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Abstract—Interactive storytelling is a strength of table-top role
playing games as they are facilitated by a game master (GM) who
directs the narrative and devises game scenarios. One difficulty
with the implementation is the large amount of time, effort and
specialist skills that can be required for the creation of such an
agent. This paper presents a method for developers to shape the
narrative by defining game behaviour in terms of norms and
preferences. The system was evaluated with both a case study
and a user experiment that showed the users found the system
to be both user friendly and suitable for development of games.

Keywords—Game Mastering, BDI reasoning, Role-Playing
games.

I. INTRODUCTION

Table-top Role Playing Games (RPGs) are a style of
game in which play is facilitated by a GM who directs the
narrative and creates the scenarios which the players will
negotiate [1]. In computer RPGs (CRPGs) the GM feature is
not usually present and thus the narrative is directed in a largely
predetermined manner by designers specifying the events and
their sequence. It is also usual for gameplay environments to
be built at development time and remain static for each play
through. This results in games for which players have little
motivation to replay in terms of narrative whereas, in contrast,
an infinite number of possible storylines are possible with a
human GM.

In an attempt to address this shortcoming, Luong [2]
implemented a system using a table-top style GM agent within
the CRPG Neverwinter Nights [3] (NWN). This GM guides
the player through a given scenario by selecting a path of
actions via which the player can achieve the goal. The GM then
instructs the player about what to do and manipulates certain
factors in the game world to guide the player through this
sequence of actions. For example, the GM agent may select
a path involving the player bribing a specific character with a
favour to obtain a password. The GM would consequently have
that character announce that they need assistance. Due to the
number of possible actions and their sequences a large amount
of possible storylines for the quest are possible and each play-
through is likely to be quite different to the last. Luong’s
implementation used a BDI agent oriented framework to imple-
ment the Neverwinter Nights GM. BDI [4], [5]; Belief-Desire-
Intention agents are a popular and mature agent development
paradigm based on cognitive concepts such as beliefs, goals,
intentions and plans. Agent oriented programming allows for
the creation of autonomous agents to perform tasks which are
capable of reasoning and reacting to environmental changes.

One shortcoming of Luong’s approach is that the GM’s
selection of storylines is essentially random. Using this ap-
proach, game designers would have no control over which
of the implemented plot points the GM would present to the
player. Another issue with the existing GM is that a game
designer would need knowledge of agent-oriented and BDI
concepts in order to design how game scenarios will function
as the game rules are embedded in the BDI implementation.

We address these issues by implementing an innovative
application of the well explored concepts of norms and pref-
erences into the GM agent. We use norms and preferences
because we are able to specify them separately from the
agent code and they can dictate agent behaviour without the
need for re-implementation and testing of agent definitions
themselves. We also approach preferential reasoning in a novel
way by using probability information to give the agent some
information about the lower level implications of selecting
higher level plans.

A norm is an application of a rule to one or more agents for
which a sanction is incurred by an entity who breaks it [6], [7].
These rules can take the form of obligations or prohibitions.
For example Amy is obligated to arrive at her job on time and
will receive a warning from her employer if she is late. She
is also prohibited from driving faster than the specified speed
limit and if she exceeds that limit she may incur a fine. When a
norm restricts behaviour, it is necessary for some reasoning to
occur against overall goals. For instance in the above example,
if Amy’s friend has been badly injured and it is necessary to
get him to the hospital as quickly as possible, Amy may choose
to break the speed limit in order to do so as that goal takes
precedence over a potential fine.

In this context, preferences are defined as an agent’s
predisposition to achieve a goal in a certain manner [8]. These
preferences come into play during reasoning when the agent
has multiple plans it can select to fulfill an objective. For
example if Joe’s goal is to get to work on time, he may prefer
to catch the train to get there. However if Joe misses the train
he can still call a taxi. In this case the preference was not
satisfied but Joe was still able to achieve the goal.

