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ABSTRACT
This paper introduces an architectural framework for devel-
oping systems of systems, where the development plants are
geographically distributed across different countries. The
focus of our ongoing work is on architectural sustainability,
in the sense of cost-effective longevity and endurance, and
on quality assurance from the perspectives of integration in
a global context. The core of our framework are different
levels of abstraction, where state-of-the-art industrial devel-
opment process is extended by the level of remote virtual
system representation. Each abstraction level is associated
with a different level of context-dependent architecture as
well as the corresponding testing approaches.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures

Keywords
logical architecture, globally distributed systems, sustain-
ability

1. CHALLENGES AND MOTIVATION
The key question in engineering and production is how to

reach engineering goals in a way that minimises the over-
all effort. A large part of the answer to this question is in
choice of an appropriate architecture, design process as well
as appropriate abstraction levels during each design stage.
In state-of-the-art industrial development, quality assurance
is performed by extensive testing of generated code and
of the real system which is physically present for testing.
However, if the development is geographically distributed
across different countries, states, and organisations, we need
to consider the integration and interoperability of the sys-
tem’s elements in a global context. We suggest to have an
additional phase in the development process: virtual inte-
gration/interoperability testing.
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An interesting question is whether remote cyber-physical
integration/interoperability testing can or should have any
influence on the elaboration of a logical architecture and its
analysis. Can we take advantage of abstraction of informa-
tion about the further development process? Indeed, can
we even defer the decision of whether some integration and
testing steps will be done remotely in the future? Otherwise,
which architecture aspects should be taken into account al-
ready at the logical level if the development process includes
remote integration and testing?

Let us discuss an example scenario based on the ideas of
the virtual interoperability testing. In an industrial plant we
require the integration/interoperability of n+1 bulky/heavy
robots: one robot is of the type AType, the n other robots
are of a different type BType. For each robot we have a
number of features that can influence on the result of the
test, e.g., a position of the robot (including relative posi-
tion(s) of its grief(s) to its frame/trunk) and an action to
perform. As additional features, we can see robots’ relative
positions to each other and the differences in configurations
in the case when n robots of the same type perform similar
movements and actions simultaneously. This implies that
we need to test a huge number of possible configurations of
the system to ensure its correct work. Which architectural
configurations do we necessarily need to test? Which config-
urations could be excluded? How can we prioritise the tests,
based on the logical architecture?

These questions are especially complicated if the produc-
tion that is distributed over different locations, as this re-
quires extensive simulation, testing and collaboration. In
the case where components of a system are manufactured
at different places, transporting from component develop-
ment and production locations to integration and deploy-
ment sites can significantly increase the whole development
costs as well as time. Integration can reveal additional work
tasks and further transportation of the system’s parts may
be necessary. If a system’s components are bulky or heavy,
this may also delay optimisation and correction.

Given the high cost of physical integration and deploy-
ment as well as the huge number of possible features, it is
necessary to apply a systematic approach for designing test
suite that can cover most of the critical features and their
combinations with a reasonable suite size. In our ongoing
work, we make use of combinatorial testing [11], which aims
to systematically design a covering array test suite which
collectively represent all combinations of different factors for
the system under test, such as input parameters, features,
configurations, components, etc.



Contribution: We propose an architecture-based combi-
natorial approach to integration/interoperability testing for
systems in a global context. On one hand, we apply the com-
binatorial testing technique to design a controllable number
of tests that can reasonably cover various combinations of ar-
chitectural features, and thus to detect possible failures that
might be triggered by the interactions among features dur-
ing the integration and deployment process. On the other
hand, we make use of the architectural views in different
abstraction levels to define the constraints among different
system features, and in turn, to further improve the quality
of test suite by automatically eliminating the invalid com-
binations of features. The tests generated by the approach
are executed in a virtual environment, where the features
are simulated rather than physically deployed in the field,
to save the cost and remove any potential defects prior to
the real integration and deployment.

Thus, we focus on the sustainability aspects of the ar-
chitecture, in the sense of cost-effective longevity and en-
durance, i.e. we focus on technical sustainability [14]. How-
ever, we do not take into account another dimensions of
sustainability such as social, environmental, etc. sustain-
ability [7].

Outline: The rest of this paper is organised as follows. In
Section 2, we introduce different architecture levels, which
are the core of our framework. In Section 3, we discuss the
general ideas of virtual integration/interoperability testing
and then propose our combinatorial approach to the quality-
oriented architecture. The related work is discussed in Sec-
tion 4. Finally, in Section 5 we present our conclusions.

