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A model for solving the prescribed burn 
planning problem
Ramya Rachmawati1,2*, Melih Ozlen1, Karin J. Reinke1 and John W. Hearne1

Background
Fire is a natural ecosystem process. However, uncontrolled wildfires can cause signif-
icant damage. Loss of human life, destruction of properties and natural resources are 
amongst the problems caused by wildfires (King et  al. 2008). An increase in wildfire 

Abstract 

The increasing frequency of destructive wildfires, with a consequent loss of life and 
property, has led to fire and land management agencies initiating extensive fuel 
management programs. This involves long-term planning of fuel reduction activities 
such as prescribed burning or mechanical clearing. In this paper, we propose a mixed 
integer programming (MIP) model that determines when and where fuel reduction 
activities should take place. The model takes into account multiple vegetation types 
in the landscape, their tolerance to frequency of fire events, and keeps track of the age 
of each vegetation class in each treatment unit. The objective is to minimise fuel load 
over the planning horizon. The complexity of scheduling fuel reduction activities has 
led to the introduction of sophisticated mathematical optimisation methods. While 
these approaches can provide optimum solutions, they can be computationally expen-
sive, particularly for fuel management planning which extends across the landscape 
and spans long term planning horizons. This raises the question of how much better 
do exact modelling approaches compare to simpler heuristic approaches in their solu-
tions. To answer this question, the proposed model is run using an exact MIP (using 
commercial MIP solver) and two heuristic approaches that decompose the problem 
into multiple single-period sub problems. The Knapsack Problem (KP), which is the first 
heuristic approach, solves the single period problems, using an exact MIP approach. 
The second heuristic approach solves the single period sub problem using a greedy 
heuristic approach. The three methods are compared in term of model tractability, 
computational time and the objective values. The model was tested using randomised 
data from 711 treatment units in the Barwon-Otway district of Victoria, Australia. Solu-
tions for the exact MIP could be obtained for up to a 15-year planning only using a 
standard implementation of CPLEX. Both heuristic approaches can solve significantly 
larger problems, involving 100-year or even longer planning horizons. Furthermore 
there are no substantial differences in the solutions produced by the three approaches. 
It is concluded that for practical purposes a heuristic method is to be preferred to the 
exact MIP approach.

Keywords:  MIP, Prescribed burns, Fuel reduction planning , Optimisation, Heuristics, 
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severity and extent has been observed in many countries such as the USA, Canada, Aus-
tralia, and also in southern Europe (Boer et al. 2009). This is, to some extent, due to fire 
suppression-focused twentieth century fire management practices, which according to 
Loehle (2004) and Reinhardt et al. (2008) results in uncharacteristically high fuel loads.

There are three key factors affecting fire behaviour: fuel, weather, and topography. 
Among these factors, it is acknowledged that only fuel can be actively controlled or man-
aged (Schmidt et al. 2008). Finney (2007), Reinhardt et al. (2008) and Kim et al. (2009) 
also recommend reducing fuel load as the best possible way to slow fire growth. Fuel 
management is the process of altering the amount and structure of fuels through meth-
ods including prescribed burning and mechanical clearing (King et al. 2008). Fuel man-
agement is undertaken for wildfire hazard reduction as well as for ecological restoration 
(Reinhardt et  al. 2008; Penman et  al. 2011). Consequently, much effort is expended 
by these counties in the planning, prioritising and operational activities of prescribed 
burning.

Fuel management is a complex activity that involves both spatial and temporal deci-
sions (Belval et al. 2014) and handling multiple fuel and ecological objectives. The devel-
opment of decision support tools for fuel management programs is an ongoing and 
active research area (Martell 2011). Operations research (OR) has been successfully 
applied to a wide range of problems related to fire management, forestry management, 
and ecological management (Martell 2007) and offers great value in providing land 
management agencies with a framework for optimising fuel reduction planning over 
the landscape. A discussion of OR techniques used for solving fuel management prob-
lems can be found in the review paper by Minas et al. (2012). As an example, Wei et al. 
(2008) formulated an integer programming approach to reduce expected loss incurred 
on a landscape. Wei (2012) later proposed a mixed integer programming (MIP) method 
to locate fuel reduction treatments to set up potential control locations for future fires. 
Minas et  al. (2014) later developed a model that deals with fuel treatment scheduling 
to break the connectivity of high risk treatment units applied in a landscape. However, 
a limitation of the models proposed, such as that by Minas et al. (2014), is that it only 
handles a single vegetation type, and fuel accumulation is treated as a linear function of 
time. In reality, the fire landscape is made up of multiple vegetation types, of mixed ages, 
with fuel accumulation taking on non-linear functions depending on vegetation type. 
The model presented in this paper addresses these limitations by formulating a model 
within a landscape that consists of multiple vegetation types of mixed ages, with differ-
ing non-linear fuel accumulation functions.

