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Stock market investors’ use of stop losses and the disposition 
effect 

Abstract 

The disposition effect is an investment bias where investors hold stocks at a loss longer than 

stocks at a gain.  This bias is associated with poorer investment performance and exhibited to a 

greater extent by investors with less experience and less sophistication.  A method of managing 

susceptibility to the bias is through use of stop losses.  Using the trading records of UK stock 

market individual investors from 2006 - 2009, this paper shows that stop losses used as part of 

investment decisions are an effective tool for inoculating against the disposition effect.  We also 

show that investors who use stop losses have less experience and that, when not using stop 

losses, these investors are more reluctant to realise losses than other investors.   

 

Key words: behavioural finance; disposition effect; stop losses; investor experience; investor 

sophistication  
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1.  Introduction  

Research into the decision making of individual investors has shown that their decisions often 

deviate from normative rational economic models.  A particular decision making bias exhibited 

by stock market investors is the disposition effect, where investors are predisposed to hold 

stocks trading at a loss and to sell stocks trading at a gain (Shefrin and Statman, 1985).  Odean 

(1998) and Seru et al. (2010) have shown that susceptibility to this bias is correlated with poor 

investment performance, so it is in an investor’s interest to reduce their susceptibility to this 

bias.  To a certain extent, sophisticated investors and experienced investors do learn to reduce 

the disposition effect in their trading (Boolell-Gunesh et al., 2009, Brown et al., 2006, Chen et 

al., 2007, Dhar and Zhu, 2006, Feng and Seasholes, 2005, Grinblatt and Keloharju, 2001, Seru et 

al., 2010, Shapira and Venezia, 2001).  In this paper we argue that a relatively easy way to 

reduce the disposition effect is through the use of stop losses, since stop losses can automate 

an exit strategy, reducing reliance on an investor’s impulse control.  Stop losses have been 

researched as a method of portfolio insurance (Rubinstein and Leland, 1981) and research on 

stop losses has assessed the extent to which their use is optimal for a normatively rational 

investor (Annaert et al., 2009, Bird et al., 1988, Dybvig, 1988b, Gollier, 1997).  This research has 

shown that a stop loss strategy is inefficient for an investor that aims to maximise portfolio 

returns under the assumptions of utility maximisation (Dybvig, 1988b, Gollier 1997).  However, 

the disposition effect illustrates a behavioural pattern in which investors do not adhere to the 

prescriptions of neoclassical economic models (Shefrin and Statman, 1985).  The value of stop 

losses for stock market investors may be as a self-control mechanism that allows them manage 

their reluctance to sell losses and eagerness to sell gains.  Stop losses can be an effective tool to 
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counteract the disposition effect.  For example, as Nolte (2012) found, the use of stop losses 

and take profit strategies inverted the disposition effect for foreign exchange traders.   

 

The relationship between stop loss use, investor sophistication and experience has not been 

fully explored in the literature and it is unknown whether sophisticated and experienced 

investors adopt stop loss strategies, thereby reducing their susceptibility to the disposition 

effect bias.  This paper reports unique research on the disposition effect because we investigate 

the relationship between sophistication, experience and stop loss use and compare the extent 

to which each of these variables reduces the disposition effect.  We also investigate the use of 

stop losses as a self-control mechanism by analysing the susceptibility of those investors who 

sometimes use stop losses to the disposition effect when these same investors are not using 

stop losses.  The paper is structured as follows: Section 2 reviews the literature on the 

disposition effect, investor sophistication, investor experience and stop losses, from which 

research hypotheses are derived.   Section 3 outlines the methodology and data for this 

research.  Section 4 outlines the results and section 5 discusses the results and the implications 

for theory and practice.   

2. Literature  

Shefrin and Statman (1985) use the term ‘disposition effect’ to refer to investors’ decision 

making bias where investors tend to hold investments longer when the investments have 

depreciated in value than when these have appreciated in value.  In layman terms, investors 

“sell winners too early and ride losers too long” (Shefrin and Statman, 1985).  Often, prospect 
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theory (Kahneman and Tversky, 1979) is used to explain why investors are prone to this bias 

(Dacey and Zielonka, 2008, Odean, 1998).  A prospect theory based explanation of the 

disposition effect posits that investors are more risk seeking towards stocks held at a loss and 

are risk seeking towards stocks held at a gain due to the ‘S’ shaped value (utility) function  

(Dacey and Zielonka, 2008).  However, recently, researchers have questioned whether prospect 

theory alone can explain the disposition effect (Barberis and Xiong, 2009, Hens and Vlcek, 2005, 

Lehenkari, 2012, Summers and Duxbury, 2012).  Lehenkari (2012) investigated differences in 

the amount of disposition effect for investors who were gifted or inherited stocks and those 

investors who purchased stock themselves.  She finds a more pronounced disposition effect for 

those investors who purchased the stocks than those who inherited the stocks.  Similar results 

were found by Summers and Duxbury (2012) in experimental research where they could also 

measure participants’ level of regret and elation to ascertain the relationship between 

emotions and disposition effect.  They find that regret, induced by buying a stock that 

subsequently decreased in value, was necessary for participants to retain losers.  However, 

elation, induced by buying a stock that subsequently increased in value, did not lead to 

participants selling winners.  Their research suggests that the role of emotions is integral to the 

behavioural pattern of the disposition effect. 

There are strong empirical findings verifying that stock market investors exhibit the disposition 

effect (Boolell-Gunesh et al., 2009, Brown et al., 2006, Chen et al., 2007, Dhar and Zhu, 2006, 

Feng and Seasholes, 2005, Odean, 1998, Seru et al., 2010, Shapira and Venezia, 2001).  Shapira 

and Venezia (2001) found substantial variability in the extent to which investors exhibit this bias 

and estimate that one in five investors do not trade with the disposition effect.  Research on 
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the disposition effect has moved from proving evidence of the bias (Odean, 1998) to predicting 

individual differences in exhibiting this bias. Three variables which have been shown to 

decrease the disposition effect are sophistication, experience  and use of automatic trading 

strategies (Boolell-Gunesh et al., 2009, Brown et al., 2006, Chen et al., 2007, Dhar and Zhu, 

2006, Feng and Seasholes, 2005, Grinblatt and Keloharju, 2001, Seru et al., 2010, Shapira and 

Venezia, 2001, Nolte, 2012).  Each of these variables is reviewed below. 

Investor sophistication has not been clearly defined in the disposition effect literature and the 

demographic variables used as proxies to measure sophistication differ significantly between 

studies.  However, the following proxies have been used to measure sophistication and are all 

related to a decrease in the disposition effect: investors with a professional occupation (Shapira 

and Venezia, 2001); corporate investors (Brown et al., 2006, Grinblatt and Keloharju, 2001); 

wealth proxies such as income, portfolio value, average trade size (Brown et al., 2006, Chen et 

al., 2007, Seru et al., 2010);  male investors (Feng and Seasholes, 2005); portfolio diversification 

(Boolell-Gunesh et al., 2009, Feng and Seasholes, 2005); location (Chen et al., 2007); and 

whether investors trade complex products such as warrants and options (Boolell-Gunesh et al., 

2009, Seru et al., 2010).  An interesting finding by Nolte and Voev (2011) is that portfolio 

performance influences the disposition effect differently for sophisticated investors as 

measured by trade size.  They find that investors who traded in larger values were more likely 

to close off positions when the performance of their portfolio was at a gain.  However, traders 

who traded in smaller values did not show the same behavior.  They suggest that this may show 

that less sophisticated investors are more likely to narrow frame investment decisions. 
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An investor’s experience is also measured in different ways.  One measure is an investor’s 

number of cumulative trades (Feng and Seasholes, 2005, Seru et al., 2010) and another is their 

number of years of investment experience (Chen et al., 2007).  Feng and Seasholes (2005) show 

that, as new investors trade, they significantly increase their trading of losses and slightly 

decrease their trading of gains.  Seru et al., (2010) found that experience measured in 

cumulative trades and years of investment experience decreased the disposition effect, 

although a very weak effect for experience in years was reported.  However, Chen et al., (2007) 

showed that investors with more years of investment experience exhibited less disposition 

effect.   

