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CHAPTER I 

 

INTRODUCTION  

 

This chapter provides an overview of the thesis starting with a short survey on 

semiconductors, photocatalysis, metal nanoparticles, surface plasmon resonance, surface 

enhanced Raman scattering, followed by their applications in catalysis and sensing. Material 

parameters as well as the effect of heterojunction structures of a semiconductor device that 

can influence the photocatalytic activities were briefly reviewed. As zinc oxide is the main 

inorganic semiconductor used in the research presented in this thesis, an introduction is 

provided to show its properties and optical applications. The conceptual development of 

multifunctional materials, which can integrate photocatalysis and sensing for the 

development of renewable molecular and heavy-metal ion SERS sensors were further 

discussed. 
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1.1. Introduction  

Catalytic processes are chemical reactions where the rate of the reaction is modified 

by the presence of a catalyst. In most of the catalytic processes, chemical reaction can only 

happen in the presence of the catalyst, which significantly reduces the activation energy; 

otherwise, the rate of the reaction would be slow in the absence of the specific catalyst. 

Photocatalysis is a unique branch of catalysis, wherein the catalyst can only become activated 

when it is illuminated with the light with appropriate energy through excitation of the 

electronic states of the catalyst. These photocatalytic reactions can be carried out in 

homogeneous and heterogeneous phases. In homogeneous photocatalysis, both the catalyst 

and the reactants in the chemical system are in the same phase
1
, whereas in heterogeneous 

catalysis, the catalyst is in a different phase from the reactants
2-3

. Most of the inorganic and 

organic semiconductors have been demonstrated as very good photocatalysts for many 

chemical reactions. In particular, high photocatalytic activities of the wide band-gap 

semiconductor based heterogeneous photocatalysts (e.g. TiO2
4-6

, ZnO
7-8

, SnO2
9
, WO3

10
, etc.) 

have attracted researchers’ attention. Functionalizing semiconductors with metal 

nanostructures to create metal-semiconductor junctions can alter the photocatalytic activity of 

the semiconductors as well as may provide a multifunctionality using optical properties of the 

metallic structures such as SERS hot spots for multifunctional device fabrication, which is the 

major focus of this thesis. Thus an introduction about semiconductor, their properties, metal 

nanostructures, SERS and device fabrication are given in the following sections.  

1.2. Photocatalysis  

1.2.1. A short journey to the world of semiconductor  

Semiconductor energy band  

Semiconductors belong to a special class of materials where their conductivity ranges 

between that of a metallic conductor like silver and gold and that of an insulator such as 

quartz. The differences in their electrical conductivity can be understood by studying their 

electronic band structures. The simplified version of the band diagram can be considered to 

explain these differences. The highest band occupied by electron, and the lowest almost-

empty band are known as valence and conduction bands, respectively. These two bands 
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mainly dominate the behaviour of a semiconductor. The energy gap between the maximal 

energy point of valence band and the minimal energy point of conduction band is known as 

band-gap (Eg). This band-gap energy is not as large as in insulators which does not allow the 

excitation of the electrons from valence bands to the conduction band. The energy band-gap 

is a major characteristic of a semiconductor. Based on the materials structures, 

semiconductors can be in the form of inorganic (e.g. Ge, Si, ZnO, etc.) or organic (e.g. 

tetrathiafulvalene (TTF) and tetracyanoquinodimethane (TCNQ)) materials
11-12

. 

There are two different types of semiconductors in regard to their band structures: 

direct and indirect band-gap semiconductors as shown in Figure 1.1. If the momentum of 

electrons and holes is the same in the valence and conduction band, the minimum energy 

point of the conduction band aligns with the maximum energy point of the valence band. This 

is the case with direct band-gap materials. In an indirect band-gap this alignment does not 

exist and thus for transferring an electron from the valence band to the conduction band, 

momentum of the electron should be changed. In direct semiconductors, the electron transfer 

between valence band and conduction band can easily happen if enough energy equal to or 

higher than band-gap energy of the semiconductor is provided to the system
13

.  

 

Figure 1.1. Conduction and valence band diagram of a) direct and b) indirect band-gap 

semiconductors. 

When a direct band-gap semiconductor is exposed to a photon with energy equal or 

higher than its band-gap energy, this energy is absorbed by semiconductor and used to excite 

an electron from the valence band to the conduction band, creating electron/hole pairs. On the 

other hand, in indirect semiconductors, the momentum change should be provided by 

absorbing an additional phonon. Thus in most of the optical phenomena, applications are 
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based on the direct band-gap semiconductors where only photon interaction is required for 

these applications
14

. 

Electron distribution in semiconductors  

As indicated before, in a solid, electrons occupy a series of bands. For a band with 

energy of (ε) the probability that an electron can occupy the band in an equilibrium 

temperature of T can be estimated through Fermi-Dirac distribution  as: 

 

1.1 

Where µ is energy of the state and kB is the Boltzmann constant. With this equation an 

average number of electrons that can occupy the state of µ can be calculated. The location of 

the µ in a solid is important in characterizing the electronic structure of the solid. If valence 

and conduction bands are considered, µ would be called as Ef or Fermi level. The location of 

Ef in different materials is shown in Figure 1.2. In an insulator, Ef lies between a large band-

gap between conduction and valence bands. In metallic structures, Ef lies within the valence 

band where there are a large number of active states available nearby. In this case, the bands 

are overlapped to each other as shown in Figure 1.2. In an intrinsic semiconductor, Ef lies 

between valence and conduction band.  

 

Figure 1.2. Schematic representation of energy bands in different type of materials. 
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Electrons excited to the conduction band in a semiconductor can make the electron 

flow and contribute to the conduction similar to metals. However, there is a difference 

between conduction in the metals and semiconductors. As shown in Figure 1.2, the 

conduction band and valence bands are separated from each other in the semiconductor. 

Thus, to observe conductivity, an electron should be transferred to the conduction band. This 

excitation and electron transfer, leaves an empty space in the valence band which is called as 

hole. As electrons located in the valence band can be relocated in this empty space, the holes 

move in the opposite direction of the electrons movement. Thus, hole is considered as an 

individual component with positive charge in the quantum mechanics with specific 

characteristic. In a semiconductor, by controlling impurities (doping) and also defects in the 

crystallite of the semiconductor, the type of the semiconductor can be controlled to be as n-

type (electron as majority carriers) or p-type (hole as majority carrier).  A single 

semiconductor crystal can have many p- and n-type regions, the majority of each region 

determining the type of a semiconductor.  

 

Figure 1.3. Density of states (N(E)), Fermi distribution (f(E)) and carrier concentration (n or 

p) for intrinsic, n-type and p-type semiconductors in thermal equilibrium. 
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As the exponential part of Eq.1.1 is much higher than unity, this equation can be 

simplified as: 

 
1.2 

As the charge transfer carriers in the conduction and valence bands are electrons and 

holes, respectively, the density of the carriers can be shown as: 

 
1.3 

 
1.4 

NC and NV are the density of the state at conduction and valence bands, respectively, 

which are equal to: 

 

1.5 

 
1.6 

Where h is the Plank’s constant,  is the effectiveve mass of electron and  is the 

effective mass of hole. In an intrinsic semiconductor the number of  and  are same and 

equal to . Considering this fact by multiplying Eq.1.3 and Eq.1.4 to each other: 

 
1.7 

Now that   , and by considering Eq.1.3 and Eq.1.7: 

 

1.8 

By considering Eq.1.5 and Eq.1.6: 

 

1.9 
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By considering that the second term is relatively small as it depends logarithmically 

on the ratio of hole and electron’s effective masses in the bands, Ef in an intrinsic 

semiconductor is located in the middle of the energy gap, as shown in Figure 1.3. 

In semiconductors with structural impurities, such as those in n-type or p-type 

semiconductors, the majority of the carrier would either be electrons or holes, respectively. 

The relative positions of the Fermi level and also band edges in these semiconductors are 

highly depended on the impurities level. These impurities, Donor (D) or Acceptor (A), can 

only stay in the lattice in an ionized form. These impurities can produce a dopant state within 

the band-gap. Due to the existence of additional electrons or holes due to impurities, if the 

dopant energy of the state is close enough to the thermal energy units (i.e. kBT) of the band 

edge, electrons or holes in these dopant states can be easily migrated into the bands (acceptor 

levels are proximal to the valence band and donor levels are close to the conduction band). 

Thus, the Fermi energy in an n-type and p-type could be considered as: 

 
1.10 

 
1.11 

Thus, the position of the Ef in a semiconductor highly depends on the type of the 

semiconductor. If a semiconductor is an n-type, the density of the states in the conduction 

band filled with electron is higher and thus Ef is near to the conduction band; while in the p-

type the population of the holes in the valence bands are higher in the semiconductor, which 

make the Ef locates near to the valence band
13-17

.  

Even in ‘chemically pure’ semiconductors, deviation from stoichiometry can 

introduce some defect states, and thus these semiconductors may act as n-type or p-type in 

their pure non-stoichiometric form, e.g. CuI
18-19

 (p-type) and ZnO
20-21

 (n-type). 

1.2.2. Semiconductor junctions 

1.2.2.1. Semiconductor/metal junctions 

Fermi level in a solid indicates the chemical potential of the lowest energy of free 

electron or the highest energy of free hole. When two semiconductors are attached to each 

other to form junctions, there will be a change in the chemical potential that brings the 
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interface in a thermodynamically non-equilibrium state due to the difference in their 

potentials. Subsequently, there will be an exchange of either matter or energy at the interface 

to equilibrate the chemical potential of the interfaces in order to make the system attaining 

the equilibrium state. This can be called as Fermi energy alignment in the heterojunction 

combination of the semiconductors with other materials
13

. When metals form contact with the 

semiconductors, two different kinds of contacts can be established, namely Schottky and 

Ohmic contacts
22

. The work function of the metal and semiconductor are the two major 

parameters that control the nature of contact between the metal and the semiconductor. The 

work function is the minimum energy needed to remove an electron from a solid to a point in 

the vacuum outside the solid surface free from the nuclei of the originated atom. The work 

function of a metal (eΦm) is the energy difference between vacuum energy and the Fermi 

level of the metal (EFm) (as Fermi level is located in the band). However, for a 

semiconductor, the work function (eΦs) is described as the energy required removing an 

electron from the semiconductor to the free vacuum level; thus, it can be considered as the 

energy difference between the Fermi level (EFs) and the vacuum level. In addition, the energy 

difference between the conduction band and vacuum level is known as the electron affinity 

(eχs). Based on the differences between eΦs and eΦm and also considering the type of the 

semiconductor, four different junction can be realised at the metal/semiconductor interface, 

as shown in Figure 1.4. Regardless of the type of the junction, all these junctions attain the 

equilibrium state by the electron or hole exchange between the semiconductor and metals
14, 

22
.  

In the case of n-type semiconductor/metal junction with eΦm>eΦs; due to transferring 

of electrons from the semiconductor to the metal, equilibrium and alignment in the Fermi 

levels occur. When few electrons are transferred from the semiconductor, the Fermi level or 

the band profile of the metal does not change. This is mainly due to the fact that metals have 

enormous free electron densities. As a result of electron transfer from the semiconductor to 

the metal side, positively charged fixed dopants are left in the semiconductor region which 

produces a dipole region at the interface. This charge transfer leaves a layer of the positively 

charged region (Depletion layer (W)) in the semiconductor. This dipole region can make a 

built-in potential between the charged area of the semiconductor and metallic structure in the 

junction interface. In the ideal Schottky barrier, the height of the barrier (eΦb) at the junction 

is defined as the difference between conduction band of the semiconductor structure and 

Fermi level of the metal structure at the junction: 



 

10 
 

 1.12 

The potential eVbi is called the built-in potential of the junction and is given by 

 1.13 

Thus the electrons transferring from the semiconductor to the metal side face a barrier 

of eVbi (Forward bias). On the other hand, due to existence of this barrier at the junction, the 

reverse translation (Reverse bias) needs more energy to move from the metallic to the 

semiconductor
14, 17

.  

In p-type semiconductor, if eΦm<eΦs then similarly barrier can form during for hole 

transport. In this case, electrons can be transferred from metal to the semiconductor in the 

junction and make a negative charge depletion layer. The bands bend in such a way to make a 

barrier for hole transport. In this case the built-in potential would be: 

 1.14 

In n-type semiconductor if eΦm<eΦs then the junction can act as an Ohmic junction. 

In this case, there would be no barrier between metallic and semiconductor structures. In this 

case, the junction acts only as a resistor and electrons can be easily transferred from the metal 

to semiconductor. This case can also be considered in the p-type semiconductor, if eΦm>eΦs. 

In both of these cases, the barrier does not exist but metallic structure can produce more free 

space for charge transfer and can act as charge traps
16-17

. 
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Figure 1.4. Band structures of metal–semiconductor junctions for (a,b) an n-type 

semiconductor and (c,d) a p-type semiconductor in thermodynamic equilibrium. 

1.2.2.2. Semiconductor/semiconductor junctions  

p-n homojunction  

When two semiconductors of same composition with different dopants, making one p-

type and the other n-type, come together they form a junction called p-n junction. As 
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explained in Section 1.2.1, the Fermi levels of these semiconductors are completely in 

different positions (Figure 1.5a). The n type semiconductor has a large number of electron 

carriers, whereas in the p-type the majority charge carrier belongs to holes with positive 

charges.   

Due to the doping of the semiconductor, the majority of the carriers on the n-type side 

are electrons, while very few mobile electrons are available on the p-type region. Due to the 

random thermal motion of the free electrons and differences in their concentration in the p 

region and n region, electrons from the n-type side start to diffuse into the p-type side. 

Similar condition happens for holes. There are large numbers of mobile holes in the p-type 

region as they are major carriers in a p-type semiconductor, on the other hand, on the n-type 

side holes are just minority carriers. Therefore, a diffusion of the holes from the p-type region 

across into the n-type region occurs (Figure 1.5b). Most of the electrons recombine with 

holes during simultaneous diffusion of electron and holes in opposite directions. As a result, a 

region of depleted mobile carriers is formed at the junction (Figure 1.5c)
17

. 

 

Figure 1.5. a) Band structure of a p-type and an n-type semiconductor before joining, b) 

band structure of a p-n homojunction, c) structural change in the depletion layer of a p-n 

homojunction, d) charge profile in the depletion layer and e) electric field profile in the 

depletion layer (maximal at the junction). 
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An electric field in the depletion layer is produced due to coexisting of positive charge 

in the n-side and negative charge in the p-side which sweeps out any electrons and holes that 

enter the region (Figure 1.5d and e). A drift current is created at the junction after attainment 

of equilibrium, that counter balances the diffusion current (Figure 1.5b). Since the structure 

after diffusion should reach to the equilibrium, Fermi levels of the p- and n-type materials get 

aligned   in the structure. The above exchange of carriers occurs on a very short time scale. 

So the whole process can be thought of as instantaneous. As a result aligning the Fermi levels 

of the p and n type semiconductors, between the n-side and the p-side, a built-in voltage, Vbi, 

is produced. As indicated in Figure 1.5b, the built-in voltage is given by: 

 1.15 

By solving the Poisson equation, the width of the depletion region for the junction 

under no applied bias can be estimated as: 

 

1.16 

 

1.17 

Where, Na and Nd are the uniform doping densities for the acceptors and donors for p-

n structure;  is permittivity and q is the magnitude of the electron charge. Thus the width of 

the depletion layer in each region is highly depended on the concentration of the dopants.  

The electric field is non-uniform in the depletion region; where it reaches to its 

maximal amounts at the junction (Figure 1.5.f). The maximum value can be calculated as
13

: 

 
1.18 

p-n heterojunction  

If two different semiconductor materials are used to form a junction, the junction is 

called heterojunction. In this case based on the band-gaps and also the position of the bands 

based on the vacuum energy levels, three different band diagrams as Straddling, Offset and 

Broken gaps can be produced as shown in Figure 1.6
13, 23

.   
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Figure 1.6. Different semiconductor heterojunctions based on their band edge offsets in the 

flat band condition for: a) Straddling, b) Offset and c) Broken gaps. 

Based on the type of the semiconductors, the heterojunction can be categorised into 

four different types. Anisotype heterojunctions in which n-P or N-p junctions are formed; 

where the capital letter indicates the larger band-gap material. If the same semiconductor type 

is used in the junction it will be known as isotype heterojunction which includes n-N and p-P. 

There are some “rules of thumb” in analysing the band diagram of heterojunction: 

 Linearity: The band-gap and the band edge positions cannot be changed by joining the 

semiconductors to each other.  

 The common anion rule: When two semiconductors with same anion (As in GaAs and 

InAs) make heterojunction, the bending in the conduction band edge is always greater 

than the valence band edge ( ). 

 The common cation rule: When two semiconductors with same cation (Ga in GaAs, 

GaP and GaSb) make heterojunction the valence band edge energies scale with the 

anion electronegativities.  
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Figure 1.7. a) Band structure of a p-type and an n-type semiconductor before joining, b) 

band structure of a p-n heterojunction, c) structural change in the depletion layer of a p-n 

heterojunction, d) charge profile in the depletion layer and e) electric field profile in the 

depletion layer (maximal at the junction). 

Band bending as in homojunctions can be resulted in heterojunctions due to the 

alignment of Fermi energies to attain equilibrium. In the case of n-type wide band-gap 

semiconductor attached to the low band-gap p-type semiconductor, Fermi levels should be 

flat to reach an equilibrium state. In this case, like homojunction, p-n junction diffusion and 

drift of the carriers happen. This generates the depletion layer in the interface (Figure 1.7). 

One of the main and significant features of the semiconductor heterojunction is the 

discontinuity in the band edge. The discontinuities result from the fact that not only the 

doping and the electron density are changing across the interface of a p-n heterojunction, but 

that the atoms themselves are changing. This results in the formation of a step function in 

electron potential. One of the remarkable discontinuity-related effects is the formation of 

spike in the interfacial regions. In this case, the charge carriers are trapped in the spike
13

. This 

discontinuity highly depends on the structures of the materials. It can only happen if the 

materials are completely changed by passing the interfaces of the junction from one 

semiconductor to another. In other word, two materials that have little or no solid solubility in 

each other will form an abrupt interface (e.g. Si and ZnSe)
24

. Abrupt interface will not form 
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in the junctions where the semiconductors have large solid solubilities (e.g. GaAs and 

AlAs)
13

.  

1.2.3. Photocatalysis 

General description 

The interaction of light and a semiconductor photocatalyst is shown in Figure 1.8, 

schematically. When a semiconductor is excited by light with appropriate energy (hν>Eg), an 

electron is excited from valence band to the conduction band, creating an electron-hole pair. 

The holes have enough positive potential to convert the water molecules attached to their 

surfaces into •OH radicals. These •OH radicals are strongly oxidizing radicals present on the 

surface of the semiconductor. Conversely, the electrons react with dissolved oxygen 

molecules in the water to form superoxide anion, . The electrons on the surface can create  

reduction sites on the surface of the semiconductors. However, the formation of the electron-

hole pair is not a stable phenomenon
25-26

.  

Absorption of a photon results in the excitation of an electron from the valence band 

to the conduction band that leaves a hole in the valence band. When the excited electron 

returns to the valence band from the conduction band, it recombines with the generated hole. 

The excitation-recombination (depends on the structure and defects of a semiconductor) is a 

nanosecond length phenomenon. As the formation of the radicals highly depends on the 

availability of the electron and hole in the excited semiconductor, therefore, the life-time of 

the electron-hole pair in a semiconductor becomes a very critical parameter to control its 

photocatalytic activities
25

. The fast recombination makes the life-time of an electron-hole pair 

shorter and subsequently decreases the amount of the radicals formed on the semiconductor 

and reduces the efficiency of the photocatalytic reactions. Presence of any radical scavenger 

or crystalline defect can facilitate the recombination rate via trapping the electron or the hole 

in the semiconductor structure (volume recombination). Therefore, the population of the 

trapping states and recombination sites can be reduced by providing photocatalysts with a 

better crystallinity. This can be resulted into an increase in the efficiency of a photocatalyst 

by increasing the life time of electron-hole pairs
4, 6

. At the interface of a semiconductor 

material with the media, the termination of the periodic structure of a semiconductor at its 

free surface can form surface-localized electronic states within the semiconductor band-gap 

and/or a double layer of charge, known as a surface dipole. Surface atoms with no upper atom 

to bind can lead to formation of dangling bonds. These dangling bonds can form different 
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charge characteristics at the surface of the semiconductor. Furthermore, the topology of the 

semiconductor can charge in the surface (there is no completely flat surface) which is due to 

steps and kinks at the surface of the semiconductors. These phenomena at the surface can 

make recombination sites for trapping and consumption of electron and hole pairs formed via 

photoexcitation (surface recombination)
27

.  

 

Figure 1.8. Schematic illustration of the principle of semiconductor photocatalysis: (I) the 

generation of an electron/hole pair via photo-excitation; (II) the volume recombination of 

electron and hole; (III) Consumption of electron in the broken ligands and defects located at 

the surface (surface recombination); (IV) the initiation of a reductive pathway by a 

conduction-band electron; (V) the initiation of an oxidative pathway by a valence-band hole. 

Increasing efficiency 

To obtain optimum photocatalytic efficiency, the electron and the hole should be 

efficiently separated from each other, and the photo-generated charges should be rapidly 

transferred across the surface/interface to avoid the recombination. To improve the 

photocatalytic performance, the approach that has generally been applied is to form a 

semiconductor junction by coupling with a secondary substance (noble metal, other 

semiconductors)
23, 28

.  

As mentioned in Sections 1.2.2.1 and 1.2.2.2, the formation of the junction between a 

semiconductor and metallic or semiconducting materials can form junctions with an ability to 

separate the electron and hole. Semiconductor/metal junction can have two different forms. 
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First, if the heterojunction forms Schottky barrier, photo-excited electron is transferred to the 

metallic structure, which allows the separation of the electron and hole. Furthermore, 

formation of the electric field in the depletion layer can help electron-hole separation as the 

excited electron cannot easily come back to the semiconductor to recombine with the hole. 

These phenomena increase the life-time of electron-hole pairs. On the other hand, when 

Ohmic junction forms, the transfer of the charge into the metallic structure, like the situation 

in the Schottky junction, can increase the lifetime of the electron-hole as the metallic 

structure acts as electron sink
29-31

. Although the barrier does not exist in this form, but the 

bending of the conduction band and the differences in the Fermi levels of the metal, and the 

semiconductor makes the return of the electron to the semiconductor harder, and thus helps 

the separation of the electron-hole pairs. As an example, the photocatalytic reaction using 

silver decorated zinc oxide is presented in Figure 1.9
7, 32-33

.  

 

Figure 1.9. Photocatalytic mechanism in Ag/ZnO heterojunction nanocrystals. 

In the case of ZnO/Ag, the work function of the semiconductor is larger than the 

Fermi level of the junction, thus the photo-excited electrons can be transferred from ZnO to 

silver metal due to the higher energy of the conduction band of the ZnO. These electrons can 

generate •O2 radicals while the holes in the ZnO structures can generate •OH radicals. 

Thereby, existence of the silver metal on the surface of zinc oxide can increase the rate of the 

charge transfer due to lower Fermi levels than conduction band of the zinc oxide, which leads 

to the separation between photo-generated electron and hole pairs
33-34

.  

Another type of junction to increase the life time of an electron-hole pair is 

semiconductor-semiconductor junctions, wherein the band-gap of both semiconductors are 

significantly different 
23, 28, 35-36

. There are two reasons for using these structures. First, using 
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semiconductors with different band-gaps, wider wavelength ranges of the light can be 

harvested for generating electron-hole pairs. If a wide band-gap semiconductor is used for 

instance, it needs short wavelength light with energies high enough to overcome its band-gap. 

Thus, in most of the wide band-gap semiconductors like ZnO
8, 37

 and TiO2
5-6

, UV source is 

needed for their photo-excitation. As the UV region is the small portion of the solar light, it is 

advantageous to integrate lower band-gap semiconductors with wide band-gap semiconductor 

to harvest broad region of solar light spectrum. Therefore, the use of n-n heterojunctions like 

CdS/ZnO
38-40

 and CdSe/TiO2
41-43

 have become one of the major attractions of the 

semiconductor heterojunctions. On the other hand semiconductor-semiconductor junction can 

be formed as p-n junctions
44-45

. The main efforts are focused on the heterojunctions. In this 

way not only the fabricated photocatalyst can harvest larger areas of the solar light, but it can 

also make the electron-hole separation more effectively. In p-n junction, due to formation of 

charged depletion layer at the junction, the electric field does not allow the electron hole 

recombination. Also, in the heterojunction, formation of the spikes in the band structure can 

act as electron or hole traps, furthermore, assist with electron-hole separation. For instance, 

the Ag2O (p-type) and Bi2O2CO3 (n-type) semiconductor's junction can be taken as an 

example to show band structures and the photocatalytic mechanisms, as shown in Figure 

1.10
46

. 

As discussed in the Section 1.2.2.2, under dark the Fermi levels are aligned and a 

depletion layer is formed at the interface. After generation of an electron-hole pair upon light 

absorption, the system attains a non-equilibrium state by creating a bend in the Fermi level of 

the junction. The system behaves like p-n diode under forward bias. In this regards, the 

electrons formed in Ag2O drift into the depletion layer of Bi2O2CO3, while the holes 

generated in Bi2O2CO3 are transferred to the Ag2O structure. Then these separated electron 

and holes can be consumed to form free radicals of •OH or •O2. Thus formation of the p-n 

junction can cause efficient separation between electrons and hole, thereby, increasing the 

efficiency of the photocatalytic reactions
46

. 
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Figure 1.10. Band structure of Ag2O/Bi2O2CO3 p-n heterojunction a) before forming 

junction (V vs. NHE), b) in the dark c) under illumination. 

Photocatalysis cannot only be done with inorganic semiconductors, but also there are 

some reports on the use of the organic semiconductor photocatalysts. Major disadvantage in 

this case is the stability of the organic semiconductor itself because the produced radicals 

may degrade the organic semiconductor. Recently, the use of AgTCNQ and CuTCNQ, two 

well-known narrow band-gap p-type charge transfer semiconductors, with/without metal 

junctions, for the degradation of environmental pollutants have been reported
47-48

. These 

materials have shown a good stability in the presence of the photocatalytically generated 

radicals. One of the main attempts of this thesis is to utilize the semiconducting p-n junctions 

between ZnO and AgTCNQ as inorganic-organic heterojunction to increase the 

photocatalytic efficiency of the ZnO nanostructures.  

1.3. Surface enhanced Raman spectroscopy  

1.3.1. Fundamentals of local surface plasmon resonance (LSPR) 

Plasmons are considered, in a classical picture, as the collective oscillation of the free-

electron gas density in a conducting material such as metal. When the electrons in the metal 

interact with light having frequencies less than the plasma frequency, the light is reflected. 

On the other hand, for frequencies of light higher than plasma frequency of the metal, the 

electrons of the metal particles cannot respond to the electromagnetic field fast enough and 

thus the light transmitted
49

. When an electromagnetic wave interacts with a metal particle, 

conduction electrons of the metal set into oscillations and they are displaced with respect to 

their equilibrium positions. The attractive forces are exerted by the cationic cores that act as a 
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restoring force that enables the electron oscillations around their equilibrium positions. As the 

size of the metal is reduced below the mean free path of the electron in a metal, these dipolar 

oscillations become quantized and the force on the surface electrons results into a unique 

resonance frequency that matches the oscillations
50

. This phenomenon generates collective 

charge oscillations on the surface of the metal particles known as surface plasmon resonance 

(SPR) as shown in Figure 1.11. Most of the metals such as Pb, In, Hg, etc. have plasma 

frequencies in UV parts of the spectra, thus there is no color effect that could be observed in 

these materials. Conversely, Cu, Ag and Au show their SPR frequencies in the visible 

spectral ranges. SPR results in efficient absorption and scattering of light at specific 

frequencies depending on the particle shape, size, and composition
49, 51-54

.  

 

Figure 1.11. Schematic illustration of surface plasmon resonance in a spherical particle. 

The quasi-static approximation assumes that the phase of the electric field of the 

incident light is essentially constant over the length of the nanoparticle. Thus, for 

nanoparticles with sizes smaller than the incident wavelength of the light, by using the quasi-

static approximation, the particle is treated as a single dipole and thus the produced dipole 

momentum can be estimated as: 

 
1.19 

Where  is the vacuum permittivity,  is the dielectric constant of the medium,  is 

the partiradius;  is the complex dielectric function of metal, and  represents the incident 

field. The polarizability, α of the particle then can be defined as
55

: 
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 1.20 

From Eq. 1.19 and Eq.1.20: 

 
1.21 

As could be seen from Eq.1.21, if the term  reaches to its minimal point, the 

polarizability of the particles would be maximized. Dielectric function consists of real  

and imaginary parts . Based on the Fröhlich theory, when   then absorption and 

scattering of incident light on the particle are greatly enhanced at these frequencies
55

. As  is 

small and relatively constant, the LSPR is determined by real part of dielectric constant of the 

metallic particles and the dielectric constant of the media. The sum of the scattering and 

absorption of the light by metallic materials is known as extinction. Mie theory can estimate 

the extinction for spherical particles as: 

  1.22 

Where,  is a shape factor (  for spherical particles), N is the density of particles, 

 is particle radius,  is the dielectric constant of the surrounding media,  and  are real 

and imaginary part of the metal dielectric function. With this theory, we can predict the 

position and shape of the plasmon absorption spectrum for spherical and spheroidal metal 

particles
56-57

.  

1.3.2. Surface-enhanced Raman scattering (SERS) 

Raman scattering 

Raman scattering is an inelastic scattering of a light photon by a molecule as 

discovered by C. V. Raman in 1928
58

. The inelastically scattered photon has the vibrational 

fine structure of the molecule that scatters the photon, and the vibrational fine structure forms 

the fingerprint of each molecule. This ability in distinguishing the molecules using this 

technique as a promising analytical tool is called Raman spectroscopy
59-60

.  

Figure 1.12 shows the different types of scattering mechanisms schematically. Photon 

with the energy of excites the molecule into a virtual energy state. During the energy 

relaxation, if the photon does not interact with the molecule, the relaxation results in the 
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formation of re-radiation of the photon with the same frequency. This scattering is an elastic 

scattering, which is known as Rayleigh scattering. However, there are some photons that 

interact with the molecular vibrational/rotational motions; therefore, their frequency after 

scattering is reduced from the incident photon frequency. These types of scattering which 

include the change in the energy of the initial photon are known as Stokes and Anti-Stokes 

scatterings which are the basics of Raman scattering. Stokes scattering is in which case that 

the scattered photon has lower energy than the initial photon. Raman scattering is an 

extremely weak process and only 1 photon in 10
6
-10

9
 photons are scattered inelastically. 

Therefore the intensity of Raman scattering is quite weak and has a number of drawbacks in 

terms of using it as an analytical technique.  

 

Figure 1.12. Quantum mechanical model of Raman scattering. 

Surface-enhanced Raman scattering (SERS) 

When a molecule locates close enough (r) to the metallic nanoparticle, there will be 

an enhancement in the Raman signal of the molecule which is known as Surface-enhanced 

Raman scattering (SERS). The induced LSPR from interaction of metallic particles with 

light occurs at the surface of the particles and then generates the amplified electromagnetic 

field. Subsequently, it results into difference in the electromagnetic fields inside (Ein) and 

outside (Eout) of the particles, which can be calculated by the Maxwell’s equations as
61

: 

 
1.23 

 
1.24 
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Where  and  are dielectric functions of media and metallic nanoparticles, 

respectively;  represents the incident field; α represents polarizability of metallic particles 

described in Eq.1.21; r is the radius distance; x,y and z are Cartesian coordinates and X,Y and 

Z are the unit vectors. It could be seen from these equations that the Eout is the strongest when 

excitation and scattered fields are in resonance with LSPR. 