More recently, a review paper written by Chung (2015) highlighted the complexity of 
fuel treatments and examined previous fuel treatment optimisation studies to deal with 
it. Of note is that few studies incorporate the spatial and temporal dimensions of the 
problem. Perhaps more importantly is the conclusion that “most existing optimisation 
models suffer from problem complexity and a computationally intensive process ... mak-
ing them almost impractical for field applications” (Chung 2015, p. 50). There is a clear 
need to understand the fitness for purpose of our models and to move beyond proof of 
concept applications. Do the trade-offs warrant obtaining the perfect solution? Can we 
obtain a near-optimal solution with heuristic approaches? To answer these questions, 
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we illustrate both exact and approximate methods with a series of computational experi-
ments with a case study of the Barwon-Otway district of Victoria, Australia. We develop 
a MIP model for prescribed burn planning. The objective function of the model is to 
reduce fuel load accumulation in a landscape of multi-age, multiple vegetation types, 
with differing non-linear fuel accumulation functions.

The complex multi-period model proposed in this paper can be solved exactly using 
an MIP solver or can be decomposed into single-period sub problems. The single-period 
sub problems are solved exactly using a solver and approximately using a greedy heu-
ristic. With the exact MIP approach, an optimal solution can be achieved. However, 
the computational effort is costly. We introduce the two heuristics because the prob-
lem is NP-hard. With the single-period heuristic approaches, less computational effort 
is needed, but the solution may not be optimal as the exact MIP approach. The three 
approaches for solving the model are compared in terms of model applicability, compu-
tational time and the objective values.

Model formulation
In this paper, candidate locations for fuel reduction burns are represented by ‘treatment 
units’. A treatment unit is defined as any area of land considered suitable for a planned 
burn treatment. Private land and water bodies, such as rivers and lakes, are considered 
non-treatable areas and are excluded from the model. Within the dataset, a treatment 
unit is represented as a spatial feature or polygon and contains additional attributes 
relating to the land ownership, vegetation types, vegetation ages and geometric prop-
erties, such as size, that exist within that treatment unit. The treatable area within the 
treatment unit is defined as the areas that have non-zero fuel loads.

The problem addressed by the model in this paper is where and when to conduct fuel 
reduction by minimising the total fuel load accumulation while still considering the 
ecological requirements of the vegetation present. The ecological requirements can be 
described as the minimum and maximum Tolerable Fire Intervals (TFI). The minimum 
TFI is defined as the minimum time required between two consecutive fire events at 
a location and is normally based on the time to reach maturity of the sensitive species 
in the vegetation class, while the maximum TFI refers to the maximum time needed 
between fire events at a location that considers the fire interval required for fire-adapted 
species rejuvenation (Cheal 2010). A treatment unit should not be treated if the age of 
vegetation growing in that location is under minimum TFI. In contrast, treatment units 
with vegetation over the maximum TFI must be treated.

The prescribed burning planning problem in this paper is NP-hard. The Knapsack 
Problem (KP), a well-known NP-hard problem (Garey and Johnson 1979), can be trans-
formed to the 1-year planning horizon Prescribed Burn Planning (PBP) problem in poly-
nomial number of steps. The objective function of the KP is to maximise total profit, i.e. 
given a set of items, each with a weight and profit, determine the items to include so that 
the total weight is less than or equal to a given capacity limit. In order to transform KP 
into PBP, the capacity limit of the regular KP is changed to the burn limit. The items are 
transformed to the treatment units; the weight of the items is changed to the areas, and 
the profits become the fuel loads. The minimum and the maximum TFI of the problem 
are set to infinity.
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We consider the landscape divided into treatment units. It is assumed that all the veg-
etation of each kind is of the same age within each treatment unit. With the decision 
to determine when and where to treat every year to minimise total fuel load of certain 
regions, the following MIP model is formulated.

Sets: 

Vi	� is the set of vegetation types growing in treatment unit i
T	� is the planning horizon
C	� is the set of treatment units of which total fuel load is to be minimised

Indices: 

i = treatment unit
j = vegetation type
k = vegetation age
t = period, t = 0, 1, 2, ...

