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Abstract
This research investigates the performance of graphical dot arrays designed to make dis-

crimination of relative numerosity as effortless as possible at the same time as making

absolute (quantitative) numerosity estimation as effortful as possible. Comparing regular,

random, and hybrid (randomized regular) configurations of dots, the results indicate that

both random and hybrid configurations reduce absolute numerosity estimation precision,

when compared with regular dots arrays. However, discrimination of relative numerosity is

significantly more accurate for hybrid dot arrays than for random dot arrays. Similarly,

human subjects report significantly lower levels of subjective confidence in judgments

when using hybrid dot configurations as compared with regular configurations; and signifi-

cantly higher levels of subjective confidence as compared with random configurations.

These results indicate that data graphics based on the hybrid, randomized-regular configu-

rations of dots are well-suited to applications that require decisions to be based on numeri-

cal data in which the absolute quantities are less certain than the relative values.

Examples of such applications include decision-making based on the outputs of empiri-

cally-based mathematical models, such as health-related policy decisions using data from

predictive epidemiological models.

Introduction
Across a variety of applications, human decisions are often based on numerical data where
the absolute quantities are less certain than the relative values. For example, data output
from predictive mathematical models, such as epidemiological models, frequently exhibit
this feature. This research investigates the graphical representation of uncertain numerical
data (such as the outputs from predictive epidemiological models) that makes relative (quali-
tative) judgments as effortless as possible, while making absolute (quantitative) estimation as
effortful as possible. The aim of such graphics is to support human decision making under
uncertainty, helping decision makers to have confidence in the relative values of data with-
out giving these users spurious confidence in the absolute values.
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Previous work has already used graphical representations of numerical data, in preference
to presenting raw numbers, to improve its reliability for humans. For example, non-numeric
images were used in [1] to improve system security in the context of the human limitations in
remembering secure passwords. The study showed how recognition-based authentication
(using images) could be more reliable and easier to use than traditional recall-based schemes
[1]. In health and medical decision-making, a number of studies have used arrays of dots to
help decision makers modify incorrect expectations about clinical management, and prevent
difficulties in understanding health-related risks [2–4].

The task of estimating the number of dots in a graphical display is called numerosity estima-
tion[5, 6]. A significant body of previous research has shown that humans exhibit systematic
biases in numerosity estimation under different circumstances. For example, regular sets of
dots have been shown to result in higher estimates of number than random sets, in all cases
except the lowest numbers (which were judged accurately under both conditions) [5]. In gen-
eral, arrays of dots tend to be underestimated when presented in dense clusters rather than
spread out over a larger area [7, 8]. These findings have been explained by the occupancy
model [6] and texture density [9]. Decreasing the distance between adjacent dots causes appar-
ent overlapping of the area “occupied” by dots, leading to the underestimation of numerosity.
In contrast, increasing the open space at the edges of dot arrays has been shown to lead to
lower estimates of numerosity than arrays that fill the edges more completely [10]. Several
other visual cues are implicated in human numerosity estimation, such as dot size [11]. Joining
dots to make “bar-bells” also significantly reduces apparent numerosity under the same texture
density [12]. Some evidence exists for a psychophysical basis for direct perception of numeros-
ity in humans [13, 14]. For example, studies have identified neurons in both pre-frontal and
parietal cortex that are tuned for numerosity [15, 16].

Related to the task of estimating absolute numerosity, the relative estimation of which of
two graphics is more numerous is termed numerosity discrimination[10, 17]. Performance on
numerosity discrimination tasks is strongly affected by the ratio between the two numbers
being compared [17–19]. This ratio is captured by the Weber fraction, k = J/N, where N is the
number of dots and J is a “just noticeable difference” (JND) between two stimuli [18]. For
example, a Weber fraction of 0.10 indicates that a 10% change in magnitude of a stimulus (e.g.,
a 10% increase in the number of dots) can be reliably detected by subjects. Experiments have
shown the Weber fraction for numerosity discrimination to be 0.162 in cases where N is
between 8 to 30 [17]; 0.100 and 0.077 respectively for N = 25 and N = 100 [19]; and 0.168 and
0.155 respectively for N = 20 and N = 40 [6].