In relation to automatic trading strategies, Linnainmaa (2010) found that the use of sell limit 

order strategies which were placed above the price of a stock, increased the amount of 

disposition effect exhibited by investors. Linnainmaa (2010) argues that when sell limit orders 

are placed above the current stock price, investors are more likely to sell winners because an 

increase in price is needed to activate this limit order.  However, Nolte (2012) investigated the 

influence that both take profit and stop losses limit order strategies have on the disposition 

effect of foreign exchange traders.  Take profit are similar to sell limit orders because they are 

placed above the current asset price and are used to secure profits, whereas stop losses are set 

below the current asset price to limit losses.  Nolte (2012) found that an inverse disposition 

effect existed for trades of small profit and loss and that this occurrence is attributable to 

traders’ use of stop loss and take profit strategies.  In contrast, traders who closed positions 

using market orders exhibited the disposition effect, as has been shown in other studies on 

traders (Locke and Mann, 2005).   
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In this paper we consider the use of two automatic trading strategies; an ordinary stop loss and 

a tracking stop loss.  An ordinary stop loss involves setting a stop loss so that if the daily price 

drops to a level predetermined by the investor, a sale is automatically triggered.  A tracking 

stop loss tracks the price of a stock if it increases, recording its highest peak.  If the price drops 

from this peak by an amount predetermined by the investor, a sale is triggered.  Both types of 

stop losses can be used to sell gains and losses.  However, an ordinary stop loss is more suitable 

to sell stocks at a loss because the investor has a predetermined loss exit-strategy.  A tracking 

stop loss is more suitable to sell stocks at a gain because the investor can delay selling, then 

wait to see if the stock’s price continues to increase.  Stop losses are free to use and easily 

implemented by investors. 

 

The relationship between stop loss use, investor sophistication and experience has not been 

fully explored in the literature and it is unknown whether sophisticated and experienced 

investors use stop loss strategies.  As Nolte (2012) outlines, the use of these automatic 

strategies could be interpreted either as quite sophisticated and experienced trading since the 

trader is aware of the fact that she will not be able to follow the market and thus ensures her 

positions against periods of high risk. On the other hand, it can be interpreted as uninformed 

and inexperienced trading since the trader does not expect to have access to private 

information which she could exploit with an active trading strategy.   
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From an academic perspective, earlier research on stop losses has focused on showing that 

stop loss strategies are a non-optimal investment strategy (Dybvig, 1988b, Gollier, 1997).  

Dybvig (1988b) uses a binomial, four-period model, in which stocks double or halve value in 

each period, in order to compare a stop loss strategy to a strategy determined by his payoff 

distribution pricing model (Dybvig, 1988a).  Whilst the payoff distributions for both strategies 

are of equal values, the stop loss strategy is shown to be less efficient because an initial drop in 

price exits this strategy from an optimal investment path.   Similarly, Gollier (1997) examines a 

stop-loss strategy which invests 100% in equity provided the stock price remains above a lower 

limit threshold, and otherwise 100% in cash.  He finds that this strategy is inefficient due to 

second-order stochastic dominance.  More recently, research has begun to show benefits of 

stop loss use for investors.  Lei and Li (2009) applied stop loss strategies to stock historical data 

and found that stop losses strategies do not hurt portfolio performance and can be useful at 

reducing losses.  Annaert et al., (2009) show that stop loss strategies produce a reduced 

amount of return but argue that this is compensated for by lower amounts of risk.  Dichtl and 

Drobertz (2011) investigate whether the use of stop losses is optimal when investors have risk 

preferences in accordance with cumulative prospect theory (Tversky and Kahneman, 1992).  

They find that if an investor’s value function is in accordance with prospect theory then stop 

loss use is optimal for these investors.   

In sum, research using stock market investors has shown that sophistication and experience 

reduce susceptibility to the disposition effect and research on foreign exchange traders has 

shown that use of stop losses and profit taking strategies invert the disposition effect.    In this 

paper we extend previous research by examining the relationship between investor use of stop 
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losses, their sophistication and their experience.  We also examine the amount of influence on 

the disposition effect that each of three variables have.  In the next section we outline the 

research hypotheses.  

2.1 Hypotheses 

The first hypothesis that the paper addresses is evidence of the disposition effect for UK stock 

market individual investors.  The authors know of no research into the disposition effect of 

stock market investors living in the UK but there are findings in many other countries which 

show that the disposition effect occurs (Bonanno et al., 1995, Leal et al., 2010, Odean, 1998, 

Seru et al., 2010, Shapira and Venezia, 2001, Talpsepp, 2010) .  Thus we hypothesise that: 

Hypothesis 1: UK investors will be prone to the disposition effect 

We also anticipate that investors in the UK will show similar behavioural characteristics to those 

shown by investors studied in other research where investor sophistication and experience 

reduce the disposition effect.  Thus we hypothesise that: 

Hypothesis 2: Sophisticated investors will exhibit less disposition effect than non 

sophisticated investors  

Hypothesis 3: Investors with more experience will exhibit less disposition effect than 

investors with less experience 

Nolte (2012) shows that stop losses have a strong influence on the disposition effect and we 

anticipate that investors who use them will be less prone to this bias.  We also analyse stop loss 

use at the transaction level and compare those transactions which involve stop losses to those 
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transactions which do not.  We expect that the transactions which involve stop losses will 

reverse the disposition effect.  We hypothesize the following: 

Hypothesis 4: Investors that use stop losses will exhibit less disposition effect than 

investors that do not 

Hypothesis 5: Transactions in which stop losses are used will invert the disposition effect 

In addition to the influence of stop losses on the disposition effect, there are still unanswered 

questions about why stop losses are used.  One possibility is that investors who believe they are 

susceptible to the disposition effect may use stop losses to correct this behaviour.  A method of 

investigating whether this occurs is to determine if investors who use stop losses are more 

susceptible to the disposition effect when not using them.  Therefore, we hypothesise the 

following: 

Hypothesis 6: Investors who use stop losses will be more susceptible to the disposition 

effect when not using them, in comparison to other investors 

3. Data set and methodology 

The trading data used in this analysis were provided by a brokerage company that provides an 

online and telephone trade execution service to investors in the UK.  The trading data set 

contained 7,828 investors who completed 395,998 trades over the period 04/07/2006 to 

14/12/2009.  The observation period covers 875 trading days.  Investors were selected on the 

basis that they had made at least two trades per year over the observation period, had an email 

address and that they had given consent to the brokerage firm that they could be contacted for 
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marketing purposes.  The trading data contained the following information for each trade: date 

of trade, time of trade (in hours:mins:seconds),  International Securities Identification Number 

(ISIN) code of each security, gross purchase amount, gross sale amount, commission, quantity, 

total amount, investor identifier, gender, age (as at 14/12/2009), account type and a stop loss 

indicator.   