Parameters: 

wi = relative importance (weight) of treatment unit i
mi,j =� the age of vegetation type j in treatment unit i at the beginning of the  

time-period
Ai,j = area (in hectares) of treatment unit i with vegetation type j
R = the total treatable area in a landscape
ρ = �treatment level (in percentage), i.e. the maximum proportion of the total  

treatable area in a landscape selected for treatment
ci = area of treatment unit i (where ci =

∑

j

Ai,j)

Lj,k = fuel load (ton/hectare) of vegetation j, at age k
maxTFIj = maximum TFI of vegetation type j
minTFIj = minimum TFI of vegetation type j

Decision variables:

minimise total weighted fuel load

subject to

xi,t =

{
1 if treatment unit i is treated in time period t
0 otherwise

yi,j,k ,t =

{
1 if in treatment unit i, there is vegetation type j, at age k , in time t

0 otherwise

(1)z =

T∑

t=1

∑

k

∑

j∈Vi

∑

i∈C

wiLj,kAi,jyi,j,k ,t

(2)yi,j,k ,0 = 1, ∀i, j ∈ Vi, k = mi,j
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The objective function (1) minimises the weighted total fuel load of all vegetation at all 
regions throughout a planning horizon.

Constraint (2) sets the initial conditions. Based on our observation of some raw data 
we felt it was necessary to include the possibility that the different vegetation types might 
differ in their ages. However, we assume that the all vegetation of a given type within a 
treatment unit will be of the same age. Constraint (3) indicates that when xi,t = 0, which 
means fuel treatment is not conducted, the vegetation in that area will continue growing 
until the following period, and the age will be incremented by one.

Constraint (4) ensures that vegetation will be treated once it has reached maximum 
TFI. The vegetation with age 1 in the next period comes from the areas that are treated 
in the current period, as denoted in constraint (5). Constraint (6) ensures that in each 
time-period all vegetation of a specific type in each treatment unit will be of the same 
age. In reality, the same vegetation type within a treatment unit may have different ages 
resulting from wildfires that have burnt a treatment unit partially. However, we assume 
that there is a representative dominant age for each vegetation type in a treatment unit. 
Considering the possibility of multiple ages of the same vegetation type would be com-
putationally prohibitive. Constraint (7) enforces that the vegetation under minimum 
TFI cannot be treated unless there is another vegetation type in the same treatment unit 
which is over the maximum TFI to avoid a deadlock. However, if required, this con-
straint can be changed to the other way, i.e. treatment units containing young treatment 
units cannot be treated. Here | Vi | represents the number of different vegetation types in 
treatment unit i.

Constraint (8) specifies that the total area selected for fuel treatment each year is not 
more than the annual area allotted (target) for fuel treatment (in hectares). Here, the target 
is obtained by multiplying the treatment level and the total treatable area in a landscape. 
Constraints (9) and (10) ensure that the decision variables yi,j,k ,t and xi,t take binary values.

(3)yi,j,k+1,t+1 ≥ yi,j,k ,t − xi,t , ∀i, j ∈ Vi, k = 1, 2, . . . ,maxTFIj − 1, ∀t

(4)yi,j,k ,t ≤ xi,t , ∀i, j ∈ Vi, ∀t, for k = maxTFIj

(5)yi,j,1,t+1 ≥ xi,t , ∀i, j ∈ Vi, ∀t

(6)

∑

k

yi,j,k ,t ≤ 1, ∀i, j ∈ Vi, ∀t

(7)

∑

j∈Vi

∑

k<minTFIj

yi,j,k ,t− | Vi |
∑

j∈Vi

∑

k=maxTFIj

yi,j,k ,t ≤ | Vi | (1− xi,t), ∀i, j ∈ Vi, ∀t

(8)

∑

i

cixi,t ≤ ρR, ∀t

(9)yi,j,k ,t ∈ {0, 1}

(10)xi,t ∈ {0, 1}
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The model is capable of handling multiple vegetation types and ages. Each vegetation 
type has different minimum and maximum TFI, and at any period each vegetation type 
may have a different age even within a single treatment unit. The fuel curve representing 
each age of certain vegetation can also be a nonlinear function.

Solution approaches
An exact mixed integer programming (MIP) approach

The multi-period model discussed in "Model formulation" can be solved exactly using 
an MIP solver. In this subsection, the model improvement is presented to enhance the 
solution time.

The solution time of a MIP problem can generally be improved by reducing the num-
ber of variables, or restricting the values that they can take. Age index k should be based 
on the set of possible ages that vegetation type j can take in treatment unit i at time t. 
The maximum possible periods between two consecutive treatments for any treatment 
unit can be derived by finding the minimum of the maximum TFI values of all vegeta-
tion types available within that unit. This sets an upper limit on the values k can take 
within that treatment unit.

