a collaboration network is the one-mode projection of a bipartite network of
scientists and their papers. The edges in a collaboration network can be weighted to
reflect the regularity and intensity of the collaboration between authors. We follow [90]
in assigning weights to edges: a paper written by n authors contributes 1/n−1 to the
weight of each edge between author pairs. For instance a paper with only two authors
contributes weight 1 to the edge between its authors. A paper with six authors by con-
trast, only contributes weight 1/5 to each of the 15 edges between pairs of its authors.
Strong connections in collaboration networks thus correspond to pairs of authors who
collaborate often and in small groups. It is reasonable to expect that a collaboration net-
work reflects the structure of the underlying social network, since regular collaboration
probably indicates social ties.

2It is possible for two vertices in the secondary node set S to have the exact same neighbours in P ,
the corresponding simplex is only included once.

163

6. Topological data analysis for networks

We analyse four collaboration networks as described in Appendices A.1, A.4, A.6 and
A.9. These networks were derived from different collections of academic papers and are
available as weighted collaboration networks. Their underlying bipartite networks are
not readily available.

Granovetter’s ‘Strength of weak ties’ theory [45] is well-known in the social sciences.
Granovetter argues that two individuals who both have a strong tie with the same third
person, are very likely to also know each other. For instance, your partner and your
mother are likely to know each other, this tie might be weak, but nevertheless there is
a tie. Taking this assumption as an axiom lead Granovetter to an interesting discovery.
An edge is called a bridge if the nodes that it connects have no common neighbours,
locally this edge is the only way for information to pass from one side of the bridge to
the other. If one of the nodes incident with the bridge has at least one strong tie to a
different node v, then the bridge has to be a weak connection: if it were strong, then
by assumption, v is also connected to the other node incident with the bridge. But this
contradicts the fact that the edge is a bridge. Granovetter’s theory leads to a view of
social networks as consisting of highly clustered regions of strong connections and weak
bridges connecting these clustered areas (see Figure 6.5).

(a) (b)

Figure 6.5.: (a) An illustration of a social network with weak (dashed) and strong (solid) ties,
distributed in agreement with Grannoveter’s theory. (b) The 1-simplex (red ties)
of the clique complex associated with the same network.

In our analysis of collaboration networks, we used the weighted clique rank filtration (see

164

6.5. Persistent homology of collaboration networks

Definitions 6.4.2 and 6.4.3) of the weighted networks. If the weights in a network are
indeed distributed according to Granovetter’s theory, then we expect low weight edges
as part of 1-cycles, since we expect bridges to be part of the 1-cycles of length more than
3. Figure 6.5(b) illustrates a typical generator of a 1-cycle (the red highlighted edges).
That is, we expect most cycles to appear in the final stages of the filtration, when w∗ is
close to 0.

The next two sections discuss the results of our topological data analysis of four collab-
oration networks. The first network that we analysed is relatively small and we discuss
qualitative results. For the larger networks this was not done. Instead, we compared
the persistence barcodes of the clique rank complex for each of these networks to persis-
tence barcodes of G(n,m) Erdős-Rényi random networks (Definition 1.1.20), with equal
number of nodes n and edges m. We show that certain topological features are present
in the real networks but not in the random networks, implying that this structure is due
to some organisational feature and not a random process.

Besides our own custom scripts, we used the following software in our experiments:
JavaPlex (Appendix B.2.4) for the persistent homology computations, Gephi (Appendix
B.2.2) for some of the network visualisations and the Persistence Landscape Toolbox
(Appendix B.2.6) for the landscape distance computations.

6.5.1. Collaboration network of network scientists

The first network that we analyse is a collaboration network of network scientists (see
Appendix A.9). We restrict our analysis to the largest connected component of this
collaboration network. This component consists of 379 nodes and 914 edges with weights
ranging from 0.125 to 4.75.

We use K(w∗) to denote the clique complex of the threshold network G(w∗). To be
clear, we are inspecting the homology groups of the whole clique complex, not those of
its sub-skeleta.

165

6. Topological data analysis for networks

Figure 6.6.: The largest connected component of the network science collaboration network.
In the final stages of the weighted clique filtration, β0 drops from 10 to 1. The
connected components corresponding to these ten homology classes are visualised
above; nearly all nodes are in a single component (the black nodes), there is a
connected component of size ten (the yellow nodes) and there are a further eight
connected components consisting of a single node each. The box in the figure
indicates the part of the network illustrated in Figure 6.8.

We first focus on the 0-dimensional homology groups of the weighted clique rank fil-
tration. For w∗ > 4.75, the clique complex K(w∗) is just a collection of vertices. Its
zeroth Betti number equals 379, the number of nodes of the network. The number of
connected components reduces throughout the filtration as more and more edges are
included. Finally, the zeroth Betti number of K(0.125) equals one, since G(0.125) = G

is a connected network. Figure 6.7 shows how β0 decreases throughout the filtra-
tion.

166

6.5. Persistent homology of collaboration networks

Figure 6.7.: (a) The number of connected components (β0) of the weighted clique rank fil-
tration of the network science network is plotted in red. The size of the largest
connected component is plotted in blue. Big changes in β0 and the size of the
largest connected component coincide with large increases in the number of edges
in the filtration. The nine filtration values where the number of edges increases by
more than ten are indicated by grey lines. (b) The filtration values at which the
number of edges increases by more than ten, and the corresponding number, ∆m,
of additional edges.

The clique complex K(w∗) stays disconnected as long as w∗ > 1/7 ≈ 0.143. Edges
with this weight are part of 8-cliques. Figure 6.6 highlights the vertices that join the
largest connected component at this step in the filtration, different colours correspond
to different connected components prior to adding the 47 edges with weight equal to
0.1433. The four vertices at the top form an 8-clique with some of the black vertices
that were already part of the largest connected component. Similarly, on the bottom
left, one vertex from the yellow component together with four single vertices and three
black vertices, already part of the largest connected component, form an 8-clique. Before

3The two 8-cliques have 56 edges in total. Nine edges have higher weight than 0.143 due to other
collaborations, and hence are already present in the filtration.

167

6. Topological data analysis for networks

adding these edges there are ten connected components, out of which eight consist of
just a single vertex. The authors corresponding to these vertices appear visually to be
in the periphery of the network.

Figure 6.7(a) shows the size of the largest connected component throughout the filtration.
It increases quite slowly.

Next we inspect the persistent homology in dimension 1. In Figure 6.8 we illustrate the
final stages of the weighted clique rank filtration. This is the only part of the filtration
where the first Betti number is non-zero. We show the correspondence between the cycles
in the complex and the persistence barcode. There seems to be a tendency for larger
cycles to be born at lower threshold weights, as illustrated in Figure 6.8(c). However,
the average weight of the edges that form cycles is 1.13, much higher than the average
edge weight for the whole network, which is 0.53.

Notice how all of the cycles that were born persisted to the end of the filtration. It would
have been possible for a cycle to die. For instance if the four scientists (A. Vazquez,
A. Vespignani, A. Barrat, M. Weigt) appearing in the red cycle found at w∗ = 1 were
to collaborate on a paper, there would be diagonal edges appearing at w∗ = 0.33 which
would kill the cycle. The persistent homology of the clique complex of this network is
trivial in dimensions higher than 1.

We expected to see all cycles appear at the end of the filtration, when w∗ is close to
zero. Instead, we found exactly the opposite to be true. The edges that generate cy-
cles in collaboration networks are generally edges of high weight and the cliques in the
network consist of edges with low weights. This initially puzzling result can be ex-
plained as a side effect of the construction of the network as the one-mode projection
of a bipartite network. Edges of low weight are necessarily part of cliques, and the
lower the weight the larger the clique, since low weights correspond to large collab-
orations. Furthermore, bridges have relatively high weights: the fact that the nodes
incident to a bridge have no shared neighbours implies a collaboration of just the two
authors, and hence a minimal edge weight of 1. This result points out that collabora-
tion networks are significantly different from social networks in terms of their weight
distribution.

168

6.5. Persistent homology of collaboration networks

Figure 6.8.: (a) The central part of the network science collaboration network where all cycles
occur. The first and smallest cycles appears at threshold weight w∗ = 1. Further
along the filtration several other cycles appear. The two shaded triangles for
w∗ = 0.5 indicate that there is no cycle there. Three blue cycles appear at w∗ = 0.5.
(b) The persistence 1-dimensional barcode of the weighted clique rank filtration.
(c) The length of the cycles that are born at each filtration value.

We now focus on a more quantitative analysis of the persistent homology of the net-
work science network. We compare the zero and one dimensional persistent homology
of the network to three sets of 1000 randomised versions of the network. The first set
is most similar to the original network, it is structurally equal, but edge weights are
randomly shuffled. The second set of random networks is obtained using the switch-
ing model (Definition 2.2.3); the node degrees are fixed but the edges are randomised.
Finally the last set of networks are G(n,m) Erdős-Rényi random networks (Definition
1.1.20). Figure 6.9 illustrates the difference between the three different random network
classes.

169

6. Topological data analysis for networks

Figure 6.9.: Illustration of the different random network classes. Edge thickness corresponds
to edge weight. (a) The original network G. (b) A random network with the same
structure as G but where the edge weights are randomised. (c) A random network
produced with the switching model, and hence with equal degree sequence as G,
but otherwise random edge placement. (d) A random network produced with the
G(n,m) Erdős-Rényi model, where n = 397 and m = 914. The number of nodes
and edges is the same as for G, but edges are placed randomly.

Using the L1 distance between persistence landscapes (see Section 1.5.4) we found that
the average pairwise distance between the 0-dimensional landscape of the original net-

170

6.5. Persistent homology of collaboration networks

work and the random networks was 85.86 (sd 5.47), 99.52 (sd 4.03), and 134.54 (sd 12.33)
for the weight reshuffled, switching model randomised and Erdős-Rényi random networks
respectively. As to be expected, on average the distance from the original network to
the random networks with just the weights reshuffled is smaller than the distance from
the original network to either the random networks produced by the switching model or
Erdős-Rényi model.

The average pairwise distance between the 0-dimensional landscapes of the 1000 net-
works within each of the random network classes was 9.53 (sd 3.79), 6.99 (sd 2.90)
and 17.09 (sd 10.31) for the weight reshuffled, switching model randomised and Erdős-
Rényi random networks respectively. Notice that the average distance between networks
within classes is much smaller than the average distance from the original network
to the randomised networks. Hence, we can definitely use the 0-dimensional persis-
tent homology to distinguish the real network from the three classes of random net-
works.

Even though at the start and end of the filtration these networks are (nearly) identical
in terms of their number of connected components, persistent homology still detects
structural differences by tracking connected components throughout the weighted filtra-
tions.

We investigated if the first Betti numbers give us further power to distinguish between
the collaboration network and the three classes of random networks. We found that in
general, for all sets of random networks the number of 1-dimensional homology classes is
much higher throughout the filtration. We found averages of 65.8 (s.d. 6.9), 486.5 (s.d.
6.7) and 520.6 (s.d. 4.6) classes for the weight reshuffled, switching model randomised
and Erdős-Rényi random networks respectively. Recall, there are just 9 1-dimensional
homology classes in the real network.

We can explain the observed higher number of 1-dimensional homology classes in the
random networks as follows. Firstly, we discuss the structurally equal, but weight reshuf-
fled networks. Just like the original network, at the end of the filtration there are 9
1-dimensional homology classes corresponding to the 9 cycles illustrated in Figure 6.8.
However, there are several other 1-dimensional homology classes that are born and die

171

6. Topological data analysis for networks

Figure 6.10.: Illustration of the three potential cycles in a 4-clique. (a) In order for
the edges e1, e2, e3, e4 to correspond to a 1-dimensional homology class
in the weighted clique rank filtration, the minimum weights of these
edges, min(w(e1), w(e2), w(e3), w(e4)), needs to be higher than the max-
imum weights of the remaining edges max(w(e5), w(e6)). (b) Similarly
min(w(e1), w(e4), w(e5), w(e6)) > max(w(e2), w(e3)) needs to hold for the
edges e1, e4, e5, e6 to correspond to a 1-dimensional homology class in the
weighted clique rank filtration. (c) Finally min(w(e2), w(e3), w(e5), w(e6)) >

max(w(e1), w(e4)) needs to hold for the edges e2, e3, e5, e6 to correspond to a
1-dimensional homology class in the weighted clique rank filtration.

throughout the filtration. These cycles appear as part of densely connected areas of the
network, such as cliques4. As an example, Figure 6.10 shows the three potential 4-cycles
in a 4-clique and the conditions on the edge weights in the clique, for these to appear
as 1-dimensional homology classes in the weighted clique rank filtration. Notice that
these conditions are more likely to be satisfied when there is more variety of weights in
the clique, that is when edges have different weights. We measure the variety of weights
within cliques as follows: let σCw be the fraction of unique weights in clique C = (VC , EC),
i.e. σCw = |w(EC)|/|EC |. Let σcliquew (G) be the average of these fractions for all complete
cliques on four or more nodes in a network G. For the original network σcliquew equals 0.41
whereas for the 1000 weight reshuffled networks σcliquew is significantly larger, on average
it equals 0.69 (s.d. 0.014). This greater variety of weights in the cliques probably causes
the greater number of 1-dimensional homology classes throughout the filtration of the
weight randomised networks.

Secondly, we discuss the two structurally different random network classes, as generated

4Recall that by construction there are many cliques in the one-mode projection of a bipartite network.

172

6.5. Persistent homology of collaboration networks

by the switching model and the Erdős-Rényi model. Visually (see Figure 6.9(c)(d)),
these networks have a very different structure from the original network. It appears
that they have many non-trivial cycles even when all edges are present. Indeed we find
high first Betti numbers of the clique complexes of the random networks at w∗ = 0.
That is on average, β1 equals 482.0 (s.d. 7.6) and 520.3 (s.d. 4.6) for the networks gen-
erated by the switching model and Erdős-Rényi random network model respectively5.
This large difference in terms of 1-dimensional homology classes at the end of the fil-
tration explains the large difference between the persistent homology of the weighted
filtrations.

Using the L1 distance between the persistence landscapes, we found that the average
pairwise distance between the 1-dimensional landscape of the original networks and
the random networks was 0.67 (s.d. 0.32), 12.07 (s.d 0.32), and 11.99 (s.d. 0.22) for
the weight reshuffled, switching model randomised and Erdős-Rényi random networks
respectively. Again, on average the distance from the original network to the random
networks with just the weights reshuffled is smaller than the distance from the original
network to either the random networks produced by the switching model or Erdős-Rényi
model. The distance to the networks produced by the switching model and Erdős-Rényi
model is very similar.

The average pairwise distance between the 1-dimensional persistence landscapes of net-
works within each of the random network classes was 0.39 (sd 0.15), 0.70 (sd 0.28) and
0.41 (sd 0.19) for the weight reshuffled, switching model randomised and Erdős-Rényi
random networks respectively. Notice that it is difficult to tell the original network from
the weight reshuffled networks using the 1-dimensional persistence landscape. For the
other two classes of random networks, the average distance between networks within
each class is much smaller than the average distance from the original network to the
randomised networks. Hence, we can use the 1-dimensional persistent homology to dis-
tinguish the real network from random networks produced by the switching model or
Erdős-Rényi model.

Figure 6.11 illustrates the average 1-dimensional landscape for each of the random net-
5Notice that these averages differ from the average number of intervals appearing throughout the

filtration that we presented earlier. We now only measure the Betti numbers at w∗ = 0

173

6. Topological data analysis for networks

work classes, as well as that for the real network.