II. BACKGROUND AND RELATED WORK

BDI Agents: The BDI approach [5], [9] is to model and im-
plement agents using mental attitudes, such as beliefs, desires,
goals, plans and intentions. Practically, BDI agent systems
enable programmers to write abstract procedures, called plans,
that are combined and used in real-time in a way that is both
flexible and robust. Briefly, a BDI system responds to events



(i.e., inputs to the system), by selecting a plan from a pre-
defined plan library based on the current beliefs. A plan is a
set of steps to respond to a particular event. These steps could
include actions that affect the environment, belief updates, or
internal events (subgoals) that are in turn handled by different
plans. When an agent commits to a particular plan it is added
on to the intention stack. The system continues this process of
sensing, reasoning and acting.

Goals are often represented as (internal) events in BDI
implementations. There is often more than one plan in the plan
library that can achieve a goal, thus providing ‘flexibility’. If
the chosen plan fails then the system will choose an alternative
plan, if any, to achieve the goal, thus providing ‘robustness’
upon failure. The fact that plans that handle goals may in turn
post subgoals, naturally leads to a goal plan tree structure.
In essence, it is an ‘AND/OR’ tree where one of the plans
is chosen to achieve a goal (‘OR’), and all of the subgoals
must be achieved for the plan to succeed (‘AND’). Padgham
and Winikoff [12, p.16] show the power of flexibility of these
goal-plan structures by providing calculations that illustrate
that a modest system with 72 sub-goals and 147 small plans
(4 subgoals each) provides over two million ways of achieving
the single top level goal.

There have been a number of BDI agent system design
methodologies proposed with supporting tools [4]. For the
purpose of illustrating our approach we chose the popular
Prometheus [10] methodology and the supporting design tool
(PDT) [11]. There are 3 main design stages in Prometheus:
System specification where the requirements of the system
are captured including the goals of the system; Architectural
design where the overview of the internals of the system are
specified; and Detailed design where each agent’s internals
are detailed in terms of the goal-plan trees for the goals they
achieve. PDT provides a graphical interface for designing a
system and provides code generation, amongst many other
features, that generate code stubs in JACK [12].

Preferences: Our system uses preferences to describe the kind
of game scenario which will be presented to the player. In
the planning domain preferences refer to the desirability of
certain outcomes over others. These preferences may relate to
desired states, actions or overall plan properties and may be
ordered and/or dependant on certain conditions. Preferences
are typically specified in terms of certain properties which
different states and actions satisfy and can be given numerical
values to express measures of desirability.

The preference specification language PP was developed
by Son and Pontelli [13] and implemented in an Action
Set Planner [14] which represents the planning problem as
sets of actions, fluents (time dependent relations), predicates
describing interactions between the world and the initial state.
The planner then translates the problem into a logical prob-
lem described by a set of domain-dependent and domain-
independent rules.

PP was extended by Bienvenu et al [15] to create their
planner PPLAN by adding quantifiers, variables, non-fluent
relations, a conditional construct, and aggregation operators
(AgPF). Quantifiers and variables provide support for nu-
meric preferential specification and reasoning. Whereas in PP,
preference formulas were ordinal (ie: one preference could
be defined as more important to satisfy than another), here

the relative differences between preference formulas can be
quantified and thus incorporated into reasoning. Preference
formulae are given values from a totally ordered set, 1, with
a minimum and maximum value

Preferences have been previously implemented in a
BDI context with similar principles such as in [8], where
preferences could be specified in relation to plan properties.
These properties provide more detailed information about
what exactly will happen when a plan is used to achieve
a goal. In the introductory example, a plan involving
catching a train to work may set a variable to 100 eg:
transportMethod.train(100). Numerical plan property values
are then compared to preferences to sort the plans applicable
to the goal in terms of how well they suit the preference set.
The paper also deals with the upward propagation of plan
properties through the tree so that any reasoning about plan
properties takes into account the properties of the lower level
plans which may need to be carried out in order to satisfy a
plan’s sub-goals. This issue is also present in the our work
and we propagate plan properties (as discussed in Section
III-D) in a similar fashion to the method described in [8].

