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ABSTRACT 

Current theories for predicting the sound insulation of orthotropic materials are limited to a small 

range of infinite panels. This paper presents a method that allows for the prediction of the sound 

insulation of a finite size orthotropic panel. This method uses an equation for the forced radiation 

impedance of a finite size rectangular panel. This approach produces an equation which has three 

nested integrals. The long numerical calculation times were reduced by using approximate 

formulae for the azimuthally averaged forced radiation impedance. This reduced the number of 

nested integrals from three to two. The resulting predictions are compared to results measured 

using two sample sizes of four different thicknesses of plywood and one sample size of another 

three different thicknesses of plywood. Plywood was used for all the tests because it is somewhat 

orthotropic. It was found during testing that the Young’s moduli of the plywood were dependent 

on the frequency of excitation. The influence of the frequency dependent Young’s moduli was 

then included in the prediction method. The experimental results were also compared with a 

simple orthotropic prediction method. 
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I. INTRODUCTION 

A large number of prediction methods exist for the prediction of the sound insulation of 

various different partitions. A number of authors have explored the prediction of the sound 

transmission loss based on single leaf panels (Cremer, 1942; London, 1949; Sewell, 1970). This 

was also expanded to incorporate double leaf partitions (London, 1950; Sharp, 1978). A major 

assumption made in a number of these early models was that the panel was of infinite extent. 

This condition is obviously not met in any real laboratory situations. 

Despite the large quantity of research that has been undertaken by a wide range of 

authors there are still significant gaps in the current understanding of sound insulation behaviour. 

Two comparative studies by Hongisto (2002; 2006) showed that the majority of the commonly 

used prediction methods were relatively limited in their applications and did not yield accurate 

results when compared to experimental results from a range of different partitions. Furthermore 

the evaluated models were all limited to the prediction of partitions built using isotropic 

materials. An equivalent study has not been performed on prediction schemes that allow for 

orthotropic material properties. 

Several other approaches have been utilised by different authors to predict the sound 

insulation of single and double leaf partitions. These include finite element analysis (Trevathan, 

2005; del Coz Diaz et al., 2007; del Coz Diaz et al., 2010), statistical energy analysis (Crocker 

and Price, 1969; Fahy, 1994; Steel and Craik, 1994; Craik, 1996), and transfer matrix methods 

(Sastry and Munjal, 1995; Lee and Xu, 2009). These methods have achieved various levels of 

success but were not investigated in the research presented here. 

Several prediction methods presented by Hansen (1990; 1991) allow for the prediction of 

the sound insulation of highly orthotropic materials; corrugated sheets for example. These 
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materials are highly orthotropic; the stiffness in the hard direction that can be upwards of ten 

times the stiffness in the soft direction. This has the effect of introducing two critical frequencies 

that are relatively widely separated. In contrast plywood has a lower but still significant variation 

between the hard and soft stiffness parameters, causing the two critical frequencies to be closer 

together. This separation of the two critical frequencies results in two coincidence dips, with a 

region of reduced sound transmission loss between them. 

A recent review of the vibro-acoustics of orthotropic laminates is D’Alessandro et al. 

(2013). This review references the papers of Guyader and Lesueur (1978a; 1978b; 1980) along 

with many other papers. Two more recent papers on the sound transmission loss of orthotropic 

panels are those of Woodcock and Nicolas (1995) and Kuo et al. (2008). 

Much of the recent research on orthotropic panels has studied panels with honeycomb 

cores rather than the solid ply cores considered in this paper, but there are many similarities in 

behaviour. Orrenius et al. (2010) compared theoretical predictions and experimental 

measurements of the wave number and sound reduction index of honeycomb core panels used in 

aircraft fuselages and train floors. Feng and Kumar (2012) studied the fact that current theories 

usually predict too low a sound reduction index in the critical frequency region. Cherif and 

Atalla (2015) have compared theoretical predictions of a general laminate model for wave 

number, damping loss factor, modal density, radiation efficiency and sound reduction index with 

measurements often made with a number of different experimental techniques. They also derived 

the properties of an equivalent orthotropic panel model from the general laminate model. This 

equivalent orthotropic panel model was used to calculate the sound reduction index and gave 

better agreement with experiment for the thicker of the two honeycomb panels. The equivalent 

orthotropic model is used in this paper with measured properties. 
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The last two papers cited above each compare their theoretical predictions with two small 

sample size honeycomb core panels of different thickness. This paper compares its theoretical 

predictions with seven small sample size plywood panels of different thickness and four large 

sample size plywood panels of different thickness. Because plywood is not highly orthotropic, 

this paper also compares the experimental results with a simple isotropic model. 