2. LEVELS OF ABSTRACTION
The aim of a software architecture is to design a draft of

the solution for the problem described in the corresponding
requirements specification [3, 6]. While modelling system
architecture at each level of abstraction, we should anal-
yse whether we can mark some system elements/properties
as too concrete for the current specification layer and omit
them for keeping the architecture more readable and man-
ageable (especially in the sense of testing and verification).
We also need to analyse which kind of system’s aspects and
assumptions at the level of logical architecture impact most
on fidelity of the model with respect to the real system.

Even if the information is not important at the current
level, it might be able to influence on the overall modelling
result after some refinement steps, i.e. at more concrete
levels that are nearer to the real system in the physical
world. Therefore, when specifying system architecture we
should make transparent all the decisions on abstraction in
the model and track them explicitly – in the case of contra-
diction between the system architecture and the real system
this allows us to find the problem more easily and faster.

We can say that any system S (and, respectively, its ar-
chitecture) can be completely described by the correspond-
ing set of its properties. At each level l of abstraction we
can split it into two subsets: set Refl l(S) of the properties
reflected at this level of abstraction, and set Abstr l(S) of
properties from which we abstract at this level, knowingly
or unknowingly.

With each refinement step we move some properties from
the set Abstr to the set Refl , and in some sense the set
Abstr represents the termination function for the system
refinement process.

In general, the role of testing is not only to reveal/exclude
bugs which arise in refinements (as in verification) but also
to evaluate prototype (un)suitability which may arise from
misunderstood requirements (as in validation). Moreover,
in practice we view the abstraction levels as corresponding
to stages in an imperfect process rather than views which
are kept complementary and consistent.
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Figure 1: Generalised Development Methodology

The generalised methodology for the system of systems de-
velopment in a global context is presented on Fig. 1:

• Abstract Level : We operate on the logical architec-
ture of the system and an abstract model of the en-
vironment only. In a global context this also means
that at this level we abstract from the information on
which location each component of our logical architec-
ture should be developed and deployed later.
Quality assurance: We check the interoperability be-
tween logical components of our architecture (e.g., be-
tween abstract models of robots);

• Virtual Level: We distinguish software and hardware
architectures and operate on both virtual and real rep-
resentations of the hardware components. In a global
context this means that we deal with a semi-virtual
architecture, which takes into account where the soft-
ware and hardware components should be developed
and deployed later.
Quality assurance: We check the interoperability be-
tween virtual and real systems. For this purposes we
suggest to use a facility similar to the Virtual Interop-
erability Testing Laboratory (VITELab, cf. [2, 20]),
where the interoperability simulation and testing are
performed early and remotely, e.g., while cyber-physical
components are in the prototyping stage. Individ-
ual components (e.g., robots, manufacturing cells), are
connected in a suitable virtual environment, without
being deployed at the same place physically. The aim
of a VITELab approach is to reduce costs associated
with interoperability testing at integration and com-
missioning phases in software-intensive automation ap-
plication;

• Cyber-Physical Level: We operate on real system com-
ponents.
Quality assurance: In the case of testing, we check the
interoperability between real systems that are physi-
cally present for testing, as in the state-of-the-art in-
dustrial development.



The proposed methodology is conform to the ideas of Virtual
Commissioning technology [5, 12], which promises a more
efficient handling of the complexity in assembly systems. We
suggest to have three main meta-levels of abstraction:

At some level we need to switch from the pure abstract
(logical) representation of the system to a cyber-physical
one, but during a number of refinement steps we test (and
refine) the system or component using a virtual environ-
ment, and then continue with testing in a real environment.

A crucial question for a quality-oriented architecture in a
global context is which features we need to check at which
level of abstraction. Testing as well as verification at the
concrete level is more expensive than on an abstract one,
especially if some corresponding corrections within the sys-
tem are necessary. Thus, it makes more sense to have more
intensive testing at logical level to reduce the overall size of
test suite for the next levels as much as possible.

We suggest a “pessimistic” approach, which allows to have
false positives at abstract levels (they should be corrected
due refinement steps), but forces to build the model in the
way to exclude false negatives. For example, if our tests at
the logical levels show that

(i) there is no collision between robots A and B, when
A and B execute the actions ActA1 and ActB1 in the
positions PosA1 and PosB1 respectively, but

(ii) a collision between these robots is possible when, A
and B execute the actions ActA2 and ActB2 in the posi-
tions PosA2 and PosB2 ,

this means that the configuration (i) is safe and we don’t
need to check it further, but the configuration (ii) should be
carefully checked at the virtual interoperability level. This
solution is beneficial because it allows better prioritisation
of tests by focusing on the potentially critical configuration.

