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Abstract
Westudy entanglement harvested fromaquantumfield through local interactionwithUnruh–DeWitt
detectors undergoing linear acceleration. The interactions allow entanglement to be swapped locally
from thefield to the detectors.Wefind an enhancement in the entanglement harvesting by twodetec-
torswith anti-parallel accelerationover thosewith inertialmotion. This enhancement is characterized
by the presence of entanglement between twodetectors thatwould otherwisemaintain a separable state
in the absence of relativisticmotion (with the samedistance of closest approach in both cases).We also
find that entanglement harvesting is degraded for twodetectors undergoingparallel acceleration in the
sameway as for two static, comovingdetectors in a de Sitter universe. This degradation is known tobe
different from that of two inertial detectors in a thermal bath.We comment on the physical origin of the
harvested entanglement andpresent threemethods for determiningdistance between twodetectors
using properties of the harvested entanglement. Information about the separation is storednonlocally in
the joint state of the accelerated detectors after the interaction; a single detector alone contains none.We
alsofindan example of entanglement suddendeath exhibited in parameter space.

1. Introduction

The ground state of a systemof coupled harmonic oscillators is the unique state with zero excitations in any
normalmode of the system.With respect to these globalmodes, the ground state is unentangled (separable) [1].
We can equally well describe the same state in the tensor-product basis of number states of each individual
oscillator.With respect to these localmodes, the ground state of the system is entangled (unless the coupling is
everywhere zero). This property is generic: the same statemay be considered either separable or entangled
depending on the tensor-product structurewe choose for the state space, with operational locality often
determining the proper choice if wewish to use the entanglement as a physical resource [2].

It is in this sense that we say that the vacuumof a free quantum field inMinkowski spacetime is entangled
with respect to the state space of local observables [3], even though it is separable with respect toMinkowski
plane-wavemodes, with zero particles in everymode. This fact is borne out operationally by the ability to swap
this entanglement to local quantum systems (‘detectors’) through local interactions [4]. Local hidden-variable
models cannot account for the long-distance correlations due to this entanglement [4, 5], which decrease at a
rate slower than − L cTexp [ ( ) ]3 , where L is the separation andT the duration of the detector–field coupling.
Other types of vacuumcorrelations, such as truemulti-region entanglement [6] and full nonlocality [7, 8], are
also possible. Time-like separated detectors can also swap entanglement from the vacuumof amassless field [9],
even though the field has lightlike excitations. Superconducting circuits or quantumoptical settingsmay soon
admit experimental realizations of these phenomena [10, 11].

Since entanglement is a phenomenon that is uniquely quantummechanical in nature [1, 12] and can be
considered both an information-theoretic and a physical resource [13], we call this swapping process
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entanglement harvesting to connote the reaping of a naturally-occurring and useful resource from a quantum
field7. Just as factors like sunlight, water, and nutrients affect the crops harvested from afield on a farm,
entanglement harvested from a quantumfield is affected by spacetime curvature [15], temperature [15, 16], and
the type offield used [17, 18]. Also, just as in the farming case, the tools used for the harvesting—in this case, the
detectors’ state ofmotion [19] and local coupling [4]—also affect the amount and type of entanglement
obtained. This harvesting can also be repeated, resulting inwhat is now known as entanglement farming [20], in
which successive pairs of unentangled particles sent through a suitably prepared cavity will reliably emerge
significantly entangled.

The phenomenon of entanglement harvesting will necessarily involve a combination of relativistic and
quantum effects. Conceptually important qualitative differences emergewhen relativistic effects are included in
studies of quantum information [21]. For example, entanglement was found to be an observer-dependent
property that is degraded from the perspective of accelerated observersmoving inflat spacetime [22–25].
Entanglement betweenmodes of either bosonic or fermionic fields are degraded from the perspective of
observersmoving in uniform acceleration. These effects are present in both black hole spacetimes [26] and in
cosmological scenarios [14, 15, 27, 28].

A common approach employed inmany of these studies is the single-mode approximation. This
approximation attempts to relate a single-frequencyMinkowskimode (observed by inertial observers) with a
single frequency Rindlermode (observed by uniformly accelerated observers). This approximation does not
hold for general states but only for a specific kind ofUnruhmode [29].

Here we study entanglement between two hypothetical, uniformly accelerated, quantumparticle detectors.
We use the terms ‘detectors’ and ‘observers’ interchangeably. The detectors live in (3+1)-dimensional
Minkowski spacetime, withinwhich exists a quantumfield in theMinkowski vacuum state ∣ 〉0 .Weworkwith a
massless scalarfield for simplicity. The detectors’ accelerated trajectories give rise toUnruh radiation [30, 31]
with awell known thermal profile corresponding to a temperature

κ
π=T

k2
, (1.1)

B

where κ is themagnitude of the acceleration, kB is Boltzmann’s constant, andwework in natural units with
= ==c 1.Wefind that for two detectors undergoing parallel acceleration, entanglement harvesting is degraded

in exactly the sameway as for two static, comoving detectors in a de Sitter Universe (with a conformally coupled
field [32]), but distinct from that of two inertial detectors in a thermal bath, as previously shown in [15].
Somewhatmore remarkably, wefind an enhancement of entanglement harvesting by two detectors with anti-
parallel acceleration, characterized by the presence of entanglement between two detectors that would otherwise
maintain a separable state in the absence of relativisticmotion.

2. Analysis

2.1.Detector–field interaction
The details of the setup closely follow [15]with anymodifications clearly described. The background field is a
massless scalarfield in +(3 1)-dimensionalMinkowski spacetime [32], initially in theMinkowski vacuum state.
When comparing to the results of an expandingUniverse [15], wewill assume conformal coupling [32] because
minimal coupling has a very different effect [17, 18], but both are identical forMinkowski spacetime (with Ricci
scalarR=0).We consider two local detectors (defined below), labeled a and b, on the following spacetime
trajectories:

τ τ
τ τ

= =
= = ′
= = ′

μ μx x

x x x x

x t x t

t t t t

( , ), ( , ),

( ), ( ),

( ), ( ), (2.1)

a a a b b b

a a b b

a a b b

where b claims the prime, τ and τ′ are the proper times for observers a and b, respectively, and xi is the spatial
trajectory of observer i. The 4-vector index μ is henceforth dropped.

Wemodel the detectors as point-like, two-level quantum systemswith an energy gapΩ, each of which
interacts with the field via anUnruh–DeWitt interaction [31, 33], whose interaction-pictureHamiltonian is

τ η τ ϕ τ σ τ=H xˆ ( ) ( ) ˆ [ ( )] ˆ ( ). (2.2)xI

7
The term ‘entanglement harvesting’was coined by one of us (NCM) in early 2012. Itsfirst public usewas in a talk by another of us (GS) at

the relativistic quantum information conference at Perimeter Institute in June 2012, which reported on the initial results of this project. Its
first use in print is in a 2012 review article [14] by EduardoMartín-Martínez andNCM.
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Hereη τ( ) is a window function (i.e., time-dependent coupling strength) that governs the interactionwith the
ambient scalar field, τx ( ) is either of the 4-vectors xa or xb, ϕ τxˆ [ ( )] is the interaction-picture field amplitude at
spacetime point x, andσ τˆ ( )x is the interaction-picture Pauli-x operator for the two-level system. The detectors
are identical aside from their trajectories, andwe formally delay readout (i.e., projectivemeasurement) of the
detectors indefinitely becausewewish to analyze the quantum features of the resulting state of the detectors. The
detectors start in their respective ground states (∣ 〉 ⊗ ∣ 〉g g ), so if the interaction events are sufficiently far
separated, then any entanglement appearing in the final state of the detectorsmust have been harvested from the
field through the local interactions.

We choose η at all times to be very small (i.e., η τ< ≪0 ( ) 1), with nontrivial support only over a small range
in τ (as compared to the light-crossing time between them). This choice gives a short, weak interactionwith the
field. Its shortness enforces spacelike separation of the detection events, and its weakness allows us to treat these
interactions perturbatively.

For calculational simplicity, we takeη τ( ) to be aGaussianwith varianceσ :2

η τ η τ
σ

= −( ) exp
2

, (2.3)0

2

2

⎛
⎝⎜

⎞
⎠⎟

withσ ≪ L and η< ≪0 10 . Note that this function is analytic and therefore cannot be strictly compact in τ.
Thismeans that, in general, the detection events are only approximately spacelike separated. Analyticity of the
Gaussianwill allow us to evaluate integrals using complex analysis, but the fact that it has vanishing but nonzero
support for τ → ±∞will have interesting consequences that wewill explore later on.

