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Abstract

We study entanglement harvested from a quantum field through local interaction with Unruh—-DeWitt
detectors undergoing linear acceleration. The interactions allow entanglement to be swapped locally
from the field to the detectors. We find an enhancement in the entanglement harvesting by two detec-
tors with anti-parallel acceleration over those with inertial motion. This enhancement is characterized
by the presence of entanglement between two detectors that would otherwise maintain a separable state
in the absence of relativistic motion (with the same distance of closest approach in both cases). We also
find that entanglement harvesting is degraded for two detectors undergoing parallel acceleration in the
same way as for two static, comoving detectors in a de Sitter universe. This degradation is known to be
different from that of two inertial detectors in a thermal bath. We comment on the physical origin of the
harvested entanglement and present three methods for determining distance between two detectors
using properties of the harvested entanglement. Information about the separation is stored nonlocally in
the joint state of the accelerated detectors after the interaction; a single detector alone contains none. We
also find an example of entanglement sudden death exhibited in parameter space.

1. Introduction

The ground state of a system of coupled harmonic oscillators is the unique state with zero excitations in any
normal mode of the system. With respect to these global modes, the ground state is unentangled (separable) [1].
We can equally well describe the same state in the tensor-product basis of number states of each individual
oscillator. With respect to these local modes, the ground state of the system is entangled (unless the coupling is
everywhere zero). This property is generic: the same state may be considered either separable or entangled
depending on the tensor-product structure we choose for the state space, with operational locality often
determining the proper choice if we wish to use the entanglement as a physical resource [2].

Itis in this sense that we say that the vacuum of a free quantum field in Minkowski spacetime is entangled
with respect to the state space of local observables [3], even though it is separable with respect to Minkowski
plane-wave modes, with zero particles in every mode. This fact is borne out operationally by the ability to swap
this entanglement to local quantum systems (‘detectors’) through local interactions [4]. Local hidden-variable
models cannot account for the long-distance correlations due to this entanglement [4, 5], which decrease ata
rate slower thanexp [—(L/cT)?], where L is the separation and T'the duration of the detector—field coupling.
Other types of vacuum correlations, such as true multi-region entanglement [6] and full nonlocality [7, 8], are
also possible. Time-like separated detectors can also swap entanglement from the vacuum of a massless field [9],
even though the field has lightlike excitations. Superconducting circuits or quantum optical settings may soon
admit experimental realizations of these phenomena [10, 11].

Since entanglement is a phenomenon that is uniquely quantum mechanical in nature [1, 12] and can be
considered both an information-theoretic and a physical resource [13], we call this swapping process

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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entanglement harvesting to connote the reaping of a naturally-occurring and useful resource from a quantum
field”. Just as factors like sunlight, water, and nutrients affect the crops harvested from a field on a farm,
entanglement harvested from a quantum field is affected by spacetime curvature [15], temperature [15, 16], and
the type of field used [17, 18]. Also, just as in the farming case, the tools used for the harvesting—in this case, the
detectors’ state of motion [19] and local coupling [4]—also affect the amount and type of entanglement
obtained. This harvesting can also be repeated, resulting in what is now known as entanglement farming [20], in
which successive pairs of unentangled particles sent through a suitably prepared cavity will reliably emerge
significantly entangled.

The phenomenon of entanglement harvesting will necessarily involve a combination of relativistic and
quantum effects. Conceptually important qualitative differences emerge when relativistic effects are included in
studies of quantum information [21]. For example, entanglement was found to be an observer-dependent
property that is degraded from the perspective of accelerated observers moving in flat spacetime [22-25].
Entanglement between modes of either bosonic or fermionic fields are degraded from the perspective of
observers moving in uniform acceleration. These effects are present in both black hole spacetimes [26] and in
cosmological scenarios [14, 15,27, 28].

A common approach employed in many of these studies is the single-mode approximation. This
approximation attempts to relate a single-frequency Minkowski mode (observed by inertial observers) with a
single frequency Rindler mode (observed by uniformly accelerated observers). This approximation does not
hold for general states but only for a specific kind of Unruh mode [29].

Here we study entanglement between two hypothetical, uniformly accelerated, quantum particle detectors.
We use the terms ‘detectors’ and ‘observers’ interchangeably. The detectors live in (3+1)-dimensional
Minkowski spacetime, within which exists a quantum field in the Minkowski vacuum state |0). We work with a
massless scalar field for simplicity. The detectors’ accelerated trajectories give rise to Unruh radiation [30, 31]
with a well known thermal profile corresponding to a temperature

K

a Zﬂ'kB ’

(1.1)

where k is the magnitude of the acceleration, kg is Boltzmann’s constant, and we work in natural units with

¢ = /2 = 1. Wefind that for two detectors undergoing parallel acceleration, entanglement harvesting is degraded
in exactly the same way as for two static, comoving detectors in a de Sitter Universe (with a conformally coupled
field [32]), but distinct from that of two inertial detectors in a thermal bath, as previously shown in [15].
Somewhat more remarkably, we find an enhancement of entanglement harvesting by two detectors with anti-
parallel acceleration, characterized by the presence of entanglement between two detectors that would otherwise
maintain a separable state in the absence of relativistic motion.

2. Analysis

2.1. Detector—field interaction

The details of the setup closely follow [ 15] with any modifications clearly described. The background field is a
massless scalar field in (3 + 1)-dimensional Minkowski spacetime [32], initially in the Minkowski vacuum state.
When comparing to the results of an expanding Universe [15], we will assume conformal coupling [32] because
minimal coupling has a very different effect [17, 18], but both are identical for Minkowski spacetime (with Ricci
scalar R=0). We consider two local detectors (defined below), labeled a and b, on the following spacetime
trajectories:

x) = (ts x4), xf' = (ty, xp),
ta=1t,(7), ty =ty (7)),
Xq = Xg (T)r Xp = Xp (Tl)a (21)

where b claims the prime, 7and z’ are the proper times for observers a and b, respectively, and x; is the spatial
trajectory of observer i. The 4-vector index y is henceforth dropped.

We model the detectors as point-like, two-level quantum systems with an energy gap £2, each of which
interacts with the field via an Unruh—DeWitt interaction [31, 33], whose interaction-picture Hamiltonian is

Hi(7) = n(2) ¢ [x(2)]6x (7). (2.2)

” The term ‘entanglement harvesting’ was coined by one of us (NCM) in early 2012. Its first public use was in a talk by another of us (GS) at
the relativistic quantum information conference at Perimeter Institute in June 2012, which reported on the initial results of this project. Its
first use in printisin a 2012 review article [14] by Eduardo Martin-Martinez and NCM.
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Heren (7) is a window function (i.e., time-dependent coupling strength) that governs the interaction with the
ambient scalar field, x (7) is either of the 4-vectors x,, or x;, ¢> [x (7) ] is the interaction-picture field amplitude at
spacetime point x, and 6, (z) is the interaction-picture Pauli-x operator for the two-level system. The detectors
areidentical aside from their trajectories, and we formally delay readout (i.e., projective measurement) of the
detectors indefinitely because we wish to analyze the quantum features of the resulting state of the detectors. The
detectors start in their respective ground states (|g) ® |g)), so if the interaction events are sufficiently far
separated, then any entanglement appearing in the final state of the detectors must have been harvested from the
field through the local interactions.

We choose 7 at all times to be very small (i.e.,0 < 5 (r) <« 1), with nontrivial support only over a small range
in 7 (as compared to the light-crossing time between them). This choice gives a short, weak interaction with the
field. Its shortness enforces spacelike separation of the detection events, and its weakness allows us to treat these
interactions perturbatively.