In summary, previous work has explored the extent to which different configurations of
dots (e.g., regularity, clustering, more open space at the edge of a display) affect the accuracy of
numerosity estimation and discrimination. However, the relationship between numerosity and
discrimination for a particular configuration has not been investigated. Further, no work has
yet investigated specifically the configurations best suited to achieve good performance at rela-
tive judgments in combination with poor performance at absolute estimation.

In addressing this gap in the previous literature, our central hypothesis is that hybrid ran-
domized-regular arrays of dots are able to improve numerosity discrimination performance,
when compared with random dot arrays, at the same time as decreasing numerosity estimation
performance when compared with regular dot arrays. More specifically, our results show that:

• Both random and hybrid configurations reduce absolute numerosity estimation precision,
when compared with regular dots arrays.

• Discrimination of relative numerosity is significantly more accurate for hybrid dot arrays
than for random dot arrays.
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• Human subjects report significantly lower levels of subjective confidence in judgments when
using hybrid dot configurations when compared with regular configurations; and signifi-
cantly higher levels of subjective confidence when compared with random configurations.

These results contribute to our understanding of how best to present numerical data in
applications where decision makers may have confidence in relative judgments, but not in
absolute data values. Our assumption is that effective decision-making using such uncertain
numerical data can be better supported by representations that make relative judgments effort-
less at the same time as absolute judgments more effortful. These results contribute to our
understanding of how best to present numerical data in such applications.

Methods
This study compares three different types of non-numerical graphical representations of
numerical data. Each representation consists of an array of dots. Our specific focus is to iden-
tify those representations that make the absolute numerosity estimation effortful, at the same
time as making relative discrimination as effortless as possible.

Participants
74 participants took part in the experiment. 33 participants were postgraduate students from
Melbourne School of Engineering and Melbourne School of Population and Global Health at
the University of Melbourne. 41 participants were students (28 undergraduates, 18 postgradu-
ates) from Institute of Geomatics Engineering, FHNWUniversity of Applied Sciences and Arts
Northwestern Switzerland.

Ethics statement
This study was conducted in October, 2014 and its conduct was approved by the University of
Melbourne’s Human Research Ethics Committee (ID 1443039.1). Written informed consent
was obtained from all subjects prior to participation.

Materials

Stimulus
The three different types of stimulus tested were:

I. a regular array of dots distributed on a regular 10 × 10 grid;

II. a randomized array of dots distributed on a regular 10 × 10 grid; and

III. a randomized array of dots distributed randomly over the same area as the dots for type I
and II arrays.

Examples of the three different types of stimulus are shown in Fig 1. The size of each stimulus
was 300 × 300 pixels. The size of each dot was 7 pixels. The arrangement of dots depended on
the stimulus type and numerosity. The stimuli were displayed on a computer screen with at
least 1280 × 720 resolution and standard rotation at refresh rate of 60 Hz.

For the absolute numerosity estimation task, five different levels (numbers) were presented
to subjects: 19, 37, 61, 73, or 91 dots. These levels were chosen to maximize comparability to
previous research [5].

For the relative numerosity discrimination task, each of the same five (reference) numbers
were compared with five or six other numbers, based on the Weber fraction. Table 1 shows the
numbers of dots and the Weber fraction for the numerosity discrimination task.

Estimation and Discrimination of Uncertain Numerical Data
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The same types of stimulus were used in both absolute numerosity estimation and relative
numerosity discrimination tasks. For stimulus Types II and III the dot locations were random-
ized across different stimulus instances. However, for the numerosity discrimination task, the
lesser dot array contained a subset of the dots of the greater dot array for all Type II stimuli. Fig
2 shows an example of the Type II numerosity discrimination stimulus, with the less numerous
array (Fig 2a) containing a subset of dots in the more numerous array (Fig 2b).

Procedure
Two experiments examined the two related tasks: absolute numerosity estimation and relative
numerosity discrimination. Each participant conducted the experiment using a customized
web-based interface. Participants first completed the absolute numerosity estimation task and
then conducted the relative numerosity estimation, consistent with [18]. Previous studies have
shown that participants’ performance is not affected by reversing the order of these two tasks
[10]. Thus, although we did not test performance for subjects performing the numerosity dis-
crimination tasks before numerosity estimation, we would expect our results to be robust to
reordering of these tasks.