The prediction methods presented in this paper are built on the work undertaken by 

Ordubadi and Lyon ( 1979). The original publication by Ordubadi and Lyon presented a method 

for predicting the sound transmission loss of infinite orthotropic panels. In this article plywood 

was also utilised as a test material due to its orthotropic nature. Ordubadi and Lyon achieved 

reasonable agreement between the measured and predicted results, although their prediction 

method did not use frequency dependant material properties or the finite size of the panel. This 

paper uses the radiation impedance of a finite size rectangular panel and an approximation to that 

radiation impedance with both constant and frequency dependent Young’s moduli. 

II. MODEL DEVELOPMENT 

The blocked incident sound pressure on the source side at the surface of the 

rectangle specimen mounted in an infinite rigid baffle is 2 ip  due to the pressure 

doubling that occurs at the blocked surface for the plane wave sound wave with root 

mean square sound pressure ip  incident with an angle of incidence   to the normal 

to the specimen and with an azimuthal angle   to the x-axis. The transverse 

vibration of the specimen is accounted for by its radiation impedance  ,wZ   . The 

root mean square normal velocity ( , )v    of the specimen is 
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where ( , )pZ    is the bending wave impedance of the plate. 

The incident sound intensity ( , )iI    in the direction normal to the specimen is 
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where 0  is the ambient density and c  is the speed of sound of the compressible fluid on either 

side of the specimen. The  cos   occurs because the projected area of the specimen seen from 

an angle of incidence of   is proportional to  cos  . 

The transmitted sound intensity ( , )tI    in the direction normal to the specimen is 
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The sound transmission factor ( , )    is 
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The total incident diffuse field sound intensity diI  is 

        
2 2/2 2 /2 2

0 00 0 0 0

, sin cos sin
i i

di i

p p
I I d d d d

c c

   

         
 

        (5) 



6 
 

The total transmitted diffuse field sound intensity tiI  is 
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The  sin   term occurs in equations (5) and (6) because the amount of solid angle at an 

angle of   to the normal to the specimen is proportional to  sin  . The diffuse field sound 

transmission factor d  is 
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If the principal orthotropic axes and the sides of the rectangular specimen are parallel to 

each other and to the x and y axes, then by symmetry, the range of integration over the azimuthal 

angle   can be reduced from the full circle to one quarter of the circle. 
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The sound reduction index R  is 
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Thus in order to derive an expression for the transmission coefficient of a partition, 

expressions for both the bending wave impedance and the radiation impedance must also be 

derived. The bending wave impedance of an orthotropic panel can be derived from the panel’s 

equation of motion given by Leissa (1969). This yields the following expression for the 

orthotropic impedance as used by Ordubadi and Lyon ( 1979). 
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where 𝑘0 is the wavenumber of the incident wave, 𝜌𝑠 is the surface density of the panel, 𝜔 is the 

angular frequency of excitation, and 𝐵′(𝜙) is the complex bending wave stiffness per unit width 

of the panel. The influence of the panel’s internal damping is included in the stiffness parameter 

using the following equation. 

            ' 4 4 2 2cos sin 2 sin cos 1x yB B B H i           (11) 

where 𝐵𝑥 and 𝐵𝑦 are the bending wave stiffness per unit width in the orthotropic principal axes 

directions, 𝐻 is a parameter for the orthotropic stiffness behaviour and 𝜂 is the damping loss 

factor of the panel. 