There are two main enhancement reasons known that relate to the SERS phenomenon: 

electromagnetic enhancement (EM) and chemical enhancement (CE) mechanisms
62

.  

1.3.3. Enhancement mechanisms in SERS 

Electromagnetic enhancement (EM) 

The resonance excitation of plasmon oscillation in the surface of the metal 

nanoparticle is the main reason for electromagnetic enhancement (EM). The resonance 

excitation of LSPR, as shown in Eq.1.24, makes (i) an amplified electric field in the vicinity 

of its originated metallic surface and also (ii) provides the radiation enhancement due to the 

modified Raman dipole
63

.  

The electromagnetic field of the incident light (EInc) at the incident frequency of ω is 

different in the magnitude as well as orientation with the local electromagnetic field (ELoc) at 

the molecule. The local field intensity enhancement factor ( ) can be estimated by: 

 
1.25 

Typically, the gap (hot spots) between two metallic objects has the highest local field 

intensity enhancement. As shown in Eq.1.24, the local field intensity enhancement exists at 

the distances near to the metallic surface, and is associated with a coupling to LSPR, Thus, 

 should be a function of the incident wavelength
64

.  

The radiation enhancement factor is also dependent on the Raman scattering 

processes. Thus, the total SERS-EM enhancement factor (EF) is the accumulated result of 

these two phenomena, the local field enhancement and radiation enhancement: 

 1.26 

As could be seen, in SERS the signal is enhanced by a factor proportional to the 

fourth-power of the electric field enhancement. Thus, since the  arising from the 
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plasmonic excitation can be very large, the EM is the main dominant mechanism in the 

enhancement of the Raman signals
62

.  

The control in making nanoparticles of desired optical properties and the ability to be 

excited by different wavelengths led to an enhanced sensitivity of the Raman scattering into 

such an extent that the vibrational features of a single molecule could be captured. Single-

molecule SERS (SM-SERS) can be generated in special case, where the analyte sandwiched 

between nanoscale gaps between adjacent SERS active nanoparticles which are presented in  

aggregate structure. These gaps are named as hot spots because the SERS electromagnetic 

enhancement in these regions are predicted to exceed (10
8
) 

65
. The formation of the enhanced 

electric field between particles can be simulated using Finite-difference time-domain (FDTD) 

modelling method. As shown in Figure 1.13, if the distances between the particles exceed 10 

nm, the enhancement factor in the electric field generated between particles is decreased 

drastically
63, 66-67

. If hot spots are properly designed, the SERS can be used as a tool to study 

single molecule phenomena 
68-71

.  

 

Figure 1.13. Enhancement factor (EF) distribution in the region of the gap between a) two 

gold colloids (radii = 30 nm) for polarization along the vertical axis of the dimer; b) gold tip 

on top of a gold surface
63

. 

Chemical enhancement (CE) 
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Charge transfer (CT) between metallic particles and adsorbed marker molecule can 

lead to another type of Raman enhancement known as chemical enhancement. In the case of 

charge transfer, due to LSPR, an electron from the metal can inject into the molecule and 

perturb its potential, hereby inducing a change in the charge cloud of the molecule. When the 

electron transfers into the metal again, the molecule returns to the ground state. This charge 

transfer can facilitate the excitation of the Raman scattering of the molecule
72

. 

Recently, Musumeci et al, have shown strong Raman enhancement of biologically 

active enediol molecules adsorbed on the surface of TiO2 NPs. Two different situations were 

considered to explain SERS here: CT from excited semiconductor to molecule and CT from 

the molecule to semiconductor, where the latter reported to have larger enhancement effect. 

The most important point in this type of charge transfer is the selective of its Raman 

enhancement in different modes of the molecule as Raman features. It has been shown that 

based on the distinct binding and orientation of the adsorbed molecules on the semiconductor 

surface the modes which are appearing in the Raman signal of the molecule can be changed 

73-74
. 

It is known that EM enhancement shares major part of the Raman scattering 

enhancement using SERS materials; however, it has been shown that some of SERS materials 

have selectivity toward different molecules. This is due to the difference in charge transfer 

between different molecular structures and the SERS substrate. Also, the marker molecule 

should bind to the SERS metallic structure in order to make any charge transfer. Thus, the 

charge transfer mechanism explains the additional enhancement which cannot be explained 

alone by the EM mechanism. As these two phenomena always occur simultaneously, 

mechanistic study of the SERS is still a practical challenge
75-77

. A recent study by 

Selvakannan et. al. showed the importance of CT mechanism in SERS enhancement
78

. 

1.4. SERS: difficulties and applications-road to multifunctionality 

As discussed in the previous section, if properly designed, SERS is an interesting 

technique for not only structural analysis of the materials, but also it can be a powerful 

technique for chemical and biological sensing platforms. Although, there are many reports on 

the usage of SERS materials for sensing of materials but still there are a number of debates to 

make it acceptable as an analytical spectroscopy approach. As SERS is highly dependent on 

the LSPR effects of the metallic structures, any factor that changes the LSPR properties can 

change the SERS enhancement factor. Thus, to be accepted as an analytical tool, the 
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reproducibility of the SERS samples should be addressed. In addition, the formation of hot 

spots in the SERS samples is highly important as they have the highest enhancement on the 

Raman intensities of the molecules’ signals due to higher EM enhancement in the hot spots
77

. 

To have the same hot spot concentrations and formats, the synthesis, assembly and 

orientation of the metallic structure should be controlled. There are two different major 

approaches for controlling the hot spots in a SERS material
76

. First method in context of NPs, 

is based on the approaches controlling their assembly and distances from each other; while 

second category regards to surface based SERS where hot spots are controlled via adjusting 

the topology and roughness of the nanostructured surfaces. First method is mainly based on 

controlling the materials assembly in solutions via passive methods like adjusting the 

concentration of the solution or via active method like assembly through magnetic or 

electrophoresis methods. On the other hand for surface based SERS platforms, the most 

optimum controllable way of fabrication of SERS hot spots is based on lithography
79

, 

specially electron beam lithography (EBL) techniques
65,80

. As these techniques are expensive, 

time-consuming and can be done only in small areas, there is a high interest to find 

alternative ways of designing homogenous and well controlled metallic structures. Colloidal 

lithography showed an alternative method to EBL, but still it is a highly expensive method as 

fabrication of the sacrificing materials as a monolayer in these methods is highly 

challenging
76, 81

. Using templates with repeated topologies as a base for SERS applications is 

another approach for controlling SERS hot spots. In this case, highly reproducible nano-

arrays of Si, TiO2, ZnO, etc. have been shown as good substrates for fabricating well defined 

nanoscale patterns for SERS applications
82-86

. 

Besides the aforementioned challenges, researchers recently have been focusing on 

enhancing the sensing application of the SERS materials by merging it with other 

applications to produce multifunctional materials. As SERS has been shown a powerful 

technique to detect low concentration of different organic species, using SERS based sensing 

and combining it with other applications for monitoring of different chemical and/or 

biological reactions has become a field of interest. Briefly, these areas can be divided into 

three major categories: 

Magnetic/SERS material combination: is one of the fields where the functionality of the 

magnetic core and SERS sensing comes together for different applications. There are three 

main reasons for using this type of combination: 
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 Controlling the assembly: In this case, magnetic cores are used for controlling the 

assembly of the Magnetic/SERS core/shell materials. In this way, the distance 

between the SERS active particles can be controlled. Also, this method shows the 

ability to control the assembly not only in a powder form, but also the assembly of 

the magnetic SERS nanoparticles on a surface. In this case the assembled film 

obtained via magnetic field can be used for other sensing approaches like 

electrochemical sensing as well as SERS sensing platform which adds the 

functionality of multimodal sensing platforms
87-90

.  

 Magnetic resonance imaging (MRI): It is well known that magnetic nanoparticles 

can be used as MRI imaging contrast. Using MRI imaging combined with SERS 

gives the multi functionality in bimodal imaging of the cancer cells
91-94

. 

 

Metallic/SERS material combination: For metallic/SERS combination, two major 

applications have been reported. Briefly, these multifunctionalities can be summarized as: 

 Multi modal imaging: In this method the SERS active metallic material is designed in 

a way that it could show more functionalities than pure SERS. For example gold 

nanorods have been shown to have SPR excitation near infrared regions of the light 

spectra. This property gives the ability of infrared imaging besides the SERS sensing 

for these materials
90, 95-97

.  

 Photothermal ablation: Metallic nanoparticles with SPR peaks in near-infrared 

regions in addition to some of the non-metallic structures like graphene oxide
98

 have 

been used for photothermal ablation of bacteria and cancer cells. In this platform, the 

cancer cells are detected via specially designed marker loaded on SERS particles and 

after detection, they are killed via photothermal properties of the materials
90, 99

.  

Semiconductor/SERS material combination: The application for the semiconductor/SERS 

junctions are mainly reported in two categories: 

 Chemiluminescence sensing: This is a new field where the semiconductor substrate 

is used for electro-generated chemiluminescence (ECL), while being decorated with 

SERS active metals. In this composition, the dual sensing of the organic materials can 

be achieved, which can help in understanding reaction mechanism of organic 

molecules and quantitative analysis with the combined methods of SERS, optical 

spectroscopy and electrochemistry
100

. 
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 Recyclable SERS sensors: The major application of semiconductor/SERS composites 

relies on the photocatalytic activities of the semiconductors. As mentioned before 

making a reliable SERS platform is an expensive and challenging task. As in most of 

the applications the sensing platform is for a single use only, the SERS method is a 

highly expensive spectroscopy method. SERS is mainly used for detecting trace 

organic materials. These organic materials can be in the form of organic molecules 

like dyes and organic chemicals or in the form of biological species. As in all cases 

the formed materials are organic they are susceptible to degradation via photocatalytic 

reactions. There are a numbers of reports where the combination of the photocatalysis 

and SERS has been successfully used for the fabrication of the recyclable SERS 

sensors
82-83, 101-108

. The first reports on semiconductor/SERS was related to using 

sputtered silver decorated ZnO nano arrays to monitor the degradation of the dye on 

the surface via SERS rather than UV-Vis spectroscopy. The application of self-

cleaning effect of semiconductor to be used in combination of recyclable SERS 

materials started in 2010, through a report on the formation of TiO2 nanotube arrays 

composed with chemically decorated Au nanoparticles
101

. Since then, this field has 

attracted many researchers attention, as they have used this method to fabricate 

different interesting combinations of semiconductor/SERS platforms such as: single 

monolayer of semiconducting photocatalytic monolayer with SERS coatings
108

, 

semiconducting/magnetic cores for recycling and separation
87-88

, recyclable 

semiconducting flexible substrates
109

 and using decorated SERS nano-arrays with 

semiconductors
84, 101-103

.  

1.5. Zinc Oxide  

Zinc oxide thin films and nano-arrays are the main semiconductor surfaces used in 

this thesis. As this material is main part of the thesis, in this section, a brief introduction is 

provided for the most important properties and application of one dimensional nano-arrays of 

zinc oxide. 

1.5.1. Properties 

Zinc oxide (ZnO) is one of the most widely reported direct wide band-gap II-VI 

materials that has a large exciton-binding energy of 60 meV and wide band-gap energy of 

3.37 eV at room temperature in bulk form
110

. The main stable structure of ZnO in room 
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temperature is wurtzite crystal structure as shown schematically in Figure 1.14. Wurtzite 

belongs to the space group P63mc. This structure in an ideal form possesses two lattice 

parameters and with a ratio of . The non-

centrosymmetry of the wurtzite crystal structure of ZnO leads to piezoelectricity which arises 

from atomic scale polarization
111

. When a piezoelectric material is squeezed, twisted or bent, 

electric charges assemble on its surfaces. This charge can change the characteristics of the 

band-gaps, especially in junction with other materials, which could be used as a secondary 

source for modifying the final properties of a device
112-113

. As major defects of the zinc oxide 

crystals are oxygen vacancies, this semiconductor has n-type characteristics in the non-doped 

form. There are many reports on fabricating p-type ZnO structures, however, p-type 

semiconductor ZnO is still an open challenge for the researchers as the modelling and 

experimental methods do not converge into same conclusion which could enable researchers 

to provide a global method to fabricate p-type ZnO materials
20, 114-116

. 

 

Figure 1.14. Structure of Wurtzite zinc oxide. 

One of the special ability of the zinc oxide in nanoscale is the ability of the materials 

to change its morphology. ZnO is one of the materials showing highest number of various 

morphologies. Some of these morphologies are shown in Figure 1.15. Among these 

morphologies, zinc oxide nano-arrays have been used widely in many applications. There are 

many different reasons in the use of this morphology. From structural point of view, this 

material is a one-dimensional single crystal material, thus providing fewer defects and 

recombination sites in the structure, which makes it highly applicable for optoelectronic 

applications. The synthesis process results in high yield and it is highly controllable in 
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manner of the size, orientation and also coverage of different substrates from silicon wafer up 

to textiles
117-118

.  

 

Figure 1.15. A collection of ZnO nanostructures
113

. 

1.5.2. Synthesis of ZnO nano-arrays 

Vapour-Liquid-Solid (VLS) deposition:  

This is the first method reported for fabricating ZnO nano arrays in 2001
119-120

. Huang 

et. al., have reported a simple fabrication process for fabricating well aligned ZnO nano array 

grown on a sapphire substrate.  They reported use of Au thin film as a catalyst for epitaxial 

single crystal growth of ZnO nano-arrays
121

. They have shown that uniform nano-arrays of 

ZnO can be formed via controlled ZnO and C evaporation in high temperatures. By adjusting 

the temperature, synthesis time, Ar gas flow rate and substrate position (temperature of 

substrate) the ZnO nano arrays can be formed evenly on the substrate. Overall reaction can be 

summarized as Zn vapour is generated by carbothermal reduction of ZnO and transported to 

the substrates where ZnO nanowires grow
122

. They have shown that due to the small diameter 

of the rods, in the electroluminescence and photoluminescence conditions, these materials 

can generate UV light lasing in their structures
120

. Since then many other researchers have 

used this method for fabrication of well aligned ZnO nano-arrays
121, 123-124

. For examples, as 

this method uses Au as catalysis, there some other research that looked for alternative 
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catalysts like Cu and also tried to fabricate novel structures using the patterned catalytic 

surfaces
125

. Also, Yuan et. al. has modified this method in order to dope the ZnO nano-arrays 

which show the ability of this method to control the doping and also the type of the produced 

semiconductor
126

. 

Electrochemical deposition: 

By electrochemical deposition, ZnO nano-arrays can be produced with high 

uniformity and in large areas. The technique uses the external electrical driving force for the 

reaction on an electrode. The electrode could be any type of conductive material with proper 

crystal structure similarity, like STO, Au or even ZnO itself. The ZnO can be produced only 

on the cathode of D.C. power source
127

.  

In this process generally, a three electrodes system of Pt counter electrode, Ag/AgCl 

as reference and conductive substrate as a cathode is used. The reaction rate is controlled by 

current in constant voltage
128

. It has been reported that most of the zinc salts can make zinc 

nano-arrays but the aspect ratio and also the orientation of the arrays would be different. The 

most reported zinc salt is ZnCl2 as it has been shown that Cl
-
 can be adsorbed preferentially 

on the Zn-terminated (0001) planes of ZnO, where, like VLS, the ZnO rods is grown along 

their c-axis (0001)
129

. Furthermore, this method shows a high ability in doping ZnO nano-

arrays. The concentration of the anion and cation can change the morphologies from nano-

arrays of nano-rods to nano-arrays of plates
130-131

.  

Another alternative method in electrochemical growth of aligned ZnO nano-arrays, is 

the use of sacrificial templating materials. Polycarbonate template is the most used template 

material where anodic aluminium oxide (AAO) cannot be used as most of the etchants of 

AAO can etch ZnO as well.  The reports showed that this method can produce a high aspect 

ratio ZnO arrays
132

. Although his method can produce nano-arrays but the application of this 

method is limited, as the materials produced with templating techniques are either amorphous 

or polycrystalline consisting of small domains with an abundance of defects
118, 133

. 

Low temperature hydrothermal deposition: 

This method is one of the most common methods in fabricating well-aligned ZnO 

nano-arrays
118, 134-139

. In this method, ZnO nano-arrays are hydrothermally generated from 

Zn(NO3)2 as Zn source and hexamethylenetetramine (HMTA) as oxidizer in water
140

. One of 

the main advantages of this method is that the ZnO nano-arrays with high alignment can be 
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produced on arbitrary substrates, such as Si wafer, paper, organic substrates, etc. This method 

needs a seed layer that can be produced via different methods such as sputtering of ZnO thin 

films
138

, ZnO nanoparticles, ZnO sol-gel derived thin films, etc
139

. The aspect ratio of the 

ZnO materials can exceed over 100 where the alignment of the ZnO nano-arrays is highly 

depended to the seeding layer and can be adjusted by controlling of the crystallinity the seed 

layer
118

. The synthesis method and related chemical background of this method is explained 

in detail in Chapter 4, Section 4.3. 

1.5.3. Optical applications 

Due to its wide band-gap and large binding energy of 60 meV at room temperature, 

ZnO is considered as a potential candidate for UV emitting devices. Large-scale capability of 

fabrication of ZnO nano-arrays and single crystalline nature of the produced nano-arrays 

makes this material as an exciting candidate for optoelectronics applications. Four main 

optical applications reported in the literatures are photoluminescence, UV-lasing pumps, light 

emitting diode (LED) and photocatalysis. 

 Photoluminescence (PL): The UV excited PL characteristic of ZnO nano-arrays 

usually shows two major emission bands at room temperature
141

. First peak appearing 

in UV region regards to its near-band edge representative of its band-gap
141

. The 

visible peak regards to its intrinsic and surface point defects like oxygen vacancies, 

which make deep level transitions inside the band-gap of ZnO
142

. These defects are 

usually generated during the synthesis procedure and cannot be eliminated 

completely. In photoluminescence applications, these two emission bands have been 

used to enhance the photoluminescence intensity of other materials as a composite
143

. 

 Lasing pump: There are three major reasons, which make ZnO nano-arrays as 

interesting candidates for room temperature lasing. First, ZnO has a wide band-gap 

and large binding energy, which is larger than room temperature thermal energy. So 

the excitation is independent of the ambient temperature and thus emission is stable. 

Moreover, the perpendicular top and bottom of the nanorods in the array act as a 

mirror (Fabry-Perot cavities). Finally as the reflective index of the ZnO is 2.45, the 

emitted light can be laterally confined inside of the nanorods and in this case nanorods 

act as a waveguide
120, 144

.   

 Light emitting diodes: In this case, a p-n junction has been fabricated between ZnO 

nano-arrays and p-type semiconducting material. The p-type materials can be 
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homojunction
145

, inorganic, organic or hybrid in the nature. As the ZnO is in the form 

of single crystal nanorods, the non-radiative recombination sites inside of the ZnO 

nano-arrays are confined, and the radiative recombination mostly happens in the p-n 

junction regions where it increases the efficiency of the produced LED devices. The 

concentration of non-radiative recombination sites is highly depended on the 

crystallinity of the ZnO nano-arrays which are arisen from its synthesis conditions
146-

148
.  

 Photocatalytic applications: Due to high surface area and the ability to grow on 

different substrates, ZnO nano-arrays have attracted attentions of many researchers 

for photocatalytic uses. This material, due to its wide band-gap, is competitive to the 

commercially available UV photocatalysts like TiO2
149

. Zhou et .al. showed that the 

size of the arrays has a critical effect on the activity of the nano-arrays of ZnO 

photocatalysts
150

. They showed that if the diameter of the rods became smaller than a 

critical value, the redox potentials will increase, and therefore, the photo-generated 

electrons and holes will have higher photocatalytic efficiency. Additionally, as the 

facets of the ZnO have different dangling bond configurations, the photocatalytic 

properties are unlike on different facets of the nano-arrays. Studies indicated that the 

polar faces have higher photocatalytic activities than non-polar surfaces
151

. 

1.6. Research motivation 

The work presented in this thesis focuses on fine-tuning the morphology of ZnO 

semiconductors and preparing functional materials such as ZnO-metal and ZnO-organic 

semiconductor hybrids. Applications of these materials in photocatalytic degradation of 

environmental pollutants and sensing of ecotoxic chemical species are the major focus of the 

thesis.  

Most of the spectroscopic and other analytical sensing technologies get frequently 

interfered from the instrumental noise and background in the spectra. Especially scattering 

based technique such as SERS, where the Raman scattering signal component often has 

significant contribution from the background and noise, therefore, need a proper removal of 

these unfavourable components from the signals. As the sensing technique in this thesis was 

based on SERS method, in this research, a new methodology has been introduced to answer 

the needs for more reliable background correction for ultrahigh sensitive nanosensing 

applications. 



 

35 
 

Photocatalytic activities of zinc oxide nano-arrays and ability of integrating this 

property with the other useful applications like biological and chemical sensing can bring a 

variety of novel applications. The controllable synthesis of this material with desired physical 

parameters, different substrates and also their ability to form heterojunction with the highest 

controllability are some of the advantages of using these nanostructures for various 

applications. These arrays have shown a good reproducibility and morphological control 

during synthesis procedure, which makes them interesting materials to be used as SERS 

based sensing substrates in order to obtain higher reproducibility and sensitivity. Also, as zinc 

oxide is a photocatalyst, using this material can give broader functionality to the sensing 

platform. Not only it can make the sensor regenerable, but also, it can be used for removing 

the heavy metal ions from the water. The combination of ZnO/Ag nano-arrays can make dual 

sensing ability of biological sensing and selective Hg
2+

 sensing abilities.  

Organic semiconductors have attracted many researchers’ attentions as they are easy 

to control based on their band-gap and thus opening new applications where the inorganic 

semiconductors fail to operate. In addition, the heterojunction formation between organic and 

inorganic semiconductors can bring more possibilities and opportunities for developing new 

optoelectronics devices. In this regards, decorating silver nanostructures on the surface of an 

inorganic semiconductor can bring other functionalities to n-type ZnO nanostructures as Ag 

can be easily changed to metal-organic semiconductor molecule of AgTCNQ. The method 

for fabricating reproducible and simple approach to syntheses of inorganic-organic hybrids of 

AgTCNQ-ZnO (p-n heterojunction) was another aim of this research. In this thesis, this 

heterojunction has been synthesized and studied for increasing the activities of ZnO 

photocatalyst, where proposed method can be extended for synthesis of other controlled 

heterojunctions.  

1.7. Thesis Outline 

The work presented in this thesis can be divided into three major sections: (i) 

designing a novel background correction algorithm to analyse the Raman data collected from 

SERS samples; (ii) Synthesis of ZnO/Ag nano-arrays with high Raman signal enhancement 

and photocatalytic activities and finally (iii) improving photocatalytic activities of n-type 

ZnO thin films via using controlled decoration of p-type AgTCNQ nano-arrays.  

The chapter breakdown of the thesis is as follows: 
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In Chapter II a short survey of techniques used in this research for the 

characterization of the materials is provided. The characterization methods used in this thesis 

include: Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), UV-

visible spectrometry (UV-vis), Raman Spectroscopy (Raman), X-Ray Diffraction (XRD), 

Energy Dispersive X-ray (EDX) spectroscopy, X-ray Photoelectron Spectroscopy (XPS) and 

Inductively coupled plasma mass spectrometry (ICPMS). 

In Chapter III, the process for designing a new smoothing-free method for 

background correction is shown, which has been developed by merging continuous wavelet 

transform and signal removal methods, which in combination, could be applied to noisy 

signals without smoothing. Wavelet transformation has been used for suppressing the side 

effects of noise and extracting derivative of the studied spectra, while signal removal method 

has been applied for eliminating peaks of signals from the spectrum, thereby providing 

spectral sections purely related to the background to be used in the background correction 

process. A range of statistical analyses were applied to test the performance of this algorithm, 

wherein a low deviation in background correction procedure was observed. Additionally, 

when this algorithm was used for experimentally obtained Raman spectra, it showed good 

capability in background correction of noisy signals without the requirement of a smoothing 

process. This algorithm was used as a basic method for surface enhanced spectroscopy data 

analysis presented in Chapters IV and V of this thesis. 

In Chapter IV, the effect of synthetic parameters on the formation of ZnO nano-

arrays was studied thoroughly. After finding proper synthetic condition for synthesizing well 

controlled and reproducible ZnO nano-arrays, different approaches were carried out for 

decorating the obtained ZnO nano-arrays with silver nanoparticles. This study employed 

facile soft chemical synthesis strategies to fabricate Raman-active and recyclable ZnO/Ag 

nanorod arrays as highly reproducible surface enhanced Raman scattering (SERS) substrates. 

Arrays of ZnO nanorods on silicon wafer were synthesized using hydrothermal method, 

which was followed by controllable decoration of ZnO nano-arrays with silver nanoparticles 

(AgNPs). By controlling the AgNPs deposition parameters, the uniform density of SERS-

active hot-spots on ZnO nano-arrays could be controlled on a large 1 cm × 1 cm substrate. 

These ZnO/Ag nano-arrays showed outstanding reproducibility towards acquiring SERS 

spectra of Rhodamine-B as a probe molecule at 30 random locations on a single substrate. 

The photocatalytic nature of ZnO/Ag semiconductor-metal heterojunction was exploited to 

endow these SERS substrates with reusability characteristics. The study shows that by 
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controlling optimal metal loading on a semiconductor surface, high photocatalytic activity 

and SERS performance can be integrated within a single package to obtain high quality, 

reproducible, stable and recyclable SERS substrates. 

Mercury being one of the most toxic heavy metals has long been a focus of concern 

due to its gravest threats to human health and environment. Although multiple methods have 

been developed to detect and/or remove dissolved mercury, many require complicated 

procedures and sophisticated equipment. In Chapter V, a simple surface enhanced Raman 

spectroscopy (SERS) active ZnO/Ag nano-arrays is described, which can detect Hg
2+

, 

remove Hg
2+

 and can be fully regenerated, not just from Hg
2+

 contamination when heat-

treated, but also from the SERS marker when exposed to UV as a result of the self-cleaning 

ability of this heterojunction photocatalyst. The sensors are as well highly selective because 

of the unique way mercury (among other chemicals) interacts with Ag nanoparticles, thus 

reducing its SERS activity. 

Controlling the position of a junction and also the population of the junction can alter 

the activities of the heterojunction semiconductor devices. In Chapter VI, organic-inorganic 

heterojunction combinations of ZnO-AgTCNQ were synthesized to form a p-n heterojunction 

system. With use of colloidal lithography the position of the AgTCNQ nano-wires on the zinc 

oxide thin films were completely controlled. AgTCNQ nano-arrays were grown using the 

chemical vapour deposition (CVD) technique on the designed silver nano-spots. The 

temperature effect on the growth of AgTCNQ nano-arrays on ZnO thin films was studied 

thoroughly, and the synthesized heterojunction nano-arrays were studied for their 

photocatalytic activities. 

Chapter VII provides a summary of the research completed during this PhD 

candidature and provides a scope for future possible research in the areas studied. 
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CHAPTER II 

 

ANALYTICAL AND 

CHARACTERISATION 

TECHNIQUES  

 

This chapter provides a short survey to the characterization techniques employed in this 

thesis.  
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2.1. Introduction 

Main goal for this thesis is to develop multifunctional materials via compositing the 

semiconductor (inorganic and organic) and metallic nanostructures. These nanostructures can 

be used in photocatalytic as well as electronic applications. In order to determine the 

properties of the developed materials, the designed materials should be tested via various 

characterization methods. This chapter is designed to explain basic principles related to the 

characterization techniques used in this project. These techniques include Scanning Electron 

Microscopy (SEM), Atomic Force Microscopy (AFM), UV-visible spectrometry (UV-Vis), 

Raman Spectroscopy (Raman), X-Ray Diffraction  (XRD), Energy Dispersive X-ray (EDX) 

spectroscopy, X-ray Photoelectron Spectroscopy (XPS) and Inductively coupled plasma mass 

spectrometry (ICPMS). 

2.2. Scanning Electron Microscopy (SEM) 

It is known that the properties of nanostructures are highly dependent to their 

structure, size and shape. Due to the size of nano-materials imaging of these materials 

requires the use of electron microscope. Due to the wavelength of the visible light and also 

lens aberration, optical microscopy can be used for the materials with micron size features. 

To image the submicron materials the light beam is replaced by an electron beam with much 

smaller wavelength and optical lenses are replaced with magnetic lens. Using electron beam 

gives the advantage of controlling the wavelength of the beam by controlling voltage used to 

accelerate electron in the microscope column. As the wavelength of an electron beam is 

always in Angstrom orders, the resolution of the image would make theses types of 

microscopes an excellent candidate for imaging nano-materials. 

Scanning electron microscope (SEM) is one of the electron microscopy techniques, 

which can provides information about the surface of the materials for morphological studies. 

In SEM electron beam is emitted from an electron gun which could be either a thermionic 

emitter or a field emission gun (FEG). Emitted electron beam with energy ranging from 0.2 

to 40 keV is focused by passing through microscope column containing several condenser 

lenses to nm range sizes. Finally, a deflector lens is used to control the position of the 

electron on the sample and give the ability of scanning the surface of the sample in a raster 

scanning. The incident electron can have different interactions as shown in Figure 2.1. As the 
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electron interacts with the mater based on the energy of the electron and also interacting 

materials, elements can go through either elastic or inelastic interactions. Electron interaction 

with materials can result into different phenomena, including heat, visible light, x-ray 

emissions, backscattered electrons, diffracted backscattered electrons and low-energy 

secondary electrons. Among these, backscatter and secondary electrons are the most common 

techniques used for imaging via pseudo 3-dimensional SEM images. 

 

Figure 2.1. Interaction between electron beam and mater. 

The incident electron beam can be reflected or back-scattered out of the interaction 

region with elastic scattering. This scattered high-energy beam is known as backscattered 

electron beam and since the heavier elements backscatter electrons more strongly than lighter 

ones this technique could be used for imaging. Chemical compositions of the scanned 

material can be achieved as a brighter area in a picture is related to heavier element in the 

backscattered image
1
.  

When an electron beam is scattered in the material, a part of the incident electrons can 

pass near the atoms and can impart some of its energy to the electron in the atom with lower 

energy and can thereby ionize the electron in the atom. This ionized electron can leave the 

atom with very small kinetics (5ev). One incident high energy electron has enough energy to 

make several ionized electrons during its interaction. The electron beam generated from this 

inelastic interaction is known as secondary electrons. Due to the low kinetic energy, these 

electrons have a short free path. Thus only part of the secondary electrons related to the 

atoms located near the surface can exit the sample and be examined. Thus, this technique is 

highly topology depended. These electrons are collected through a “collector” with positive 
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charge placed in front of the detector to be able to count the generated secondary electron to 

build image via pseudo 3-dimensional SEM images
2
. 

In this thesis, SEM analysis of all samples was performed on a FEI NovaSEM, 

operating at an accelerating voltage of 15 kV, with a spot size of 3.5 nm and a working 

distance of 5 mm. 

2.3. Atomic Force Microscopy (AFM) 

In addition to SEM, topological information of a surface can be determined via using 

Atomic Force Microscopy (AFM) technique. Unlike the electron microscope, which provides 

a two-dimensional projection or a two-dimensional image of a sample, the AFM provides a 

three-dimensional surface profile. The AFM operates by sweeping an atomic sharp tip (few 

nano-meter radii of curvature) across the surface of a sample. This tip could have a pyramid 

or a conical shape and locates on the top of a cantilever made from silicon or silicon nitride. 

The surface of the materials is raster scanned using piezoelectric controller to produce a 3d 

image of the analysed surface. As the tip of the cantilever is brought close to the surface of 

the material, the interaction between the tip and the surface deflects the tip. There are 

numerous imaging modes for the AFM but the two main modes are contact mode and tapping 

mode. 