Figure 6.11.: (a) The 1-dimensional persistence landscape of the original network science net-
work. (b) The average 1-dimensional persistence landscape of 1000 networks with
randomised weights. (c) The average 1-dimensional persistence landscape of 1000
networks randomised with the switching model. (d) The average 1-dimensional
persistence landscape of 1000 Erdős-Rényi random networks.

174

6.5. Persistent homology of collaboration networks

6.5.2. Physics collaboration networks

In this section we analyse three larger collaboration networks (Appendices A.1, A.4
and A.6). Again we restrict our attention to the largest connected component of each
network. Table 6.2 lists the number of nodes and edges for the largest connected com-
ponent of these networks. We computed the persistent barcodes in dimensions zero, one
and two. In all three cases, we found that β0 stayed high for the largest part of the
filtration and then quickly decreased to 1 at the end of the filtration. In each case, the
smallest weight was needed to create the single largest connected component (see Table
6.2). This behaviour differs slightly from that of the network scientist collaboration
network, since in that case, the connected component formed before reaching the end of
the filtration.

Network n m w∗con |Ew∗
con
| |E<w∗

con
|

Network Science 379 914 0.143 47 10
Condensed Matter 36458 171735 0.034 315 0
High-energy Theory 5835 13815 0.056 171 0
Astrophysics 14845 119652 0.018 357 0

Table 6.2.: Properties of the four collaboration networks. For each network we have indicated
the number of nodes n, the number of edges m, the threshold value w∗con at which
β0 becomes equal to 1 in the weighted clique rank filtration, the number of edges
with weight equal to this threshold value |Ew∗

con
|, and the number of edges with

weight smaller than this threshold value |E<w∗
con
|.

We would again like to compare the persistent homology of these collaboration networks
to that of random networks. However, the persistent homology computations for these
larger networks makes it infeasible to compute the persistent homology of 1000 random
networks numerically. Instead, we use theoretical results to show that the persistent ho-
mology of Erdős-Rényi random networks is very different from that of these collaboration
networks.

Let G(n, p) be an Erdős-Rényi random network with n nodes and p the probability of

175

6. Topological data analysis for networks

an edge being present. Erdös and Réyni showed that if p � log n/n then G(n, p) is
almost always connected [39]. In [63], Kahle shows that there are analogous results
for higher dimensional connectivity of the clique complexes of these random networks.
In particular, if we define α by p = nα, Kahle shows that the k-th homology group
of a clique complex of an Erdős-Rényi random network is almost always zero if α is
outside the interval (−1

k
, −1

2k+1), that is (−1,−1/3) for k = 1 and (−1/2,−1/5) for k =
2.

A filtration of a random network corresponds to increasing p over time, or increasing α
from −∞ to logn p. For the clique complex of a random network G(n, p) we expect the
second Betti number to be zero for α < −0.5. In Table 6.3 the values α for the three
collaboration networks can be found. For all three networks the value of α satisfies this
condition. In fact, we find a large number of intervals for both the condensed matter
network and the astrophysics network. This clearly distinguishes these networks from
Erdős-Rényi random networks.

Network total β1 total β2 p α

Condensed Matter 11361 274 0.00026 -0.79
High-energy Theory 1389 2 0.00081 -0.82
Astrophysics 4879 222 0.0011 -0.71

Table 6.3.: This table lists the total number of intervals that appear throughout the weighted
clique rank filtration in dimensions one and two (total β1 and β2) of the three
physics collaboration networks. It also shows the edge density p = 2m/n(n−1) of the
networks and the value α for which p = nα.

6.6. Conclusion

Even though persistent homology was developed for the analysis of point clouds, it is
quite natural to use it in the analysis of networks. Since a network is itself a simplicial
complex, persistent homology can be used to analyse any network filtration. There
are several constructions available to enrich a network’s structure by building a higher

176

6.6. Conclusion

dimensional simplicial complex from it. The clique complex of a network is basically
equivalent to the Vietoris-Rips complex of a point cloud (for a certain radius ε). Using
Zachary’s karate club as an illustrative example, we discussed in detail the connectivity
properties that can be extracted from the Betti numbers of the 0, 1 and 2-dimensional
skeleta of the clique complex of a network.

The labelled complex of a bipartite network offers a different way to construct a simplicial
complex from a (bipartite) network. This simplicial complex is particularly interesting
since it enriches the commonly used one-mode projection of a bipartite network, and re-
tains more of the information present in the bipartite network.

The idea of representing relational data as a simplicial complex instead of a network
seems to be gaining popularity. We discussed several recent works in the literature where
this is done. It would be interesting to use persistent homology and the weighted labelled
complex filtration, to analyse bipartite networks. This is left as future work.

We showed that persistent homology is a versatile tool for network analysis, as it can
be used for several classes of networks. Specifically, it is very suited to the analysis of
weighted networks, evolving networks and bipartite networks.

We presented a case study where we used persistent homology to analyse several weighted
collaboration networks. By inspecting the 1-dimensional homology classes and their
generators we discovered that the weight distribution in these networks is very different
from those in Granovetter’s weak tie theory. We could explain how the construction
of the analysed networks, as a one-mode projection of a bipartite network, caused the
weight distribution to differ from that in Granovetter’s theory. This result indicates that
collaboration networks with the given weight assignment may not be as good a proxy
for social networks as previously believed [91].

We used JavaPlex to compute the persistent homology of networks. There are faster
implementations of the persistent homology algorithm available that we have not used.
These software packages would likely make it possible to compute the persistent homol-
ogy of randomised versions of the larger collaboration networks. This is left as future
work.

177

6. Topological data analysis for networks

Persistent homology is a valuable measure of the structure of a network, that can be
used in addition to more traditional network measures.

178

7. Topological data analysis of lipid
formulations

In this chapter we describe our work on the classification of lipid formulations using
topological data analysis. This work is related to the techniques introduced in Sec-
tion 1.5 and used in Chapter 6. In this chapter we analyse the persistent homology
of spatial point clouds. To do so, we convert spatial point clouds to spatial net-
works and higher dimensional simplicial complexes, using the Vietoris-Rips construc-
tion.

The work discussed in this chapter has been done in collaboration with Dr. Dallas War-
ren (Pharmaceutical Science, Monash University) and Prof. Craig Westerland (Mathe-
matics, University of Minneapolis). The problem that we address originates in pharma-
ceutical science: we investigate the potential of persistent homology to classify different
phases in chemical systems. This problem was suggested by Dr. Dallas Warren. The
experiments discussed in this chapter were designed in collaboration with both Dr. Dal-
las Warren and Prof. Craig Westerland. I was responsible for all the programming
described in this chapter. Furthermore I did all the data analysis described in Sections
7.3 and 7.4 and part of the data analysis in Section 7.5.

We initially use persistent homology as an exploratory data analysis tool. In order to do
this I wrote HomViz, a graphical user interface for JavaPlex. This software allows us to
visualize 3-dimensional point-clouds and their associated Vietoris-Rips complex as well
as the corresponding persistence barcode or diagram. We also use HomViz to highlight
the generators of 1-dimensional homology classes.

179

7. Topological data analysis of lipid formulations

In our exploratory data analysis, we discuss the persistent homology of four different
lipid formulations in detail. These four systems were each chosen to represent a distinct
phase behaviour of lipid formulations. We investigate how topological and geometrical
properties, as measured by persistent homology, can help to classify systems from these
four different phases.

All lipid formulations that we study have previously been assigned a phase by experts.
We show that we obtain reasonable classification results, by assigning the remaining
lipid formulations to the class of the representative that they are most similar to, in
terms of their persistent homology.

Furthermore, so as not to be dependent on the choice of representatives, we show that
we get similar results by using hierarchical clustering of the lipid formulations based on
their persistent homology. Our results indicate that persistent homology can distinguish
fairly well between different phase behaviours.

Ultimately our goal is to label lipid formulations automatically. This will assist prac-
titioners in assigning the correct phase to each system. A better understanding of the
phase behaviour of lipid formulations will help recognize the conditions for which a drug
is absorbed best.

This chapter is organised as follows. Section 7.1 sets the problem that we address in
context in the literature. In Section 7.2 we describe the data sets that we have analysed.
Section 7.3 presents results of our exploratory data analysis. In Section 7.4 we present
classification results of a simple classifier. Section 7.5 presents classification results based
on hierarchical clustering. Finally in Section 7.6 we discuss our results and point out
directions for future research.

My contributions to the literature this chapter are

• Introducing a novel approach to phase recognition of lipid formulations (paper in
draft), in collaboration with Dr. Dallas Warren and Prof. Craig Westerland.

• Developing the software HomViz (see Appendix B.1.2), a graphical user interface

180

7.1. Context and problem description

for JavaPlex.

• Introducing periodic boundary conditions to algorithms for persistent homology.

7.1. Context and problem description

There is a growing number of drugs that are poorly soluble in water [34]. Such drugs are
typically inefficiently absorbed by the human body, i.e. these drugs have low bioavail-
ability. A multitude of methods has been developed in attempts to mitigate this problem
[125], one of which is to dissolve the drug within a lipid formulation [102]. In doing so,
the bioavailability of the drug can be improved [125].

(a) Lamellar (b) Micellar (c) Phase Separated (d) Wormy Micellar

Figure 7.1.: Example output of molecular dynamics simulations of lipid formulations. Each
figure is representative of specific phase behaviour: lamellar, micellar, phase sep-
arated and wormy micellar. The atoms are coloured by type: cyan = carbon, red
= oxygen and blue = nitrogen (nitrogen appears in (b) only). Water has been
omitted for clarity.

Lipid formulations generally consist of a drug dissolved in two or more excipients, inac-
tive substances that serve as a vehicle for the drug [102]. These excipients are usually
surfactants: molecules that comprise of a hydrophobic (water hating) and hydrophilic
(water loving) part, see Figure 7.2. As a result, surfactants can form complex structures
in the presence of water. The structure formed depends on the molecular shapes, con-
centration and composition of the surfactants [72, 104]. Figure 7.1 illustrates four lipid
formulations that form quite diverse structures.

181

7. Topological data analysis of lipid formulations

Figure 7.2.: (a) Schematic representation of a surfactant, with a hydrophilic (water loving)
headgroup, and hydrophobic (water hating) tail. (b) Schematic representation of
a micelle. The headgroups of the surfactants face the water molecules, whereas
the hydrophobic tails point away from the water, inside the micelle.

The structure formed by the excipients is meant to ensure that the drug is in a dissolved
state. The effectiveness of a lipid formulation for drug-delivery purposes depends on
its behaviour when mixing with the aqueous environment in the gut. This behaviour
can be predicted using molecular dynamics simulations with increasing amounts of wa-
ter.

Molecular dynamics simulation is an important tool used to study the aqueous phase
behaviour of complex systems. It is increasingly being used for predicting the aqueous
phase behaviour of lipid-based drug formulations [8]. Several distinct liquid phases have
been observed and studied using molecular dynamics [14, 68, 119, 9, 58].

The current method for determining the phases formed within molecular dynamics simu-
lations is simply to visualise the coordinate files manually and make a judgement on what
type of liquid phase it appears to resemble. To observe the geometric structure, the atoms
are usually plotted with varying radii. This process is both labour intensive and can be
biased, due to the results expected by the observer. The classification of liquid phases
would benefit from a more quantitative, automated and independent method. We believe
persistent homology is well suited to this classification problem, as it is a robust measure
of the structure underlying a point cloud at varying scales.

182

7.2. Lipid formulation data set

7.2. Lipid formulation data set

From a mathematical perspective, the outcome of a molecular dynamics simulation is a
3-dimensional labelled point cloud in a cube (homeomorphic to the unit cube I3). The
molecular dynamics simulations use periodic boundary conditions to approximate a large
system, by simulating just a small part: the unit cell. That is, the left and right side,
top and bottom, and front and back side of the cube are identified. In effect, the point
cloud lives in a space homeomorphic to the 3-torus T 3.

Figure 7.3.: Examples of surfactant molecules, consisting of hydrophobic and hydrophilic re-
gions, and atoms from the hydrophilic head group selected for analysis. Atom
colouring; cyan = carbon, red = oxygen, white = polar hydrogens, non-polar
hydrogens have been omitted.

Each point corresponds to an atom and is labelled by the atom type and atom index
as well as the corresponding molecule type and molecule index. Hence, for each atom,
we know what kind of atom it is (e.g. carbon, hydrogen or oxygen), which molecule it
is part of and what kind of molecule that is. Furthermore, the atom index provides us
with the ‘location’ of the atom within the molecule, e.g. whether it is part of the head
group of a surfactant or of the tail (see Figure 7.2).

We analysed a total of 46 lipid formulations. A detailed description of the data can be
found in Appendix D. For each system, we extracted two point clouds, one to represent
the surfaces formed by the head groups of surfactants and another to represent the
location of the water in the system. The former point cloud was obtained by selecting
a specific atom from the head group of each surfactant in the systems. Figure 7.3
illustrates the selected atom for two different surfactants. The latter point cloud was
obtained by selecting the oxygen atom of each water molecule in the system. The sizes

183

7. Topological data analysis of lipid formulations

of the resulting point clouds are listed in Table 7.1.

Nsurf Nwater # Nsurf Nwater # Nsurf Nwater # Nsurf Nwater

1 1200 24,687 13 2152 9,075 25 136 31,339 37 1344 16,560
2 1200 73,110 14 1568 3,312 26 96 31,272 38 1072 19,872
3 567 89,100 15 1368 13,248 27 1200 6,093 39 1389 13,200
4 338 32,349 16 808 22,910 28 1200 10,444 40 1157 16,500
5 2416 6,624 17 536 26,079 29 1200 16,24 41 1042 18,160
6 1880 6,624 18 272 29,466 30 1200 246 42 1075 14,850
7 1608 9,936 19 347 28,050 31 1200 1,283 43 800 18,096
8 2083 3,312 20 400 26,496 32 1200 2,708 44 984 16,560
9 2416 9,936 21 200 29,360 33 1200 4,301 45 584 23,184
10 1678 13,248 22 267 105,806 34 250 89,100 46 1509 89,937
11 1760 3,300 23 502 100,073 35 1964 86,149
12 1272 6,600 24 300 105,806 36 1472 14,850

Table 7.1.: Number of points in the surfactant Nsurf point cloud and the water Nwater point
cloud for each of the 46 systems. The number of points corresponds to the number
of surfactant molecules or water molecules in the lipid formulation. The highlighted
lines correspond to systems that we chose as representatives of the four different
phases: lamellar (red), micellar (yellow), phase separated (green) and wormy mi-
cellar (blue). The greyed out systems (1, 2, 3, 4, 26, 27, 28, 29 and 34) were not
used in our classification experiments (Sections 7.3 and 7.5).

Clearly, there is great variability in the sizes of these point clouds, which is one of the
main challenges in analysing this data set. For the water point clouds, we analyse a ran-
dom sub-sample of 1000 points (except for system 30), to mitigate this. At this stage, we
use the whole head group point clouds as they are listed in Table 7.1.

The 46 systems had previously been labelled by pharmaceutical scientists as specific
phases. These phases were grouped into four coarser categories. Table D.1 in Appendix
D provides more details on this classification. Figures D.1, D.2, D.3 and D.4 illustrate
all 46 systems.