The frequency dependence of the bending stiffness properties can be incorporated by 

modifying equation (11). This yields the following expression 

                  ' 4 4 2 2cos sin 2 sin cos 1x yB f H f ifB B             (12) 
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where 𝑓 is the frequency of excitation. In this paper it was assumed that the damping loss factor 

was independent of frequency. The value of  H f  is assumed to be the geometric mean of the 

two orthotropic bending stiffness values, as given by 

      x yH f B f B f   (13) 

The bending stiffnesses per unit width B’ are derived from the Young’s moduli E using 

the following equation. 
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where h is the thickness of the specimen and μ is Poisson’s ratio which is assumed to be 0.3 in 

this paper. 

The dynamic Young’s moduli of the test samples were measured in the two directions 

parallel to the grain of the wood plies using free-free beams which were excited via force 

impulses. The resonant frequencies and half power bandwidths of the modes of a number of 

different length beams were measured. This measurement technique allowed the frequency 

dependence of the Young’s moduli of the plywood to be measured. The frequency dependent 

Young’s moduli were found to be approximated reasonably using a best fit exponential decay 

with increasing frequency. The generic expression for this model of Young’s modulus is given 

by 

   Qf

iE f E e   (15) 



9 
 

where  E f  is the frequency dependant stiffness, iE  is the stiffness at zero frequency and 𝑄 is 

the rate of reduction of the stiffness parameter. 

The accuracy of the model used for the frequency dependent Young’s moduli has a 

significant impact on the predictions for the overall sound insulation. The method used to 

measure the dynamic Young’s moduli in the research described in this paper provided relatively 

narrow bands of widely spaced clusters of data. The models for the frequency dependent 

Young’s moduli were constructed from this data. This yielded models which may have had 

significant sources of error. This is one of the possible reasons why poor agreement may be 

obtained between prediction and experiment in some cases. The damping loss factor was also 

observed to vary with frequency, but this variation did not have a clear pattern that could be 

modelled effectively. Incorporating a frequency dependant damping loss factor would have a 

significant effect on the predicted sound insulation in and above the critical frequency region. 

The finite specimen size was accounted for by using the equations for the finite panel 

travelling wave radiation impedance given by Davy et al. (2015a; 2015c). These equations 

involve one numerical integration and are based of the work of Rhazi and Atalla (2010). 

Calculating the sound reduction index, when the numerical integration is used to calculate the 

finite size radiation impedance, requires the numerical evaluation of three nested integrals. This 

means large computational times especially at higher frequencies. Thus the approximate 

equations of Davy et al. (2015a; 2015b) for the azimuthally averaged finite size radiation 

impedance were also used to calculate the sound reduction index. It should be noted that the use 

of these approximate equations means that the finite size radiation impedance is assumed to be 

constant as a function of azimuthal angle. The use of these approximate equations reduces the 

number of nested integrals that have to be numerically evaluated from three to two and 
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substantially speeds up the calculations. The numerical integrations were performed using 

Matlab’s inbuilt adaptive numerical integration function, “integral”, which uses adaptive 

Simpson quadrature. 

Because plywood is not highly orthotropic, a simple isotropic model (Davy, 2009a) was 

also used to calculate the sound reduction indices. The Young’s modulus used was the geometric 

mean of the Young’s moduli in the two orthotropic principal axis directions. It was noted that the 

low frequency sound reduction indices calculated with the isotropic model were systematically 

slightly lower than those calculated using the orthotropic methods described above. Examination 

of the isotropic model showed it was ignoring the fluid loading on the specimen. The fluid 

loading on the specimen is not significant for specimens with high sound insulation, but has a 

significant effect for specimens with low sound insulation at low frequencies like the thinner 

plywood specimens studied in this paper. The fluid loading was incorporated in the isotropic 

model by replacing equation (42) of Davy (2009a) with equations (8) and (12) of Davy (2009b). 

The square root of A in equation (12) of Davy (2009b) was replaced with the length l of the side 

of the equivalent square given by 

 
2 x y

x y

l l
l

l l



  (16) 

where lx and ly are the lengths of the sides of the rectangular specimen. 

III. EXPERIMENTAL METHOD AND RESULTS 

The sound insulation of a range of plywood partitions were measured for comparison 

with the predicted results. The partitions tested were all single leaf systems which were tested in 

two sizes of sound insulation facilities. The test samples were installed between a reverberation 
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room and a semi-anechoic room, and the intensity method was used for evaluating the sound 

transmission loss (ISO15186-1 (ISO, 2000)). The two sample sizes used were: 4.8 × 2.4 m (12 

m
2
) and 0.95 × 1.55 m (1.5 m

2
), and the thicknesses measured were 7, 9, 12 and 21 mm. 