Norms: A norm is a specified rule which, if violated by an
agent it is applicable to, applys a sanction to that agent. Whilst
our system implement norms endogenously (the agent will en-
force its own norm compliance), numerous infrastructures have
been proposed for the specification of norms exogeneously (ie:
enforced by entities other than the agents they apply to) via
organisations [16] or institutions [17], [18].

The formal framework of ISLANDER [17], [19] defines
an electronic institution in terms of roles, scenes and norms,
in which different types of agents can interact with each other.
Here norms are used as a way of specifying interactions which
may not be detrimental to the agent. Whilst these norms can
specify undesirable outcomes for the agent, this usage contrasts
to other interpretations where norms have a sanction attached
to them to specifically encourage adherence to an obligation
or prohibition.

Another approach is a middleware S — MOISE' [16]
which facilitated the interaction of MOISE™ [20] organisations
with agents developed in any architecture. It specifies both
unbreakable hard constraints and soft constraints which agents
may choose to violate, however there is no in-built mechanism
for dealing with such violations.

A framework called N-2APL was presented by Alechina
et al. [6] and incorporates BDI based specifications such
as beliefs, goals and plans, with normative concepts such
as obligations, prohibitions and sanctions. It allows agents
to deliberate on whether to adhere to or to violate norms,
including support for temporal factors such as deadlines
and durations. However, this reasoning is based on priorities
assigned to the agent’s goals and to the norms which the agent
is subject to as opposed to such factors as the undesirability
of the sanction itself and outcomes which would arise from
said sanction. A more complete architecture has since been
proposed which integrates N-2APL with a norm specification
language 20PL [7] via a JavaSpaces tuple space. This
implementation allows norms to be activated (detached) and
to expire at run-time and monitors and enforces these norms,
applying sanctions in cases of violation.



The prototype CRPG - Neverwinter Nights: Neverwinter
Nights is a third-person role-playing computer game developed
by BioWare and published by Atari in 2002. The game is set
in a fantasy world, with the game rules based on the Dungeons
& Dragons 3.0 rule system. NWN includes a game engine, a
game campaign (the actual game itself) that can be played as
single player or in multiplayer mode, and the Aurora toolset
that has made the game extremely popular. It has also been
employed in research work [21], [22] since it is still probably
the best (almost) freely-available toolset for computer role-
playing games to date.

III. THE GM SYSTEM WITH NORMS & PREFERENCES

Our architecture is comprised of a number of different
aspects. First there are the norm and preference specification
languages which we have developed with the goal of making
them human readable and easy to learn. Then there is the game
master agent itself, into which the specification languages were
integrated, along with additional information and reasoning
methods with which the GM can act upon them. Figure 1
illustrates the overall communications between architectural
components.

Requests Curent Game Information

Y
Neverwinter Neverwinter
MW Nights Nights
Linux Server Windows Client

Sends Current Game Information

Sends Instructions

Reads Norms
From File

| preferences. bt ] | norms. txt ]

Fig. 1: High Level System Architecture

Reads Preferences
From File

A. Gameplay Preference Specification

Preferences will be used to describe the type of experience
the game will present to the player. The intention is that a
designer is able to produce a range of different styles of game
play with the same GM agent by specifying those styles in
terms of these preferences. For example if the designer wishes
the game to be an action RPG full of combat, they would
describe a preference for plans involving violence.

We define preferences to relate to themes which apply
to potential in-game events and gameplay outcomes. In our
Neverwinter Nights setting, these themes include: violence,
persuasion, bribery, exploration and stealth. Another dimen-
sion is added in terms of the moral implications of the plan,
classifying plans involving good-natured player actions as
paragon and an plans involving evil behaviour as renegade.

We define a preference as a specified theme with a numeri-
cal weighting out of 10. This definition is a simpler version of
the similar concepts in [8], [15] which allow for more detailed
specifications such as preferences which need only be satisfied
once or until some condition has been met. In contrast, our
preference system assumes that the specified preferences are
applicable throughout the execution of the game. Additionally
the above implementations order preferences based on a nu-
merical value V for which lower values are more desirable,
whereas our system considers higher values of V preferential
over lower values for the purposes of calculations involving
probabilities which are described in Section 3.4.