In contact-mode, the change in cantilever deflection is constantly scanned across the 

sample surface during monitoring. These deflections are monitored across the sample surface 

to collect the image.  

In tapping mode AFM, similar information is measured via a different mechanism. 

Tapping mode operates by scanning a tip oscillating near the response frequency of cantilever 

(ranging from 20 to 100 nm) by small piezoelectric element mounted in the AFM tip. The 

oscillating tip “taps” on the sample surface where interaction forces between surface of the 

sample and the tip changes the amplitude of the oscillation. Imaging the force of the 

intermittent contacts of the tip with the sample surface is measured to produce AFM image of 

the surface of a sample. There are several advantages in tapping mode in comparison with 

contact mode. This mode can be used for soft materials, whereas in contact mode, the contact 

between tip of the cantilever and the surface of soft materials can damage the material which 

is under study. In addition, a reduction in lateral and normal forces being applied to the 

sample surface can be achieved using tapping mode. The schematic picture of different 
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modes as well as change in the atomic force between the tip of the cantilever and surface of 

the material are shown in Figure 2.2.
3
 

 

Figure 2.2. AFM a) Contact and b) Tapping modes; c) Force between tip of AFM cantilever 

and surface of the sample in different modes. 

Although the data achieved about topology of the materials is more in detail in AFM 

rather than SEM but major drawbacks for AFM are a smaller area of the scan, longer time for 

scanning and limitation on the shape detection due to dependence of the final data to the tip 

shape and sharpness.   

Atomic force microscopy (AFM) was carried out on this project in tapping mode 

using an AFM-Bruker D3100 in order to assess the surface roughness of samples. 

2.4. UV-Visible Spectroscopy (UV-Vis) 

There are multiple phenomena in the interaction of light with materials. When light is 

passed through a solution, the intensity of illuminated light is always different from the 

intensity of the emerging radiation. This could be partly related to reflection or scattering or 

emission in the sample, but mainly depends on absorption by the matter. 

When light is absorbed by a material, it can make excitation and electronic transition 

within the material. Photon with proper energy can excite an electron from a bonding or non-

bonding orbitals to an anti-bonding orbital. Thus, there should be a relation between adsorbed 

energy by the matter and also energy of the initial light beam. As the energy of the photon is 

dependent on the wavelength of the beam, the energy necessary for making an electronic 

transition from the ground state to the excited state can be measured by detecting the 

wavelength of the incident light beam as: 
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2.1 

Where ΔE is the energy required to induce a transition from the ground state to the 

excited state; λ and ν relate to frequency and wavelength of the light, h is the Planck’s 

constant (6.626×10
-34

 J.s); c is the velocity of the light and  is wavenumber.  

When single photon absorption can be explained through the Beer-Lambert law 

relating the intensity of the incident light, I0, to the intensity of transmitted light through the 

sample, I, with the equation of: 

 

2.2 

Where ε, c, l and A are related to the molar extinction coefficient of the sample, molar 

concentration, sample thickness and absorbance or optical density of the materials, 

respectively
4
.  

As absorbance is directly related to the concentration of the sample, by a simple UV-

Vis spectroscopy and extracting standard curve for a dye, concentration of an unknown 

sample can be determined. Thus, this can be a quantitative technique for understanding the 

pollutant concentration in environmental studies, which are presented in this thesis. 

In the following thesis, UV-Visible spectra were obtained on a Cary 50 Bio 

spectrometer, operating at a resolution of 1 nm over a wavelength range of 200-800 nm. 

2.5. Raman spectroscopy 

This technique is another vibrational spectroscopic technique, which is 

complimentary to FTIR technique. In contrast to FTIR where dipole momentum change 

during vibration is the main phenomenon, in Raman spectroscopy in order to have a “Raman 

active” molecule, polarizability of the molecule during the vibration should be changed 

(positional change in the electron cloud of the molecule). Also Raman uses monochromatic 

laser as electromagnetic light source. In Raman spectroscopy when electromagnetic beam 

interacts with a molecule, an inelastic scattering occurs which make a net effect where the 

frequency of the scattered electron is altered slightly. This slight change can be used as 

analytical approaches for spectroscopy. The energy shift could be categorised into red 

(absorbing energy) and blue (losing energy) shift which are known as Stokes and anti-Stokes 
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shifts. These interactions and energy shifts are correlated to the specific molecular functional 

groups and could be used for detection of different molecules in Raman spectroscopy
5
. 

Raman spectroscopy was obtained on Perkin Elmer Raman Station 400F. All samples 

were carried out with best Raman focus and 100% laser (785 nm) power with 5 sec exposure 

time and 10 acquisitions averaged with the background correction feature disabled. The 

obtained spectra were further background corrected using software developed in this project 

as explained in details in Chapter III of this thesis. 

2.6. X-Ray Diffraction (XRD) 

X-ray diffraction is one of the powerful spectroscopy techniques for studying crystal 

structures. X-ray beam (λ=0.1 to 3 angstrom) is produced in a hot cathode tube at high 

vacuum where emitted electrons produced by thermionic effect from a filament (cathode) are 

accelerated due to the high-voltage difference between cathode and anode and the impact of 

the electron with the anode generates X-ray. When X-ray beam interacts with crystalline 

materials with regular atomic structure, these atoms based on their formation, structure and 

also orientation can go through elastic scattering of X-ray waves. Some of these waves cancel 

each other through destructive interference, but based on the crystallite lattice groups and 

structure of the materials, other wave can have a constructive interference. These constructive 

interferences can be determined by Bragg’s law
6
: 

 
2.3 

Where d refers to diffracting crystallite plane spacing, θ is X-ray incident angle, n is 

an integer and λ is the wavelength of the X-ray. As for any crystal planes because of the size 

and type of the atoms and crystallite structure of them, each crystallite atomic structure 

diffracts X-ray in a unique characteristic pattern.  

X-ray Diffraction experiments were performed using a Bruker AXS D8 Discover with 

a General Area Detector Diffraction System (GADDS) micro diffraction instrument operating 

at 40 k  and 40 mA over a 2θ range of 15-85°. 

2.7. Energy Dispersive X-ray (EDX) 

As shown in Figure 2.1, when an electron-beam interact with a material, electron in 

the beam has enough energy to force the electron at the inner orbitals of the atoms to eject 

from their allocated orbitals to the conduction band of the atoms. The vacancy produced from 
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ejection of the electron from inner orbital creates a low-energy vacancy where an electron 

from outer shell with higher energy fills the vacancy. The difference between the higher 

energy shell and lower energy shell can be released in the form of X-ray. This process is 

shown schematically in Figure 2.3.  

 

 

Figure 2.3. The mechanism for EDX. 

The energies of emitted X-ray are characteristic energy between electron transferred 

shells, and the element which they are emitted from. This allows atomic composition analysis 

of the sample to be obtained. As EDX provides information from the focused point of the 

incident electron beam from the SEM emitter, by a raster scanning of the surface, it can 

provide a composition map of the materials under study. Additionally, EDX can be used for 

semi-quantitative analysis of the sample as the mass fractions or weight percents of the 

elements present in the sample can be calculated in EDX
7
.  

EDX analysis conducted in the body of work was performed on a FEI Nova 

NanoSEM instrument coupled with an Oxford Instruments, X-MaxN detector. 

2.8. X-ray Photoelectron Spectroscopy (XPS) 

XPS is one of the semi-quantitative surface spectroscopy techniques for estimation of 

the elemental composition and chemical or electronic state (oxidation state) of the element on 

the surface. This device uses high-energy X-ray photons under ultra-high vacuum (UHV) to 

excite “core” electrons in the near-surface region of the materials as shown in Figure 2.4. 

This is a surface spectroscopy technique and the depth of the information obtained from this 
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technique cannot typically be more than 10 nm. This is due to the fact that the excited 

photoelectrons from deeper parts of the samples cannot make it out of the solid due to the 

scattering phenomena below the surface of the material.  

Number and kinetic energy (KE) of the photoelectrons collected from the surface of 

the materials are measured during XPS analysis. From KE of the electrons, binding energy 

(BE) of the electron can be obtained, which reflects the oxidation state of the elements on the 

surface
8
.  

 

Figure 2.4. Schematic of photo-ionization of the electron from 1s orbital in XPS. 

X-ray photoelectron spectroscopy (XPS) surface analyses were carried out by a 

Thermo Scientific K-Alpha instrument using un-monochromatized Mg Kα radiation (photon 

energy 1253.6 eV) under vacuum better than 10
-9

 Torr at pass energy of 50 eV and electron 

take off angle of 90°. The core level spectra were background corrected using Shirley 

algorithm. XPS core levels were aligned to the adventitious C 1s binding energy (BE) of 285 

eV. The overall resolution was 0.1 eV for XPS measurements.  

2.9. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 

This spectroscopy method is a combination of easy sample injection and quick 

analysis of ICP with high resolution and accuracy of mass spectroscopy techniques. The 

equipment is capable of detecting trace metal multi-elements within levels of part per trillion 

(PPT). In ICP-MS samples are decomposed to neutral elemental form using high-temperature 

argon plasma and analysed based on their mass to charge ratios. An ICP-MS contains four 

main processes. First aqueous sample is introduced into a small nozzle (nebulizer) where with 

argon flow support it is sprayed as an aerosol, then generated aerosol is ionized by argon 

plasma source. After that the mass spectrometer ions are removed from the plasma chamber 
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via pumping. In this section, the removed ions are separated based on their specific mass to 

charge value using a DC/AC filtering system which only allows a specific ion reaching to the 

detector. This discrimination is mostly carried out using quadrupole mass filter system. The 

last section of the systems is the detector, where in most of the system it is a chaneltron 

multiplier. When an ion passes by or hits a surface, the detector records either the charge 

induced or the current produced. The produced signal versus the place of the scan will 

produce a mass spectrum
9
.  

Inductively coupled plasma mass spectrometry (ICP-MS) analysis were carried out 

using Agilent 7700 series ICP-MS for measuring the amount of ions in different solutions in 

this thesis. 
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CHAPTER III 

A novel approach towards a better 

background correction of  

Raman signals 

Noise removal is considered a primary and inevitable step for background correction in 

experimentally obtained Raman spectra. Employing an appropriate algorithm for a 

smoothing-free background correction technique not only increases the speed but also 

eliminates unwanted errors from the smoothing algorithms. Herein, the process for designing 

a new smoothing-free method for background correction is shown, which has been developed 

by merging continuous wavelet transform and signal removal method, which in combination, 

could be applied to noisy signals without smoothing. Wavelet transformation has been used 

for suppressing the side effects of noise and extracting derivative of the studied spectra while 

signal removal method has been applied for eliminating peaks of signals from the spectrum, 

thereby providing spectral sections purely related to the background to be used in the 

background correction process. A range of statistical analyses were applied to test the 

performance of this algorithm, wherein a low deviation in background correction procedure 

was observed. Additionally, when this algorithm was used for experimentally obtained 

Raman spectra, it showed good capability in background correction of noisy signals without 

the requirement of a smoothing process. This algorithm was used as a basic method for 

surface enhanced spectroscopy data analysis presented in Chapters IV and V of this thesis. 

Part of the work presented in this chapter has been published in: 

a) Kandjani, A.E., Griffin, M.J., Ramanathan, R., Ippolito, S.J., Bhargava, S.K. and Bansal, 

V.; A new paradigm for signal processing of Raman spectra using a smoothing free 

algorithm: Coupling continuous wavelet transform with signal removal method; Journal of 

Raman Spectroscopy, 2013, 44, 608-621. 

b) Bansal, V., Kandjani, A. E., Griffin, M.J., Ramanathan, R.; A background correction 

method for a spectrum of a target sample; PCT/AU2013/001472. 
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3.1. Introduction 

3.1.1. A short survey to background correction methods 

In analytical spectroscopy, in addition to the desired signal, a spectrum always 

contains undesirable elements such as noise, spike and background features. Thus, for 

most of the analytical studies, extracting the real signal from the other unwanted 

features becomes necessary. The reasons for removing unwanted elements are highly 

application dependent, which could vary from simple presentations to quantification 

and subsequent numerical studies. Since all spectra need to be interpreted into a 

digital format to enable post processing of the results, there are several different 

algorithms that have been introduced for correcting the background of experimental 

spectra. These algorithms are mainly different in accuracy, modes of failure, 

computation time and mathematical processes. Although there are numerous 

algorithms available for background correction, there is no actual standard algorithm 

that can be applied to all the different types of spectra. This is mainly due to the fact 

that signals in different spectroscopy techniques have various types of elements and 

the different nature of the signals makes it impossible to provide a global background 

solution for all spectroscopy techniques. Therefore, understanding the reasons behind 

the background generation and also the shape of different signal components is an 

inevitable step to obtain background corrected spectra accurately. 

Initial attempts to address background correction issues started in 1969
1
. 

Since then, several background correction methods have been introduced. Most of 

these methods have been developed during the time when the process of the 

algorithm design has been accelerated by improving the computer’s performance. 

This improvement allowed programmers to design better algorithms enabling 

processing of a vast amount of data in short time and high precision
2
. After 

emergence of high-performance computers, the enormous amount of the produced 

data to be processed made the researchers to design automated signal processing 

methodologies.  

The spectrum itself, in the most simplified format, always consist of four major 

components, including, desired signal, background, noise and spectroscopy blurring 
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effects. Thus, separating these components of an analytical spectrum is an essential 

step with background correction being one of the intermediate goals of this process. A 

sampled signal can be considered as an array (S) that can be given as: 

  NBPSS   (3.1) 

where, PS, B and N are the noiseless signal without background (pure spectrum), 

background and noise, respectively. 

 An alternative way for analysing components of a spectrum is based on 

frequency analysis of its components. In this method, background and noise are taken 

to comprise low frequency and high-frequency features, respectively. The signal 

component of a spectrum is considered to lie between the background and noise 

frequencies. This suggests that if a signal is decomposed based on their frequencies and the 

noise and background components are filtered, a pure noiseless and background corrected 

signal can be obtained. 

All of the background correction methods (BCMs) need some initial information 

about the spectrum features to be able to performing the background correction algorithm. 

Therefore, background correction techniques can be categorized based on the type of initial 

information needed to be known before applying them into a spectrum. Table 3.1 lists the 

different famous BCMs and the initial information needed to estimate the background feature 

of the signals.  

Table 3.1. Classification of BCMs based on the required prior signal information
1
. 

Class Requirements Method 

a. PS, B and N Noise median method (NMM) 

  First  derivative method  (FDM) 

b. B Threshold-based classification (TBC) 

  Signal  removal  methods  (SRM) 

  Composite (linear-sine-cosine) baseline  method  (CBM) 

  Spectral  shift  methods  (SSM) 

c. B and N Manual  methods  (MM) 

d. PS, B and N Maximum entropy  method  (MEM) 

e. Frequency Fourier  transform method  (FTM) 

  Wavelet  transform method  (WTM) 
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Each of the aforementioned categories has some associated disadvantages. One 

of the major limitations of the group of BCMs requiring information about signal 

components is that the existing noise in the signal makes denoising and smoothing an 

inevitable process before engaging in any background removal. This is because most 

methods in these categories (e.g. SRM
3
 or TBC

4
) essentially employ the derivative of 

the signal that is estimated numerically, which may be rather overwhelming to 

calculate without employing a smoothing process in advance. Additionally, applying 

a smoothing procedure in the early stages can inject unwanted errors into the signals 

depending on the form of denoising methodology. An erroneous denoising process 

can further result in peak shifts or even peak suppression in the case of low signal to 

noise ratio (SNRs)
5
. On the other hand, the frequency based method requires signals 

to be transformed into frequency domain and subsequently the signal components can 

be extracted based on their frequencies, which can sometimes be rather daunting. This 

is generally due to the fact that components in real signals do not have constant 

frequencies, i.e. the frequency component is not a single rigid value but consists of a 

range of frequencies, making selection of thresholds a challenging endeavour. 

Therefore, decomposing the spectrum into different frequencies followed by 

rebuilding the final spectrum could leave traces of noise or background
6
.  

Therefore, there is a need to address background correction of a spectrum 

considering advantages and disadvantages of the BCMs. In addition, a combinatory 

approach could give the advantages to increase efficiency and also accuracy of the 

background correction methods by combining different BCM methodologies. 

3.1.2. Raman spectroscopy and its background issues 

Raman spectroscopy, due to its ability to provide information about the 

physical and chemical characteristics of materials, finds its application in many 

different branches of science from biology to chemistry and materials science
7-8

. It is 

a non-destructive technique, which is routinely used to qualitatively and 

quantitatively analyse materials by identifying their native structures and structural 

impurities
9-11

. Raman spectroscopy can also be used for investigating the 

thermodynamical aspects and phase equilibrium of different materials
12

. Raman 

spectroscopy has also attracted significant attention in bio-imaging wherein different 

biological components could be differentiated due to the differences in their 
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resonance nature, especially by the position of peaks in Raman spectra as well as their 

relative intensities that is related to the quantity of each molecular structure, thus, 

making Raman spectroscopy a strong candidate for mapping biological objects
13

.  

One of the major problems associated with employing Raman spectroscopy, 

especially for biological samples, is that due to the sensitivity of the biological 

samples to the incident wavelength of the laser, Raman signals from biological 

samples typically have lower signal to noise ratios and high magnitude of background 

which arises mainly from auto-fluorescence. Since the existence of the background 

suppresses the main spectrum, the interpretation becomes very difficult. Therefore, it 

is essential for a background correction method to be applied to the spectrum before 

performing detailed analysis of the spectra obtained from Raman spectroscopy. 

Most of the application provided in chapter IV and V of this project are mainly 

based on the surface enhanced Raman spectroscopy (SERS) techniques. In addition, 

as Raman spectroscopy was one of the major spectroscopy techniques in the project 

discussed in chapter VI, a novel algorithm with a high precision for background 

correction was initially designed. The proposed technique for background correction 

is based on extracting the derivative of a spectrum without applying any smoothing 

procedures. Subsequently after detecting derivative of the spectrum, SRM could be 

used to estimate the background of the spectrum. As mentioned before, smoothing of 

the spectra could inject some unwanted errors to the system however, there are 

limited reports wherein the background correction is carried out without smoothing. 

This algorithm is based on combining certain strengths of signal removal method 

(SRM) and continuous wavelet transform (CWT) methodologies. Specifically, CWT is 

initially employed to calculate the approximate 2
nd

 derivative of the noisy signal 

which leads to the identification of signal peak positions in the experimental 

spectrum. This is followed by using SRM to remove the signal peak component of the 

spectrum and fitting the reminiscent spectrum to find the background, which is then 

subtracted from the original spectrum to obtain a background-corrected signal.  

3.1.3. A brief introduction to Wavelet transform 

As mentioned above, a spectrum could be analysed based on the frequencies of 

its components. A spectrum is a sequence of data points, a series of time (as X axis) 

and amplitude (as Y axis) values which is known as ‘time series’. Typically, the 
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process of signal processing transforms a time-domain signal into another domain for 

extracting more detailed information from the spectrum which cannot be observed in 

time series domain. There are two major transformations in signal processing in 

analytical chemistry namely, Fourier Transform (FT) and Wavelet Transform (WT) 

methods. In a FT method a signal in time series domain transforms to frequency 

domain via a linear operator. This linear operator is a combination of sine and cosine 

functions which is favoured when considering the fact that any periodic function can 

be decomposed using a sine and cosine waves. The biggest disadvantage of the FT is 

that this transformation does not provide any information about the time of the 

frequency changes
14

. 

 In most of the applications where the frequency changes with time the FT, 

cannot be an answer as it provides information only about overall frequency values 

but not the timing of the frequency change. To address this issue FT can be analysed 

by using segments of a spectrum which is otherwise known as window. This 

technique is known as Windowed Fourier Transform (WFT) where analysis is carried 

out in the small sections of the signal at a certain time and the window sweeps to 

transform the spectrum into frequency domain while giving information on the time 

of the frequency change based on the position of the sweeping window
15

. 

Unfortunately, this method has some disadvantages in real applications as the size of 

the window is fixed and thus precision of the time would be limited
16

. The solution 

for this disadvantage can be carried out by analysing the time series signal with a 

series of transforming functions having variable window sizes. The various window 

sizes, known as scales, can then provide better precision in the time of the frequency 

changes as well as information on the frequency values. This method is the basic core 

of the wavelet transformation.  

Wavelets transforms (WT) like Fourier transforms (FT) are a convolution 

between a wavelet function (ψ(t)) and signal (χ(t)). The major difference between FT 

and WT is that in FT, the wavelet has a sine or cosine form that specifically provides 

information in the frequency domain; while in WT, the mother wavelet could have 

any function if it has zero-mean oscillation behaviour. A mother wavelet could 

produce families of waves through
17

: 
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where b is the parameter for transition and a represents dilation (that is always 

a positive integer). If (1/a) is considered as representing an average frequency, then b 

indicates the position of wavelet window. Hence, in employing WT, information on 

both time and frequency can be extracted from a spectrum. It is important to note that 

although, both WT and FT provide information on frequency; they are not a 

replacement for each other
18

.  

WT can be divided into two main categories viz. Continuous Wavelet 

Transform (CWT) and Discrete Wavelet Transform (DWT) which can be defined as: 

     dtttfbaWf ba,, 





    (3.3) 

where the asterisks (*) represents complex conjugation. This equation can also 

be given as: 

      bbfbaWf a

 ,  (3.4) 

where   represents convolution
17

.  

Although wavelet transformation has been studied extensively for processing 

spectroscopic data
14, 18

, this technique has recently being used for calculating the 

approximate derivative of a signal
19-20

. This was substantiated by showing that the n
th

 

order derivative of a signal could be achieved in a specific dilation (scale) by 

applying an appropriate mother wavelet
19, 21

. Furthermore, the mother wavelet was 

chosen in a way that its derivative still had a wavelet nature. For instance, if the 

Gaussian function is considered as a mother wavelet, it’s 2
nd

 derivative commonly 

referred to as ‘Mexican Hat’ or ‘Marr’ with a minus sign can also be used as a 

wavelet
22

. In the present case, the nth derivative of a signal can be estimated using 

‘Gaussian’ wavelet applied n times to the spectrum or a proper n
th

 derivative of the 

Gaussian function. As outlined before, noise and spectrum have different frequencies 

where lower frequency components are related to the higher dilation (scale) numbers. 

Thus the side effects of the noise of the transformed signal can be extremely 

suppressed by increasing the dilation. This enables finding the approximate derivative 

of a noisy spectrum by reducing the influence of noise.  
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Spectroscopic techniques commonly employ derivative calculations as a 

resolution enhancement technique
23-24

, especially the 2
nd

 order derivatives for 

extracting peak characteristics such as position and starting-finishing point from a 

signal
25

. In order to obtain high resolution enhancement, higher-order derivatives can 

be used for locating and de-convoluting overlapping peaks. With the 2
nd

 order 

derivative, peaks can be mined from a spectrum where the remaining points of the 

spectra would be the representative segments of background that can be further used 

for background estimations. However, the presence of noise in these signals can be a 

serious drawback in finding peaks and calculating derivatives of experimental signals. 

One of the most common techniques employed for calculating the derivative is 

‘Numerical Calculation’. Due to the random nature of noise in these spectra, 

numerical derivative would result in noisy signals especially in those with low SNRs, 

which makes spectral smoothing an essential process. However, by applying proper 

CWT method, the derivative format of a noisy spectrum can be obtained without 

requiring any further de-noising processes. 

3.2. Aim and goals 

As most of the data presented in the current thesis uses Raman spectroscopy as 

a sensing platform or as a spectroscopic technique, development of reliable 

background correction software appeared critical for this thesis. In this chapter, a new 

algorithm is provided for a highly efficient background correction of Raman spectra, 

which is based on combining certain strengths of SRM and CWT methodologies. 

Specifically, in the current study, initially CWT is employed to calculate the 

approximate 2
nd

 derivative of the noisy signal which leads to the identification of 

signal peak positions in the experimental spectrum. This is followed by using SRM to 

remove the signal peak component of the spectrum and fitting the reminiscent 

spectrum to find the background, which is further subtracted from the original 

spectrum to obtain a background-corrected signal. It is notable that CWT was chosen 

over DWT in the current study as the former is a tool for analysis, feature 

determination and approximate derivative calculation, while the latter is the preferred 

technique for data compression and denoising. Application of the current algorithm 

for background correction of four different noisy experimental systems (L-serine, 

rhodamine B, methyl red and crystal violet) showed a good performance of this 
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algorithm, wherein the end effect errors were found considerably less than the 

commonly reported studies. Notably, the major strength of the current algorithm is 

that it does not involve any smoothing step, avoiding which is a major challenge in 

obtaining background-corrected spectra. 

3.3. Methods 

3.3.1. Generating simulated spectra 

All experimental steps in the current study were investigated utilizing MATLAB for 

MS Windows, version 7.11(R2010b). In this study, Raman peaks were simulated using a 

Gaussian function given by: 
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(3.5) 

where a is the intensity controller, c and σ are median and variance, respectively, of 

the Gaussian peak. The program creates simulated Gaussian peaks of variable quantity with 

random positions, intensity and width distributed in the spectrum with three main 

backgrounds as linear, sigmoid and sinusoid forms (Figure 3.1) and variable background 

constants. The general formulae for backgrounds are:  

Linear background: 

bxaBackground   (3.6) 

where a and b are the slope and scope of line, respectively. 

Sigmoidal background: 

  
OI

cxa
Background 




exp1

1
 (3.7) 

where a is the gradient at the inflection point, c is the location of the inflection point, I 

is the intensity controller (since sigmoid function results in numbers between 0 and 1) and O 

is an offset.  

Sinusoidal background: 

OI
a

x
SinxBackground  )(5.1  (3.8) 
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where a is the frequency controller, I is the intensity and O is the offset. Noise is 

considered as white Gaussian noise and added based on calculated SNRdB. 

3.3.2 Generating calibration curve  

As outlined in the introduction, the 2
nd

 derivative of a spectrum can be estimated with 

CWT using ‘Mexican hat’ as a mother wavelet
19

. This can be followed by choosing the 

appropriate scale to reduce the effects of noise in the 2
nd

 derivative. An increase in the scale 

(i.e. towards lower frequencies) results in a decrease in the influence of noise. This increase 

correspondingly results in broadening of the wavelet (i.e. widening of transformed peaks), 

which in turn reduces the resolution of the derivative spectrum due to merging of peaks at 

higher dilation numbers. Therefore, to overcome this issue and to select the Best-Scale, which 

is representative for the derivative of noiseless spectrum, SNR of the spectrum must be 

considered during calculations. For this reason, correlation coefficient (r) was used as a 

factor to select the Best-Scale: 
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(3.9) 

where ix  and iy represent the i
th

 element of vectors X and Y, respectively, where (r) 

could have values between 0 and 1, and if r=1, vectors X and Y would be completely similar 

to each other. 

If the spectrum has a signal without noise, its 2
nd

 derivative can be easily calculated 

numerically. Now, if noise with a known SNR is added to this signal, by using the CWT 

method, its transformed spectrum can be calculated at different scales. Thereafter, by 

comparing the resultant spectrum of each scale with noiseless 2
nd

 derivative of the signal and 

calculating the respective correlation coefficient values, one can find the variation of 

correlation coefficient with increase in SNR.  
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Figure 3.1. a) Simulated spectrum with 10 peaks without noise and background; b) Same 

spectrum after adding white noise with SNR=25; c) Linear background; d) Spectrum 

generated from adding linear background shown in c to spectrum b; e) Sigmoidal 

background; f) Spectrum generated from adding Sigmoidal background shown in e to 

spectrum b; g) Sinusoidal background and h) Spectrum generated from adding Sinusoidal 

background shown in g to spectrum b. 

In this study, several spectra with each containing a single Gaussian peak of similar 

intensities and positions; however, with different widths and SNRs were synthesized. The 

numerical 2
nd

 derivatives of these noiseless spectra were determined before adding a white 

Gaussian noise to these spectra. Thereafter, the correlation coefficients between the 

numerically derived 2
nd

 derivative and wavelet transformed spectra with different SNRs at 

different scales were calculated. Transformed spectra in scales with highest correlation 

coefficients were chosen for each SNR and named as the Best-Scales. Following the 

determination of the Best-Scales for signals with different SNRs, these parameters were 
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plotted for each of the signal widths and the respective calibration curves were estimated by 

fitting a function to these points. This allowed estimation of the Best-Scale values by 

knowing SNR and the width of a signal. A flowchart outlining the estimation of the Best-

Scale is shown in the Appendix A. 

3.3.3. Background correction method  

The underlying principles for background correction employed in the propeosed 

method are as follows: 

 Estimating Signal to Noise ratio (SNR) 

 Calculating 2
nd

 derivative of the spectrum using CWT in the Best-Scale using estimated 

SNR   

 Finding the starting and finishing points of peaks in the spectrum through estimated 2
nd

 

derivative  

 Finding points related to background by removing peaks from the spectrum 

 Fitting a 9
th

 order polynomial function to background points and adjusting fittings 

 Background correction by subtracting the fitted spectrum from the spectrum 

The overall algorithm is shown in Figure 3.2, and the detailed flowchart for each 

section is provided in Appendix A. 

Data processing 

This program allows the ability to cut the regions of interest in a particular spectrum, 

thereby (i) increasing the visual resolution, (ii) increasing the accuracy due to the decrease in 

the amount of calculation, and (iii) minimizing unexpected errors due to the abrupt change of 

background or impurities from other erroneous peaks. This function was incorporated as 

often only a section of the spectrum is required for spectral analysis.  
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Figure 3.2. General Flowchart for estimating background. 

Estimating Signal to Noise Ratio (SNR) 

The SNR equation used in this program is in (logarithmic decibel) dB mode and is 

given by: 
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dB
SNR

10
log20  (3.10) 

where RMS represents the root mean square.  
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For estimating the noise profile, initially, the spectrum is divided into 30 scanning 

windows with equal lengths (X-axis), and each of these 30 windows are used independently 

to estimate the local standard deviation (LSTD) in each of the scanned sections. Minimum 

LSTD is used as a region for estimating noise profile and calculating the RMS of the noise of 

the whole spectrum. In order to calculate RMS of the signal, the spectrum is smoothed using 

Savitzky-Golay filter at different levels from 0.1 to 0.9, followed by subtracting them 

individually from the main spectrum. Thereafter, SNRs of all the temporary background 

corrected signals are calculated using Equation (3.10). The average of these SNRs is then 

used by the user to choose the Best-Scale by input of peak width.  

Calculating 2
nd

 derivative of the spectrum (SDS) 

It is well known that due to the discrete nature of a spectrum, artificial peaks are 

typically generated at both the ends of the transformed signals during transformation. To 

address this issue, points were added to the start and the end of the original spectrum that 

subsequently shifted and restricted this erroneous effect. After transformation, these 

erroneous areas could easily be removed from the signal and the 2
nd

 derivative. It should be 

noted that the points were added in a way that there would be minimal discontinuities or 

changes in the slope of the spectrum as this would have considerably generated some 

unwarranted artificial peaks in the derivative spectrum. Additionally, as noise does not follow 

the same frequency as in the experimental data, there were still some remanent traces of noise 

in the Best-Scale. These reminiscent traces always have a smaller intensity in comparison 

with the peaks related to the signal. In order to eliminate the effect of residual noise in the 2
nd

 

derivative completely, this spectrum was squared to enhance the signals (SSDS).  