For calculational simplicity, we take 77 (7) to be a Gaussian with variance 6%

TZ
n(r) =n, ew(—;), (2.3)

withe < Land0 < 5, < 1. Note that this function is analytic and therefore cannot be strictly compactin z.
This means that, in general, the detection events are only approximately spacelike separated. Analyticity of the
Gaussian will allow us to evaluate integrals using complex analysis, but the fact that it has vanishing but nonzero
support forr — +oo will have interesting consequences that we will explore later on.

2.2. Single detector response
The fact that the field is in the (Minkowski) vacuum does not necessarily imply that a detector will fail to
become excited when interacting with it [14, 32]. This is due to counter-rotating terms (such as 6_a and 6,4")
in the expansion of equation (2.2). In fact, most window functions and trajectories will produce a nonzero
response (excitation probability) in an Unruh—DeWitt detector due to the presence of these terms. Their
contribution—and thus the probability of excitation—will tend to 0, however, when the energy gap and
coupling strength (during detection) are constant, the trajectory is inertial, and the detection time tends to
infinity [32].

In general, then, each detector (initially in the ground state) is prone to excitation through its traveling
interaction with the field. To lowest nontrivial order (i.e., second order) in the detector coupling strength 7, the
probability A that exactly one of the detectors will be excited is given by [32]

A= /_: dr /_: dr/n(r)ﬂ(f/)e_m(T_T,)DJr(x“(T); Xa (T/))’ s

where Q is the detector energy gap, and D*(x; x') = (¢ (x) ¢ (x) ) is the Wightman function for the field 43,
which, for the case of the Minkowski vacuum, is given by equation (3.59) of [32]:

roon) -1
D*(x4(2); x4 (7)) = i P — | (2.5)

Note that, due to symmetry, we could equally well make the trajectory substitution x, (- ) — x; (- )and get the
same value for A. Also note that all quantities are evaluated withe — 0% at the end.

2.3. Quantifying the harvested entanglement
To quantify the harvested entanglement, we follow the standard procedure first proposed by Reznik [34] and
used also by later authors [4, 15, 17, 18]: we calculate the elements of the reduced density matrix of the detectors
and then use the partial transpose criterion [35], which is necessary and sufficient for two qubits [36], to detect
the presence or absence of entanglement after interaction with the field.

Asin previous work [4, 15,17, 18, 34], the partial transpose criterion for our setup reduces to a simple
comparison between two quantities. Entanglement exists between the detectors if and only if (iff)

IX| > A, (2.6)

where A is defined in equation (2.4), and X can be interpreted as an amplitude for (virtual) particle exchange
between the detectors (to second order in, ):

X=- /_D; dr/_; dr’n(f)n(f')ei.a(rw’)[D+(xa (7); xp (T')) + D+(xb (7); x4 (T’))], (2.7)
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where the Wightman functions are taken with respect to the two trajectories x, and x;, (cf equation (2.4), which
only involves one trajectory at a time), and £2 is the energy gap of the detector. The amount of entanglement
harvested can be quantified by the negativity [37] of the final state of the detectors, which in this case is simply

N = max {|X| — A, 0}. (2.8)

A two-qubit state has nonzero negativity iff it is entangled [36].

Entanglement is therefore seen as a competition between the probability of actual detector excitation (A)
and the magnitude of an off-diagonal term in the density matrix representing the amplitude for particle
exchange (X) [4]. When the detection events are entirely spacelike separated, the exchange term can only be
interpreted as swapping preexisting entanglement out of the field and into the detectors—rather than simply
using the field as a transmission medium by which to exchange real excitations. When the detection events are
only approximately spacelike separated, as is the case for some choices of parameters here (sincen () is
Gaussian), there are additional subtleties, which we address later.

2.4. Accelerating trajectories and comparison with other scenarios

The canonical formalism for studying accelerated observers in Minkowski spacetime [31, 32, 38] involves
defining a Rindler wedge corresponding to an accelerating trajectory and using that wedge to define three
additional wedges that separate Minkowski spacetime into left, right, future, and past regions with lightsheet
boundaries. A key feature of this partitioning is that all four wedges share a common apex. This suggests a natural
set of accelerating trajectories: those hyperbolas that share the bounding lightsheets as asymptotes.

We take a more operational approach to the problem by focusing on the physical objects: two detectors
accelerating uniformly through space. There is no physical reason why the Rindler wedges defined by each
observer should be constrained to meet at the origin, and in fact we argue that this approach is restrictive.
Forcing the wedges to meet at the origin is tantamount to forcing the distance between the detectors at closest
approach, L, to be constrained by the acceleration parameter «: specifically, L = 2x~!. We relax the condition of
wedges with overlapping apexes and study two uniformly accelerated detectors with an arbitrary distance at
closest approach. We also consider both anti-parallel and parallel trajectories, both of which are described by the
following trajectories:

X = l[cosh (kr) — 1] + £,
K 2
xXp == l[cosh (kr) — 1] — £,
K 2
t,=1t,= 1 sinh (x7), (2.9)
K

where symmetry allows us to set 7" = 7 in equations (2.1), the plus/minus sign in x;, refers to parallel/anti-
parallel trajectories, respectively illustrated in left/right panels of figure 1, and the other spatial coordinates are
taken to be 0. The quantity L represents the distance of closest approach as measured by an inertial observer
alonga trajectory of constant x. For such an observer, the detectors are separated by this minimum distance
whent =t = 0.

In what follows, we will use time variables corresponding to the sum and difference of the two proper times:

1
x: =7+ 7, T=E(x+y),
yi=t—-1, T = %(x—y). (2.10)
Using the trajectories, we define
D, )= 5[ D (% @5 30 () + D (3 (0)s %, (0)) |
=D*(x4(2); (7)), (2.11)

where the second line follows from the symmetry of the trajectories—both for equations (2.9) and for the ones
from [15], which will be used for comparison. Furthermore

Dyereat (7):=D* (x4 (1); x;(2))) (2.12)

or equivalently using x; ( - ) instead. In fact, for the particular trajectories in question, these formulas are all
invariant under the exchange x, (+) < x5 (+).

Using trajectories (2.9), we compute the quantity X from equation (2.7). We find this integral to be very
difficult to compute analytically and to suffer from convergence issues when evaluated using naive numerical

4
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Figure 1. Worldlines of two detectors undergoing parallel (left panel) or anti-parallel (right panel) uniform acceleration of equal
magnitude. The gray diagonal lines indicate the Rindler wedges associated with each trajectory. In contrast to the usual treatment of
the anti-parallel case [31, 32, 38], the wedges do not necessarily share a common apex. Instead, they could be closer (as shown) or
further apart (not shown). The distance of closest approach of the detectors, as measured by an inertial observer at fixed x, is L.

methods. Fortunately, we can calculate the integral by completing the square in the exponential and shifting the
contour of integration to convert the complex Gaussian into a real Gaussian. By making these transformations,
we remove the highly oscillatory prefactor and allow for evaluation of the integral using Cauchy’s residue
theorem. In particular, we obtain

s
2

e X = /oo dx‘/oDo dy e‘%D(x + 2ic?Q2, y) + (residue terms). (2.13)
The inverse-Gaussian prefactor comes from completing the square, and we have shifted the contour of
integration up by 2i6%Q and changed variables (see appendix 6). Shifting the contour of integration will, in
general, cross poles, which give rise to the residue contributions noted explicitly in equation (2.13). The pole
locations are functions of the input parameters L and £2, as well as functions of x and y. As such, computing the
residue contributions proves challenging, and details are presented in appendix 6.