184

7.3. Analysing four distinct phases

7.3. Analysing four distinct phases

In this section we discuss an exploratory data analysis of four systems from our data
set. We selected a representative for each of the four categories of systems: lamellar,
micellar, phase separated and wormy micellar. We discuss the results of analysing these
systems by using the (3-skeleton of the) Vietoris-Rips filtration (Definition 1.5.14) and its
persistent homology. Figure 7.1 illustrates the four representatives: system 7 represents
lamellar, system 24 represents micellar, system 32 represents phase separated and system
38 represents wormy micellar.

(a) Lamellar (b) Micellar (c) Phase Separated (d) Wormy Micellar

(e) Lamellar (f) Micellar (g) Phase Separated (h) Wormy Micellar

Figure 7.4.: (a)-(d) Point clouds extracted for the surfactant headgroups in systems 7, 24, 32
and 37. These are the same systems as illustrated in Figure 7.1 and as highlighted
in Table 7.1. These systems look different from the systems in Figure 7.1 because
the 3D system is plotted from a different angle. (e)-(h) The 2-skeletons of the
Vietoris-Rips complexes for each pointcloud at filtration values 1.3, 2.4, 1.4 and
1.9 respectively.

We first focus on the head group point clouds of these systems (see Figure 7.4(a)-(d)).
For each of these point clouds, we used HomViz (see Appendix B.1.2) to manually decide
on a suitable maximum filtration value fmax. In our computations we actually use the
3-skeleton of the Vietoris-Rips complex, V (X, fmax). In Figure 7.4(e)-(h) we plot the

185

7. Topological data analysis of lipid formulations

2-skeleton for simplicity.

There are two reasons for choosing the maximum filtration values manually. The first
reason is a practical one. It is computationally infeasible to use high filtration value for
persistent homology computations1. The reason for this, is that the number of simplices
grows very rapidly when increasing the maximum filtration value, especially for higher
dimensional simplices. That is, for n points that are within distance ε from one another,
the number of k-simplices equals

(
n
k+1

)
. Running computations with high filtration

values causes out of memory exceptions.

The second reason for us to limit the maximum filtration value is that our main interest
is the surfaces formed by the surfactant head groups. The surfactant molecules are a
given size, hence increasing the threshold too far above this scale does not reflect the
geometry or topology of the physical system.

The lipid formulations are modelled in boxes with periodic boundary conditions. The
molecules near the boundary of this box interact with the molecules on the opposing
side of the box. We introduce these periodic boundary conditions in the computation
of persistent homology. To do so we extended the JavaPlex code base, such that the
abstract Vietoris-Rips complex V (X, ε) includes simplices that span the boundary of the
box (see Appendix B.1.3).

Figures 7.5(a)-(d) show the persistence diagrams of these four systems. Figures 7.5(e)-
(h) show the persistence diagrams of these systems, but this time taking into account
periodic boundary conditions. Finally Figure 7.5(i)-(l) shows the landscape difference
between the persistence landscapes with periodic boundary conditions and without pe-
riodic boundary conditions.

Let us first discuss the lamellar system and its persistence diagrams. This system is
characterised by several box-spanning layers formed by the surfactants. In this specific
system we see four distinct layers. The layers are thick, in fact they are double layers,
formed by head groups with their tails pointing in both directions away from the double

1There are faster implementations available of the persistent homology algorithm. We have not yet
attempted to use these.

186

7.3. Analysing four distinct phases

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

(a) Lamellar

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

(b) Micellar

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

(c) Phase Separated

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

(d) Wormy Micellar

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

(e) Lamellar

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

(f) Micellar

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

(g) Phase Separated

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

(h) Wormy Micellar

0 0.2 0.4 0.6 0.8 1 1.2 1.4

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

(i) Lamellar

0 0.5 1 1.5 2 2.5

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

(j) Micellar

0 0.5 1 1.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

(k) Phase Separated

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

(l) Wormy Micellar

Figure 7.5.: (a)-(d) Persistence diagrams of the surfactant point clouds for systems 7, 24, 32
and 37. Blue points correspond to 0-dimensional homology classes, red point to 1-
dimensional homology classes and green points to 2-dimensional homology classes.
(e)-(h) Persistence diagrams of the same four systems, with periodic boundary
conditions. (i)-(l) Persistence landscapes of the difference between the persistence
landscape with periodic and without periodic boundary conditions.

layer (see Figure 7.1(a)). There are water molecules trapped in between these double
layers. If there were no noise in this system, we expect the homology classes at the
maximum filtration value to be fairly trivial: a box-spanning layer is contractible, and
thus has Betti numbers β0 = 1, β1 = 0 and β2 = 0. If we take into account periodic
boundary conditions however, then the homology classes are a bit more interesting, since
in this case a box-spanning layer becomes topologically equivalent to a torus. Hence the
corresponding Betti numbers would be β0 = 1, β1 = 2 and β2 = 1. Thus for the ideal

187

7. Topological data analysis of lipid formulations

lamellar system with k layers, we would expect to see long-lived homology classes with
Betti numbers β0 = k, β1 = 0, and β2 = 0 for the non-periodic case, and Betti numbers
β0 = k, β1 = 2k and β2 = k for the periodic case.

System 7 displays more noise than an ideal lamellar phase. It hence does not show
the expected profile for either non-periodic or periodic boundary conditions. However,
Figure 7.5(a),(e) and (i) show that there are more long-lived first homology classes
(appearing at about 0.7) for homology with periodic boundary conditions as compared
to normal homology. This is likely caused by the box-spanning layers, forming cycles
through the identified boundaries.

The micellar phases are characterised by a collection of sphere like formations. The head
groups of the surfactants form the surface of these spheres and the tails point inwards
towards the centres. In an ideal system, a micellar phase with k spheres has Betti num-
bers β0 = k, β1 = 0 and β2 = k. It is likely for some of the spheres to be ‘divided’ by the
boundaries of the box, and hence we expect to see a higher first Betti number and lower
second Betti number when periodic boundary conditions are not being taken into account
compared to when they are being taken into account.

System 24 has a quite reasonable profile at the maximum filtration value (see Fig-
ure 7.5(b),(f),(j)). The Betti numbers are β0 = 9, β1 = 0 and β2 = 2 without pe-
riodic boundary conditions and β0 = 2, β1 = 0 and β2 = 4 with periodic boundary
conditions. Visually, it appears that the spheres in this system are of different sizes,
which may explain why we only see four 2-dimensional homology classes persist until
the end of the filtration. Furthermore, some of the micelles may consist of too few
molecules, and hence never form a complete surface (recall from Section 6.3 that the
smallest non-trivial 2-dimensional homology class in a Vietoris-Rips complex is the oc-
tahedron).

The representative of the phase separated systems that we chose is part of the subcate-
gory of reverse micellar systems. As the name suggests, these systems are characterised
by inverted micelles. Again the head groups form spheres, but in this case, the tails
of the surfactants point out. The structure formed by the head groups is thus again a

188

7.3. Analysing four distinct phases

collection of spheres and in an ideal system we expect to see exactly the same homology
classes as expected for the micellar phase.

Visually, system 32 indeed has a similar persistence diagram to system 24. However,
due to the greater number of points, 1200 instead of 300, there is more noise in terms
of 0-dimensional and 1-dimensional homology classes near the diagonal. Furthermore,
there are some persisting 1-dimensional classes. This is likely due to the higher point
density, creating spurious cycles.

The final category consists of wormy micellar systems. These systems are characterized
by elongated micelles. Sometimes these are literally stretched out micelles, whereas other
times these form cylindrical shapes, stretching across the whole box. In an ideal system,
each stretched out micelle would contribute 1 to β0 and 1 to β2, just like spherical
micelles. The box-spanning cylinders would contribute 1 to β0 and 1 to β1 without
periodic boundary conditions, and 1 to β0, 2 to β1 and 1 to β2 when periodic boundary
conditions are taken into account, since the cylinder then closes up, making it equivalent
to a torus.

We see many 2-dimensional homology groups appear in this system. These may be
due to the wormy micelles having thicker and thinner parts, where the thinner part
forms part of the surface of an internal 2-sphere within the worm. There are many
more 2-dimensional homology classes in the periodic persistence diagram than in the
non-periodic persistence diagram. This could partially be due to cylinders ‘closing up’
across the boundary.

Figures 7.6(a)-(f) show heat maps corresponding to the pair-wise L1 landscape distances
between the four systems in dimensions 0,1 and 2. In general, the heat maps are very
similar for the periodic and non-periodic cases. From Figure 7.6(a) we can derive that the
connectivity of the lamellar (system 7) and wormy micellar (system 38) systems are most
similar, followed by the micellar (system 24) and phase separated (system 32) phases.
When using periodic boundary conditions (Figure 7.6(d)) the distance between the
lamellar and wormy micellar phases decreases slightly, whereas the distance between the
micellar and phase separated systems remains roughly equal. Notice that even though,
theoretically, we would say that reverse micellar and micellar should have the most sim-

189

7. Topological data analysis of lipid formulations

(a) 0-dim (b) 1-dim (c) 2-dim

(d) 0-dim periodic (e) 1-dim periodic (f) 2-dim periodic

Figure 7.6.: (a)-(c) Heat maps of L1 landscape distances in dimensions 0,1 and 2, between the
persistence landscapes of the systems that we chose as representatives (d)-(f) Heat
maps of L1 landscape distances in dimensions 0,1 and 2, between the persistence
landscapes with periodic boundary conditions of the systems that we chose as
representatives.

ilar topological information, we do not find that in the 0-dimensional persistence. This
is most likely due to the difference in number of points in these two systems, since this
information is particularly present in the connectivity (i.e. the 0-dimensional homology)
of the Vietoris-Rips complex during the filtration.

The 1-dimensional homology groups demonstrate a big difference between the lamellar
phase and the other phases. The reason for this is that there are many 1-dimensional
homology classes in the lamellar system that persist, whereas the other systems do not
have this feature.

190

7.3. Analysing four distinct phases

The distances between the 2-dimensional landscapes show that 38 differs from the other
three. The reason for this is that the wormy micellar systems contain more and longer
lived 2-dimensional homology classes than the other systems.

From this investigation, we can see that there are differences in the persistence diagrams
of the systems. However, it is difficult to tell if these correspond to actual geometric
aspects of the shape underlying the points or if they are due to the differences in size
of the point clouds, the noise in the systems, and the choice of maximum filtration
value.

We next investigate the water point clouds for these four systems, as illustrated in Figure
7.7(a)-(d). Each of these systems contains 1000 points that were chosen as a random
subsample of the Nwater points. Indeed we clearly see that there is water trapped in
between the layers formed by the head groups of the surfactants in the lamellar phase.
Hence, for the lamellar system, the water point cloud forms a collection of box-spanning
layers, just like the head group point cloud. For the micellar phases, recall that the
hydrophobic tails are inside the spheres (see Figure 7.2), hence the water is outside of
the spheres, making it hard to see that there are in fact void spaces inside, corresponding
to the micelles. For the reverse micellar system we see the opposite behaviour. In this
case the hydrophobic tails point out from the spherical micelles, and water is trapped
inside the reverse micelles. Hence we clearly see groups of water. The wormy micellar
phase is similar to the micellar phase, water is surrounding the elongated micelles, leaving
voids where the wormy micelles are located.

We compute the 0-,1- and 2-dimensional persistent homology groups up to a maxi-
mum filtration value of 1.5. This value was chosen manually as a trade off between
computational constraints and structural features present in the Vietoris-Rips com-
plex. Computationally, the main difficulty is with the phase separated systems, since
they have very dense regions, causing out of memory exceptions for high maximum fil-
tration values. Figure 7.7(e)-(h) illustrates the 2-skeleton of the four point clouds at
ε = 1.5.

We expect to see a similar persistence diagram for the lamellar water point cloud as
we saw for its head group point cloud, since the underlying geometric object is basi-

191

7. Topological data analysis of lipid formulations

(a) Lamellar (b) Micellar (c) Phase Separated (d) Wormy Micellar

(e) Lamellar (f) Micellar (g) Phase Separated (h) Wormy Micellar

Figure 7.7.: (a)-(d) Point clouds extracted to represent the water molecules in systems 7, 24, 32
and 37. These are the same systems as illustrated in Figure 7.1, for each system,
1000 oxygen atoms were selected at random from the 9,936, 105,806, 2,708 and
16,560 water molecules respectively. (e)-(h) The 2-skeletons of the Vietoris-Rips
complexes for each pointcloud at filtration value 1.5.

cally equivalent. However, there are some differences between the two point clouds and
their persistence diagram. Surprisingly, we do not find any persisting 2-dimensional
periodic homology classes for the water point cloud representation of the lamellar sys-
tem, which we do expect to see since the box-spanning layers correspond to tori when
periodic boundary conditions are taken into account. The fact that we do not find
any 2-dimensional homology may be due to the layers not having been sampled densely
enough, since this can lead to holes in the tori, which implies they no longer enclose a
void.

For the micellar system, no interesting features appear in the persistence diagrams. This
is due to fmax being quite low and the points being spaced quite evenly throughout the
box. For higher filtration values we did find 2-dimensional homology classes correspond-
ing to the voids left by the micelles. We leave the maximum filtration value at 1.5 here
to be able to compare the four systems better.

192

7.3. Analysing four distinct phases

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

(a) Lamellar

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

(b) Micellar

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

(c) Phase Separated

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

(d) Wormy Micellar

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

(e) Lamellar

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

(f) Micellar

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

(g) Phase Separated

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

(h) Wormy Micellar

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

(i) Lamellar

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

(j) Micellar

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

(k) Phase Separated

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

(l) Wormy Micellar

Figure 7.8.: (a)-(d) Persistence diagrams of the water point clouds for systems 7, 24, 32 and
37. Blue points correspond to 0-dimensional homology classes, red point to 1-
dimensional homology classes and green points to 2-dimensional homology classes.
(e)-(h) Persistence diagrams of the same four systems, with periodic boundary
conditions. (i)-(l) Persistent landscapes of the difference between the persistence
landscape with periodic and without periodic boundary conditions for the same
four systems.

The phase separated system has a very distinct persistence diagram. It clearly shows
multiple connected components persisting throughout the whole filtration, whereas higher
dimensional homology classes basically only appear as noise. This corresponds exactly to
the system, since each connected component is a solid sphere, which only has non-trivial
0-dimensional homology, i.e. β0 = 1.

193

7. Topological data analysis of lipid formulations

Finally the wormy micellar systems shows many 2-dimensional homology classes born
towards the end of the filtration. Otherwise it looks quite similar to the persistence
diagrams of the lamellar phase.

(a) 0-dim (b) 1-dim (c) 2-dim

(d) 0-dim periodic (e) 1-dim periodic (f) 2-dim periodic

Figure 7.9.: (a)-(c) Heat maps of L1 landscape distances in dimensions 0,1 and 2, between
persistence landscapes of ten subsamples of each of the water point clouds for
systems 7, 24, 32 and 38. The numbers equal the average pairwise distance for
that block. For diagonal elements, this is the average landscape distance between
sub samples of the same system. (d)-(f) The same heat maps for homology with
periodic boundary conditions.