Peak removal and finding background points 

The method for background correction in this algorithm is based on Signal Removal 

Methods (SRM). In this technique, the first step involves the isolation of peaks from the 

signal (the residual corresponds to background). During isolation, starting and finishing 

points of the peaks (signals) were identified using the 2
nd

 derivative as explained in Section 

3.3.6, which allowed calculation of the zero crossing that corresponded to the starting and 

finishing points. Based on the zero crossing, the spectrum could then be divided into different 

sections with clear starting and finishing point pairs. Thereafter, the areas of each section 

within the 2
nd

 derivative spectrum of a particular signal sandwiched between zero crossing 
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pairs were calculated, followed by the selection of the minimum (i.e. largest negative) local 

area corresponding to the largest and the sharpest peak. In order to select areas related to 

background a simple threshold is considered as: 

 ))(min( arealocalabsThershold   (3.11) 

Any local areas smaller than this threshold were considered as background. These 

background points were saved into fitting arrays of FIT_X (wavenumber) and FIT_Y 

(intensity). Furthermore, the next derivative of SSDS (endpoints corrected 2
nd

 derivative of 

the spectrum) was calculated through CWT using ‘Gauss1’ as mother wavelet, which 

produced 3
rd

 derivative of the spectrum. In the case of a positive area surrounded with two 

negative areas in SSDS, the former was scanned for the minimum extremum points, which 

correspond to zero crossing points of the first derivative of SSDS with negative slopes. These 

points were then added to the fitting arrays FIT_X (wavenumber) and FIT_Y (intensity) to 

bring the fitted background closer to the real peak minima.  

Adjusting endpoint effects 

Estimation of the background using signal-deprived spectrum is based on fitting of 

residual points with a 9
th

 order polynomial function. In the case where no background points 

exist at the start and finish of the spectrum, the fitting could select any arbitrary conditions in 

these areas, thereby failing to have a correct background correction towards these endpoints. 

The most commonly employed approach to address this problem is to continue the minimum 

of the nearest background point as a horizontal line
26

. However, this approach produces an 

artificial offset at the ends of the spectrum. In order to resolve this issue, 100 points were 

fitted each from the starting and the finishing parts of the spectrum with a cubic polynomial. 

This process decreases the effect of noise in the selected sections of the spectrum.  

Based on the location of the starting and finishing background points and the slopes of 

the spectrum at endpoints, seven different conditions may occur. These conditions relate to 

the endpoints of the spectrum and can be divided into four main categories incorporating 

subclasses 0-6. These subclasses are determined based on FIT_X(1), X(1), FIT_Y(1), Y(1) and 

SlopeS that relate to the first point of fitting arrays (wavenumber), first point of spectrum 

(wavenumber), first point of fitting arrays (intensity), first point of spectrum (intensity) and 

the slope of the fitted cubic polynomial in initial 20 points, respectively. In the following 
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section, only the starting point relating to different subclasses are explained and the same can 

then be extrapolated to the finishing points.  

Condition 1. If FIT_X(1)=X(1); (Subclass=0): In this condition, starting or finishing points 

of the spectrum exist in a fitting array. Hence no modification is required as they are 

already included in the background.  

Condition 2. If FIT_X(1)≠X(1) and FIT_Y(1)>Y(1) and SlopeS>0; (Subclass=1 for starting 

and 4 for finishing points): In this condition, the end points of the fitting array have 

intensities higher than the end points of signal (Fig. 3.3). The unfinished Gaussian peaks at 

the start and the end of the spectrum are cut from the last 25 points and based on  SlopeS, a 

2
nd

 order polynomial is fitted to these points, following which the minimum point of this 

polynomial is determined. Thereafter, 10 additional points are added as background from 

the location of minima to outside of the spectrum.  

Condition 3. If FIT_X(1)≠X(1) and FIT_Y(1)<Y(1)and SlopeS>0; (Subclass=2 for starting 

and 5 for finishing points): This condition is quite similar to the previous subclass. The 

only difference is that FIT_Y(1)<Y(1) and therefore, there is no need to cut the spectrum at 

end points (Figure 3.4). 

Condition 4. If FIT_X(1)=X(1) and FIT_Y(1)>Y(1)and SlopeS<0; (Subclass=3 for starting 

and 6 for finishing points): In this condition it is extremely difficult to determine the 

finishing point of the signal (Figure 3.5). Hence, 10 additional points are added to the 

ends of fitting arrays with intensities equal to FIT_Y(1) at the starting and FIT_Y(end) at 

the finishing point of the spectrum. 

Fitting and adjustments 

Following the endpoint correction, the points relating to the background are fitted 

with the 9
th

 order polynomial. In order to control the fitting behaviour, a correction condition 

has been considered. After finding the SNR, it is relatively simple to estimate the Peak-to-

Peak (PTP) value of the noise. One important aspect that needs to be considered to obtain a 

precise background correction is that following this process, the resultant background 

corrected spectrum should not have any data lower than 







 

2

PTP

 

where ε is related to the 

background correction error, which should not be more than the value of PTP itself. In the 

current algorithm, a simple loop validates this threshold for all the points of the spectrum. If 
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this condition fails, the coordinates of the minimum of the spectrum at the failed ranges are 

added to the fitting arrays and fitting process restarts until the 







 

2

PTP

 

condition becomes 

valid at all the points of the spectrum. This process eliminates the possible fluctuation in the 

background estimation, which may otherwise arise due to the lack of background points in 

some sections of the spectrum. 

 

 

Figure 3.3. Endpoint effects for (Subclass=1 and 4), wherein a) shows the full original 

spectrum before adjusting the endpoints, and b) and c) show the magnified regions of the 

starting and the finishing points, respectively, after adjusting the endpoints. 
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Figure 3.4. Endpoint effects for (Subclass=2 and 5), wherein a) shows the full original 

spectrum before adjusting the endpoints, and b) and c) show the magnified regions of the 

starting and the finishing points, respectively, after adjusting the endpoints. 

 

Figure 3.5. Endpoint effects for (Subclass=3 and 6), wherein a) shows the full original 

spectrum before adjusting the endpoints, and b) and c) show the magnified regions of the 

starting and the finishing points, respectively, after adjusting the endpoints. 
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3.3.4. Testing the accuracy of current algorithm 

For testing the accuracy of the designed algorithm, statistical analyses have been 

carried out.  

The processes include: 

 Producing 900 spectra, each containing 10 Gaussian peaks of random characteristics (i.e. 

µ, σ, and intensity) with constant SNR=60 dB. 

 Changing the number of Gaussian peaks from 2 to 30 with random characteristics (i.e. µ, 

σ, and intensity) and constant SNR=60 dB, with each condition applied for 200 times. 

 Changing SNR of the spectrum from 10 to 130 dB with 10 Gaussian peaks of random 

characteristics (µ, σ, and Intensity), with each condition applied 200 times. 

The spectrum after the background correction is compared with the original spectrum 

and Root Mean Squared Error (RMSE) values is calculated.  

3.3.5. Experimental data 

Chemicals: Rhodamine B, crystal violet and methyl red were purchased from Merck 

Chemicals and L-serine amino acid was purchased from Sigma-Aldrich. All chemicals were 

used without further modifications. 

Preparation of e-beam evaporated substrates: The metal layers were deposited by a 

BalzersTM electron beam evaporator. The layer composed of 1000 Å Au with an underlying 

100 Å Ti layer. The films were deposited sequentially by electron evaporation process onto 

the bare AT-cut quartz substrates. The purpose of the Ti layer is to assist with the adhesion of 

the Au layer to the substrate surface. 

Raman scattering measurements: To obtain good Raman signals, gold substrates were 

immersed in 1 mM solutions of rhodamine B, crystal violet or methyl red for 1 h, followed by 

washing with deionized water (MilliQ) and air drying. In case of L-serine amino acid, the 

powder was directly placed on a flat gold substrate before Raman measurements. It is known 

that Au and Ag thin films and nanostructured substrates assist in increasing the Raman 

scattering cross-section of molecules by a surface enhanced Raman scattering (SERS) 

process
27-28

. The above samples containing different Raman active molecules were analysed 

using a Perkin Elmer Raman Station 200F (785 nm laser, spot size of 100 µm) with an 
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exposure time of 1 sec and 20 acquisitions, with instrumental background correction feature 

described.   

3.4. Results and discussion 

The performance of the current algorithm is summarized by stating the results of the 

calibration curve calculations and further explaining the results of each section outlined in the 

methods.   

3.4.1 .Calibration curve 

Figure 3.6 shows a single artificially synthesized Gaussian peak with different SNR 

values. The width of the Gaussian peak equals 40 units in this analysis. Figure 3.7 shows the 

variation of correlation coefficient (r) with SNR and CWT scales for the artificially 

synthesized spectra outlined in Figure 3.8. To generate the calibration curve, the scale related 

to the highest correlation coefficient (r) obtained for Gaussian peaks exhibiting different SNR 

is plotted against the SNR values. A function can then be fitted through these points, where 

the Best-Scale for obtaining the 2
nd

 derivative of any spectra after finding its SNR can be 

estimated. The function which best fits this calibration curve is exponential in nature. The 

best fit function generates real numbers, while scales for CWT should contain only integer 

numbers. Hence, rounding towards positive infinity of this fitted function is considered as the 

calibration curve. Calibration curve for current example is shown in Figure 3.9. 

There are three important issues in working with calibration curves: 

 Changes in the number of signal data points can change the calibration curve. 

 The numbers of scales in CWT should be same for all investigated spectra 

 The calibration curve is dependent on the width of the peaks (in Gaussian peaks this is 

known as variance) 

To address the first condition, the number of data points for each spectrum was fixed 

at 5000 points. This adjustment was carried out using cubic spline data interpolation. The 

scales for all transforms have been chosen in a constant array from 1 to 200. The variation of 

calibration curve for different variance of simulated Gaussian peak is shown in Figure 3.9. In 

the case of constant SNR, an increase in peaks width results in an increase in Best-scale 

number, a phenomenon that has been widely reported. In the previous report, different 
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situations influencing the derivative estimation of a signal using CWT was considered. So, in 

the current situation, by fixing data points and scale array lengths, the only user input will be 

the width estimation. In the case where a lower variance is selected, sometimes, part of the 

peak base is selected as background as well. In this case, background estimation through 

fitting of 9
th

 order polynomial, which could be corrected with the algorithm, is explained in 

Section 3.3.9. In the case where the variance estimations are high, the areas that relate to the 

background would be more confined due to the increase in Best-Scale values. This may result 

in false background estimation producing artificial humps in the corrected spectrum. This can 

be addressed by decreasing variance estimation number with user input. An important aspect 

of this is that if the average peak width in the spectrum lies within the same range of the 

estimated variance number, then this fixed number would address all similar situations.  

 

Figure 3.6. A Gaussian peak with different SNR values. 
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Figure 3.7. Variation of correlation coefficient with SNR and CWT scales. 

 

Figure 3.8. Calibration curve for signals in Figure 3.6. 

In the investigated experimental results, keeping the variance number a constant value 

of 20 resulted in appropriate background estimations in most of cases, which is explained in 

the experimental results section.  
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Figure 3.9. The effect of peak width on Best-Scale in different SNR values. 

3.4.2. Estimating signal to noise ratio 

SNR is an important factor to determine the Best-Scale values for estimating 2
nd

 

derivative of a spectrum. Due to the dependency of Best-Scale to SNR, it is of utmost 

importance to estimate SNR of a spectrum before estimating 2
nd

 derivative. As previously 

mentioned, the first step for this calculation is de-convoluting or estimating the noise profile 

from the signal. One method to address this issue is to smooth a noisy signal and subtracting 

the de-noised signal from the spectrum that results in the noise profile. Although this 

approach is extensively used, there are issues associated with this approach. Primarily, in the 

case where there exists high level of denoising, if the signal has sharp peaks, the de-noised 

spectrum could reduce the intensity of these peaks. Subsequently, the noise profile derived 

from simple subtraction of the de-noised spectrum from the noisy spectrum would result in 

artificial peaks where sharp peaks occur in the spectrum. This error induces higher intensities 

in the noise profile within the ranges where sharp peaks are smoothed in the spectrum. On the 

other hand, in the case of low SNR values, the peaks with lower intensities are suppressed 

during the denoising step, which introduces errors in estimating the noise profile. 

If noise is considered as a high frequency signal distributed evenly over the whole 

spectrum, a section of its profile could be used as a representative for the noise profile where 

this range is comparably larger than the average noise wavelength. In other words, two 

different sections of a noise profile should have similar RMS values with negligible variance 

if they are distributed evenly and have the same intensity in the overall range. An important 
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aspect that needs to be addressed is selecting the threshold for dividing the spectrum into 

measurable sections. This division window should be large enough to provide a significant 

sample of the noise profile for calculations and also small enough to make it possible to select 

a region that does not include peaks. After selecting the proper window size, the Standard 

Deviation (STD) for each window is calculated and the lowest value should correspond to a 

part of the signal which consists of noise and background without peaks. In the case where 

the selected window size is small enough, the background can be estimated using a simple 

linear fit. The results of the noise profile selection are shown in Figure 3.10 for a spectrum 

with sigmoid shaped background with 10 peaks and initial SNR equal to 20.  

 

Figure 3.10. SNR estimation steps: a) Simulated Raman spectrum with 10 peaks randomly 

distributed on the signal with sigmoidal background, wherein shaded section represents 

window size for calculating LSTD; b) STD in different divided ranges of spectrum; c) 

Spectrum in minimum LSTD, wherein red line shows linear fitting of the spectrum in selected 

region to find background; d) Estimated noise profile by subtracting linear background and 

spectrum; and e) Different smoothing levels of the spectrum. 

For estimating the accuracy of the current algorithm, testing was carried out using 

similar signal features (10 peaks randomly distributed on the signal with sigmoidal 

background) while changing two parameters: SNR value of the signal and the background 
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intensity. Figure 3.11 represents the accuracy tests for SNR estimation algorithm wherein 

Figure 3.11a denotes the variation of SNR with smoothing, Figure 3.11b shows the effect of 

background intensity where background intensity ratio is calculated via dividing values of the 

intensity of highest peak in the spectrum with the background to intensity of the spectrum 

without the background; and Figure 3.11c shows the effect of change in the real SNR on the 

estimated SNR values by comparing between estimated SNR and the initial SNR.  

 

Figure 3.11. Testing of SNR estimation algorithm: a) SNR variation with smoothing level; b) 

Effect of background intensity on SNR estimation, wherein the intensity ratio is the ratio 

between intensity of the highest peak in initial background-free signal and max intensity of 

the added background; and c) Comparison between estimated SNR values and initially added 

SNR of signal. 

In the case where the level of smoothing is low, certain wider peaks are considered as 

background, while, in the case where the levelling is higher, it tends towards a linear profile 

where most sections of the smoothed curve are located under the real background resulting in 

higher noise PTP values. Thus increasing the smoothing levels shows an increase in SNR 

values. Due to these changes, the average values of the SNRs derived in different smoothing 

levels could be a good estimation for the real SNR of the signal. In the current tested data 
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(Figure 3.11a), the initial SNR of the synthesized spectrum was 30 while the estimated SNR 

value was 29.3, which when rounded towards positive infinity (ceiling or ‘Ceil’) corroborates 

well with the initial SNR value. The intensity of background could also influence the 

estimated SNR. If the intensity of the background increases, peaks would be suppressed in the 

signal. Thus, smoothing curves tend to follow peak shapes in lower intensities which results 

in an increase in estimated SNR. If initial background correction is ignored in the algorithm, 

then it results in higher values as shown in Figure 3.11b. But in the current method for 

estimating SNR, with increasing intensity of the background (Figure 3.11b), estimated SNR 

is in good agreement with the initial SNR values. On comparing the initial and estimated SNR 

values, where these values were changed with a constant intensity ratio of 6, it resulted in the 

estimated SNR values to be closer to the real SNR values. Similar to the previous cases, if the 

initial background correction is ignored then the estimated SNR would have larger values 

than real SNR (Figure 3.11c). 

3.4.3. 2
nd

 derivative and end effect 

Most spectra are discrete in nature, i.e. they do not always tend to be of zero intensity 

at the starting and finishing points (end effect). These points are considered as break points in 

the spectrum and during wavelet transformation, an artificial peak appears in these areas
29

. 

The 2
nd

 derivative of the synthetic spectrum without applying end effect correction results in 

artificial peaks (Figure 3.12b, outlined in magenta colour). As previously stated, negative 

peaks in the 2
nd

 derivative correspond to the place of the peaks in the spectrum. Due to the 

end effect there is an addition of two artificial peaks resulting in an error during the peak 

removal process. The 2
nd

 derivative of any spectra is calculated using wavelet transform with 

‘Mexican Hat’ as mother wavelet, as described previously. The active regions of ‘Mexican 

Hat’ wavelet is equal to [-5.a,5.a] where a represents the scale of transform. Thus, if the 

spectrum from both sides is extended in a way that the added points could have length wider 

than 5.a, the end effects would be confined to these regions. As the 2
nd

 derivative of a signal 

is highly sensitive to any breaking points and sharp changes in slopes in the signal, the 

extending points should be added in a way that it follows its adjacent slope of the signal.  

Following the estimation of Best-Scale (where the value for a can be determined), 

10*a points are added to the start and end of the signal based on the signal local slope at these 

junctions (Figure 3.12c). The active regions were doubled in this case to ensure that no trace 
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of end effects remains in the 2
nd

 derivative. The corrected 2
nd

 derivative of the spectrum is 

shown in Figure 3.12d.   

Due to the existence of noise in the spectrum, the 2
nd

 derivative of a spectrum, 

through numerical calculation, would result in a noisy spectrum (Figure 3.13b). This profile 

does not provide appropriate information that is required to determine the peak positions in 

the 2
nd

 derivative of the spectrum. Estimating the 2
nd

 derivative of the spectrum after end 

point correction using CWT in Best-Scale would still exhibit traces of noise in the spectrum 

that can be suppressed by simply squaring of the estimated 2
nd

 derivative, as the intensity of 

the reminiscent noise is less than 1 (Figure 3.13d).  

 

 Figure 3.12. a) Synthetic spectrum (SNR=20, 10 peaks); b) 2
nd

 derivative (wavelet 

transform, Best-Scale=17); c) Added points based on slopes of the spectrum at ending points; 

and d) 2
nd

 derivative (wavelet transform, Best-Scale=17) with end point correction. 
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.  

Figure 3.13. a) Synthetic spectrum with (SNR=20, 10 peaks); b) Numerical 2
nd

 derivative; c) 

2
nd

 derivative (wavelet transform, Best-Scale=17); and d) Squared 2
nd

 derivative to suppress 

noises. 

3.4.4. Reasons for adding helping points based on the degree of separation 

When distance between peaks becomes less than their width, the peaks overlap with 

each other. In the case when this phenomenon occurs, packing of peaks follows in one place. 

Under these conditions, estimating background points using 2
nd

 derivative is a challenging 

process. If two peaks exist in a signal, based on their position and their Full Width at Half 

Maximum (FWHM), the degree of separation (R) could be defined as a variable to show the 

overlap and peak conditions with respect to each other. If these peaks follow a Gaussian 

function, FWHM of each peak can be calculated through: 

 222 LnFWHM  (3.12) 

The degree of separation is defined as:  
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(3.13) 

Smaller the value of R, the higher is the overlap of signals. This phenomenon is 

shown in Figure 3.14 where the variation of R with position in two similar Gaussian peaks is 

explained. By an increase in the distance between signals, R is increased. If the spectrum  is 

considered as not overlapping parts of Gaussian peaks, the 2
nd

 derivative of the signal would 

show a positive peak by increasing peaks distance from each other. When two peaks are 

located within their FWHM range, this positive peak (Figure 3.14b) reaches its maximum 

value. By moving from these points, a minima extremum point is generated in 3
rd

 derivative. 

If the areas of 2
nd

 derivative of the spectrum between zero crossing points are considered, the 

location of this minimum point that lies in a positive area sandwiched between the two 

negative areas can be observed. The location of this minimum point can be established by 

considering the zero crossing 3
rd

 derivative of the spectrum. If the intensity of this point 

passes half of the intensity of max adjacent point, it could be considered roughly as a part of 

the background.  

This approximation results in adding points to the background arrays where 2
nd

 

derivative fails to estimate the background in the highly peak packed areas. Thus, instead of 

following an arbitrary shape, the fitting process progresses through these points. The location 

of these points could be a little higher than the base of the peaks, but, the iteration algorithm, 

described before will correct any overlapping due to added points from this section to the 

background arrays. 

3.4.5. Background correction 

After finding squared 2
nd

 derivative of the synthesized spectrum, the peaks are 

removed from the spectrum by applying the algorithm described in previous sections. The 

areas between starting and ending points (represented as arrows in Figure 3.15a) are related 

to the background. These areas are selected for fitting and estimating the background of the 

signal. Following this process, the algorithm then finds the subclass of the starting and ending 

points. In this case, a subclass value of 0 for starting and 4 for ending points are detected 

(Figure 3.15b and 3.15c). The green dashed line is the first fitting estimation for 

background. As it can be clearly seen from Figure 3.15d, the background estimated curve 

crosses the spectrum at the end. In order to correct this issue, algorithm explained in Section 
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3.3.9 is applied. By adding points in this area after 314 loops, the final background is 

determined (represented as magenta colour). This process eliminates creation of artificial 

peaks due to fluctuation of estimated background in area where there are not enough points to 

fit in 9
th

 order polynomial. A simple subtraction of this curve from the original spectrum 

would result in the background corrected spectrum (Figure 3.15e).  

 

 

Figure 3.14. Overlapping Gaussian peaks and their second and third derivatives: a) R=0.37; 

b) R=1.11; c) R=2.6; and d) R=3.34. 
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Figure 3.15. a) Spectrum with starting and finishing points of background; b) Starting 

condition of the spectrum (Subclass=0); c) Ending condition of the spectrum (Subclass=4); d) 

Background points and their fittings, wherein green dashed and magenta curves relate to 

starting fitting curve and corrected background after 314 loops, respectively; and e) Original 

spectrum with the background corrected one. 

SNR estimation and background correction results for a spectrum with other types of 

background are shown in the Appendix A. 

3.4.6. Testing the accuracy of proposed algorithm 

Following 900 iterations testing of the proposed algorithm in Section 3.3.10, a 

comparison between the background-removed spectrum and original signal before adding 

background (initial signals) was carried out. RMSE for the comparison between background 

corrected spectra with their initial signals is outlined in Figure 3.16a. Based on a previous 

study by Rowlands et al, most of the best background corrections have so far reported an 

RMSE value of more than 0.1. The median of RMSE calculated in the current algorithm is 

about 0.075 which is less than 0.1 indicating that this algorithm could provide a good 
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approximation for background correction. The frequency changes of RMSE are charted in 

Figure 3.16b, which typically show that more than 94% of the points have an RMSE lower 

than 0.2, out of which more than 77% impressively lie below 0.1 RMSE, suggesting that this 

algorithm would have less than 6% error in all conditions of signal features. Hence, the 

algorithm used in the current study could be an excellent candidate for automation. Testing of 

the system with varying peaks number also shows that by an increase in the number of peaks 

in a spectrum, the median point of RMSE changes slowly at the start but changes rapidly after 

20 peaks (Figure 3.17). This behaviour is a direct consequence of the decreasing number of 

background points in the spectrum.  

 

Figure 3.16. a) Root mean squared error (RMSE) variation during testing 900 times random 

spectra with 10 peaks; and b) Distribution of RMSE with number of tests. 

As shown in Section 3.1, the values of Best-Scale exponentially increase with a 

decrease in SNR while an increase in the scale results in widening of the 2
nd

 derivative peaks. 

Wider peaks confine the background points that can be selected between peaks. Thus, in 

lower SNR, RMSE has higher values, as shown in Figure 3.18. By an increase in SNR, values 

of RMSE initially show a drastic decrease, however after a while a slight increase is observed 

that becomes constant at higher values. The explanation for this behaviour is related to the 

exponential nature of the calibration curve and inaccuracies introduced by performing CWT 

on an essentially noiseless signal. Rounding the value towards positive infinity (Ceil) in 

calculating Best-Scale values is inevitable due to integer nature of the CWT scales. But it 

makes the Best-Scale constant at higher level of SNR. The slight increase after the initial 

decrease in RMSE could be related to this feature where for all SNR values larger than 80, the 

Best-Scale varies from 6 to 1. 
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Figure 3.17. Variation of RMSE with peak number in the spectrum. Dot points show median 

of RMSE, and upper and lower error bars are related to STD of points with higher and lower 

RMSE, respectively. 

 

Figure 3.18. Variation of RMSE with SNR in the spectrum. Dot points show median of 

RMSE, and upper and lower error bars are related to STD of points with higher and lower 

RMSE, respectively. 

To further check the conditions, where currently proposed algorithm might fail, 

extreme conditions were also chosen by employing either a very low SNR value of 5 (Figure 

3.19), or large number of peaks corresponding to 30 (Figure 3.20), or a combination of both 

(Figure 3.21). The slight errors resulting from the conditions when SNR is significantly 

reduced or the number of peaks in a spectrum is significantly large, the current algorithm 

might introduce certain anomalies in the spectra. Therefore care must be taken while dealing 

with such situations. 
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Figure 3.19. a) Raman spectrum without any background with 30 peaks and no noise, b) 

spectrum in (a) after introducing noise corresponding to SNR=60, c) spectrum in (b) after 

introducing a sigmoidal background, and d) background corrected spectrum of that shown in 

(c). The rectangular boxes shown in (b) and (d) highlight the errors introduced during the 

background correction step. 
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Figure 3.20. a) Raman spectrum without any background with 10 peaks and no noise, b) 

spectrum in (a) after introducing noise corresponding to SNR=5, c) spectrum in (b) after 

introducing a sigmoidal background, and d) background corrected spectrum of that shown in 

(c). The rectangular boxes shown in (b) and (d) highlight the errors introduced during the 

background correction step. 
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Figure 3.21. a) Raman spectrum without any background with 30 peaks and no noise, b) 

spectrum in (a) after introducing noise corresponding to SNR=5, c) spectrum in (b) after 

introducing a sigmoidal background, and d) background corrected spectrum of that shown in 

(c). The rectangular boxes shown in (b) and (d) highlight the errors introduced during the 

background correction step. 

3.4.7. Experimental results 

Application of the current algorithm for background correction of four different noisy 

experimental systems (L-serine, Rhodamine B, Methyl-red and crystal violet) is outlined in 

Figure 3.22. Analysis of the performance of the algorithm in real data could not be done due 

to the inherent inability to obtain the experimental data without a background to compare 

with results. However, the proposed algorithm shows good performance in most cases, with 

the exception of a few minor errors resulting from the condensation of peaks (Figure 3.22b). 

Interestingly, the end effect errors are considerably less than the commonly reported studies 
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due to the ability of algorithm reported in this study to follow background feature in the end 

points. 

 

Figure 3.22. Examples of application of the current algorithm for experimentally obtained 

real Raman spectra: a) Serine amino acid; b) Rhodamine B; c) methyl red and d) crystal 

violet. 

3.5. Conclusion 

In conclusion, a new algorithm has been provided based on continuous wavelet 

transformation for baseline correction of Raman spectra with the ability to work with noisy 

signals without de-noising. The algorithm is benefitted from CWT thereby enabling to work 

directly with noisy signal, and SRM for enabling peak removal from the signal and finding 

the background shape. The CWT method eliminates the needs for smoothing the signal and 

also gives a good approximation to estimate peaks starting and finishing points due to its 

ability to calculate 2
nd

 derivative of the noisy spectrum. On the other hand, using SRM, the 

peaks remain untouched and background estimation can be achieved using fitting of the 

remaining data points in the spectrum.  
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This algorithm has been tested for accuracy for each section of programming and has 

acceptable errors that make it applicable to most of the data analysis essential for Raman 

spectroscopy.  The accuracy tests as well as experimental results showed that this algorithm 

could be implemented in the cases where automatic baseline detection is necessary. This 

approach could address the problems of background corrections on real data where the 

quality of spectra is low (e.g. biological low power Raman spectroscopy). Furthermore, based 

on accuracy tests, this approach has a minimal variance in the relative peak intensities during 

analyses.  
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CHAPTER IV 

 

 Fabrication of ZnO and ZnO/Ag 

nano-arrays for SERS biosensing 
 

In this chapter, to develop high quality, reproducible, stable and recyclable SERS substrates, 

the effects of synthesis parameters on the formation and properties of ZnO/Ag nano-arrays 

were studied. At few first sections of this chapter, a comprehensive study was performed to 

develop a reproducible and highly controllable synthesis method to produce well aligned ZnO 

nano-arrays. Then, different approaches were carried out to decorate the obtained ZnO nano-

arrays with silver nanoparticles. Facile soft chemical synthesis strategies were employed to 

fabricate Raman-active and recyclable ZnO/Ag nanorod arrays as highly reproducible surface 

enhanced Raman scattering (SERS) substrates. The controlled Ag nanoparticle deposition 

parameters enabled decoration of uniform density of SERS-active hot-spots on ZnO nano-

arrays on a large 1 cm × 1 cm substrate. These ZnO/Ag nano-arrays showed outstanding 

reproducibility towards acquiring SERS spectra of Rhodamine-B as a probe molecule at 30 

random locations on a single substrate. The photocatalytic nature of ZnO/Ag semiconductor-

metal heterojunction was exploited to endow these SERS substrates with reusability 

characteristics. The study shows that by controlling optimal metal loading on a 

semiconductor surface, high photocatalytic activity and SERS performance can be obtained. 

Part of the work presented in this chapter has been published at: 

Kandjani, A. E.; Mohammadtaheri, M.; Thakkar, A.; Bhargava, S.K.; Bansal, V.; ZnO/Ag nano-

arrays as reusable SERS substrates with controllable ‘hot-spots’ for highly reproducible molecular 

sensing, Journal of Colloid and Interface Science, 436 (2014) pp. 251–257. 
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4.1. Introduction 

In order to fabricate a reliable sensing platform, several criteria need to be 

considered in production processes. In SERS based platforms, control in the 

uniformity of the features of SERS active metals on the surface is one of the critical 

points, which should be considered to generate uniform Raman enhancement 

throughout the sample surface. Thus, structure, pattern and distances between active 

SERS materials need to be controlled to generate uniform ‘hot spots’ on the surface 

of the SERS based sensors
1
. This could be achieved by controlling the deposition of 

the SERS active metal structures on substrates.  

Similarly, a reliable photocatalytic surface requires the reproducible design of 

surfaces with uniform distribution of semiconductor nanostructures
2
. Furthermore, 

they need to have high surface area with low surface defect density in order to 

increase the photocatalytic activity. Thus fabricating nano arrays of semiconductors 

with high photocatalytic activities like ZnO
3
, TiO2

4
 and GaN

5
 have attracted many 

researchers’ attentions. Among these materials, ZnO is one of the materials that has 

the capability to make uniform nano-arrays with long range order via soft-chemical 

approaches. The semiconducting properties of ZnO nanostructures are largely 

dependent on their compositions, crystal structure, dimension, and morphology
6
. A 

better understanding of the chemical processes involved in the growth of one-

dimensional ZnO nanostructures is essential for designing photocatalytic substrates 

with desired structural and functional properties. 

Considering the SERS sensing and photocatalytic activities of semiconductor 

materials, combining these two properties can make each substrate having two 

functionalities. ZnO based materials, due to their high surface area, single crystalline 

nature and uniformity in nano-range scale, are among the best candidates for 

developing multifunctional substrates for applications requiring both SERS and 

photocatalysis. 

In this chapter, important synthesis aspects for forming zinc oxide nano arrays 

were studied. In order to add the SERS functionality on ZnO based photocatalytic 

substrate, these fabricated nano arrays were then decorated with silver nanoparticles. 

Silver nanoparticles were decorated on the ZnO nano-arrays via photoreduction and 
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electroless plating methods. The effects of the synthesis variables on the final 

morphology and structure of the materials were studied. The developed materials 

were finally tested for their photocatalytic and SERS activities.  

4.2. Materials and methods 

Chemicals: All the chemicals were purchased from Sigma Aldrich and used as 

received. Deionized MilliQ water (18.2 MΩm) was used throughout the synthesis 

process. Si (001) substrates (1 cm × 1 cm) were employed for the growth of ZnO 

nano-arrays, which were cleaned using sequential washing and ultrasonication in 

acetone, ethanol and isopropanol before drying under nitrogen. Further, to eliminate 

any remaining organic traces from the Si surface, the substrates were exposed to UV-

Ozone (UVO Cleaner Plus) for 10 min. 