We will evaluate X in several different scenarios. The ones that are the focus of this work are parallel and anti-
parallel acceleration, as shown in figure 1. For the parallel case we use D (x, y) = D(((x, y), with

2 T-1r -1
D= | B e — s sinh(ﬁ) LK et e% sinh(ﬁ) . (2.14)
167%] 2 2)1 L2 2
Similarly, for the anti-parallel case we use D (x, y) = Dy((x, y), with
2 of L T (L -1
Dy = a e_%(—x - 1) — i€ + cosh(ﬁ) e%(—K - 1) + ie + cosh(ﬁ) . (2.15)
16x2 2 2 )] L 2 2

The subscripts on D(and D) are used to visually indicate the respective trajectories in figure 1.

For comparison with known results in the literature [ 15, 18], we will also need the following additional
Wightman functions. The first is for two comoving detectors in de Sitter spacetime with expansion rate x,
separated by constant comoving distance L [18, 32]:

K2 Lk \? K B
Dys = x| —si hz[— —i ] . 2.16
i W{e (%) = sin] £t } 2.16)

A second Wightman function is for two inertial detectors with fixed proper distance L in the case where the field
has been heated to a finite temperature T = (27kp )~ 'k in the rest frame of the detectors [ 18, 39]:

K K . K .
Dy, = el {coth[E(L -y + 16)] + coth[z(L +y- 16)]}. (2.17)

61

Any of the four Wightman functions above can substitute for D (x, y) when calculating X in equation (2.13).

We use a similar method to calculate the excitation probability A, although in this case we can avoid crossing
any poles by restricting our analysis to k6202 < r (see appendix 6 for details). As such, the residue contributions
vanish here, giving

o0 2
e(UQ)ZA = ﬂozﬁdf d)’ e_:?Ddetect(y - 2i62‘Q>' (2.18)

In this expression, Dgetect () from equation (2.12) is the detector response function for a single detector ina
thermal bath at temperature T = (27kg) ™'k [32]:




I0OP Publishing NewJ. Phys. 17 (2015) 035001 G Salton et al

—K2 K
Dietect = cschz[— — ie ] 2.19
detect = > (y ) ( )

In order to evaluate A and X, we employ a saddle point approximation, following [ 18]. In particular
A = 2mp} 0%V Dygeq ( ~2i0°Q), (2.20)
X~ — Zﬂnozaze‘(“Q)ZD (2162.(2, 0) + (residue terms). (2.21)

Note that there are no residue contributions to A due to the aforementioned restriction k622 < 7. The detector
response is identical in all cases considered:

2 2
A~ e‘(”g)zn—o[K—acsc(Kaz.Q)] . (2.22)
2nl 2

Plugging in for each of the possible choices for D gives the following for X in each case:

’72 o)’
X~ _e—<vﬂ>2—°(—) Frot, (223)
2\ L
2
g oK
X)( = —e— (a0 +r.t., (2.24)
2| Lk + 2[COS(KO'2.Q) - 1]
2 2
Xgs =~ —e‘("mm—o(z) eI Lt (2.25)
2z \ L
27702 K'GZ Lk
Xy =~ —e 2L — coth(—) +r.t, (2.26)
2z \ 2L 2

where ‘r.t.” stands for residue terms, which will be evaluated later.

3. Results: parallel acceleration

We begin by calculating the negativity [37] for detectors accelerating in the same direction. Choosing the
positive sign in equations (2.9) corresponds to two detectors with the desired trajectories, as shown on the left of
figure 1. An inertial observer on the trajectory x(¢) = (constant) will measure the detectors to always be separated
by a constant distance L. (Note, however, that an observer traveling along with one of the detectors will measure
the proper distance to the other detector to be changing over time.) Using the Wightman funtion (2.14), we
cross no poles when shifting the contour of integration in (2.13), and we are left with only the residue-free
contribution.

Plugging A from equation (2.22) and X(( from equation (2.23) into inequality (2.6), we find entanglement
whenever

Lk . 2
— < sin (k6°82). (3.1)
7 <sin (x02)
When the detectors are entangled, the negativity in this case is

2
Ny = e~ 0 (2)2 _ (ko)’
(« "

7 csc2<1<02.(2)]. (3.2)

3.1. Comparison with expanding and thermal fields

Interestingly, this negativity formula and entanglement criterion exactly match those for comoving (inertial)
observers, at a fixed comoving distance L, in a de Sitter universe with expansion rate x [ 15, 18]. Indeed, using X s
from equation (2.25) and verifying that we again cross no poles, we see that|X((| = |Xg4s|, which means that the
negativity is the same, Ngs = Nj(, and so is the entanglement criterion, equation (3.1). The only differences are in
their interpretation: k now refers to the expansion rate instead of the parallel acceleration rate, and L now

refers to the comoving distance instead of to the distance as measured by an inertial observer on the trajectory
x(t) = (constant). Notice that the motion in these two cases seem very different. In the case of parallel
acceleration, the detectors are moving in the same direction, whereas in the de Sitter case the detectors are
moving in opposite directions. However, this intuition is misleading because the similarity between the two is

6



10P Publishing

NewJ. Phys. 17 (2015) 035001 G Salton et al

the constancy of L. For parallel acceleration, the distance at closest approach as measured by a stationary
observer is constant, while in de Sitter space the detectors are separated by a constant comoving distance.

Due to the mathematical connection between Rindler and de Sitter geometries and the properties of
conformal fields (see chapter 5 of [32]), one might expect a priori such a connection between the parallel-
acceleration case and the case of de Sitter expansion. We point out a few reasons why this intuition is not enough
to prove that they must be the same. First, while A is the same in both cases, X and Xgs actually differ by a phase,
equations (2.23) and (2.25). As such, while the negativity (which depends only on| X |) is exactly the same in both
cases, the actual density matrix in each case is different, resulting in different correlations. Second, the
calculations leading to the equivalence involve two approximations—second-order perturbation theory and a
saddle-point approximation—that limit the equivalence to the cases where these approximations are valid.
Finally, notice that D and Dgs are not the same, equations (2.14) and (2.16). This leads us to suspect that when
the aforementioned approximations break down, the equivalence may be broken as well. On the other hand, our
work does not rule out the existence of other coordinates and/or modified trajectories (perhaps parallel
acceleration but displaced in a different spatial direction) for which there is exact equivalence between the two
cases. This is left as an open problem.

From [15], we already know that the entanglement profile for two inertial detectors with fixed proper
distance L in a thermal bath in the detectors’ rest frame will differ from the de Sitter case. From the above results,
this means it must also differ from the parallel-acceleration case, despite A being the same in all three cases.
Solving the analogous inequalities using X, from equation (2.26) and noting that no poles have been crossed,
we find entanglement whenever

Lx tanh(L—K) < Sil‘lZ(K'62.Q), (3.3)
2 2

with the temperature T of the thermal state of the field chosen to be the Gibbons—Hawking temperature
associated with k [40]—i.e., T = (27kg)~'x. Thus, we have reproduced the results first reported in [15] (and
later confirmed using this saddle-point method in [18]), which show that two detectors can distinguish between
Gibbons—Hawking and thermal radiation by whether they are able to harvest entanglement or not. If entangled,
the negativity in this case is

2 2 2
Ny =~ e-tor o [KL coth(g) - (KZ)

vl By > CSCZ(K‘O'Z.Q):|. (3.4)

For comparison, the entanglement boundary for inertial detectors in the Minkowski vacuum is given by
L
5 <o ZQ 5 (35)

which can be obtained by taking thex — 0 limit of either equations (3.1) or (3.3) while fixing the other physical
parameters L, 6, and £2. For entangled states, the negativity in this case is [18]

2
No =~ e-toarllo (2)2 - (3.6)
2r|\L 4(6Q)?

All of these results are shown in figure 2 (left). Notice that the negativity is generally exceptionally small since, for

all cases considered here, N ~ e~(¢2”,

4. Results: anti-parallel acceleration

In order to study anti-parallel acceleration, we choose the negative sign in equations (2.9), giving rise to the
trajectories shown on the right of figure 1. Note that the infinite Gaussian tails in the window function # (z) cause
detectors with overlapping Rindler wedges to be causally connected (not strictly spacelike separated).
Nevertheless, as assumed in [15], we choose the standard deviation 6 < L so that the nontrivial parts of the
interactions are spacelike separated. We calculate X and A using equations (2.21) and (2.20) with D = Dy,.
However, when shifting the contour of integration in X, we now do cross a number of poles, and we must
calculate the residue contributions separately. As a result, we cannot easily use a simple inequality to represent
the entangled region as we did in the previous cases. The details of these residue calculations are given in
appendix 6.

