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ABSTRACT 

Nitrogen dioxide (NO2) is a gas species that plays an important role in certain industrial, farming 

and healthcare sectors. However, there are still significant challenges for NO2 sensing at low 

detection limits, especially in the presence of other interfering gases. The NO2 selectivity of current 

gas sensing technologies is significantly traded-off with their sensitivity and reversibility as well as 

fabrication and operating costs. In this work, we present an important progress for selective and 

reversible NO2 sensing by demonstrating an economical sensing platform based on the charge 

transfer between physisorbed NO2 gas molecules and two-dimensional (2D) tin disulfide (SnS2) 

flakes at low operating temperatures. The device shows high sensitivity and superior selectivity to 

NO2 at operating temperatures of less than 160ºC which are well below those of chemisorptive and 

ion conductive NO2 sensors with much poorer selectivity. At the same time, excellent reversibility 

of the sensor is demonstrated which has rarely been observed in other 2D material counterparts. 

Such impressive features originate from the planar morphology of 2D SnS2 as well as unique 

physical affinity and favorable electronic band positions of this material that facilitate the NO2 

physisorption and charge transfer at parts per billion (ppb) levels. The 2D SnS2 based sensor 

provides a real solution for low-cost and selective NO2 gas sensing. 

 

KEYWORDS: Two dimensional materials; post transition metal dichalcogenide; SnS2; gas sensor; 

nanosheet; physisorption     
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Nitrogen dioxide (NO2) is an industrially and biologically important gas species, which can be 

particularly dangerous to humans at levels greater than 1 parts per million (ppm), causing damage to 

the respiration system and worsening respiratory diseases.1, 2 The US environmental protection 

agency recognizes NO2 as an air pollutant that is co-released during many types of fuel 

combustions.3 It plays an important role in the chemistry of the atmosphere producing acid rain and 

contributing to the formation of ozone (O3), which is the major cause of photochemical smog.4 NO2 

is also an important material for the synthesis of nitric acid that is used in the production of 

fertilizers for agriculture and explosives for both military and mining uses.5 Furthermore, NO2 is an 

essential gas for many bio-systems. Nitrogen monoxide (NO) appears as a gasotransmitter in many 

cell signaling pathways,6 which can convert to NO2 rapidly when exposed to an environmental 

disturbance in the presence of oxygen. The sensing of nitrogen oxides (NOx, a group mainly 

consists of NO2 and NO) can be potentially implemented in diagnostic processes. For instance, the 

detection of NOx in exhaled breath (at parts per billion (ppb) levels) is helpful for identifying 

infections of lung tissues.7 In addition, the NOx can possibly be used as a biomarker for some of the 

gastrointestinal disorder symptoms such as irritable bowel disease.6  

It is important to consider that in many of the aforementioned sensing scenarios, NO2 gas should 

be measured in the presence of other interfering gas species. Therefore, the realization of accurate, 

highly selective and low detection limit NO2 gas sensors, which can operate in a wide range of 

ambient conditions, is a critical step in environmental monitoring and surveillance in many 

industries as well as healthcare and clinical practices.  

Based on the sensing mechanism, the current NO2 gas sensor technologies can be mainly 

categorized into optical, electrochemical and chemiresistor types.8 Optical methods predominately 

rely on the unique optical fingerprints of NO2 gas molecules including their chemiluminescent 

emission and infrared light absorption wavelengths, which result in high selectivity NO2 sensing. 

Such optical sensing methods need sophisticated instruments or system configurations to achieve a 

high NO2 sensitivity, which significantly increase their sizes and costs.8-12 Instead, electrochemical 
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sensing of NO2, which relies on the electrochemical reduction of NO2 in the presence of noble 

catalysts, is a low-cost approach.13 Nevertheless, such sensors have cross-talk with active gas 

species such as hydrogen and their operation lifetime are relatively short.14 These drawbacks can be 

increasingly eliminated by using zirconia-based solid electrolytes.15 However, their high operation 

temperatures (in the range of 500-900 °C) result in significant operation costs and limit their 

applications mostly to combustion and automotive monitoring systems. Another economical 

method of NO2 sensing is based on chemiresistor transducing platforms, relying on the charge 

transfer between metal oxides and surface chemisorbed NO2.16, 17 However, the pristine or modified 

surface of these metal oxides shows weak discrimination to different gas species, making them 

poorly selective. Furthermore, the presence of oxygen is crucial for the operation of chemiresistive 

metal oxide compounds, which is not suitable for some particular anaerobic applications. Finally 

high operation temperature of above 200°C is needed in order to improve the response and recovery 

kinetics of these sensors.  