2.2. Single detector response
The fact that the field is in the (Minkowski) vacuumdoes not necessarily imply that a detector will fail to
become excitedwhen interactingwith it [14, 32]. This is due to counter-rotating terms (such asσ−aˆ ˆ andσ+aˆ ˆ†)
in the expansion of equation (2.2). In fact,mostwindow functions and trajectories will produce a nonzero
response (excitation probability) in anUnruh–DeWitt detector due to the presence of these terms. Their
contribution—and thus the probability of excitation—will tend to 0, however, when the energy gap and
coupling strength (during detection) are constant, the trajectory is inertial, and the detection time tends to
infinity [32].

In general, then, each detector (initially in the ground state) is prone to excitation through its traveling
interactionwith the field. To lowest nontrivial order (i.e., second order) in the detector coupling strength η0, the
probabilityA that exactly one of the detectors will be excited is given by [32]

∫ ∫τ τ η τ η τ τ τ= ′ ′ ′Ω τ τ
−∞

∞

−∞

∞ − − ′ +( )A D x xd d ( ) ( )e ( ); ( ) , (2.4)a a
i ( )

whereΩ is the detector energy gap, and ϕ ϕ′ = 〈 ′ 〉+D x x x x( ; ) ˆ ( ) ˆ ( ) is theWightman function for the field ϕ̂,
which, for the case of theMinkowski vacuum, is given by equation (3.59) of [32]:

τ τ
π ϵ

′ ′ = −
− ′ − − − ′

+( )
x x

D x x
t t

( ); ( )
1

4 ( i )
. (2.5)a a

a a
2 2

2⎡⎣ ⎤⎦
Note that, due to symmetry, we could equally wellmake the trajectory substitution ↦x x( · ) ( · )a b and get the
same value forA. Also note that all quantities are evaluatedwith ϵ → +0 at the end.

2.3.Quantifying the harvested entanglement
To quantify the harvested entanglement, we follow the standard procedure first proposed by Reznik [34] and
used also by later authors [4, 15, 17, 18]: we calculate the elements of the reduced densitymatrix of the detectors
and then use the partial transpose criterion [35], which is necessary and sufficient for two qubits [36], to detect
the presence or absence of entanglement after interactionwith the field.

As in previous work [4, 15, 17, 18, 34], the partial transpose criterion for our setup reduces to a simple
comparison between two quantities. Entanglement exists between the detectors if and only if (iff)

>X A, (2.6)

whereA is defined in equation (2.4), andX can be interpreted as an amplitude for (virtual) particle exchange
between the detectors (to second order inη0 ):

∫ ∫τ τ η τ η τ τ τ τ τ= − ′ ′ ′ + ′
τ Ω τ τ

−∞

∞

−∞
+ ′ + +( ) ( )X D x x D x xd d ( ) ( )e ( ); ( ) ( ); ( ) , (2.7)a b b a

i ( ) ⎡⎣ ⎤⎦
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where theWightman functions are takenwith respect to the two trajectories xa and xb (cf equation (2.4), which
only involves one trajectory at a time), andΩ is the energy gap of the detector. The amount of entanglement
harvested can be quantified by the negativity [37] of the final state of the detectors, which in this case is simply

= −N X Amax { , 0}. (2.8)

A two-qubit state has nonzero negativity iff it is entangled [36].
Entanglement is therefore seen as a competition between the probability of actual detector excitation (A)

and themagnitude of an off-diagonal term in the densitymatrix representing the amplitude for particle
exchange (X) [4].When the detection events are entirely spacelike separated, the exchange term can only be
interpreted as swapping preexisting entanglement out of thefield and into the detectors—rather than simply
using thefield as a transmissionmediumbywhich to exchange real excitations.When the detection events are
only approximately spacelike separated, as is the case for some choices of parameters here (since η τ( ) is
Gaussian), there are additional subtleties, whichwe address later.

2.4. Accelerating trajectories and comparisonwith other scenarios
The canonical formalism for studying accelerated observers inMinkowski spacetime [31, 32, 38] involves
defining a Rindler wedge corresponding to an accelerating trajectory and using that wedge to define three
additional wedges that separateMinkowski spacetime into left, right, future, and past regionswith lightsheet
boundaries. A key feature of this partitioning is that all fourwedges share a common apex. This suggests a natural
set of accelerating trajectories: those hyperbolas that share the bounding lightsheets as asymptotes.

We take amore operational approach to the problemby focusing on the physical objects: two detectors
accelerating uniformly through space. There is no physical reasonwhy the Rindler wedges defined by each
observer should be constrained tomeet at the origin, and in fact we argue that this approach is restrictive.
Forcing thewedges tomeet at the origin is tantamount to forcing the distance between the detectors at closest
approach, L, to be constrained by the acceleration parameter κ: specifically, κ= −L 2 1.We relax the condition of
wedges with overlapping apexes and study two uniformly accelerated detectors with an arbitrary distance at
closest approach.We also consider both anti-parallel and parallel trajectories, both of which are described by the
following trajectories:

κ κτ

κ κτ

κ κτ

= − +

= ± − −

= =

x
L

x
L

t t

1
[cosh ( ) 1]

2
,

1
[cosh ( ) 1]

2
,

1
sinh ( ), (2.9)

a

b

a b

where symmetry allows us to set τ τ′ = in equations (2.1), the plus/minus sign in xb refers to parallel/anti-
parallel trajectories, respectively illustrated in left/right panels offigure 1, and the other spatial coordinates are
taken to be 0. The quantity L represents the distance of closest approach asmeasured by an inertial observer
along a trajectory of constant x. For such an observer, the detectors are separated by thisminimumdistance
when = ′ =t t 0.

Inwhat follows, wewill use time variables corresponding to the sum anddifference of the two proper times:

τ τ τ

τ τ τ

= + ′ = +

= − ′ ′ = −

x x y

y x y

: ,
1

2
( ),

: ,
1

2
( ). (2.10)

Using the trajectories, we define

τ τ τ τ

τ τ

= ′ + ′

= ′

+ +

+

( ) ( )
( )

D x y D x x D x x

D x x

( , ):
1

2
( ); ( ) ( ); ( )

( ); ( ) , (2.11)

a b b a

a b

⎡⎣ ⎤⎦

where the second line follows from the symmetry of the trajectories—both for equations (2.9) and for the ones
from [15], whichwill be used for comparison. Furthermore

τ τ= ′ ′+( )D y D x x( ): ( ); ( ) (2.12)a adetect

or equivalently using x ( · )b instead. In fact, for the particular trajectories in question, these formulas are all
invariant under the exchange ↔x x( · ) ( · )a b .

Using trajectories (2.9), we compute the quantityX from equation (2.7).Wefind this integral to be very
difficult to compute analytically and to suffer from convergence issues when evaluated using naive numerical
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methods. Fortunately, we can calculate the integral by completing the square in the exponential and shifting the
contour of integration to convert the complexGaussian into a real Gaussian. Bymaking these transformations,
we remove the highly oscillatory prefactor and allow for evaluation of the integral using Cauchy’s residue
theorem. In particular, we obtain

∫ ∫η
σ Ω= − + +σΩ

−∞

∞ ∞ −
σ
+ ( )X x y D x ye

2
d d e 2i , (residue terms). (2.13)( ) 0

2

0

2y x2 2 2

4 2

The inverse-Gaussian prefactor comes from completing the square, andwe have shifted the contour of
integration up by σ Ω2i 2 and changed variables (see appendix 6). Shifting the contour of integrationwill, in
general, cross poles, which give rise to the residue contributions noted explicitly in equation (2.13). The pole
locations are functions of the input parameters L andΩ, as well as functions of x and y. As such, computing the
residue contributions proves challenging, and details are presented in appendix 6.