Figures 7.9(a)-(f) show heat maps corresponding to the pair-wise L1 landscape distances
in dimensions 0, 1 and 2, between the ten subsamples of the water point clouds for
systems 7, 24, 32 and 38. The colours represent the dissimilarity; the darker red the
more dissimilar. They are scaled for each heat map. The numbers equal the average
distance within a given block. For the off-diagonal blocks this is the average of 100
pairwise distances between 10 1000 point subsamples of one system and 10 1000 point

194

7.3. Analysing four distinct phases

subsamples of another system. For the diagonal blocks it is the average of 45 pair-wise
distances between 10 1000 point subsamples of one system.

In general, the heat maps also are very similar for periodic and non-periodic homology.
For 0-dimensional homology, the average distance between subsamples from the same
system (i.e. the diagonal elements in Figures 7.9(a) and (d)) is much smaller than the
average distance between subsamples of different systems (i.e. the off-diagonal elements
in Figures 7.9(a) and (d)). For 1-dimensional homology, the distances are closer together,
but still significantly larger between subsamples from different systems than between sub-
samples from the same system. For 2-dimensional homology, the distances between sub-
samples of the same systems and subsamples of different systems are very similar. Hence,
we do not discuss the 2-dimensional heat maps any further.

Figures 7.9(a) and (d) both show that system 24 is very different from the other three sys-
tems in terms of its 0-dimensional persistent homology. Visually, system 24 is the most
random of the four point clouds (Figure 7.7(e)-(h)). Compared to the other systems,
there are more long living components (see Figures 7.8(b) and (f)). This is in agreement
with more randomly spaced and less clustered points.

Figures 7.9(b) and (c) show that 1-dimensional homology differentiates system 38,
the wormy micellar system, well from the others. The persistence diagrams show
that this may be caused by the large number of persistent 1-dimensional homology
classes in system 38 (see Figure 7.7(d) and (h)). These differences are more pro-
nounced for homology with periodic boundary conditions. System 7 is also quite dif-
ferent from the others, especially when periodic boundary conditions are taken into
account.

These initial investigations show that persistent homology provides valuable information
on the structure of the four different phases. However, we made several parameter
choices manually. Further research is needed to obtain methods for automatic parameter
selection and to test robustness.

195

7. Topological data analysis of lipid formulations

7.4. A simple classifier

We now focus on our main goal, the classification of lipid formulations using persistent
homology. We remove some of the systems from this task, because they have too limited
a number of points in the point cloud (system 26) or because visually the system does
not resemble the representative of its class. We remove systems 1, 2, 3 and 4 from the
lamellar phase and systems 27, 28, 29 and 34 from the phase separated phase. We are
left with 37 systems.

In this section all persistent homology computations are presented without periodic
boundary conditions, since this gives slightly better classification results.

The first simple classifier that we employ attempts to classify the 33 systems not equal
to the representatives chosen in Section 7.3. We compare each of the remaining systems
to the representatives and give it the same label as the representative that it is most
similar to. We do this for nine distance measures and compare the results. The first four
distance measures are based on the landscape distance between persistence diagrams of
the surfactant head group point clouds: dsurf0 , dsurf1 , dsurf2 and dsurf , where dsurfi is the
i-dimensional L1 landscape distance and dsurf = ∑2

i=0 d̄
surf
i with d̄surfi the normalised

distances.

For the water point clouds we use slightly more complicated distance measures. For each
system, we take ten random sub samples of 1000 points and compute the corresponding
persistence landscapes in dimensions 0, 1 and 2. We then compute the average of those
ten landscapes [20] and use it to represent the water point cloud of the system. We base
our distance measures on the L1 landscape distances between the average landscapes.
That is dwateri (X, Y) is the landscape distance between the average i-dimensional land-
scape of ten samples of 1000 points of X and the average i-dimensional landscape of ten
samples of 1000 points of Y . We define dwater = ∑2

i=0 d̄
water
i with d̄wateri the normalised

distances. Our final distance measure is dtotal which is defined as the sum of dsurf and
dwater.

Definition 7.4.1. The accuracy [113] of a multi-class classifier is defined as the number
of correctly identified objects divided by the total number of identified objects.

196

7.4. A simple classifier

Distance Accuracy Distance Accuracy
dsurf0 0.76 dwater0 0.64
dsurf1 0.61 dwater1 0.58
dsurf2 0.42 dwater2 0.39
dsurf 0.70 dwater 0.70
dtotal 0.52

Table 7.2.: The accuracy of nine classifiers based on different distance measures.

Ground truth
Prediction Lamellar Micellar Phase Sep Wormy Mic

Lamellar 2 0 0 0
Micellar 0 8 0 1
Phase Sep 7 0 3 0
Wormy Mic 1 1 0 10

Table 7.3.: Confusion matrix for classifier based on dsurf .

The accuracy of the classifiers based on these nine distance measures is listed in Table
7.2.

Even though dsurf0 is the best performing classifier, we prefer to use the measures dsurf

and dwater since they take into account the 0-, 1- and 2-dimensional homology features of
the systems. Summing these distances leads to much worse performance.

The confusion matrices [114] of the classifiers corresponding to dsurf and dwater are
shown in Tables 7.3 and 7.4. Both perform well on the wormy micellar systems and
the phase separated systems very well. However, the classifier based on surfactants has
very poor performance for the lamellar phase, whereas the water based classifier performs
perfectly for these systems. By contrast6, the surfactant based classifier has near perfect
performance for the micellar phase, whereas the water based classifier misclassified nearly
all of these systems.

This leads us to belief that an approach which combines the structural properties of
the surfactant point clouds and the water point clouds could lead to an excellent classi-

197

7. Topological data analysis of lipid formulations

Ground truth
Prediction Lamellar Micellar Phase Sep Wormy Mic

Lamellar 10 0 0 1
Micellar 0 2 0 2
Phase Sep 0 0 3 0
Wormy Mic 0 7 0 8

Table 7.4.: Confusion matrix for classifier based on dwater.

fier.

7.5. Hierarchical clustering

In this final section we discuss an experiment that again uses landscape distances between
persistence landscapes to classify the different systems. However, we no longer want our
results to depend on the choice of representative states. Instead, we use a hierarchical
clustering approach to analyse if we can obtain good clustering without specifying a
representative for each class.

We first focus on the head group point clouds, representing the surfaces formed by the
head groups of the surfactants. We compute the dsurf distance between each pair of
persistence landscapes for the 37 systems discussed in Section 7.4. Figure 7.10 shows
the heat map together with the dendrogram obtained by using average linkage clus-
tering [57], that is at each step in the dendrogram the clusters which have closest
average distance are merged, for this distance matrix. We used average linkage clus-
tering because it combines clusters based on the distance between all elements in the
clusters.

The ordering of the columns and rows is determined by the dendrogram. The clustering
in the dendrogram is very good for the micellar phase (yellow): the only system that
is not part of the cluster is system 16. Close inspection of this point cloud (see Fig-
ure D.2(d)) reveals that it indeed looks more like a wormy micellar system than a micellar

198

7.5. Hierarchical clustering

Figure 7.10.: Heat map for dsurf distances. Light yellow corresponds to small distances, dark
red to large distances. The dendrogram is made using average linkage.

system. This is exactly what it is grouped with in the dendrogram.

System 45 is grouped with the micellar systems, and on close inspection is borderline
between micellar and wormy micellar (see Figure D.4(i)).

In this dendrogram there is no clear distinction between the phase separated and lamellar
systems. This is not a complete surprise since the simple classifier in Section 7.2 similarly
misclassified lamellar systems as phase separated. To separate these phases we require
further information.

Next we investigate the clustering based on the dwater distances between the average
persistence landscapes of sets of 10 sub samples of 1000 points in the water point clouds.
Figure 7.11 shows the heat map corresponding to this distance matrix together with the
average clustering dendrogram based on these distances.

Again we notices that system 16 is clustered with the wormy micellar systems (blue),

199

7. Topological data analysis of lipid formulations

Figure 7.11.: Heat map for dwater distances. Light yellow corresponds to small distances, dark
red to large distances. The dendrogram is made using average linkage.

instead of the micellar systems. However, this time system 45 is clustered with the wormy
micellar systems. The micellar systems are split into two distinct groups. Systems 22,23
and 24 correspond to spaced micelles, whereas systems 17,18,19,21 are closely packed
micelles. Since we are investigating the geometry and topology of the complement of
these micelles, it makes sense that the systems where the micelles occupy a smaller space
(the spaced micelles) form a cluster separate from the micelles that occupy a large part
of the space (closely packed micelles). Even though system 25 is classified as spaced
micellar, it is clustered with the densely packed micelles. Looking at a visualisation
of this system (see Figure D.3(a))it is not so clear if it should be classified as densely
packed or spaced.

The phase separated systems are again clustered together nicely. Most of the lamel-
lar systems are grouped together. However, system 10 and 15 are grouped with the
wormy micellar systems. This is possibly caused by the chaotic defects in these lamellar
systems.

200

7.6. Conclusion

Finally the wormy micellar systems are split into two clusters, one that just contains
system 35 and 46 and one that contains all other systems. System 35 and 46 contain
wormy micelles that are spaced out quite nicely. This results in the grouping with the
three spaced micellar systems.

Just as we found with the basic classifier in Section 7.4, the water based classifier has
trouble distinguishing the micellar and wormy micellar systems. However, we have seen
that it can distinguish between densely packed and spaced configurations.

7.6. Conclusion

In this chapter we discussed a classification problem originating in the field of pharma-
ceutical science. The problem is related to the development of efficient drug delivery
capsules for drugs that are poorly soluble in water. As part of investigating the potential
of a lipid formulation to be used in a drug delivery capsule, pharmaceutical scientists run
molecular dynamics simulations. The outcome of these simulations predicts the struc-
ture that will be formed by the lipid formulation. Currently the resulting configurations
are inspected manually. This is both time consuming and prone to error. We investi-
gated the potential of persistent homology to automatically classify the phase behaviour
of these configurations.

We analysed 46 different outcomes of molecular dynamics simulations. We represented
each system by two point clouds, one based on the locations of the surfactant head
groups and one based on the location of water in the systems. We were able to show
that persistent homology distinguishes different phases, depending on whether we anal-
yse the head group point cloud or the water point cloud. Using very simple classifiers we
got reasonable classification results. This research indicates that persistent homology
is a promising approach for the classification of the phase behaviour in lipid formula-
tions.

We have not yet developed this technique to its full potential and expect that it is possible
to built better classifiers based on the information extracted from the point clouds using

201

7. Topological data analysis of lipid formulations

persistent homology. However, we think further exploratory data analysis is needed to
avoid over-fitting and to make sure that this method is robust.

The dataset that we worked with presents several challenges. First, the data set is rela-
tively small. It would be highly desirable to have access to additional lipid formulations.
This is difficult, since molecular dynamics simulations take a very long time to run (in
the order of weeks on a super computer). Second, most of the systems have a significant
amount of noise so applying a noise reduction algorithm prior to the topological data
analysis might improve our results. Third, there is a large variety in the number of
points in the different systems. It is important to obtain robustness results for varying
the number of points in the data set. Finally, some of the systems that have the same
phase label, have significantly different geometry or topology. For example, micellar
phases can consist of few large micelles or many small micelles. We like a classifier to
assign the same label both systems. Exploratory data analysis is crucial to understand
which properties need to be used in a good classifier.

Another direction for future research is the use of alpha shapes [36] instead of the
Vietoris-Rips complex. Alpha shapes are an alternative way to associate a simplicial
complex to a 3-dimensional point cloud. Very recently we discovered that this is a
common way to describe a system of molecules [126].

Finally, our approach should benefit from the use of more advanced classifiers, using
machine learning.

We believe our approach to the classification of lipid formulations to be a promising one
and a novel application of persistent homology.

202

8. Conclusion

Network science is the field of research in which relational data is represented and anal-
ysed as networks. In this thesis we present results on three distinct but related topics in
network science: random network models that fix the degree sequence of a network; local
network properties, in particular network motifs and neighbourhood distinctiveness; and
the application of topological data analysis to networks.

Random network models Several important techniques in network analysis rely on
random network models: algorithms that generate networks using a random process.
For instance, these models are used in identifying motifs in networks and in detecting
communities or clusters. A crucial property of random network models is that they
are unbiased. It has turned out to be challenging to develop fast and unbiased random
network models. In this thesis we focused on random network models that fix the degree
sequence of a network.

We demonstrated that the ambiguity in the definition of the switching model has lead
to different interpretations and implementations of the switching model. This, and the
fact that the switching model has been used to randomise several different classes of
networks without addressing their differences, has in some cases lead to biased sam-
pling.

We introduced a precise definition of a family of switching models with respect to
nine classes of networks. We showed that using this definition, there is no ambigu-
ity as to how to implement the models. We derived conditions under which the dif-
ferent versions of the switching model converge to the uniform distribution. In some
cases, it was necessary to introduce acceptance probabilities to ensure unbiased sam-

203

8. Conclusion

pling.

We compared the run-time of the switching model to several existing random network
models. We demonstrated that even though the configuration model runs faster, it
always samples from the classes of multigraphs (i.e. G6 and G8). We demonstrated
that it is unlikely for other Markov chains that use the same set of moves as the
switching model (i.e. allowed switches) to improve on the run-time of the switching
model.

The recently introduced Curveball algorithm does improve on the run-time of the switch-
ing model. We proved that this algorithm samples without bias; a position that was
previously implied, but unproven. We introduced several variations of the Curveball
algorithm. Of particular importance are the Simple Curveball algorithm and the Simple
Undirected algorithm. We showed that these algorithms sample simple directed and
simple undirected networks without bias respectively.

As a result of our findings in Chapters 2 - 4 we recommend using the configuration model
to randomise multi-graphs with self-loops (classes G6,G8), variations of the Curveball al-
gorithm to randomise networks without multiple edges or without self-loops (classes
G1 − G5 and G7) and the ordered switching model to randomise directed acyclic net-
works.

We pointed out two advantages of the configuration model as compared to Markov
chain approaches for network randomisation. First, the random networks produced by
the configuration model are in no way related to the original network and second it runs
much faster.

For Markov chain methods on the contrary, it is unclear how many steps are neces-
sary to ensure the generated network is not correlated to the original network. Usu-
ally a large number of steps is made to ensure the chain has converged to its sta-
tionary distribution. This is the main cause for Markov chain methods to run more
slowly.

The Markov chain approach has two advantages as compared with the configuration

204

model approach. It offers flexibility in terms of which class of network is being sampled
from as well as which distribution is being sampled from (using acceptance probabili-
ties).

The configuration model on the other hand, always samples from the class of multigraphs
and does not offer flexibility in terms of the sampling distribution.

The recently introduced Expand and Contract method combines the configuration model
and Markov chain approaches. It generates networks that are in no way related to the
original network, just like the configuration model, and it offers the same flexibility to
sample from different classes of networks as Markov chain approaches. In this sense it
really is the best of both worlds.

However, it is no longer as fast as the configuration model approach. We implemented
the Expand and Contract method and showed experimentally that in several cases its
run-time is similar to that of the switching model and in some cases it is much longer.
Further research is needed to establish under which conditions the Expand and Contract
method is a practical method for network randomisation.

The Expand and Contract method was also claimed to sample without bias. However,
we argue for thoroughly checking this claim before adopting the Expand and Contract
method.

Currently the Expand and Contract method combines the configuration model with a
Markov chain similar to that of the switching model. For directed networks we recom-
mend to speed up the Expand and Contract method by replacing this Markov chain by
the Curveball algorithm with respect to G8. For undirected networks, we recommend to
develop a Curveball algorithm with respect to G6.

