
Thank

Citatio

See th

Version

Copyri

Link to

you for do

on:

is record i

n:

ght Statem

o Published

wnloading

in the RMI

ment: ©

d Version:

 this docum

IT Researc

ment from

ch Reposit

the RMIT R

ory at:

Research RRepository

PLEASE DO NOT REMOVE THIS PAGE

 Liu, H, Spichkova, M, Schmidt, H, Sellis, T and Duckham, M 2015, 'Spatio-temporal
architecture-based framework for testing services in the cloud', in Fei-Ching (Diana) Kuo,
Stuart Marshall, Haifeng Shen, Markus Stumptner and M. (ed.) Proceedings of the 24th
Australasian Software Engineering Conference (ASWEC 2015), Volume II, New York,
United States, 28 September - 1 October 2015, pp. 18-22.

https://researchbank.rmit.edu.au/view/rmit:34423

Accepted Manuscript

2015 ACM

http://dx.doi.org/10.1145/2811681.2811685

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RMIT Research Repository

https://core.ac.uk/display/32238903?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchbank.rmit.edu.au/

Spatio-Temporal Architecture-Based Framework for
Testing Services in the Cloud

Huai Liua, Maria Spichkovab, Heinz W. Schmidta, Timos Sellisb, Matt Duckhamc

aAustralia-India Research Centre for Automation Software Engineering
bSchool of Computer Science and Information Technology

cSchool of Mathematical and Geospatial Sciences
RMIT University, Melbourne, Australia

{huai.liu, maria.spichkova, heinz.schmidt, timos.sellis, matt.duckham}@rmit.edu.au

ABSTRACT
Increasingly, various services are deployed and orchestrated
in the cloud to form global, large-scale systems. The global
distribution, high complexity, and physical separation pose
new challenges into the quality assurance of such complex
services. One major challenge is that they are intricately
connected with the spatial and temporal characteristics of
the domains they support. In this paper, we present our
visions on the integration of spatial and temporal logic into
the system design and quality maintenance of the complex
services in the cloud. We suggest that new paradigms should
be proposed for designing software architecture that will
particularly embed the spatial and temporal properties of
the cloud services, and new testing methodologies should be
developed based on architecture including spatio-temporal
aspects. We also discuss several potential directions in the
relevant research.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures;
D.2.5 [Software Engineering]: Testing and Debugging

Keywords
Software architecture, software testing, spatio-temporal
logic

1. INTRODUCTION
Nowadays, more and more systems are deployed as ser-

vices in the highly distributed cloud computing environ-
ment, and they are composed to construct complex services,
which coordinate, control, and/or support global large-scale
systems. These services are normally connected with teams,
offices, facilities, and computing infrastructures that are re-
mote from each other. Some of these systems track mobile
fleets, supply chains, movements of goods and services etc.,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASWEC ’ 15 Vol. II, September 28-October 01, 2015, Adelaide, SA, Aus-
tralia
c© 2015 ACM. ISBN 978-1-4503-3796-0/15/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2811681.2811685

and are thus intricately connected with the spatial char-
acteristics of the domains they support. Monitoring adds
real-time processing constraints and requirements, and of-
fers temporal lenses on historic data to enable predictive
and proactive testing, monitoring and control.

Quality is always the key factor for guaranteeing the suc-
cess of any product or service. Testing, a mainstream ap-
proach to quality assurance, validation, and verification,
has been extensively used in the context of software sys-
tems. However, testing cloud services and their composi-
tions is fundamentally more difficult than conventional soft-
ware, especially when these services are deployed across re-
mote locations in globally distributed environments. Ex-
isting industry-strength methods in testing have evolved
around integrated systems running locally on single servers
or focus on performance characteristics in distributed sys-
tems from the network architecture upwards. Few of them
have taken the inherent spatial and temporal properties into
consideration.

Analysis of the spatio-temporal dependencies among ser-
vices allows designers and developers to find better testing
strategies and identify the source of failure faster. Thus, the
spatio-temporal aspects are crucial for the complex services
in cloud: to test a service more efficiently, we need not only
the service’s data itself, but also additional information in
relation to the time and to the location, when and where the
data are produced. This should be taken into account while
developing the architecture, i.e. the architecture should be
ST-aware (spatio-temporal aware).