Wewill evaluateX in several different scenarios. The ones that are the focus of this work are parallel and anti-
parallel acceleration, as shown in figure 1. For the parallel case we use =D x y D x y( , ) ( , )(( , with

κ
π

κ ϵ κ κ ϵ κ= + − − +−
− −

κ κ
D

L y L y

16 2
i e sinh

2 2
i e sinh

2
. (2.14)((

2

2

1 1
x x
2 2⎜ ⎟ ⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

Similarly, for the anti-parallel case we use =D x y D x y( , ) ( , ))( , with

κ
π

κ ϵ κ κ ϵ κ= − − + − + +−
− −κ κ

D
L x L x

16
e

2
1 i cosh

2
e

2
1 i cosh

2
. (2.15))(

2

2

1 1
y y
2 2⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

The subscripts onD(( andD)( are used to visually indicate the respective trajectories infigure 1.
For comparisonwith known results in the literature [15, 18], wewill also need the following additional

Wightman functions. Thefirst is for two comoving detectors in de Sitter spacetimewith expansion rate κ,
separated by constant comoving distance L [18, 32]:

κ
π

κ κ ϵ= − −κ
−

D
L

y
16

e
2

sinh
2

( i ) . (2.16)x
dS

2

2

2
2

1

⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭
A secondWightman function is for two inertial detectors withfixed proper distance L in the case where the field
has been heated to a finite temperature π κ= −T k(2 )B

1 in the rest frame of the detectors [18, 39]:

κ
π

κ ϵ κ ϵ= − + + + −D
L

L y L y
16

coth
2

( i ) coth
2

( i ) . (2.17)th 2

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭
Any of the fourWightman functions above can substitute forD x y( , )when calculatingX in equation (2.13).

We use a similarmethod to calculate the excitation probabilityA, although in this case we can avoid crossing
any poles by restricting our analysis to κσ Ω π<2 (see appendix 6 for details). As such, the residue contributions
vanish here, giving

∫η π σ σ Ω= −σΩ
−∞

∞ −
σ ( )A y D ye d e 2i . (2.18)( )

0
2

detect
2y2 2

4 2

In this expression,D y( )detect from equation (2.12) is the detector response function for a single detector in a
thermal bath at temperature π κ= −T k(2 )B

1 [32]:

Figure 1.Worldlines of twodetectors undergoing parallel (left panel) or anti-parallel (right panel) uniform acceleration of equal
magnitude. The gray diagonal lines indicate the Rindler wedges associatedwith each trajectory. In contrast to the usual treatment of
the anti-parallel case [31, 32, 38], thewedges do not necessarily share a common apex. Instead, they could be closer (as shown) or
further apart (not shown). The distance of closest approach of the detectors, asmeasured by an inertial observer atfixed x, is L.

5

New J. Phys. 17 (2015) 035001 G Salton et al



κ
π

κ ϵ= − −D y
16

csch
2

( i ) . (2.19)detect

2

2
2⎡
⎣⎢

⎤
⎦⎥

In order to evaluateA andX, we employ a saddle point approximation, following [18]. In particular

πη σ σ Ω≃ −σΩ− ( )A D2 e 2i , (2.20)0
2 2 ( )

detect
22

πη σ σ Ω≃ − +σΩ− ( )X D2 e 2i , 0 (residue terms). (2.21)0
2 2 ( ) 22

Note that there are no residue contributions toA due to the aforementioned restriction κσ Ω π<2 . The detector
response is identical in all cases considered:

η
π

κσ κσ Ω≃ σΩ− ( )A e
2 2

csc . (2.22)( ) 0
2

2
2

2 ⎡
⎣⎢

⎤
⎦⎥

Plugging in for each of the possible choices forD gives the following forX in each case:

η
π

σ≃ − +σΩ−X
L

e
2

r. t ., (2.23)((
( ) 0

2 2
2 ⎜ ⎟⎛

⎝
⎞
⎠

η
π

σκ
κ κσ Ω

≃ −
+ −

+σΩ−

( )
X

L
e

2 2 cos 1
r. t ., (2.24))(

( ) 0
2

2

2

2

⎛

⎝
⎜⎜⎜ ⎡⎣ ⎤⎦

⎞

⎠
⎟⎟⎟

η
π

σ≃ − +σΩ κσ Ω− −X
L

e
2

e r. t ., (2.25)dS
( ) 0

2 2
i22 2⎜ ⎟⎛

⎝
⎞
⎠

η
π

κσ κ≃ − +σΩ−X
L

L
e

2 2
coth

2
r. t ., (2.26)th

( ) 0
2 2

2 ⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

where ‘r.t.’ stands for residue terms, whichwill be evaluated later.

3. Results: parallel acceleration

Webegin by calculating the negativity [37] for detectors accelerating in the same direction. Choosing the
positive sign in equations (2.9) corresponds to two detectors with the desired trajectories, as shown on the left of
figure 1. An inertial observer on the trajectory x(t) = (constant) willmeasure the detectors to always be separated
by a constant distance L. (Note, however, that an observer traveling alongwith one of the detectors willmeasure
the proper distance to the other detector to be changing over time.) Using theWightman funtion (2.14), we
cross no poles when shifting the contour of integration in (2.13), andwe are left with only the residue-free
contribution.

PluggingA from equation (2.22) and X(( from equation (2.23) into inequality (2.6), wefind entanglement
whenever

κ κσ Ω< ( )L

2
sin . (3.1)2

When the detectors are entangled, the negativity in this case is

η
π

σ κσ κσ Ω≃ −σΩ− ( )N
L

e
2

( )

4
csc . (3.2)((

( ) 0
2 2 2

2 22 ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

3.1. Comparisonwith expanding and thermalfields
Interestingly, this negativity formula and entanglement criterion exactlymatch those for comoving (inertial)
observers, at a fixed comoving distance L, in a de Sitter universe with expansion rate κ [15, 18]. Indeed, using XdS

from equation (2.25) and verifying that we again cross no poles, we see that∣ ∣ = ∣ ∣X X(( dS , whichmeans that the
negativity is the same, =N NdS ((, and so is the entanglement criterion, equation (3.1). The only differences are in
their interpretation: κnow refers to the expansion rate instead of the parallel acceleration rate, and Lnow
refers to the comoving distance instead of to the distance asmeasured by an inertial observer on the trajectory
x(t) = (constant). Notice that themotion in these two cases seem very different. In the case of parallel
acceleration, the detectors aremoving in the same direction, whereas in the de Sitter case the detectors are
moving in opposite directions. However, this intuition ismisleading because the similarity between the two is
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the constancy of L. For parallel acceleration, the distance at closest approach asmeasured by a stationary
observer is constant, while in de Sitter space the detectors are separated by a constant comoving distance.

Due to themathematical connection betweenRindler and de Sitter geometries and the properties of
conformal fields (see chapter 5 of [32]), onemight expect a priori such a connection between the parallel-
acceleration case and the case of de Sitter expansion.We point out a few reasonswhy this intuition is not enough
to prove that theymust be the same. First, whileA is the same in both cases, X(( and XdS actually differ by a phase,
equations (2.23) and (2.25). As such, while the negativity (which depends only on∣ ∣X ) is exactly the same in both
cases, the actual densitymatrix in each case is different, resulting in different correlations. Second, the
calculations leading to the equivalence involve two approximations—second-order perturbation theory and a
saddle-point approximation—that limit the equivalence to the cases where these approximations are valid.
Finally, notice thatD(( andDdS are not the same, equations (2.14) and (2.16). This leads us to suspect that when
the aforementioned approximations break down, the equivalencemay be broken as well. On the other hand, our
work does not rule out the existence of other coordinates and/ormodified trajectories (perhaps parallel
acceleration but displaced in a different spatial direction) forwhich there is exact equivalence between the two
cases. This is left as an open problem.

From [15], we already know that the entanglement profile for two inertial detectors withfixed proper
distance L in a thermal bath in the detectors’ rest framewill differ from the de Sitter case. From the above results,
thismeans itmust also differ from the parallel-acceleration case, despiteA being the same in all three cases.
Solving the analogous inequalities using Xth from equation (2.26) and noting that no poles have been crossed,
wefind entanglement whenever

κ κ κσ Ω< ( )L L

2
tanh

2
sin , (3.3)2 2⎜ ⎟⎛

⎝
⎞
⎠

with the temperatureT of the thermal state of the field chosen to be theGibbons–Hawking temperature
associatedwith κ [40]—i.e., π κ= −T k(2 )B

1 . Thus, we have reproduced the resultsfirst reported in [15] (and
later confirmed using this saddle-pointmethod in [18]), which show that two detectors can distinguish between
Gibbons–Hawking and thermal radiation bywhether they are able to harvest entanglement or not. If entangled,
the negativity in this case is

η
π

κσ κ κσ κσ Ω≃ −σΩ− ( )N
L
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e

2 2
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For comparison, the entanglement boundary for inertial detectors in theMinkowski vacuum is given by

σ Ω<L

2
, (3.5)2

which can be obtained by taking the κ → 0 limit of either equations (3.1) or (3.3) whilefixing the other physical
parameters L, σ, andΩ. For entangled states, the negativity in this case is [18]

η
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All of these results are shown infigure 2 (left). Notice that the negativity is generally exceptionally small since, for

all cases considered here, ∼ σΩ−N e ( )2
.