The profile for harvesting entanglement using anti-parallel detectors is shown in figure 2 (right). This plot
contains four interesting features, which we describe below, followed by some discussion about which features
may be due to the long tails of the Gaussian window function (and would therefore disappear if it were replaced
with a similar function having compact support).
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3.0
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0.5

0.0

Lk

Figure 2. Regions of nonzero negativity [37] (i.e., parameter regions where entanglement harvesting is possible); see text for meaning
of parameters and details of physical setup. (Left) Results from section 3. Green region (left of green dotted curve): parallel
accelerating detectors in Minkowski vacuum (N > 0) and also comoving detectors in de Sitter conformal vacuum (Ngs > 0). Red
+green regions (left of red solid curve): inertial detectors in Minkowski thermal bath (Ny, > 0). Green+red-+blue regions (above blue
solid straight line): inertial detectors in Minkowski vacuum (Ny > 0), which can be interpreted as the limit of the other three cases as
k — 0. (Right) Negativity profile for anti-parallel accelerated detectors. Harvesting is possible in the blue, contoured region (N > 0).
Boundaries of the regions from the left panel are shown overlaid on the right for comparison. The contours within the large blue
region are lines of constant N, with more entanglement toward the bottom. The four features discussed in section 4 are illustrated as
follows: (1) the portion of the blue region below the solid, blue line is the region of enhancement over inertial detectors (section 4.1).
(2) The orange line shows the critical distance, equation (4.1), for entanglement resonance (section 4.2). (3) Whatlooks like a curvy
‘bulge’ on the left-hand side is due to the causal residue contribution (section 4.3). (4) The triangular region in the upper halfand with
Lk > 2 corresponds to the noncausal residue contribution (section 4.4).

4.1. Enhancement over inertial detectors

Perhaps one of the most interesting features of entanglement harvested with anti-parallel acceleration is that the
acceleration allows for entanglement harvesting where inertial detectors could not. In particular, certain
detectors with a distance of closest approach L > 262(2 can harvest entanglement. This is surprising because it is
outside the allowed region for inertial entanglement harvesting, given by equation (3.5). The allowed region for
inertial detectors is represented by the blue triangular region in figure 2 (left), the boundary of which is given by
the blue line in figure 2 (right), assuming the same resonant frequency and window function [15]. This line
should be interpreted as thex — 0 limit of non-inertial motion.

The power of this enhancement can be understood physically. Consider two inertial detectors in Minkowski
spacetime, configured withL > 20%Q—i.e., just below the blue diagonal line in figure 2 (right). These two
detectors would not be able to harvest entanglement and would remain in a separable state. However, if we
instead consider two detectors with the same £2, accelerating oppositely and reaching a distance at closest
approach equal to L, in some cases they would become entangled. Notice that we do not have to physically bring
the detectors closer together than the original L in order to entangle them. It is worth pointing out that this
feature arises in the portion of X that does not come from residue terms. Therefore, we conjecture that the
enhancement is not an artifact of the infinite tails in the Gaussian window functions but would persist even if the
Gaussian were cut off smoothly for|z| > o (see section A.3).

For small accelerations and finite interaction times, the two accelerating detectors would look almost like
inertial detectors, yet they could in principle harvest entanglement that truly inertial detectors could not. This
seems to present a paradox: the behavior ask — 0 should match up with that of actually achieving the limit
k = 0, butitappears not to do so. This apparent paradox is resolved by noting that for small accelerations, both L
and 2 must be very large to see this effect (since the terms Lk and k622 both become small), and at the limit
pointx = 0, L and £2 must become infinite, which is impossible. Therefore, for all practical purposes, the inertial
bound, equation (3.5), becomes the relevant one in the limitx — 0.

4.2. Entanglement resonance

As mentioned in section 2, the usual picture employed in the literature for studying accelerated observers
[31,32, 38] suggests a natural restriction to trajectories embedded within Rindler wedges sharing a common
apex, which corresponds to L = 2x~!. We do not impose this restriction in this work because there is no physical
reason why the separation between two independent objects should necessarily be related to their acceleration.
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This restriction is not entirely without physical motivation, however. The Unruh effect is usually discussed
in terms of the Minkowski vacuum being describable as a collection of two-mode squeezed states between pairs
of Rindler modes, with one mode from each pair localized to the left and right Rindler wedges, respectively
[31,32,38] ®. Due to reflection symmetry between the two wedges, the modes that are entangled (i.e., two-mode
squeezed) happen to be those that are naturally detected by anti-parallel-accelerating observers, one within each
wedge. For such detectors, L = 2x~!. One might therefore wonder if having detectors on these trajectories might
somehow be the best way to see the effects of anti-parallel acceleration due to resonance with these two-mode-
squeezed modes. In fact, perhaps this configuration might be necessary for making use of such a resonant effect
to harvest a significant amount of entanglement using anti-parallel-accelerating detectors. Surprisingly, this
conjecture will turn out to be false.

Before we say why this is false, it is worth asking what such a resonant effect would look like in our
calculations. We do not expect to see any effect in evaluating A since this is just the response of our detector to the
perceived thermal noise, and this does not depend on the relative positions of the trajectories. Since the detector
is only coupled (nontrivially) to the field for a finite time 6, this response is expected to be finite”. It is still
conceivable that we might find a divergence in X, however. Such a divergence would signal a situation in which
higher-order terms—representing multiple real or virtual transitions—would be necessary to capture the true
dynamics. Since we do not go beyond second order in this analysis, we cannot be sure of what exactly is
happening in such a case, but we can still consider such a divergence to be evidence of a resonance condition,
which should be detectable in the final state of the detectors. In what follows, we take this interpretation of such
divergences.

It turns out that for any detector resonance frequency €2, we can create a situation in which such a resonant
condition occurs for any value of L up to 4k L. To find this critical distance L i, we evaluate where the saddle-
point approximation of X, equation (2.21) diverges. Using D = D), we find

Leit = %[1 — cos (K'O'Z.Q>:|. (4.1

Interestingly, while this method reveals the location of the divergence in X, the saddle-point approximation gets
the sign wrong. Direct numerical integration reveals that X — coasL — Ly, but the saddle point
approximation predicts X — —oo instead. The behavior of X with respect to Laround L ~ L is shown in
figure 3. Notice that X gets more negative before turning around and shooting up to +oo. The saddle-point
approximation does not reveal this turnaround to positive values and instead predicts that X will continue to
decrease as the critical distance is approached.

The critical distance is shown as the orange S-shaped curve in figure 2 (right). Given a value of L < 4x~!, we
can tune the detectors to reveal this effect by setting 2 = Q,.;, where

1 L
Qs = — cos_l(l - —K) (4.2)
Ko 2

This divergence appears in the residue-free portion of X, which leads us to believe it to be robust to smooth
cutoffs in the window functions (see section A.3). An application of this resonance to a rangefinding thought
experiment is discussed in section 5.1. Note that we have assumed point-like detectors and that finite size effects
could be important for more realistic detectors.