Therefore, considering the trade-offs between sensitivity, selectivity and cost, there still exists an 

on-going quest for the ideal NO2 sensing platform. The paramagnetic nature of NO2 can be utilized 

to realize a different class of highly selective NO2 gas sensors, as it can produce a magnetic dipole 

in addition to a surface electric dipole generated by the mirror charge when it is physisorbed onto 

the surface of a sensitive layer, resulting in a much stronger affinity compared to other non-

magnetic gases such as CO2, H2, H2S and CH4.18 Upon the NO2 molecule adsorption, a charge 

transfer can occur depending on the relative band positions of sensitive material and NO2 as well as 

possible hybridization of gas molecule states with sensitive material orbitals.19, 20 Such a charge 

transfer affects the electrical resistance of the sensitive material, which can be facilely measured 

using the low-cost resistive transducing platform. More importantly, the physisorption of gas 

molecules can be occurred at low temperatures and the corresponding charge transfer mechanism 

does not rely on the breakdown of the adsorbed gas, presenting an ideal NO2 sensing platform that 

can operate reliably at relatively low temperatures, regardless of the presence of ambient oxygen.  
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So far, the search for exploring suitable sensitive materials for selective NO2 physisorptive 

sensing with high adsorption/desorption kinetics has resulted in limited success. Low-dimensional 

carbon-based materials, including carbon nanotube and graphene, have been investigated as 

possible candidates.21-24 Although excellent sensitivities toward NO2 have been demonstrated, these 

sensors exhibit low selectivity and slow recovery kinetics.25 The emergence of two-dimensional 

(2D) transition metal dichalcogenides (TMDs)26-30 and phosphorene31, 32 as the alternatives have 

alleviated some of these drawbacks but the outcomes are still far from sufficient practical values. 

Especially the most prominent candidate to date, 2D molybdenum disulfide (MoS2), despite 

presenting a good selectivity to NO2 it does not show sufficiently fast recovery kinetics. Therefore, 

the realization of a low-cost sensing platform with strong potentials of excellent NO2 physisorptive 

selectivity, sensitivity and reversibility, which can operate at relatively low temperatures at a small 

development cost, is pending to the discovery of an appropriate candidate material with a favorable 

surface energy value for NO2 adsorption as well as optimum electronic band structure facilitating 

the charge transfer. 

Although tin (Sn) does not belong to the transition metal family, tin disulfide (SnS2) exists in a 

layered crystal phase,33 which is similar to TMDs in various aspects.34, 35 This phase is composed of 

Sn atoms sandwiched between two layers of hexagonally disposed close packed sulfur (S) atoms, 

the adjacent S layers are connected by the weak van der Waal’s forces (Figure 1a). Compared to 2D 

MoS2, SnS2 has a larger electronegativity, potentially enhancing gas adsorption sites.36 Furthermore, 

the relatively stronger temperature dependency on the electronic band structure of SnS2 can 

possibly enable the optimization of sensing response and be used for enhancing recovery kinetics at 

a range of moderately elevated temperatures, advantageous for practical gas sensing applications.37, 

38 

In this work, we present a novel approach for selective and reversible NO2 gas sensing based on 

2D SnS2 flakes. Many of the current synthesis methods of 2D SnS2 are based on exfoliation, wet 

chemical and vapor deposition techniques.39-45 Here, the planar 2D SnS2 flakes are synthesized via a 
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facile wet chemical route. The planar few-layered 2D structure is selected as it both provides large 

active surface area for more efficient adsorption of NO2 gas molecules and also facilitates their 

accommodation into the van der Waal’ spacing due to small SnS2 interlayer binding energy (~10-20 

meV/Å2).46 We shows that these 2D SnS2 flakes are integrated onto low-cost resistive transducing 

platforms for highly selective and excellent sensitive NO2 gas sensing at ppb levels, which relies on 

the physisorption based charge transfer. 