In this vision paper, we propose the development of a
testing framework that supports the quality improvement
and maintenance of the complex services and their compo-
sitions in the highly distributed cloud computing environ-
ments, with the purposes of enhancing fault-detection effec-
tiveness as well as reducing the cost. More specifically, we
will discuss the following aspects:

• Design of architectures for globally-distributed com-
plex services based on the spatial and temporal prop-
erties;

• Development of architecture-based testing methodolo-
gies for complex services and their compositions, in-
cluding:

– Architecture-based test case generation methods;

– ST-aware techniques for verifying testing results;

• Definition of resource allocation strategies for testing
and monitoring in cloud.

The rest of the paper is structured as follows: Section 2
introduces some background information of spatial and tem-
poral frameworks and their applications. In Section 3, we
discuss how to embed spatial and temporal properties into
software architecture design. Section 4 presents some ini-
tial ideas of testing methodologies based on spatio-temporal
architecture. In Section 5, we discuss a new challenge in
testing and present our solution. Section 6 concludes the
paper.

2. BACKGROUND – SPATIO-TEMPORAL
FRAMEWORKS

To analyse spatio-temporal phenomena in a particular do-
main, we need to define the corresponding spatial, tempo-
ral and event semantics. In addition, if the coordinates of
particular systems or their components are not fixed (sys-
tems/components can change their location over time) as,
e.g., in the case of road traffic, the mobility semantics should
also be defined.

Spatio-temporal logic is the natural combination of spatial
and temporal logic, which qualitatively represents the spa-
tial and temporal aspects of systems with mobility and real-
time properties. It has been widely applied into different do-
mains. For example, the project CHOROCHRONOS [18],
initiated by the European Commission, aimed to achieve
systematic interaction and synergy between temporal and
spatial databases. The focus of the project has been on the
design, implementation, and application of spatio-temporal
database management systems, also covering architectural
aspects of them. Xiao and Eltabakh [22] presented a spatio-
temporal engine for complex pattern queries, STEPQ sys-
tem. STEPQs require correlation among events in time and
space over multiple instances of the database. Alamri et
al. [1] discussed an approach for indexing spatio-temporal
objects in indoor environments, and developed a trajectories
index structure for moving objects in indoor spaces, which
is based on adjacency between cells. Other applications of
spatio-temporal logic include sensor networks[10, 12], infor-
mation privacy [6], and smart devices [3].

These approaches mostly focus on the modelling aspect
of the development and on general analysis of the sys-
tem. In contrast to them, we are aiming at integration of
testing methods into spatio-temporal representation. For
this purpose we can use the modelling framework Fo-
cusST [20], which focuses on the formal representation of
spatio-temporal aspects and allows us to create concise but
easily understandable specifications [19].

3. ST-AWARE ARCHITECTURE
Architecture should be designed particularly for globally-

distributed complex services. Though a large number of
methodologies have been proposed for designing software
architecture, few of them have dealt with the spatial and
temporal properties of the system under development, which
have to be considered now in the global cloud computing
environments. In particular, ST-aware models should be
developed for describing the highly-distributed services and
their compositions, and architectures should be designed to
formally represent the spatial and temporal properties of
complex systems.

A number of architecture description languages (ADLs)
have been developed to specify compositional views of a
system on an abstract level. For example, the TrustME
ADL [17] combines software architecture specification ap-
proaches with ideas of design-by-contract. This approach al-
lows capturing of complex behavioural interaction patterns,
synchronous and asynchronous, between large-scale compo-
nents of software and systems architectures, and gives a
background for the Rich Architectural Description Language
RADL [16] and its modelling of predictable component-
based distributed control architectures by extending finite
state automata and Petri nets [15], as well as a framework
for a family of mutually-compatible parameterised contract
models [14].

In the following, we discuss how to expand the RADL
functionality to include the features of FocusST [20]. We
define a special type of component that specifies real ob-
jects that can physically change their location in space over
the time (ST-objects, refer to Figure 1 for the general archi-
tecture of the system). An ST-object is normally associated
with three special variables to store current location (e.g.,
central point of the object), speed, and direction of move-
ment. A variety of representations of these variables may
be necessary, for example absolute position in some speci-
fied geodetic coordinate system, relative position in a local
coordinate system, or even a linear reference in the case of
movement through a transportation network (i.e., distance
along specified edge).

ST-object1

ST-aware
test

generator

FunctionalitySensors Actuators

ST-objectN

Sensors Actuators

...