4. Results: anti-parallel acceleration

In order to study anti-parallel acceleration, we choose the negative sign in equations (2.9), giving rise to the
trajectories shownon the right offigure 1.Note that the infiniteGaussian tails in thewindow function η τ( ) cause
detectors with overlapping Rindler wedges to be causally connected (not strictly spacelike separated).
Nevertheless, as assumed in [15], we choose the standard deviationσ ≪ L so that the nontrivial parts of the
interactions are spacelike separated.We calculateX andA using equations (2.21) and (2.20)with =D D)(.
However, when shifting the contour of integration inX, we nowdo cross a number of poles, andwemust
calculate the residue contributions separately. As a result, we cannot easily use a simple inequality to represent
the entangled region as we did in the previous cases. The details of these residue calculations are given in
appendix 6.

The profile for harvesting entanglement using anti-parallel detectors is shown infigure 2 (right). This plot
contains four interesting features, whichwe describe below, followed by some discussion aboutwhich features
may be due to the long tails of theGaussianwindow function (andwould therefore disappear if it were replaced
with a similar function having compact support).
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4.1. Enhancement over inertial detectors
Perhaps one of themost interesting features of entanglement harvestedwith anti-parallel acceleration is that the
acceleration allows for entanglement harvesting where inertial detectors could not. In particular, certain
detectors with a distance of closest approach σ Ω>L 2 2 can harvest entanglement. This is surprising because it is
outside the allowed region for inertial entanglement harvesting, given by equation (3.5). The allowed region for
inertial detectors is represented by the blue triangular region infigure 2 (left), the boundary of which is given by
the blue line infigure 2 (right), assuming the same resonant frequency andwindow function [15]. This line
should be interpreted as the κ → 0 limit of non-inertialmotion.

The power of this enhancement can be understood physically. Consider two inertial detectors inMinkowski
spacetime, configuredwith σ Ω≳L 2 2 —i.e., just below the blue diagonal line infigure 2 (right). These two
detectors would not be able to harvest entanglement andwould remain in a separable state. However, if we
instead consider two detectors with the sameΩ, accelerating oppositely and reaching a distance at closest
approach equal to L, in some cases theywould become entangled. Notice that we do not have to physically bring
the detectors closer together than the original L in order to entangle them. It is worth pointing out that this
feature arises in the portion ofX that does not come from residue terms. Therefore, we conjecture that the
enhancement is not an artifact of the infinite tails in theGaussianwindow functions butwould persist even if the
Gaussianwere cut off smoothly for τ σ∣ ∣ ≫ (see sectionA.3).

For small accelerations and finite interaction times, the two accelerating detectors would look almost like
inertial detectors, yet they could in principle harvest entanglement that truly inertial detectors could not. This
seems to present a paradox: the behavior as κ → 0 shouldmatch upwith that of actually achieving the limit
κ = 0, but it appears not to do so. This apparent paradox is resolved by noting that for small accelerations, both L
andΩmust be very large to see this effect (since the terms κL and κσ Ω2 both become small), and at the limit
point κ = 0, L andΩmust become infinite, which is impossible. Therefore, for all practical purposes, the inertial
bound, equation (3.5), becomes the relevant one in the limit κ → 0.

4.2. Entanglement resonance
Asmentioned in section 2, the usual picture employed in the literature for studying accelerated observers
[31, 32, 38] suggests a natural restriction to trajectories embeddedwithin Rindler wedges sharing a common
apex, which corresponds to κ= −L 2 1.We do not impose this restriction in this work because there is no physical
reasonwhy the separation between two independent objects should necessarily be related to their acceleration.

Figure 2.Regions of nonzero negativity [37] (i.e., parameter regionswhere entanglement harvesting is possible); see text formeaning
of parameters and details of physical setup. (Left)Results from section 3. Green region (left of green dotted curve): parallel
accelerating detectors inMinkowski vacuum ( >N 0(( ) and also comoving detectors in de Sitter conformal vacuum ( >N 0dS ). Red
+green regions (left of red solid curve): inertial detectors inMinkowski thermal bath ( >N 0th ). Green+red+blue regions (above blue
solid straight line): inertial detectors inMinkowski vacuum ( >N 00 ), which can be interpreted as the limit of the other three cases as
κ → 0. (Right)Negativity profile for anti-parallel accelerated detectors. Harvesting is possible in the blue, contoured region ( >N 0)( ).
Boundaries of the regions from the left panel are shown overlaid on the right for comparison. The contours within the large blue
region are lines of constantN)(, withmore entanglement toward the bottom. The four features discussed in section 4 are illustrated as
follows: (1) the portion of the blue region below the solid, blue line is the region of enhancement over inertial detectors (section 4.1).
(2) The orange line shows the critical distance, equation (4.1), for entanglement resonance (section 4.2). (3)What looks like a curvy
‘bulge’ on the left-hand side is due to the causal residue contribution (section 4.3). (4) The triangular region in the upper half andwith

κ >L 2 corresponds to the noncausal residue contribution (section 4.4).
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This restriction is not entirely without physicalmotivation, however. TheUnruh effect is usually discussed
in terms of theMinkowski vacuumbeing describable as a collection of two-mode squeezed states between pairs
of Rindlermodes, with onemode from each pair localized to the left and right Rindler wedges, respectively
[31, 32, 38] 8. Due to reflection symmetry between the twowedges, themodes that are entangled (i.e., two-mode
squeezed) happen to be those that are naturally detected by anti-parallel-accelerating observers, onewithin each
wedge. For such detectors, κ= −L 2 1. Onemight therefore wonder if having detectors on these trajectoriesmight
somehowbe the best way to see the effects of anti-parallel acceleration due to resonancewith these two-mode-
squeezedmodes. In fact, perhaps this configurationmight be necessary formaking use of such a resonant effect
to harvest a significant amount of entanglement using anti-parallel-accelerating detectors. Surprisingly, this
conjecturewill turn out to be false.

Before we saywhy this is false, it is worth askingwhat such a resonant effect would look like in our
calculations.We do not expect to see any effect in evaluatingA since this is just the response of our detector to the
perceived thermal noise, and this does not depend on the relative positions of the trajectories. Since the detector
is only coupled (nontrivially) to thefield for afinite time σ, this response is expected to befinite9. It is still
conceivable thatwemightfind a divergence inX, however. Such a divergence would signal a situation inwhich
higher-order terms—representingmultiple real or virtual transitions—would be necessary to capture the true
dynamics. Sincewe do not go beyond second order in this analysis, we cannot be sure of what exactly is
happening in such a case, butwe can still consider such a divergence to be evidence of a resonance condition,
which should be detectable in the final state of the detectors. Inwhat follows, we take this interpretation of such
divergences.

It turns out that for any detector resonance frequencyΩ, we can create a situation inwhich such a resonant
condition occurs for any value of Lup to κ−4 1. Tofind this critical distance Lcrit, we evaluate where the saddle-
point approximation ofX, equation (2.21) diverges. Using =D D)(, wefind

κ κσ Ω= − ( )L
2

1 cos . (4.1)crit
2⎡⎣ ⎤⎦

Interestingly, while thismethod reveals the location of the divergence inX, the saddle-point approximation gets
the signwrong.Direct numerical integration reveals that → ∞X as →L Lcrit, but the saddle point
approximation predicts → −∞X instead. The behavior ofXwith respect to L around ∼L Lcrit is shown in
figure 3.Notice thatX getsmore negative before turning around and shooting up to +∞. The saddle-point
approximation does not reveal this turnaround to positive values and instead predicts thatXwill continue to
decrease as the critical distance is approached.