B. Specifying Game Rules As Norms

Norms are used to dictate the GM’s behaviour by describ-
ing some rules for the game. As developing a generalised
normative language is outside the scope of this project, a list
of normative options is provided for the user to create their
own specifications. These options are defined in an ontology,
where each sanction is assigned properties in the same manner
as other plans as described in Section III-D, with each property
in the figure assumed to have a value 1 unless omitted or
stated otherwise. However, the properties with values of -1
represent a distinction from other non-sanction plans and this
is elaborated on in the same section.

The norms specified by the user are applicable to the
player only. This is because the NPCs in our game scenario
are not autonomous and would either not be able to partake
in the sanction events, or these events would mostly not be
applicable to their scripting. For example, the NPCs are not
programmed to navigate dialogue trees between each other
therefore they cannot converse in any meaningful way, as some
of the sanction events require. They also do not use other
abilities such as persuasion and are not able to search for items.
Hence the decision was made not to make norms applicable
to NPCs as they would be largely unable to undertake them.

C. The Game Master Agent

The GM’s core structure is the goal-plan tree, which maps
goals to the plans which handle them and plans to their sub-
goals. We have added property summary information to the
tree and developed algorithms for propagating this information
throughout it in a similar fashion to [8]. Finally we developed
the reasoning mechanisms themselves so that the GM can
reason about preferences, norms and their interactions to
attempt to produce desirable gameplay for the player.

The plot points from which the GM can select are con-
tained within the agent’s goal-plan tree, concepts of which
are described in Section II. Figure 2 shows a subset of the
goal plan tree for our GM agent, complete with the themes
and actions which are relevant to each plan. Upon execution
in Luong’s implementation, the main goal is posted and the
agent then selects a course of action by selecting plans from
the goal-plan tree to satisfy that goal.

In order for our agent to reason about plan selection
based on the designer’s preferences and norms a property
summary is added to each plan in the tree. We follow [8]
by adding summary information which details what properties
are applicable to the plan. In our case these properties refer to
either actions, taken from the possible actions in the norm
specification ontology required for normative reasoning; or
themes taken from the possible themes in the preference
specification ontology required for preferential reasoning.

The properties applying to plans which trigger an in-game
event (as opposed to simply posting further goals) are assigned
a values of either 1 or 0. These binary values can be interpreted
as true or false. Properties are given a value of 1 if they are
applicable to a plan as it is certain that these themes and
actions will be present in the resulting gameplay. Values for
themes and actions which are not applicable to the plan are
omitted from the summary and assumed to be 0 as they will
not eventuate as a result of that plan being selected.
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Fig. 2: A Subtree of the GM’s Overall Goal-Plan Tree with Propagated Property Summary Information

However, the agent must be able to make a decision at all
levels of the tree, even if the plans it has to select from do not
directly bring about in-game events. In these cases, properties
are not directly applicable to a plan but may be applicable to
plans at a lower level of the sub-tree which extends from that
plan. Thus the agent must be given some information about
the plans in the levels of that sub-tree in order to perform
reasoning about which plan to select at a higher level.

To this end we extend the previous work of [8] by as-
signing a probability to the property’s value. This value is
the probability that, if the plan is selected, at least one lower
level plan from the sub-tree will be subsequently selected
which triggers an in-game event that satisfies the property. For
example, in Figure 2 the plan GetNPCToDistractJalek posts
a sub-goal with the same name. There are two plans which
handle this sub-goal, one of which involves having the player
use the persuasion ability. At least one plan must be selected
to handle the sub-goal, therefore if GetNPCToDistractJalek is
selected, there is a 50% chance that the ensuing gameplay will
involve persuasion. Hence the GetNPCToDistractJalek plan is
assigned the value of 0.5 for the persuasion property.