We can also tighten the MIP formulation by introducing valid inequalities on the fre-
quency of treatment event in each unit as follows
ai,j = initial age of vegetation type j at treatment unit i
q = min(maxTFIj − ai,j)

p = min(maxTFIj)

Constraint (11) ensures that a treatment unit will be treated when the most critical vege-
tation type (i.e., the vegetation type which sets the minimum of the maximum TFI value 
among all vegetation types available within a treatment unit) reaches its maximum TFI. 
In other words, we have to treat the treatment unit at some time in the first q periods 
of the planning horizon. Constraint (12) generalises this idea to the rest of the planning 
horizon by setting a frequency to treat. It ensures that treatment unit i must be treated 
at least once every p years. It is assumed that each treatment unit has a critical vegeta-
tion type (i.e. the vegetation in the treatment unit which has the least maximum TFI) 
that determines the treatment cycle. However, Constraint (12) can only help to speed up 
the computation time when the planning horizon is longer than the burning frequency 
in the treatment units. Constraint (13) reduces the number of binary variables by setting 
the burn variables to 0 for burns that are not allowed based on the TFI values. We con-
sidered improving the solution time by treating variable yi,j,k ,t as a continuous variable 

(11)

q−1∑

t=0

xi,t ≥ 1, ∀i

(12)
t+p−1∑

t

xi,t ≥ 1, ∀i for t = 0, 1, . . . ,T − p

(13)xi,t = 0, ∀i,∀t such that t < min(min(minTFIj − ai,j), min(maxTFIj − ai,j)), j ∈ Vi
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instead of a binary variable. In other words, we replace Constraint (9) with Constraint 
(14) as follows

Single‑period heuristic approach

In this subsection, two single-period heuristic approaches: an exact method for the sin-
gle-period problem and an approximate method for the single-period problem are pre-
sented. These approaches, which are a single period 0/1 knapsack problem and a basic 
‘greedy’ algorithm, are conducted as follows.

Consider I is the set of all treatment units in the landscape. The landscape is grouped 
into three disjoint sets: Iold, Imiddle and Iyoung. The first set, Iold, is the set of treatment 
units where at least one of the vegetation ages are over the maximum Tolerable Fire 
Interval (TFI). The second set, Imiddle, is the set of treatment units where the vegetation 
ages are between the minimum and the maximum TFI, and nothing is over maximum 
TFI. The third set, Iyoung, is the set where all vegetation ages under maximum TFI and 
at least one vegetation under the minimum TFI. Here, I = Iold ∪ Imiddle ∪ Iyoung. Using 
these parameters,
Ai is area of treatment unit i
R is the total treatable area of the landscape
ρ is treatment level (in percentage),
�then the value of r =

∑
i∈Iold

Ai can be determined. There are two cases that may arise 
when comparing the values of r and ρR.

Case 1: r ≥ ρR

If r ≥ ρR, then xi = 0, for i ∈ Imiddle ∪ Iyoung. Either of these two approaches may be 
applied:

Using an exact method for the single period problem 
The next step is to run the following model, maximise (15) subject to (16), with 
i is defined only for Iold. Here, ρnew is the new treatment level (in percentage), where 
ρnew = ρ. 

maximise total fuel load:

subject to

where Li is the total fuel load of treatment unit i , and xi is a binary variable, that is

The objective function (15) is to maximise the total fuel load of all treatment units to 
be treated, subject to the single constraint (16). This constraint limits the area that can 

(14)0 ≤ yi,j,k ,t ≤ 1.

(15)z =
∑

i

Lixi

(16)

∑

i

Aixi ≤ ρnewR,

xi =

{
1 if treatment unit i is treated
0 otherwise
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be treated per year. The model will choose the treatment units containing the highest 
fuel load to be burned each year. Note that the objective function (15) is different from 
the original objective function (1). The objective of the original problem is to minimise 
the total fuel load that remain in the landscape. Conversely, the objective of the single-
period problem is to maximise the total fuel load that can be taken from the landscape.

Using an approximate method for the single‑period problem 
The treatment units are sorted based on the highest fuel load per area of treatment unit 
in the landscape, hence determining the rank or priority to burn. The treatment units 
then are selected by this rank until the burn limit requirement, ρR, is met.

"Using an exact method for the single period problem" provides an exact solution 
using Integer Programming and "Using an approximate method for the single-period 
problem" provides an approximate solution based on the exact solution of the continu-
ous knapsack problem.

Case 2: 0 ≤ r < ρR

If 0 ≤ r < ρR, then xi = 1 for i ∈ Iold. Either of these two approaches may be applied:

Using an exact method for the single period problem 
The next step is to maximise (15) subject to (16) with i is defined only for Imiddle. Here, 
ρnew = ρ − r

R.

Using an approximate method for the single period problem 
The same process of ranking and selecting as with the Case 1 in "Using an approximate 
method for the single-period problem" is undertaken until the burn limit requirement, 
ρR− r, is met.

The approximate method can fail if we cannot use the capacity fully. The performance 
should get better if we have many small treatment units that we can burn to use the 
capacity (almost) fully.