3. TESTING FRAMEWORK
Our framework is composed of two main components: a

virtual environment for testing and an architecture-based
combinatorial approach to test suite design. Both compo-
nents are discussed in this section.

3.1 Cyber-Virtual Level of Testing
Let us now come back to the robot scenario mentioned in

Section 1. Assume that the robots of the type AType are
assembled in location LA, while the robots of type BType
are assembled in a different location LB . If n robots of the
same type perform similar movements and actions simulta-
neously, we can simulate their behaviour using a single real
robot.

Thus, we can simulate robots of type BType by one real
robot B, its actuator information will be replicated to ob-
tain n virtual models B1, . . . , Bn, and its sensor information
will be extended by the composition of the modelled sensor
information from B1, . . . , Bn. The sensor information of the
robot A will be a composition of the real sensor data and the
sensor data modelled according to the actions of B1, . . . , Bn.

To check the interoperability of the robot A and n robots
of the type BType at the level of the semi-virtual architec-
ture, we need only two real robots: a robot A and a robot
B (cf. Fig. 2). Moreover, they could be located in LA and
LB respectively, because the simulator and visualisation fa-
cility may take the role of a physical medium between them,

allowing to ignore the real distance between robots and also
providing a visualisation of the test and simulation not only
at LA and LB , but also on the third place LC , where the
corresponding laboratory is located.
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Figure 2: Cyber-virtual communication

Successful testing and simulation could significantly re-
duce the well-documented costs arising from discovery of
design faults after implementation. Our models and their
visualisation can give us the possibility

• to reveal a number of problems and inconsistencies on
the early stage of system development;

• to verify important system’s properties before the real
system is built and integrated; and

• to identify possible weak points in the system (such as
some timing properties, feature interactions, compo-
nent dependencies) which we should focus on, during
the testing phase.

3.2 Architecture-Based Combinatorial Testing
Even though the testing cost can be significantly reduced

by using the virtual integration/interoperability testing fa-
cilities, the huge number of possible tests still largely affects
the efficiency and effectiveness of testing. At the levels of
logical and semi-virtual architecture, we mainly test the in-
teroperability between virtual systems.

Let us look the following example, which is a simplification
of the example above. Suppose that we only test two virtual
robots, A and B , of types AType and BType respectively.
Each robot can only take one action. We would have the
following features for testing (where nA, mA, nB and mB
are integers larger than 1, and x and y are the two largest
numbers among them).

• Position of A: PosA1 , PosA2 , . . . , PosAnA.

• Action of A: ActA1 , ActA2 , . . . , ActAmA.

• Position of B : PosB1 , PosB2 , . . . , PosBnB .

• Action of B : ActB1 , ActB2 , . . . , ActBmB .



One possible test (i.e., a possible combination of features)
is A taking ActA1 at PosA1 with B taking ActB2 at PosB2 .
If there were no constraint among features, we could have
a total of nA × mA × nB × mB possible combinations of
features. However, we can significantly reduce the number
of tests with combinatorial testing: there would be only x×y
tests if we consider the 2-way combinations.

In the real-life testing, we have the situation where there
are more than 2 components to test together, each compo-
nent may take not just a single action but series of actions,
and there are more features to test, other than positions
and actions, the number of all possible combinations would
be increased exponentially. Thus, the usage of combinato-
rial approach would become more critical for a controllable
testing.

Furthermore, the different architecture levels will in turn
help improve the combinatorial testing technique, if the ab-
stract architectures contain innate properties for the systems
under test. These properties allow us work out the con-
straints among different architectural features. One typical
example for the constraint is that two robots cannot take
the same position, that is, the combination of A at PosA1
with B at PosB1 is invalid and thus should not be used in
the testing.

In the proposed approach, we introduce more well-defined
constraints, such as “a certain action cannot be taken at
a certain position”, “ActAi cannot be taken simultaneously
with ActBj ”, etc. An advantage of using these models is the
high degree of automation, so it is natural that the con-
straint identification will easily be automatically conducted.
It will also be easy for apply these architecture-level con-
straints into the combinatorial testing for the automated
construction of a suite of valid tests.