The critical distance is shown as the orange S-shaped curve infigure 2 (right). Given a value of κ< −L 4 1, we
can tune the detectors to reveal this effect by settingΩ Ω= res, where

Ω
κσ

κ= −− L1
cos 1

2
. (4.2)res 2

1⎜ ⎟⎛
⎝

⎞
⎠

This divergence appears in the residue-free portion ofX, which leads us to believe it to be robust to smooth
cutoffs in thewindow functions (see sectionA.3). An application of this resonance to a rangefinding thought
experiment is discussed in section 5.1.Note that we have assumed point-like detectors and thatfinite size effects
could be important formore realistic detectors.

Notice that κ= −L 2 1 is not necessary to see this resonance effect. For the special case κσ Ω = π2
2
, of course,

we get resonance at that distance, but this is an additional requirement. Therefore, κ= −L 2 1 alone is neither a
necessary nor a sufficient condition for resonance. This is contrary to the intuition provided by the Rindler-
wedge picture often used to derive and discuss theUnruh effect [31, 32, 38].

4.3. Causal residue contribution
The entanglement harvested by detectors in different regions of parameter space seems to arise fromdistinct
physicalmechanisms. For κ <L 2, the detectors are timelike separated, and real particles can, in principle, be
exchanged. There is a residue contribution toX that is largest for small κL and vanishes when κ >L 2. Due to this
behavior, we hypothesize that the residue contribution in this regionmay arise from causal dynamics (see
sectionA.2).

For detectors on the hyperbolic trajectories shown in the right panel offigure 1, theGaussianwindow
functions cause the detectors to spend a very long time traveling near the speed of light and interactingwith the

8
Recent results, however, bring the naturalness of this picture into question [41].

9
In the case of constant and always-on coupling,Awould diverge, which is why it is common to talk about transition rates in that case, rather

than the total probability of excitation [32].
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underlying field. Although the interaction is veryweak, we conjecture that the long interaction time gives rise to
a nontrivial contribution toX comparable to (or even greater than) the residue-free portion.

Specifically, we hypothesize that thefirst detector’s interactionwith the field for a long time in the infinite
pastmay produce a large effect concentrated near the lightlike past asymptote of thefirst detector’s trajectory
that is felt by the other detector (in the coherence term X) as the second detector crosses the future extension of
that asymptote. (The same effect also happens from the second to the first detector.) Similarly, the second
detector will spend a long time near the lightlike future asymptote of its own trajectory, thus amplifying any
effect due to the presence of thefirst detector near the past extension of that asymptote (and vice versa).

The net result of these four (symmetric) processes is a nontrivial contribution to the coherence termX,
which indicates that the detectors ‘feel each other’s presence’ due to the long tails of theGaussian and
overlappingwedges, as shown infigure 4.

4.4. Noncausal residue contribution
Even as the causal residue contribution discussed in section 4.3 vanishes as κ >L 2, a second residue
contribution takes over in that regionwhen, in addition, κσ Ω > π2

2
. Thismeans that there exists a nontrivial

residue contribution for spacelike separated detectors ( κ >L 2) but only for certain choices of the other
parameters. Because the detectors are spacelike separated for the entirety of their trajectories in this case, this
contribution ismoremysterious. There are some clues that we can use to hypothesize about its physical origin,
however.

Themost important clue is that the effect is strongest near κ ≳L 2. This suggests that the detectorsmay be
feeling the effects of entangled Rindlermodes [31, 32, 38]. To understand this reasoning, consider dividing
spacetime into fourwedges (using the usual Rindler prescription [31])whose commonorigin is at

= =x t( 0, 0). If the actual detector trajectories have asymptotes that are close to the boundaries of these origin-
centered Rindler wedges (i.e., κ ≳L 2), then the detectors will be nearly resonant with the Rindlermodes that are
two-mode squeezed (see section 4.2). This effect only increases as κ → +L 2 . However, the fact that it cuts off
sharply as soon as κ <L 2 also suggests that the infinite tailsmay play a role in this effect. Perhaps confinement of
the infinite tails to the left and right origin-centered wedges is required to see the effect. If the detectors are too
close, then the long tails of each detector’s trajectory will leak out into the origin-centered future and past
wedges. This effect would then be traded out for the causal effect described in section 4.3, which is tiny for

κ ≲L 2. Further work is needed to explore the effect of using switching functionswith compact support, but this
requires new calculationalmethods and is beyond the scope of this work.We therefore leave the above as a
working hypothesis. Further justificationmay be found in sectionA.2.

5. Rangefinding

Another interesting feature of the harvesting process is that it depends critically on the distance between the two
detectors. Entanglement harvesting depends on the interplay betweenΩ, L, and κ, andwewill present three
thought experiments for rangefinding (i.e., measuring the distance of closest approach between two anti-parallel
accelerating detectors) using the properties of the harvested entanglement and their dependence on the relevant
parameters. The goal is not to propose viablemethods formeasuring distance but rather to expose the

Figure 3.Behavior of XRe( ), up to an overallmultiplicative factor σΩe( )2
, as a function of deviation δL from the critical distanceLcrit

defined in equation (4.1), with κ = 1

1000
,σ = 1, andΩ = 1250. The overall shape of the curve is robust to changes inΩ, with only the

width changing by amultiplicative factor of order unity. It can be shown that <XRe( ) 0 for all values of δL, except in a small corridor
around δ =L 0 (i.e., centered around Lcrit). Thus, we note that XRe( ) changes sign near the critical distance as the detectors change
from correlated to anti-correlated. This sign change is detectable. See section 5.1.
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relationship between distance and harvested entanglement in the hopes ofmotivating future studies into
practical applications of this phenomenon.

Thefirst of the three techniques (described in section 5.1)makes use of the critical distance described in
section 4.2 and uses the divergence inX to determine the distance between the detectors. The second and third
techniques rely on sudden death and revival of entanglement. Here, ‘death’ and ‘revival’ of entanglement are to
be understood through ensembles of detector configurations constructed such that they form a path in
parameter space alongwhich the entanglement between such detectors exhibits extremely rapid changes.We are
not referring to death and revival of entanglement with respect to time evolution. This distinction is emphasized
in section 5.2.Wewill describe amethod for using sudden death of entanglement as a signal for crossing a
specific distance, and amethod of using steep gradients in the negativity (revival of entanglement) to give precise
information about changes in distance.

5.1. Coherence corridor
Having found the critical distance in equation (4.1), we explore the properties of the harvested entanglement
nearLcrit.Wewill study the dependence of XRe ( )on L. For convenience, we define

δ = −L L L (5.1)crit

to be the distance away from the critical value. Figure 3 shows XRe ( ) as a function ofδL for κ = 0.001,σ = 1,
andΩ = 1250 (i.e., κσ Ω = 1.252 ). These parameter values were chosen to lie in a region of parameter space in
which residue contributions toX are negligible; specifically, we choose κσ Ω< < π1.2 2

2
and κ< <L1.1 2. In

this region of parameter spaceX is heavily dominated by the residue-free contribution (i.e., the residue terms are
negligible), and the shape of XRe ( ) is generic for other values ofΩ.

Through explicit numerical evaluationwefind that the coherence term,X,flips sign in a narrow corridor
around =L Lcrit. (Interestingly, the saddle-point approximation of equation (2.24)misses this behavior.) This
signflip is detectable by performing localmeasurements on the detectors and collecting statistics. To see how
this is possible, consider the bipartite state of the two-detector system in the basis defined by the tensor product
of their respective ground andfirst excited states, up to second order in the detector coupling. The densitymatrix
is of the form

ρ =
−

− − −

C X
A B
B A

X A C

0 0 *
0 * 0
0 0

0 0 1 2

. (5.2)ab

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

Figure 4. Interpretation of the residue contribution from causally connected detectors ( κ <L 2).While the analytic formof the
Gaussianwas essential for calculating the coherence term,X, the infinite tails give rise to very long-time interactions with fieldmodes
(shown in green)while the detector is traveling near the speed of light. Effects due to interaction between thefirst detector and thefield
over a long period in the infinite past can build up and be felt by the second detector infinite time as it crosses the lightlike extension of
the first detector’s past asymptote (and vice versa). Similarly, small fluctuations caused by short-time interaction from thefirst
detector can be amplified through long interactions in the infinite future of the second detector (and vice versa).We hypothesize that
these effects together give rise to the nontrivial contribution toX discussed in section 4.3 and shownon the left side offigure 2 (right).
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Bymeasuringσ σ⊗x x orσ σ⊗y y, we have that

σ σ⊗ = − +X B2 Re ( ) 2 Re ( ), (5.3)x x

σ σ〈 ⊗ 〉 = +X B2 Re ( ) 2 Re ( ). (5.4)y y

Therefore,

σ σ σ σ= 〈 ⊗ 〉 − ⊗X4 Re ( ) . (5.5)y y x x

Operationally, thismeans that we canmakemeasurements of eitherσ σ⊗x x orσ σ⊗y y and send the results
of themeasurements, alongwith a timestamp and information about the choice ofmeasurement, back to a
neutral third party at x=0. If the third party finds that themeasurements weremade in the same basis, then the
results of themeasurements are kept.With access to an ensemble of detectors andmeasurements, one can
collect statistics of the outcomes of themeasurements for comparison. Using this scheme, it is possible to use
entanglement tomeasure distance between the detectors. It is in this sense thatwe say information about the
distance between the detectors is stored nonlocally in the phase of the joint state.