Model demonstration
Consider a landscape divided into 40 treatment units. The area of each treatment unit, 
vegetation type and age are described in Table 1. The data regarding the minimum and 
the maximum TFI and the fuel type of each ecological vegetation class (EVC), can be 
seen in column two to five in Table 2. Figure 1 represents the fuel curve for each age of 
the certain vegetation type. Based on this data, some computational experiments were 
conducted to demonstrate three approaches: the exact MIP, the exact single-period and 
the approximate single-period problem. For the three approaches, we ran 5 and 10  % 
treatment levels, with and without TFI requirements. Figure 2 represents the fuel treat-
ment schedule for the 5-year planning horizon with TFI requirements. The total fuel 
load resulting from the experiments for the 5-year planning horizon is represented in 
Fig. 3.

From these figures, it is clear that the 10 % treatment level results in less total fuel load 
than that of the 5 % treatment level. For this small landscape with the 5-year planning 
horizon and with TFI, the three approaches show no substantial differences, which is 
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Table 2  Ecological vegetation class (EVC) and associated fuel types

EVC name EVC 
code

Min TFI Max TFI Fuel 
type

Area  
(hectare)

Area  
(percentage)

Initial fuel 
load (ton)

Creekline grassy woodland 68 20 150 7 6.14 0.008 65.08

Hills herb-rich woodland 71 15 150 7 641.42 0.872 6545.51

Creekline herb-rich woodland 164 15 150 7 281.36 0.383 2409.04

Grassy woodland 175 5 45 7 141.44 0.192 1285.21

Valley slopes dry forest 177 10 100 7 12.40 0.017 131.44

Sedgy riparian woodland 198 20 85 7 532.54 0.724 4946.06

Scoria cone woodland 894 4 15 7 20.74 0.028 219.84

Wet forest 30 45 300 9 218.10 0.297 9396.53

Shrubby wet forest 201 25 150 9 825.47 1.123 34,644.30

Riparian forest 18 10 80 10 3.56 0.005 92.29

Swampy riparian woodland 83 15 125 10 1.89 0.003 43.65

Riparian scrub or swampy  
riparian woodland complex

17 10 80 11 2561.76 3.484 30,299.40

Wet sands thicket 233 15 90 11 27.27 0.037 370.87

Stream bank shrubland 851 15 90 11 38.32 0.052 521.15

Cool temperate rainforest 31 45 999 1 0.60 0.001 5.88

Wet heathland 8 12 45 13 1416.63 1.926 18,692.73

Damp heath scrub 165 10 90 13 1142.88 1.554 15,908.60

Damp heath scrub/heathy  
woodland complex

836 10 90 13 16.05 0.022 234.33

Sand heathland 6 8 45 14 132.81 0.181 1684.73

Clay heathland 7 10 45 14 30.58 0.042 405.60

Coastal dune scrub or coastal 
dune grassland mosaic

1 10 90 1 253.84 0.345 3016.53

Coastal headland scrub 161 8 90 1 1077.69 1.466 12,587.77

Coastal headland scrub/ 
Coastal tussock grassland 
mosaic

162 8 90 1 98.98 0.135 1177.86

Coast gully thicket 181 10 90 1 1.67 0.002 15.52

Coastal alkaline scrub 858 10 70 1 11.82 0.016 140.65

Coastal saltmarsh/mangrove 
shrubland mosaic

302 8 90 2 4.52 0.006 14.46

Coastal tussock grassland 163 5 40 3 260.27 0.354 3773.91

Heathy woodland 48 5 45 4 15,985.16 21.738 313,589.23

Shrubby woodland 282 10 45 4 220.56 0.300 3465.91

Lowland forest 16 8 80 5 21,454.24 29.175 574,823.49

Heathy dry forest 20 10 45 5 3958.52 5.383 95,741.43

Shrubby dry forest 21 5 45 5 2299.87 3.128 64,937.21

Grassy dry forest 22 5 45 6 2006.33 2.728 38,475.14

Herb rich foothill forest 23 8 90 6 1670.13 2.271 34,302.81

Shrubby foothill forest 45 8 90 6 12,945.85 17.605 258,807.84

Herb-rich foothill forest/ 
shrubby foothill forest  
complex

178 8 90 6 2027.99 2.758 39,253.237

Damp sands herb rich  
woodland

3 10 90 7 270.13 0.367 2776.23

Valley grassy forest 47 10 100 7 397.99 0.541 4054.89

Plains grassy woodland 55 4 15 7 482.38 0.656 4589.66

Alluvial terraces herb-rich  
woodland

67 4 15 7 56.07 0.076 594.34
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most likely due to the relatively small feasible region. Without TFI requirements, the 
feasible region will be larger than if TFI is included. This larger feasible region makes the 
exact MIP approach superior to the other two approaches.