 

RESULTS AND DISCUSSION 

The 2D SnS2 flakes were prepared by a wet chemical synthesis technique (details are presented in 

Materials and Method section). In brief, upon the mixture of Sn precursor and sulfurization reagents 

at elevated temperatures, the preferential crystal nucleation occurs at the lateral planes due to the 

strong coupling along them. The existence of excessive dangling bonds at the edges causes the 

growth of SnS2 crystals to be continued with a high anisotropic nature, resulting in the planar 2D 

morphology. Atomic force microscopy (AFM) verifies the presence of 2D hexagonal flakes with 

the thicknesses in the order of multiple SnS2 unit cells in the as-synthesized flakes. A typical 

example is the AFM image shown in Figure 1b, which is a ~6 nm thick 2D flake corresponding to 

10 monolayers of SnS2, as the thickness of a monolayer SnS2 is ~0.59 nm.39, 41_ENREF_35 A 

statistical analysis based on AFM measurements indicates that the 2D flakes have different 

thicknesses with the majority lying in the range of 7 to 11 monolayers (Figure S1a). The obtained 

hexagonal 2D flakes demonstrate some polydispersity in lateral dimensions mainly ranging from 80 

to 200 nm according to the transmission electron microscopy (TEM) imaging and dynamic light 

scattering (DLS) pattern shown in Figures 1c and S1b, respectively. Figure 1d shows the high 

resolution TEM (HRTEM) image of a 2D SnS2 flake, in which a lattice fringe spacing of 0.319 nm 

is identified and corresponds to both the (1�100) and  (011�0) lattice planes of hexagonal SnS2. The 

inset in Figure 1d presents the fast Fourier transform (FFT) pattern of this region, showing the 

faceted edges with an angle of 120º, which corresponds to the hexagonal symmetry of crystalline 
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SnS2 projected along the c-axis. The cross-sectional HRTEM image illustrated in Figure 1e 

confirms that these 2D SnS2 flakes consist of average 9 ± 2 layers with the interlayer distance of 

0.587 nm (Figure 1f). 

X-ray diffraction (XRD) assessment was utilized to further investigate the crystal phase of 2D 

hexagonal SnS2 flakes. From Figure 2a, the primary diffraction peaks of 2D flakes at 15.04º, 28.27º, 

32.17º, 41.95º, 50.05º, 52.45º and 60.62º are ascribed to the (001), (100), (101), (102), (110), (111), 

(201) planes, respectively, which are in accordance with hexagonal 2H SnS2 structure (ICDD 23-

0677). 2H SnS2 belongs to space group of 𝑃3�𝑚1 and has three atoms in the unit cell, which extends 

over only one monolayer.47 However, the additional appearance of a small diffraction peak at ~58º 

and the relatively intensified peak at 50.05º suggest the co-existence of another SnS2 crystal phase, 

which can be identified as 4H structure (ICDD 21-1231). Although it is still within the hexagonal 

domain, the space group of 4H SnS2 is changed to 𝑃63𝑚𝑐, which contains six atoms in a single unit 

cell and extends over two monolayers.47 It is found that its composition is almost equal to that of 2H 

phase when the reaction time is shortened (Figure S2), suggesting that this additional phase might 

be an intermediate phase during the chemical reaction. 

The concurrent phase phenomenon can also be investigated by Raman spectroscopy. From 

Figure 2b, two distinguished Raman peaks can be found at ~205 and ~314 cm–1 and there is a broad 

peak centered at ~288 cm–1 for the 2D SnS2 flakes. The 314 cm–1 peak can be ascribed to the 

vertical plane vibration mode (A1g) of Sn–S bonds of 2H SnS2.39, 47 Nevertheless, this peak can also 

be contributed to the A1+E vertical vibration Raman mode of 4H structure due to the close position 

between these two structures (~313.5 cm–1 for 4H structure vs. ~314 cm–1 for 2H structure 39, 47). 

Instead, the in-plane vibrational E mode allows a facile discrimination between 2H and 4H 

structures. The Eg mode of 2H structure appears as a single and intense band at 205 cm-1, whereas 

the E mode of 4H structure gives rise to a doublet at 200 and 214 cm-1 according to previous 

literature.39, 47  Therefore, the composition of 4H structure in the 2D SnS2 flakes is minor. The broad 

peak centered at 288 cm-1 may also be ascribed to the A1g Raman mode of 2H SnS2 as a previous 
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report shows that it is merged in the prominent A1g mode centered at 314 cm-1.39 However, the 

position of this peak is overlapped with that of B2g Raman mode of SnS.48, 49 The XPS results in 

Figure S3a show that there is no Sn2+ signature in the 2D SnS2 flakes, indicating that the amount of 

SnS in the flake is negligible. 