Fabrication of ZnO seed layers via sputtering method: Initially for testing ZnO nano-

arrays fabrication, ZnO thin film was sputtered on the cleaned silicon wafer. The 

substrate temperature was kept at 500 °C and sputtering was carried out to fabricate 

400 nm crystalline ZnO pin-hole free ZnO thin films. A thin film of photoresist was 

then coated on the substrates for eliminating possible scratches during the transport 

and dicing of the substrates. Finally, the substrates were diced into 1 cm × 1 cm 

pieces. 

Fabrication of ZnO seed layers via sol-gel method: In addition to the sputtering 

method, a different method was also used to fabricate ZnO seed layer. In this method 

a uniform ZnO layer was coated on Si wafers via sol-gel process. Briefly, ethanolic 

solution of zinc acetate dehydrate was mixed with monoethanolamine (MEA) in equal 

weight ratio, followed by aging the mixture at 55 °C for 24 h and spin coating 300 µL 

of this solution on to Si wafers at 3500 rpm for 15 sec. The substrates were dried at 95 

°C for 10 min and the spin coating procedure was repeated several times before 

annealing the substrates. The effect of sol-gel synthetic parameters on the formation 

and uniformity of zinc oxide nano-arrays were studied.  

Fabrication of ZnO nanorod arrays: For the hydrothermal growth of ZnO nanorod 

arrays, 50 mL solution containing aqueous zinc nitrate hexahydrate and hexamine 

was transferred to sealed glass autoclaves. The substrates were floated on the top of 

the solution in the autoclaves such that the ZnO thin film side of the substrate faced 

the solution. The hydrothermal reaction was allowed to proceed at 95 °C, followed by 
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collecting the Si/ZnO nanorod array substrates and rigorous washing with deionized 

water before drying with N2 gas under ambient conditions. The effects of the 

concentration of the precursor and period of the hydrothermal reaction on 

morphology of the ZnO nanorod arrays were studied.  

Decoration of Si/ZnO nanorod arrays with Ag-NPs via photo-reduction: ZnO 

nanorod arrays (1 cm x 1 cm) were decorated with Ag-NPs using phto-reduction 

method. This involved the immersion of ZnO films into an aqueous solution of silver 

salt following by nitrogen purging for 30 min and finally illumination of the solution 

(mercury lamp, 354 nm) for 2h. For each sample, 9 mL of aqueous solution of silver 

salt (AgNO3 and Ag2SO4) with 1 mL of propanol was prepared. The role of the 

propanol was to trap the possible oxidant radical forming during UV reduction 

process. The effect of the solution concentration on the decoration of ZnO arrays was 

studied. The schematic of ZnO/Ag (phototreduced) nano-arrays fabrication is shown 

in Figure 4.1.  

 

Figure 4.1. Schematic representation of fabrication of ZnO/Ag nano-arrays on a Si 

substrate which involves (1) hydrothermal growth of ZnO nano-arrays onto Si wafer 

spin-coated with ZnO thin film, (2) photocatalytic reduction of AgNPs using UV 

irradiation. 

Decoration of Si/ZnO nanorod arrays with Ag-NPs via electroless plating: ZnO 

nanorod arrays (1 cm x 1 cm) were also decorated with Ag-NPs using an electroless 

deposition method, wherein initially ZnO was sensitized for 30 min with a 2 mL 

aqueous solution containing 0.3 mM SnCl2 and 0.1 µL trifluoroacetic acid. After 

washing with water, the substrates were immersed in 2 mL of 3 mM aqueous 

Pd(NO3)2 for 10 min to form Pd nuclei that acted as seeds for silver plating in the next 

step. The density of AgNPs on the surface of Sn- and Pd-sensitized ZnO nanorod 

arrays was controlled by exposing these substrates initially to different concentrations 
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of 1 mL diaminesilver(I) complex ([Ag(NH3)2]
+
), followed by addition of 1 mL of  

glucose solution (1 M) to reduce this complex at room temperature. The substrates 

were collected after 1, 3 and 6 min of reaction, washed with water and dried under N2 

gas prior to further use. Effects of the initial silver concentration, time of the synthesis 

as well as the effects of the sensitizing and catalytic steps on the decoration of the 

ZnO nano-arrays were studied. The schematic of ZnO/Ag (electroless plating) nano-

arrays fabrication is shown in Figure 4.2.  

 

Figure 4.2. Schematic representation of fabrication of ZnO/Ag nano-arrays on a Si 

substrate which involves (1) hydrothermal growth of ZnO nano-arrays onto Si wafer 

spin-coated with ZnO thin film, (2) sensitization of ZnO nano-arrays with Sn and Pd, 

followed by (3) electroless plating of AgNPs onto ZnO nano-arrays. 

Substrate characterization: Prepared substrates were characterized using different 

microscopic and spectroscopic techniques. Morphological studies were performed 

using field emission scanning electron microscope (SEM - FEI Nova NanoSEM), X-

ray diffraction (XRD) patterns were collected using Bruker AXS X-ray diffractometer 

employing Cu-Kα radiation, X-ray photoelectron spectroscopy (XPS) surface 

analyses were carried out by a Thermo Scientific K-Alpha instrument using un-

monochromatized Mg Kα radiation (photon energy 1253.6 e ) under vacuum better 

than 10
-9

 Torr, and XPS core levels were aligned to the adventitious C 1s binding 

energy (BE) of 285 eV.  

Evaluation of SERS activity: Rhodamine B (RB) was selected as a model probe 

molecule to evaluate the SERS activity of the prepared substrates. RB was bound to 

the substrates by immersing substrates independently in 1 mL of 100 µM RB for 1 h 

in the dark, followed by rinsing the substrates with deionized water and air drying. 

Raman spectroscopy measurements were performed using Perkin Elmer Raman 
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Station 200F (785 nm laser) with a spot size of 100 µm, 5 sec exposure time and 10 

acquisitions averaged with the background correction feature disabled. The 

backgrounds of Raman spectra were corrected using algorithm developed in Chapter 

III. Since ZnO is a wide band-gap semiconductor with an optical absorption edge of 

~370 nm, 785 nm laser source was used for SERS studies so that the possibility of the 

degradation of RB molecules during Raman measurements could be avoided. 

Evaluation of photocatalytic performance and substrate recyclability as a self-

cleaning SERS biosensor: Photocatalytic activity of ZnO/Ag nano-arrays was tested 

by exposing substrates to 1 mL of 10 µM RB in the dark for 1 h before their exposure 

to UV irradiation in a time-dependent manner. The uniform UV exposure to the 

substrates was ensured by employing an 18 W, 370 nm LED (Edmund Optics) with 

attached heat sink (to avoid sample heating) 5 cm above the substrate. The time-

dependent photodegradation of RB was determined by monitoring the change in the 

absorbance intensity of the RB using EnVision Multilabel Plate Reader 

(PerkinElmer). The photodegradation efficiency of ZnO/Ag nano-arrays was 

estimated as: 

 
4.1 

wherein C0 and C correspond to RB concentrations before and after irradiation, 

respectively. 

SERS substrate recyclability studies were performed over three cycles. Each of these 

cycles involved immersion of ZnO/Ag nano-arrays in RB and collection of their 

SERS spectrum. This was followed by substrate cleaning through rinsing with 

deionized water, exposing the substrate to UV irradiation for 30 min to photodegrade 

RB, further rinsing with deionized water and air drying. Raman spectrum was 

collected again from the same substrate by re-exposing it to RB and the process was 

repeated three times to ensure recyclable SERS detection. The schematic of the 

sensing and recycling is shown in Figure 4.3. 
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Figure 4.3. Schematic for 1) detection and 2) Photocatalytic removal of organic 

marker for regeneration of SERS sensor. 

4.3. Zinc oxide nano-arrays 

4.3.1. Mechanism 

In the synthesis procedure of ZnO nano-arrays, hexamine (HMTA) and Zn(NO3)2 

were used. In this synthesis form, Zn
2+

 ions are provided by zinc nitrate for fabrication of 

ZnO nano-arrays where oxygen atoms are sourced directly from water molecules. HMTA is a 

non-ionic cyclic tertiary amine. It has been shown that two Zn
2+

 ions can be bridged with 

HMTA forming tetradentate ligands, which act as bidentate ligands
7
.  

Furthermore, HMTA has high affinity toward non-polar surfaces of the ZnO crystals 

and acts as a capping agent and decreases the kinetics of the growth of these crystal planes. 

Therefore, anisotropical growth of zinc oxide occurs in [0001] crystallite direction
8
. It has 

been shown that HMTA hydrolyses in water and produces ammonia and formaldehyde. The 

formed ammonia can react with zinc ions to form zinc ammonium complexes as well as also 

zinc hydroxide. The reaction procedure can be summarized as below: 

 4.2 

 4.3 

 4.4 

 4.5 

 4.6 
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The production of ammonia in the solution due to hydrolysis of HMTA is a very slow 

process, thus, low amounts of OH
-
 ions are consumed gradually, and no sudden growth and 

precipitation can occur. This slow kinetics allows a rapid consumption of the solution 

reactants as well as prohibits the oriented growth of ZnO nanowires
9-10

. Formed ammonia has 

two roles in the reaction, providing basic environment necessary for Zn(OH)2 formation and 

stabilization of Zn
2+

 ions through its coordinating with zinc ions. Zinc hydroxide can be 

converted into zinc oxide by providing appropriate heat. As all of the reactions related to 

forming Zn(OH)2 are in equilibrium, the reaction can be controlled by synthesis variables, 

which are precursor (Zn(NO3)2) concentration, growth temperature and growth time. 

Precursor concentration controls the density of the nano-arrays while temperature and time 

control morphology and aspect ratio of the formed nano-arrays
11-12

. As decomposition of 

HMTA results in increase entropy, the reaction kinetics can be highly increased by 

increasing the temperature
13

.  

One of the main advantages of using soft chemical method for fabricating ZnO 

nano-arrays is that ZnO can be grown on to almost any substrate, such as Si wafer, paper
14

, 

organic substrates
15

 and even textile
16

. But most important point in all these methods is that 

the seeding layer should have a proper adhesion with the substrate. ZnO nano-array can also 

be grown on the surfaces such as gold without any seeding layer
11

. However, by using a seed 

layer the advantage is its capability to make a uniform and large-area growth of nano-arrays 

on any substrates. The main role of the seed layer in the growth of the nano-arrays is the 

growth of the ZnO nan-rods on the seed through heterogeneous growth. This heterogeneous 

growth, due to the existence of seed layer, is energetically more favourable because the 

existing seeds bypass the nucleation step.  

The seed layer can be prepared by various methods, soft chemical methods (e.g sol-

gel
17

 and spin coating of ZnO colloidal nanoparticles
18

), sputtering
19

 and laser ablation
20

. The 

orientation and also the density of the nano-arrays are highly dependent on the crystallinity of 

the seed layer. Most of the ZnO nano-arrays have preferential growth toward c-axis which 

results in their growth perpendicular to their substrate surface
21

.  

In sol-gel process, first Zn(Ac)2 is hydrolysed in the absolute ethanol. The positively 

charged Zn complex can attach to the ethanolamine and with the aid of the water in the 

structure of zinc acetate, these complexes can form a frame for sol-gel. These structures then 

attach to each other via hydrogen bonding and form a net which is known as sol. After drying 

the sol, these complexes break apart and form ZnO crystallites with short ordering
22-23

. As the 
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complexes are decomposed at low temperature, short ordering of ZnO crystallites 

(amorphous structure) forms on the substrate. The thin film can be crystalized using proper 

heat treatment. Thus, crystallite size and structural ordering of materials can be controlled
24

.  

4.3.2. Effect of hydrothermal conditions 

Effect of Zn
2+

 concentration: The sputtered ZnO thin films were used as seed layer for 

growth of ZnO nano-arrays. The concentration of the Zn(NO3)2 was varied from 1 

mM to 100 mM. The synthetic conditions for fabricating ZnO nano-arrays were kept 

constant [ ; Temperature=95 °C and Time=6 h]. As shown in Figure 4.4, 

the density of the nanorods of ZnO is increased with increasing Zn(NO3)2 

concentration. By reaching to 12.5 mM concentration of Zn
2+

 ions in the 

hydrothermal solution a full coverage of ZnO nano-arrays can be achieved. Above 

this concentration, due to existence of the higher amount of precursors in the solution, 

the produced nanorods grow longer and thicker. At 50 mM, the grown nanorods tend 

to merge to each other and gradually form a dense layer of the ZnO film. At higher 

concentrations, these compact layers can also allow a secondary growth of layered 

ZnO nano structures in the form of thin film. At these high concentrations, the 

morphology of the ZnO nano-arrays completely changes into a thick film of ZnO 

structures. 

Effect of hydrothermal time: After finding optimal concentration (12.5 and 25 mM) 

for forming ZnO nano-arrays, the effect of the synthesis time in forming ZnO nano-

arrays was studied. The hydrothermally grown ZnO nano-arrays were collected at 1.5 

h to 6 h as shown in Figure 4.5. The formation for the nano-arrays starts after 3 h of 

hydrothermal reaction while at lower Zn(NO3)2 concentration (12.5 mM), formed 

nano-arrays had smaller thickness as well as were thinner in diameter. For making the 

nano-arrays with average length of 2000 nm and width of 120 nm (Aspect ratio≈17), 

concentration of 25 mM Zn(NO3)2 and 6 h reaction time were chosen for fabricating  

hydrothermally grown ZnO nano-arrays.  

4.3.3. Effect of seed layer 

Edge effects in sputtering and sol-gel: As with the sputtering method, the whole wafer 

was put into the sputtering chamber with high temperature operation of 500 °C, 

resulting in highly crystalline ZnO thin films. After taking the sputtered ZnO wafer 
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out of the sputterer chamber, the wafers were diced with a wafer dicer into 1 cm × 1 

cm pieces. By doing so a part of the sputtered thin film was always chipped off the 

substrate. This resulted into forming packed ZnO arrays in the edges of the samples 

which yielded into different morphologies at the edges of the samples compared to 

the rest of the substrates. On the other hand, using sol-gel for forming seed layer all 

corners and edges of the sample were coated uniformly, which resulted into synthesis 

of the uniform nano array structures throughout the surface of the samples. The 

morphology of the fabricated nano-arrays at the edges of the samples is shown in 

Figure 4.6 for sol-gel and sputtered zinc oxide seed layers.  

Effect of the number of coating cycles: The uniformity of nano-array is highly 

depended on the uniformity of the seeding layer. If the thickness of the sample 

changes in different parts of the substrate or even an island type of the seed layer is 

formed during the coating of the seed layer, the uniformity of the formed nano-arrays 

as well as their alignment changes randomly. By increasing the number of the coating 

this issue can be resolved as the isolated islands would be eliminated from the surface 

as the thickness of the seed layer will surpass the threshold needed for fabricating 

ZnO nano-arrays. The effect of the number of coatings used to make ZnO nano-arrays 

is shown in Figure 4.7. The results demonstrate that by applying 5 coating cycles, a 

well aligned sample can be fabricated. The synthesis conditions used to study the 

formation of ZnO nano-arrays of different number of coating cycles are 0.1 M ZnAc2, 

weight ratio of ZnAC2 to MEA equal to 1, aging temperature of 55 °C for 24 h, spin 

coated at 4000 rpm, dried at 70°C for 30 min and calcinated at 450 °C for 1 h. 
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Figure 4.4. Hydrothermally grown ZnO nano-arrays on sputtered ZnO thin film (400 nm) for 

6 h at 95 °C with initial Zn(NO3)2 concentrations of a) 1, b) 3, c) 5, d) 10, e) 12.5, f) 25, g) 

50 and h) 100  mM. 
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Figure 4.5. Hydrothermally grown ZnO nano-arrays on sputtered ZnO thin film (400 

nm) at 95 °C with initial Zn(NO3)2 concentrations of a) 12.5 and b) 25 mM for 1) 1.5, 

2) 3, 3) 4.5 and 4) 6 h. 
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Figure 4.6. Edge effects in a) sol-gel and b) sputtered ZnO seed layers; red dashed 

lines show the position of the edge of the samples. 

Figure 4.7. Effect of cycles of coating of ZnO seed layer on the hydrothermally 

grown ZnO nano-arrays for a) 1, b) 3 and c) 5 cycles of coatings [1) Top view and 2) 

angle (30°) view]. 
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Figure 4.8. Effect of sol-gel concentration on the hydrothermally grown ZnO nano-

arrays for  a) 1,  b) 10 and c) 100 mM of Zn(AC)2 [1) Top view and 2) angle (30°) 

view]. 

Effect of Zn(Ac)2 concentration: Uniformity and thickness of seed layer control the 

ZnO nano-array density as well as their growth and alignment
11, 18

. As shown in 

Figure 4.8 when a sol-gel with low concentration was used for the fabrication of the 

seed layers, random arrays were produced. In addition, a number of areas with no or 

low density of nano-arrays on the surface of the substrate were observed. By 

increasing the concentration of Zn(Ac)2 to 0.01 M, small islands of seed layer based 

thin films were observed to form, which after calcination were changed into flower 

type structures. When 0.1 M Zn(Ac)2 concentration was used for the seed layer 

formation, completely uniform and well-ordered nano-arrays were observed on the 

substrate. 

Effect of calcination temperature: Crystallinity of the substrate has a critical effect on 

the formation of the ZnO nano-arrays. Crystallinity of the seed layer can be increased 

by increasing the temperature and time of the calcination. By increasing the 

calcination temperature and allowing longer reaction time; diffusion of the atoms in 

the thin film can be controlled
24

. Increase in the diffusion rate in thin film are 

favoured as it results into more oriented crystallites on the surface which 

subsequently results into fabrication of ZnO nano-arrays with more even aspect ratio 
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and orientation. Figure 4.9 and 4.10 show the effects of the heat treatment on the 

ZnO nano-arrays formation. As could be seen from these images, at low temperatures 

the nano-arrays have a random orientation and different aspect ratios throughout the 

sample surface. At 450 °C these nano-rods form well-aligned ZnO nano-arrays while 

maintaining their structural integrity. To understand the synthesis temperature effects 

three samples with three different calcination temperatures were synthesized, and 

their SEM images are shown in Figure 4.11. It can be observed that with an increase 

in the calcination temperature, the seed layers become much more uniform and the 

alignments of the nano-arrays are enhanced. At higher calcination temperatures (750 

°C), due to increasing size of the crystallites in the thin film, the thicker nano rods 

with flatter tips are formed. Thus, 450 °C was chosen for synthesizing of uniform and 

cone tip shaped ZnO nano-arrays. 

Figure 4.9. Effect of calcination temperature of the seed layer at a) 70, b) 150, c) 

300, d) 450, e) 600 and f) 750 °C [Top view]. 
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Figure 4.10. Effect of calcination temperature of the seed layer at a) 70, b) 150, c) 

300, d) 450, e) 600 and f) 750 °C [Tilt (30 °C) view]. 

Figure 4.11. Effect of calcination temperature of the seed layer at a) 150, b) 450 and 

c) 750 °C [Side view]. 

4.4. Silver decoration 

4.4.1. Mechanism 

Photochemical synthesis of metallic silver: One of the methods for fabricating 

metallic nanoparticles is through a photoreduction process. In this method, 

nanoparticles are synthesized by direct photoreduction of metal-ions using 

intermediates generated through photo-chemical processes. These intermediates can 

be categorised as radical and excited molecules
25

. Several morphologies of 

nanoparticles with high control on size distribution have been reported using 
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photoreduction method for reducing silver nanoparticles
26

. This method provides 

many advantages
26

 as: 

 It is a clean and convenient technique for fabricating metallic nanoparticles. 

 The formation and size of the nanoparticles can be easily controlled by 

tailoring the irradiation
27

. 

 It offers a great versatility enabling synthesis of metallic nanoparticles in 

various media. 

The synthesis method which is used in this thesis was based on the reduction 

of the silver nitrate into silver nanoparticles. The mechanism can be summarized in 

four steps. Initially, photo-excitation produces radicals in the water which enables the 

electron transfer from media to Ag
+
 ions generating Ag

0
. These Ag

0
 nuclei initiate 

formation of AgNPs. Using isopropanol in the solution during irradiation the alcohol 

can act as the radical scavenger and can increase the reduction of silver nanoparticles 

formation. The 2-propanol can change into a radical form which can help reduction of 

silver ions and finally changed into aldehydes. The reaction steps that occur in the 

reduction of the Ag
+
 ions via photoreduction are summarized below

28
. 

 
4.7 

 
4.8 

 4.9 

 
4.10 

Although, the formation of pure metallic nanoparticles can occur by using 

photoreduction method alone, employing photocatalytic materials can be further 

enhanced the reduction process. That is under irradiation, semiconducting 

photocatalysts can increase production of the radicals in the solution. In addition, as 

pairs of electron and hole are generated during irradiation, the addition of the alcohol 

can act as a positively charged hole trap in the system and thus decrease the amount 

of oxidant radicals formation
29-30

. 

Silver mirror method: In 1835, Justus von Liebig invented a simple but versatile 

method for coating glasses to fabricate mirrors via a soft chemical method
31

. Since 

then this method has been used regularly, and with B. Tollens modification (1841-

1918) it is considered as one of the best chemical methods for fabricating shiny silver 
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surfaces on many substrates
32

. The fundamental reactions in the Tollens process can 

be simplified as
33

: 

 4.11 

 4.12 

 4.13 

There are two key aspects of in these reactions. By adding ammonia to 

colourless silver nitrate solution, a brownish precipitate of silver oxide forms in the 

solution. By continuing the addition of ammonia, the Eq.4.12 is completed and silver 

oxide changes into diamminesilver(I) complex. As the  is formed in the 

solution by increasing in pH, the standard redox potential of Ag
+
/Ag changes from +0.799 V 

to +0.38 V. The reducing sugar’s redox potential is -0.15 eV at pH 7 in water. Thus, the 

overall reaction rate is decreased enabling the abrupt formation of silver nanoparticles and 

make the growth rate predominant comparing with nucleation rate
34

. Using low silver 

concentration in the reaction results in decreasing the reduction rate. This leads to a decrease 

in the number of the initial nuclei which subsequently make a small number of bigger 

particles. The pH of the solution controls the amounts of  formation and 

therefore the kinetics of the Eq.4.13. Thus, a change in the pH can alter the particle size as 

well as the kinetics of the reduction. Therefore, the amount of ammonia added to the solution 

should be kept fixed in order to achieve a reproducible synthesis procedure. Furthermore, as 

the reduction is based on the oxidation of sugar in the solution the concentration of the 

glucose in the solution was kept of 1M.  

In electroless deposition of silver nanoparticles on ZnO nano-arrays, formed 

nanoparticles should have a high tendency toward making uniform decoration on the surface 

of ZnO nanorods. To achieve this, two different methods are suggested in the literature: 

sensitization and activation. In sensitization method, Sn
2+

 ions are bound to the surface of the 

substrate nanostructures. Thereby Sn
2+

 ions bound on the surface modify the surfaces of the 

negatively charged zinc oxide nanostructures into positively charged hydrophilic surfaces. 

Sn
2+

 can easily oxidize into Sn
4+

 and thus allows Ag ions to be reduced and decorate the 

surfaces
35

. This electroless plating process is an autocatalytic reaction. That is when a small 

nuclei of the material are formed on the surface of the substrate, the localized growth and 

deposition onto these areas start
36

. Thus the use of sensitization alone cannot result into a 

uniform decoration. To solve this problem, activation process is usually applied to the surface 

prior to the platting process. The sensitized surface is transformed into the solution containing 
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Pd
2+

 ions where the Pd small nuclei can decorate the surface by replacing the Sn
2+

 as shown 

in reaction 4.14
37

. This is possible as the two half cells of the reactions (Pd
2+

 +0.99 V and 

Sn
2+

 +0.15 V vs. SHE) allow the formation of Pd nuclei on the surface
38

. 

 4.14 

After the formation of these nuclei, the plating can then be performed on the surface 

where the Pd particles act as catalytic sides for the formation of even and uniform silver 

nanoparticle decoration. 

4.4.2. Silver decoration via photoreduction 

The effect of Ag ion concentration on the decoration of ZnO nano-arrays (sputtered 

seed layer) was first studied. In high Ag ion concentrations, silver does not tend to stick on 

the substrate as it produces big particles on the ZnO nano-arrays rather than decorating them 

uniformly. At 150 mM, most of the substrate gets covered with micron size silver flakes as 

shown in Figure 4.12a. Although the distribution of silver seems to be uniformly throughout 

the sample, the structure of zinc oxide is observed to be buried to be under the silver flakes 

and thus these structures do not fulfil the requirement of this study. By decreasing the 

concentration of Ag
+
 ions the micron size polyhedron particles are formed. At 15 mM and 1.5 

mM Ag
+
 ion concentrations, these particles cover most of the substrate as shown in Figure 

4.12b and c. Again, the decoration tends to happen on the tips of the nano-arrays and in some 

parts, the agglomeration of silver particles in the samples was observed. By further 

decreasing the ion concentration to 0.15 mM, a uniform decoration of Ag nano-particles on 

ZnO nano arrays was achieved as shown in Figure 4.12d. The decorating particles were 

different in the size as the bigger particles stand on the tip of the materials while the smaller 

particles are formed by reaching to the root of the nano rods.  
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Figure 4.12. Effect of silver ion concentration on the decoration of ZnO nano-arrays 

for 2 h for samples prepared with a) 150, b) 15, c) 1.5, d) 0.15 mM and e) and f) 0.1 

mM Ag
+
 ions. 

As shown in Figure 4.12 e and f at 0.1 mM Ag+ ion concentration, the distance 

between the silver nano-particles on the ZnO rods is more than 20 nm in most of the cases. 

Also the coverage is not high, and a number of ZnO nano-rods are left without silver 

decoration. In concentration less than 0.15 mM, the particles are small and the coverage is 

poor. Low decoration densities as well as wide distance between decorated particles make 

low concentration inapplicable for SERS based sensing applications. 

The decoration of Ag nano-particles was then carried out for ZnO nano-arrays grown 

through sol-gel method as shown in Figure 4.13. In all samples, silver nanoparticles tend to 

sit on the tip of the nano rods rather than other areas of the material. It has been shown that 

the face of (0001) in ZnO has the highest photocatalytic activities compared to other planes. 

This is the plane that corresponds to the top of the tips
39

. This phenomenon can be seen 

specifically in low temperature synthesis of ZnO arrays where the tip has a larger portion of 

the (0001) plane. In higher calcination temperatures, well alignment of the ZnO nano-arrays 

was achieved; however, as the size of the nano-arrays decreased, the silver nanoparticles 

formed on the tips thus a uniform coverage was not achieved. 
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Figure 4.13. Silver decoration [0.15 mM, 2 h] of ZnO nano-arrays with different seed 

layer heat treated at a) 70, b) 150, c) 450 and d) 750 °C. 

As explained in Chapter I, Section 1.2.3, by attaching the AgNPs to ZnO, an Ohmic 

junction can be produced between these materials. This can alter the photocatalytic activity of 

the samples. Figures 4.14 a and b show that pristine RB molecules do not degrade in the 
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absence of ZnO/Ag nano-arrays even after 6 h of UV illumination. However, RB bound to a 

ZnO/Ag nano-array surface [synthesized with sol-gel derived ZnO thin film calcined at 450 

°C and subsequently decorated with 0.15 mM Ag
+
 ions] can be almost fully degraded under 

the same conditions. Figure 4.14 c compares the photodegradation efficiency of ZnO and 

ZnO/Ag nano-arrays. As could be seen from this figure, the photocatalytic activity of the 

ZnO nano-arrays were increased by decorating them with AgNPs. Increase in the 

photocatalytic activities due to the silver decoration confirms the electron transfer from 

semiconductor to silver nanoparticles, subsequently resulting in an increase in the electron-

hole life time due to the formed heterojunction structures.  

 

Figure 4.14. UV-visible absorbance spectra of RB with increasing illumination time 

in the a) absence and b) presence of ZnO/Ag prepared using 450 °C calcinated ZnO 

nano-arrays decorated with 0.15 mM AgNPs, c) photodegradation efficiency of ZnO 

and ZnO/Ag nano-arrays and d) SERS spectra for pure ZnO and ZnO/Ag nano-

arrays. 

Raman spectra presented in Figure 4.14 d show that zinc oxide nano-arrays 

alone does not have any enhancement. As explained in Chapter I, Section 1.3.3, it is 

possible to have a charge transfer from the marker to semiconductor. If this transfer 

happens in a semiconductor, the Raman signal of the marker enhances by only aid of 
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the semiconducting material
40

. Thus due to lack of Raman signals in the ZnO 

substrate, the charge transfer from organic to the semiconductor seems to have little 

or no effect. The Ag/ZnO nano-arrays show a slight increase in the Raman intensity 

of RB; however, the enhancement is not high enough to be used as a sensing 

substrate. This is mainly due to the fact that the distance between the silver 

nanoparticles is too high, and their surface densities are not sufficiently high to enable 

the formation of ‘hot spots’ on the ZnO nano-arrays. 

4.4.3. Silver decoration via Tollens method 

After fabrication of ZnO/Ag nano-arrays, a further attempt was carried out to 

make a better coverage of silver on the zinc oxide nano-arrays. Electroless plating 

shows a greater ability for decorating even large surfaces. This method has been used 

to obtain proper silver decoration on the ZnO nano-arrays. Top-view SEM images in 

Figure 4.15 and higher magnification images in Figure 4.16 show that Ag density in 

ZnO/Ag composite nanorod arrays can be controllably fine-tuned by varying the 

concentration of the diaminesilver(I) complex and the reaction time. In all the cases, 

silver can be observed deposited on the surface of ZnO nano-arrays in the form of 

quasi-spherical nanoparticles (AgNPs) instead of a thin film, which is preferred to 

achieve high SERS enhancement. It is also observed that the increase in the 

concentration of diaminesilver(I) complex as well as reaction time leads to a 

simultaneous increase in the AgNPs density and particle size. Although at the highest 

tested concentration (100 and 1000 mM), almost full coverage of ZnO nano-arrays 

with AgNPs is achieved, the increased reaction time of 6 min at these concentrations 

results in blocking the gaps between ZnO nanorods to such an extent that the overall 

constructions of the nano-arrays appear to fade away (Figure 4.15 c3 and d3). 

Conversely, at lower concentrations (1 and 10 mM), by increasing the reaction time, 

density of randomly distributed small AgNPs on ZnO nano-arrays can be uniformly 

increased. Additional side-view SEM images in Figure 4.17 show that the density of 

AgNPs is achieved highest on the top of ZnO nanorods, which reduces towards the 

substrate. 
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Figure 4.15. SEM images of ZnO/Ag composite nanorod arrays fabricated by 

reaction of ZnO nano-arrays with a) 1, b) 10, c) 100 and d) 1000 mM 

diaminesilver(I) complex for (a1, b1, c1 and d1) 1 min, (a2, b2, c2 and d2) 3 min and 

(a3, b3, c3 and d3) 6 min. Scale bars correspond to 1 µm. 
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Figure 4.16. Additional SEM images of ZnO/Ag nano-arrays prepared using a) 1, b) 

10, c) 100 and d) 1000 mM diaminesilver complex for 3 min reaction. 

 

Figure 4.17. SEM images of ZnO/Ag nano-arrays prepared using 100 mM diaminesilver 

complex for 3 min reaction a) side-view, b) top-view, c) perspective-view at 10° sample tilt, 

and d) low magnification top-view images. 