Plywood samples of size 0.95 × 1.55 m (1.5 m
2
) with thicknesses of 15, 17 and 19 mm were also 

measured. 

The small samples were clamped into a test frame using a steel box section and bolts 

around the perimeter. This resulted in an unsupported panel that had no studs present. The frame 

the sample is installed within is a heavy timber construction which is in turn bolted to a heavy 

concrete wall. The test aperture had a total depth of 550 mm, and the sample arrangement 

resulted in a source room niche depth of 350 mm. 

The large samples were screwed and glued to a timber frame which was bolted into a test 

aperture. The edges and the joints between the panels were sealed with tape and silicone sealant. 

The test aperture had a total depth of 370 mm, and the sample arrangement resulted in a source 

room niche depth of 160 mm. 

The same reverberation room was used for both sample sizes. It has a volume of 216 m
3
. 

Six stationary diffusing panels ensure the sound field is sufficiently diffuse. The total two-sided 

area of the diffusing elements is 13% of the total boundary surface area of the room. The total 

surface area of the reverberation room boundaries and diffusing elements is 305 m
2
. The 

receiving room for the small size samples was a small semi-anechoic room with a volume of 9 

m
3
 and a surface area of 26.4 m

2
. This room is lined with sound absorption on all the surfaces 

except the floor, which is covered in deep pile carpet. The semi-anechoic receiving room for the 

large sample sizes has a volume of 200 m
3
 and a surface area of 236 m

2
. This receiving room is 

lined with sound absorptive materials on the walls and roof. The sound absorption in this room is 
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increased by the addition of numerous hanging sound absorbers resulting in a sound absorptive 

“tunnel”. This is projected out from the sound insulation sample to increase the absorption of the 

emitted sound. The floor directly in front of the sample is also treated with a large number of 

sound absorptive panels that are laid down to reduce unwanted reflections. The large semi-

anechoic room is a rectangular parallelepiped. The reverberation room and the small semi-

anechoic room would be rectangular parallelepipeds except for the fact that one of their walls is 

angled so that it is not parallel with its opposite wall. 

The sound pressure level was measured in the reverberation source room using six Brüel 

and Kjær type 4189 half inch microphones. The source room was excited using a Brüel and Kjær 

4269 sound source. The transmitted sound was measured on the receiving room side using a 

Brüel and Kjær intensity probe and Brüel and Kjær Pulse data acquisition equipment.  

The intensity on the receiving room side was measured by performing two full surface 

scans at 150 mm from the sample surface; one horizontally and one vertically. The difference 

between these two scans was evaluated and the measurement was repeated if the difference was 

greater than one decibel in any of the one-third octave bands evaluated. The pressure-intensity 

index was also evaluated for each scan. If the pressure-intensity index was greater than ten 

decibels in any one-third octave band the scan was repeated. This procedure was repeated five 

times for two source locations, yielding a total of ten sound insulation measurements. These were 

then averaged to provide the final sound insulation. 

In order to perform predictions of the sound insulation of the different thickness 

plywoods, their properties were required. Different estimates of these properties were made for 

each thickness of plywood. The Young’s moduli in both orthotropic directions and the damping 

loss factor were evaluated using dynamic methods. The density was measured directly. It was 



13 
 

found that the Young’s moduli of the plywood were heavily dependent on the frequency of 

excitation. 

The dependence of the Young’s moduli on the frequency was found to be predicted with 

reasonable accuracy using an exponential decay. This decay curve was fitted to the frequency 

dependant stiffness values. An example of the curve for 12 mm plywood is shown in Figure 1. 

This exponential function was incorporated into the equation for the sound transmission loss as a 

frequency dependant parameter. However there is some scatter about the curves of best fit. This 

scatter is thought to be one of the reasons for the differences between the predicted and measured 

sound insulation. 