Suppose for amoment that we had access to such an ensemble of detectors with κσ Ω< < π1.2 2
2
, andwe

performed themeasurements described above. In this case, XRe ( ) can only be positive when L is close toLcrit

(i.e.,δ ≃L 0). As such, ameasurement outcome of >XRe( ) 0 necessarily implies that the detectorsmust have
been separated byLcrit up to δL( ).

5.2. Sudden death of entanglement and a relation to distance
The negativity contours (figure 2(Right)) for anti-parallel acceleration show a narrow region for large κσ Ω2

where the negativity is zero.We have affectionately dubbed this oddly shaped region the ‘necktie’, for obvious
reasons. Just to the right of the necktie (e.g., κ ≳L 2 and κσ Ω ≳ 2.42 ) the negativity suddenly drops to zero aswe
cross κ =L 2 from the right. This sudden death of entanglement (in parameter space) is curious in its own right
and has been discovered in a number of other systems [42–44]. In addition, we can use this phenomenon for
rangefinding by identifying the presence or absense of entanglement as a signal for crossing a particular distance.

To see how entanglement sudden death can be used for rangefinding, we shall construct a simple toy
protocol that uses entanglement as a trigger for signalling that a particular distance ( κ= −L 2 1) has been crossed.
For the remainder of this section, wewill always require κσ Ω ≳ 2.42 in order to focus on the necktie.

Consider two sets of detectors separated by κ δ= ±−L 2 1 for δ< ≪0 1. The detectors separated by
κ δ= +−L 2 1 will be able to harvest entanglement andwill evolve into an entangled state, whereas the detectors

separated by κ δ= −−L 2 1 will not be able to harvest any entanglement andwill remain in a separable state.
Using an ensemble of detectors with varying L, it is possible to use entanglement to identify those detectors lying
on either side of the κ =L 2 boundary. This identificationmarks the desired κ= −L 2 1distance. In order to verify
that the detectors have evolved into an entangled state, it suffices to show violation of a Bell inequality, which can
always be done iff the state is entangled (with sufficient extra resources) [12].

5.3. Negativity gradient
In addition to the sudden death of entanglement, there is another feature of the necktie region that we can use for
rangefinding. To reiterate an earlier point, our aimhere is simply to highlight the relationship between
entanglement and distance. Fromfigure 2(Right), we see that the negativity has a steep gradient in the region just
to the left of the necktie. In this region, the negativity changes rapidly over very small changes in distance L. As
such, the amount of entanglement harvested in this region of parameter space is highly sensitive to the distance
between the detectors; very small changes in the separation distance Lmanifest as (proportionally) large changes
in the negativity.We can use this feature to determine changes in distance very precisely bymeasuring relatively
coarse changes in the entanglement.

Tomake this argument precise, supposewe have two pairs of detectors with a given acceleration κ and energy
gapΩ. Suppose further that the pairs are both separated by a knowndistance at closest approach L. If the
separation between one pair of detectors is perturbed slightly, the negativity for that pair will be vastly different
from the negativity of the unperturbed, reference pair. If wemeasureA andX for the two pairs of detectors (the
latter through coincidencemeasurements as in equation (5.5)) and compare them,we canmap the change in
negativity to a change in distance. The steep negativity gradient allows even relatively imprecise knowledge of the
negativities to correspond to fairly precise values of distance. Note that this technique does not allow us to
measure arbitrary absolute distances, but rather fluctuations in distance around some target value.

5.4. Caveat
Obviously,muchmore practicalmethods exist tomeasure distance between objects. Furthermore, the amount

of entanglement harvested using thesemethods is extremely small due to theGaussian prefactor σΩ−e ( )2
, so even

12

New J. Phys. 17 (2015) 035001 G Salton et al



the proportionally large changes in entanglement predicted in, e.g., section 5.3 are between values that are
exceedingly small.

As such, wewould like to remind the reader that the purpose of this section is simply to outline several
thought experiments to show—in principle—how the particular correlations in the harvested entanglement
reveal details about the distance between the traveling detectors.We expect that this effect—of the harvested
entanglement showing a critical dependence on distance—is generic andwill eventually lead to realistic
proposals for rangefinding using entanglement harvesting. One example of such a proposal is [45], whichwas
motivated directly by the results reported here.

6. Summary

Entanglement harvesting is the process of swapping entanglement out of a quantumfield and into twoUnruh–
DeWitt detectors using local interactions with the field.Herewe studied the entanglement harvested by
uniformly accelerating detectors on various trajectories. For detectors accelerating in opposite directions, we
broke away from the usual approach applied to Rindler observers, wherein the observers have commensurate
Rindler wedgesmeeting at the origin and have a distance at closest approach that is set by their acceleration
parameter ( κ= −L 2 1).We instead allowed the detectors an arbitraryminimum separation—amore physically
meaningful approach to the problem.While the usual approach is wellmotivated by the fact that theMinkowski
vacuumcorresponds to a two-mode squeezed state of Rindlermodes (which are the naturalmodes detected by
observers with κ= −L 2 1), resonant interactionwith thesemodes is neither necessary nor sufficient for
entanglement harvesting. Instead, we found a relationship between the distance L and energy gapΩ such that the
detectors display a resonant spike in the harvested entanglement, just as theywould at κ= −L 2 1 and
κσ Ω π= 2.2 This resonance defines a critical distance at which theWightman function in equation (2.21)
diverges.

An additional benefit of promoting L to a free parameter is the emergence of an enhancement over inertial
motion in entanglement harvesting. A variable L opens up a previously inaccessible region of parameter space in
which entanglement harvesting is possible. This enahancement is a feature of the nonrelativisticmotion and
persists for small κ. However, in order to observe this effect with small accelerations wewould need very large
distances  κ∼ −L (4 )1 .

In order to compute the coherence termX, we exploited properties of thewindow functions governing the
detector–field interaction.We chose analytic window functions (Gaussian, to be precise) so that we could split
our calculation into a residue-free portion and residue terms. The residue-free contribution is robust to changes
in thewindow functions, while the residue contributions are conjectured to be related to the infiniteGaussian
tails.We found twomajor residue contributions to the coherence term: one arising from apparently causal
dynamics and another from apparently noncausal dynamics. The noncausal residue contribution arises
whenever the detectors lie in completely disjoint Rindler wedges so that no null or time-like communication
could ever occur. In this case, we found a large residue contribution, andwe hypothesized about its origin.We
also described the causal residue contribution forwhich the Rindler wedges of the two detectors have some
overlap and communication could occur.We leave for futurework an analysis of these contributions with
compact window functions (see sectionA.3).

In order to emphasize the relationship between harvested entanglement and distance, we presented three
techniques for rangefinding using the aforementioned properties of harvested entanglement fromdetectors
accelerating in opposite directions at the same rate. Thefirst rangefinding technique relies on the unique shape
of the coherence term (i.e., the resonance) near the critical distance. In a narrow range of Lnear the critical
distance the residue-free portion of XRe ( )undergoes an observable sign change fromnegative to positive.We
presented a simple LOCCprotocol for detecting this signflip and using the detection as amethod ofmeasuring
distance. A second rangefinding techniquemakes use of the sudden death of entanglement for κσ Ω ≳ 2.42 by
using the death of entanglement to trigger on a particular distance. Since the negativity drops suddenly to zero at
a specific distance ( κ= −L 2 1), the presence or absence of entanglement on either side of this boundary identifies
the transition distance. Finally, the third rangefinding techniquewe presented serves as ameans for sensitively
detecting fluctuations in distance around a known reference value. Using a sharp gradient in negativity over
short distances, large deviations in negativity away from a known valuemap to very small deviations in distance
away from the reference.With a reliablemethod ofmeasuring entanglement, this technique could be used as a
seismometer or formaintaining precise distance control. This possibility hasmotivated a recent proposal in such
a direction [45].