The optical properties of the 2D flakes were studied by measuring their absorption spectrum 

(Figure 2c). An absorption peak at ~580 nm with the shoulder centered at ~660 nm can be observed, 

which are ascribed to the indirect excitonic transition from Γ to M point of the Brillouin zone in 2H 

and 4H SnS2 structures, respectively.50 The broad peak centered at ~490 nm can be the convoluted 

peak of the direct excitonic transition at the M point for both 2H and 4H structures according to a 

previous measurement (~484 nm for 2H and ~510 nm for 4H)51 and theoretical calculation values 

(~443 nm for 2H and ~454 nm for 4H).50 The corresponding photoluminescence (PL) spectrum of 

2D SnS2 flakes was investigated at the excitation wavelength of 532 nm. From Figure 2d, a 

relatively sharp peak at ~580 nm is observed, which is consistent with the position of indirect 

excitonic peak of 2H SnS2. It should be noted that the position is also close to that of SnOx.52 

However, the XPS analysis presented in Figure S3 indicates that there is no observable co-existing 

SnOx in the 2D SnS2 flakes. The broad peak centered at ~660 nm can be ascribed to the hot PL of 

the indirect exciton recombination of 4H SnS2. Although such a broad peak has been ascribed to the 

PL originated from the structural impurities by a number of researchers,53, 54 the energy dispersive 

X-ray (EDX) survey spectrum in Figure S4a together with the XRD pattern in Figure 2a show no 

observable structural impurities in 2D SnS2 flakes. In addition, the measured Sn/S composition ratio 

is ~1:2, matching the theoretical value of SnS2, implying that the influence of substoichiometric 

levels and sulfur vacancies toward the electronic and optical properties of the flakes can be 

neglected. The mapping images of Sn and S elements displayed in Figure S4b demonstrate that both 

Sn and S distribute uniformly along the flake. 

The 2D SnS2 gas sensors were fabricated by drop-casting of the solution containing 2D SnS2 

flakes on the resistive transducing substrates which were made of alumina with surface 
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interdigitated electrode (IDE) patterns (Specification was presented in Materials and Method 

section). The IDE metal is chosen to assure that Ohmic contacts were formed with drop-casted SnS2. 

The electrical resistance of the device was measured for calculating the gas response factor using 

Rg/Ra for Rg > Ra, or Ra/Rg for Rg < Ra, where Ra and Rg represent the resistance of the device to air 

and the analyte gas, respectively. The sensor response and recovery time are defined as the time 

required for a 90% change in the full magnitude change of the gas response factor. 

We tested the operation temperature of sensors from room to 160°C. For the temperatures lower 

than 80°C, the device did not show acceptable response/recovery time and additionally Rg was 

relatively large and beyond the measurement range of the Ohm-meter. There is an observable 

transition from SnS2 to tin oxide compounds (SnOx) when the operation temperature exceeds 160°C 

(Figure S5) and therefore operation at such elevated temperatures is ruled out.  

From Figure 3a and Table S1, after the exposure to 10 ppm NO2 in synthetic air balance at the 

operation temperature of 80°C, the sensor’s resistance is impressively ~28 times larger than that of 

only synthetic air (translates into the initial response factor of ~28). As will be fully discussed later, 

the surface adsorbed NO2 gas molecules act as electron acceptors to receive electrons from 2D SnS2 

flakes. Such charge transfers reduce the number of free electrons in the flakes, increasing the 

resistance. With the increase of the operating temperature, the response factor is enhanced while the 

response and recovery time are decreased, suggesting that the increase of the temperature facilitates 

the adsorption of NO2 gas molecules onto the 2D SnS2 surface and enhances the charge transfer. 

The optimal sensing takes place at 120°C with a maximum response factor of ~36 with the shortest 

response and recovery time of ~170 and ~140 s, respectively. By further increasing the operating 

temperature beyond 120°C, the response factor is dramatically dropped and the response time is 

slightly increased, implying that the surface desorption process of NO2 gas becomes a more 

dominant effect at such temperatures.  

The dynamic performance of the sensor towards NO2 gas with concentrations ranged from 0.6 to 

10 ppm at the optimum operation temperature of 120°C was shown in Figure 3b. With the increase 
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in the concentration of NO2, more surface dipoles are formed before the NO2 coverage reaches its 

maximum, resulting in more electron transfer from SnS2 to NO2. The measured response factor of 

the sensor is observed to be almost linear with the exposure concentrations of NO2 gas, while the 

response time is greatly decreased when increasing the NO2 concentration from 0.6 to 1.2 ppm and 

reaches the saturation stage afterwards (Table S2). Excellent sensor reversibility is observed (Figure 

3b and Figure S6) with the recovery time of less than 180 s at the optimum operating temperature 

regardless of the NO2 concentration. This remarkable reversibility is not commonly seen in 

physisorptive charge transfer based sensors and the recovery time of such systems can be up to 

several orders of magnitude longer due to their slow recovery kinetics.22 Based on the NO2 dynamic 

responses, the NO2 detection limit of our sensor is estimated to be ~20-30 ppb at a noise level of 

±5%. Such a low detection limit is superior in comparison to those of low-cost NO2 optical and 

electrochemical sensors, which are both only in the ppm ranges9, 12, 13, 15 and comparable to those of 

best-reported metal oxide based chemisorptive gas sensors (10-50 ppb)16 which are not NO2 

selective. The value is also close to those of 2D MoS2
28 and carbon22 based physisorptive gas 

sensors which show poor reversibility. 