4. DISCUSSION AND RELATED WORK
Model-driven architecture of embedded systems slowly be-

comes state-of-the-art of the development. A recent case
study done by EIT ICT Labs [16] within the automotive do-
main (interviewees: 187 engineers and developers from 14
different countries) shows that (i) 97% of the participants
apply functional modeling; (ii) 95% of the participants gen-
erate code from these models; (iii) more than 40% of the
participants utilise these models for verification/validation
within the development process. Nevertheless, many ap-
proaches on mechatronic/cyber-physical systems omit an
abstract logical level of the system representation and lose
the advantages of the abstract representation.

The work presented in [23] defines an extensive support
to the components communication and time requirements,
while the model discussed in [9] proposes a complete model
of the processes with communication. In traditional devel-
opment of embedded systems e.g., [1], the system is usu-
ally separated into software and hardware parts as early as
possible in the development process. This does not always
benefit the system development. When using the level of an
abstract logical architecture the difference in the nature of
components does not necessarily play an important role.

Some researchers [15, 18] suggested using a platform-inde-
pendent architectural design in the early stages of system
development. The approach presented by Sapienza et al.
[15] introduces the idea of pushing hardware- and software-
dependent design as late as possible. however, the question
of the current practical and fundamental limitations of log-

ical modelling in comparison to cyber-physical testing, is
not completely answered. In comparison to [15], the focus
of [18] is on reutilisation and generalisation of the software
development methodologies based on the case studies sup-
ported by DENSO Corporation and Robert Bosch GmbH.
However, the question, how deep we can go on the architec-
turing of cyber-physical systems at the logical level is still
open in both approaches. In our work, we extend these ideas
by integrating quality-oriented aspects into the architectural
levels, which increases the architectural sustainability.

Gürbüz et al. proposed in [8] to apply the idea of safety
perspective to ensure that the safety concern is properly ad-
dressed in the architecture views. The authors suggested
to consider architectural tactics as possible solutions when
the architecture does not exhibit the required quality prop-
erties addressed by the perspective. This approach can be
embedded at each architectural level of our framework, to
assist safety engineers and architects to identify the required
quality properties.

Another promising approach that can be applied on top of
our framework, was presented by Caracciolo et al. in [4]: a
suitable specification of quality requirements helps to reduce
further the cost of testing.

Penzenstadler et al. [13] presents a literature review on
sustainability in software engineering, aiming to provide an
overview of different aspects of sustainability.

A systematic review of the architecture-level metrics for
the sustainability (in the sense of cost-effective longevity and
endurance, i.e. the technical sustainability) of software ar-
chitectures is presented by Koziolek in [10]. Koziolek re-
viewed the suitability of existing methods for sustainability
analysis, and elaborated on this basis a list of more than 40
architecture-level software metrics potentially useful in the
context of sustainability evaluation. Trough this elabora-
tion, he also identified a need for more empirical studies on
architecture evaluation.

5. CONCLUSIONS
In this paper, we presented our ongoing work on virtual

interoperability testing, where the development process is
extended by an additional level of abstraction – the level of
remote virtual system representation. We further propose
that in the virtual testing environment, we should use an
architecture-based systematic approach to design test suites
that are not only effective in detecting various failures, but
also efficient in saving testing cost and time.

We investigate how to apply the traditional combinatorial
testing technique into our integration/interoperability test-
ing of cyber-physical systems in the global context. We also
aiming on increasing of the readability and understandabil-
ity of tests, to conform with the ideas of human-oriented
software development, cf. [21, 17].

Our approach is to integrate the models at different archi-
tecture levels and the combinatorial technique. The archi-
tecture-based combinatorial technique will help us design
test suite by combining various features at abstract levels;
while the abstract logical architecture will provide an au-
tomatic mechanism for identifying the constraints between
features and thus help improve the quality of test suite by
eliminating the invalid tests.

Even after the systems are physically integrated and de-
ployed, the well-defined tests are still very useful for the
remote testing and monitoring in the real physical environ-



ment. Such an approach can significantly reduce the testing
cost and ensure most of features and their interactions have
been tested before the physical integration and deployment
process.

Future work: One direction of our future work is to
study how to extend testing with verification. In contrast
to testing, verification delivers a correctness proof for crit-
ical properties, but requires significant effort, especially if
we refer to verification of the code, which is typically more
complex than verification at the model level. If we combine
our current approach with modeling and verification tool
chains, e.g. [19], this would allow assuring the quality of
cyber-physical systems in the most effective way.

Another direction is to perform cloud-based testing for all
abstraction levels of our framework, e.g. using Chiminey
platform [24], which was created as part of the Bioscience
Data Platform project [22].
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