Notice that L = 2x~!is not necessary to see this resonance effect. For the special case x6%Q2 = %, of course,

we get resonance at that distance, but this is an additional requirement. Therefore, L = 2k~ lalone is neither a
necessary nor a sufficient condition for resonance. This is contrary to the intuition provided by the Rindler-
wedge picture often used to derive and discuss the Unruh effect [31, 32, 38].

4.3. Causal residue contribution
The entanglement harvested by detectors in different regions of parameter space seems to arise from distinct
physical mechanisms. For Lk < 2, the detectors are timelike separated, and real particles can, in principle, be
exchanged. There is a residue contribution to X that is largest for small Lk and vanishes when Lk > 2. Due to this
behavior, we hypothesize that the residue contribution in this region may arise from causal dynamics (see
section A.2).

For detectors on the hyperbolic trajectories shown in the right panel of figure 1, the Gaussian window
functions cause the detectors to spend a very long time traveling near the speed of light and interacting with the

8 . L . .
Recent results, however, bring the naturalness of this picture into question [41].

In the case of constant and always-on coupling, A would diverge, which is why it is common to talk about transition rates in that case, rather
than the total probability of excitation [32].
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Figure 3. Behavior of Re(X), up to an overall multiplicative factore(”mz, as a function of deviation SL from the critical distance L

defined in equation (4.1), withk = ﬁ, o = 1,and 2 = 1250. The overall shape of the curve is robust to changes in £2, with only the

width changing by a multiplicative factor of order unity. It can be shown that Re (X) < 0 for all values of 6L, except in a small corridor
around 6L = 0 (i.e., centered around L ). Thus, we note that Re (X) changes sign near the critical distance as the detectors change
from correlated to anti-correlated. This sign change is detectable. See section 5.1.

underlying field. Although the interaction is very weak, we conjecture that the long interaction time gives rise to
anontrivial contribution to X comparable to (or even greater than) the residue-free portion.

Specifically, we hypothesize that the first detector’s interaction with the field for along time in the infinite
past may produce a large effect concentrated near the lightlike past asymptote of the first detector’s trajectory
that is felt by the other detector (in the coherence term X) as the second detector crosses the future extension of
that asymptote. (The same effect also happens from the second to the first detector.) Similarly, the second
detector will spend along time near the lightlike future asymptote of its own trajectory, thus amplifying any
effect due to the presence of the first detector near the past extension of that asymptote (and vice versa).

The net result of these four (symmetric) processes is a nontrivial contribution to the coherence term X,
which indicates that the detectors ‘feel each other’s presence’ due to the long tails of the Gaussian and
overlapping wedges, as shown in figure 4.

4.4. Noncausal residue contribution

Even as the causal residue contribution discussed in section 4.3 vanishes as Lx > 2, a second residue
contribution takes over in that region when, in addition, x6%Q2 > Z. This means that there exists a nontrivial
residue contribution for spacelike separated detectors (Lx > 2) but only for certain choices of the other
parameters. Because the detectors are spacelike separated for the entirety of their trajectories in this case, this
contribution is more mysterious. There are some clues that we can use to hypothesize about its physical origin,
however.

The most important clue is that the effect is strongest near Lk > 2. This suggests that the detectors may be
feeling the effects of entangled Rindler modes [31, 32, 38]. To understand this reasoning, consider dividing
spacetime into four wedges (using the usual Rindler prescription [31]) whose common origin is at
(x = 0, t = 0).Ifthe actual detector trajectories have asymptotes that are close to the boundaries of these origin-
centered Rindler wedges (i.e., Lk 2 2), then the detectors will be nearly resonant with the Rindler modes that are
two-mode squeezed (see section 4.2). This effect only increases as Lk — 2*. However, the fact that it cuts off
sharply as soon as Lk < 2 also suggests that the infinite tails may play a role in this effect. Perhaps confinement of
the infinite tails to the left and right origin-centered wedges is required to see the effect. If the detectors are too
close, then the long tails of each detector’s trajectory will leak out into the origin-centered future and past
wedges. This effect would then be traded out for the causal effect described in section 4.3, which is tiny for
Lk < 2. Further work is needed to explore the effect of using switching functions with compact support, but this
requires new calculational methods and is beyond the scope of this work. We therefore leave the above asa
working hypothesis. Further justification may be found in section A.2.

5. Rangefinding

Another interesting feature of the harvesting process is that it depends critically on the distance between the two
detectors. Entanglement harvesting depends on the interplay between £2, L, and k, and we will present three
thought experiments for rangefinding (i.e., measuring the distance of closest approach between two anti-parallel
accelerating detectors) using the properties of the harvested entanglement and their dependence on the relevant
parameters. The goal is not to propose viable methods for measuring distance but rather to expose the
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Figure 4. Interpretation of the residue contribution from causally connected detectors (Lx < 2). While the analytic form of the
Gaussian was essential for calculating the coherence term, X, the infinite tails give rise to very long-time interactions with field modes
(shown in green) while the detector is traveling near the speed of light. Effects due to interaction between the first detector and the field
over along period in the infinite past can build up and be felt by the second detector in finite time as it crosses the lightlike extension of
the first detector’s past asymptote (and vice versa). Similarly, small fluctuations caused by short-time interaction from the first
detector can be amplified through long interactions in the infinite future of the second detector (and vice versa). We hypothesize that
these effects together give rise to the nontrivial contribution to X discussed in section 4.3 and shown on the left side of figure 2 (right).

relationship between distance and harvested entanglement in the hopes of motivating future studies into
practical applications of this phenomenon.

The first of the three techniques (described in section 5.1) makes use of the critical distance described in
section 4.2 and uses the divergence in X to determine the distance between the detectors. The second and third
techniques rely on sudden death and revival of entanglement. Here, ‘death’ and ‘revival’ of entanglement are to
be understood through ensembles of detector configurations constructed such that they form a path in
parameter space along which the entanglement between such detectors exhibits extremely rapid changes. We are
not referring to death and revival of entanglement with respect to time evolution. This distinction is emphasized
in section 5.2. We will describe a method for using sudden death of entanglement as a signal for crossing a
specific distance, and a method of using steep gradients in the negativity (revival of entanglement) to give precise
information about changes in distance.

5.1. Coherence corridor
Having found the critical distance in equation (4.1), we explore the properties of the harvested entanglement
near L. We will study the dependence of Re (X) on L. For convenience, we define

SL =L — Lait (5.1)

to be the distance away from the critical value. Figure 3 shows Re (X) as a function of 5L forx = 0.001,6 = 1,
and Q = 1250 (i.e., k6%Q2 = 1.25). These parameter values were chosen to lie in a region of parameter space in
which residue contributions to X are negligible; specifically, we choose1.2 < x6%Q2 < % andl.l1 < Lk < 2.In
this region of parameter space X is heavily dominated by the residue-free contribution (i.e., the residue terms are
negligible), and the shape of Re (X) is generic for other values of £2.

Through explicit numerical evaluation we find that the coherence term, X, flips sign in a narrow corridor
around L = L. (Interestingly, the saddle-point approximation of equation (2.24) misses this behavior.) This
sign flip is detectable by performing local measurements on the detectors and collecting statistics. To see how
this is possible, consider the bipartite state of the two-detector system in the basis defined by the tensor product
of their respective ground and first excited states, up to second order in the detector coupling. The density matrix
is of the form

cC 0 0 - X*
0 A B* 0
= 5.2
Pab 0 B A 0 ( )
-X 0 0 1-2A-C
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By measuringo, ® oxoro, ® o, wehave that

(6x ® 6,) = —2Re (X) + 2 Re (B), (5.3)
(6, ® 6,) = 2Re (X) + 2 Re (B). (5.4)

Therefore,
4Re (X) = (0, ® 0y) — (0x ® 0Oy). (5.5)

Operationally, this means that we can make measurements of either 6, ® oy oro, ® o, and send the results
of the measurements, along with a timestamp and information about the choice of measurement, back to a
neutral third party at x = 0. If the third party finds that the measurements were made in the same basis, then the
results of the measurements are kept. With access to an ensemble of detectors and measurements, one can
collect statistics of the outcomes of the measurements for comparison. Using this scheme, it is possible to use
entanglement to measure distance between the detectors. It is in this sense that we say information about the
distance between the detectors is stored nonlocally in the phase of the joint state.