The 2D SnS2 flakes are very strongly selective to NO2 as only minimal responses toward other 

gases under investigation in this work are observed. At 120ºC, which is the near optimal operating 

temperature for all those gases, response factors at industrially meaningful concentrations for H2 

(1%), CH4 (10%), CO2 (10%) and H2S (56 ppm) are found to be ~1.0, ~1.1, ~1.1 and ~1.3, 

respectively, in comparison to ~36 for NO2 (10 ppm)  (Figure 3c). The particular selected 

concentrations of toxic NO2 (10 ppm) and H2S (56 ppm) gases are well below the immediately 

dangerous to life or health (IDLH) values defined by US national institute for occupational safety 

and health (NIOSH), which are 20 and 100 ppm, respectively.55 The exposure limit of NO2 defined 

by NIOSH is recommended to be 1 ppm.55 If taking this into account, the NO2 selectivity of this 

sensor is still superior as its response factor is ~10 at 1.2 ppm NO2 which is almost an order 

magnitude higher than other aforementioned gases. In addition, the humidity plays a negligible role 
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in the NO2 gas sensing performance of the sensor (Figure S7). It has also been previously shown 

that the response of nanostructured SnS2 towards several other gases are relatively smaller than that 

of shown to NO2 here. For instance, NH3 has only a response of ~1.5 at a concentration of 

100 ppm.56   

To understand the selectivity of 2D SnS2 flakes toward NO2 gas, we calculated the molecule-

surface binding energies using density functional theory (DFT) to assess the dispersion forces. The 

outcomes are shown in Figure 3d and Table S3. The closest distance between the molecules and the 

surface, for the bound gas species, range from 2.17 to 2.87 Å which is within the typical range for 

physisorbed molecules. The values of the binding energies also indicate the physisorption occurs 

between the molecule and the surface for CH4, CO2, H2S, NH3 and NO2, with NO2 being the most 

strongly bound species. The binding energy for NO2 is approximately 140 meV greater than that of 

the next most bound species (NH3), while H2 and O2 are non-binding due to its small adsorption 

energy (~50 meV) and positive adsorption energy (Table S3), respectively. The repelling of O2 

molecules on the SnS2 surface possibly indicates that the charge transfer to the physisorbed NO2 

molecules does not rely on the presence of O2 gas, which is distinctly different from those of metal 

oxides based chemisorptive NO2 sensors.16, 17 The calculated surface binding energies toward 

different gas molecules are in accordance with the measurement results, confirming that the 

impressive selective NO2 gas response of 2D SnS2 flakes originates from its unique physical surface 

affinity to the gas molecules.  

Another possible reason can be attributed to the influence of different gas molecules on SnS2 

electronic band structure. Figure 4 shows the spin resolved electronic Density of States (eDOS) 

plots for the clean SnS2 surface and for surfaces onto which aforementioned gas molecules are 

physisorbed. For the most weakly bound gas species (CO2 and CH4), the total eDOS and the 

projected eDOS of the nearest neighbor surface S atoms are almost the same as for the clean surface 

near the Fermi level, suggesting there is negligible charge transfer between the molecules and 

surface. The next most bound species, H2S and NH3, display similar features in the eDOS. In both 
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cases, molecular physisorption introduces states in the gap, and the projected eDOS indicates that 

both molecule and surface atom states contribute to this state in the band gap. In addition, the bands 

near the valance band maximum (VBM) is shifted down by nearly 0.1 eV compared to that of clean 

surface. However, these generated gap states are relatively far away from the Fermi level (~0.5-

1 eV), resulting in inefficient charge transfer between the physisorbed gas molecules and SnS2 

surface. In contrast, the eDOS for NO2 physisorption is different from the other species. Firstly, the 

DOS is asymmetric when comparing spin-up and spin-down, possibly due to the formation of 

surface magnetic moment upon the physisorption of NO2 gas molecules. More importantly, while 

the energy bands near the conduction band minimum (CBM) are lowered by ~60 meV, the band 

states close to the Fermi level are raised in energy by approximately 20 meV compared to the clean 

surface, indicating significant charge transfer from SnS2 to the physisorbed NO2 gas molecules. 