In addition to anti-parallel acceleration, we studied entanglement harvesting fromdetectors accelerating in
the same direction at the same rate.We found a familiar degradation of entanglement for these detectors, andwe
showed that the degradation is identical to that between two comoving detectors in de Sitter space, yet different
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from that of inertial detectors in a thermal bath [15]. For parallel acceleration, we found no residue
contributions to the coherence term. As such, we expect our results in this case to hold if we change thewindow
functions to have compact support.

Entanglement harvesting is highly dependent onfield and detector parameters [4, 15, 17, 18, 34].Herewe
have demonstrated that antiparallel acceleration produces surprisingly rich results not seen in other
correspondingly simple cases. Still, many questions remain. For instance, previous work has shown that a
minimally coupledfield produces a very different result than conformal coupling in an expanding scenario
[17, 18]. Interesting extensions therefore include entanglement harvesting withmassive fields, higher-spin
fields, and other states of thefield—e.g., the Bunch–Davies vacuum [46], which has important applications in
cosmology.We hope thework presented here inspires further studies in this direction.
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Appendix: Complex integration

In order to evaluate the integrals in equations (2.4) and (2.7), we shift the contour of integration and use
Cauchy’s residue theorem. Focusing onA for amoment, we are interested in an integral of the form

∫ ∫η
= Ω

−∞

∞ −
−∞

∞ − −
σ σA x D y y

2
e d e e ( )d , (A.1)y0

2
i

detect
x y2

4 2

2

4 2

for overall coupling constant η ≪ 10 . Sincewe are comparing this quantity with an analogous quantity (X), we

are free to eliminate a common factor of σΩ−e ( )2
without affecting the entanglement criterion.Multiplying

through and performing the x integral leaves

∫η π σ=σΩ Ω σ Ω
−∞

∞ − − +
σA D y ye e e ( )d . (A.2)y( )

0
2 i

detect
y2 2

4 2
2 2

This completes the square in the exponential, giving

∫η π σ=σΩ
−∞

∞ −
σ Ω

σ

+( )
A D y ye e ( )d , (A.3)( )

0
2

detect

y
2

2i 2 2

4 2

which is aGaussian integral with a complexmean. To remove this complexmean, we shift the contour down in
the complex plane by an amount σ Ω2i 2 .We then define a new variable σ Ω′ = +y y 2i 2 and subsequently drop
the prime. The change of variables removes the complexmean from the exponential and gives us afinal integral
of the form

∫ ∑η π σ σ Ω π= − −σΩ
−∞

∞ −
σ ( )A D y ye e 2i d 2 i (residues). (A.4)( )

0
2

detect
2

poles

y2 2

4 2

Sincewe shifted the contour of integration, residue contributions potentially appear, which are noted explicitly
in equation (A.4). Sincewe have shifted it downward in the complex plane, the new contourwould include tiny
clockwise circles around any poles, which accounts for the− sign in front of the residue contributions.

The pole structure of the integrand is shown infigure A1. Since the exponential is entire, the poles come
fromDdetect, andwefind that they occur at ϵ= − +π

κy n ipole
2 i for ∈ =n . Sincewe only shift the contour by

σ Ω2i 2 , we never cross any poles if we limit κσ Ω π<2 , and thus the residue contribution vanishes.We therefore
restrict our analysis to this case for simplicity.We then evaluate the integral using themethod of steepest descent,

as in equation (2.20). For parallel acceleration, a similarmethodworks for evaluating σΩ Xe ( )2
using

equation (2.21).
In contrast to parallel acceleration, anti-parallel acceleration does give rise to poles that are crossedwhen

shifting the contour of integration. The result forAdoes not change from the above, but extra caremust be given
to the calculation ofX.
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Webegin bymultiplyingX by σΩe ( )2
, which completes the square in the exponent of the integrand:

∫ ∫η= −σΩ ∞

−∞

∞ −
σ Ω

σ

+ −( )
X y x D x ye d d e ( , ). (A.5)( )

0
2

0
)(

y x
2

2 2i 2 2

4 2

Wenow shift the contour of integration up in the complex plane by σ Ω2i 2 , define σ Ω′ = −x x 2i 2 , and drop the
prime. The full integral is then

∫ ∫ ∑η σ Ω π= − + +σΩ ∞

−∞

∞ −
σ
+ ( )X y x D x ye d d e 2i , 2 i (residue integrals), (A.6)( )

0
2

0
)(

2

poles

x y2 2 2

4 2

where the residue terms are integrals over y.We evaluate the residue-free portion of the integral using the
method of steepest descent, as with the parallel case. The residues require somework, and their evaluation is
described next.

A.1. Residue integral evaluation (anti-parallel case)
Wemust consider residue contributions wheneverD x y( , ))( diverges for complex x, which occurs iff

κ ϵ κ− ± + =± κ L x
e

2
1 i cosh

2
0. (A.7)

y
2 ⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

This is actually two conditions, one corresponding to the top sign (+) and one to the bottom sign (−). Only one
condition can be satisfied at a time, so the poles are always simple. Defining = − κb : 1 L

2
, we can solve this

equation formally for x tofind the pole locations as a function of y (sincewemust integrate over y later):

κ ϵ= ∓± ± κ( )x y b( )
2

arccosh e i . (A.8)pole
y
2

Note that this function ismultivalued by virtue of themultivalued nature of the complexarccosh. The relevant
pole locations are those for which σ Ω< <±x0 Im 2pole

2 (recall that the integration contour for xwas shifted
upward).

To understand the structure of the pole locations, wewill take the real and imaginary parts of equation (A.7)
separately.Writing = +x x xir i, we obtain the following necessary and sufficient condition for a pole:

κ
ϵ=

+
±± κ ( )

b
x x

e cosh
i

2
i . (A.9)

r iy
2

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

Figure A1.The pole structure ofDDetect showing the shifted contour of integration. If we restrict κσ Ω π<2 , we never cross any poles
in the evaluation of σΩ Ae ( )2

, and there are no additional residue termsThe resulting integral can be computed using themethod of
steepest descent. Note that the pole locations shown in the plot should be interpreted as being raised slightly by ϵ+i .
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Taking the imaginary part eliminates b and y (since ywill be integrated along the real axis), giving

κ κ ϵ= ±x x
0 sin

2
sinh

2
. (A.10)i r⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

The solutions to this condition for the + sign are plotted infigure A2 ; the solutions for the− sign are just the left-
rightmirror image of this. Polesmust also satisfy the condition resulting from the real part, namely

κ κ=± κ
b

x x
e cos

2
cosh

2
. (A.11)i ry

2 ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

The only poles we care about require, in addition, that σ Ω<x 2i
2 , which translates to

κσ Ω>κcos ( ) cos ( )x

2
2i sincewe are only considering the case where κσ Ω π<2 . Examining equation (A.10) or

figure A2, we see that the poles in question always ‘hug’ either the real or imaginary axis. Thismeans that if
>x 0i then = ∓x 0r .We can use these facts and equation (A.11) towrite the following necessary and sufficient

condition for inclusion of a pole in the residue contribution:

κσ Ω>± κ ( )be cos . (A.12)2y
2

By lifting the contour upward, we deform it to include tiny counterclockwise circles around the poles.
Therefore, the contribution labeled ‘residue integrals’ in equation (A.6), which consists of residues integrated
over y, is addedwith a + sign. In particular

∫∑ ∑π π Θ κσ Ω= −
∈ + −

∞ κ ( )y b R y2 i
residue
integrals

2 i d e cos ( ), (A.13)
s

s
s

poles { , }
0

2y
2

⎛
⎝⎜

⎞
⎠⎟

⎡⎣ ⎤⎦

whereΘ x( ) is theHeaviside step function, which is used to enforce the pole inclusion condition,
equation (A.12), andRs(y) is the residue of the integrand in equation (A.6). Explicitly,

η

η

= −

= −

± = −

− =

σ Ω

σ

σ Ω

σ

±
+ −

+ ± −
±

( )