Note that this probability value is a static calculation
which is determined by hand and assigned to variables during
implementation. It does not take into account preferences, as
the actual probability of a given plan being selected would
depend on the norms and preferences specified. However we
have used these probability values because they are a clear
way to provide information to the agent so that it can “look
ahead” at the implications of selecting any given plan.

D. Normative and Preferential Reasoning

Plan summary information is calculated for each goal and
plan by recursively propagating values from the leaf nodes
upwards through the tree. As stated above, the calculation

results in a probability that properties will apply to in-game
outcomes, however this calculation is done differently for each
node depending on if the node is a goal or a plan. This is due
to the way the two relate to each other as explored by [8],
namely the AND/OR relationships described in Section II.

Propagation to goal nodes is achieved by averaging a
property’s child node probabilities for each possible property.
We define the probability of a theme ¢ occurring for goal g as
Pr(g:) in Formula 1, where children(g) is a set returning the
child nodes of g and Pr(i;) is the probability of ¢ occurring
in a child node 3.

_ Pr(it)
Pr(g:) = ZiEChildren(g) |children(g)| M
For example in Figure 2, the theme probabilities for the goal
GetNPCToDistractJalek are calculated as follows:

e Bribery: 1.0/2+0.0/2=10.5
e Persuasion: 0.0/2+1.0/2 = 0.5

Here we see that there is a 50% chance of the goal
GetNPCToDistractJalek triggering gameplay involving bribery
as there are two plans which handle it, one of which involves
bribery (likewise for persuasion). Yet there is a 100% chance
that the goal will trigger gameplay involving the paragon theme
as both plans which achieve that goal carry that theme.

Propagation to a plan node is more involved as it must
account for AND connections between goals when calculating
probabilities. Here we must consider the probability formula
for non-mutually exclusive events as detailed in [23], [24],
which is the complement of the product of the complements
of the probabilities. We define the probability of a theme ¢
occuring in a plan [ as Pr(l;) in Formula 2, where children(l)
is a set returning the child nodes of | and Pr(i;) is the
probability of ¢ occurring in a child node :



Pr(lt) =1- HiEchild'r'en(l)(l - Pr(Zt)) )

For example in Figure 2 the action probabilities for the
plan PersuadeChristovIoGiveKey are calculated as follows:

e Persuasion: 1 — (1 —0.75)(1 — 1.0) = 1.0
e Bribery: 1 — (1 —0.25)(1 —0.0) =0.25

Persuasion has a 100% chance of resulting from
the plan PersuadeChristovToGiveKey being selected as,
regardless of how the goal GetJalekAway is handled, the
plan PersuadeChristov must also be achieved, which will
definitely result in gameplay involving persuasion. Yet, there
is only a 25% chance that bribery will occur as the goal
PersuadeChristov does not involve this action and thus the
0.25 probability of it occuring as a result of handling the goal
GetJalekAway remains.

Sanction Properties: Plans in the goal-plan tree which result
in in-game events are assigned a probability of either O or
1. However, plans which are executed as the result of a
sanction may have another possible value, -1. Instead of being
a probability, this value indicates that, while no themes are
applicable to the gameplay outcomes of the plan, the outcomes
are detrimental to the player’s ability to engage in behaviour.

For example the WeaponConfiscated sanction leaves the
player unarmed, severely impeding their capacity for violent
actions. Therefore this sanction is assigned the violence
property with a value of -1, allowing the agent to reason
about the implications of the player to triggering this sanction
on any further plans involving violence.

Evaluating the Plan Score: When the GM agent is executed,
the root goal of the goal plan-tree is posted and the agent
begins traversing this tree — executing plans to address goals
and posting their sub-goals in turn. For each goal that is
posted, the GM evaluates the applicable plans which handle
the goal and calculates a score for each of them. This score
is calculated based on: the preferences specified; the inherent
plan properties; and the properties of any norms which may
be violated by the player in carrying out the plan.

First the GM checks the actions which the plan entails
against the set of user specified norms. If any of these actions
match an action which is obliged or prohibited through a
specified norm, then that norm is considered to be applicable.
For each applicable norm, the themes which are associated
with the sanction are added to the set of the themes for the
plan. These probabilities are then aggregated to calculate the
probabilities for themes which appear more than once, again
using the complement of the product of complements as we
use for propagating plan summary information.