IV. COMPARISON OF PREDICTIONS WITH EXPERIMENTAL RESULTS 

The sound insulation of 7, 9, 12 and 21 mm thick plywood for the two different sample 

sizes and of 15, 17 and 19 mm thick plywood for the smaller sample size was predicted using 

four different methods described in Section II. Some of the differences between these methods 

are shown in Table I. The “Isotropic” method was the simple isotropic method of Davy (2009a) 

modified as described in Section II to include the effects of fluid loading. The “Numerical Imp.” 

is the orthotropic method presented in Section II using numerical integration to calculate the 

radiation impedance. The “Approx. Imp.” method is the orthotropic method presented in Section 

II using approximate formulae for the azimuthally averaged radiation impedance. These first 

three methods all use values of the Young’s moduli that are constant with frequency. The 

“Variable E” method is the “Approx. Imp.” method used with Young’s moduli that vary with 

frequency according to best fit equations derived as described in Section II. 

The comparison of these theoretical predictions with the experimental results is shown in 

Figure 2 to Figure 12. The four prediction methods agree well with each other for frequencies 
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below the critical frequency region, although the predictions of the “Isotropic model” for the 

large specimen size for all but the 21 mm thick plywood do appear to be slightly but 

systematically lower than the other predictions in this frequency range. With the exception of the 

large 21 mm specimen, the agreement between theory and experiment in this low frequency 

range is also reasonable. 

The “Numerical Imp.” method and the “Approx. Imp.” method agree very well with each 

other across the whole of the frequency range. This is the reason why the “Approx. Imp.” 

method was used as the basis for the “Variable E” method. Except around the critical frequency 

region, the “Numerical Imp.” method and the “Approx. Imp.” method also agree well with the 

“Isotropic” method, except for the small systematic departure described above which occurs at 

low frequencies for the larger and thinner plywood specimens. 

The “Variable E” method agrees better with the experimental results in the critical 

frequency region for the 7 and 9 mm thick plywood samples. With the exception of the large 21 

mm specimen, the “Variable E” method appears to require the use of a larger damping loss factor 

in order to make it agree with the experimental results above the critical frequency region. Thus, 

again with the exception of the large 21 mm specimen, the use of Young’s moduli which do not 

vary with frequency gave better agreement above the critical frequency region. 

All the prediction methods overestimated the depth of the critical frequency dip in the 

experimental data and did not always exactly predict the frequency of the minimum of the 

critical frequency dip, although the “Variable E” method performed better in this regard than the 

other three methods in the case of the 7 and 9 mm thick plywood. With the exception of the 7 

mm thick plywood specimens, as expected, the “Isotropic” method predicted narrower critical 

frequency dips than the other orthotropic prediction methods or the experimental measurements. 



15 
 

With the exception of low frequency values for the large 21 mm thick specimen, all the 

prediction methods performed reasonably well when predicting the changes in sound insulation 

due to the changes in specimen area. The predicted results using the same method for the small 

and large specimen sizes of the same thickness converge above the critical frequency region. 

This trend agrees with the measured results. 

All the experimental results showed ripple in the low frequency region and this was more 

pronounced in the case of the thicker specimens. Apart from possible experimental uncertainty, 

the authors are unsure why this phenomenon occurred. 

In this paper, constant values of the damping loss factor as a function of frequency were 

used. This was also the case with the Young’s moduli, except for the “Variable E” method. It 

appears that a more accurate determination of the variability of the Young’s moduli and the 

damping loss factor as a function of frequency is needed in order to improve the prediction of the 

sound insulation of orthotropic panels like plywood. 

V. SUMMARY AND CONCLUSIONS 

This paper presents a method for predicting the sound insulation of finite size rectangular 

single leaf orthotropic panels which involves the numerical evaluation of two nested integrals. 