In comparison to other 2D semiconductors, it is noted that the response factor of 2D SnS2 toward 

NO2 is at least one order larger than that of exfoliated 2D MoS2 at similar exposure concentration 

and operation temperature.28 This can be mainly ascribed to the larger NO2 adsorption energy of 

SnS2 compared to MoS2 (~150 meV),57 resulting in more adsorption of NO2 gas molecules either on 

the surface or possibly within the van der Waal’s gap of SnS2 through efficient intercalation as few-

layered SnS2 has a much weaker interlayer binding energy than that of MoS2.46 In addition, the 

Mulliken population analysis of the charge density for the NO2 physisorption indicates a transfer in 

charge density of 0.048 e- from SnS2 surface to the NO2 molecule, while only 0.034 e- is observed 

for that of MoS2.57 Such an improvement can be possibly due to a more favorable Fermi energy of 

SnS2 related to partially occupied molecular orbitals (POMO) of NO2 (Figure 4), which is also 

another key factor for the strength of physisorption based charge transfer. 

We observed that our 2D SnS2 sensor demonstrates a much higher rate of NO2 recovery kinetics 

compared to those of previously physisorption based sensors made of 2D materials (e.g. 2D MoS2) 

at elevated temperatures.26-28 It is found that NO2 gas molecules are favorably absorbed on the S 

atoms of SnS2 with a calculated bond length of 2.41 Å, while the NO2 gas molecules are adsorbed 
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onto Mo atoms of MoS2 between two sandwiched S layers with a much shorter bond length of 

1.21 Å.57 Therefore, the thermal vibration energy available at an elevated temperature causes a 

more efficient NO2 gas desorption from SnS2 compared to MoS2. The stronger temperature 

dependence of SnS2 Fermi level can also result in a more favorable position related to that of NO2 

POMO at elevated temperatures.37, 38 The temperature effect, together with its strong physical NO2 

affinity, ensures the domination of charge transfer from SnS2 to NO2 despite the large NO2 gas 

desorption at relatively high temperatures. 

The charge transfer phenomenon from the surface of 2D SnS2 to the physisorbed NO2 gas 

molecules is partially evidenced by Raman spectroscopy before and after the NO2 exposure at 

120°C. From Figure 5a, there is no observable Raman peak shift associated with stiffening, 

confirming no chemical bond modification upon the physisorption of NO2 gas molecules. The 

intensity of A1g Raman mode is found to be significantly reduced, while the Raman Eg mode seems 

to remain unchanged after the NO2 exposure and their intensity ratio 𝐼(𝐴1𝑔/𝐸𝑔) is decreased from 

1.05 to 0.8. The NO2 adsorption may affect the equilibrium lattice parameter in SnS2. Additionally, 

the NO2 molecules on the surface act as electron acceptors, modifying the electron-phonon 

interaction in SnS2. Similar to the cases of charge-transfer doping observed in graphene and 

TMDs,58-60 such a modification leads to the phonon self-energy renormalization and consequently 

weakening of the phonons, causing the intensity decrease of the A1g mode that is more sensitive to 

the free electron density of the material.   

The PL spectrum can be a good indicator in the charge transfer phenomenon as well. As SnS2 is 

an n-type semiconductor,40 its PL peak can be theoretically decomposed into the portions of neutral 

exciton and the negative trion.61 A negative trion consists of two electrons to a hole, resulting in a 

negatively charged exciton, while the neutral exciton is coupled to the extra electron at the Fermi 

level.58 Upon the adsorption of NO2 gas molecules, the negative trion is converted back into the 

neutral exciton as the free electrons are depleted from SnS2. At the same time, the generated surface 

dipoles between the gas molecules and SnS2 surface are strong enough to split the neutral excitons, 
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leading to a significant reduction in their recombination and subsequently a strongly quenched PL 

(Figure 5b), which is analogous to the PL modulation in MoS2-WS2 heterostacks or electrical gating 

of MoS2.61, 62 In addition, it seems that such gas molecules induced charge transfers show no 

difference on the crystal polytypes of SnS2 as the quenched degrees of the 2H and 4H PL peaks are 

similar.   