We also ran experiments for ten and 15-year planning horizon with the three 
approaches, with and without TFI requirements. Table 3 represents the solution times 
and objective values for these experiments. The solution time rises as the length of the 
planning horizon expands. The approximate approach for the single-period problem has 
the lowest solution time of all, but the solution quality is also less than the other two 
approaches. In this small landscape, the exact approach for the single-period problem 
does not always outperform the approximate approach for the single-period problem, 
because of factors such as randomness and size of treatment units.

The results for the 5 and 10  % treatment levels with 10-year planning horizon with 
TFI are described in Fig.  4. This figure shows that for each treatment level, the result 
of the exact MIP approach and the exact single-period problem shows no substantial 
difference.

Overall, in this small landscape, the result obtained by the exact method for the single-
period problem is as good as that of the exact MIP approach. In "An Australian case 
study", the three approaches are applied in a larger landscape.

Fig. 1  Fuel load accumulation curves over time for different fuel types listed for the Barwon-Otway region

Fig. 2  Fuel treatment outcomes, for a 5 % treatment level (40 treatment units)
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An Australian case study
An Australian case study is presented to demonstrate the model. The study location is 
situated in the Barwon-Otway district of Victoria, Australia, and covers approximately 
1,150,000 hectares (Fig. 5a). Data used in this case study considers land ownership, veg-
etation type and age in each treatment unit, minimum and maximum TFI, and fuel load 
for the specific age of vegetation. In this case study, we categorise the treatment units 
according to land ownership (i.e. public or private). It is assumed that treatments can 
only occur on public land, so the candidate locations for prescribed burn planning are 
represented in these treatment units only. A total of 711 of treatment units exist over 
73,535 hectares. Figure 5b shows the public land treatment units.

Each vegetation type in this case study has its own fuel type and fuel accumulation 
loads over time as described in Fig. 1. The curves show that each vegetation type has a 
different level of fuel load depending on age. In addition, there are some aquatic vegeta-
tion types or communities that have zero fuel loads and as such require no treatment. In 
this paper those vegetation types are excluded. Table 2 lists the EVC name and its fuel 
type used in this case study.

Using an exact mixed integer programming (MIP) approach

There are two phases when using this approach for the case study. Phase 1 (an exact 
method for the single-period problem) is a preliminary stage before the Phase 2 

Fig. 3  Fuel load over time for 40 treatment units with a 5-year planning horizon for the reduced study area
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approach (an exact MIP approach) is executed. In Phase 1, the ‘old treatment units’ in 
the landscape are identified. The purpose of Phase 1 is to handle any infeasibility that 
might arise based on the initial data, by burning the old treatment units. This phase is 
necessary for ensuring feasibility of the Phase 2 approach. Infeasibility may arise due to 
conflicting constraints, especially constraints (4), (7) and (8). Constraints (4) and (7) in 
the Phase 2 approach require that all ‘old treatment units’ must be treated. However, 
treating all of these old treatment units (in this case, 35 % of the total treatable area in 
the landscape, as can be seen in Fig.  6a would violate Constraint (8) if the treatment 
level is set lower than 35 %. In practice, it would also be costly and impractical to treat 
such a large amount of land in a single year. Moreover, The 2009 Victorian Bushfires 
Royal Commission nominates a target of 5 % of the public land to be treated each year 
across the state in order to reduce the threat of fire for the coming fire season (Teague 
et al. 2010). Using a 5 % treatment level across the case study area means that imposing 
the maximum TFI leads to infeasibility of the Phase 2 approach. Therefore, to reduce 
the number of ‘old treatment units’ and achieve feasibility first, in Phase 1 the treatment 
level must be increased. For Phase 1 of the case study, a treatment level of 7 % of the total 
area of the landscape each year is imposed. Interestingly, (Penman et al. 2011) note that 

Table 3  Total fuel load and  solution time (seconds) or optimality gap (%) at  10,800  s, 
for 40 treatment units with 5, 10 and 15-year planning horizon

Using the exact  
MIP approach

Using the exact method 
for the single-period 
problem

Using the approximate 
method for the single-
period problem

Treatment level Treatment level Treatment level

5 % 10 % 5 % 10 % 5 % 10 %

With TFI

 5-Year planning horizon

  Solution time 0.28 s 0.61 s 6.36 s 6.96 s 0.01 s <0.01 s

  Total fuel load (tonnes) 86,485.18 68,881.18 86,760.76 69,810.45 86,719.71 73,751.99

 10-Year planning horizon

  Solution time 0.55 s 3.18 s 15.33 s 11.59 s 0.02 s 0.01 s

  Total fuel load (tonnes) 167,073.99 126,230.60 169,480.60 130,989.90 168,897.70 134,543.14