In order to analyse the trading records, only relevant trades were kept and irrelevant trades 

were removed.  We briefly outline the trades removed here.  We omitted the following: 2,636 

investors because they never completed a sale transaction, 253 investors because they were 

missing demographic information and 4 investors because they were younger than 18 years old 

(at the request of the brokerage firm).  This left 5,085 investors who completed 318,504 trades, 

which we filtered into roundtrip positions.  Like Feng and Seasholes (2005), we define a 

roundtrip transaction as beginning with the first purchase transaction and ending when the 

final sale returns the share balance to zero.  To filter the roundtrip positions, we first ordered 

the data by investor, stock, account classification, date and time.  After this, we removed all the 

sales transactions for which there was not an earlier purchase and then all buy and hold 

transactions where there was no sale transaction.  With the remaining transactions, for each 

stock in each account classification held by each investor, we created a share holding balance 

which increased when purchases were made and decreased when sales were made.  

Roundtrips were identified when the account balance returned to zero due to a sale transaction.  

Filtering the data into roundtrips reduced the number of investors to 4,344 and trades to 

173,681.  Accurate price data was missing on 1.25% of roundtrip transactions and these were 

removed.  There were 137 roundtrip transactions which involved warrants and these were 
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removed because we investigate the disposition effect on ordinary stock purchases.  The final 

sample consisted of 4,328 investors who had completed 65,096 roundtrip positions using 

169,608 trades. 

In addition to the trading data, price data on each stock and market data over the period July 

2006 – December 2009 was obtained using Datastream.  The price data on each stock was 

downloaded for each day and all stocks priced in foreign currencies were converted into 

pounds sterling (GBP). Information about each stock’s corporate actions (splits, consolidations, 

rights issues, scrip dividends) was obtained via Datastream and adjusted for in the trading data.  

This adjustment involved creating an artificial trade to represent any change in each investor’s 

holding and any value in GBP they had invested.  Including this trade updated an investor’s 

holding and purchase price to reflect the influence of the corporate action.  Whilst there were a 

number of corporate actions over the observation period, the adjustments only pertained to 

1% of the trades in the final sample.  This shows that corporation actions did not significantly 

influence our analysis.   

The final step in data preparation was to combine the price data and roundtrip transactions 

into one large dataset.  This dataset tracked each roundtrip position from the day of purchase 

to the day of first sale, making daily calculations of gains and losses.  We used Stata 11 to 

analyse the final data and the model adopted is outlined next. 

 

3.1 Methodology  
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The method of calculating the disposition effect is based on a survival analysis method 

described by Feng and Seasholes (2005).  For each day after an investor purchases a stock, we 

calculate the conditional probability of that stock being sold.  A proportional intensity model 

that allows for time varying covariates is used to calculate this conditional probability.  As we 

leave the baseline hazard unspecified, our model becomes an extended Cox (1972) 

proportional hazard model. In our model, time t is measured in days that the UK stock markets 

are open.  When an investor i first purchases a stock, this starts a position k where t = 1.  A 

position ends on the first sale of this stock, which is tracked by a sale dummy variable taking the 

value of 0 when stocks are held and 1 on the day of sale.  The sale variable is used to track the 

survival time T for each position k.  The extended Cox model is defined as:  

ℎ𝑖,𝑘�𝑡| 𝑋,𝑍(𝑡)� = ℎ0(𝑡)e�∑ 𝛽𝑖
𝑝
𝑖=1 𝑋𝑖+ ∑ 𝛿𝑖

𝑝
𝑖=1 𝑍𝑖(𝑡)�     (1) 

Where ℎ𝑖,𝑘�𝑡| 𝑋,𝑍(𝑡)� refers to the probability of position k being sold by investor i at time T, 

conditional on it not being sold at time t.  ℎ0(𝑡) is the baseline hazard function, which is left 

unspecified in a Cox model as it is semi-parametric.  Calculations to estimate 𝛽𝑖 and 𝛿𝑖  are made 

using maximum likelihood.  In our model we have both time independent variables 𝑋𝑖 that 

remain fixed over time and time dependent variables 𝑍𝑖(𝑡) that are allowed to change for each 

change in t.  All dependent variables in our analysis take on positive values but one control 

variable, market returns, does not.  For the dependent variables, we report their influence 

using hazard ratios.  Their interpretation is as follows: a hazard ratio of 1 means that the 

covariates have no effect; a hazard ratio below 1 means that the covariates decrease the 

conditional probability of selling stocks, relative to baseline; and a hazard ratio above 1 means 
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that the covariates increase the conditional probability of selling stocks, relative to baseline.   A 

representation of the baseline hazard rate over time is outlined in Figure 1.  It shows a steep 

decline over the first 100 days, with over 75% of the roundtrips being sold, followed by a 

gradual decline over the remaining time.  Now we briefly outline how the variables are used in 

the analysis and will later outline the exact models used to test our research hypothesis. 

3.2 Variables 

Time: Time is the dependent variable in our analysis and is measured in the number of days a 

stock is held until it is first sold.  We only consider days that the UK stock exchange is open for 

trading, with weekends and public holidays being excluded.  In total there 875 trading days over 

the observation period but the longest roundtrip transaction is 852 days.  Trading days, instead 

of hours or weeks, are an apt measurement of time because they are continuous throughout 

out our data set.  For instance, there are low proportions of intraday roundtrips (4.14%) and 

one day roundtrips (6.43%) with most roundtrips are longer than five days (78.03%).  Also sales 

occur on the majority of days within the data.  The risk set used to make our calculations 

consists of 852 days and at least one sale occurred on 775 of these days.  Figure 1 provides a 

graphical representation of sales over the analysis time.    

Gains and losses:  A share weighted average purchase price (SWAPP) is adopted as the 

reference point by which gains and losses are calculated.  We use the same method as Grinblatt 

and Keloharju (2001) which updates the SWAPP as additional purchases are made within 

roundtrip transactions.  Gains and losses are determined by comparing the SWAPP to stock 

market prices on a daily basis.  Specifically, a gain is measured by comparing the SWAPP to the 
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stock’s daily low price; if the SWAPP is below the daily low, then it is considered a gain (i.e. it 

could have been sold at any time that day as a gain).  A loss is measured by comparing the 

SWAPP to the stock’s daily high price; if the SWAPP is higher than the daily high, it is considered 

a loss.  From these calculations two time varying covariates were created to analyse the 

disposition effect: the trading loss indicator (TLI) and the trading gain indicator (TGI).  For the 

TLI, if a stock is held or sold at a loss on any day, then it takes a value of one, otherwise a value 

of zero.  For the TGI, if a stock is held or sold at a gain, then it takes a value of one, otherwise a 

value of zero.   

We compare SWAPP to market prices obtained from Datastream on the days that stock is held 

and sold, even though the trading data has more accurate selling prices.  In earlier analyses, we 

used market prices on the days stock was held but trading data on the day that stock was sold.  

However, this approach created an artefact in our analysis due to the differences in accuracy of 

the data.  It made it seem that stocks were often held at break-even, yet very rarely sold at 

break-even, and in turn, increased our hazard ratios.  Thus we use market data when stock was 

held and when stock was sold, in order to overcome this issue.  A representation of the hazard 

rates for selling stocks at a gain, loss and break-even are outlined in Figure 2.   Break-even 

refers to those stocks which could not be classified as a gain or a loss.  The curve depicting 

stocks sold at a loss is the highest curve.  It also has a more gradual decrease over time when 

compared to stocks sold at a gain and at break-even.   