( )
R y D x y

D x y

( ) : Res e ( , )

e Res ( , ), (A.14)

x x y

x x y

( ) 0
2

)(

0
2

( ) )(

y x

y x

pole

2 2i 2 2

4 2

2
pole 2i 2

2

4 2
pole

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

wherewe now force thearccosh in equation (A.8) to produce a unique answer by restricting its range to have
imaginary part π∈(0, ) (with the endpoints of this interval excluded since ϵ > 0), and the second line follows
because the exponential is an entire function and the poles are all simple. It will be useful to define two new
variables in terms of y:

Figure A2. Illustration of the pole structure ofD)(, alongwith the up-shifted contour of integration (blue arrow). The collection of
horseshoe-shaped red curves is the solution to equation (A.10) using the + sign. (Solution curves for the− sign are just the left-right
mirror image of these.)Within this solution set, dependence of the pole locations on L (through b) and on y is obtained by also solving
equation (A.11). Since we integrate over y infindingX, the location of the polesmoves along the red lines shown above. Restricting
κσ Ω π<2 ensures that we only have toworry about poles on the L-shaped thick red line between the up-shifted contour and the real-x
axis. Note that the ϵ prescription is responsible for shifting the poles infinitesimally off the real and imaginary axes as shown.
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θ ϵ θ π= ∓ ∈± ± ±
κ( )y b( ): arccosh e i , Im (0, ), (A.15)

y
2

where the restriction on the range ofarccosh ensures that these functions are single valued. In these variables

κ
π

κ θ κ θ= − −−
−

+
−

D
x x

16
cosh

2
cosh cosh

2
cosh . (A.16))(
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⎛
⎝

⎞
⎠

⎤
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⎛
⎝

⎞
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⎤
⎦⎥

The pole condition, equation (A.7), becomes simply

κ θ=±
±x y y( )

2
( ). (A.17)pole

Using this and the usual formula for the residue of a simple pole, we can evaluate

κ
π

θ
θ θ= −=

±

∓ ±
± DRes

8

csch

cosh cosh
. (A.18)x x y( ) )( 2pole

Having served its purpose, we now let ϵ → +0 for the rest of the evaluation.
To perform the integral over y, we change variables toθ± as appropriate, alongwith

κ θ θ= ± ± ±yd
2

tanh d , (A.19)

κ
θ= ± ±

y
b

2
log

cosh
. (A.20)

⎛
⎝⎜

⎞
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This allows us to rewrite the y-integral in equation (A.13) as

∫

∫

κ θ θ Θ θ κσ Ω η

θ θ κσ Ω

κ σ
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A few things areworth noting here. First, while the limits of the integral are specified, the contour of integration
is not a straight line. Instead it is some subset of a horseshoe-like curve similar to the one just above the real-x axis
infigure A2.Wewill specify this shortly. Second, while we startedwith the change of variablesθ y( )s being
dependent on ∈ + −s { , }, by virtue ofθs being promoted to an integration variable, it loses its s dependence in
that role (since any name for the integration variable will do), and sowe rename it to just θ in the second line.
(Notice that the dependence onθ−s has been eliminated since θ θ =− bcosh coshs s

2.) The original integral itself is
s dependent, however, and this fact survives through the s-dependent contour of integration and the presence of
an explicit s in the integrand.

Wewill now specify the contour of integration. Plugging this integral back into equation (A.13) gives

∫∑ ∑π θ Θ θ κσ Ω θ= −
θ

θ

∈ + −

∞
( )s I2 i

residue
integrals

d cosh cos ( ), (A.22)
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The integration contour is not just a straight line. Nevertheless, we start with the endpoints of integration, which
evaluate to

θ π Θ∞ = −∞ + −+ b( ) i [ ], (A.24)

θ =+ b(0) arccosh( ), (A.25)

θ π∞ =− ( )
i

2
, (A.26)

θ =− b(0) arccosh( ), (A.27)
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Since ⩾y 0 and <b 1, the ranges ofθ± y( ) are respectively horseshoe- and L-shaped:

∪ ∪θ π π π∈ −∞ −∞ ++ ( , 0] (0, i ) [i , i ), (A.28)

∪θ π π π∈ ∞ +− (0, i ) [i , i ). (A.29)

TheHeaviside step function restricts these further, however, by requiring θ κσ Ω>±cosh cos ( )2 . Under this
condition, the respective ranges become

∪θ κσ Ω∈ −∞+ ( )( , 0] 0, i , (A.30)2

θ κσ Ω∈− ( )0, i . (A.31)2

Note that these rangeswill often be further restricted by the value of b, leavingθ± y( ) to explore only a subset
thereof for all ⩾y 0. The union of these total ranges (which accounts for any <b 1) is shown as the thick L-
shaped line between the raised integration contour and the real-x axis infigure A2.Using all this information,
alongwith careful algebra, we can rewrite equation (A.13) as

∫

∫ ∫
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The limits of integration provide two natural cases to consider: >b 0 and <b 0, which correspond to partially
causal (section 4.3) andwholly noncausal (section 4.4) detectors, respectively. The integral for <b 0 vanishes
when κσ Ω < π2

2
and otherwise is afinite integral along the imaginary-θ axis. For >b 0, the integral is an L-

shaped contour integral along the positive imaginary-θ axis down to 0, then left along the negative real-θ axis
from0 to−∞.

For the second case ( >b 0)—inwhich thewedges defined by the detector trajectories overlap—the residue
contribution can be calculated by directly applying themethod of steepest descent to the contour integral, where
the required saddle point is found numerically.We verified the validity of this approximation by comparing it to
the result of numerically integrating along amodified contour thatwinds through the peaks and valleys in the
complex-θ plane, passing through the saddle point.

For thefirst case ( <b 0)—spacelike separated detectors—the saddle point approximation succeeds (by the
same test described above) when the imaginary part of the saddle point location is κσ Ω< 2 , but it fails otherwise.
In the cases where it fails, we simply performnumerical integration to obtain the residue contribution.

Combining the two residue contributions with the residue-free portion yields the complete coherence term,
X, by using equation (A.32) in equation (A.6).

A.2. Interpretation of residue contributions
The second case in equation (A.32) ( >b 0) implies κ< −L 2 1, which corresponds to detector trajectories that are
not fully causally separated—their respective Rindler wedges overlap. This case was discussed in section 4.3,
wherein it was asserted that this contribution is due to the infinite tails of theGaussian building up interactions
along a light-like asymptote, which are eventually felt by the other detector (see figure 4.4). This interpretation of
the contribution is associatedwith the real part of the contour (from 0 to−∞), since >b 0 and → ∞y implies
θ → −∞+ . Thus, the part of the contour running along the real-x axis is associatedwith points along the two
trajectories that are far separated in proper time, as is the case infigure 4. These real-valued pole locations
translate (via equation (2.10)) to real values of τ and τ′ such that the corresponding points on the detector
trajectories are null separated.

Thefirst case ( <b 0) in equation (A.32) implies κ> −L 2 1, which corresponds to detector trajectories that
are causally disjoint (since their Rindler wedges have no intersection). This is the noncausal contribution
discussed in section 4.4. In this case, the pole locations are imaginary and correspond to points on the detector
trajectories with τ τ= − ′Re ( ) Re ( ). However, τ and τ′ are both shifted in the imaginary direction by the same
amount.

A.3. Compactwindow functions
In sections 4 and 5we described a number of features of entanglement harvesting using anti-parallel
acceleration.We discovered these features while carrying out the calculation of the negativity for anti-parallel
detector systems. Thefirst two effects, enhancement over inertial detectors (section 4.1) and entanglement
resonance (section 4.2), arise in the residue-free part of the calculation. The second two features are causal
(section 4.3) and noncausal (section 4.4) effects due to contributions from the residue terms.However, by
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choosing to use an analytic window function, wewere afforded the ability to split the calculation into a residue-
free contribution and a contribution from residue terms. This ability is amathematical artifact of our choice of
analytic window function. This choice allows us to avoid direct numerical integration of highly oscillatory
integrals, which proved to be excessively time consuming andwas thus used only in limited circumstances (e.g.,
the entanglement resonance discussed in section 4.2). Throughout sections 4 and 5wemake conjectures about
changes in the negativity if we had usedwindow functions that smoothly cut off to zero (see, e.g., [47]). Such a
compactly supported function, while smooth, cannot be analytic. Therefore, testing these conjectures would
require completely different techniques, andwe leave them to futurework.
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