Suppose for a moment that we had access to such an ensemble of detectors with1.2 < x6%Q2 < g, and we
performed the measurements described above. In this case, Re (X) can only be positive when Lis close to L
(i.e.,6L ~ 0). As such, a measurement outcome of Re (X) > 0 necessarily implies that the detectors must have
been separated by L; up to © (6L).

5.2. Sudden death of entanglement and a relation to distance
The negativity contours (figure 2(Right)) for anti-parallel acceleration show a narrow region for large k52
where the negativity is zero. We have affectionately dubbed this oddly shaped region the ‘necktie’, for obvious
reasons. Just to the right of the necktie (e.g., Lk > 2 andko’Q > 2.4) the negativity suddenly drops to zero as we
cross Lk = 2 from the right. This sudden death of entanglement (in parameter space) is curious in its own right
and has been discovered in a number of other systems [42—44]. In addition, we can use this phenomenon for
rangefinding by identifying the presence or absense of entanglement as a signal for crossing a particular distance.
To see how entanglement sudden death can be used for rangefinding, we shall construct a simple toy
protocol that uses entanglement as a trigger for signalling that a particular distance (L = 2x~!) has been crossed.
For the remainder of this section, we will always require k6%2 > 2.4 in order to focus on the necktie.
Consider two sets of detectors separated by L = 2k~! + § for0 < § < 1. The detectors separated by
L = 2x~' + § will be able to harvest entanglement and will evolve into an entangled state, whereas the detectors
separated by L = 2kx~! — & will not be able to harvest any entanglement and will remain in a separable state.
Using an ensemble of detectors with varying L, it is possible to use entanglement to identify those detectors lying
on either side of the Lk = 2 boundary. This identification marks the desired L = 2x~! distance. In order to verify
that the detectors have evolved into an entangled state, it suffices to show violation of a Bell inequality, which can
always be done iff the state is entangled (with sufficient extra resources) [12].

5.3. Negativity gradient

In addition to the sudden death of entanglement, there is another feature of the necktie region that we can use for
rangefinding. To reiterate an earlier point, our aim here is simply to highlight the relationship between
entanglement and distance. From figure 2(Right), we see that the negativity has a steep gradient in the region just
to theleft of the necktie. In this region, the negativity changes rapidly over very small changes in distance L. As
such, the amount of entanglement harvested in this region of parameter space is highly sensitive to the distance
between the detectors; very small changes in the separation distance L manifest as (proportionally) large changes
in the negativity. We can use this feature to determine changes in distance very precisely by measuring relatively
coarse changes in the entanglement.

To make this argument precise, suppose we have two pairs of detectors with a given acceleration x and energy
gap £2. Suppose further that the pairs are both separated by a known distance at closest approach L. If the
separation between one pair of detectors is perturbed slightly, the negativity for that pair will be vastly different
from the negativity of the unperturbed, reference pair. If we measure A and X for the two pairs of detectors (the
latter through coincidence measurements as in equation (5.5)) and compare them, we can map the change in
negativity to a change in distance. The steep negativity gradient allows even relatively imprecise knowledge of the
negativities to correspond to fairly precise values of distance. Note that this technique does not allow us to
measure arbitrary absolute distances, but rather fluctuations in distance around some target value.

5.4. Caveat

Obviously, much more practical methods exist to measure distance between objects. Furthermore, the amount

—(092)?

of entanglement harvested using these methods is extremely small due to the Gaussian prefactore , S0 even
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the proportionally large changes in entanglement predicted in, e.g., section 5.3 are between values that are
exceedingly small.

As such, we would like to remind the reader that the purpose of this section is simply to outline several
thought experiments to show—in principle—how the particular correlations in the harvested entanglement
reveal details about the distance between the traveling detectors. We expect that this effect—of the harvested
entanglement showing a critical dependence on distance—is generic and will eventually lead to realistic
proposals for rangefinding using entanglement harvesting. One example of such a proposal is [45], which was
motivated directly by the results reported here.

6. Summary

Entanglement harvesting is the process of swapping entanglement out of a quantum field and into two Unruh—
DeWitt detectors using local interactions with the field. Here we studied the entanglement harvested by
uniformly accelerating detectors on various trajectories. For detectors accelerating in opposite directions, we
broke away from the usual approach applied to Rindler observers, wherein the observers have commensurate
Rindler wedges meeting at the origin and have a distance at closest approach that is set by their acceleration
parameter (L = 2x~!). We instead allowed the detectors an arbitrary minimum separation—a more physically
meaningful approach to the problem. While the usual approach is well motivated by the fact that the Minkowski
vacuum corresponds to a two-mode squeezed state of Rindler modes (which are the natural modes detected by
observers with L = 2x™1), resonant interaction with these modes is neither necessary nor sufficient for
entanglement harvesting. Instead, we found a relationship between the distance L and energy gap £2 such that the
detectors display a resonant spike in the harvested entanglement, just as they would at L = 2x~!and

k6*Q = n/2. This resonance defines a critical distance at which the Wightman function in equation (2.21)
diverges.

An additional benefit of promoting L to a free parameter is the emergence of an enhancement over inertial
motion in entanglement harvesting. A variable L opens up a previously inaccessible region of parameter space in
which entanglement harvesting is possible. This enahancement is a feature of the nonrelativistic motion and
persists for small . However, in order to observe this effect with small accelerations we would need very large
distances L ~ © (4x7Y).

In order to compute the coherence term X, we exploited properties of the window functions governing the
detector—field interaction. We chose analytic window functions (Gaussian, to be precise) so that we could split
our calculation into a residue-free portion and residue terms. The residue-free contribution is robust to changes
in the window functions, while the residue contributions are conjectured to be related to the infinite Gaussian
tails. We found two major residue contributions to the coherence term: one arising from apparently causal
dynamics and another from apparently noncausal dynamics. The noncausal residue contribution arises
whenever the detectors lie in completely disjoint Rindler wedges so that no null or time-like communication
could ever occur. In this case, we found a large residue contribution, and we hypothesized about its origin. We
also described the causal residue contribution for which the Rindler wedges of the two detectors have some
overlap and communication could occur. We leave for future work an analysis of these contributions with
compact window functions (see section A.3).

In order to emphasize the relationship between harvested entanglement and distance, we presented three
techniques for rangefinding using the aforementioned properties of harvested entanglement from detectors
accelerating in opposite directions at the same rate. The first rangefinding technique relies on the unique shape
of the coherence term (i.e., the resonance) near the critical distance. In a narrow range of L near the critical
distance the residue-free portion of Re (X) undergoes an observable sign change from negative to positive. We
presented a simple LOCC protocol for detecting this sign flip and using the detection as a method of measuring
distance. A second rangefinding technique makes use of the sudden death of entanglement for k622 > 2.4 by
using the death of entanglement to trigger on a particular distance. Since the negativity drops suddenly to zero at
aspecific distance (L = 2x~!), the presence or absence of entanglement on either side of this boundary identifies
the transition distance. Finally, the third rangefinding technique we presented serves as a means for sensitively
detecting fluctuations in distance around a known reference value. Using a sharp gradient in negativity over
short distances, large deviations in negativity away from a known value map to very small deviations in distance
away from the reference. With a reliable method of measuring entanglement, this technique could be used as a
seismometer or for maintaining precise distance control. This possibility has motivated a recent proposal in such
adirection [45].