This method was used with constant Young’s moduli and an exact formula for the travelling 

wave radiation impedance. This exact formula included one integral which need to be 

numerically evaluated and this led to the need to evaluate three nested integrals. The method was 

then used with constant Young’s moduli and an approximate formula for the azimuthally 

averaged travelling wave radiation impedance. This reduced the number of nested integrals to 

two and substantially speeded up the numerical calculation. There was very little difference 

between the sound insulation predictions made using the exact formula and the approximate 
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formula. The predictions were compared with experimental sound insulation measurements on 

small and large specimens of four different thicknesses of plywood and on another three small 

specimens of other different thicknesses of plywood. Reasonable agreement was obtained except 

in the critical frequency region for all specimens and at low frequencies for the large specimen of 

the thickest plywood. A simple isotropic prediction method was also used to predict the sound 

insulation. This simple isotropic prediction method agreed well with the two previous predictions 

except in the critical frequency region where none of the three predictions agreed well with the 

experimental results. The simple isotropic prediction method also slightly but systematically 

under estimated the two previous predictions below the critical frequency region for the large 

specimens of the three thinnest plywood samples. 

During testing of the material properties of the plywood panels, it was observed that the 

Young’s moduli of the plywood panels were dependant on the frequency of excitation. Because 

of this observation, equations of best fit were derived for the Young’s moduli. These equations 

of best fit for the Young’s moduli were then used with the method presented in this paper and 

with the approximate formula for the azimuthally averaged travelling wave radiation impedance. 

The introduction of the frequency dependent Young’s moduli significantly improved the 

predictions of sound insulation in the critical frequency region for the thinner 7 and 9 mm 

plywood specimens. It did not make as much difference in the critical frequency region for the 

other plywood specimens as had been expected. Above the critical frequency region the use of 

the frequency dependent Young’s moduli appeared to need the use of a larger damping loss 

factor in order to agree with the experimental results. The one exception to this was the large 21 

mm plywood specimen for which there was good agreement in this high frequency range. 
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It appears that a more accurate assessment of the frequency dependence of the Young’s 

moduli and the damping loss factor may improve the prediction of the sound insulation of mildly 

orthotropic panels like plywood. The simple isotropic model worked better than expected except 

in the critical frequency region where all the prediction methods struggled, especially with the 

thicker plywood samples. 
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TABLES 

Table I. The names of the prediction methods used in this paper and the differences between 

them. 

Prediction 

Method 

Orthotropic Approximate 

Radiation 

Impedance 

Variable 

Young’s 

Moduli 

Isotropic No Yes No 

Numerical Imp. Yes No No 

Approx. Imp. Yes Yes No 

Variable E Yes Yes Yes 
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FIGURE CAPTIONS 

Figure 1. (Color online) Measurements of the frequency dependent Young’s moduli of 12 mm 

plywood and the associated curves of best fit used for predicting the frequency dependent 

Young’s moduli. 

Figure 2. (Color online) Comparison of the measured and predicted sound insulation of a 7 mm 

thick plywood panel measuring 0.95 m wide by 1.55 m high. 

Figure 3. (Color online) Comparison of the measured and predicted sound insulation of a 7 mm 

thick plywood panel measuring 4.8 m wide by 2.4 m high. 

Figure 4. (Color online) Comparison of the measured and predicted sound insulation of a 9 mm 

thick plywood panel measuring 0.95 m wide by 1.55 m high. 

Figure 5. (Color online) Comparison of the measured and predicted sound insulation of a 9 mm 

thick plywood panel measuring 4.8 m wide by 2.4 m high. 

Figure 6. (Color online) Comparison of the measured and predicted sound insulation of a 12 mm 

thick plywood panel measuring 0.95 m wide by 1.55 m high. 

Figure 7. (Color online) Comparison of the measured and predicted sound insulation of a 12 mm 

thick plywood panel measuring 4.8 m wide by 2.4 m high. 

Figure 8. (Color online) Comparison of the measured and predicted sound insulation of a 15 mm 

thick plywood panel measuring 0.95 m wide by 1.55 m high. 

Figure 9. (Color online) Comparison of the measured and predicted sound insulation of a 17 mm 

thick plywood panel measuring 0.95 m wide by 1.55 m high. 

Figure 10. (Color online) Comparison of the measured and predicted sound insulation of a 19 

mm thick plywood panel measuring 0.95 m wide by 1.55 m high. 
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Figure 11. (Color online) Comparison of the measured and predicted sound insulation of a 21 

mm thick plywood panel measuring 0.95 m wide by 1.55 m high. 

Figure 12. (Color online) Comparison of the measured and predicted sound insulation of a 21 

mm thick plywood panel measuring 4.8 m wide by 2.4 m high. 
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