The numerosity estimation task required participants to estimate the number of black dots
in a graphical dot array (see Fig 1). The instructions asked participants to estimate and not to
count the number of dots present. Each array of dots was presented on screen only for a short
time (2 seconds). This time was chosen, based on a pilot study, as a period long enough to min-
imize stress to the participants, but short enough to make counting of the dots by participants
unlikely. After viewing each stimulus (see Fig 3a), participants were asked to estimate the num-
ber of black dots in the graphical dot array (see Fig 3b). Once a participant had entered his or
her answer, using the computer keyboard, the next stimulus was presented to the participant.

Each participant was required to make estimates of 2 randomized repetitions of the 5 num-
bers across 3 stimulus types, leading to a total of 30 stimuli viewed by each participant (and a

Fig 1. Examples of the three stimulus types for the number 37.

doi:10.1371/journal.pone.0141271.g001

Table 1. Trials for relative numerosity discrimination task.Numbers in parenthesis indicate the Weber fraction between reference and comparison
numbers.

Reference Comparison

19 20 (0.05) 21 (0.10) 22 (0.15) 23 (0.21) - 57 (2.00)

37 40 (0.08) 41 (0.10) 42 (0.14) 43 (0.16) 45 (0.21) 12 (2.08)

61 66 (0.08) 68 (0.11) 70 (0.14) 71 (0.16) 74 (0.21) 20 (2.05)

73 79 (0.08) 82 (0.12) 83 (0.14) 85 (0.16) 88 (0.21) 24 (2.04)

91 99 (0.08) 90 (0.10) 80 (0.14) 78 (0.16) 76 (0.20) 30 (2.03)

doi:10.1371/journal.pone.0141271.t001
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total of 148 estimates for each number across all participants). The order of stimulus presenta-
tion was randomized. An additional two pre-test stimuli were added to the beginning of each
participant’s test, for which data was discarded. Participants were informed the first two stimuli
were pre-tests and were for practice only.

The numerosity discrimination task presented pairs of dot arrays together. Participants
were asked to judge which of the two graphical arrays of dots had the larger number of black
dots. Numerosity discrimination stimuli were presented to participants for a slightly longer
period (4 seconds) due to the relative difficulty of the task. After viewing each stimulus (Fig
4a), participants were asked to select the more numerous of the pair of dot array (Fig 4b). Once
a participant had entered his or her answer (either the left or right dot array in the stimulus
using the mouse) the next stimulus was presented to the participant. Each participant repeated
this task in randomized order for the 29 pairs of numbers (Table 1) across the 3 stimulus types
(a total of 87 stimuli per participant, and a grand total of 1332 estimates per reference number).
The stimulus set was again preceded by 2 practice stimuli for which data was discarded.

Fig 2. Example Type II stimulus for relative numerosity discrimination task (37 versus 40, Weber
fraction 0.08).

doi:10.1371/journal.pone.0141271.g002

Fig 3. Example of stimulus (a) and response (b) interface for estimation task as presented to experimental subjects.

doi:10.1371/journal.pone.0141271.g003
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Participants were also instructed to indicate their level of confidence in each answer—low,
medium, or high—for both numerosity estimation and discrimination tasks. The level of confi-
dence was reported after each stimulus via the web-based interface, at the same time as partici-
pants’ entered their absolute numerosity estimation or relative numerosity discrimination
responses (see Figs 3b and 4b).

Data files containing the complete raw anonymized experimental data are available in the
supporting information to this paper (S1 File).

Results

Absolute numerosity estimation
A summary of participants’ absolute numerosity estimates is presented in Fig 5.

Estimates were compared with the true values across the five numbers using a bootstrapping
M-estimator, due to the non-normal distribution of estimates. In addition, effect size was ana-
lyzed using Cliff’s delta [20], expressed in a standardized form using Cohen’s d.