Functionality

ST-values

ST-constraints

ST-values

ST-constraints

Figure 1: ST-aware Testing: General Architecture

By adding ST-constraints associated with every compo-
nent, we can, for example, restrict the direction and speed
of an ST-object; or verify whether the specified behaviour
excludes the possibility that the object enters restricted ar-
eas during time intervals marked as dangerous. To calculate
whether a collision of ST-objects is possible, we will assign to
each ST-object a zone of influence that describes the max-
imal space the object can “cover” in the worst case. The
maximal space may be represented as a simple radius of
movement, or as a more complex polytope.

As shown on Figure 1, performance metrics of actuators
are determined by the specified functionality of the object
and its ST-constraints and ST-values. The sensors’ data are
used to update the values of the location, speed and direc-
tion of the object for a given timestamp (we call them ST-
values). We can predict the values of these variables for the
next timestamp, and also detect errors based on the incon-
sistencies between the predicted and the actual behaviour.
For example, an unplanned stop can mean a collision of the

objects or problem with the motion actuators; a sudden
change of the location can mean sensors’ failure. To gen-
erate “static” test cases based on ST-aware architecture, we
can simplify the model by focusing on the location and time
stamps only. However, the ST-constraints and the values
of direction and speed of an ST-object build together a set
of testing constraints that allows to decrease the minimal
number of the required test cases.

4. NEW TESTING METHODS
In order to effectively test and monitor complex services

in the globally-distributed and physically-remote environ-
ment, novel ST-aware techniques are needed. There exist
many techniques for testing traditional software systems,
but many of them may not be applicable to the state-of-
the-art complex services and their compositions that are
deployed in the cloud. Other approaches, e.g. [21], fo-
cus on testing in globally-distributed environments, but do
not cover spatio-temporal aspects. We propose that spatial
and temporal properties should be systematically introduced
into testing.

Traditionally, there are two fundamental challenges in
software testing, namely, reliable test set problem and or-
acle problem. The reliable test set problem refers to that
it is practically infeasible to conduct testing with all possi-
ble program inputs, thus requiring the difficult selection of
which inputs are to be used as test cases in order to reveal
the largest set of program faults or to prove the program’s
correctness. The oracle problem means that in many prac-
tical situations, there does not exist a mechanism, namely
an oracle, to help verify the correctness of test results given
any possible input; or even if an oracle exists, it is infeasi-
ble to apply it. These two fundamental problems are still
prominent and need to be addressed in the context of testing
cloud services. On one hand, a series of methods should be
proposed to design test cases making use of the ST-aware
architecture. On the other hand, new techniques should be
developed to verify the correctness of testing results in terms
of spatial and temporal properties.

4.1 Test case generation based on spatio-
temporal architecture

Lots of techniques have been developed to generate ef-
fective test cases to address the reliable test set problem.
However, many of them cannot be directly applied into the
testing of cloud services. White-box testing techniques, for
example, construct test cases based on the source code of a
component. However, the high abstraction in complex ser-
vices makes it infeasible to apply such a low-level testing.
Instead, testing should be conducted in the higher architec-
ture level. What is more, the real time and high mobility of
cloud services require the generated test case to sufficiently
reflect spatial and temporal properties. In the following, we
discuss some potential directions on how to make use of ST-
aware architecture to enhance traditional testing techniques
for their adoption in the context of cloud services.

4.1.1 Architecture-based boundary-value analysis
Boundary-value analysis [11] is a typical test case gener-

ation technique that is focused on the faults occurring at
the boundaries of equivalence classes. Different from the
equivalence partitioning method (which considers all inputs
within the same class to be homogeneous in terms of fault

detection [11]), boundary-value analysis selects test cases on
and near the boundaries.

Under the ST-aware architecture, each component (or ser-
vice in the context of cloud computing) is associated with
certain location and timestamp (refer to Section 3). Suppose
that a service executes the function f1 when x ≤ x0, y ≤ y0,
z ≤ z0, and t ≤ t0, while function f2 will be executed oth-
erwise (f1 and f2 are specified in the Functionality-block of
the ST-object, shown in Figure 1). According to boundary-
value analysis, two test cases can be generated as given in
Table 1.

Table 1: Two test cases generated by boundary-
value analysis

Test Case Location Timestamp Note
TC#1 (x0, y0, z0) t0 on boundary

triggering f1
TC#2 (x0 + ε, y0 t0 near boundary

+ε, z0 + ε) triggering f2

Note that a large number of test cases can be generated
based on such a kind of ST-aware architecture-based bound-
ary value analysis technique. Table 2 gives two other typical
examples.