In addition to anti-parallel acceleration, we studied entanglement harvesting from detectors accelerating in
the same direction at the same rate. We found a familiar degradation of entanglement for these detectors, and we
showed that the degradation is identical to that between two comoving detectors in de Sitter space, yet different
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from that of inertial detectors in a thermal bath [15]. For parallel acceleration, we found no residue
contributions to the coherence term. As such, we expect our results in this case to hold if we change the window
functions to have compact support.

Entanglement harvesting is highly dependent on field and detector parameters [4, 15, 17, 18, 34]. Here we
have demonstrated that antiparallel acceleration produces surprisingly rich results not seen in other
correspondingly simple cases. Still, many questions remain. For instance, previous work has shown thata
minimally coupled field produces a very different result than conformal coupling in an expanding scenario
[17,18]. Interesting extensions therefore include entanglement harvesting with massive fields, higher-spin
fields, and other states of the field—e.g., the Bunch—Davies vacuum [46], which has important applications in
cosmology. We hope the work presented here inspires further studies in this direction.
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Appendix: Complex integration

In order to evaluate the integrals in equations (2.4) and (2.7), we shift the contour of integration and use
Cauchy’s residue theorem. Focusing on A for a moment, we are interested in an integral of the form

’702 Qe 2 o
A= 7 f e},,zdx‘/ €712 " Dyetect () dy, (A1)

for overall coupling constant#, < 1. Since we are comparing this quantity with an analogous quantity (X), we

are free to eliminate a common factor ofe~(*?” without affecting the entanglement criterion. Multiplying
through and performing the x integral leaves

oo}

2 .
e’ = 1702 Jro / e e Yrlp (y)dy. (A.2)

—00

This completes the square in the exponential, giving

) (y+2162!2)2

e (”-Q)ZA = ;’]02 ﬁd / (S Ddetect ()’) d}’: (AS)

o

which is a Gaussian integral with a complex mean. To remove this complex mean, we shift the contour down in
the complex plane by an amount 2i¢%Q2. We then define a new variable y’ = y + 2io%2 and subsequently drop
the prime. The change of variables removes the complex mean from the exponential and gives us a final integral
of the form

oo 2
e 12 Dgetect ( y - 2io-2[2) dy — 2xi Z (residues). (A.4)

poles

e = i 7o [

—00

Since we shifted the contour of integration, residue contributions potentially appear, which are noted explicitly
in equation (A.4). Since we have shifted it downward in the complex plane, the new contour would include tiny
clockwise circles around any poles, which accounts for the — sign in front of the residue contributions.

The pole structure of the integrand is shown in figure A 1. Since the exponential is entire, the poles come
from Dyetect, and we find that they occur at Yoole = —%n + ie forn € Z. Since we only shift the contour by

2i622, we never cross any poles if we limit k6202 < 7, and thus the residue contribution vanishes. We therefore
restrict our analysis to this case for simplicity. We then evaluate the integral using the method of steepest descent,
asin equation (2.20). For parallel acceleration, a similar method works for evaluating e “?”X using
equation (2.21).

In contrast to parallel acceleration, anti-parallel acceleration does give rise to poles that are crossed when
shifting the contour of integration. The result for A does not change from the above, but extra care must be given
to the calculation of X.
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Figure Al. The pole structure of Dpetect showing the shifted contour of integration. If we restrict ko2 < 7, we never cross any poles
in the evaluation of e A, and there are no additional residue terms The resulting integral can be computed using the method of
steepest descent. Note that the pole locations shown in the plot should be interpreted as being raised slightly by +ie.

We begin by multiplying X by e (®”, which completes the square in the exponent of the integrand:

o , [ o y2+(x72iazﬂ)2
e X = _y fo dy f dxe™ w2 Dy((x ). (A5)

We now shift the contour of integration up in the complex plane by 2i6%2, define x’ = x — 2i6*Q, and drop the
prime. The full integral is then

(6Q)? 2 © e _x2y? 2 . . .
e =-1 dy dxe™ .2 Dy (x + 2ic*42, y) + 271 Z (residue integrals), (A.6)
0 —00

poles

where the residue terms are integrals over y. We evaluate the residue-free portion of the integral using the
method of steepest descent, as with the parallel case. The residues require some work, and their evaluation is
described next.

A.1.Residue integral evaluation (anti-parallel case)
We must consider residue contributions whenever Dy (x, y) diverges for complex x, which occurs iff

e’—f%(% - 1) +ie + cosh(%) =0. (A7)

This is actually two conditions, one corresponding to the top sign (+) and one to the bottom sign (—). Only one
condition can be satisfied at a time, so the poles are always simple. Definingb :=1 — %K, we can solve this
equation formally for x to find the pole locations as a function of y (since we must integrate over y later):

Xpole (V) = %arccosh(beig ¥ ie). (A.8)
K

Note that this function is multivalued by virtue of the multivalued nature of the complex arccosh. The relevant
polelocations are those for which 0 < Im x5, < 2672 (recall that the integration contour for x was shifted
upward).

To understand the structure of the pole locations, we will take the real and imaginary parts of equation (A.7)
separately. Writing x = x, + ix;, we obtain the following necessary and sufficient condition for a pole:

o (xr + i.xi)lc .
be*? = cosh — + ie. (A.9)
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Figure A2. Illustration of the pole structure of D), along with the up-shifted contour of integration (blue arrow). The collection of
horseshoe-shaped red curves is the solution to equation (A.10) using the + sign. (Solution curves for the — sign are just the left-right
mirror image of these.) Within this solution set, dependence of the pole locations on L (through &) and on y is obtained by also solving
equation (A.11). Since we integrate over y in finding X, the location of the poles moves along the red lines shown above. Restricting
k6% < r ensures that we only have to worry about poles on the L-shaped thick red line between the up-shifted contour and the real-x
axis. Note that the e prescription is responsible for shifting the poles infinitesimally off the real and imaginary axes as shown.

Taking the imaginary part eliminates b and y (since y will be integrated along the real axis), giving
0= sin(%) sinh(x;—K) + €. (A.10)

The solutions to this condition for the + sign are plotted in figure A2 ; the solutions for the — sign are just the left-
right mirror image of this. Poles must also satisfy the condition resulting from the real part, namely

be*? = cos(ﬂ) cosh(ﬂ). (A.11)
2 2

The only poles we care about require, in addition, that x; < 262, which translates to
cos (X‘TK) > cos (ko’Q2) since we are only considering the case where k6202 < x. Examining equation (A.10) or
figure A2, we see that the poles in question always ‘hug’ either the real or imaginary axis. This means that if
x; > 0thenx, = 0. We can use these facts and equation (A.11) to write the following necessary and sufficient
condition for inclusion of a pole in the residue contribution:

be*> > cos (KGZ.Q). (A.12)

By lifting the contour upward, we deform it to include tiny counterclockwise circles around the poles.
Therefore, the contribution labeled ‘residue integrals’ in equation (A.6), which consists of residues integrated
over y, is added with a + sign. In particular

. residue | . . o o ,
2mi Z (integrals) = 2ni G{ZJ;_} /; dy @[be cos (1«5 .Q)]Rs W), (A.13)

poles

where @ (x) is the Heaviside step function, which is used to enforce the pole inclusion condition,
equation (A.12),and Ry(y) is the residue of the integrand in equation (A.6). Explicitly,

y2+(x—2i52!2)2

Re(y)i=Resymz n| — g w2 Dy(xy)