As might be anticipated based on previous studies, the majority of tests exhibited a signifi-
cant difference (p< 0.05) between the estimated and the true number (all cases except Type I,
19 and 91; Type II, 61 and 91; and Type III 61). Effect sizes were generally smaller for Type I
than Type II and III stimuli.

However, it is immediately clear from Fig 5 that the variances of estimates for Type II and
III stimuli are substantially larger than for Type I stimuli. This visual impression was con-
firmed statistically using Levene’s test, which indicated significant differences in variance at the
5% level between Type I versus Type II and Type I versus Type III estimates (i.e., all p< 0.01
except Type I and Type II for the number 19, p = 0.03). In contrast, there were no significant
differences in variances for Type II and Type III stimuli for the numbers 19 (F(1,294) = 0.01,
p = 0.93), 37 (F(1,294) = 3.90, p = 0.05), and 61 (F(1,294) = 0.26, p = 0.61).

Lastly, participants’ confidence in their own responses was also analyzed. Fig 6a presents the
histogram of participants’ confidence grouped confidence level across the three stimulus types.

Participants’ confidence was significantly affected by type of stimulus (Kruskal-Wallis test,
H(2) = 495.9, p = 2.2 × 10−16). A post hoc test indicated all combinations of stimulus type

Fig 4. Example of stimulus (a) and response (b) interface for discrimination task as presented to experimental subjects.

doi:10.1371/journal.pone.0141271.g004
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differed significantly (i.e., significant differences at the 5% level between Type I versus Type II,
Type I versus Type III, and Type II versus Type III, corrected for the number of tests).

Analyzing the correlation between participants’ confidence and the correctness of esti-
mates showed a significant negative correlation between estimate correctness and participant
confidence. As we might expect, participants’ confidence increases as the difference between
participants’ estimates and real numbers decreases (Kendall’s tau, Type I stimulus τ = −0.28
and Type II stimulus τ = −0.23, p < 0.05). Type III stimuli also exhibited a significant differ-
ence between user confidence and estimate accuracy, but with a weaker correlation between
the two (τ = −0.10, p = 0.0004).

Fig 5. The spread of estimates based on type of stimulus.

doi:10.1371/journal.pone.0141271.g005
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Relative numerosity discrimination
As would be expected from previous work, the correctness of participants’ judgments in the
numerosity discrimination task is generally predicted by the Weber fraction (Fig 7). However,
the precise relationship is strongly related to the stimulus type, with the Weber fractions
required to achieve a particular accuracy increasing from Type I, to Type II, to Type III stimuli.
For the Type I stimulus, participants always achieved over 90% accuracy, irrespective of Weber
fraction. For Type II stimuli, 90% accuracy was achieved at a Weber fraction of above about
1.2; Type III stimuli achieved 90% accuracy at a Weber fraction of above about 1.75 (Fig 7 high-
lights the Weber fraction required to achieve 90% accuracy of judgment by participants for
each stimulus type).

These visual impressions were confirmed using logistic regression analysis (Table 2). The
analysis revealed statistically significant differences between all stimulus types. The odds ratios
indicated that Type I outperformed Type II which in turn outperformed Type III.

The relationship between participants’ confidence and the correctness of judgments was
again analyzed for the numerosity discrimination task (Fig 6b). Once again, stimulus type signif-
icantly affected participants’ confidence (Kruskal-Wallis test,H(2) = 1700, p< 0.01). Focused
comparisons of the mean ranks between groups, corrected for the number of tests, indicated
that all combinations of stimulus types exhibited differences significant at the 5% level.

Participants’ confidence was again significantly related to the accuracy of judgments for all
stimulus types (Kendall’s tau analysis, p< 0.05). The relationship is also relatively highly corre-
lated: τ = 0.22, τ = 0.26, and τ = 0.26 for Types I, II, and III stimuli respectively.

Discussion
In line with previous work, the results of the absolute numerosity estimation task show that
participants cannot, in general, estimate numerosity accurately, irrespective of type of stimulus.
The exceptions were restricted to the numbers 19 (Type I), 61 (Types II and III), and 91 (Type
I and Type II). This accuracy may in part be a result of using a frame around stimuli, making
numbers closer to 0, 50, or 100 easier to estimate than, say, 37 or 73 [21]. Further, the clustering
possible in the Type III stimulus is known to be associated with smaller estimates [7, 8].