Sophistication: We base our proxy on those investors who trade more complex financial 

products because these investors have demonstrated more knowledge of finance than other 
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investors (Boolell-Gunesh et al., 2009, Seru et al., 2010).  Some of the investors in this data set 

are entitled to trade warrants on margin.  To earn this entitlement they must pass a screening 

process with the brokerage firm.  This involves testing their financial understanding using an 

appropriate assessment (refer to Appendix 1) outlined by the Financial Services Authority 

(2009) and analysing their previous investment decisions.  The trading data was analysed to 

identify if an investor had traded warrants because this demonstrates that they had 

successfully passed the appropriate assessment.  Based on this, a dummy variable was created 

where sophisticated investors take the value of one and non-sophisticated investors take the 

value of zero.  There are 79 investors classified as sophisticated and they completed 2,808 

roundtrip positions.  A limitation of this measure is that there are only a small number of 

sophisticated investors but these investors completed a sufficient number of transactions to 

show a significant effect in the analysis.  Furthermore, the results for this proxy of 

sophistication were more significant than others, such as value of trade or frequency of trades 

which, when tested, did not have a significant effect on the disposition effect.   

Experience:  The proxy we use for experience is the investor’s age as this is the only possible 

proxy for experience available in the trading data.  This proxy has both limitations and 

advantages because it does not directly reflect investment experience but could represent 

other factors influencing investment decision making.  For example, older investors may have 

different attitudes towards money when they are nearing or in retirement.  Older investors also 

tend be wealthier as they have had longer to build savings.  Despite these factors, Korniotis and 

Kumar (2011) found that older investors display weaker behavioural biases than younger 

investors, suggesting the measure has relevance for the kind of experience we are trying to 
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measure.  Also age better encapsulates life experience, as well as investment experience, that 

investors use in investment decisions and may steer them away from the disposition effect.  

The investors’ ages ranged from 19 to 95, but to make interpretation easier, the variable was 

centred on the lowest value and then scaled to a lower range.  Thus, 18 was subtracted from all 

values and then the covariate was divided by 10.  The hazard ratios reported below reflect the 

change that an increase of 10 years in age has on the disposition effect.   

 

Stop loss user: The trading data contain a record of each sale which took place using a stop loss 

(ordinary and tracking stop losses).  The brokerage house did not provide us with data on other 

types of automatic trading strategies such as take profit orders.  This variable includes only stop 

losses that were triggered.  If an investor set and subsequently removed a stop loss, it would 

not be included in this variable.  Also, we cannot differentiate between the two types of stop 

losses, ordinary or tracking stop loss, used by investors.  Nonetheless, it was possible to 

distinguish those investors who used a stop loss from those investors who did not use them, 

over the sample period.  A dummy variable was created where stop loss users take the value of 

one and non-stop loss users take the value of zero.  There are 1,027 investors who used stop 

losses and 3,301 investors who never used a stop loss during the sample period.   

Stop loss transaction: The stop loss transaction variable was created through analysis of the 

roundtrip positions; where all roundtrip positions that involved a stop loss take the value of one 

and all other transactions take the value of zero.  There are 6,040 roundtrip transactions that 

include stop losses and 59,056 that do not.   
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Control variables: The financial crisis occurred during the observation period of this analysis, 

with the UK stock markets going through a bear period followed by a bull period.  We use two 

five-day moving averages based on the FTSE 100 to control for stock sales in relation to market-

wide activity: market returns and market volumes.   

Variables not reported:  Two other factors which could influence the disposition effect are tax 

loss selling (Odean, 1998) and gender (Feng and Seasholes, 2005, Shu et al., 2005).  Tax loss 

selling was measured by creating a time varying covariate to represent stocks held at a loss in 

the month before end of the tax year.  Tax exempt accounts, such as individual savings 

accounts (ISA) and self-invested pension plans (SIPP), were not included in this variable.  The 

variable took the value of one if a stock was held or sold at a loss in the month before tax year 

end and the value of zero otherwise.  We analysed whether this variable would increase the 

chance of a stock being sold, but found that it decreased the probability of stock being sold.  

Thus, it showed the opposite influence of tax loss selling and was not included in our analysis.  

A possible reason that tax loss selling was not prominent in the data is that the tax free 

allowance for capital gains tax was £8,800, £9,200 and £9,600 for the 2007, 2008 and 2009 tax 

years, respectively  (HMRC, 2012).  This may be too high to make capital gains a concern as 75% 

of the investors’ trades were below £2,400 on average.  Similarly, we were interested in the 

influence that gender may have on the disposition effect.  However, results found very little 

differences in the disposition effect based on gender, and using gender as a control variable did 

not influence our findings.  We have omitted the results for tax loss selling and gender and 

omitted them as control variables, for brevity.   
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Hautsch (2012) shows that autocorrelations occur within high frequency financial data, with 

high (low) volumes of trading activity predicting adjacent high (low) trading activityP0F

1
P.  We 

tested this influence in our data using two variables.  The first variable, previous roundtrip 

duration, was the duration of each investor’s previous roundtrip, with the first roundtrip 

defaulting to the mean duration of her roundtrips.  Thus, we tested whether the duration of an 

investor’s previous roundtrip would predict current selling tendency.  The second variable, 

previous day’s number of sales, tested for path dependence between investors.  It was defined 

as the total number of sales that occurred on the previous trading day.  This variable was 

calculated from the data set before any transactions were filtered (filtered refers to the process 

of removing transactions outlined in Section 3 of this paper).  When each of these variables was 

analysed by itself, it was significant. The previous roundtrip duration had a hazard ratio of h(t) 

= .9942, p<.01 z= -111.36 and the previous day’s number of sales had a hazard ratio of h(t) = 

1.0038, p<.01 z= 117.33.  However, when included as controls, these variables did not 

significantly change the results and findings presented.  As a result, they have not been 

included in this analysis.  Full details of this supplementary analysis are available from the 

corresponding author. 

3.3 The Model  

Now that the variables have been outlined, we return to the model used in our analysis.  In 

section 4.2 below we test for disposition effect on average.  The left hand side of the equation 

is equal to zero every day an investor holds a roundtrip position and one if the investor sells.  
                                                           
1 The authors thank the anonymous reviewer for the suggestion that path dependence might influence 
our trading data. 
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The right hand side contains the TLI or TGI and the market control covariates.  The survival 

analysis models used to test for the disposition effect on average contain the trading loss 

indicator 𝛿𝑖𝑇𝐿𝐼(𝑡) or the trading gain indicator 𝛿𝑖𝑇𝐺𝐼(𝑡) to ascertain whether these covariates 

influence the conditional probability of a stock being sold.  We also include the market control 

covariates, market volume 𝛿𝑖𝑀𝑣𝑜𝑙(𝑡) and market return 𝛿𝑖𝑀𝑅𝑒𝑡𝑢𝑟𝑛(𝑡).  All investors’ i positions 

k are pooled together so that we learn what the disposition effect is on average.  The models 

are: 

ℎ𝑖,𝑘�𝑡| 𝑍(𝑡)� = ℎ0(𝑡)e� ∑ 𝛿𝑖
𝑝
𝑖=1 𝑇𝐿𝐼(𝑡)+𝛿𝑖𝑀𝑣𝑜𝑙(𝑡)+ 𝛿𝑖𝑀𝑅𝑒𝑡𝑢𝑟𝑛(𝑡) �     (2) 

ℎ𝑖,𝑘�𝑡| 𝑍(𝑡)� = ℎ0(𝑡)e� ∑ 𝛿𝑖
𝑝
𝑖=1 𝑇𝐺𝐼(𝑡)+𝛿𝑖𝑀𝑣𝑜𝑙(𝑡)+ 𝛿𝑖𝑀𝑅𝑒𝑡𝑢𝑟𝑛(𝑡) �    (3) 