Once the set of plan themes has been aggregated, the GM:
(i) compares this set to the preferences specified by the user;
(i1) finds the intersection of themes which appear both in the
specified preferences and the set of plan themes, and for each
theme a value is calculated (product of preference weight and
probability of that theme in the plan summary information);
and (iii) sums the values for all themes in the intersection to
produce a score for the plan. We define the score for a plan [ as
S; in Formula 3, where: r is the set of specified preferences;
themes(x) the set of themes relevant to a plan or a set of

preferences z; weight(r;) the weight for theme 4 as specified
within a set of preferences; and Pr(l;) the probability of a
theme 7 being present in the gameplay executed by plan /.

S = weight(r;) X Pr(l;)  (3)

Zie(themes(r) N themes(l))

The GM ignores themes not present in the intersection
of preference and plan themes. This is because themes not
specified as preferences are assumed to have a preference
weight of 0 and similarly themes not appearing in the plan
properties are assumed to have a probability of 0. In both cases
the theme would contribute a value of O to the overall score.
Once the scores for all applicable plans have been calculated
the GM executes the plan with the highest score, applying any
in-game effects and posting the plan’s sub-goals if it has any.

IV. EVALUATION

In this section we detail the user experiment undertaken and
an analysis of the results. A case study was also undertaken to
illustrate the inner workings of the new GM. While it has been
omitted here due to space constraints, full details of the case
study can be sighted online!. Our experiment involved a mix
of 10 male and female participants which had a background
in video game design. Given that access to professional video
game designers is difficult to achieve, our recruitment focused
mainly on game design program graduates. Our final partic-
ipant pool comprised of 8 recent graduates (2 of which are
currently working at game development studios) and 2 game
designers who are currently in the industry. No subjects had
played the game Neverwinter Nights prior to the experiment
so some brief instructions were given around the controls and
objectives of the game scenario.

Our experiment involved 2 systems: System A and System
B. System A was the original GM by Luong et al. [2] on which
our system was based while System B was the normative GM
which we developed.

Each participant was given an explanation of the system
and given a printed copy of the system’s ontology and a
detailed explanation of how the language is used to specify
gameplay preferences and norms. The participant was then
asked to think of a style of game they would like to create and
then attempt to describe it to the system using the language
described in the ontology. The participants were directed to
specify 2 or more preferences and 2 or more norms. The
participant then played through System A and System B.
Users were not told which system was which and half of
the experiments presented System A first, whilst the other
half began with System B. Once the participant had tested
both systems they were given the opportunity to do additional
runs through either system and to specify new preferences and
norms if they so wished. When the participant had finished
their testing session they were given a questionnaire to fill
out.

When specifying norms and preferences, participants were
encouraged to attempt to create gameplay situations in which
norms would be broken or exploited by the GM. This was
so that the designers were more likely to observe the norm
enforcement mechanics, as there was a good chance these
features may not have been evident during the gameplay testing
if the designers had not taken this into consideration.

IThe full case study is available at http://goo.gl/U777M1



Whilst this experimental setup is similar to that of a
“player testing” session, we draw an important distinction.
The play-through of the game itself is not intended to be an
evaluation of the gameplay from a player’s point of view, it
is intended to be a test run from the designer’s point of view.
The questionnaire is reflective of this — its questions being
around how well the GM conforms to their specifications
as opposed to how fun the game is or how much “replay
value” it has. Our experiment is designed to be a shortened
and simplified development iteration loop comprising design,
implementation and testing phases and is intended to be
reflective of the video game development process.

The Questionnaire: given to the participants contained both
quantitative and qualitative questions:

1) Which system produced the type of gameplay you described in
your preferences? Answered on a 5 point Likert scale labelled
“I-Definitely System A” to “5-Definitely System B”

2) Which system best enforced the norms you defined? Answered
as (1).