Fig 6. Counts of participants’ level of confidence in their judgments for a. numerosity estimation and b. numerosity discrimination tasks: The x axis presents
the three stimulus types, grouped by confidence level: low, medium, or high. The y axis indicates the number of participants’ reporting that level of confidence
in each class.

doi:10.1371/journal.pone.0141271.g006
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However, the results show that the precision (variance) of participants’ estimates significantly
decreases in moving from Type I (regular) to Type II (hybrid) or III (randomized) stimuli. Par-
ticipants were also significantly less confident in their estimates when presented with random
Type III or hybrid Type II stimuli when compared to regular Type I stimuli. Taken together, we
can conclude from these results that Type II and III stimuli make the absolute numerosity esti-
mation task harder, with participants having lower confidence in their performance.

Fig 7. Relationship betweenWeber fraction and accuracy of participants’ judgments for numerosity discrimination. The abscissa of the 90%
ordinate shows theWeber fraction corresponding to 90% accuracy of judgment by participants.

doi:10.1371/journal.pone.0141271.g007
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Turning to relative numerosity discrimination, while participants performed best using a
regular Type I stimulus, a hybrid Type II stimulus led to significantly better judgments than a
randomized Type III stimulus. User confidence again reflects this pattern, with confidence in
Type II stimuli lower than Type I but higher than Type III stimuli.

In summary, using the hybrid Type II stimulus led to worse numerosity estimation perfor-
mance (in terms of precision of estimates) than for the regular Type I stimulus. The hybrid
Type II stimulus performed no better than the randomized Type III stimulus for numerosity
estimation in most cases. Conversely, numerosity discrimination using the hybrid Type II stim-
ulus consistently outperformed the random Type III stimulus, even though it did not achieve
the level of performance of the regular Type I stimulus.

Arguably, such characteristics—poor performance and confidence in absolute numerosity
estimation combined with better performance and confidence in relative numerosity discrimi-
nation—make Type II dot arrays particularly well-suited to decision-making with numerical
data where relative values are more certain than absolute values.

Conclusions
This paper has investigated how differing arrangements of dots in graphical displays of numer-
ical data can affect the accuracy of, and confidence in numerosity estimation and discrimina-
tion. In particular, the study focused on representations that help to make absolute numerosity
estimates more effortful, while still facilitating effortless relative numerosity discrimination.
The study found that irregular randomized arrays of dots arranged upon a regular grid led to:
a. lower confidence in and poorer estimation of absolute numerosity than regular arrays of
dots upon a regular grid; and b. higher confidence in and better relative discrimination between
numerosity than randomized arrays of dots.

It seems reasonable to conclude, therefore, using the hybrid Type II stimulus for numerosity
estimation is more effortful than using the regular Type I stimulus; and conversely that the
hybrid Type II stimulus is less effortful than the random Type III stimulus for numerosity dis-
crimination. Thus, using such hybrid arrays of dots represents a good compromise between
facilitating relative discrimination and obscuring absolute estimation of numerosity.

These characteristics make Type II dot arrays particularly well-suited to decision-making
scenarios with numerical data where relative values are more certain than absolute values.
Examples of such scenarios include decisions based on the uncertain outputs of scientific mod-
els, such as epidemiological models. By more effectively communicating uncertainties to deci-
sion-makers in a form that does not inhibit decision-making itself should in turn lead to better
decisions in these domains.

Supporting Information
S1 File. Metadata and data files containing anonymized raw experimental results in .csv
format.
(ZIP)

Table 2. Model β-values and standard errors (SE), and odds ratios for logistic regression of numeros-
ity discrimination task. ** indicates p < 0.01.

β (SE) Odds ratio, 95% CI

Type III vs Type I 2.29** (0.18) 9.85, CI(7.00 14.30)

Type III vs Type II 0.61** (0.10) 1.84, CI(1.51, 2.24)

Type II vs Type I 1.68** (0.19) 5.37, CI(3.76, 7.88)

doi:10.1371/journal.pone.0141271.t002
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