In sections 4.3 to 4.7 we assess whether certain variables influence susceptibility to the 

disposition effect.  This involves using a pooled approach as outlined above but extra covariates 

are included.  These covariates are interacted with the TLI or TGI and also included by 

themselves.  The interaction of the covariate with the TLI or TGI shows whether the covariate 

increases or decreases investors’ propensity to sell stocks at a loss or a gain.  The inclusion of 

each covariate by itself controls for the influence that this covariate has on the propensity to 

sell stock in general.  For example, investors who are sophisticated and use stop losses tend to 

trade more frequently than those who don’t and we want to control for this influence.  As an 

example of the model, let us consider sophistication and how it influences the conditional 

probability of selling losses.  The equation used is: 

ℎ𝑖,𝑘�𝑡| 𝑋,𝑍(𝑡)� = ℎ0(𝑡)e� ∑ 𝛿𝑖
𝑝
𝑖=1 𝑇𝐿𝐼(𝑡)+𝛿𝑖𝑇𝐿𝐼x𝑆𝑜𝑝ℎ(𝑡)+ 𝛽𝑖𝑆𝑜𝑝ℎ+𝛿𝑖𝑀𝑣𝑜𝑙(𝑡)+ 𝛿𝑖𝑀𝑅𝑒𝑡𝑢𝑟𝑛(𝑡) �  (4) 
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All results are relative to the baseline hazard function represented as ℎ0(𝑡).  𝛿𝑖𝑇𝐿𝐼(𝑡) shows 

whether stocks trading at a loss have an increased or decreased probability of being sold; 

𝛿𝑖𝑇𝐿𝐼x𝑆𝑜𝑝ℎ(𝑡) shows the influence that sophistication has on selling stocks at a loss; and  

𝛽𝑖𝑆𝑜𝑝ℎ controls for the direct influence sophistication has on selling stocks in general.  Finally, 

𝛿𝑖𝑀𝑣𝑜𝑙(𝑡) and 𝛿𝑖𝑀𝑅𝑒𝑡𝑢𝑟𝑛(𝑡) control for market wide influences on the conditional probability 

of selling.   

<insert Figures 1 to 4 around here> 

3.4 Test of the proportional hazard assumption and goodness of fit 

All fixed covariates were tested for the proportional hazard assumption using graphical tests.  

Graphs of scaled Schoenfeld (1982) residuals over analysis time were used for continuous 

variables and log (-log) plots of the survival function over log analysis time were used for 

dummy variables (Kleinbaum and Klein, 2005).  The graphs were omitted for brevity.  The only 

variable which violated the proportional hazard assumption was age. This violation was 

corrected by including an additional control variable of age interacted with log time.  

We also tested goodness of fit using graphical tests of the Cox-Snell residuals (Cox and Snell, 

1968).  This involved running an analysis of the TLI with all other covariates and the TGI with all 

other covariates to obtain Cox Snell residuals for these models.  These residuals are then 

plotted alongside a Nelson-Aalen cumulative hazard estimator based on the same data (Cleves 

et al., 2008).  The goodness of fit graphs for the TLI with explanatory covariates and the TGI 

with explanatory covariates are outlined in Figure 3 and Figure 4, respectively.  Goodness of fit 

is shown by two matching lines (Cleves et al., 2008).  Our graphs show strong goodness of fit up 
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to Cox-Snell residuals with values of 6, with slight variation above these values.  Despite this 

variation, these graphs show goodness of fit between a Cox model and our data for two reasons.  

Firstly, some variability in the right hand tail of these graphs is to be expected (Cleves et al., 

2008) and secondly, the vast majority of roundtrip transactions have Cox-Snell residuals below 

the value of 6.  For the TLI analysis there are 64,898 out of 65,096 roundtrip transactions that 

have Cox-Snell residuals below 6 and for the TGI analysis there are 64,884 out of 65,096 

roundtrip transactions that have Cox-Snell residuals below 6.  Overall, these graphs provide 

evidence that there is very little misfit for a Cox model with our data. 

 
4.  Analysis 

4.1 Descriptive statistics 

Table 1 outlines the descriptive statistics for the final sample of investors and their transactions 

in our analysis.  The mean number of times an investor traded during the observation period is 

70.72 and the mean value of their trades is £2163.21.  Both of these statistics were positively 

skewed with a small number of investors trading frequently and with large values.   23.73% of 

the investors used stop losses at least once during the observation period and 1.83% of the 

investors can be defined as sophisticated because they traded warrants.  Finally, the average 

age of the investors was 51.65 and this variable was close to a normal distribution. 

Descriptive statistics on sophisticated investors and stop loss users investors are also outlined in 

Table 1.  These statistics are presented as an overview of the relationships between the 

constructs for our sample. They are not presented to draw inferences about the population of 
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investors who use stop loss or trade warrants because our data and methodology do not permit 

such conclusions.  Nonetheless, the statistics show some information about the constructs we 

are analyzing.  Firstly, stop loss use and sophistication are not mutually exclusive but the 

statistics cannot show that a higher or lower proportion of sophisticated investors use stop 

losses (χP

2 
P= 1.42, p = .16).  One noticeable relationship is with age in that stop loss users tend to 

be younger than other investors (t = 5.84, p<.01) and sophisticated investors tend to be older 

than other investors (t = -1.98, p<.05).    This suggests that stop loss users may have less 

experience and that sophisticated investors have more experience.  This would fit with a 

depiction of stop loss use as a learning tool for novice investors to manage risk.  Both stop loss 

users and sophisticated investors sell stocks more frequently than other investors.  It may seem 

more likely that stop losses users would trade less than other investors as it is a passive 

strategy.  An alternative way of understanding this is that the more times an investor sells 

stocks, the more opportunities she has to use stop losses.  Finally, there seems to be a smaller 

proportion of female investors that use stop losses and that are sophisticated.  This finding may 

also be related to trading frequency as research suggests that female investors trade less 

frequently than male investors (Barber and Odean, 2001).   

4.2 Disposition effect  

In this section we test for the disposition effect on average using equations 2 and 3 outlined in 

section 3.3 above.  Tests are completed by analysing all positions from all investors together.  

The left hand side of the equation takes the value of 0 every day a stock is held and the value of 

1 on the day of the first sale.  On the left hand side we include the TLI or TGI and two market 
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control variables.  The results in Table 2 show evidence of the disposition effect for this sample.  

The data demonstrates evidence of the disposition effect because the TGI hazard ratio is 

significantly above 1 and the TLI hazard ratio is significantly below 1.  The hazard ratio can be 

interpreted as showing that stocks trading at a gain have a 67.04% (1 – 1.6704 = -.6704) 

increased conditional probability of being sold, relative to baseline.  Stocks trading at a loss 

have a decrease in the conditional probability of being sold of 40.82% (1-.5918= .4082), relative 

to baseline.  This evidence supports hypothesis 1, that individual investors in this sample of UK 

investors exhibit the disposition effect.   

<insert Table 2 around here> 

4.3 Sophistication  

In this section and the following four we report the influence of certain variables on the 

disposition effect.  The method of doing this is outlined in section 3.3 and an example of the 

model is shown in equation 4 above.  Each variable of interest is included in the model and 

interacted with the TLI and TGI.  These interactions show the influence that the variable has on 

the propensity to sell stock either at a gain or at a loss.  By including the variable by itself, we 

control for the general influence that the variable has on the propensity to sell stock.  The same 

market-based control variables are also included to control for market wide influences on 

selling stock.  Table 3 contains the results of the regression which combines the TLI with 

sophistication.  Regression 1 shows that the hazard ratio for the TLI interacted with 

sophistication is significantly above 1.  This shows that sophisticated investors are 10.78% (1-

1.1078 =-.1078) more likely to sell stocks at a loss, relative to baseline.  Table 4 regression 1 
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shows the hazard ratio for the TGI interacted with sophistication.  The hazard ratio is 

significantly below 1 showing that sophistication decreases the conditional probability of selling 

stocks at a gain by 13.52%% (1-.8648 = .1352), relative to baseline.  This confirms hypothesis 2, 

that sophisticated investors exhibit less disposition effect than other investors.   