 

CONCLUSIONS 

We successfully developed a novel gas sensor based on 2D SnS2 flakes with a very strong 

selectivity to NO2 molecules. The 2D SnS2 flakes were synthesized using a facile wet chemical 

route with a great potential for production scalability. The 2D structure of SnS2 hexagonal planes 

were made of a few layers of unit cell thickness, which provided plenty of room for NO2 molecule 

adsorption either on the surface or in-between the van der Waals’s spacings. The NO2 adsorption 

mechanism was theoretically and experimentally shown to be dominated by physisorption with a 

concurrent charge transfer into 2D SnS2 flakes that could occur at relatively low operating 

temperatures. Our theoretical calculations also suggested no oxygen was involved in the NO2 

adsorption/desorption process, possibly indicating the sensor could also operate in anaerobic 

environments. The best NO2 gas sensing performance of 2D SnS2 was achieved at the optimum 

temperature of 120°C, reaching the detection limits of <30 ppb and showing an impressive response 

factor of ~36 when exposed to a NO2 concentration of 10 ppm. Excellent NO2 selectivity was 

demonstrated with reference to other gas species, which had not been previously exhibited for NO2 

gas sensors that operate based on a physisorptive charge transfer mechanism. Such a unique 

selectivity was ascribed to the strong physical affinity of paramagnetic NO2 gas molecules towards 

SnS2 surfaces as well as the relatively favorable position between Fermi level of SnS2 and NO2 

POMO. Our 2D SnS2 based NO2 gas sensor was also highly reversible, showing excellent recovery 

to the baseline in contrast to 2D TMDs, such as 2D MoS2.  
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The realization of the presented economical, exceptionally selective and highly sensitive NO2 gas 

sensing platform, which operates at relatively low temperatures without the presence of oxygen, 

provides a feasible approach to allow high performance NO2 sensing for a wide range of 

applications in environmental monitoring, industry, clinical practices and healthcare.       

 

MATERIALS AND METHODS 

Synthesis of 2D SnS2 flakes: Tin (IV) chloride (SnCl4•5H2O, >99.9%, Sigma Aldrich, 0.5 mM) 

was added to a mixture of 5 mL oleic acid (OAc, >90.0%, Sigma Aldrich) and 10 mL octadecene 

(ODE, >90.0%, Sigma Aldrich) in a 100 mL three-neck flask to produce tin precursor. A standard 

Schlenk line was used to protect the reaction from oxygen and moisture under a flow of high-purity 

N2. The mixed solution was degassed at 120oC for 1 h to remove the moisture and the oxygen. 

Subsequently, the solution was heated to 280oC within 15 min with a vigorous stir (700 rpm). 

Sulfide powder (1 mM) was dispersed into 5 mL oleylamine (OAm, >90.0%, Sigma Aldrich) to 

produce the sulfide precursor which was subsequently injected into the reaction system. The 

reaction was maintained at 280 oC for 30 min. After cooling the solution to room temperature, the 

2D SnS2 flakes (in powder form) were collected and separated from the solution by centrifugation. 

The powder was further washed two times by ethanol and hexane (1/1, V/V) and finally dispersed in 

ethanol. The powder was stable in air without further protection for characterizations. 

Morphological, structural and optical characterizations: Lateral dimensions and thickness of 2D 

SnS2 flakes were measured using DLS (ALV fast DLS particle sizing spectrometer) and AFM 

(Bruker Multimode 8 with PF TUNA), respectively. Their crystal structure was characterized using 

XRD (Philips PANanalytical) with CuKa radiation at 45 kV and 40 mA, HRTEM (TEM, Tecnai 

F20, FEI) at an accelerating voltage of 200 kV and Raman spectroscopy (Craic 20-30 

microspectrophotometer) under the excitation wavelength of 785 nm at 1 mW power. The EDX 

spectrum and mapping of the flakes were carried out by scanning electron microscopy (JEOL 
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JSM6700F) equipped with an EDX spectroscopy. The optical absorption spectra of the 2D flakes 

were examined using a Varian Cary 500 spectrometer in dual beam mode using quartz cuvettes. PL 

spectroscopy was carried out on a Princeton Instruments SP2500i with a PIXIS100 ExCelon CCD 

camera detector using a Monochromatic 532 nm laser delivering approximately 200 µW average 

power to the sample. 