2
yh(x%le—zial.o)
2

= —n,e" 102 Resxzxpt()lc(y)D)((x, ) (A.14)

where we now force the arccosh in equation (A.8) to produce a unique answer by restricting its range to have
imaginary part€(0, z) (with the endpoints of this interval excluded sincee > 0), and the second line follows
because the exponential is an entire function and the poles are all simple. It will be useful to define two new
variables in terms of y:
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0. (y):= arccosh(bei% F ie), Im 6, € (0, ), (A.15)

where the restriction on the range of arccosh ensures that these functions are single valued. In these variables

2 —1 —1
Dy = x [cosh(ﬁ) — cosh 9_] [cosh(ﬁ) — cosh 9+] . (A.16)
l67° 2 2

The pole condition, equation (A.7), becomes simply

X ) = 20.0). (A.17)

Using this and the usual formula for the residue of a simple pole, we can evaluate

. b _ K csché, (A.18)
x=xpoe(y) ) ( 872 cosh 05 — cosh 6, '

Having served its purpose, we now lete — 0% for the rest of the evaluation.
To perform the integral over y, we change variables to §,. as appropriate, along with

dy = i% tanh 6, dé,, (A.19)
K
2 cosh 6,
y =+—log = | (A.20)
K b

This allows us to rewrite the y-integral in equation (A.13) as

logz( cosh 95) + (05 - iKUZ.Q)Z
K

05(0) 9 b csché,
s= tanh 6, d6, O] cosh 0, — cos (ka2Q) |(-n2) exp | — — 2
[;5(0) K s [ s ( 4 )]( o ) P K%0? 872 cosh O_; — cosh 6,
cosh @ . 2
02 pos(co0) 6[cosh 6 — cos (KO'Z.Q)] lng(—) + (9 - IKUZ'Q)
= o [ do s exp | — b (A.21)
472 Jo50) b? — cosh? @ K’0?

A few things are worth noting here. First, while the limits of the integral are specified, the contour of integration
is not a straight line. Instead it is some subset of a horseshoe-like curve similar to the one just above the real-x axis
in figure A2. We will specify this shortly. Second, while we started with the change of variables €, (y) being
dependentons € {+ , —}, by virtue of 6, being promoted to an integration variable, it loses its s dependence in
that role (since any name for the integration variable will do), and so we rename it to just & in the second line.
(Notice that the dependence on @_ has been eliminated since cosh €, cosh 6_; = b%.) The original integral itselfis
sdependent, however, and this fact survives through the s-dependent contour of integration and the presence of
an explicit sin the integrand.

We will now specify the contour of integration. Plugging this integral back into equation (A.13) gives

. residue )
2rxi Zl (integrals) Z /9 o do s @ cosh @ — cos (KG .Q)]I(H), (A.22)
poles
where
cosh . 2
16) i’702 (27)™! IOgZ(—b 9) + (9 - 1K62.Q) a2
= ————exp| — . )
cosh? @ — b2 P x2c?

The integration contour is not just a straight line. Nevertheless, we start with the endpoints of integration, which
evaluate to

0, (00) = —00 + im O[— 1], (A.24)

0, (0) = arccosh(b), (A.25)
i

0_(o0) = > (A.26)

60_(0) = arccosh(b), (A.27)
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Sincey > 0andb < 1, theranges of 6. (y) are respectively horseshoe- and L-shaped:
0, € (-0, 0] U (0,ix) U [ir, —o0 + ix), (A.28)
0_€ (0,ir) U lir, oo + im). (A.29)

The Heaviside step function restricts these further, however, by requiring cosh &, > cos (k6%€2). Under this
condition, the respective ranges become

0, € (=00, 0] U (0, ko), (A.30)
0_€ (0, isz). (A.31)

Note that these ranges will often be further restricted by the value of b, leaving €. (y) to explore only a subset
thereof forall y > 0. The union of these total ranges (which accounts for anyb < 1) is shown as the thick L-
shaped line between the raised integration contour and the real-x axis in figure A2. Using all this information,
along with careful algebra, we can rewrite equation (A.13) as

ko2
f 40 1(0), b<o0,
i Min[ k02,5 |

[-/i(l)vun[mm 1] * /0_00 )dg 1(0), b>0.

The limits of integration provide two natural cases to consider: b > 0 andb < 0, which correspond to partially
causal (section 4.3) and wholly noncausal (section 4.4) detectors, respectively. The integral forb < 0 vanishes
whenk6?Q < Z and otherwise is a finite integral along the imaginary-6 axis. Forb > 0, the integral is an L-
shaped contour integral along the positive imaginary-6 axis down to 0, then left along the negative real-0 axis
from 0 to—oo.

For the second case (b > 0)—in which the wedges defined by the detector trajectories overlap—the residue
contribution can be calculated by directly applying the method of steepest descent to the contour integral, where
the required saddle point is found numerically. We verified the validity of this approximation by comparing it to
the result of numerically integrating along a modified contour that winds through the peaks and valleys in the
complex-6 plane, passing through the saddle point.

For the first case (b < 0)—spacelike separated detectors—the saddle point approximation succeeds (by the
same test described above) when the imaginary part of the saddle point location is <ko2€2, but it fails otherwise.
In the cases where it fails, we simply perform numerical integration to obtain the residue contribution.

Combining the two residue contributions with the residue-free portion yields the complete coherence term,
X, by using equation (A.32) in equation (A.6).

. residue
2m 2 (integrals) B (A.32)

poles

A.2. Interpretation of residue contributions

The second case in equation (A.32) (b > 0) implies L < 2x~!, which corresponds to detector trajectories that are
not fully causally separated—their respective Rindler wedges overlap. This case was discussed in section 4.3,
wherein it was asserted that this contribution is due to the infinite tails of the Gaussian building up interactions
alonga light-like asymptote, which are eventually felt by the other detector (see figure 4.4). This interpretation of
the contribution is associated with the real part of the contour (from 0 to —0), sinceb > 0 and y — oo implies
0. — —oo. Thus, the part of the contour running along the real-x axis is associated with points along the two
trajectories that are far separated in proper time, as is the case in figure 4. These real-valued pole locations
translate (via equation (2.10)) to real values of 7 and 7’ such that the corresponding points on the detector
trajectories are null separated.

The first case (b < 0) in equation (A.32) impliesL > 2x~!, which corresponds to detector trajectories that
are causally disjoint (since their Rindler wedges have no intersection). This is the noncausal contribution
discussed in section 4.4. In this case, the pole locations are imaginary and correspond to points on the detector
trajectories with Re (7) = —Re (¢’). However, rand 7’ are both shifted in the imaginary direction by the same
amount.

A.3. Compact window functions

In sections 4 and 5 we described a number of features of entanglement harvesting using anti-parallel
acceleration. We discovered these features while carrying out the calculation of the negativity for anti-parallel
detector systems. The first two effects, enhancement over inertial detectors (section 4.1) and entanglement
resonance (section 4.2), arise in the residue-free part of the calculation. The second two features are causal
(section 4.3) and noncausal (section 4.4) effects due to contributions from the residue terms. However, by
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choosing to use an analytic window function, we were afforded the ability to split the calculation into a residue-
free contribution and a contribution from residue terms. This ability is a mathematical artifact of our choice of
analytic window function. This choice allows us to avoid direct numerical integration of highly oscillatory
integrals, which proved to be excessively time consuming and was thus used only in limited circumstances (e.g.,
the entanglement resonance discussed in section 4.2). Throughout sections 4 and 5 we make conjectures about
changes in the negativity if we had used window functions that smoothly cut off to zero (see, e.g., [47]). Such a
compactly supported function, while smooth, cannot be analytic. Therefore, testing these conjectures would
require completely different techniques, and we leave them to future work.
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