4.4 Experience 

The influence of age on the TLI and TGI are outlined in regression 2 of Table 3 and regression 2 

of Table 4, respectively.  A 10 year increase in age increases the probability of selling stocks at a 

loss by 10.01% (1 -1.1001 = -.1001), relative to baseline.  Also, a 10 year increase in age 

decreases the probability of selling stocks at a gain by 5.68% (1-.9432= .0568), relative to 

baseline.  Overall, this analysis confirms hypothesis 3, that experienced investors are less prone 

to the disposition effect. 

<Insert Table 3 around here> 

<Insert Table 4 around here> 

 

4.5 Stop loss users  

Regression 3 in Table 3 shows the influence that being a stop loss user has on the probability of 

selling stocks at a loss.  The hazard ratio for the interaction between the TLI and stop loss user 

indicates that being a stop loss user increases the conditional probability of selling stocks at a 

loss by 14.27% (1-1.1427 =-.1427), relative to baseline.  Regression 3 in Table 4 shows that 

being a stop loss user significantly decreases the probability of selling stocks at a gain.  The 
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hazard ratio for the interaction between the TGI and stop loss user indicates that being a stop 

loss user decreases the conditional probability of selling stocks at a gain by 25.57% (1 - .7443 

= .2557), relative to baseline.  These results support hypothesis 4, that being a stop loss user 

decreases the disposition effect.  15T   Also, these hazard ratios for stop loss users are of a similar 

value to that of sophisticated investors. 

Regression 4 in Table 3 and regression 4 in Table 4 combine sophistication, age and stop loss 

user to ascertain whether each covariate explains unique variance in the disposition effect.  In 

relation to the TLI, the interaction of the TLI with age and with stop loss user both increase the 

probability of selling stocks at a loss, relative to baseline, but the interaction with sophistication 

does not have a significant influence.  A relationship between sophistication and age exists 

where sophisticated investors tend to be older.  This could cause the TLI interaction with 

sophistication to be insignificant when age is also considered.  In addition, there are a small 

number of roundtrips completed by sophisticated investors in this sample (n= 2,808), and this 

could also cause the insignificant result.  In relation to the TGI, the results in regression 4 of 

Table 4 show that all the variables which interacted with the TGI significantly decrease the 

probability of selling stocks at a gain, relative to baseline.   

A comparison between the influence that sophistication, stop loss use and experience have on 

the disposition effect can be made by comparing the hazard ratios in regression 4 in Table 3 and 

Table 4.  In relation to selling stocks at a loss, experience and stop loss use have a large 

influence.  A 10 year increase in age increases the conditional probability of selling stocks at a 

loss by 11% and stop loss use increases it by 17%, whereas sophistication increases it by 4%, 
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relative to baseline.  For selling stocks at a gain, stop loss use has a large influence, decreasing 

the conditional probability of selling stocks at a gain by 26%.  Whereas, sophistication decreases 

the selling of stocks at a gain by 10% and a 10 year increase in age decreases the selling of 

stocks at a gain by 5%, relative to baseline.   

4.6 Stop loss transactions 

Table 5 contains the analysis for the amount of disposition effect exhibited in stop loss 

transactions.  It shows that the interaction between the TLI and stop loss transactions is 

significantly above 1 and increases the trading of stocks at a loss by 115.46% (1 - 2.1546 = -

1.1546).  The interaction between the TGI and stop loss transaction is significantly below 1 and 

decreases the trading of stocks at a gain by 47.75% (1- .5225= .4775).  As stop loss transactions 

have a large influence, it worth estimating the disposition effect for these transactions.  To do 

this we multiply the TLI hazard ratio with the TLI interacted with the stop loss transactions 

hazard ratio, and multiply the TGI hazard ratio with the TGI interacted with the stop loss hazard 

ratio.  It shows that the disposition effect is reversed.  The combined hazard ratio for the TLI of 

stop loss transactions is 1.1854 (.5502 x 2.1546) and the combined hazard ratio of the TGI of 

stop loss transactions is .15T924615T (1.7695x .5225) .  Thus, stocks trading at a loss have an increased 

chance of being sold and stocks trading at gain have a decreased chance of being sold, when a 

stop loss is used to sell the stock. These results support hypothesis 5, that transactions which 

involve stop losses invert the disposition effect.  The results are similar to Nolte (2012) who 

showed that use of stop losses and of take profit strategies by foreign exchange traders 

inverted the reluctance to realise losses and the eagerness to realise gains. 



28 
 

<insert Table 5 around here> 

4.7 Stop loss users without stop loss transactions 

In light of the above findings, an interesting avenue to explore in the data is whether the 

process of using a stop loss reduces the disposition effect or whether the investors who use 

stop losses are less prone to the disposition effect.  To investigate this research question in the 

data, the stop loss roundtrips were removed decreasing the number of roundtrip positions to 

59,056.  Then the same model as reported in section 4.5 above is used to investigate the stop 

loss users’ inclination towards the disposition effect when their stop loss transactions are not 

considered (refer to Table 6). The hazard ratio for the interaction between the TLI and stop user 

variable is significantly below 1, indicating that stop loss users have a greater propensity to hold 

stocks at a loss than other investors, when their stop loss transactions are excluded.  In relation 

to selling stocks at a gain, the hazard ratio for the interaction between the TGI and stop loss 

user is significantly below 1.  This indicates that stop users are less likely than other investors to 

sell stocks at a gain, when their stop loss transactions were excluded.  The amount of influence 

that the stop loss user covariate has on reducing selling of stocks at a gain is less when stop loss 

transactions are removed (h(t)= .8419, p<.01), than when these transactions are included 

(h(t)= .7443, p<.01). This shows that stop loss users are less inclined to sell stocks at a gain 

when using stop loss transactions than when not using them.  Overall, this evidence only 

partially supports hypothesis 6, because stop loss users are only more susceptible to the 

holding stocks at a loss aspect of the disposition effect when their stop loss transactions have 

been removed, and less susceptible to selling stocks at a gain.   
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<insert Table 6 around here> 

5. Summary 

Research has shown that the disposition effect is exhibited by investors in many different 

countries such as the USA (Odean, 1998), China (Feng and Seasholes, 2005),  Israel (Shapira and 

Venezia, 2001), France (Boolell-Gunesh et al., 2009), Portugal (Leal et al., 2010) and Finland 

(Seru et al., 2010).  Our research shows that investors in the UK are also prone to this bias.  As 

with other research on investor susceptibility to the disposition effect (Boolell-Gunesh et al., 

2009, Brown et al., 2006, Dhar and Zhu, 2006, Feng and Seasholes, 2005, Seru et al., 2010), we 

also find that investors who are sophisticated and who have more experience exhibit this bias 

to a lesser extent.  However, sophistication and experience are positively related so that 

sophisticated investors tend to have more experience.  When both variables were combined in 

the analysis of the disposition effect, sophistication only reduced the trading gains aspect of the 

disposition effect.   

As well as investigating investor sophistication and experience, we also analysed the influence 

of stop losses on the disposition effect.  Stop losses were adopted by investors to sell both gains 

and losses, showing they are used to both preserve profits and limit losses.  We found that stop 

loss users tend to be younger than investors who do not use stop losses, implying that they are 

a trading strategy more often used by investors with less experience.  However, there was no 

evidence that stop users are more or less likely to be sophisticated investors.  Our research 

does not support a theory that stop loss use in trading is a tool employed by sophisticated 

investors.  However, we do show that stop losses influence the disposition effect in several 
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ways.  Firstly, we show that investors who use stop losses exhibit less of the disposition effect 

than investors who do not.  Secondly, a comparison between stop losses users (when using stop 

losses) and sophisticated investors shows that they both exhibit similar amounts of the 

disposition effect.  Thirdly, like Nolte (2012), we find that stop loss transactions invert the 

disposition effect.  Future research on this topic should consider all automatic trading strategies, 

such as take profit and limit orders, to ascertain a more in-depth understanding of how these 

influence individual investors’ trading patterns.   