The Curveball algorithm has been shown to improve on the speed of the switching model
experimentally. However, there are proofs of rapid mixing of the switching model for
specific classes of networks and these proofs break down when attempting to transfer
them to the Curveball algorithm. Proving that the Curveball algorithm mixes rapidly
is an interesting open question.

205

8. Conclusion

Local network properties Local network properties are an important method for the
analysis of networks and many existing measures rely on them. For instance, motifs are a
popular method of describing the building blocks of a network.

Existing motif finding techniques were developed for simple directed and simple undi-
rected networks. In this thesis we have extended the theory of motif detection to the
class of directed acyclic networks. To do so we developed the ordered switching model,
a model that produces random directed acyclic networks with a given degree sequence.
We derived formulas relating the number of occurrences of 3-node patterns in a directed
acyclic network to its degree sequence. In our experiments, we compared motifs detected
by three different null-models. We showed that the choice of null-model had no effect on
the patterns that were determined to be motifs. The real networks differ so significantly
from all three random networks, that their mutual differences do not seem to matter in
this case. However, the results may differ in other networks, and therefore we recom-
mend using the ordered switching model; it is the only model that produces directed
acyclic networks with fixed degree sequences and fixed topological ordering uniformly at
random.

The neighbourhood of a node can be used as a local network measure. We analysed
a novel application of neighbourhood analysis, namely using the neighbourhood of a
node for identification of the node itself across networks. Our motivation comes from
aiming to identify entities that wish to remain hidden, in particular in dark social net-
works.

We demonstrated that the influence neighbourhood is a distinctive characteristic of a
node in both the Enron email database and the CiteSeer citation network. We showed
that the influence neighbourhood has potential for good matching performance across
databases. Building on this work, my collaborators showed that indeed the influence
neighbourhood performs well at matching entries across databases.

Topological data analysis

Persistent homology is a relatively new data analysis technique and is becoming increas-
ingly popular. We surveyed the recent literature on applications of persistent homology

206

in network analysis. We conclude that it has three nice features that distinguish it from
other network analysis techniques. Firstly, homology reveals information on the meso-
scopic structure of a network that local statistics do not capture. Secondly, the simplicial
complexes used in persistent homology enrich the representation of relational data as
networks, and finally persistent homology analysis a parametrised family of networks as
a single object.

We demonstrated that this final property makes persistent homology particularly ap-
plicable to weighted networks and evolving networks. Our experiments on weighted
collaboration networks showed that the persistent homology of the weighted clique
rank filtration detects both structural differences and difference in weight distribu-
tion between networks. We have left the analysis of the temporal clique rank com-
plex and the analysis of bipartite networks using persistent homology as future re-
search.

We used persistent homology for a classification problem in pharmaceutical science. This
is a novel application of persistent homology. Our analysis demonstrates that persistent
homology is a promising approach for the classification of the phase behaviour of lipid
formulations. We have not yet developed this technique to its full potential and believe
there are many directions for improvement of the simple classifier that we presented.
This is left as future work.

207

Appendices

209

A. Data Sets

A.1. Astrophysics: collaboration network

Source: http://www-personal.umich.edu/∼mejn/netdata
Accessed: Downloaded September 2012
Type: undirected weighted simple network, obtained as a projection from a bipartite
network
Number of vertices: 14845
Number of edges: 119652
Description: A network of coauthorships between scientists posting preprints on the
Astrophysics E-Print Archive between Jan 1, 1995 and December 31, 1999 [91].
Processing: We use the largest connected component of this network. The vertex and
edge count corresponds to this component.

A.2. C. Elegans: neural network

Source: http://www-personal.umich.edu/∼mejn/netdata
Accessed: Downloaded June 2015
Type: directed weighted network
Number of vertices: 297
Number of edges: 2359
Description: Compiled by Duncan Watts and Steven Strogatz [120] from original ex-

211

A. Data Sets

perimental data by White et al. [122]. The file celegansneural.gml describes a weighted,
directed network representing the neural network of C. Elegans. The data were taken
from the web site of Prof. Duncan Watts at Columbia University1. The nodes in the
original data were not consecutively numbered, so they have been renumbered to be
consecutive. The original node numbers from Watts’ data file are retained as the labels
of the nodes. Edge weights are the weights given by Watts.
Processing: NA

A.3. CiteSeer Archive: citation network

Source: http://citeseer.ist.psu.edu/oai.html
Accessed: Downloaded May 2010
Type: directed network
Number of vertices: 383,535
Number of edges: 1,740,303
Description: The CiteSeer Archive is a database describing papers primarily in com-
puter and information science and published before 2005. The database consists of
2.1GB of data in a format that is close to valid XML format. The archive contains
716,772 records of publications, each including a CiteSeer identifier, title, author infor-
mation, publication date and references.
Processing: This dataset was downloaded by a former member of the Information Se-
curity and Network Science Group at RMIT University. The processing described here
is my own work. Due to inconsistencies in the XML format, standard XML parsers fail
to parse the data. We instead parsed the file line by line using custom code, written in
the R language. We extracted a paper citation network, where the nodes correspond to
papers and the edges to citations. An edge is directed from the citing paper to the cited
paper. Nearly half of the papers in the database did not have any citations or contain
references. These papers were removed from the network. Some papers contained dupli-
cate references or self-citations. Such spurious citations were also removed, so that the
resulting network does not have multiple edges or loops.

1http://cdg.columbia.edu/cdg/datasets

212

A.4. Condensed matter: collaboration network

A.4. Condensed matter: collaboration network

Source: http://www-personal.umich.edu/∼mejn/netdata
Accessed: Downloaded September 2012
Type: undirected simple network, obtained as a projection from a bipartite network
Number of vertices: 36458
Number of edges: 171735
Description: A network of coauthorships between scientists posting preprints on the
Condensed Matter E-Print Archive between Jan 1, 1995 and March 31, 2005 [91].
Processing: We use the largest connected component of this network. The vertex and
edge count corresponds to this component.

A.5. Enron: email communication network

Source: http://dl.dropbox.com/u/1800572/enron/enron-cleaned.edges
Accessed: Downloaded November 2014
Type: temporal directed network
Number of vertices: 22477
Number of edges: 53285
Description: This data set is a record of emails sent within the Enron company be-
tween 01/01/1997 and 31/12/2005. We used a cleaned version of the Enron email cor-
pus. See http://sociograph.blogspot.com.au/2011/04/communication-networks-part-1-
enron-e.html for an elaborate description of the data cleaning.
Processing: We only use the structural features of the network, ignoring the times-
tamps.

213

A. Data Sets

A.6. High energy physics - theory: collaboration network

Source: http://www-personal.umich.edu/∼mejn/netdata
Accessed: Downloaded September 2012
Type: undirected simple weighted network, obtained as a projection from a bipartite
network
Number of vertices: 5835
Number of edges: 13815
Description: A network of coauthorships between scientists posting preprints on the
High-Energy Theory E-Print Archive between Jan 1, 1995 and December 31, 1999 [91].
Processing: We use the largest connected component of this network. The vertex and
edge count corresponds to this component.

A.7. High energy physics - theory: citation network

Source: http://www.cs.cornell.edu/projects/kddcup/datasets.html
Accessed: downloaded May 2013
Type: directed temporal network
Number of vertices: 27770
Number of edges: 351389
Description: This data set is based on a collection of papers from the arXiv in the
theoretical high energy physics category. For most papers in the data set, the corre-
sponding upload/publication date is available. These dates range from 1976 to 2003.
Processing: We removed all papers that have neither citations nor references (within
the database). We also removed papers for which no publication date is available. For
papers that occur multiple times with different dates we used the earliest date and dis-
regarded the other dates. There are few citations that do not respect the time ordering
on the papers, i.e. papers that cite papers that were published on the same date as, or
after their own publication date. Such citations were removed. The resulting network
is a directed acyclic network, each vertex has an associated date and all edges u → v

have the property that u is more recent than v. The number of vertices and edges in the

214

A.8. High energy physics - phenomenology: citation network

network listed corresponds to the network post processing.

A.8. High energy physics - phenomenology: citation
network

Source: http://snap.stanford.edu/data/cit-HepPh.html
Accessed: downloaded May 2013
Type: directed temporal network
Number of vertices: 30501
Number of edges: 344617
Description: This data set is based on a collection of papers from the arXiv in the
phenomenology high energy physics category. For most papers in the data set, the
corresponding upload/publication date is available. These dates range from 1992 to
2003.
Processing: We removed all papers that have neither citations nor references (within
the database). We also removed papers for which no publication date is available.
For papers that occur multiple times with different dates we used the earliest date and
disregarded the other dates. There are few citations that do not respect the time ordering
on the papers, i.e. papers that cite papers that were published on the same date as, or
after their own publication date. Such citations were removed. The resulting network
is a directed acyclic network, each vertex has an associated date and all edges u → v

have the property that u is more recent than v. The number of vertices and edges in the
network listed corresponds to the network post processing.

A.9. Network Science: collaboration network

Source: http://www-personal.umich.edu/∼mejn/netdata
Accessed: Downloaded September 2012
Type: undirected simple network, obtained as a projection from a bipartite network

215

A. Data Sets

Number of vertices: 379
Number of edges: 914
Description: A coauthorship network of scientists working on network theory and
experiment. Compiled by M. Newman in May 2006. [92].
Processing: We use the largest connected component of this network. The vertex and
edge count corresponds to this component.

A.10. US airport data: transport network

Source: R package igraphdata
Accessed: Nov 2015
Type: directed temporal multigraph
Number of vertices: 755
Number of edges: 8228
Description: The network of passenger flights between airports in the United States.
The data set was compiled based on flights in 2010 December. This network is directed
and edge directions correspond to flight directions. Each edge is specific to a single carrier
aircraft type. Multiple carriers between the same two airports are denoted by multiple
edges. Most of this information was downloaded from The Research and Innovative
Technology Administration (RITA)2.
Processing: We flatten the network to a static directed network and simplify it to
remove multiple edges.

A.11. Zachary’s karate club: social network

Source: http://www-personal.umich.edu/∼mejn/netdata
Accessed: June 2015
Type: undirected network

2See http://www.rita.dot.gov/about rita/ for details

216

A.11. Zachary’s karate club: social network

Number of vertices: 34
Number of edges: 78
Description: A friendship network between 34 members of a karate club at a US
university in the 1970s [132].
Processing: NA

217

B. Software

B.1. Developed

B.1.1. Curveball style algorithms

Description: This GitHub repository contains code to reproduce the results presented
in [26]. In particular it contains an implementation of the original Curveball algo-
rithm and the Good Shuffle algorithm. Furthermore it contains implementations of the
Simple Curveball algorithm, the Simple Undirected Curveball algorithm and the other
versions of the Curveball algorithm that are discussed in Chapter 4. Source code:
http://github.com/queenBNE/Curveball

B.1.2. HomViz: Homology Visualizer

Description: HomViz is a graphical user interface for persistent homology and powered
by JavaPlex. It provides an interactive visualization of the Vietoris-Rips complex of
a point cloud and its corresponding persistent diagram at different filtration values.
Furthermore it has the capacity to highlight generators of homology classes.
URL: http://jacobiencarstens.com

219

B. Software

Figure B.1.: Screenshot of HomViz software. On the left: a visualization of the 2-skeleton of the
Vietoris-Rips complex, V (X, ε), of a random sample of points X from the surface
of a sphere. The visualization can be rotated using the mouse. On the right:
the corresponding persistence diagram, blue points correspond to 0-dimensional
homology classes, red points to 1-dimensional homology classes and green points
to 2-dimensional homology classes. The grey box indicates the current value of ε
in the visualization on the left, and the brightness of each point indicates if the
class is already present in the filtration at this stage: light means ‘not yet born’,
normal means ‘born’, dark means ‘died’. The arrow keys can be used to increase
and decrease ε.

B.1.3. JavaPlex pbc extension

Description: This repository contains code that extends JavaPlex. It allows the com-
putation of the Vietoris-Rips complex of a point cloud that is embedded in a cube with
periodic boundary conditions.
Source code: https://github.com/queenBNE/Periodic-Boundary-Conditions-JavaPlex
(to appear)

220

B.1. Developed

B.1.4. Persistence Landscapes Wrapper

Description: Persistence landscapes offer a convenient topological summary of persis-
tent homology. The Persistence Landscape Wrapper provides a Matlab interface for the
C++ library ‘persistent landscape toolkit’ that was developed by Pawe l D lotko.
Source code: https://github.com/queenBNE/Persistent-Landscape-Wrapper.

B.1.5. Random directed acyclic networks

Description: This software repository contains implementations of the ordered switch-
ing model and the Karrer-Newman model for the randomisation of directed acyclic
networks. There are two implementations of the ordered switching model, one written
in R (slow) and one incorporated into MFinder (fast).
URL: http://github.com/queenBNE/DirectedAcyclicNetworks

B.1.6. Switching Models

Description: This software repository contains implementations of the switching model
with respect to classes G1 − G8 as discussed in Chapter 2. This includes the adjusted
versions as discussed.
Source code: https://github.com/queenBNE/SwitchingModelFamily

221

B. Software

B.2. Used

B.2.1. Curveball algorithm

Description: Several implementations of the original Curveball algorithm in the Python
and R programming languages. We used the R implementation, i.e. Supplementary Soft-
ware 5.
URL: http://www.nature.com/ncomms/2014/140611/ncomms5114/full/ncomms5114.html#/supplementary-
information

B.2.2. Gephi

Description: Gephi is an interactive visualization and exploration platform for all kinds
of networks and complex systems, dynamic and hierarchical graphs.
URL: http://gephi.github.io/

B.2.3. igraph

Description: igraph is a collection of network analysis tools with the emphasis on
efficiency, portability and ease of use. igraph is open source and free. igraph can be
programmed in R, Python and C/C++.
URL: http://igraph.org

B.2.4. JavaPlex

Description: The JavaPlex library implements persistent homology and related tech-
niques from computational and applied topology, in a library designed for ease of use,

222

B.2. Used

ease of access from Matlab and java-based systems, and ease of extensions for further
research projects and approaches.

JavaPlex is mainly developed by the Computational Topology workgroup at Stanford
University, and is based on previous similar packages from the same group.
URL: https://github.com/appliedtopology/javaplex

B.2.5. MFinder

Description: MFinder is a software tool for network motifs detection, developed by
Nadav Kashtan, Shalev Itzkovitz, Ron Milo and Uri Alon.
URL: http://www.weizmann.ac.il/mcb/UriAlon

B.2.6. Persistence Landscape Toolbox

Description: The Persistence Landscape toolbox is a collection of algorithms to work
with persistence landscapes. The persistence landscape is an alternative topological
summary to the persistence diagram. It allows performing common statistics, such as
computing a mean and performing t-tests. Developed by Pawe l D lotko.
URL: https://www.math.upenn.edu/ dlotko/persistenceLandscape.html

B.2.7. VMD

Description: VMD (Visual Molecular Dynamics) is a molecular visualization program
for displaying, animating, and analyzing large biomolecular systems using 3-D graphics
and built-in scripting. VMD supports computers running MacOS X, Unix, or Windows,
is distributed free of charge, and includes source code.
URL: http://www.ks.uiuc.edu/Research/vmd/

223

C. State graphs

In this appendix we illustrate (parts of) the state graphs of the Curveball algorithm for
regular directed networks on three to six vertices. We will denote these state graphs
by Ψ. Notice that the state graph of the 1-regular directed network and the 2-regular
directed network on three vertices are the same (see C.1.1). The reason for this is that
the adjacency matrix of a 1-regular network is exactly the binary complement1 of that
of the adjacency matrix of a 2-regular network. Or, in other words, the corresponding
networks are complements.