 

123 
 

 

XRD patterns of ZnO/Ag nano-arrays as a function of increasing diaminesilver 

complex as well as AgNPs deposition time are shown in Figure 4.18. In all the 

samples, peaks corresponding to only wurtzite phase of ZnO (JCPDF 36-1451) 

without any other ZnO crystalline phases are observed. XRD patterns also show that 

with increasing concentration of diaminesilver precursor complex as well as AgNPs 

deposition time, peaks matching to (111) and (200) phase of face centred cubic silver 

(Ag
0
) become pronounced (JCPDF 04-0783), thereby supporting the decoration of 

ZnO nano-arrays with AgNPs, as observed in the SEM images (Figure 4.15 to 4.17). 

 

Figure 4.18. XRD patterns obtained from ZnO/Ag nanorod arrays a) as a function of 

diaminesilver concentration of (i) 1, (ii) 10, (iii) 100 and (iv) 1000 mM for 3 min 

reaction, and b) as a function of reaction time for (i) 1, (ii) 3 and (iii) 6 min for 1000 

mM diaminesilver concentration. The lattice planes corresponding to Ag are 

indicated, while other peaks correspond to wurtzite phase of ZnO. 

XPS was employed as a highly surface sensitive technique to follow the 

successful decoration of AgNPs on ZnO nano-arrays at each of the synthesis steps 

(Figure 4.19). For controllable loading of AgNPs on ZnO nanorods, it was found 

crucial to sensitize the ZnO surface by adsorbing Sn
2+

 ions. Successful binding of 

Sn
2+

 to ZnO surface is evident from characteristic Sn 3d5/2 core level BE at 486.7 eV 

that corresponds to Sn
2+

 (Figure 4.19a and b)
38

. When Sn
2+

-adsorbed ZnO nano-

array is exposed to an aqueous solution containing Pd
2+

 ions, the favourable 

difference in the standard reduction potentials of the two half cells of the reactions 

(Pd
2+

 +0.99 V and Sn
2+

 +0.15 V vs. SHE) allows deposition of Pd
0
 nano-clusters on 

ZnO surface as per Eq. 4.14. Presence of this Pd
0
 nanoparticle seed layer on the 
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surface of ZnO nanorods is evident from Pd 3d core level spectrum with characteristic 

3d5/2 BE component at 335.2 eV (Figure 4.19c)
41

. These Pd seed particles can now 

act as nucleation sites for the uniform electroless deposition of AgNPs on ZnO in the 

next stage when Pd-activated ZnO substrates are exposed to diaminesilver(I) complex 

in the presence of a reducing agent such as glucose, as per the Eq. 4.13. 

Ag 3d core level XPS spectrum obtained after reacting Pd-activated ZnO nano-

arrays with diaminesilver(I) complex for 3 min shows two spin-orbital splitting pairs 

with Ag 3d5/2 BEs at 368 and 372 eV (Figure 4.19d). The lower BE feature shows 

that most of the reduced silver stays in the form of metallic Ag
0
 (94.3%), while the 

higher BE feature of significantly lower intensity (5.7%) may be assigned to the 

potential surface oxidation of AgNPs bound onto ZnO surface
42

. 

 

Figure 4.19. XPS spectra arising from ZnO/Ag nanorod arrays during different stages 

of Ag decoration a) general area scans from each synthesis step, b) Sn 3d5/2 core level 

from ZnO-Sn, c) Pd 3d core level from ZnO-Sn-Pd and d) Ag 3d core level from 

ZnO-Sn-Pd-Ag (ZnO/Ag). 
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To further evaluate the importance of the size and the density of AgNPs on 

ZnO surface in achieving high SERS response of the Raman marker molecule, the 

influence of the diaminesilver complex concentration as well as the reaction time on 

Raman intensity of RB was systematically investigated (Figure 4.20). By increase in 

starting silver plating concentration (Figure 4.20a) as well as Ag decoration time 

(Figure 4.20b), the intensities of the Raman signals corresponding to vibrational 

modes of RB from νCH (1192 cm
-1
) and νCC (1355, 1503, 1580, and 1652 cm

-1
) 

show a consistent increase
40

. This is expected as an increase in the size and density of 

AgNPs on ZnO nano-arrays is likely to increase the number of ‘hot-spots’, thereby 

leading to enhanced SERS activity
43

. To further obtain an estimate of the relative 

efficiencies of different designed surfaces towards SERS enhancement, the highest 

intensity Raman peak of RB at 1355 cm
-1

 was compared across different samples 

(Figure 4.20c). It is evident that both the AgNPs plating time and the concentration 

of diaminesilver complex play an important role in SERS enhancement in the tested 

range. While insignificant SERS enhancement was observed when either 1 or 10 mM 

diaminesilver complex were used for AgNPs decoration on ZnO nano-arrays, 100 and 

1000 mM concentrations led to significant SERS enhancement across all the plating 

durations. Additionally, control experiments involving evaluation of Sn
2+

 and Pd
0 

sensitized ZnO surfaces were performed, which didn’t provide any Raman 

enhancement for RB molecules. 

To understand the SERS response behaviour of ZnO/Ag nano-arrays, we may 

briefly consider different phenomena that may contribute to Raman enhancement of 

RB dye in a ZnO/Ag system. These include (i) electromagnetic enhancement due to 

the optical excitation of the surface plasmon resonance of AgNPs with incident laser 

beam, (ii) charge transfer between attached RB molecules attached to excited 

AgNPs
44

, and (iii) potential charge transfer between RB molecules and ZnO. In the 

latter case, it has recently been observed that charge transfer may occur from 

continuous states in the conduction band of the semiconductor to the adjacent analyte 

molecule, leading to Raman enhancement
40

. As evident from Figure 4.20a and b, RB 

molecules adsorbed on pristine ZnO nano-arrays do not show a measurable Raman 

signature. Therefore, it appears that in the SERS substrates reported in the current 

study, two former aspects make predominant contribution to the Raman enhancement, 

while the charge transfer mechanism between the organic analyte and semiconductor 

ZnO remains negligible. In the general context of metal-facilitated Raman 
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enhancement, it is now increasingly recognized that the distance between metal 

nanoparticles plays an important role in Raman enhancement, wherein an average 

inter-particle distance of less than 10 nm is observed to create SERS ‘hot-spots’
45

. As 

evident from SEM images in Figure 4.15, at lower silver plating concentrations of 1 

and 10 mM, small AgNPs that are far apart from each other by more than 10 nm are 

produced. Conversely, at higher silver plating concentrations (100 and 1000 mM), the 

increase in the AgNPs plating time causes a remarkable increase in the density of 

‘hot-spots’. This high density of hot spots appears to be responsible for significant 

SERS enhancement observed in Figure 4.20c. 

It is now well-recognized that while the SERS response of different analyte 

molecules can be significantly increased by a variety of nanomaterial engineering 

approaches
46

, achieving a reproducible SERS response from the same substrate is still 

a major challenge
1
. This is predominantly because it is challenging to produce large 

dimension (~1 cm x 1 cm) nanostructured surfaces that show uniformity across a 

large surface area. ZnO nano-arrays is one of the few nanostructured surfaces that can 

be reproducibly produced over large surface areas
47

, as shown in Figure 4.21. 

Although individual ZnO nanorods in nano-arrays may appear to be randomly tilted 

from 0-30 degree (Figure 4.15), this distribution is uniform throughout 1 cm x 1 cm 

substrate surface. Moreover, the average width of these nanorods (150-300 nm) is far 

smaller than the incident laser beam (100 µm diameter), which ascertains that when 

the Raman laser beam hits the ZnO nano-arrays, it excites ~500 nanorods, thereby 

leading to a reproducible SERS enhancement. The high reproducibility of one of 

these SERS substrates is evident from the comparison of Raman spectra of RB at 30 

different randomly selected positions (Figure 4.20d). The maximum relative standard 

deviation (RSD) of this substrate was calculated to be 0.132, which indicates that 

ZnO/Ag nano-arrays reported here are suitable to be classified as highly reproducible 

SERS active substrates.  
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Figure 4.20. SERS spectra of RB molecules obtained from ZnO/Ag nano-arrays 

prepared by exposing ZnO substrates a) for 3 min to (i) 0, (ii) 1, (iii) 10, (iv) 100 and 

(v) 1000 mM diaminesilver complex and b) to 100 mM diaminesilver complex for (i) 

0, (ii) 1, (iii) 3 and (iv) 6 min; c) relative intensity of the characteristic RB Raman 

band at 1355 cm
-1

 as a function of silver precursor concentration and AgNPs 

decoration time and d) 30 overlapping SERS spectra of RB molecules randomly 

collected from a single ZnO/Ag substrate prepared using 1 mM diaminesilver 

complex for 3 min. 

 

Figure 4.21. SEM images of ZnO nano-arrays at a) lower and b) and c) higher 

magnification, wherein b) shows the top-view image and c) shows a perspective 

image at 10° sample tilt. 
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Further, since metal-decorated semiconductor nanoparticles are well known for 

their photocatalytic activity, we explored the potential recyclability of ZnO/Ag nano-

arrays to allow multiple SERS sensing events on a single substrate. Figure 4.22a and 

b show that although pristine RB molecules do not degrade in the absence of ZnO/Ag 

nano-arrays even after 6 h of UV illumination, RB bound to a ZnO/Ag nano-array 

surface can be almost fully degraded within the same time frame. Figure 4.22c 

compares the photodegradation efficiency of different ZnO/Ag nano-arrays. At the 

lower concentration of AgNPs in ZnO/Ag nano-arrays, the photodegradation 

efficiency of the system increases over that of pristine ZnO nano-arrays; however a 

drastic reduction in the photocatalytic activity is observed at higher concentration of 

AgNPs in ZnO/Ag nano-arrays. Mechanistic aspects of metal-loading dependent 

change in photocatalytic performance of semiconductors have been previously 

elucidated by our group and others, wherein an optimal metal loading is found critical 

to obtain high photocatalytic performance
48-49

. In case of photo-excited ZnO/Ag 

nano-arrays, at low AgNPs concentrations, metallic particles bound to ZnO 

semiconductor can increase the electron/hole life time by facilitating transfer of 

electrons from conduction band of ZnO to AgNPs. Conversely, if the size of the 

decorated AgNPs passes a threshold, these metallic particles can act as the 

recombination sites for electron/hole pairs, thereby reducing the photo-efficiency of 

the system
50

.  

Comparison of the SERS performance (Figure 4.20) and photodegradation 

efficiency (Figure 4.22) of different ZnO/Ag nano-arrays shows that while SERS 

performance of the substrates continuously improves with increasing AgNPs 

concentration, the highest concentration of AgNPs does not necessarily show the best 

photodegradation efficiency. Therefore, the ZnO/Ag nano-arrays substrate prepared 

using 100 mM diaminesilver complex for 3 min was chosen as an optimum substrate 

for SERS recyclability studies (Figure 4.22d). Reproducible SERS spectra could be 

obtained from the same substrate at least up to three cycles after being able to 

completely regenerate the ZnO/Ag nano-array substrate through its simple exposure 

to UV irradiation for 30 min. Although attempts have been previously made to 

regenerate SERS substrate through various solution-based approaches, the oxidation 

of AgNPs into silver oxides during substrate regeneration has been a limiting factor in 

the development of reproducible and regenerable SERS substrates
51

. It is known that 

UV irradiation in the absence of significant amount of ozone can protect silver against 
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oxidation
51

. Therefore, photocatalytic recycling of metal-decorated semiconductors 

appears to be a facile technique to develop regenerable SERS active substrates. 

 

 

Figure 4.22. UV-visible absorbance spectra of RB with increasing illumination time 

in the a) absence and b) presence of ZnO/Ag prepared using 1 mM diaminesilver 

complex for 3min, c) photodegradation efficiency of different ZnO/Ag nano-arrays 

prepared after 3 min of AgNPs deposition and d) recyclability studies showing SERS 

spectra of RB on a single ZnO/Ag nano-array substrate through three cycles of SERS 

detection and substrate photo-cleaning. 

4.5. Conclusion 

This study demonstrates a facile soft chemical approach for the fabrication of ZnO/Ag 

nanorod arrays on silicon wafers. The effects of the synthesis parameters on the formation of 

aligned ZnO nano-arrays were studied thoroughly. Also, the capability of the silver 

decoration formation on ZnO nano-arrays using photoreduction and Tollens methods were 

studied comprehensively. The photocatalytic properties of ZnO semiconductor, combined 

with the SERS capabilities of AgNPs endow multifunctionality to these materials. The use of 

ZnO topology with nanorod arrays serves two purposes. The first among these is to allow 
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development of SERS-active Ag surfaces that remain uniform within the dimension of the 

exciting Raman laser beam (100 µm), thereby resulting in reproducible SERS response. The 

second being the high surface area of ZnO nanorods that maximizes the photocatalytic 

cleaning ability of SERS substrates during repeated molecular sensing events. Overall, these 

nanoengineered ZnO/Ag hybrid nano-arrays show outstanding performance towards 

reproducible SERS-based detection of analyte (RSD=0.132) while also showing an ability to 

be photo-cleaned between multiple SERS detection events on a single substrate. It is noted 

that an optimum decoration of AgNPs onto ZnO nano-arrays is critical to form reproducible 

SERS ‘hot-spots’ while achieving optimum cleaning attributes, thereby allowing an 

appreciable SERS response as well as SERS substrate recyclability. 
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CHAPTER V 

 

 Hg(II) sensing with ZnO/Ag nano-

arrays 

 

Mercury being one of the most toxic heavy metals has long been a focus of concern due to its 

gravest threats to human health and environment. Although multiple methods have been 

developed to detect and/or remove dissolved mercury, many require complicated procedures 

and sophisticated equipment. In this chapter, a simple surface enhanced Raman spectroscopy 

(SERS) active ZnO/Ag nano-arrays is described, which can detect Hg
2+

, remove Hg
2+

 and 

can be fully regenerated; not just from Hg
2+

 contamination when heat-treated, but also from 

the SERS marker when exposed to UV as a result of the self-cleaning ability of this 

heterojunction photocatalyst. The sensors are as well highly selective because of the unique 

way mercury (among other chemicals) interacts with Ag nanoparticles. 

 

Part of the work presented in this chapter has been patented: 

Bhargava, S. K. ; Bansal, V. ; Kandjani, A. E. ; Sabri, Y.M.; System for detection and removal of 

mercury; AusPat; 2013903747.  

Part of the work presented in this chapter has been submitted to: 

Kandjani, A. E.; Sabri, Y.M.; Mohammad-Taheri, M.; Bansal, V.; Bhargava, S.K.; Detect, remove 

and re-use: a new paradigm in sensing and removal of Hg (II) from wastewater via SERS-active 

ZnO/Ag nano-arrays; Environmental Science & Technology, (Submitted).  
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5.1. Introduction to mercury pollution 

Mercury is poisonous in small quantities, yet it could be found in most geological 

materials and minerals. It is naturally present in the form of inert HgS however once 

industrial processes are undertaken; mercury in the elemental and ionic forms are formed. 

These industrial processes have resulted in increased mercury concentration in the 

surrounding environment. As this form of mercury toxicity is highly depended on to its 

concentration, it has become an issue of concern. As estimated by United Nations 

Environment Programme (UNEP) Global Mercury Report, around 6500 tonnes of mercury 

was released into the air from natural and anthropogenic sources in 2010
1-3

 alone. The natural 

sources are mainly volcanic eruptions, erosion and fire
4-5

. The highest anthropgenic portion 

originates from coal-fired power plants and mining industries. These industries are 

continuously producing increased mercury based wastes that has contributed heavily to 

anthropogenic mercury pollution. Figure 5.1 shows major mercury emission contributors 

from around the globe. As could be seen the emission of mercury continuing to increase in 

countries like China and Australia
5-7

.   
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Figure 5.1. Hg emission contributors around the world
6
. 

Due to the fact that the type and amount of the toxic mercury released is highly 

depended on local mercury release conditions, it makes it difficult to understand the 

complexity of the natural transformations and environmental pathways of mercury. However, 

mercury is usually found in three different forms in the environment. These three forms are 
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elemental, ionic and organic mercury. Around 90% of the emitted mercury is in the elemental 

form which is the least toxic followed by ionic and organic being the most toxic to humans. It 

is well known that the elemental form of mercury follows a reaction cycle in the atmosphere 

and converts to organic form which accumulates in fish and enters the food chain as depicted 

in Figure 5.2
8-9

. Moreover, usage of contaminated water is another source for mercury 

intoxication
8
. The highly toxic and bioaccumulative methylmercury compounds (MeHg) can 

build up in living tissue and increase in concentration up the food chain
10-11

.  

 

   Figure 5.2. Mercury pollution - transport and cycle
9
. 

The devastating health effects of mercury poisoning can be appreciated from the 

observed incidents reported in the past. The first incident reported on mercury contamination 

was from 1932 to 1968 which occurred in Minamata bay in Japan
12-13

.  Copious amount of 

mercury waste was spilled into the lake in Minamata which resulted in mercury entering into 

the ecosystem as MeHg and subsequently bioaccumulated in fish living in the lake. As the 

lake was the main food source for the people, a neurological syndrome in adults (often called 

the Minamata Disease) and mental retardation, seizures, and cerebral palsy in foetuses 

appeared as a result of MeHg that had accumulated in the fish being uptaken. On less tragic 

incident, low dose exposure of mercury has resulted in permanent cardio and neurological 

problems
14-16

. In most of these reports, mercury contamination was mainly due to 

consumption of sea food and contaminated drinking water. 
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Briefly, mercury can absorb in the human body through three paths, namely, 

gastrointestinal, skin and lung tracts
17

. It can make impairment of kidney and pulmonary 

function, chest pain and dyspnousea
15

.  In addition, there are several reports establishing the 

linear correlation between the loss of intelligent quotient (IQ) and amounts of MeHg 

consumption
18-19

. All these important side-effects of industrialization have made mercury 

remediation as one of the most important topics in materials, clinical and environmental 

studies. 

It is therefore, of no surprise that a series of global rules and regulations are 

continuously being issued by U.S. Environmental Protection Agency (USEPA) and readily 

being accepted by agencies such as the UNEP and the EU directive in controlling Hg 

emission from the industrial sources
2
. Furthermore, the water-quality criterion is also 

becoming stringent due to the realisation of the extreme toxicity of mercuric ions on human 

health. In fact, in Jan 2013 a preliminary multi-national reduction treaty involving delegates 

from 140 countries around the world has accepted the UNEP plans to reduce anthropogenic 

mercury emissions
1
. 

5.2. Mercury ions sensing and removal 

Currently, there are several analytical methods to determine the concentration of 

soluble Hg
2+

 ions in water, including inductively coupled plasma mass spectroscopy (ICP-

MS)
20

, cold vapor atomic absorption spectroscopy (CVAAS)
21

, electrochemical methods
22

, 

and high-performance liquid chromatography
23

. However, most of these detection systems 

require highly precise sample preparation, expensive experimental equipment and have long 

turnaround times, which make them unsuitable for remote or in-the-field applications. 

Therefore, there is an ever increasing demand for the development of portable, fast, sensitive 

and selective Hg
2+

 sensors for industrial and environmental sustainability
24

. 

To address this issue, several alternative methods have been reported in literature 

based on colorimetric (UV-Vis, fluorescence, etc.)
25-27

 and surface enhanced Raman 

spectroscopy (SERS)
28-30

 techniques as potential cost-effective and simple approaches for 

Hg
2+

 detection in wastewater treatment processes. Among the range of methods reported, the 

SERS method is one of the most promising and is based on the interaction of Hg
2+

 ions either 

with SERS markers or with SERS active metal nanostructures. This method has the potential 

to achieve high sensitivity (ppb to ppt) as well as selectivity towards Hg
2+

 ions
29-33

.  
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Most of the SERS based Hg
2+

 ions sensing studies are focused on using SERS active 

metallic nanoparticles; however, only few reports allow selective, sensitive and reliable Hg
2+

 

sensing using SERS active thin-films
34-35

. Developing sensing methods based on thin-films 

rather than using colloidal nanoparticles has the advantage of eliminating the filtering step of 

the mercury-contaminated nanoparticles from wastewater following the detection step, thus 

reducing the cost and complexity of the wastewater treatment processes. In order to establish 

SERS active thin-films as a reliable and reproducible analytical tool, substrates with a 

homogeneous topology and high affinity towards the target toxin are required
36-37

. 

The major challenge in determining Hg
2+

 concentration in wastewater treatment 

plants is the removal of the soluble mercury ions. Several methods have been reported for 

Hg
2+

 ions removal from wastewater, including activated carbon sorption
38-39

, ion-exchange
40

 

and photo-reduction
41-43

. The photo-reduction technique has been reported to be highly 

promising where by reducing Hg
2+

 ions into the low-water soluble elemental mercury (Hg
0
) 

form, the toxin can be safely collected from the solution
44

. Photoreduction of Hg
2+

 can be 

performed using photocatalytic materials, where photogenerated electrons from the 

semiconductor are transferred to the divalent Hg
2+

 ions, subsequently reducing them to Hg
0
. 

Thus, by a simple yet novel nano-engineering approach employing a photocatalytic substrate 

in combination with SERS-active, mercury-sensitive metallic nanoparticles, a combined 

functionality of SERS detection and photocatalytic Hg
2+

 removal can be acquired. Also, this 

photocatalytic/SERS multifunctionality allows the sensing layer to be cleaned from any 

organic traces using photo-degradation of attached organic molecules. This could lead to the 

ability of repeated cleaning of SERS marker molecules from the surface of SERS-active 

metal nanostructures, therefore, recovering their functionality. 

When it comes to mercury sensing and removal processes, the major hurdle is the 

inability to achieve regeneration and therefore, re-use of the mercury amalgamated materials 

after their exposure. Previously, it has been shown that mercury amalgamated metallic 

surfaces can be potentially regenerated using low temperature heat-treatment processes
45-47

. 

Furthermore, the use of oxide based semiconductors with relatively high-temperature stability 

allows heat treatment processes to be carried out, thus enabling an additional functionality of 

surface regeneration through thermal removal of adsorbed mercury. Therefore, these 

substrates can be regenerated completely via removing SERS marker and amalgamated 

mercury by photodegradation and low temperature heat-treatment, respectively. This chapter 

provides the first account of a SERS-active ZnO/Ag nano-arrays system that can detect Hg
2+

, 

remove Hg
2+

 and can be fully regenerated to perform multiple sensing events. 
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5.3. Materials and methods 

Chemicals: All chemicals were purchased from Sigma Aldrich or Merck and used as 

received. Si (001) substrate (1cm × 1 cm) was chosen for growth of ZnO nano-arrays and 

cleaned using a standard procedure; initially, the wafer was ultra-sonicated consecutively in 

acetone, ethanol, isopropyl alcohol (IPA) and dried by nitrogen. To eliminate any remaining 

organic traces from the surfaces, they were cleaned for a period of 10 minutes with UV-

Ozone (U O Cleaner Plus). Deionized water (18.2 MΩm) was used throughout the synthesis 

process. 

ZnO seeding with sol-gel: In order to prepare the seeding layer prior to ZnO array growth, the 

substrates were coated with three layers of zinc oxide via sol-gel process
48

. For sol-gel 

preparation, a previously reported protocol was used. Briefly, a 15 ml ethanol solution 

containing 0.1 M zinc acetate with an equal weight ratio of monoethanolamine (MEA) was 

prepared. This solution was then kept at 55 °C for 24 h (this step is referred to as ageing). The 

prepared solution was then deposited on to Si substrates using a spin coater operating at 4000 

rpm for a period of 15 seconds. The prepared samples were dried at 95 °C for 10 min 

followed by annealing at 450 °C for 1 h. 

Hydrothermal growth of ZnO nano-arrays: In order to grow ZnO nano-arrays, an aqueous 

solution containing 25 mM of zinc nitrate hexahydrate and equimolar hexamine was first 

prepared (also referred to as the nutrient solution). Approximately 50 mL of the nutrient 

solution was transferred to sealed glass autoclaves. The substrate was then placed face down 

at the top of the nutrient solution surface. The autoclaves were kept at 95 °C for a period of 6 

h. The substrates were then removed from the autoclave, washed several times with water 

before being dried using dry nitrogen gas at room temperature.  

Silver plating: The silver nanoparticles were decorated on ZnO nano-arrays by electroless 

deposition method. First; ZnO nano-arrays were sensitized with SnCl2 aqueous solution (0.3 

mM) prepared with trifluroacetic acid (1 µL for 10 mL solution) for 30 min. After 

sensitization step, the substrates were washed with water. Palladium seeding particles were 

then deposited on the ZnO nano-arrays by immersing the substrates into a solution containing 

3 mM palladium nitrate for a period of 15 minutes. The deposited palladium nuclei act as 

seeding particles for silver plating. Finally, silver nanoparticles were deposited on the 

prepared substrates using Tollen’s reagent method. Initially, 1 M diaminesilver(I) cation 

[(Ag(NH3)2)
+
] solution was prepared by adding a proper amount of 2.8% ammonium solution 

to aqueous silver nitrate solution until a transparent solution is observed. This stock solution 
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was afterwards diluted to a 100 mM concentration. Each of the prepared substrates was then 

immersed in separate 2 mL solutions containing 1 mL of 100 mM silver complex solution 

and 1 mL of aqueous 1 M glucose solution
49

. The synthesis was carried out by keeping the 

substrates in solution for a period of only 3 min at room temperature.  

Analytical and characterization methods: Prepared samples were characterized with several 

different microscopic and spectroscopic techniques. Morphological studies were performed 

by FEI Nova NanoSEM field emission electron microscope (SEM). X-ray photoelectron 

spectroscopy (XPS) surface analyses were carried out using a Thermo Scientific K-Alpha 

instrument (un-monochromatized Mg Kα radiation, photon energy of 1253.6 e  at vacuum 

better than 10-9 Torr). Chemical bonding were aligned with adventitious carbon (C1s) 

binding energy of 285 eV. Inductively coupled plasma mass spectrometry (ICP-MS) analysis 

were carried out using Agilent 7700 series ICP-MS for measuring the amount of mercury 

ions in the solution after sensing and removing experiments. Raman measurements were 

conducted with Perkin Elmer Raman Station 200F (785 nm laser, spot size of 100 mm) with 

an exposure time of 5 s and 10 acquisitions, with background correction feature disabled. The 

backgrounds of SERS spectra were corrected based on our previous algorithm
50

 as discussed 

in Chapter III. Perkin Elmer 2104 Multilabel Reader EnVision was used to investigate the 

photocatalytic efficiency when removing Rhodamine B (RB) from the substrate surface. All 

error bars (standard error of the mean) in the figures related to Raman experiments have been 

obtained following 10 different tests of the same sample. 

SERS based mercury detection: The mercury detection experiments were performed by 

placing the prepared samples in glass vials containing 2 mL solution with Hg
2+

 

concentrations of 10, 50, 100, 500, 1000, 5000 and 10000 ppb. Each solution containing 

identical substrates was then immediately placed in a dark room for a period of 1 h at room 

temperature. The substrates were then removed from solution, washed several times with 

water and transferred to the SERS marker dye solutions. To evaluate the sensing properties of 

the substrate, RB was selected as a probe molecule for SERS tests. The substrates were 

immersed in RB solutions with a concentration of 0.1 mM for a period of 1 h in order to 

ensure that surface adsorption equilibrium was reached. The substrates were then taken out of 

the RB solution, rinsed with deionized water and dried with dry nitrogen. SERS activities of 

the designed substrates were measured using Raman spectroscopy.  

Photocatalytic degradation of SERS marker: Following mercury detection experiments, the 

photocatalytic degradation of organic traces from the substrate was carried out by placing 
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these substrates into 2 mL water and exposing them to UV light for a period of 1 h. In order 

to achieve even and constant intensity of UV light all over the surface while performing 

photocatalytic tests, 370 nm LED Area Light-Edmund optics was placed 5 cm above the 

samples with a heat sink connected to the LED to avoid any heat transfer to the samples. The 

complete removal of the RB marker was confirmed using Raman spectroscopy following the 

UV experiments. The substrates were then rinsed with deionized water, vacuum dried at 

room temperature and reused for further mercury removal/detection experiments. The 

photocatalytic efficiency for RB degradation in the current system was estimated using Eq. 

5.1: 

 
5.1 

where C0 and C are concentrations of dye before and after irradiation, respectively. In the 

current study, the photocatalytic degradation kinetics of a 10 µM RB solution was carried out 

using a blank (no catalyst), ZnO and ZnO/Ag nano-arrays.  

Photocatalytic removal of mercury ions: As well as the removal of the SERS markers, the 

photocatalytic activity function of the prepared substrates was also employed to remove 

mercury from water following the detection/regeneration process. This was performed by 

exposing different samples (i.e. E-beam evaporated silver thin-film, zinc oxide and zinc 

oxide/silver nano-arrays) to 2 mL solution with a Hg
2+

 ion concentration of 10 ppm under 

UV irradiation for a period of 2 h. The Hg
2+

 ion removal kinetics were determined by taking 

100 µL aliquots from the solution at five different time points over a period of 2 hours and 

analysing them using ICP-MS.   

Surface regeneration following Hg exposure: In order to regenerate the Hg contaminated 

samples, the RB dye was first removed using the photocatalytic degradation method. The 

substrates were then placed in a vacuum at an operating temperature of 150°C for a period of 

2 h to completely remove all of the amalgamated mercury. The complete removal of Hg from 

the substrate surface was confirmed using XPS analysis. The samples were observed to be 

repeatable (full regeneration) over three cycles following the detection of Hg
2+

 ions from a 5 

ppm solution.  

Selectivity of the developed nano-arrays towards Hg
2+

: In order to evaluate the selectivity of 

the prepared ZnO/Ag nano-arrays, they were tested in a solution containing 1 ppm of Zn
2+

, 

Ca
2+,

 Mg
2+

, Mn
2+

, Cu
2+

, Pb
2+

, Fe
2+

 and Al
3+

 cations in the presence of 1 ppm Hg
2+

. 
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5.4. Results and discussions 

Figure 5.3 shows the synthesis procedures of ZnO/Ag nano-arrays (a) as well as the 

sensing/removing and regeneration steps (b). Briefly, ZnO seed layer was initially 

synthesized via sol-gel reaction method as reported in my previous work (Figure 5.3-a1)
48

. 

Then, ZnO nano-arrays were grown via soft hydrothermal method (Figure 5.3-a2). The 

synthesized ZnO nano-arrays were then sensitized with Sn
2+

 ions before adding Pd
2+

 ions in 

order to reduce them to Pd
0
 nanoparticles on the ZnO nano-arrays (Figure 5.3-a3). Finally, 

silver nanoparticles were synthesized via an electroless plating technique (Figure 5.3-a4). 

These steps have been explained in details in Chapter IV. The procedure of the sensing, 

removal and regeneration is shown in Figure 5.3-b. The first stage involved the exposure of 

the developed ZnO/Ag substrates to a solution containing various concentrations of Hg
2+

 ions 

for a period of 1 h followed by immersion into Rhodamine B (RB) solution (100 µM, 2 mL) 

for 1 h as shown in Figure 5.3-b1. The substrates were then tested using Raman spectroscopy 

(Figure 5.3-b2) and the intensity variation of the characteristic RB Raman band at 1358 cm
-1

 

was used to determine the concentration of the Hg
2+

 ions in solution. Subsequently, to 

regenerate these Hg contaminated substrates, it was necessary to first remove the adsorbed 

RB from the surface. The RB removal was carried out by photocatalytic degradation by using 

the Hg contaminated ZnO/Ag arrays as the photocatalyst (Figure 5.3-b3). Following this 

stage, the full mercury removal from the solution was performed (if required) by immersing 

the ZnO/Ag nano-arrays back into the Hg
2+

 containing solution and performing 

photocatalytic mercury reduction. Finally, the adsorbed mercury on the ZnO/Ag nano-arrays 

could be recovered while regenerating the surface by using heat treatment at 150°C under 

vacuum for a period of 2 h (Figure 5.3-b4).  
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Figure 5.3. Detailed (a) synthesis and (b) sensing, removal and regeneration processes, 

starting with a1) synthesizing ZnO seed layer via sol-gel technique, a2) ZnO hydrothermal 

array growth, a3) decoration of the nano-arrays with palladium nanoparticles by charge 

exchange between Sn
2+

 and Pd
2+

 at the surface of the ZnO nano-arrays, a4) performing silver 

electroless plating decorating the ZnO arrays; followed by, b1) adsorption of Hg
2+

 ions on 

ZnO/Ag nano-arrays and subsequent adsorption of Raman marker on the arrays, b2) Raman 

detection of marker on mercury contaminated ZnO/Ag nano-arrays, b3) photocatalytic 

degradation of marker dye and finally, b4) removing mercury contamination from the 

ZnO/Ag nano-arrays by using heat treatment under vacuum as the regeneration step. 