 

An implication of this research is that stop loss use is not always detrimental for investors.  

Earlier research on stop losses has shown that their use is non-optimal for a rational investor 

(Dybvig, 1988b, Gollier, 1997).  We show that investors are not rational, in that they exhibit the 

disposition effect.  Stop losses serve a purpose to manage this bias and are most beneficial for 

investors more prone to this bias.  Thus, less sophisticated and less experienced investors could 

use stop losses when learning to invest, thereby safeguarding their portfolio whilst gaining 

knowledge.  After an investor has gained experience, they may choose to maintain or cease 

adopting stop loss strategies.  Our findings, which show that stop loss users are younger but not 

necessarily sophisticated, are coherent with this theory.  Future research into the adoption of 

stop losses by investors could explore factors that explain why some investors choose to use 

and others not to use these investment tools.   

The final analysis investigated the levels of disposition effect exhibited by stop loss users when 

not using stop loss transactions.  This analysis showed that these investors are more prone to 



31 
 

holding losses longer.  This result suggests that stop losses may be adopted as a form of self-

control mechanism.  That is, through using stop losses, some investors counteract their own 

reluctance to sell losses by setting an automatic tool to exit the market.  It is difficult to 

understand the specific motivations for stop loss use in this research, but this could be an 

interesting avenue for future research. 
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Figure 1: Baseline survival curve estimate for the sale of stocks in roundtrip positions 

 

 

Figure 2: Baseline survival curve estimate for the sale of stocks at a gain, loss and break even in 
roundtrip positions 
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Figure 3: Goodness of fit test for the TLI with explanatory variables using Cox-Snell residuals 

 

 

Figure 4: Goodness of fit test for the TGI with explanatory variables using Cox-Snell residuals 
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Table 1:  Descriptive statistics of trading data:   
 
 
Number of investors 4,328 

65,096 
4,507,142 

1,027 (23.73%) 
79 (1.83%) 

6,040 (9.28%) 
847 (19.57) 

Number of roundtrips 
Number of stock days 
Number of stop loss users 
Number of sophisticated investors 
Number of stop loss roundtrips 
Number of female investors 
 Mean 25P

th
P-tile 50P

th
P-tile 75P

th
P-tile 

Age of investor 51.65 41 52 62 
Mean value of trade (GBP) 2163.21 640.3 1202.62 2393.9 
Mean number of trades made per investor 70.72 20 38 77 
Comparison between stop loss investors and 
other investors 

Stop loss 
investors 

Other 
investors 

Significance 
test 

Mean age 49.43 52.34 t = 5.84*** 
Percentage of sophisticated investors   2.04%  1.76% χP

2 
P= 1.42 

Mean number of sales 42.95 20.99 z = -19.17** 
Mean value of trade (GBP) £2,192 £2,154 z =  -2.07 ** 
Percentage of female investors 14.41% 21.18% χP

2
P =  22.77*** 

Comparison between sophisticated investors and 
other investors 

Sophisticated 
investors 

Other 
Investors 

 

Mean age 54.75 51.59 t = -1.98** 
Mean number of sales 76.42 25.27 z =  - 7.05** 
Mean value of trade (GBP) £1755 £2170 z =   2.34** 
Percentage of female investors 15.19% 19.65% χP

2= 
P0.98 

***, ** - significant at 1 and 5 % level, respectively 
 
This table reports summary statistics of the data used in this study.  The data set includes the individual 
trades between July 2006 and December 2009 placed at a brokerage firm in the UK.  The stocks are 
traded in British Sterling (GBP).  This table shows statistics on the sample data to identify relationships 
between investors who used stop losses and investors who did not and sophisticated investors and 
other investors.  Tests of significance for differences between stop loss investors and other investors 
and sophisticated investors and other investors were conducted using the following tests: Age was 
conducted using Student t-test; the sophisticated, stop loss investors and female investors were 
conducted using a Pearson Chi-square test; and the number of sales and mean value of trades were 
conducted using Wilcoxon rank sum text.   
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Table 2: Tests for the disposition effect in aggregate:  

 Reg 1 Reg 2 
TLI 
(Z-stat) 

.5918*** 
(-60.10)  

 

TGI 
(Z-stat) 

 1.6704*** 
(64.88) 

Control Variables 
Market return 
(Z-stat) 

1.7987 
(0.92)  

1.2627 
(0.36) 

Market volume 
(Z-stat) 

.9923*** 
(-63.50) 

.9922*** 
(-64.54) 

*** - significant at 1% level 
 

This table presents the hazard ratios associated with investors’ tendency to sell/hold stocks at a 
loss/gain.  The dependent variable takes the value of 0 every day a stock is held by an investor and 1 on 
the first day it is sold.  The independent variable in regression 1, the trading loss indicator (TLI), takes the 
value of 1 every time a stock trades at a loss and 0 otherwise.  The independent variable in regression 2, 
the trading gain indicator (TGI), takes the value of 1 every time a stock trades at a loss and 0 otherwise.  
We also control for market return and market volume on the FTSE 100 using a 5 day moving average for 
each.  The data is from a sample of 65,096 roundtrip positions made by 4,328 investors over the period 
July 2006 to December 2009.  It was provided by a brokerage firm in the UK.  Z-stats are shown in the 
parentheses below the hazard ratios. 
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Table 3: Trading losses and predictive variables:  

 Reg 1 Reg 2 Reg 3 Reg 4 
TLI 
(Z-stat) 

.5892*** 
(-59.29) 

.4298*** 
(-36.34) 

.5590*** 
(-51.02) 

.3948*** 
(-37.32) 

TLI x sophistication  
(Z-stat) 

1.1078*** 
(2.57) 

  1.039 
(0.97) 

TLI x age  
(Z-stat) 

 1.1001*** 
(15.00) 

 1.1054*** 
(15.67) 

TLI x stop loss user   
(Z-stat) 

  1.1427*** 
(7.94) 

1.1700*** 
(9.31) 

Control Variables 
Sophistication  
(Z-stat) 

.8768*** 
(-7.34) 

  .9149*** 
(-3.63) 

Age  
(Z-stat) 
Age x log time 
(Z-stat) 

 .7849*** 
(-37.42) 
1.0324*** 
(16.86) 

 .7904*** 
(-36.15) 
1.0316*** 
(16.40) 

Stop loss user 
(Z-stat) 

  1.2793*** 
(25.38) 

1.2487*** 
(22.82) 

Market return 
(Z-stat) 

1.7765 
(0.90) 

1.6761 
(0.81) 

1.6867 
(0.82) 

1.5705 
(0.71) 

Market volume 
(Z-stat) 

.9923*** 
(-63.29) 

.9930*** 
(-57.08) 

.9924*** 
(-62.71) 

.9931*** 
(-56.42) 