Table 2: Another two test cases based on boundary-
value analysis

Test Case Location Timestamp Note
TC#3 (x0 − ε, y0, z0) t0 triggering f1
TC#4 (x0 + ε, y0, z0) t0 triggering f2

4.1.2 Architecture-based adaptive random testing
As shown above, even for a single service that execute

simple functions, a large number of test cases can be gener-
ated. Recall the example with the service triggering f1 and
f2 under different conditions of location and timestamp. Ac-
cording to the basic idea of boundary-value analysis, given
the three values for each parameter (for example, x0− ε, x0,
and x0 + ε for x), there can be a maximum of 34 = 81 test
cases. What is more, services are often composed to con-
struct complex systems. The simple boundary-value analy-
sis (and many other systematic testing methods) will gener-
ate a huge amount of test cases. Exhaustive testing using all
these test cases is infeasible in many practical cases. Hence,
a flexible technique should be used to decrease the number
of generated test cases to fit the limits of testing resource
and time.

It has been widely acknowledged that a positive correla-
tion exists between the diversity among test cases and their
fault-detection effectiveness [7]. Based on such an intuition,
a number of testing techniques [5, 7] have been proposed to
reduce the size of test suites while preserving the effective-
ness of the original suites. Among these techniques, adap-
tive random testing [5] attempts to achieve a high diver-
sity by evenly spreading random test cases across the whole
input domain. Some recent studies [2, 4] have proposed
techniques for applying adaptive random testing into pro-
grams with complex inputs. In these techniques, each pro-
gram input is represented by a set of attributes (for exam-
ple, categories and choices as defined in category-partition
method [13]); distance between inputs are measured by how
different these inputs are with respect to their associated
attributes; and finally, diversity is achieved by maximizing
the distance among all selected test cases.

We can make use of the spatial and temporal properties
described in the ST-aware architecture as the attributes for
adaptive random testing. In other words, enhanced testing
techniques can be developed by applying some ST-aware
architecture-based distance measure into adaptive random
testing. One straightforward distance measure is the Eu-
clidean distance between the services’ locations. Another
straightforward distance measure is the temporal distance,
that is, the difference between the services’ timestamps, for
example, |t1− t2| given two services with timestamps t1 and
t2. More sophisticated measures may be required where dis-
tance must be measured in a network, or between spatially
and temporally extended objects (such as zones of influence
or object trajectories). What is more, the functionalites as-
sociated with the services will also be considered for measur-
ing the distance. Therefore, a weighted sum of multiple dis-
tance measures may in practice be required, where weights
are defined through theoretical and empirical studies.

4.2 Test result verification based on ST-aware
architecture

Unlike the large number of test case generation techniques
to address the reliable test set problem, only a few tech-
niques have been proposed for the oracle problem. One
popular approach to test result verification is based on some
innate properties that are normally extracted from software
specifications. Metamorphic testing [8, 9] is a simple yet
effective property-based technique for alleviating the ora-
cle problem. In metamorphic testing, properties are rep-
resented in the form of relations (namely metamorphic re-
lations) among different test inputs and outputs. A recent
empirical study [8] has shown that a small number of diverse
metamorphic relations can achieve a similar fault-detection
effectiveness to a complete test oracle. However, in most of
previous studies, metamorphic relations are normally iden-
tified in an ad hoc manner, that is, little research has been
conducted on how to systematically identify metamorphic
relations. With the introduction of ST-aware architecture, it
is very likely that we can develop new guidelines for the iden-
tification of metamorphic relations, especially those with re-
spect to the spatial and temporal properties. Such guidelines
may be given in the form of question and answer: Some ques-
tions are provided to testers/users, who are required to give
answers in the form of relations. The following lists some
typical questions:

• Given the same service, if the loca-
tion/timestamp/speed/direction has been changed,
will the service’s functionality also be changed? If yes,
is there any relation between different functionalities?

• Given the same locations/timestamps/speeds/direc-
tions, will two homogeneous services have the same
functionalities?

• Given two homogeneous services, if they have
certain relations in the locations/timestamps/
speeds/directions, is there any relation between the
functionalities of these services?

• Given two heterogeneous services that have some rela-
tions in their functionalities, if their locations/ times-
tamps/speeds/directions have been changed in a cer-
tain way, if there any certain change to the relations
in functionalities?