 15-Year planning horizon

  Solution time 8.80 s 7586.33 20.54 s 16.06 s 0.03 s 0.01 s

  Total fuel load (tonnes) 245,671.97 185,310.04 250,616.10 193,569.77 250,348.40 195,460.34

Without TFI

 5-Year planning horizon

  Solution time 0.84 s 4.89 s 6.94 s 9.41 s 0.01 s 0.01 s

  Total fuel load (tonnes) 85,312.245 68,445.858 85,518.07 68,752.81 85,416.47 71,016.17

 10-Year planning horizon

  Solution time 307.87 s (0.58 %) 13.46 s 18.26 s 0.02 s 0.03 s

  Total fuel load (tonnes) 163,279.77 (123,346.30) 165,634.87 125,142.26 165,743.48 129,400.07

 15-Year planning horizon

  Solution time (4.59 %) (8.82 %) 20.58 s 27.85 s 0.03 s 0.04 s

  Total fuel load (tonnes) (242,727.28) (180,937.79) 245,443.79 180,974.32 246,804.43 186,476.47
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when more than 7 % of the total area has been burnt by prescribed fire, the total area 
burnt by unplanned fire will be close to zero.

Phase 1 is solved for consecutive years using the solution of the previous year as an 
input until the problem is reconciled, containing less than 5 % of ‘old treatment units’ 
in the landscape, as can be seen in Fig. 6. Based on the initial data, it would take 6 years 
to achieve that for our case study. The model data, now feasible, enables us to move to 
Phase 2.

In Phase 2, the exact MIP approach is applied to 10-yearly planning horizons. The 
objective function is to minimise the total fuel load whilst meeting the constraints that 
have been described in "Model formulation". Figure 7 represents the result of Phase 2 
and identifies the location of treatments for each year to minimise the total fuel load 
while satisfying the minimum and maximum TFI constraints. The length of the plan-
ning horizon is 10 years and the treatment level of each year is less than or equal to 
5 %.

Fig. 4  Fuel load over time for 40 treatment units with 10-year planning horizon, with TFI

Fig. 5  a Location of the case study in the Barwon-Otway district of Victoria, Australia. b Map showing the 
distribution of treatment units within the Barwon-Otway case study area
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The model is solved using ILOG CPLEX 12.6.2 with the Python 2.7 programming lan-
guage. Computational experiments are performed on Trifid, a V3 Alliance high perfor-
mance computer cluster. We tested the original problem and noticed the solution time 
of the relaxed problem [using constraint (14)] is no better than the original most likely 

Fig. 6  Solution of Phase 1
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due to valid inequalities introduced by CPLEX. Based on that, we decided to use the 
original problem, not its relaxed version.

Computation time against different model configurations is tested and the results are 
represented in Table 4. The CPU time or the gap between the best solution identified 
and the current linear programming relaxation is presented. The solution may actually 
be optimal but CPLEX may need a long time to prove it. The three model configurations 
are: ‘total’ (total fuel load where all treatment units are considered equal), ‘subset’ (total 

Fig. 7  Solution of Phase 2
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fuel load where a subset of treatment units are prioritised) and ‘random’ (total fuel load 
where random weights are assigned to treatment units). In ‘total’, all wi’s = 1. It means 
that the model minimises the total fuel load in all treatment units in the landscape, with-
out prioritising certain regions. In ‘subset’, the value of wi = 1 for some priority regions, 
and wi = 0 for the other region. This priority may be due to proximity to towns. In ‘ran-
dom’, 0 < wi < 1 assigned a relative importance weight to treatment unit which may be 
based on the population at risk or any other measure of defining relative importance.

The optimal solutions of Phase 1 and Phase 2 are represented in Figures  6 and 7, 
respectively. The solutions suggest where and when to conduct fuel treatments so as 
to minimise total fuel load accumulation. Figure 8 summarises the total fuel load over 
time for Phase 1 and Phase 2 for 5, 6 and 7 % annual treatment levels. From the graph 
it is clear that the 7 % treatment level has the least total fuel load at every point in time, 
which is to be expected. However, a 5 % treatment level has the most stable total fuel 
load in the long term. In other words, less variation is seen between years. For Phase 2 
(i.e. from year 7 to 36), the approximate mean total fuel load and standard deviations in 
the landscape for 5, 6 and 7 % treatment level are 1.171 million tonnes (standard devia-
tion 17,000 tonnes), 1.099 million tonnes (standard deviation 21,000 tonnes) and 1.041 
million tonnes (standard deviation 29,000), respectively.