***, **, * - significant at 1,5 and 10% level 
This table presents the hazard ratios associated with investors’ tendency to sell/hold stocks at a loss.  
The dependent variable takes the value of 0 every day a stock is held by an investor and 1 on the first 
day it is sold.  Demographic variables are fixed over time but vary across individuals.  The demographic 
variables include a sophistication variable, the investor’s age (subtracted by 18 then divided by 10) and a 
stop loss user variable.  These variables are interacted with the trading loss indicator which takes the 
value of 1 every time a stock trades at a loss and 0 otherwise.  The interaction allows the interpretation 
of cross-sectional differences in investors’ propensities to sell losses.    The demographic variables are 
also used as control variables.  We also control for market return and market volume on the FTSE 100 
using a 5 day moving average for each. The data is from a sample of 65,096 roundtrip positions made by 
4,328 investors over the period July 2006 to December 2009.  It was provided by a brokerage firm in the 
UK.  Z-stats are shown in the parentheses below the hazard ratios. 
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Table 4: Trading gains with predictive variables:  

 Reg 1 Reg 2 Reg 3 Reg 4 
TGI 
(Z-stat) 

1.6807*** 
(61.85) 

2.0263*** 
(34.01) 

1.8961*** 
(59.83) 

2.3777*** 
(38.68) 

TGI x sophistication  
(Z-stat) 

.8648*** 
(-3.75) 

  .8987*** 
(-2.75) 

TGI x age  
(Z-stat) 

 .9432*** 
(-10.11) 

 .9356*** 
(-11.42) 

TGI x stop loss user   
(Z-stat) 

  .7443*** 
(-18.58) 

.7409*** 
(-18.80) 

Control Variables 
Sophistication  
(Z-stat) 

.9698 
(-1.18) 

  .9722 
(-1.08) 

Age  
(Z-stat) 
Age x log time 
(Z-stat) 

 .8094*** 
(-30.99) 
1.0420*** 
(22.34) 

 .8195*** 
(-28.98) 
1.0412*** 
(21.86) 

Stop loss user 
(Z-stat) 

  1.5414*** 
(39.38) 

1.5197*** 
(37.94) 

Market return 
(Z-stat) 

1.2441 
(0.34) 

1.2240 
(0.32) 

1.2142 
(0.30) 

1.1605 
(0.23) 

Market volume 
(Z-stat) 

.9923*** 
(-64.32) 

.9929*** 
(-58.14) 

.9924*** 
(-63.73) 

.9930*** 
(-57.44) 

***, **, * - significant at 1,5 and 10% level 
 

This table presents the hazard ratios associated with investors’ tendency to sell/hold stocks at a gain.  
The dependent variable takes the value of 0 every day a stock is held by an investor and 1 on the first 
day it is sold.  Demographic variables are fixed over time but vary across individuals.  The demographic 
variables include a sophistication variable, the investor’s age (subtracted by 18 then divided by 10) and a 
stop loss user variable.  These variables are interacted with the trading gain indicator which takes the 
value of 1 every time a stock trades at a gain and 0 otherwise.  The interaction allows the interpretation 
of cross-sectional differences in investor’s propensities to sell gains.    The demographic variables are 
also used as control variables.  We also control for market return and market volume on the FTSE 100 
using a 5 day moving average for each.  The data is from a sample of 65,096 roundtrip positions made by 
4,328 investors over the period July 2006 to December 2009.  It was provided by a brokerage firm in the 
UK.  Z-stats are shown in the parentheses below the hazard ratios. 
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Table 5: Trading gains, trading losses and stop losses:  

 Reg 1  Reg 2 
TLI 
(Z-stat) 

.5502*** 
(-64.86) 

 

TLI x Stop loss transaction  
(Z-stat) 

2.1546*** 
(27.96) 

 

TGI 
(Z-stat) 

 1.7695*** 
(69.15) 

TGI x Stop Loss transaction   
(Z-stat) 

 .5225*** 
(-23.48) 

Control variables   
Stop loss transaction 
(Z-stat) 

.8285*** 
(-10.58) 

1.4634*** 
(21.76) 

Market return 
(Z-stat) 

1.9511 
(1.04) 

1.3425 
(0.46) 

Market volume 
(Z-stat) 

.9924*** 
(-63.60) 

.9923*** 
(-64.63) 

***, **, * - significant at 1,5 and 10% level 
 

This table presents the trading gains and losses in relation to use of stop losses.  The dependent variable 
takes the value of 0 every day a stock is held by an investor and 1 on the first day it is sold.  A transaction 
level stop loss variable is created which takes the value of 1 if a transaction used a stop loss and a value 
of 0 if a transaction didn’t use a stop loss.  This variable is interacted with two other independent 
variables to measure the extent to which it changes the propensity to sell both winners and losers.  The 
independent variable in regression 1 is the trading loss indicator which takes the value of 1 every time a 
stock trades at a loss and 0 otherwise.  The other independent variable is the trading gain indicator (TGI) 
which takes the value of 1 every time a stock trades at a gain and 0 otherwise.  We also control for 
market return and market volume on the FTSE 100 using a moving 5 day average for each.  The data is 
from a sample of 65,096 roundtrip positions made by 4,328 investors over the period July 2006 to 
December 2009.  It was provided by a brokerage firm in the UK.  Z-stats are shown in the parentheses 
below the hazard ratios. 
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Table 6: Trading gains, trading losses and stop loss users without stop losses:  

 Reg 1  Reg 2 
TLI 
(Z-stat) 

.5610*** 
(-50.57) 

 

TLI x Stop loss user 
(Z-stat) 

.9555** 
(-2.49) 

 

TGI 
(Z-stat) 

 1.8918*** 
(69.15) 

TGI x Stop loss user 
(Z-stat) 

 .8419*** 
(-10.10) 

Control variables   
Stop loss user 
(Z-stat) 

1.3949*** 
(32.27) 

1.4955*** 
(34.01) 

Market return 
(Z-stat) 

655.04*** 
(9.66) 

473.15*** 
(9.17) 

Market volume 
(Z-stat) 

.9923*** 
(-60.64) 

.9922*** 
(-61.81) 

***, **, * - significant at 1,5 and 10% level 
 

This table presents the hazard rates associated with an investor’s tendency to sell/hold stocks at a gain 
and a loss.  The dependent variable takes the value of 0 every day a stock is held by an investor and 1 on 
the first day it is sold.  Demographic variables are fixed over time but vary across individuals.  The 
demographic variable is the stop loss user.  However, all transactions that include stop losses have been 
removed from the data to be able to analyse stop losses users’ susceptibility to the disposition effect 
when not using stop losses.  The stop loss user variable is interacted with other independent variables to 
measure the extent to which it changes the propensity to sell both winners and losers. The independent 
variable in regression 1 is the trading loss indicator (TLI) which takes the value of 1 every time a stock 
trades at a loss and 0 otherwise.  The other independent variable in regression 2 is the trading gain 
indicator (TGI) which takes the value of 1 every time a stock trades at a gain and 0 otherwise.  The data 
is from a sample of 59,056 roundtrip positions made by 4,258 investors over the period July 2006 to 
December 2009.  It was provided by a brokerage firm in the UK.  Z-stats are shown in the parentheses 
below the hazard ratios. 
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Appendix 1: Questions used to assess whether investors could trade warrants 

Some investors in our data were entitled to trade warrants in addition to stocks.  To trade 

warrants an investor has to request permission from the brokerage firm due to the increased 

risk associated with these financial products.  The brokerage firm would get the investor to 

answer some questions in order to determine whether they were appropriate to have this 

entitlement.   Some examples of the questions used are as follows: 

• Are you fully aware of the risks these types of investments carry? 

• Would you be prepared to lose a significant part of your investment? 

• How long have you been dealing in the stock market? 

• What is your average total dealing activity per year? 

• What is the approximate value of your overall investment portfolio? 

• Do you believe your educational background and/or profession or former profession are 

relevant in understanding the risks involved? 

• What level of your overall portfolio does this investment represent? 

In addition to these questions, the brokerage firm would also analyse previous trades and portfolio 

balances to inform their decision.   

 