We may think of the adjacency matrix of a directed network as the incidence matrix of
a bipartite network as illustrated in Figure C.1.

Figure C.1.: (a) A 1-regular network on three vertices and its adjacency matrix. (b) The same
matrix, but interpreted as the incidence matrix of a 1-biregular bipartite network
on six vertices.

The number of isomorphism classes of k-biregular bipartite networks is smaller than
the number of k-regular directed networks for k > 0 and n > 1, since neither di-
agonal elements nor symmetric entries play a special role in the incidence matrix,
but they do in the adjacency matrix (self-loops and bidirectional edges). We will see
that the state graphs simplify when we think about them from the bipartite point of
view.

1Replacing all zeroes by ones and vice versa.

225

C. State graphs

There are eight different state graphs for regular directed networks on three to six ver-
tices as listed in Table C.1. For the first example we show the isomorphism classes of
both 1-regular and 2-regular networks on three vertices. However, in the other examples
where the state graph represents either randomising k-regular or n−k-regular networks,
we just show the isomorphism classes for either the k-regular or the n − k-regular net-
works.

G Ψ G Ψ G Ψ G Ψ
n k n− k nΨ mΨ n k n− k nΨ mΨ n k n− k nΨ mΨ n k n− k nΨ mΨ

3 1 2 6 15 4 1 3 24 96 5 1 4 120 600 6 1 5 ? ?
4 2 90 774 5 2 3 2040 33540 6 2 4 ? ?

6 3 ? ?

Table C.1.: There are eight different state graphs for regular directed networks on three to
six vertices. In this table G is the k-regular or n − k-regular directed graph on n

vertices. The corresponding state graph Ψ has nΨ vertices and mΨ edges.

We never show the self-loops of the state graphs, since this complicates the visualisation.
However, each state does have a non-zero probability of being repeated and hence a self-
loop. The value m−Ψ corresponds to the number of edges in Ψ minus the self-loops, that is
m−Ψ equals the number of edges that is visualised (mΨ−nΨ).

226

C.1. Regular directed networks on three vertices

C.1. Regular directed networks on three vertices

C.1.1. 1-regular and 2-regular networks on three vertices

State graph size: nΨ = 6 and m−Ψ = 9

Figure C.2.: The state graph of the Curveball algorithm for 1-regular and 2-regular directed
networks on three vertices. States with equal colours correspond to isomorphic
networks. For simplicity we do not show self-loops. The three isomorphism classes
are illustrated in Figure C.3

227

C. State graphs

Isomorphism classes: There are three distinct isomorphism classes of directed 1-
regular networks on three vertices. Similarly there are three distinct isomorphism classes
of 2-regular directed networks on three vertices. The number of networks in each iso-
morphism class equals two, three, and one from left to right. Figure C.3 illustrates the
different isomorphism classes.

From the perspective of 1-biregular and 2-biregular bipartite networks on six vertices,
there is just a single isomorphism class. Figure C.4 illustrates the state graph for
the bipartite case and the 1-biregular as well as the 2-biregular isomorphism class.

Figure C.3.: Isomorphism classes of 1-regular (top) and 2-regular (bottom) directed networks
on three vertices.

Figure C.4.: State graph of the Curveball algorithm with respect to 1-biregular and 2-biregular
bipartite networks on six vertices. There is just one isomorphism class in each
case (middle for 1-biregular, right for 2-biregular).

228

C.2. Regular directed networks on four vertices

C.2. Regular directed networks on four vertices

C.2.1. 1-regular and 3-regular on four vertices

State graph size: nΨ = 24 and m−Ψ = 72

Figure C.5.: The state graph of the Curveball algorithm for 1-regular and 3-regular networks
on four vertices. States with equal colours correspond to isomorphic networks.
The 5 isomorphism classes are illustrated in Figure C.6

229

C. State graphs

Isomorphism classes: There are 5 distinct isomorphism classes of 3-regular directed
networks, see Figure C.6.

Figure C.6.: Isomorphism classes of 3-regular directed networks on four vertices.

The state graph simplifies when thinking about the adjacency matrices as the incidence
matrix of bipartite networks. In this case, there is just one isomorphishm class. Figure
C.7 illustrates this.

Figure C.7.: State graph of the Curveball algorithm with respect to 1-biregular and 3-biregular
bipartite networks on eight vertices. There is one isomorphism class, as illustrated
on the right.

230

C.2. Regular directed networks on four vertices

C.2.2. 2-regular on four vertices

State graph size: nΨ = 90 and m−Ψ = 684

Figure C.8.: The state graph of the Curveball algorithm for 2-regular directed networks on
four vertices. States with equal colours correspond to isomorphic networks. The
8 isomorphism classes are illustrated in Figure C.9

231

C. State graphs

Isomorphism classes: There are 8 distinct isomorphism classes of directed networks
with degree sequences kin = (2, 2, 2, 2) and kout = (2, 2, 2, 2), see Figure C.9. The number
of networks in each isomorphism class equals 6, 24, 3, 12, 12, 24, 6 and 3 from left to
right, top to bottom.

Figure C.9.: Isomorphism classes of 2-regular directed networks on four vertices.

The state graph simplifies when thinking about the adjacency matrices as the incidence
matrix of bipartite networks. There are just two isomorphishm classes as illustrated in
Figure C.10.

●

●
●
●

●

●

●
●●

●

●

●

●●
●

●

● ●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●●●

● ●●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●
●

●
●

●
●
●

●

●●

●
●
●

●

●

●

Figure C.10.: State graph of the Curveball algorithm with respect to 2-biregular bipartite net-
works on eight vertices. There are two isomorphism classes, as illustrated in red
and blue.

232

C.3. Regular directed graph on five vertices

C.3. Regular directed graph on five vertices

C.3.1. 1-regular and 4-regular on five vertices

State graph size: nΨ = 120 and m−Ψ = 600

Figure C.11.: The state graph of the Curveball algorithm for 1-regular and 4-regular networks
on five vertices. The seven isomorphism classes are illustrated in Figure C.12

233

C. State graphs

Isomorphism classes: There are seven distinct isomorphism classes of 1-regular and 4-
regular directed networks on five vertices, see Figure C.12.

The bipartite point of view is very simple, there is only 1 isomorphism class. This is not
illustrated.

Figure C.12.: Isomorphism classes of 1-regular directed networks on five vertices.

234

C.3. Regular directed graph on five vertices

C.3.2. 2-regular and 3-regular on five vertices

State graph size: nΨ = 2040 and m−Ψ = 31500
The state graph of 2-regular and 3-regular directed networks on five vertices, or 2-
biregular and 3-biregular bipartite networks on ten vertices is too densely connected to
profit from visualisation. However, we do see very nice symmetric structures in the 1-
neighbourhood and 2-neighbourhood of each state in the state graph.

There are 18 isomorphism classes for the 2-regular and 3-regular directed networks.
There are only two isomorphism classes for 2-biregular and 2-biregular networks. Fig-
ure C.13 illustrates two isomorphism classes for both the directed and the bipartite
networks.

Figure C.13.: Two representatives of two isomorphism classes of 2-regular networks on five
vertices and 2-biregular bipartite networks on ten vertices.

The fact that there are only 2 distinct isomorphism classes of 2-biregular bipartite net-
works on five vertices implies that there are also just two types of neighbourhoods in the
state graph. That is the neighbourhoods of the different isomorphism classes may differ,
but the neighbourhoods of isomorphic states have to be isomorphic.

Figure C.14 shows the 1-neighbourhoods of the isomorphism classes from Figure C.13.
Similarly Figure C.15 shows the 2-neighbourhoods of these two isomorphism classes.

235

C. State graphs

Figure C.14.: The 1-neighbourhoods of two different states in the state graph of the Curveball
algorithm for 2-regular directed networks and 2-biregular bipartite networks.
States with equal colours correspond to isomorphic networks.

Figure C.15.: The 2-neighbourhoods of two different states in the state graph of the Curveball
algorithm for 2-regular directed networks and 2-biregular bipartite networks.
States with equal colours correspond to isomorphic networks.

236

C.4. Regular directed networks on six vertices

C.4. Regular directed networks on six vertices

C.4.1. 2-regular and 4-regular networks on six vertices

State graph size: unknown
We do not know the exact size of the state graph for 2-regular networks on six vertices.
Here we only investigate the state graph from a bipartite point of view. There are four
isomorphism classes of 2-biregular bipartite networks on 12 vertices, these are shown in
Figure C.16. The 1-neighbourhood of these four states in the state graph again show a
great deal of symmetry as shown in Figure C.17.

Figure C.16.: The isomorphism classes of 2-biregular bipartite networks on 12 vertices.

237

C. State graphs

●
●

●

●

●

●

●

●● ●●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●●
●
●●
●
●

●●

●●

●

●●

●●

●
●
●●●
●●

●● ●●●●● ●●●

●

●●

●●

●

●●

●●
●

●●●
● ●

●●
●●

●

●●
●

●

●

●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●

●
●●

●
●

●

●●

●●●

●

●
●●●●
●

●●
●●

●
●●●●
●●●
●●

●●
●
●

●●●●
●●

●
●●
●●●●●●
●

●
●

●●
●●●●●●●●●●●●●●

●●

Figure C.17.: The 1-neighbourhood of the four different isomorphism classes in the state graph
for 2-biregular bipartite networks on 12 vertices.

238

C.4. Regular directed networks on six vertices

C.4.2. 3-regular networks on six vertices

State graph size: unknown
We do not know the exact size of the state graph for 3-regular networks on six vertices.
Here we only investigate the state graph from a bipartite point of view. There are six
isomorphism classes of 3-biregular bipartite networks on 12 vertices, these are shown
in Figure C.18. The 1-neighbourhood of these six states in the state graph again show
considerable symmetry as shown in Figure C.19.

Figure C.18.: The isomorphism classes of 3-biregular bipartite networks on 12 vertices.

239

C. State graphs

●
●

●●●●●

●●●●
●●●●●
●●●●

●●●●●●

●●●●●
● ●
●●●●●

●●●●
●●●●●●●●●●●●●●●

●●●●●● ●●●●●

●●●●●●●●●●●●●●●
●●●●

●
●●●●●

●

●
●●●●●

●

●

●
●

●

●

●●

●

●

●
●

●●

●

●

●●

●●

●

●

●

●
● ●

●

●

●
●
●

●
●●

●

●
●●

● ●
●

●●

●

●
●
●●
●

●

●

●●

●

●

●

●
●●

●
●
●●

●

●●
●

●

●
●

● ●●●●●

●●●●
●
●

●●●●
●
●●●●●●

●●

●●
●●●

●

●●●●●●●●
●●●●

●●●
●●●●

●●●●●

●●●●●●●●●●
●
●
●

●●

●●●●●●●●●●●●●●●●
●●●

●

●
●

●
●●●●●

●●●●●
●●●●●
●●●●●●●●●●●●●●●

●
●

●●●●●●●●●●●●●●●●●
●●

●●●●●●
●●●●●●●●●●●●

● ●
●●●●●●●
●●●●
●
●●●●●●●

●●●●●●●●●
●●●

●●●●●●●

●●●●●
●●●●
●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●●

●

●

●
●

● ●
●

●●
●

●●

●
●

● ●

●

●●● ●●

●

●

●●●
●
●●●●●
●●●●

●●●●●●

●●●
●●●●●

●●●●●●●●●●●

●●●●●
●●●●●
●●●●●●●
●●

●●●
●●●●●●●
●●●●

●●●●●

●●●●●
●●●
●●●●●
●●●●●●

●●●●●●
●
●●
●
●
●●●●●●●●

●●●●●●
●●●●●
●●●●●●●●

●●●●
●●●●●●●●●

●●●●●●

●●●●●
●●●●
●●●
●
●●●●●●

Figure C.19.: The 1-neighbourhood of the six different isomorphism classes in the state graph
for 3-biregular bipartite networks on 12 vertices.

240

D. Lipid formulations

This appendix contains information on and visualisations of the 46 lipid formulations
analysed in Chapter 7. All figures were produced by my collaborator Dr. Dallas Warren,
using the VMD software package (see Appendix B.2.7).

The data set is compiled from four different sources: (A) data published in [119],
(B) unpublished data from Dallas Warren, (C) [68], (D) Burri et. al. in prepara-
tion

The data set is a collection of ‘.gro’ files. This file format is used in chemistry to
represent a collection of molecules and their constituent atoms. Each line in such files
represents an atom. For each atom the following information is available: the kind of
atom, and the molecule that it is part, its coordinates (x, y, z) and velocity (x- ,y-,
z-directions).

Table D.1 contains information on the 46 systems that we studied. The systems are
illustrated in Figures D.1 - D.4.

241

D. Lipid formulations

(a) Lamellar (b) Lamellar (c) Lamellar

(d) Lamellar (e) Lamellar (f) Lamellar

(g) Lamellar (h) Lamellar (i) Lamellar

(j) Lamellar (k) Lamellar (l) Lamellar

Figure D.1.: Lipid formulations 1-12, carbon in cyan, oxygen in red and nitrogen in blue. Water
has been omitted for clarity.

242

(a) Lamellar (b) Lamellar (c) Lamellar

(d) Micellar (e) Micellar (f) Micellar

(g) Micellar (h) Micellar (i) Micellar

(j) Micellar (k) Micellar (l) Micellar

Figure D.2.: Lipid formulations 13-24, carbon in cyan, oxygen in red and nitrogen in blue.
Water has been omitted for clarity.

243

D. Lipid formulations

(a) Micellar (b) Micellar (c) Phase Separated

(d) Phase Separated (e) Phase Separated (f) Phase Separated

(g) Phase Separated (h) Phase Separated (i) Phase Separated

(j) Phase Separated (k) Wormy Micellar (l) Wormy Micellar

Figure D.3.: Lipid formulations 25-36, carbon in cyan, oxygen in red and nitrogen in blue.
Water has been omitted for clarity.

244

(a) Wormy Micellar (b) Wormy Micellar (c) Wormy Micellar

(d) Wormy Micellar (e) Wormy Micellar (f) Wormy Micellar

(g) Wormy Micellar (h) Wormy Micellar (i) Wormy Micellar

(j) Wormy Micellar

Figure D.4.: Lipid formulations 37-46, carbon in cyan, oxygen in red and nitrogen in blue.
Water has been omitted for clarity.