Table 4  Computational comparison between the three model configurations using a 5 % 
treatment level

Length of planning  
horizon (years)

Solution time (seconds) or optimality gap (%) at 10,800 sec

Total Subset Random

5 2.12 0.47 2.02

10 43.19 6.31 37.06

15 7819.6 46.23 3194.94

20 (0.27 %) 80.79 (0.04 %)

25 (5.45 %) 265.05 (1.02 %)

Fig. 8  Total fuel load over time
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Using single‑period heuristic approaches

Phase 2 can also be performed with the single-period heuristic approach for 5, 6 and 
7 %. In Phase 2, the exact MIP approach provides a slightly better optimal solution (less 
total fuel load) than that of the single-period heuristic approach, as can be seen in Fig. 9. 
The differences between the exact MIP approach and the exact single-period heuristic 
approach for 5, 6 and 7 % treatment levels are 0.93, 0.94 and 1.02 %, respectively. How-
ever, using the exact MIP approach for the longer planning horizon, e.g. 100  years, is 
very difficult, while using the exact single-period heuristic approach a relatively good 
solution can be achieved in a reasonable computational time (<3 min for 100-year plan-
ning). Because of their practicality, in the case study we then run the model with single-
period heuristic approaches for 100 years.

Both approaches (an exact method for the single-period problem and an approximate 
method for the single-period problem) can directly be applied to the initial data. The 
result from both approaches is almost identical, because there are many small treatment 
units in the landscape so that the burn limit requirement can be met (almost) entirely.

In this case study, the computational experiments with or without incorporating TFI 
requirements are also conducted. The results for 5 and 10  % treatment level are rep-
resented in Figs. 10 and 11, respectively. By incorporating TFI requirements, when the 
treatment level is relatively high, e.g. 10 % annually, for some years the area burned may 
be less than 10 % in subsequent years. This is because the vegetation needs some time 
to regrow until it is eligible to be treated. The treatment units can only be burned if all 
of the vegetation types in the treatment unit are above the minimum TFI. Figures  10 
and 11 also represent the results of excluding the TFI requirement, which the total fuel 
load in the landscape is relatively very stable. However, due to the importance of TFI 
as discussed in "Model formulation", in practice excluding these requirements is not 
recommended.

Fig. 9  Comparison of the total fuel load using the exact MIP approach and the exact method for the single-
period approach
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Conclusion
The purpose of this study was twofold. Firstly, to develop an optimisation method for 
scheduling prescribed burns, and to embed this in a real-world case study that takes into 
consideration the spatial and temporal complexity of the problem. Secondly, to consider 
the fitness for purpose of our models by comparing the performance of simpler, heuris-
tic-based solutions to a more complex, optimisation-based solution.

The complex multi-period model proposed takes into account multiple vegetation 
types of mixed ages in the landscape with differing nonlinear fuel accumulation func-
tions. The model determines when and where to conduct fuel treatment to reduce the 
total fuel load in the landscape while still considering the ecological constraints relating 
to the Tolerable Fire Interval of each vegetation class. We compared the exact MIP and 

Fig. 10  Total fuel load over time using the single-period heuristic approaches—5 % treatment level

Fig. 11  Total fuel load over time using the single-period heuristic approaches—10 % treatment level
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two heuristic approaches (Knapsack Problem and a greedy heuristic approach) in terms 
of the model tractability, computational time and the objective values.

The solution for a 15-year planning horizon for the case study comprising 711 treat-
ment units in the Barwon-Otway district of Victoria was obtained in 2 h by using the 
exact MIP approach. With longer time periods it was not possible to achieve solutions 
of sufficient accuracy within a few days. While this approach can provide optimal solu-
tions, it is computationally costly, especially for fuel management and ecological plan-
ning which may require longer planning horizons, and cover much larger geographic 
areas. Meanwhile, the heuristic methods can solve the problem for a longer times (e.g., 
100 years), and the solution can be obtained in less than 3 min.

Based on our experiments, the single-period decomposition works well, and Knap-
sack MIP performs almost as well as the multi-period MIP. For a 10-year planning hori-
zon with 5, 6 and 7  % treatment levels, the objective values resulting from these two 
approaches differs approximately by only 1 %. It is clear from the series of computational 
experiments that the solutions resulting from the heuristic approaches mimic that of the 
exact MIP to solve the prescribed burn planning model.

The results are an important reminder that future work may benefit from the use of 
heuristic approaches. Future research is planned to extend this study by incorporat-
ing other ecological requirements such as habitat connectivity within the landscape. 
However, particularly when using the exact MIP approach, this added complexity will 
increase computational effort to these problems as we increase the number of con-
straints and objectives built into our models. The case study shows that the heuristic 
approaches provide a near-optimal solution and the computational time is significantly 
faster than that of the exact MIP approach. We conclude that for practical purposes a 
heuristic method is more than adequate.
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