The SEM images of the synthesized ZnO/Ag nano-arrays before and after silver 

plating are shown in Figure 5.4a and b, respectively. The low magnification SEM images of 

the ZnO and ZnO/Ag nano-arrays (Figure 5.4c and d) show a uniform formation of nano-

arrays and decorated silver nanoparticles throughout the surface of the sample. Furthermore, 
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as shown in Figure 5.4e and f the aspect ratio of the ZnO rods was determined to be 20 

(average height of 2 µm and diameter of 100 nm).  

 

Figure 5.4. a) ZnO nano-arrays; b) Silver decorated ZnO nano-arrays; c) and d) low 

magnification of the obtained arrays; e) and f) side view of the obtained arrays. 

The XRD analyses shown in Figure 5.5 confirm the formation of metallic silver on 

ZnO nano-arrays with no other crystalline impurities. 
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Figure 5.5. XRD patterns of ZnO (JCPDF 36-1451) and ZnO/Ag (JCPDF 04-0783) nano-

arrays. 

The prepared samples were tested for their mercury sorption and removal capabilities 

by exposing them to a solution containing Hg
2+

 at a concentration of 10 ppm placed either in 

the dark or under UV irradiation. In these tests, two control substrates, namely, e-beam 

evaporated silver thin-films and ZnO nano-arrays were used to compare with the developed 

ZnO/Ag nano-arrays. As observed in Figure 5.6a, the evaporated silver thin-film underwent 

mercury sorption on its surface via amalgamation which is a common phenomenon for gold 

and silver surfaces
51-52

. Furthermore, a similar Hg sorption behaviour was observed 

regardless of placing the samples in the dark or under UV irradiation as expected due to the 

metallic nature of silver thin-film. On the other hand, ZnO nano-arrays do differ in nature 

depending on whether they are placed in the dark or under UV irradiation. ZnO as a wide 

band-gap semiconductor can be excited by UV irradiation, which results into formation of 

electron/hole pairs, which can enhance the reduction of Hg
2+

 ions in solution to elemental 

mercury (Hg
0
)
42

. The small removal of Hg
2+

 by the ZnO nano-arrays observed in the dark 

condition could be due to the high surface area of ZnO nano-arrays as well as the available 

high-energy surface defects with high electron densities
53

. In the case of ZnO/Ag nano-arrays 

in the dark, mercury sorption was observed to be higher than the ZnO nano-arrays and e- 

beam evaporated Ag thin-film due to the formation of high surface area Ag nanoparticles and 

their relatively higher affinity towards mercury. 

Under UV irradiation, the mercury removal efficiency of ZnO/Ag nano-arrays was 

observed to be slightly lower relative to ZnO nano-arrays. It is well known that the 
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combination of noble metal nanoparticles with semiconductors produces heterojunction 

which results in an increase in lifetime of photo-generated electron/hole pairs subsequently 

increasing the photocatalytic activity of the composite
54-55

. However this phenomenon highly 

depends on the size and coverage density of the decorated noble metal nanoparticles
56-58

. In 

this study, in spite of the combination of ZnO and Ag nanoparticles, the formation of large 

Ag nanoparticles with high coverage on the ZnO nano-arrays surfaces seems to have 

dampened the photocatalytic efficiency. This phenomenon can be explained mainly due to 

the increase in electron/hole recombination sites in the decorated silver nanoparticles thus 

reducing the mercury sorption efficiency. Although, this is a negative property for this system 

when operated under UV irradiation, the mercury removal efficiency was observed to be 

significantly higher than the dark condition. 
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Figure 5.6. a) ICP-MS analysis of mercury ions removed from a solution containing 10 ppm 

Hg
2+

 tested in dark and under UV irradiation and b) SERS spectra of RB collected from a 

ZnO/Ag nano-arrays based substrate following its exposure to a 10 ppm Hg
2+

 solution in dark 

and under UV irradiation for a period of 0.5 h and 2 h. 

There are two Raman based methods for the detection of Hg
2+

 ions in solution. The 

first method is based on the interaction of Hg
2+

 with a Raman marker (e.g. DNA-enzyme
33, 59-

60
 or T-Hg

2+
-T pairs

34, 61-62
) where Hg

2+
 acts as a bridge between marker molecules. The 

increase in Hg
2+

 concentration would result in a higher number of linked markers, inducing 

stronger perturbations, which results in the increased Raman intensity of the features related 

to the markers. The second method is based on the interaction between Hg
2+

 ions with the 

SERS active noble metal nanoparticles
29, 63

. This type of interaction forms a mercury/active 

metal shell on the surface of these nanoparticles causing a reduction in the Raman intensity 
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related to the Raman marker molecules
29

. Raman signals of RB on ZnO/Ag nano-arrays are 

shown in Figure 5.6b. It can be observed that whether the ZnO/Ag nano-arrays are exposed 

to Hg
2+

 ions under dark or UV irradiation, an increase in mercury exposure period results in a 

decrease in the Raman intensity of the RB. However, the Raman intensity for the samples 

tested in the dark underwent a further decrease in comparison to the samples tested under UV 

irradiation. This result is postulated to be due to the photocatalytic activity of ZnO under UV 

irradiation, which enhances the reduction of Hg
2+

 into Hg
0
 which drops out of the solution 

and subsequently reduces the amount of available Hg
2+

 ions that can be adsorbed on the 

surface of the decorated silver nanoparticles.  

It is important for a device to reach ultra-low detection limits when sensing Hg
2+

 ions 

in the solution. Since the number of Hg
2+

 ions in any one solution is limited, a device with a 

lower surface area can be used for the detection of low concentrations of mercury otherwise 

all the Hg
2+

 ions will be depleted on to the Ag nanoparticles if a larger area is used. The 

depletion of Hg
2+

 ions is undesired as it results in a reduction in the Raman intensity which is 

dependent on the coverage of mercury shell that is formed on the decorated Ag nanoparticles. 

If the coverage of these shells formed on the device is less than the saturation limit of the 

device, then the formed mercury shells will not be uniform and therefore, the uncertainty in 

the reported Hg
2+

 concentration will increase. Thus, the geometric surface area (GSA) of the 

sensor becomes highly important in determining the concentration of Hg
2+

 ions in the 

solution. For studying the effect of GSA on the mercury sorption capacity of the developed 

surfaces, two sets of sensors with GSA of 1 cm
2
 and 0.25 cm

2
 were synthesized and tested in 

solutions containing different Hg
2+

 concentrations (0–10 ppm, 2 mL, 1 h immersion). It was 

found that the sensor with the smaller GSA underwent less Hg
2+

 ions sorption on its surface 

at each tested mercury concentration relative to the sensor with the larger GSA as shown in 

Figure 5.7a. ICP-MS data showed that for the lowest Hg
2+

 concentration of 10 ppb, the 1 

cm
2
 device removed 100% while the 0.25 cm

2
 removed ~30% of the total Hg

2+
 ions. On the 

other hand, when testing solutions containing a Hg
2+

 concentration of 10 ppm, the sensor 

with GSA of 0.25 cm
2
 was completely covered with mercury shell (saturated). Therefore, 

using this device to detect ppm range concentrations would not be reliable as all Raman 

signals would be completely dampened. Hence, the lower the Hg
2+

 concentration that needs 

to be detected, the lower the GSA required making this method of detection feasible to detect 

ultra-low concentrations of Hg
2+

 in solution with the detection limit only restricted by how 

low the sample GSA can be fabricated while still usable with a Raman instrument.  
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Figure 5.7. a) ICP-MS data showing Hg
2+

 ion removal efficiency of ZnO/Ag nano-arrays 

having geometric surface areas (GSA) of 1 cm
2
 and 0.25 cm

2
 from a solution contaminated 

with 10 ppm Hg
2+

 ions; and b) relative intensity of the characteristic RB Raman band at 1358 

cm
-1

 as a function of Hg
2+

 ion concentration (10, 50, 100, 500, 1000, 5000 and 10000 ppb) 

using ZnO/Ag nano-arrays based SERS substrates (GSA=0.25 cm
2
). 

The sensitivity data of the sensor with the smaller GSA is shown in Figure 5.7b based 

on relative intensity of the characteristic RB Raman band at 1358 cm
-1

 which was obtained 

on a control ZnO/Ag nano-array without any Hg
2+

 exposure. As could be seen, the Raman 

spectrum of RB in the presence of 10 ppb shows more than 50% decrease in the intensity. 

Therefore, the detection limit of the developed ZnO/Ag nano-array for sample with smaller 

GSA towards Hg
2+

 ions was calculated to be in the sub ppb range (~0.45 ppb) using the three 

times the standard deviation of the blank method. 

One of the most important yet rarely reported parameters when it comes to chemical 

detection using Raman on thin-films is the consistency of the sensing device over the 

different areas of the surface. Similarly, in the current study, it is important to obtain a 

uniform mercury shell throughout the ZnO/Ag nano-arrays surface in order to obtain a 

repeatable result regardless of the position on the surface being analysed with Raman 

spectroscopy. Figure 5.8a shows Raman mapping for scanning area of 150 × 150 µm
2
 based 

on the characteristic RB Raman band at 1358 cm
-1

 from a sensor device having a geometric 

surface area (GSA) of 0.25 cm
2
 of the ZnO/Ag nano-arrays without Hg

2+
 exposure. It may be 

observed that the intensity of the selected characteristic RB Raman band throughout the 

surface is uniform having an RSD of less than 4%. The uniformity of the ZnO/Ag nano-

arrays was also tested after exposure to a solution containing an Hg
2+

 concentration of 1 ppm 
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for a period of 1 h. Although the RSD of the Raman signal was observed to increase to 

16.55% post-mercury exposure (Figure 5.8b), the signal was observed to be uniform 

throughout the device’s surface area. The increase of the RSD to 16.55% was mainly due to 

the decrease in the Raman intensity (due to the presence of mercury) and therefore, the low 

signal to noise ratio (SNR) associated with deteriorating Raman signal. The Raman spectra 

for these samples were background corrected using smoothing free algorithm while special 

attention was given to prevent changing any signal features (relative intensities and signal 

position) obtained when comparing the data
50

. 
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Figure 5.8. a) Raman mapping for scanning area of 150 × 150 µm
2
 based on the 

characteristic RB Raman band at 1358 cm
-1

 from a sensor device having a geometric surface 

area (GSA) of 0.25 cm
2
 of the ZnO/Ag nano-arrays without Hg

2+
 exposure; b) after exposing 

to a Hg
2+

 concentration of 1 ppm. 

The first regeneration step of the developed ZnO/Ag nano-arrays via RB 

photocatalytic degradation was studied using UV-Vis spectroscopy while its second 

regeneration step was carried out using XPS analysis of Hg 4f core level during the heat 

treatment process. The photocatalytic degradation efficiency of ZnO and ZnO/Ag nano-array 

substrates towards RB is shown in Figure 5.9. The silver decorated sample showed lower 

photocatalytic activities. This phenomenon is completely explained in Chapter IV, Section 

4.4.3. It was found that the ZnO and ZnO/Ag nano-arrays underwent ~100% and ~70% 

degradation of the 10 µM RB, respectively. The UV-Vis intensity related to RB (at ~550 nm) 

on ZnO/Ag nano-arrays is shown in Figure 5.9b and found to decrease with increasing 

irradiation time. In a sensing event, only a monolayer of RB is expected to deposit on the 

ZnO/Ag nano-array surfaces following Hg
2+

 exposure thus the time required to remove the 
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RB layer via photocatalysis would also be much less than that required to degrade a 10 µM 

RB solution.  

 

Figure 5.9. a) Photodegradation efficiency of RB using blank (no photocatalyst), ZnO and 

ZnO/Ag systems and b) UV-Vis absorbance spectra of RB by increase in the illumination 

time in the presence of ZnO/Ag nano-arrays. 

The second regeneration step involving the removal of mercury following removal of 

the dye is an essential step in regaining the sensing and removal properties of the developed 

ZnO/Ag nano-arrays. It has been previously shown
45, 47

 that mercury could be completely 

removed from noble metal surfaces using thermal desorption. However, as Ag nanoparticles 

undergo oxidation in the presence of heat and oxygen in air, the thermal desorption step was 

performed in the vacuum which also helped in preventing oxidation and accelerating the 

regeneration step. XPS analysis of Hg 4f core level spectra was used to determine the extent 

of surface regeneration as shown in Figure 5.10a. It may be observed that a mere 2 h heat 

treatment of the ZnO/Ag nano-arrays at an operating temperature of 150°C was required to 

completely remove all the amalgamated mercury from the surface.  
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Figure 5.10. a) Hg 4f and b) Ag 3d  XPS spectra of ZnO/Ag nano-arrays after RB 

degradation followed by heat treatment in the vacuum.  

The surface regeneration experiments were carried out over three cycles, the data of 

which is shown in Figure 5.11a. It can be observed that the Raman signal of the RB carried 

out after each cycle has similar intensities thus indicating that the developed surfaces can be 

fully regenerated repeatedly following Hg
2+

 sensing/removal events. Figure 5.11b further 

shows the overlayed Raman spectra obtained as-such from the regenerated surfaces over the 

three sensing cycles without applying any spectral background correction, thus demonstrating 

the extent by which the developed surfaces can be regenerated to allow repeatable SERS 

sensing events. In addition; the XPS data corresponding to Ag 3d core level (Figure 5.10b) 

indicated that no significant chemical shifting had occurred. As glucose reduced silver 

nanoparticles can stand oxidation better than unprotected silver nanoparticles, the 

deconvoluted peaks can be assigned to Ag
0
 as the main surface component with small 

quantities of AgO and surface bounded Ag ammonia complex
64

. The results indicated that Hg 

desorption had occurred during heat treatment of the developed ZnO/Ag nano-arrays
49

.   
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Figure 5.11. a) SERS enhancement of RB for developed substrates before and after Hg
2+

 

exposure (5 ppm) and after removing RB and amalgamated mercury from the system with 

three successful regeneration cycles and b) Overlayed SERS spectra of one sample after three 

complete regeneration cycles without any background corrections being applied.  
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Figure 5.12. Selectivity of the ZnO/Ag nano-arrays towards Hg
2+

 (on the characteristic RB 

Raman band at 1358 cm
-1

) in the presence of other metal ion species in a solution containing 

1 ppm of each cation for an exposure period of 1 h.  

In order to evaluate the selectivity of the prepared ZnO/Ag nano-arrays, they were 

tested in a solution containing 1 ppm of Cu
2+

, Zn
2+

, Ca
2+

, Fe
2+

, Mn
2+

, Pb
2+

, Mg
2+

 and Al
3+

 

cations (Figure 5.12). It is observed that the decrease in Raman signal in the presence of 
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Hg
2+

 ions is significantly higher than any other cations thus demonstrating the specificity of 

the developed ZnO/Ag nano-arrays towards Hg
2+

 ions.  

5.5. Conclusion 

In summary, fabrication of a highly sensitive and selective SERS based device has 

been demonstrated, which can a) be used for SERS based Hg
2+

 detection, with the added 

multifunctionality of photocatalytic activity that can b) be used for the removal of Hg
2+

, and 

c) can be regenerated and re-used over many cycles. The multifunctional nature, simplicity 

and small size of the developed ZnO/Ag nano-arrays based device allows for ease in mobility 

making this sensor suitable candidate for real time detection of ultra-low concentrations of 

Hg
2+

. Finally, the high affinity of the developed ZnO/Ag nano-arrays towards Hg
2+

 and its 

excellent regeneration rate allows for removal of Hg
2+

 ions from the most highly 

concentrated solution and its reusability following a sensing/removal event. 
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CHAPTER VI 

 

 Nano-patterned ZnO/AgTCNQ as 

a novel p-n junction photocatalyst 

 

Colloidal lithography (CL) has been evolved as an alternative to conventional photo and 

electron-beam lithographic techniques to pattern the surfaces within nano range resolution. 

As this technique can produce controlled patterning of semiconductor and metallic 

nanomaterials on various surfaces, this technique has the potential for many optoelectronic 

applications. In this chapter, a novel colloidal lithography method was developed to fabricate 

organic/inorganic p-n heterojunctions with desired spacing and coverage density. Two 

different uniform sized polystyrene (PS) beads (500 nm and 1500 nm) were synthesized 

using dispersion polymerization and they were used as colloidal templates on the Zinc oxide 

substrate to make the mask. Electron Beam assisted silver deposition onto these PS templates 

and subsequent etching of PS, led to the formation of silver patterns of nano-stars on the ZnO 

thin film. TCNQ vapour was allowed to react with the silver patterns for the growth of 

AgTCNQ organic semiconductor on the surface of ZnO thin film. The effects of the synthesis 

temperature, the size of the PS bead on the distance, and surface coverage of the AgTCNQ 

patterns on the ZnO structure were studied. The synthesized p-n heterojunctions were tested 

for their photocatalytic degradation ability of an organic dye Rhodamine B and it was found 

that these p-n semiconductors act as efficient photocatalysts by increasing the electron-hole 

life time. 

 

A part of this chapter has been prepared as a manuscript for submission: 

Kandjani, A. E.; Ramanathan, R.; Mohammadtaheri, M.; Bhargava, S.K.; Bansal, V.; Nano-

patterning of AgTCNQ/ZnO p-n heterojunction: the controlled junction population via colloidal 

lithography; Advanced Materials, (To be submitted). 
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6.1. Introduction to surface patterning: necessities and applications  

Nowadays, fabrication of well controlled nanostructures based on their size, position, 

shape and structure is one of the main challenges. Although common lithography techniques 

provide an approach to fabricate patterned structures, due to their expensive, low-throughput, 

and low resolution (limited to micron size) limitations, these techniques are not applicable to 

make nano patterned surfaces for advanced applications. Electron-beam lithography (EBL) 

technique can produce the nano level precision, but this method is much expensive and the 

fabrication time increases exponentially with increase in the area of the patterning
1-2

. 

Recently, a host of non-conventional lithographic techniques has been introduced such as soft 

imprint lithography as an alternative; however, these techniques still require masks or masters 

to form patterns, similar to the conventional or nano lithographic techniques
3-7

. Self-assembly 

techniques such as Langmuir–Blodgett monolayers and liquid crystalline structures of 

surfactants are the commonly used methods to make either the master or mask for designing 

nano-patterns
8-10

. 

Among these techniques, colloidal lithography (CL) has been demonstrated to be a 

cheap, convenient and precise method to fabricate patterned surfaces (scalable for feature size 

below 100 nm) on a wide range of substrates of different surface chemistry
11

. Uniform sized 

colloidal particles are used as sacrificial templates that function as a monodispersed (particles 

with narrow particle size distribution) sacrificing materials are used as a mask component in 

this technique. Silica, polymethyl methacrylate (PMMA) and polystyrene (PS) particles are 

the commonly used colloidal particles, and these particles can be synthesized via wet 

chemical methods such as emulsion polymerisation (e.g. PMMA
12

 and PS
13-14

) or sol-gel (e.g. 

silica
15

) methods. These uniform sized colloidal materials can have sizes within the range of 

tens of nanometres to tens of micrometres. Due to their size monodispersity, they can be 

assembled into 2D or 3D periodic arrays or patterns, which are referred as photonic crystals. 

These arrays can be used as a mask for preparation of templates for surface patterning of 

different structures via etching or deposition methods
16-17

.  

6.1.1. Synthesis of monodispersed polymer beads 
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The fabrication of monodispersed polymeric beads can be achieved via different 

approaches, including: micro-emulsion polymerization
18

, emulsifier-free emulsion 

polymerization
19

, seed emulsion polymerization
20

 and dispersed polymerization
13, 21-22

. First 

two methods are the common methods for the synthesis of uniform sized polymeric particles 

but their yield is very low and these particles are not stable over long time. Seed emulsion 

polymerisation is generally used for synthesizing large particles (more than 10 µm), but it is a 

tedious process as well as difficult to control the size. The dispersion polymerization is a 

single step process to generate uniform sized spherical polymeric particles with dimensions 

between 0.1 to 15 µm. In this method, polymerization of a monomer is carried out in the 

presence of a dissolved polymeric stabilizer in the reaction medium. The solvent should 

dissolve both the monomer and the steric polymeric stabilizer; however, the as-formed 

polymeric particles should be insoluble in the same solvent. Thus, the reaction medium 

consists of a homogenous solution of the monomer, initiator and also the dispersant. The 

soluble dispersant polymer has a crucial effect in controlling the size of polymeric particles 

formation. This dispersant polymer adsorbs onto the surface of the as-formed nuclei particles 

and acts as steric stabilizer, which controls the size of the particles as well as increase the 

stability. In addition to the dispersant polymer, monomer concentration, initiator 

concentration, and synthesis temperature play an important role in determining the size, size 

distribution, and molecular weight of the formed particles
23

. This technique has been utilized 

to form the monodispersed PS spheres in this thesis. The synthesis procedure is shown in 

Figure 6.1, schematically. 

Figu

re 6.1. Schematic model for the growth of monodispersed polystyrene microspheres. 

As shown in Figure 6.1, the dispersion polymerization for synthesis of uniform sized 

polystyrene particles consists of five stages
23

: 

a) The continuous solution phase of the starting materials, including: monomer, 

dispersant and initiator. 
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b) By heating of the mixture, the free radicals of the initiator form and make small nuclei 

of the polymeric materials. 

c) Growth of the small nuclei makes larger particles until the adsorbed polymer layer 

sterically restricts the growth further.  

d) When all particles reach to the point that they have enough stabilizer polymers on 

their surface, they become sterically stabilized. This point is called as critical point.   

e) After reaching to the critical point, nucleation and particle formation do not occur in 

the solution. The growth after this point is mostly based on diffusive capture of 

oligomers. This reaction stops when all of the monomer is consumed. 

Thus, the formed particles are sterically-stabilized by dispersant polymer and the 

number of formed particles remains constant.  

6.1.2. Colloidal particles at the air/water interface 

When a colloidal particle is located at the interface of water and air, it reduces the 

surface free-energy of the water and amphiphilicity of the particle controls its position at the 

air-water interface. As shown in Figure 6.2a, when a spherical colloidal particle floats at the 

interface of water and air, the particle is immersed into the water to a certain depth. The 

immersion factor (Z) can be defined as the deviation from symmetrical immersion depth. The 

normalized immersion factor (Z0) can be calculated as Z0=Z/R where R denotes the particle 

radius. Thus the energy between materials at the interface can be calculated as:  

 6.1 

 
6.2 

 
6.3 

The Eq. 6.3 is related to the energy gained by reduction in the interface of air/water by 

floating of the colloidal sphere
24

. 

The total interface energy Etotal, is the accumulation of the three energies and  the size 

of the sphere and can be written as: 
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 6.4 

 
6.5 

 
6.6 

As could be seen from Eq. 6.4, the total energy equation forms energy well. The 

colloidal particle would stay at the interface if the energy of particle with Z0 does confine in 

the energy well as: 

 
6.7 

If Z=1, the particle is completely in the air phase and when Z=-1 then the particle is 

completely immersed
25

. 

 

Figure 6.2. a) Geometry of a particle floating on the interface; b) accumulation of the surface 

charges on the suspended particles which disperse particles; c) formation of attractive 

capillary forces. 

For polystyrene beads on the air/water interface
26

: 

 
6.8 

 
6.9 

Which results into Etotal,min=0.14 where Eair=1.96 (Z=1) and Ewater=0.64 (Z=-1). This 

clearly shows that the sphere has minimum energy when it sits on the surface and for moving 



 

163 
 

the colloidal particle to the water phase or air phase, excessive energy is needed, and thus the 

particle gets trapped at the interface
26

. 

As colloidal particle sits on the surface, a surface charge layer is created on the part of 

the particle which is on the surface, as shown in Figure 6.2b.  The surface charge of the 

colloidal particle and the structured arrangement of water molecules constitute a dipole
25, 27

. 

When two particles of same surface charge approach each other, due to the identicle charge 

and non-symmetrical charge distribution of the water molecules, the particles remain 

dispersed without undergoing any further aggregation. If the particles are fabricated using a 

steric surfactant, the dipole forces are negligible. 

Between the interface of the two particles, once an attractive capillary force is created 

this leads to a decrease in the surface energy due to the interface distortion. Immersion and 

floating are the two major types of capillary forces as shown in the Figure 6.2c and these 

attractive forces are long range nature
24, 28-29

. Thus between particles, three major forces are 

created on the interface: attractive capillary forces and van der Waals forces and repulsive 

dipole forces. The controlled interplays among these forces play the key role in assembling 

these particles into close packed structures or patterned structures. 

6.1.3. Close-pack colloidal arrays and colloidal lithography 

Most of the available techniques for formation of the close-packed monolayer of 

colloidal monodispersed particles can be divided into two major groups: direct assembly on 

the surface of the solid substrate of interest and interface mediated methods
30

. The interface 

mediated methods have several advantages over the direct assembly method. As mentioned in 

the previous section, the particles stay as a monolayer on the interface. Second, particles on 

the surface of the liquid have more mobility and hence close packing can be achieved by 

increasing the surface pressure at the air-water interface. Third, the type of the substrate is not 

as critical as in the direct assembly method. In this thesis, interface mediated method has 

been utilised for the formation of polystyrene particle monolayers
30

. If colloids are added to 

the interface the capillary forces make the particles stick together leading to brightly colored 

patches on the surface that indicate the formation of the densely packed monolayer. The 

particles on the surface can be forced to form closely packed patches. One of the main 

techniques to achieve this is the use of Langmuir-Blodgett trough
8, 11, 31-32

. In this technique 

the particles on the interface are swept by hydrophobic troughs and are forced to form a close 
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packed 2D solid structures formation. After the formation of the close packed monolayer, 

these monolayer can be transferred to any substrate using a dip coater or manually. In 

addition of using Langmuir troughs for packing the colloids on the interface, considering the 

charge of the colloidal particles, in small scales these colloids can be forced to form a close 

packed layers using ionic surfactant
33

. If packed 2D colloidal mask is needed to be used for 

covering large areas, use of Langmuir-Blodgett trough is the best possible method reported in 

the literature. On the other hand the use of surfactant assist method is more restricted to 

smaller surfaces.   

6.2. Silver tetra-cyanoquinodimethane (AgTCNQ) 

As mentioned in the previous section, the close-packed colloidal particles were used 

as a sacrificial mask to make patterned semiconducting p-n junctions between Zinc oxide and 

silver-7,7,8,8-Tetracyanoquinodimethane (AgTCNQ). TCNQ is a p-type organic 

semiconductor, having the electron affinity of 2.88 eV and it has been used in many 

optoelectronics applications
34-35

. It can be reduced into two forms such as TCNQ
•-
 and 

TCNQ
2-

 as shown in Figure 6.3
36

 due to its affinity to accept the electrons. These ionized 

forms of TCNQ can easily co-ordinate with metal ions to form coordination polymeric (CPs) 

and metal-organic (MOFs) frameworks. The MOFs are produced by reaction between 

transition metal with TCNQ molecules. Due to the insolubility of the TCNQ based MOFs in 

common solvents, re-crystallization to obtain the single crystal becomes very difficult, which 

restricts the study of their structure. Among the metal-TCNQ structures, AgTCNQ and 

CuTCNQ have attracted most interest. These materials show low band-gap p-type behaviour. 

Also, they show an interesting hysteresis loop in their I-V curves which makes them good 

candidates for resistive switching memories
37-39

. Nano-wire or nano-rod structures of these 

metal TCNQ structures enable them to behave as good candidates for field emission 

applications
37, 40

. Other novel applications have also been recently found for these materials, 

mostly through ongoing investigations in our group. For instance, AgTCNQ has been shown 

to be a highly active antibacterial material
41

. Both of these materials have been used for 

catalytic and photocatalytic applications
42-43

. Also recently, CuTCNQ/ZnO heterojunction has 

been used as a p-n organic/inorganic humidity gas sensor
44

. 

AgTCNQ and CuTCNQ molecule can be synthesized via different methodologies: 
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Figure 6.3. Structure of TCNQ and its ionic forms. 

Electrochemical Methods: TCNQ
0
 is partially soluble in acetonitrile and addition of 

Ag or Cu thin films or particles to this solution lead to the formation of metal-TCNQ 

structures. Dissolved TCNQ
0
 molecules are adsorbed onto the surface of metal and the 

resultant charge transfer process makes metal and TCNQ ions. These ions can migrate to the 

solution and also they can form transition metal-TCNQ (M-TCNQ) frames. As CuTCNQ and 

AgTCNQ have low solubility in acetonitrile, nanorods and nanowires of CuTCNQ and 

AgTCNQ, respectively, can be formed using this method. The aspect ratio of these formed 

MOF nano-arrays can be controlled by varying the concentration of TCNQ
0
 in the solution as 

well as time of the reaction
45-46

.  

Chemical vapour deposition (CVD): An alternative method for the synthesis of 

AgTCNQ and CuTCNQ nanostructures is the gas-solid reaction between TCNQ
0
 vapour and 

the transition metal. In this method, TCNQ vapour has enough energy to allow charge 

transfer reaction on the surface of the metal substrate to form M-TCNQ. The temperature has 

a critical importance in controlling the formation and the growth of M-TCNQ structures. The 

higher the temperature the faster the growth that can happen, and larger nanowires can be 

formed. The morphology of materials is controlled by the thickness and size of the metallic 

materials in addition to the time and temperature. If the thickness of the metallic material is 

reduced below 200 nm, thin film of the M-TCNQ can be formed
47-48

 rather than forming 

nanowires or nanorods.   

The heterojunction semiconducting devices, as explained in Chapter 1 - Section 

1.2.2.2, have gained researchers’ interests due to their unique band structure properties. As a 

metal-organic semiconductor, AgTCNQ has not been explored to be a part of heterojunction 

and their applications. In this chapter, a novel method has been suggested for the formation of 

p-n heterojunction between AgTCNQ nano-wires and ZnO thin film. I is shown here that 

colloidal lithography based nano-patterning technique not only allows the fabrication of a 
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well-controlled p-n junction, but also it allows control over the density and location of the 

junctions at the nano scale levels. This technique can easily be extended to the formation of 

other interesting well-controlled heterojunction structures. 

6.3. Materials and methods 

Chemicals: All chemicals were purchased from Sigma Aldrich or Merck and used as 

received. Si (001) substrate (1 cm × 1 cm) was chosen for growth of ZnO nano-arrays and 

cleaned using a standard procedure; initially, the wafer was ultra-sonicated consecutively in 

acetone, ethanol, isopropyl alcohol (IPA) and dried by nitrogen. To eliminate any remaining 

organic traces from the surfaces, they were cleaned for a period of 10 minutes with UV-

Ozone (U O Cleaner Plus). Deionized water (18.2 MΩm) was used throughout the synthesis 

process. 

ZnO thin film with sol-gel: The substrates were coated with three layers of zinc oxide via sol-

gel process. For sol-gel preparation, a previously reported protocol was used
49

. Briefly, a 15 

mL ethanol solution containing 0.1 M zinc acetate with an equal weight ratio of 

monoethanolamine (MEA) was prepared. This solution was then kept at 55 °C for 24 h (this 

step is referred to as ageing). The prepared solution was then deposited on to Si substrates 

using a spin coater operating at 4000 rpm for a period of 15 seconds. The prepared samples 

were dried at 95 °C for 10 min, this process was repeated 5 times to make sure that ZnO film 

was coated evenly on the samples. Then, these substrates were annealed at 450 °C for 1 h. 