It should be noted that though metamorphic relations are
intuitively simple, they are quite expressive and useful in
addressing the oracle problem. Refer to Tables 1 and 2 in
the previous Section 4.1.1. Though we know which func-
tion will be triggered by each of the four test cases (TC#1,
TC#2, TC#3, and TC#4), it may be very difficult in many
practical situations to check whether or not the function is
correctly executed, and thus infeasible to verify the result
of one single test case (that is, the oracle problem exists).
In such a scenario, we can at least verify part of spatial
and temporal properties using metamorphic relations. For
example, let us look at the following metamorphic relation:

MR#1 Given two different locations (x1, y1, z1) and
(x2, y2, z2) as well as two different timestamps t1 and
t2, the functionality of the service should not be
changed as long as x1 < x0, x2 < x0, y1 < y0, y2 < y0,
z1 < z0, z2 < z0, t1 < t0, and t2 < t0.

Though it is known that the function f1 will be exe-
cuted, we may not be able to verify whether f1 is correctly
executed. With MR#1, we can at least verify whether
the same result will be given if we only change the loca-
tions/timestamps.

5. ST-AWARE RESOURCE ALLOCATION
FOR TESTING AND MONITORING

As mentioned above, traditionally, there are two main fun-
damental problems in testing, namely reliable test set prob-
lem (addressed by test case generation methods) and oracle
problem (addressed by test result verification techniques).
Test execution, a necessary part of automated testing, was
not considered as a major challenge when testing standalone
programs: The programs were just run based on the gener-
ated test cases.

Nowadays, the highly distributed cloud computing envi-
ronment poses another new challenge into testing, that is,
how, when, and where to execute testing. We suggest the
design of a set of new ST-aware models, which effectively
allocate resources for executing the testing tasks all over the
cloud. On this basis, we can perform testing on a cloud
platform such as Chiminey [23].

We can make use of the spatial and temporal properties
to design various testing scenarios, for example:

Same location & same time: manufacturing robots
working together in a factory.

Different locations & same time: the virtual collabora-
tion between services from remote fields.

Same location & different time: mining robots work-
ing in turn at the same place.

Different locations & different time: weather moni-
toring services relaying in raw data collection all over
the world.

The ST-aware architecture will also be used to properly al-
locate resources for real-time testing and monitoring. Nowa-
days, numerous services are continuously executing all over
the world. On one hand, testing and monitoring of these ser-
vices are necessary to guarantee their quality. On the other
hand, the testing and monitoring tasks should not affect the

normal executions of services under test. Therefore, appro-
priate locations and timestamps will be selected such that
services providing real-time testing and monitoring will not
occupy the computing resources of the working services, but
mostly use the spare resources. Conversely, the ST-aware
architecture can also help design the models for load test-
ing. Opposite to the real-time testing and monitoring, load
testing requires the selection of the locations/timestamps
where and when computing resources are heavily used by
the working services.

6. CONCLUSION
The research we have discussed in this vision paper inte-

grates knowledge from the three major disciplines of spatio-
temporal logic, software architecture, and software testing.
In the current cloud computing environment, everything is
considered as a service. Multiple services can be composed
to construct complex systems of systems. Physical services,
such as robots, smart vehicles, etc, are distributed all over
the world. Motivated by the features of real time and physi-
cal separation in these services, we propose the design of new
ST-aware architecture for the complex physical services that
are deployed in the highly distributed environment. Based
on the new architecture, we can develop a new testing frame-
work, which includes not only a family of novel testing tech-
niques, but also new models for the execution of various
testing tasks.

Our future work will focus on three research direc-
tions, namely new architecture design paradigm, ST-aware
architecture-based testing techniques, and cloud-based test
resource allocation strategies.

7. REFERENCES
[1] S. Alamri, D. Taniar, and M. Safar. Indexing of

spatiotemporal objects in indoor environments. In
AINA2013, pages 453–460, 2013.

[2] A. C. Barus, T. Y. Chen, F.-C. Kuo, H. Liu,
R. Merkel, and G. Rothermel. A novel linear-order
algorithm for adaptive random testing of programs
with non-numeric inputs. Technical Report
TR-UNL-CSE-2014-0004, Univ. of Nebraska –
Lincoln, Dec 2014.

[3] A. Both, W. Kuhn, and M. Duckham. Spatiotemporal
Braitenberg vehicles. In ACM SIGSPATIAL GIS2013,
pages 74–83, 2013.

[4] T. Y. Chen, F.-C. Kuo, H. Liu, and W. E. Wong.
Code coverage of adaptive random testing. IEEE T.
Reliab., 62(1):226–237, 2013.