Gas sensor fabrication and characterization: The transducing substrates were made of alumina 

pattern with 8 pairs of IDE Pt electrodes. The spacing between each IDE pair was 200 µm. 5 µL of 

suspension containing 1 mg/mL 2D SnS2 flakes was drop-casted on the transducing substrate within 

the exposed area of 0.5 cm × 0.5 cm at a temperature of 50oC. The resistance of the sensor was 

measured using Agilent 34410A digital multimeter. The gas sensing measurements were conducted 

in a LINKAM (Scientific Instruments) customized gas testing chamber with the capability to 

control the operation temperature for up to 600oC. A computerized mass flow control (MFC) multi-

channel gas calibration system was used to regulate the incoming gas stream at a total constant flow 

rate of 200 standard cubic centimeters per minute (sccm) to the LINKAM chamber. For the 

investigation of NO2 gas sensing performance in the humidified environment, the humidification of 

the gas was realized by a simple unheated bubble humidifier, in which the gas was forced down a 

tube into the bottom of a bottle containing 100 mL of water. The gas then escaped from the distal 

end of the tube under water surface forming bubbles, which gained humidity as they rose to the 

water surface. Given the relatively smaller gas flow rate (200 sccm or 0.2 L/min), the relative 

humidity (RH) of the incoming gas stream towards the sensor reached approximately 100%,63, 64 

which was also confirmed by a commercial humidity sensor. 

Theoretical calculation on the surface adsorption energy and total density of states: Spin-

dependent Hybrid DFT calculations were carried out in Gaussian basis set ab initio package 

CRYSTAL14.65, 66 The B3LYP hybrid exchange-correlation functional was used67 that was 

augmented with an empirical London-type correction to the energy in order to incorporate 

dispersion contributions to the overall energy. The correction term used in these calculations is the 
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one proposed by Grimme,68 which has been successfully used with B3LYP to calculate cohesive 

energies in dispersion bonded molecular crystals.69 For all atoms (other than Sn) a triple zeta 

valance (TZV) basis set, with polarization functions, was used for modeling the electrons.70 In 

contrast, a fully relativistic effective core potential was used for Sn, accounting for the 28 core 

electrons (1s22s22p63s23p63d10) and a 411(51d) basis set for the valance electrons.71 A periodic 

3×3×1 or 5×5×1 slab of SnS2 was used for representing the SnS2 surface. Initially, each target gas 

molecule was placed ~1.5 Å from the S surface layer of SnS2 and the molecule/slab configuration 

was geometry optimized prior to calculating the molecule-slab binding energy. 
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Figure 1. Morphological and structural characterization of 2D SnS2 flakes. a. Top and cross-

sectional schematics of SnS2; b. Height profile of a typical 2D SnS2 flake along the green line in the 

AFM image inset; c. TEM image of 2D SnS2 flakes; d. HRTEM image of a typical 2D SnS2 flake; e. 

Cross-sectional HRTEM of 2D SnS2 flakes; f. The zoomed in HRTEM figure indicating the 

interlayer spacing for hexagonal SnS2 is 0.587 nm. 
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Figure 2. Crystal structure and optical properties of 2D SnS2 flakes. a. XRD pattern of 2D SnS2 

flakes; b. Raman spectrum of 2D SnS2 flakes at the laser excitation wavelength of 785 nm with 

schematics of Eg and A1g Raman vibrational modes; c. The optical absorption spectrum of 2D flakes 

at the wavelengths between 400 to 800 nm; d. The PL spectrum of 2D flakes at the excitation 

wavelength of 532 nm. 
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Figure 3. Gas sensing performance of 2D SnS2 flakes. a. Response factor and response time of 

sensors made of 2D SnS2 flakes in the presence of 10 ppm NO2 in synthetic air balance as a 

function of operation temperatures; b. Dynamic sensing performance of 2D SnS2 flakes toward NO2 

gas at the concentrations ranged from 0.6 to 10 ppm under the operation temperature of 120°C; c. 

Measured cross-talk of 2D SnS2 flakes towards H2 (1%), CH4 (10%), CO2 (10%), H2S (56 ppm) and 

NO2 (10 ppm); d. Calculated molecule-surface adsorption energies of 2D SnS2 flakes towards the 

aforementioned gases together with NH3. 
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Figure 4. eDOS of NO2, NH3, H2S, CO2 and CH4 adsorbed on SnS2 in a 5×5×1 supercell, in 

which the clean surface of SnS2 is utilized as the reference. The Fermi level (0 eV along the 

energy scale) is aligned to that of SnS2 clean surface (EF) and the total eDOS is also scaled, so that 

the shape of the DOS can be visible on the same axis as the projected eDOS results.  
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Figure 5. Physisorption based charge transfer in 2D SnS2 flakes upon NO2 gas exposure. a. 

Raman spectra of 2D SnS2 flakes before and after NO2 gas exposure at 120°C. The corresponding 

intensity ratio of A1g and Eg modes is shown in the inset. The error bar represents the standard 

deviation based on the analysis of 100 samples; b. PL spectra of 2D SnS2 flakes before and after 

NO2 gas exposure at 120°C. 
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