Monodispersed polystyrene (PS): PS beads were synthesized using a dispersion 

polymerization technique
13

. Initially, 20 mL of styrene monomer were washed with ammonia 

(28%) solution to remove the inhibitor from the monomer. The purified styrene was dissolved 

in 20mL ethanol/water solution in a three neck round bottom flask and was purged with 

nitrogen to remove any oxygen and avoid unwanted polymerization. PVP was added to the 

solution as a steric surfactant. Azobisisobutyronitrile (AIBN, [(CH3)2C(CN)]2N2) was used as 

an initiator. 28 mg of AIBN was dissolved in 20mL ethanol and then purged with nitrogen for 

10 min. The AIBN was injected to the solution which was kept at the temperature of 70 °C at 

1500 rpm. The synthesis was kept in the N2 atmosphere and constant temperature and stirring 

for 24 h. The formed PS monodispersed particles were centrifuged and washed with ethanol 

and water several times and redispersed in ethanol. The synthesis variables for formation of 

500 and 1500 nm monodispersed spheres are listed in Table 6.1. 
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Variable 500 nm 1500 nm 

Ethanol 36 mL 40 mL 

Water 4 mL --- 

Styrene 2 mL 2 mL 

AIBN 28 mg 28 mg 

PVP 800 mg 200 mg 

 

Monolayer formation: The prepared monodispersed PS colloids in ethanol were used for 

forming the masks on the ZnO substrates. In this regard, a plastic standard petridish 

containing deionised water was used to form a water/air interface. Then, 30 µL of prepared 

PS solution was injected slowly to the interface. The formation of brightly-colored patched 

sections shows the formation of monolayer. Then, 10 µL of sodium dodecyl sulphate (SDS) 

solution (20 mg/mL) was added to the interface in order to make the monolayer completely 

compact. This helps to get more packed monolayer surfaces on the interface. The formed 

monolayer was transferred onto ZnO substrate from the interface. 

Synthesis of ZnO/Ag nano-star patterns: 300 nm thick Ag thin film was deposited using E-

beam evaporation system on the dried PS monolayer on ZnO thin film. Then the PS and 

excessive silver were washed away from the substrate using a lift-off procedure using 

tetrahydrofuran (THF).  

Synthesis of ZnO/AgTCNQ: As-fabricated ZnO/Ag star patterns were placed in a furnace 5 

mm above the TCNQ powder. The setup was purged continuously with 120-150 sccm argon 

for controlled temperature and time periods. Figure 6.4 shows the synthesis procedure 

schematically.   

Evaluation of photocatalytic activity: Photocatalytic activities of these 

hetereojunctions were tested by exposing these substrates to 1 mL aqueous solutions 

of 10 µM RB (in dark for 1 h) before their exposure to UV irradiation. The uniform 

UV exposure to the substrates was ensured by employing an 18 W, 370 nm LED 

(Edmund Optics) with attached heat sink (to avoid sample heating) 3 cm above the 

substrate. The photocatalytic degradation of RB was followed by monitoring the 

decrease in the absorbance of the RB (UV-Vis peak at 654 nm) using Varian Cary 50 

Table 6.1. Synthesis conditions for 

producing 500 and 1500 nm 

monodispersed PS spheres. 
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Bio UV/ Visible Spectrophotometer. The photodegradation efficiency of ZnO/Ag 

nano-arrays was estimated as: 

 
6.10 

wherein C0 and C correspond to RB concentrations before and after irradiation, 

respectively. 

 

  

 

6.4. Formation of PS monolayers and ZnO/Ag nano-star patterns  

The SEM images of the synthesized PS beads are shown in Figure 6.5. As could be 

seen from this figure, the synthesized polystyrene beads are uniform with average sizes of 

500 and 1500 nm. These beads were used for fabricating a mask on ZnO thin films. 

Figure 6.4. Synthesis procedure for 

controlled ZnO/AgTCNQ nano-

arrays:  

1) synthesis of ZnO thin film via 

Sol-gel method;  

2) Monolayer of PS nano-arrays on 

ZnO thin film;  

3) E-beam evaporation of silver 

layer;  

4) Lift-off of PS arrays and 

formation of Ag star-shape 

patterns on ZnO thin film; 

 5) CVD growth of AgTCNQ nano-

arrays and formation of 

ZnO/AgTCNQ heterojunction. 
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Figure 6.5. SEM images of the synthesized a) 500 nm and b) 1500 nm polystyrene 

monodispersed spheres. 

Figure 6.6 shows the SEM image of the packed monolayer of polystyrene particles 

and these particles were packed hexagonally. The few pin holes formed in the monolayer 

were due to inhomogeneous packing. Very few sections have second layer, which was mainly 

due to the diffusion of few PS particles inside the solution during their injection into the 

water/air interface. 

During the EB mediated silver deposition onto the substrates, the close-packed PS 

monolayer acts as a nano-sized mask. This phenomenon results into deposition of silver on 

PS and also on the ZnO thin film through the orifices created between hexagonal packed PS 

spheres as shown in Figure 6.7 schematically. 

 

Figure 6.6. SEM images of the monolayer formed by a) 500 nm and b) 1500 nm PS beads. 

During THF etching, THF diffuses inside of the structure and dissolves the PS beads. 

As the evaporation thickness is less than the diameter of the PS beads, the formed layer of the 
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silver on the PS detached from the structure during lift-off process and only locations which 

silver is attached to the surface of the zinc oxide thin film remain of the substrate.  

 

Figure 6.7. Schematic shows the cross section for formation of star shaped islands. 

Figure 6.8 shows the formation of the ZnO/Ag nano-star patterns. The individual 

silver sites on the surface usually show a quasi-triangular shape and are arranged in a space 

group P6mm array due to the hexagonal packing of the colloidal crystal mask. This forms 

nano-star patterns of silver on ZnO thin film. Due to the packing fault in the monolayer 

formation, there are some random shapes on the structure as well. However, the majority of 

the structure is patterned with nano-star features. 

 

Figure 6.8. SEM images of the produced ZnO/Ag nano-star patterns using a) 500 nm and b) 

1500 nm packed PS masks. 

For confirming the repeatability and height of the produced nano-star patterns after 

lift-off process, AFM imaging was carried out as shown in Figure 6.9. AFM results clearly 

showed the formation of the star morphologies on ZnO thin films with consistent dimensions, 

distance and height. For sample prepared using 1500 nm PS beads, the distances are much 

more uniform and the height of the silver features is almost 300 nm. The samples produced 
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with smaller PS masks have star features but the height and dimensions are not as uniform as 

the bigger PS masks. This is mainly due to the packing faults in the smaller particles. As 

could be seen from Figure 6.8 and 6.9, the triangular features in small particles are smaller 

than the big spheres due to smaller orifices in the packed monolayer of PS spheres. The 

smaller the orifice, the more sensitive it is to the size of the adjacent spheres in the 

evaporation system, and thus it cannot form features of exactly the same height with sharp 

edges. Small distortions in smaller particles packing can result into large packing fault which 

makes the distances and orientation of the evaporated features more sensitive to the 

alignment of spheres in the masks produced from smaller spheres. Figure 6.10 shows phase 

image of the ZnO/Ag star patterns using smaller spherical particles. Area surrounded with the 

star features have cellular structure which is related to the formed zinc oxide thin films in 

these areas.  

 

Figure 6.9. AFM images and height profiles of ZnO/Ag nano-star patterns using a) 500 nm 

and b) 1500 nm packed PS masks. 
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Figure 6.10. AFM phase image of ZnO/Ag nano-star patterns using 500 nm. 

Figure 6.11 shows the EDX profile of the ZnO/Ag nano-star patterns. As could be 

seen from this image the evaporated silver is present in the defined places, and it did not  

result in random distribution during THF etching. The place and intensities in the larger PS 

masks are more accurate and sharper due to the fact that the formed features are bigger and 

distances between the features are micron size that resulted in forming sharper and more 

distinct peaks in these areas. Figure 6.11a2 and b2 show the position of Ag nano-star 

patterns on the ZnO thin film. The optimum points of the peaks are in the central points of the 

triangles where the height of the silver would be maximal. In these points Si-Kα spectra show 

a minimal intensity peak point while Ag-Lα reaches to its maximum amount. As Zn and O is 

just for ZnO layers which are in the form of thin film it cannot be detected properly by line 

scanning. To address the ZnO issue and confirm its existence on the surface, EDX spectrum 

from the overall surface of the sample was collected where it clearly shows the existence of 

Zn, O, Si and Ag in the system. It should be noted that due to the smaller sizes of the nano-

star patterns in the 500 nm PS mask, the amount of the material is much less than the 

structures made by 1500 nm PS mask, which results in more noisy signal in line mapping of 

the smaller nano-star patterns. 
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Figure 6.11. EDX linear profile and spectrum of ZnO/Ag nano-star patterns using a) 500 nm 

and b) 1500 nm packed PS masks. 

6.5. ZnO/AgTCNQ arrays 

Figure 6.12 shows the SEM images of the AgTCNQ arrays produced by chemical 

vapour deposition (CVD). TCNQ vapour was allowed to interact with Ag substrate for the 

adsorption of TCNQ onto the surface of the Ag structures. If the temperature is sufficient 

enough, TCNQ can be reduced into TCNQ
•-

 and react with Ag to form AgTCNQ. It is clear 

that by increasing the temperature, the aspect ratio of the AgTCNQ is increased, which 

results in the higher surface area
50

 ideal for making heterojunctions with high interfacial area. 

Although the average length of the wires are 17, 26 and 36 µm for synthesis temperature of 

160, 180 and 200 °C, the wires still have similar thicknesses of 150 to 300 nm. 
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Figure 6.12. Effect of CVD temperature on the formation of AgTCNQ from nano-star 

patterns (500 nm PS mask): a) 160, b) 180 and c) 200 °C for 1 h. 

Figure 6.13 shows the formation of AgTCNQ from Ag nano-star patterns on the ZnO 

thin film. Due to the formation of large silver triangles in larger PS mask features, much 

longer wires of AgTCNQ were produced. Thus, the patterning shows the ability in the control 

of the coverage and also aspect ratio of AgTCNQ (Figure 6.13-a1 and b1). Also, SEM 

images from the surface of the samples show the starting growth points of the AgTCNQ in 

these structures. As shown in this image, the AgTCNQ wires are initiated from the star 

patterns and from each pattern one or multiple AgTCNQ wires can grow (Figure 6.13-a2 and 

b2). Slightly thicker wires are grown in the smaller pattern (Figure 6.13-a3 and b3) but main 

difference is in the length of the wires. From Figure 6.13-a2 and b2 the structural control 

which could be gain via colloidal lithography can be recognised. The distance of the junction 



 

175 
 

as well as the population of the junction can be controlled via using this technique, which 

could help the design of engineered heterojunction devices.  

 

Figure 6.13. Growth of AgTCNQ at 200 °C for 1h from nano-star patterns a) 500 nm and b) 

1500 nm PS masks: 1) low magnification, 2) origin of the nanowires and 3) AgTCNQ wires. 

To get further insight to AgTCNQ formation, EDX mapping was carried out on 

samples fabricated using 1500 nm PS masks. As shown in Figure 6.14-b1, for the ZnO-Ag 

nano-star patterns the map confirms the location of the silver stars on the surface based on Ag 

Lα. In addition, the places where Ag patterns are located the color concentration for Si Kα 

reduces drastically (Figure 6.14-c1). In the case of the EDX spectrum the existence of Ag, 

Si, Zn, O and adventitious N and carbon is evident as shown in Figure 6.14-d1. As AgTCNQ 

nanowires are long with smaller diameters, during SEM most of them tend to move around in 

contact with the electron beam for long time. As mapping is a long process, in the AgTCNQ 

samples, the uniform distribution of the Ag and N on the surface confirms the formation of 

AgTCNQ (Figure 6.14-b2 and c2). Moreover, EDX spectrum of the sample shows a huge 

increase in the intensity of the nitrogen peak which is related to the nitrogen of AgTCNQ 

molecule in the synthesized material (Figure 6.14-d2). 
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Raman spectra of samples are shown in Figure 6.15. For TCNQ
0
, three characteristic 

vibration modes at ca. 1200 cm
−1

 (C═CH bending), 1450 cm
−1

 (C−CN wing stretching) and 

1600 cm
−1

 (C═C ring stretching) were detected by Raman spectroscopy
50

. It has been shown 

that when TCNQ becomes TCNQ
•-
, due to the charge transfer between metallic structures 

and TCNQ molecule, vibration mode located at 1450 cm
−1

 is red shifted 70 cm
-1

, which is the 

main characteristic for confirming the formation of AgTCNQ in all structures. 

Figure 6.15. 

a1) SEM image of ZnO-Ag nan-

ostar pattern fabricated from 

500nm PS mask;  

b1) EDX mapping of the a1 

surface for Ag Lα ;  

c1) EDX mapping of the a1 

surface for Si kα;  

d1) EDX spectrum from surface 

of a1;   

a2) SEM image of ZnO-AgTCNQ 

of same surface at 200°C for 

1h; 

b2) EDX mapping of the a2 

surface for Ag Lα ;  

c2) EDX mapping of the a2 

surface for N kα;  

d2) EDX spectrum from surface 

of a2. 
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Figure 6.15. Raman spectra of a) TCNQ powder, b) Zno-AgTCNQ 160 °C, c) Zno-

AgTCNQ 180 °C and c) ZnO-AgTCNQ 200 °C fabricated from 500 nm Ag nano-stars and d) 

ZnO-AgTCNQ 200 °C fabricated from 1500 nm Ag nano-stars. 

XPS studies were carried out to show the formation of ZnO in the thin film and also 

charge transfer between TCNQ and Ag stars. For XPS study the background of the XPS 

spectra were corrected using Shirley algorithm. The chemical shifts were carried out by 

aligning core level binding energies (BEs) with adventitious C 1s BE of 285 eV. The peaks 

were deconvoluted using a Gaussian–Lorentzian function. As shown in Figure 6.16, the 

binding energy for Zn 2p3/2 is located at 1022.8 eV which is related to the Zn
2+

 in the ZnO 

structure. As could be seen from this figure, the ZnO spectrum in the ZnO-AgTCNQ is 

noisier and has lower intensity than ZnO thin film which is mainly due to the dense AgTCNQ 

nanowire frames formation on top of ZnO thin film. It has been reported that when TCNQ 

reacts with the structure of a transition metal, due to the charge transfer between TCNQ and 

the metallic structure and binding between N and metallic atom to form metal-TCNQ 

structure, the N1s core level binding energy would change with respect to pure TCNQ
0
. 

TCNQ
0
 molecules have characteristic N 1s core level BE at 399.1 eV along with a shake-up 

feature at 2.4 eV higher BE
51

. Conversely, in AgTCNQ a significant shift in N 1s core level is 

expected to occur. The BE from 399.1 eV in TCNQ
0
 shifts to 398.4 eV. The energy 

difference between shake-up and the main peak also shows a decrease. This phenomenon 

confirms the formation of AgTCNQ in the structure
41, 51

. 
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Figure 6.16. XPS spectra of different materials showing a) Zn 2p and b) N 1s core levels. 

The prepared samples, fabricated using smaller PS mask, were further tested for their 

photocatalytic degradation ability towards rhodamine B (RB) dye. As shown in Figure 6.17a 

and g, the degradation rate of RB is not high as RB was degraded only partially (<15%) 

without the catalytic surfaces. With ZnO nano-thin film catalysts, free radicals can be 

generated on UV-excitation that can attack the molecules of the RB close to the surface of the 

catalyst (Figure 6.17b and g). When silver nano-star patterns are formed on the surface of 

zinc oxide thin film, as discussed in Chapter IV, Section 4.4.3, due to the thickness of the 

silver stars (300 nm) these patterned sites act like recombination sites consuming the photo-

excited charges, thereby, reducing the photo-activities. During TCNQ CVD process, 

AgTCNQ arrays grow form Ag nano-stars and subsequently forms a p-n heterojunction with 

ZnO thin film. AgTCNQ has a narrow band-gap of 0.3 eV with work function of 1.7 eV
52

 

while ZnO is an n-type semiconductor with band-gap of 3.37 eV and work function of 5.3 

eV
53

. When AgTCNQ and ZnO attach to each other as explained in Chapter 1, Section 

1.2.2.2, a depletion layer can be produced at the interface which helps in separating the 

electron and hole and thus increasing the life time of electron-hole pair. This results into high 

activity of the samples in ZnO/AgTCNQ samples as shown in Figure 6.17 d-f and g. The 

photoactivity of the samples is increased slightly with increase in the synthesis temperature 

which relates to the increase in the size of the AgTCNQ nano-arrays. These results clearly 

show the photocatalytic application of the AgTCNQ and ZnO p-n heterojunctions.  
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Figure 6.17. UV-visible absorbance spectra of RB with increasing illumination time in the a) 

absence of any photocatalytic surfaces, b) ZnO thin film, c) ZnO-Ag nano-star pattern, d) 

ZnO-AgTCNQ [160 °C, 2h] , e) ZnO-AgTCNQ [180 °C, 2h] , f) ZnO-AgTCNQ [200 °C, 2h] 

and g) corresponding photodegradation efficiency of the samples. 

6.6. Conclusion 

In this chapter, a novel approach was developed to fabricate ZnO/AgTCNQ 

heterojunction materials with control in junction position and also the growth of the 

materials. The results show that the colloidal lithography can be used to control the 

fabrication process of well-defined p-n junction devices. With this method thin film zinc 

oxide was decorated with silver nano-star patterns with thickness of 300 nm that changed into 

AgTCNQ nanowire arrays by reacting TCNQ vapour with silver patterns. AgTCNQ was 

formed to have aspect ratios of more than 100. SEM images illustrated the nucleation of the 

AgTCNQ wires from the patterns. The produced AgTCNQ nano-arrays make heterojunction 

with ZnO thin film, which increases the photocatalytic activities of the synthesized materials. 
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CHAPTER VII 

 

Conclusion and Future Works 

 

In this chapter, the summary of the work presented in the thesis and potential avenues for 

future works are provided.  
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7.1. Summary of work  

Development in the semiconductor based technologies is reliant on newly emerging 

developments in the synthesis approaches and introducing novel functionalities and 

applications to semiconducting materials. The photocatalytic ecotoxic pollutant removal is 

one of the interesting application fields of semiconductors. There is a high demand to 

fabricate semiconductors with more versatile processing technologies to obtain higher photo-

activities in waste-water treatment. The vast inorganic and organic groups of semiconductors 

need a strategic plan to optimise the photocatalytic activities of these semiconductors. 

Although, there are some rules of thumb in selecting proper semiconducting materials for 

photocatalytic reactions, such as: band-gap, electron-hole pair lifetime and chemical 

stabilities, the possibilities are still numerous. In addition, the properties of semiconductors 

can be easily modified and improved by making different types of composites. Formation of 

junctions between semiconductor/semiconductor and semiconductor/metal has shown 

tremendous effect in influencing the photocatalytic activities of the semiconductors. Also, the 

catalytic activities, especially photocatalytic activities, are highly depended on the structure, 

morphology and surface area of the catalyst. Therefore, there are a number of unexplored 

possibilities in fabrication of photocatalytic materials with high activities, which makes this 

field of the study a hot topic among various research disciplines. 

In addition to the photocatalytic activities of semiconductors, metallic nano-materials 

can add further functionalities to semiconductors. If properly chosen and synthesized, these 

materials can be used as sensing platforms for SERS and optical sensing. Thus, combining 

semiconductor with these materials can provide the multifunctionality of sensing and self-

cleaning/ pollutant removal properties. As the metallic nanomaterials are extremely versatile 

in their properties, we are facing with numerous possibilities. The combination of 

semiconductor/metallic materials can bring novel applications to address sensing and removal 

of the environmental and biological toxins.  

Through this PhD thesis, I have tried to address some of the problems and research 

questions in regard to the fabrication and application of semiconductor heterojunction 

materials for sensing, self-cleaning and toxic heavy metal removal from the waste water. 

Additionally, as the SERS sensing was the main approach for sensing procedure in this thesis, 
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I have suggested a novel approach to address the background issue while acquiring Raman 

spectra to be able to obtain more trustworthy data from SERS sensors.  The objectives and 

summary of the finding of the current thesis is summarized in the following section. 

 7.1.1. Designing novel background correction technique for SERS sensing 

In SERS sensing platforms, the sensing approach can be carried out using two 

different approaches of peak position change and intensity change. In the former case, the 

chemical reaction between SERS marker and the target material can alter the position and 

peak arrangement of the marker Raman features, and thus this technique is used for 

characterisation of different species. In the latter form, the concentration of the target material 

is sensed via change in the intensities of the acquired Raman spectrum of the target material. 

In both cases, the existence of the background can inject huge errors in the sensing 

approaches. In the first case, the background can suppress the featuring peaks of target 

material while in the second, having different background feature results in inconsistent 

sensing results. Thus, the need for appropriate algorithm for background correction is one of 

the main necessities in SERS sensing. As most of the available techniques are utilizing 

smoothing in their background correction methods and considering the fact that noise 

removal can introduce more complex errors to the background correction the challenge is to 

find an algorithm that provides the ability of the background correction without smoothing.  

For addressing this issue an algorithm has been provided in this thesis where 

smoothing free background correction can be carried out for SERS spectra. This algorithm 

combines the signal removing background correction technique with wavelength transform 

technique. In this method, the locations of the peaks are detected via finding derivative of 

wavelet transform of noisy Raman spectrum. After finding the position, start and ending 

points of peaks in the spectrum, the signal removing background correction method is used to 

find the background of the spectrum and extract background corrected spectrum from it. This 

algorithm showed good capabilities in the background correction of the experimental Raman 

spectra without denoising them. The statistical studies confirmed the RMSE of the proposed 

approach less than 0.2 over 900 samples which makes this method as one of the best reported 

techniques known the background correction of Raman spectra. This software can provide a 

proper base for background correction of SERS spectra for sensing approaches.   
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7.1.2. Fabrication of ZnO/Ag nano-arrays for SERS based sensors 

As the SERS sensors require highly controlled and extremely expensive production 

processes to be able to make reliable, reproducible sensing platforms, it is a highly expensive 

spectroscopy technique. As SERS is mainly used for sensing organic molecules and 

compounds, the removal of the organic molecules from the SERS active surface can 

regenerate the surface and sensing ability of the structures. The regeneration process can be 

done through combining photocatalytic activities of semiconductors with SERS sensors. In 

this way the regeneration of the surface of the SERS sensor can be carried out via 

photocatalytic degradation of organic traces. This can change the cost of the fabrication and 

testing in the sensing technologies. Although this technique can be used for regenerating the 

SERS surfaces, there still remains a big challenge for fabricating the SERS sensors as they 

should have highly controlled surface and topologies. The general approaches for fabricating 

these surfaces include expensive methods of lithography. Thus, there is a need for a more 

general approach with the ability to maintain the reproducibility of the sensing data.  

In this thesis, ZnO nano-arrays were chosen for fabricating semiconducting surfaces 

for recyclable SERS substrate. The main reason for choosing this structure was the formation 

of high aspect ratio, well aligned ZnO nano-structures where the diameter of the ZnO nano-

rods were 150 nm in average and the length 2µm. The effects of the synthesis parameters on 

the arrays alignment and size were studied completely. In addition to studying the facile 

synthesis method for ZnO substrates, a chemical method of even decoration of ZnO nano-

arrays with silver nanoparticles was introduced in here. To gain an acceptable SERS sensing 

results, the produced nano-arrays were decorated with silver nanoparticles with control in 

their size and coverage. This fabrication process resulted into formation of ZnO/Ag nano-

arrays with decent SERS response as well as good photocatalysis performance. These sensors 

were also employed for Hg
2+

 sensing in waste water. As the Hg
2+

 can make amalgam with 

silver, the SERS properties of the silver nanoparticles are subsequently changed. This fact is 

used for sensing heavy metal ions in the liquid. The results showed that the provided system 

can also be used for mercury removal using photocatalytic activities of the zinc oxide nano-

arrays. Thus, the produced structures can be used for sensing mercuric ion as well as removal 

of this toxin from the solution, which has not been reported before. 
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7.1.3. Controlling the junction place and formation in inorganic/organic p/n hetero 

junction of ZnO/AgTCNQ  

TCNQ is one of the widely investigated organic semiconductors. It can make a metal-

organic framework by charge transferring with transition metals and forming metal-TCNQ 

organic semiconductors. AgTCNQ is one of the widely studied TCNQ derived materials 

where it has been studied for its switching and field emission properties. But interestingly, 

there are far fewer reports about the junction formation between this semiconducting organic 

material and other semiconductors available in the literature. The formation of the junction 

and also the possibilities that this interesting junction can bring is still a mystery. Due to the 

gap in this field, proper study of the junction formation and control in the synthesis of the 

material and final properties requires further research.  

In addition, in most of the studies involving in the formation of the TCNQ-based p/n 

junctions, the position and population of the junctions were randomly attained or designed by 

lithography techniques. One of the fields of the lithography is colloidal lithography. 

Although, technique has been successfully used for fabricating optical and SERS based 

sensors; there are no studies in regard to the control of the junction position and population 

using colloidal lithography.  

In this thesis, I have shown a facile method for fabricating silver patterns on zinc 

oxide films with nanoscale accuracy via colloidal lithography. Silver/ZnO which is a 

metal/semiconductor heterojunction could easily be changed into p/n semiconductors 

heterojunction by converting silver metal to a charge transfer organic semiconductor 

AgTCNQ. In this case a p/n junction could be formed with controlling the junction positions 

and also the population. The fabricated p/n junctions were tested for their photocatalytic 

activities, which showed improved performance over ZnO/Ag junctions. 

7.2. Future work 

Considering the vast possibilities that the work contained within this thesis could be 

applied to, a select number of suggested investigations for the future have been briefly 

discussed for each section explained in Section 7.1.  
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7.2.1. Designing novel background correction technique for SERS sensing 

 As the nature of the peaks in most of the spectroscopy techniques are Lorentzian-

Gaussian feature, the developed algorithm from the current PhD work can be further 

modified to fit with other available spectroscopic techniques like XRD, FTIR, etc. 

 The algorithm can be easily incorporated into software where the convoluted peaks 

can be deconvoluted using wavelet transform after background correction. This 

technique can make a huge step forward in making an automatic program for different 

spectroscopic techniques like photoluminescence, XPS, etc. This can be resulted from 

the ability of the wavelet transformation to be carried out in continuous dilation and 

thus from second order, this dilation can extract the exact location of the peaks in the 

overlapped peaks.  

 In addition to the deconvolution abilities, it has been shown that wavelet transform 

can act as a signal-processing filter due to transforming the signal in different 

frequencies. Thus, wavelet transform technique can be used for denoising the spectra. 

This can make another enhancement to the background corrected signals. 

7.2.2. Fabrication of ZnO/Ag nano-arrays for SERS based sensors 

 Zinc oxide is a highly active photocatalyst, but it is unstable and could be dissolved in 

acidic or high basic solutions. Thus, coating the zinc oxide with alternative 

photocatalyst (e.g. TiO2) with higher photo-activities can make the nano-array of zinc 

oxide applicable for different media.  

 Forming junction between zinc oxide and other p-type semiconductors such as CuI 

and Cu2O can increase the lifetime of electron and hole and increase the 

photocatalytic activity of the fabricated structures. 

 Silver is a good SERS active metal. However, it is susceptible to oxidation in the air, 

which changes the response of the sensor after a while. This can limit the regeneration 

cycles of the sensor. Thus, modifying silver with other materials using techniques 

such as galvanic replacement, core/shell structure and alloying with more noble 

metals like gold can address this problem. Also, the material selection and 
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composition can be chosen in a way that it enhances the SERS activities of the 

structures. 

 Silver as the selective metal towares mercury ion detection studies, was employed 

only for three cycles. However, in order to confirm the developed sensor’s full 

regeneration capability and long term stability, it is necessary to undergo further 

studies involving more regeneration cycles (>10 cycles) and long term testing (> 6 

months) to truly confirm its useability for industrial applications. That is, it is well 

known that thermal removal of Hg in order to regenerate the system can oxidize the 

Ag surface thus reducing its Raman activity. In this thesis, to avoid this oxidation high 

vacuum heating chamber was used. But changing the Ag to more noble metallic 

structure can overcome the need for high vacuum thermal treatment using the 

mentioned methods in the previous section. In this case, long term life cycle can be 

achieved for these sensors.  

7.2.3. Controlling the junction place and formation in inorganic/organic p/n hetero 

junction of ZnO/AgTCNQ  

 The formation of AgTCNQ on ZnO thin film was studied in this thesis. This is only a 

starting point for the formation and control of these junctions. The TCNQ can be 

altered to other types of charge transfer materials like tetrafluoro 

tetracyanoquinodimethane (TCNQF4) and tetracyanoanthraquinodimethane 

(TCNAQ). These materials have different charge transfer behaviour compared to pure 

TCNQ. Also they can make metal-organic molecule exactly the same way as 

AgTCNQ. Thus they could result into better junctions with increased electron-hole 

life time of zinc oxide structures. 

  As AgTCNQ is a low band-gap semiconductor and ZnO is a wide band-gap 

semiconductor, the AgTCNQ and ZnO heterojunction with some modifications can be 

used in solar-cells. 
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Appendix A: Supporting information for chapter III 

Detailed background correction algorithm 

 

Figure S1 General Algorithm of background correction. 
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Figure S2 Detailed flow chart for Data processing (input). 
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Figure S3 Detailed flow chart for Estimating Signal to Noise Ratio (SNR). 
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Figure S4 Detailed flow chart for Calculating 2
nd

 derivative of the spectrum and correcting 

their end effects and remained noise. 



 

197 
 

 

Figure S5 Detailed flow chart for Peak removal and finding background points. 
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Figure S6 Detailed flow chart for Adjusting endpoint effects. 
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Figure S7 Detailed flow chart for Fitting and adjustments 
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SNR estimation for other types of backgrounds  

 

Figure S8 SNR estimation steps: a) Simulated Raman spectrum with 10 peaks randomly 

distributed on the signal with the linear background wherein shaded section represents 

window size for calculating LSTD; b) STD in different divided ranges of spectrum; c) 

Spectrum in minimum LSTD wherein red line shows linear fitting of the spectrum in selected 

region to find background; d) Estimated noise profile by subtracting linear background and 

spectrum; and e) Different smoothing levels of the spectrum. 
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Figure S9 a) Spectrum with starting and finishing points of background; b) Starting 

condition of the spectrum (Subclass=0); c) Finishing condition of the spectrum (Subclass=6); 

d) Background points and their fittings (green dashed and magenta curves relate to starting 

fitting curve and corrected background after 412 loops, respectively); and e) Original 

spectrum with the background corrected one. 
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Figure S10 SNR estimation steps: a) Simulated Raman spectrum with 10 peaks randomly 

distributed on the signal with the sinusoidal background wherein shaded section represents 

window size for calculating LSTD; b) STD in different divided ranges of spectrum; c) 

Spectrum in minimum LSTD wherein red line shows linear fitting of the spectrum in selected 

region to find background; d) Estimated noise profile by subtracting linear background and 

spectrum; and e) Different smoothing levels of the spectrum. 
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Figure S11 a) Spectrum with starting and finishing points of background; b) Starting 

condition of the spectrum (Subclass=3); c) Finishing condition of the spectrum (Subclass=4); 

d) Background points and their fittings (green dashed and magenta curves relate to starting 

fitting curve and corrected background after 589 loops, respectively); and e) Original 

spectrum with the background corrected one.  
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