[5] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. H. Tse.
Adaptive random testing: The ART of test case
diversity. J. Syst. Software, 83(1):60–66, 2010.

[6] M. Duckham, L. Kulik, and A. Birtley. A
spatiotemporal model of strategies and counter
strategies for location privacy. In GIScience2006,
pages 47–64, 2006.

[7] H. Hemmati, A. Arcuri, and L. Briand. Achieving
scalable model-based testing through test case
diversity. ACM T. Software Eng. Meth.,
22(1):6:1–6:42, 2013.

[8] H. Liu, F.-C. Kuo, D. Towey, and T. Y. Chen. How
effectively does metamorphic testing alleviate the

oracle problem? IEEE T. Software Eng., 40(1):4–22,
2014.

[9] H. Liu, I. I. Yusuf, H. W. Schmidt, and T. Y. Chen.
Metamorphic fault tolerance: An automated and
systematic methodology for fault tolerance in the
absence of test oracle. In ICSE2014, pages 420–423,
2014.

[10] A. Mousavi, M. Duckham, R. Kotagiri, and
A. Rajabifard. Spatio-temporal event detection using
probabilistic graphical models (PGMs). In CIDM2013,
pages 81–88, 2013.

[11] G. J. Myers. The Art of Software Testing. John Wiley
and Sons, 2nd edition, 2004. Revised and updated by
T. Badgett and T. M. Thomas with C. Sandler.

[12] A. G. Neiat, A. Bouguettaya, T. Sellis, and Z. Ye.
Spatio-temporal composition of sensor cloud services.
In ICWS2014, pages 241–248, 2014.

[13] T. J. Ostrand and M. J. Balcer. The category-partition
method for specifying and generating functional tests.
Comm. ACM, 31(6):676–686, 1988.

[14] I. Peake and H. W. Schmidt. Systematic
simplicity-accuracy tradeoffs in parameterised contract
models. In QoSA-ISARCS2011, pages 95–104, 2011.

[15] R. Reussner, H. W. Schmidt, and I. Poernomo.
Reliability prediction for component-based software
architectures. J. Syst. Software, 66(3):241–252, 2003.

[16] H. W. Schmidt. Trustworthy components –
compositionality and prediction. J. Syst. Software,
65(3):215–225, 2003.

[17] H. W. Schmidt, I. Poernomo, and R. Reussner.
Trust-by-contract: Modelling, analysing and
predicting behaviour of software architectures. J.
Integ. Design Proc. Sci., 5(3):25–51, 2001.

[18] T. Sellis, M. Koubarakis, A. Frank, S. Grumbach,
R. H. Guting, C. S. Jensen, N. Lorentzos,
Y. Manolopoulos, E. Nardelli, B. Pernici,
B. Theodoulidis, N. Tryfona, H.-J. Schek, and
M. Scholl. Spatio-Temporal Databases: The
CHOROCHRONOS Approach. Springer, 2003.

[19] M. Spichkova. Design of formal languages and
interfaces: “formal” does not mean “unreadable”. In
Emerging Research and Trends in Interactivity and the
Human-Computer Interface, pages 301–314. 2013.

[20] M. Spichkova, J. Blech, P. Herrmann, and H. W.
Schmidt. Modeling Spatial Aspects of Safety-Critical
Systems with FocusST. In MoDeVVa2014, pages
49–58, 2014.

[21] M. Spichkova, H. W. Schmidt, and I. Peake. From
abstract modelling to remote cyberphysical
integration/interoperability testing. In ISSEC2013,
2013. arXiv:1403.1005.

[22] D. Xiao and M. Eltabakh. STEPQ: Spatio-temporal
engine for complex pattern queries. In Advances in
Spatial and Temporal Databases, pages 386–390. 2013.

[23] I. Yusuf, I. Thomas, M. Spichkova, S. Androulakis,
G. Meyer, D. Drumm, G. Opletal, S. Russo,
A. Buckle, and H. W. Schmidt. Chiminey: Reliable
computing and data management platform in the
cloud. In ICSE2015, pages 677–680, 2015.

	Due Diligence Record Log.pdf
	Iyer-Raniga, Usha- n2006046404- A greenhouse gas.pdf
	Abstract
	Introduction
	Method
	Unit of assessment and system boundary
	Inventory
	Impact assessment

	Results
	Discussion
	Limitations
	Exclusion of travel
	Partition methodology
	Stadium life time and attendance
	Exclusion of upstream construction processes

	Conclusion
	Acknowledgement
	Funding
	References