245

D. Lipid formulations

G
ro

up
in

g

Subgrouping Description Composition Ref

1
Bilayer with hole

Bilayer across 2 directions 600 DGL / 600 MGL / 24,687 SOL A
2 Bilayer with single hole 600 DGL / 600 MGL / 73,110 SOL A
3 Bilayer with single hole 567 POPC / 89,100 SOL B
4 Bilayer Complete bilayer 338 POPC / 32,349 SOL B
5

Lamellar
3 bilayers stacked 2,152 LAU / 6,624 SOL C

6 3 bilayers stacked 1,568 OLA / 6,624 SOL C
7 3 bilayers 1,368 OLA / 9,936 SOL C
8

Disordered

2 sets of 3 bilayers at right angles 2,416 LAU / 3,312 SOL C
9 3 bilayers with worm 1,800 LAU / 9,936 SOL C
10 3 bilayers with disordered ends 1,608 LAU / 13,248 SOL C
11 3 bilayers with disordered ends 1,204 LAU / 879 OLA / 3,300 SOL C
12 3 bilayers with disoredered channel 1,070 LAU / 782 OLA / 6,600 SOL C
13 3 bilayers with capped ends 970 LAU / 708 OLA / 9,075 SOL C
14 3 bilayers with dislocation 1,760 OLA / 3,312 SOL C
15

La
m

el
la

r

3 bilayers with disordered ends 1,272 OLA / 13,248 SOL C

16

Concentrated

Closely packed micelles 808 LAU / 22,910 SOL C
17 Closely packed micelles 536 LAU / 26,079 SOL C
18 Closely packed micelles 272 LAU / 29,466 SOL C
19 Closely packed micelles 201 LAU / 146 OLA / 28,050 SOL C
20 Closely packed micelles 400 OLA / 26,496 SOL C
21 Closely packed micelles, bordering on dilute 200 OLA / 29,360 SOL C
22

Dillute

Spaced micelles 118 GDX / 31 LPC / 31 OLE / 105,806 SOL D
23 Spaced micelles 165 GDX / 192 POPC / 100,073 SOL D
24 Spaced micelles 118 GDX / 64 POPC / 105,806 SOL D
25 Spaced micelles 136 LAU / 31,339 SOL C
26

M
ic

el
la

r

Spaced micelles 96 OLA / 31,272 SOL C

27
Phase Separated

Deformed bilayers around water pools 600 DGL / 600 MGL / 6,093 SOL A
28 Deformed bilayers around water pool 600 DGL / 600 MGL / 10,444 SOL A
29 2 bilayers at 90o, one with hole 600 DGL / 600 MGL / 16,247 SOL A
30

Reverse Micellar

Linked 3D channels 600 DGL / 600 MGL / 246 SOL A
31 Linked 3D channels with pools 600 DGL / 600 MGL / 1,283 SOL A
32 Isolated pools 600 DGL / 600 MGL / 2,708 SOL A
33 Isolated pools, tending phase separated 600 DGL / 600 MGL / 4,301 SOL A
34

Ph
as

e
Se

pa
ra

te
d

Vesicular Small vesicle 250 LPC / 250 OLE / 89,100 SOL D

35

-

Sponge like, bicontinuous 982 GDX / 86,149 SOL C
36 Long, cylindrical micelles 1,472 LAU / 14,850 SOL C
37 Long, cylindrical micelles 1,344 LAU / 16,560 SOL C
38 Long, cylindrical micelles 1,072 LAU / 19,872 SOL C
39 Long, cylindrical micelles 803 LAU / 586 OLA / 13,200 SOL C
40 Long, cylindrical micelles 669 LAU / 488 OLA / 16,500 SOL C
41 Long, cylindrical micelles 602 LAU / 440 OLA / 18,160 SOL C
42 Long, cylindrical micelles 1,075 OLA / 14,850 SOL C
43 Almost hexagonal 800 OLA / 18,096 SOL C
44 Long, cylindrical micelles 984 OLA / 16,560 SOL C
45 Cylindrical 584 OLA / 23,184 SOL C
46

W
or

m
y

M
ic

el
la

r

Long, cylindrical micelles 699 GDX / 111 POPC / 89,937 SOL D

Table D.1.: Details for the lipid formulations studied in Chapter 7

246

Bibliography

[1] D. Ajwani, T. Friedrich, and U. Meyer. An algorithm for online topological order-
ing. Electronic Notes in Discrete Mathematics, 25:7–12, 2006.

[2] D. Aldous. Random walks on finite groups and rapidly mixing Markov chains. In
Séminaire de Probabilités XVII 1981/82, pages 243–297. Springer, 1983.

[3] U. Alon. Network motifs: theory and experimental approaches. Nature Reviews
Genetics, 8:450–461, 2007.

[4] A. Arenas, A. Fernandez, S. Fortunato, and S. Gomez. Motif-based communi-
ties in complex networks. Journal of Physics A: Mathematical and Theoretical,
41(22):224001, 2008.

[5] Y. Artzy-Randrup, S. J. Fleishman, N. Ben-Tal, and L. Stone. Comment on
“network motifs: simple building blocks of complex networks” and “superfamilies
of evolved and designed networks”. Science, 305:1107, 2004.

[6] Y. Artzy-Randrup and L. Stone. Generating uniformly distributed random net-
works. Physical Review E, 72:056708, 2005.

[7] R. H. Atkin. From cohomology in physics to q-connectivity in social science.
International Journal of Man-Machine Studies, 4(2):139–167, 1972.

[8] Warren D. B., Chalmers D. K., and Pouton C. W. Structure and dynamics of

247

Bibliography

glyceride lipid formulations, with propylene glycol and water. Molecular Pharma-
ceutics, 6(2):604–614, 2009.

[9] M. Bachar, P. Brunelle, D. P. Tieleman, and A. Rauk. Molecular dynamics simu-
lation of a polyunsaturated lipid bilayer susceptible to lipid peroxidation. Journal
of Physical Chemistry B, 108:7170–7179, 2004.

[10] L. Backstrom and J. Kleinberg. Romantic partnerships and the dispersion of
social ties: A network analysis of relationship status on facebook. In Proceedings
of the 17th ACM Conference on Computer Supported Cooperative Work & Social
Computing, pages 831–841, New York, NY, USA, 2014. ACM.

[11] J. Bang-Jensen and G. Gutin. Alternating cycles and paths in edge-coloured
multigraphs: A survey. Discrete Mathematics, 165-166:39–60, 1997.

[12] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, 1999.

[13] A. Benkouar, Y. G. Manoussakis, V. Th. Paschos, and R. Saad. On the complexity
of some Hamiltonian and Eulerian problems in edge-colored complete graphs. In
ISA’91 Algorithms, volume 557 of Lecture Notes in Computer Science, pages 190–
198. Springer Berlin Heidelberg, 1991.

[14] S. P. Benson and J. Pleiss. Molecular dynamics simulations of self-emulsifying
drug-delivery systems (sedds): Influence of excipients on droplet nanostructure
and drug localization. Langmuir, 30(28):8471–8480, 2014.

[15] S. Benzekry, J. A. Tuszynski, E. A. Rietman, and G. Lakka Klement. Design
principles for cancer therapy guided by changes in complexity of protein-protein
interaction networks. Biology Direct, 10(1):32, 2015.

[16] A. Berger and M. Müller-Hannemann. Uniform sampling of undirected and di-
rected graphs with a fixed degree sequence. arXiv preprint arXiv:0912.0685, 2009.

248

Bibliography

[17] A. Berger and M. Müller-Hannemann. Uniform sampling of digraphs with a fixed
degree sequence. In Graph Theoretic Concepts in Computer Science, Lecture Notes
in Computer Science, pages 220–231. Springer Berlin Heidelberg, 2010.

[18] S. Boyd, P. Diaconis, and L. Xiao. Fastest mixing Markov chain on a graph. SIAM
Review, 46(4):667–689, 2004.

[19] P. Bubenik. Statistical topological data analysis using persistence landscapes.
Journal of Machine Learning Research, 16:77–102, 2015.

[20] P. Bubenik and P. D lotko. A persistence landscapes toolbox for topological statis-
tics. arXiv:1501.00179 [cs, math, stat], 2014. arXiv: 1501.00179.

[21] H. Bunke, P. J. Dickinson, M. Kraetzl, and W. D. Wallis. A graph-theoretic
approach to enterprise network dynamics. Birkhauser, Basel, 2007.

[22] G. Carlsson. Topology and data. Bulletin of the American Mathematical Society,
46:255–308, 2009.

[23] G. Carlsson, T. Ishkhanov, V. de Silva, and A. Zomorodian. On the local behavior
of spaces of natural images. International Journal of Computer Vision, 76(1):1–12,
2008.

[24] C. J. Carstens. Motifs in directed acyclic networks. In Signal-Image Technology
Internet-Based Systems (SITIS), 2013 International Conference on, pages 605–
611, 2013.

[25] C. J. Carstens. A uniform random graph model for directed acyclic networks and
its effect on motif-finding. Journal of Complex Networks, 2:419–430, 2014.

[26] C. J. Carstens. Proof of uniform sampling of binary matrices with fixed row sums
and column sums for the fast curveball algorithm. Physical Review E, 91:042812,
2015.

249

Bibliography

[27] C. J. Carstens and K. J. Horadam. Persistent homology of collaboration networks.
Mathematical problems in engineering, 2013. Article ID 815035, 7 pages, 2013.

[28] S. Castano, A. Ferrara, S. Montanelli, and G. Varese. Ontology and instance
matching. In Knowledge-driven multimedia information extraction and ontology
evolution, pages 167–195. Springer, 2011.

[29] F. Chazal, D. Cohen-Steiner, L. J. Guibas, F. Mémoli, and S. Y. Oudot. Gromov-
Hausdorff stable signatures for shapes using persistence. In Computer Graphics
Forum, volume 28, pages 1393–1403. Wiley Online Library, 2009.

[30] P. Chen, H. Xie, S. Maslov, and S. Redner. Finding scientific gems with google’s
pagerank algorithm. Journal of Informetrics, 1:8–15, 2007.

[31] A. C. C. Coolen, A. De Martino, and A. Annibale. Constrained Markovian dy-
namics of random graphs. Journal of Statistical Physics, 136(6):1035–1067, 2009.

[32] P. Cunningham, M. Harrigan, G. WU, and D. O’Callaghan. Characterizing ego-
networks using motifs. Network Science, 1(02):170–190, 2013.

[33] V. de Silva and R. Ghrist. Coverage in sensor networks via persistent homology.
Algebraic & Geometric Topology, 7:339–358, 2007.

[34] D. Douroumis and A. Fahr, editors. Drug Delivery Strategies for Poorly Water-
Soluble Drugs. John Wiley and Sons, 2013.

[35] H. Edelsbrunner and J. Harer. Computational topology: an introduction. American
Mathematical Soc., 2010.

[36] H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha shapes. ACM Trans.
Graph., 13(1):43–72, 1994.

[37] R. B. Eggleton and D. A. Holton. The graph of type (0,∞,∞) realizations of a
graphic sequence. In Combinatorial Mathematics VI, pages 41–54. Springer, 1979.

250

Bibliography

[38] R. B. Eggleton and D. A. Holton. Simple and multigraphic realizations of degree
sequences. In Combinatorial Mathematics VIII, pages 155–172. Springer Berlin
Heidelberg, 1981.

[39] P. Erdös and A. Rényi. On random graphs i. Publ. Math. Debrecen, 6:290–297,
1959.

[40] P. Erdös and A. Rényi. On the evolution of random graphs. Publ. Math. Inst.
Hungar. Acad. Sci., 5:17–61, 1960.

[41] P. L. Erdös, I. Miklós, and L. Soukup. Towards random uniform sampling of
bipartite graphs with given degree sequence. arXiv preprint arXiv:1004.2612, 2010.

[42] L. Euler. Solutio problematis ad geometriam situs pertinentis. Commentarii
Academiae Scientiarum Imperialis etropolitanae, 8:128–140, 1736.

[43] J. Euzenat and P. Shvaiko. Ontology matching, volume 333. Springer, Berlin
Heidelberg, 2007.

[44] R. Ghrist and A. Muhammad. Coverage and hole-detection in sensor networks
via homology. In Proceedings of the 4th international symposium on Information
processing in sensor networks, pages 254–260, 2005.

[45] M. S. Granovetter. The strength of weak ties. American Journal of Sociology,
78(6):1360–1380, 1983.

[46] C. Greenhill. A polynomial bound on the mixing time of a Markov chain for
sampling regular directed graphs. The Electronic Journal of Combinatorics,
18(1):P234, 2011.

[47] B. R. Greening Jr, N. Pinter-Wollman, and N. H. Fefferman. Higher-order inter-
actions: understanding the knowledge capacity of social groups using simplicial
sets. Current Zoology, 61(1):114–127, 2015.

251

Bibliography

[48] O. Häggström. Finite Markov chains and algorithmic applications. Cambridge
University Press, 2002.

[49] S. Hakimi. On realizability of a set of integers as degrees of the vertices of a
linear graph. i. Journal of the Society for Industrial and Applied Mathematics,
10(3):496–506, 1962.

[50] A. Hatcher. Algebraic Topology. Cambridge University Press, Cambridge, MA,
2002.

[51] A. Hecker, C. J. Carstens, and K. J. Horadam. Neighbourhood distinctiveness: An
initial study. In Complex Networks VI, volume 597 of Studies in Computational
Intelligence, pages 99–110. Springer International Publishing, 2015.

[52] K. Henderson, B. Gallagher, T. Eliassi-Rad, H. Tong, S. Basu, L. Akoglu,
D. Koutra, C. Faloutsos, and L. Li. Rolx: Structural role extraction & mining
in large graphs. In Proceedings of the 18th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pages 1231–1239. ACM, 2012.

[53] P. W. Holland and S. Leinhardt. Local structure in social networks. Sociological
methodology, 7:1–45, 1976.

[54] P. Holme and J. Saramäki. Temporal networks. Physics Reports, 519(3):97–125,
2012.

[55] D. Horak, S. Maletić, and M. Rajković. Persistent homology of complex networks.
Journal of Statistical Mechanics: Theory and Experiment, page P03034, 2009.

[56] S. Itzkovitz, R. Milo, N. Kashtan, G. Ziv, and U. Alon. Subgraphs in random
networks. Physical Review E, 68(2):026127, 2003.

[57] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall,
Englewood Cliffs, NJ, 1988.

252

Bibliography

[58] J. J. Janke, W. F. D. Bennett, and D. P. Tieleman. Oleic acid phase behavior
from molecular dynamics simulations. Langmuir, 30(35):10661–10667, 2014.

[59] J. Jeffers, K. J. Horadam, C. J. Carstens, A. Rao, and S. Boztas. Influence neigh-
bourhoods in CiteSeer: A case study. In Signal-Image Technology Internet-Based
Systems (SITIS), 2013 International Conference on, pages 612–618, 2013.

[60] M. Jerrum and A. Sinclair. Approximating the permanent. SIAM Journal on
Computing, 18(6):1149–1178, 1989.

[61] J. Jonsson. Simplicial Complexes of Graphs. Springer, 2007.

[62] D. Jungnickel. Graphs, networks and algorithms. Springer Verlag, Heidelberg,
1999.

[63] M. Kahle. Topology of random clique complexes. Discrete Mathematics, 309:1658–
1671, 2009.

[64] A. B. Kahn. Topological sorting of large networks. Communications of the ACM,
5:558–562, 1962.

[65] R. Kannan. Markov chains and polynomial time algorithms. In Foundations of
Computer Science, 1994 Proceedings., 35th Annual Symposium on, pages 656–671,
1994.

[66] R. Kannan, P. Tetali, and S. Vempala. Simple Markov-chain algorithms for gen-
erating bipartite graphs and tournaments. Random Structures and Algorithms,
14(4):293–308, 1999.

[67] B. Karrer and M. E. J. Newman. Random graph models for directed acyclic
networks. Physical Review E, 80:046110, 2009.

[68] D. T. King, D. B. Warren, C. W. Pouton, and D. K. Chalmers. Using molecu-

253

Bibliography

lar dynamics to study liquid phase behavior: Simulations of the ternary sodium
laurate/sodium oleate/water system. Langmuir, 27(18):11381–11393, 2010.