3) Which system best produced the type of narrative you were
trying to achieve with the preferences and norms you specified?
Answered as (1).

4) With regards to the system which performed better in the above
3 aspects, how well did the system satisfy the preferences and
enforce the norms you defined? Answered on a 5 point Likert
scale labelled “1-Only Slightly” to “5-Very Well”

5) Given minimal training and experience with the system, how
easy are the preference and norm definition languages to read
and use? Answered on a 5 point Likert scale labelled “1-Very
Difficult” to “5-Very Easy”

6) How suitable do you think this approach of specifying gameplay
via preferences and norms would be to designing video games
with flexible narrative? Answered on a 5 point Likert scale
labelled “1-Not Suitable At All” to “5-Highly Suitable”

7) What are the positive aspects of the system, if any? Answered
in a text box which accepted a paragraph

8) What aspects of the system are in need of improvement, if any?
Answered in a text box which accepted a paragraph

Analysis of Results: The results show that participants iden-
tified the difference between the two systems and that they
believed the normative GM was doing a better job of satisfying
their preferences, enforcing their specified norms and overall
producing the type of gameplay they desired than the original
GM. They also show that the participants felt that the system
performed well in these respects individually and was a
suitable method of designing games with flexible narrative.
These results are summarised in Figure 3.

T T T T T T
o]} Q2 Q3 Q4 Q5 Q6

Preference  Norm Performance  Usability  Suitability
Satisfaction  Enforcement Adherence

Fig. 3: Box plot detailing the spread of results.

We analysed the results with the Wilcoxon Signed-Rank
Test to test for significance as we had only a single ordinal
dependant variable (user score) and only a single sample in
each case. This test is also relevant because it does not assume
data is normally distributed. The result for each question was
determined to be statistically significant (scores below 0.05).

Questions 7 and 8 were requesting qualitative feedback
on the strengths and weaknesses of the system. Overall the
positive comments mostly dealt with the potential of the
system and how easy it was actually specify the norms
and preferences. Users also identified some areas in need of
improvement as the learning curve for the norm and preference
specification languages; some of the terminology used in the
ontology; and the fact that the GM restricts some of the
player’s agency by specifically telling them what to do.

Feedback from participants was encouraging in that they
saw potential in the system’s functionality. However, users also
expressed some views that the system was initially somewhat
challenging to understand and this will be addressed in future
work. Some learning curve is to be expected however, and
we contend that a single 30 minute evaluation of the system
is not sufficient for a user to become completely comfortable
with it. Users also expressed some disappointment that the
GM specifically directed them as to what players should do
within the game. This is inherent in the original GM, however
as the scenario which the GM can handle becomes larger, the
potential increases for the GM to direct entire plot lines at a
higher level, rather than directing the player in atomic actions.
This could also lead to interesting future work.

V. CONCLUSION

Flexible narrative in video games is a well investigated
problem to which a number of solutions have been proposed.
We have built upon one such solution [2] which uses an
automated intelligent BDI agent to construct a narrative for
the player. In this paper we have proposed and implemented a
preference and norm specification language for the purposes of
allowing game designers to create games with flexible narrative
using an automated intelligent game master. The system is
designed to be human readable and accessible to developers
who have little knowledge of the implementation details of the
GM itself.

The results from the user experiment showed that users
found the system to do a good job at producing the type of
gameplay they desired by satisfying their specified preferences
and enforcing their norms. The results also show that users
found the system to be fairly easy to use with minimal
instruction and that they believe the system to be suitable for
developing games with flexible narrative.

Other implementations of preference [13], [15] and norm
[6] specification languages are more expressive, allowing for
more involved and complicated definitions. Our work focused
on human readability and thus implemented an intentionally
simplified system of preference and norm specification de-
signed to be easily learnt and understood by users. Whilst
more complex definition languages are outside the scope of
this work, a larger and more expressive ontology may also
make it more difficult for users to comprehend the system and
learn how to use it. Future work may include attempting to
expand the expressiveness of the languages whilst trying to
maintain a focus on usability for game designers.
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