[69] O. D. King. Comment on “subgraphs in random networks”. Physical Review E,
70(5):058101, 2004.

[70] H. Klein-Hennig and A. K. Hartmann. Bias in generation of random graphs.
Physical Review E, 85(2):026101, 2012.

[71] S. Lacoste-Julien, K. Palla, A. Davies, G. Kasneci, T. Graepel, and Z. Ghahramani.
Sigma: Simple greedy matching for aligning large knowledge bases. In Proceedings
of the 19th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 572–580. ACM, 2013.

[72] R. G. Laughlin. The Aqueous phase behavior of surfactant. Academic Press, 1994.

[73] H. Lee, M. K. Chung, H. Kang, B. N. Kim, and D. S. Lee. Computing the
shape of brain networks using graph filtration and Gromov-Hausdorff metric. In
Medical Image Computing and Computer Assisted Intervention (MICCAI), 14th
International Conference on, volume 6891, pages 289–296, 2011.

[74] H. Lee, M. K. Chung, H. Kang, B. N. Kim, and D. S. Lee. Discriminative persistent
homology of brain networks. In Biomedical Imaging: From Nano to Macro, 2011
IEEE International Symposium on, pages 841–844, 2011.

[75] H. Lee, H. Kang, M. K. Chung, B. N. Kim, and D. S. Lee. Persistent brain
network homology from the perspective of dendrogram. IEEE Transactions on
Medical Imaging, 31(12):2267–2277, 2012.

[76] S. Maletić and M. Rajković. Combinatorial Laplacian and entropy of simplicial
complexes associated with complex networks. The European Physical Journal
Special Topics, 212(1):77–97, 2012.

[77] S. Maletić, M. Rajković, and D. Vasiljević. Simplicial complexes of networks and

254

Bibliography

their statistical properties. In Computational Science - ICCS 2008, number 5102
in Lecture Notes in Computer Science, pages 568–575. Springer Berlin Heidelberg,
2008.

[78] S. Maslov and K. Sneppen. Specificity and stability in topology of protein net-
works. Science, 296:910–913, 2002.

[79] I. Miklós and J. Podani. Randomization of presence-absence matrices: comments
and new algorithms. Ecology, 85:86–92, 2004.

[80] R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat, M. Sheffer,
and U. Alon. Superfamilies of evolved and designed networks. Science, 303:1538–
1542, 2004.

[81] R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, and U. Alon. On the uniform
generation of random graphs with prescribed degree sequences. arXiv preprint
cond-mat/0312028, 2003.

[82] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Net-
work motifs: simple building blocks of complex networks. Science, 298:824–827,
2002.

[83] M. Mitzenmacher and E. Upfal. Probability and computing: Randomized algo-
rithms and probabilistic analysis. Cambridge University Press, 2005.

[84] M. Molloy and B. Reed. A critical point for random graphs with a given degree
sequence. Random Structures & Algorithms, 6(2-3):161–180, 1995.

[85] T. J. Moore, R. J. Drost, P. Basu, R. Ramanathan, and A. Swami. Analyzing
collaboration networks using simplicial complexes: A case study. In Computer
Communications Workshops (INFOCOM WKSHPS), 2012 IEEE Conference on,
pages 238–243. IEEE, 2012.

255

Bibliography

[86] J. R. Munkres. Elements of algebraic topology. Addison-Wesley, Menlo Park, CA,
1984.

[87] F. Mémoli. Gromov–Wasserstein distances and the metric approach to object
matching. Foundations of Computational Mathematics, 11(4):417–487, 2011.

[88] A. Narayanan and V. Shmatikov. De-anonymizing social networks. In Security
and Privacy, 2009 30th IEEE Symposium on, pages 173–187, 2009.

[89] M. E. J. Newman. Scientific collaboration networks: I. network construction and
fundamental results. Physical Review E, 64:016131, 2001.

[90] M. E. J. Newman. Scientific collaboration networks. ii. shortest paths, weighted
networks, and centrality. Phys. Rev. E, 64:016132, 2001.

[91] M. E. J. Newman. The structure of scientific collaboration networks. Proceedings
of the National Academy of Sciences, 98:404–409, 2001.

[92] M. E. J. Newman. Finding community structure in networks using the eigenvectors
of matrices. Physical Review E, 74:036104, 2006.

[93] M. E. J. Newman. Random graphs with clustering. Physical Review Letters,
103:058701, Jul 2009.

[94] M. E. J. Newman. Networks: an introduction. Oxford University Press, 2010.

[95] M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with arbitrary
degree distributions and their applications. Physical Review E, 64(2):026118, 2001.

[96] T. Opsahl. Triadic closure in two-mode networks: Redefining the global and local
clustering coefficients. Social Networks, 35(2):159–167, 2013.

[97] G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncovering the overlapping com-

256

Bibliography

munity structure of complex networks in nature and society. Nature, 435:814–818,
2005.

[98] P. Pedarsani, D. R. Figueiredo, and M. Grossglauser. A bayesian method for
matching two similar graphs without seeds. In Communication, Control, and
Computing (Allerton), 2013 51st Annual Allerton Conference on, pages 1598–
1607. IEEE, 2013.

[99] G. Petri, P. Expert, F. Turkheimer, R. Carhart-Harris, D. Nutt, P. J. Hellyer, and
F. Vaccarino. Homological scaffolds of brain functional networks. Journal of The
Royal Society Interface, 11(101):20140873, 2014.

[100] G. Petri, M. Scolamiero, I. Donato, and F. Vaccarino. Networks and cycles: A
persistent homology approach to complex networks. In Proceedings of the Euro-
pean Conference on Complex Systems 2012, pages 93–99. Springer International
Publishing, 2013.

[101] G. Petri, M. Scolamiero, I. Donato, and F. Vaccarino. Topological strata of
weighted complex networks. PloS one, 8(6):e66506, 2013.

[102] C. W. Pouton. Formulation of poorly water-soluble drugs for oral administration:
physicochemical and physiological issues and the lipid formulation classification
system. European Journal of Pharmacetuical Science, 29(3-4):278–287, 2006.

[103] A. R. Rao, R. Jana, and S. Bandyopadhyay. A Markov chain Monte Carlo method
for generating random (0, 1)-matrices with given marginals. Sankhya: The Indian
Journal of Statistics, Series A, 58:225–242, 1996.

[104] Z. Raoul. Introduction to Surfactants and Surfactant Self-Assemblies. In Dynamics
of Surfactant Self-Assemblies. CRC Press, 2005.

[105] J. Ray, A. Pinar, and C. Seshadhri. Are we there yet? when to stop a Markov chain
while generating random graphs. In Algorithms and Models for the Web Graph,

257

Bibliography

volume 7323 of Lecture Notes in Computer Science, pages 153–164. Springer Berlin
Heidelberg, 2012.

[106] S. Rechner and A. Berger. ¡italic¿marathon¡/italic¿: An open source software
library for the analysis of markov-chain monte carlo algorithms. PLoS ONE,
11(1):e0147935, 01 2016.

[107] E. S. Roberts, A. Annibale, and A. C. C. Coolen. Controlled Markovian dynam-
ics of graphs: unbiased generation of random graphs with prescribed topological
properties. In Nonlinear Maps and their Applications, pages 25–34. Springer, 2014.

[108] E. S. Roberts and A. C. C. Coolen. Unbiased degree-preserving randomization of
directed binary networks. Physical Review E, 85(4):046103, 2012.

[109] V. Robins, P. J. Wood, and A. P. Sheppard. Theory and algorithms for construct-
ing discrete Morse complexes from grayscale digital images. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 33(8):1646–1658, 2011.

[110] H. J. Ryser. Combinatorial mathematics. Carus Mathematical Monographs. The
Mathematical Association of America, 1963.

[111] A. Sinclair and M. Jerrum. Approximate counting, uniform generation and rapidly
mixing Markov chains. Information and Computation, 82(1):93–133, 1989.

[112] T. A. B. Snijders. Enumeration and simulation methods for 0–1 matrices with
given marginals. Psychometrika, 56(3):397–417, 1991.

[113] M. Sokolova and G. Lapalme. A systematic analysis of performance measures for
classification tasks. Information Processing & Management, 45(4):427–437, 2009.

[114] S. V. Stehman. Selecting and interpreting measures of thematic classification
accuracy. Remote Sensing of Environment, 62(1):77–89, 1997.

[115] G. Strona, D. Nappo, F. Boccacci, S. Fattorini, and J. San-Miguel-Ayanz. A fast

258

Bibliography

and unbiased procedure to randomize ecological binary matrices with fixed row
and column totals. Nature Communications, 5:4114, 2014.

[116] E. Szpilrajn. Sur l’extension de l’ordre partiel. Fundamenta Mathematicae,
16(1):386–389, 1930.

[117] R. Taylor. Constrained switchings in graphs. In Combinatorial Mathematics VIII,
pages 314–336. Springer Berlin Heidelberg, 1981.

[118] K. Turner. Means and medians of sets of persistence diagrams. arXiv preprint
arXiv:1307.8300, 2013.

[119] D. Warren, D. King, H. Benameur, C. Pouton, and D. Chalmers. Glyceride lipid
formulations: Molecular dynamics modeling of phase behavior during dispersion
and molecular interactions between drugs and excipients. Pharmaceutical Re-
search, 30(12):1–16, 2013.

[120] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’networks.
Nature, 393:440–442, 1998.

[121] S. Wernicke. A faster algorithm for detecting network motifs. In Algorithms in
Bioinformatics, volume 3692 of Lecture Notes in Computer Science, pages 165–177.
Springer Berlin Heidelberg, 2005.

[122] J. G. White, E. Southgate, J. N. Thomson, and S. Brenner. The structure of
the nervous system of the nematode caenorhabditis elegans. Philosophical Trans-
actions of the Royal Society of London B: Biological Sciences, 314(1165):1–340,
1986.

[123] A. C. Wilkerson, H. Chintakunta, H. Krim, T. J. Moore, and A. Swami. A dis-
tributed collapse of a network’s dimensionality. In 2013 IEEE Global Conference
on Signal and Information Processing (GlobalSIP), pages 595–598, 2013.

[124] A. C. Wilkerson, T. J. Moore, A. Swami, and H. Krim. Simplifying the homol-

259

Bibliography

ogy of networks via strong collapses. In 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 5258–5262, 2013.

[125] H. D. Williams, N. L. Trevaskis, S. A. Charman, R. M. Shanker, W. N. Charman,
C. W. Pouton, and C. J. H. Porter. Strategies to address low drug solubility in
discovery and development. Pharmacological Reviews, 65(1):315–499, 2013.

[126] J. A. Wilson, A. Bender, T. Kaya, and P. A. Clemons. Alpha shapes applied to
molecular shape characterization exhibit novel properties compared to established
shape descriptors. Journal of Chemical Information and Modeling, 49(10):2231–
2241, 2009.

[127] E. Wong, B. Baur, S. Quader, and C.-H. Huang. Biological network motif detec-
tion: principles and practice. Briefings in Bioinformatics, 13:202–215, 2012.

[128] G. Wu, M. Harrigan, and P. Cunningham. Characterizing wikipedia pages using
edit network motif profiles. In Proceedings of the 3rd international workshop on
Search and mining user-generated contents, pages 45–52, 2011.

[129] Z. Wu, G. Menichetti, C. Rahmede, and G. Bianconi. Emergent complex network
geometry. Scientific Reports, 5:10073, 2015.

[130] Z.-X. Wu and P. Holme. Modeling scientific-citation patterns and other triangle-
rich acyclic networks. Physical Review E, 80:037101, 2009.

[131] Ö. N. Yaveroğlu, N. Malod-Dognin, D. Davis, Z. Levnajic, V. Janjic, R. Kara-
pandza, A. Stojmirovic, and N. Pržulj. Revealing the hidden language of complex
networks. Scientific Reports, 4:4547, 2014.

[132] W. W. Zachary. An information flow model for conflict and fission in small groups.
Journal of Anthropological Research, 33(4):452–473, 1977.

[133] J. Zhao. Expand and contract: Sampling graphs with given degrees and other
combinatorial families. arXiv preprint arXiv:1308.6627, 2013.

260

Bibliography

[134] T. Zhou, J. Ren, M. Medo, and Y.-C. Zhang. Bipartite network projection and
personal recommendation. Physical Review E, 76:046115, 2007.

[135] K. A. Zweig and M. Kaufmann. A systematic approach to the one-mode projection
of bipartite graphs. Social Network Analysis and Mining, 1:187–218, 2011.

261

	Acknowledgments
	Summary
	List of Publications Arising
	Introduction
	Network science definitions
	Edge set differences and Eulerian paths
	Markov chains
	Topology
	Topological data analysis
	Simplicial homology
	Persistent homology
	Common constructions of filtrations
	Persistence landscapes

	Switching models
	Switching models for simple directed networks
	Irreducibility
	Aperiodicity
	Detailed balance equations

	Switching models for different network classes
	Irreducibility
	Aperiodicity
	Detailed balance equations

	MFinder implementation flaw
	The ordered switching model
	Irreducibility
	Aperiodicity
	Detailed balance equations

	Conclusion

	Run-time of random network models
	Alternative Markov chains
	Definitions
	Mixing times
	Run-times
	A formula for change in mobility

	The configuration model
	Conclusion

	Curveball algorithms
	The Curveball Algorithm
	Description of the Curveball algorithm
	Modifying the Curveball algorithm
	Numerical results

	Curveball algorithms for directed networks
	Curveball algorithms for undirected networks
	The run-time of the Curveball algorithm
	Conclusion

	Local network properties
	Motifs in directed acyclic networks
	Three-node motifs in directed acyclic networks
	Null-models for motifs in directed acyclic networks
	Motif experiments in citation networks

	Neighbourhood distinctiveness
	Influence neighbourhoods
	Experiments in communication and citation networks

	Conclusion

	Topological data analysis for networks
	Literature review
	Simplicial complexes for relational data
	Network homology
	Constructing filtrations from networks
	Persistent homology of collaboration networks
	Collaboration network of network scientists
	Physics collaboration networks

	Conclusion

	Topological data analysis of lipid formulations
	Context and problem description
	Lipid formulation data set
	Analysing four distinct phases
	A simple classifier
	Hierarchical clustering
	Conclusion

	Conclusion
	Appendices
	Data Sets
	Astrophysics: collaboration network
	C. Elegans: neural network
	CiteSeer Archive: citation network
	Condensed matter: collaboration network
	Enron: email communication network
	High energy physics - theory: collaboration network
	High energy physics - theory: citation network
	High energy physics - phenomenology: citation network
	Network Science: collaboration network
	US airport data: transport network
	Zachary's karate club: social network

	Software
	Developed
	Curveball style algorithms
	HomViz: Homology Visualizer
	JavaPlex pbc extension
	Persistence Landscapes Wrapper
	Random directed acyclic networks
	Switching Models

	Used
	Curveball algorithm
	Gephi
	igraph
	JavaPlex
	MFinder
	Persistence Landscape Toolbox
	VMD

	State graphs
	Regular directed networks on three vertices
	1-regular and 2-regular networks on three vertices

	Regular directed networks on four vertices
	1-regular and 3-regular on four vertices
	2-regular on four vertices

	Regular directed graph on five vertices
	1-regular and 4-regular on five vertices
	2-regular and 3-regular on five vertices

	Regular directed networks on six vertices
	2-regular and 4-regular networks on six vertices
	3-regular networks on six vertices

	Lipid formulations
	Bibliography

