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Abstract: 

Authors would like to appreciate invaluable comments made by the reviewers. These 
comments, certainly, have improved the quality of the paper. 

In general, authors reduced the number of figures in the manuscript to be suitable for the 
form of a Technical Note. The data already presented in the reference [16] is abstracted, few 
sections are deleted and the manuscript is shortened. All the comments by the reviewers are 
responded and appropriate amendments are applied to address the comments. 

Authors hope that the amended version of manuscript would be suitable for publication in the 
form of a Technical Note. 

Following is the detailed response to every comments of the reviewers: 
_______________ 
Reviewer #1: 
 
The core content of this manuscript is the introduction of physical simulation experiments 
including three kinds of deformation measurement techniques. Authors recall the principles 
of physical modelling and they provide a brief description of data collection and analysis 
method together with some application examples. The advantages and disadvantages of the 
different measuring techniques are also presented. The application of TLS to derive 
subsidence values and to study crack propagation is presented in more detail. This is a 
relatively new method in this application to physical modelling. 
 
Whereas digital photography (Photogrammetry) and DIC (3.2 - 3.3) are relatively mature 
technologies, already applied in physical modelling; optoNCDT and TLS (3.4-3.5) represent 
already available technologies, whose application to physical modelling is interesting. 
Therefore, the presented approach has some value, particularly considering the 
comprehensive application of all method for comparison purposes. However, the approach 
cannot be considered innovative, since the applied techniques have already been developed 
by others. The proposal of hybrid TLS-DIC method is a new idea, but it seems just a simple 
combination of the two methods; in addition, the introduction of technology, photogrammetry 
and scanning equipment for specific parameters in this experiment (such as resolution and 
measuring precision) needs further explanation. 

In conclusion, the paper summarizes the features of the combined application of available 
measuring techniques to physical modelling. Though interesting, the results of the paper are 
not outstanding. 
********************************************************************************************************* 
Authors’ response: 

Authors would like to appreciate the reviewer for the invaluable comments. Following 
considerations are given with regards to the reviewer’s comments. 

Authors agree with the reviewer’s comment about the hybrid TLS-DIC method. This method 
is a combination of the two methods. However, the authors intended to propose this method 
as an alternative, fast performed way to illustrate the results of the physical model that can 
also be used for cross-checking the results of TLS and DIC methods. 

Detailed Response to Reviewers



Further explanation is given for the equipment used in the paper. Table 3 is added. This 
table summarises some of the key specification of measuring devices. 

********************************************************************************************************* 
_______________ 
Reviewer #2: 
 
This manuscript presents an interesting study on physical modeling of the mining-related 
problems by making use of optical and laser based measurement technologies. In overall, 
the content is interesting and attractive. The English is good. However, there are a number 
of unclear topics, which should be amended before the paper can be published. A major 
revision is suggested before the final acceptance. More specifically: 

Authors’ response: Authors appreciate the detailed comments made by the reviewer. 
Please find the authors’ responds to the comments bellow. 

 

Section 1 and 2: 
Novelty of the paper, including the physical modeling protocol, the optical and laser based 
measurement techniques and the data/image analysis algorithms as compared to the 
existing ones should be better presented.  

Authors’ response: Comment noted – Sections 1.2 and 4 are revised thoroughly to 
better present the novelty of the paper. In addition, major revisions are applied to the 
introduction of monitoring devices to better explain the analytical algorithm and data 
analysing method. Moreover, suitable references are added that readers can refer to 
in case detailed explanation of the devices and their working mechanism are needed. 

 
Section 3 
 
       Fig. 1 and 2 should be better explained for the following questions, i.e. 1) does the 3D 

TLS (PC #3) detects only the left part of the model and digital camera (PC#2) detects the 
right on the front surface of the model, as shown in Fig. 2?, if not, the exact imaging areas 
should be indicated with the pink triangles in the renewed Fig. 2; 2) does the optoNCDT 
(PC#1) only detects on the top surface?. More detailed description is required for the 
experimental setup and monitoring devices, otherwise, the readers should guess. 

Authors’ response: Comments noted, Figures 1 and 2 are edited and further 
explanation about the location of devices is given in Section 3. 

        More details about the monitoring devices should be given, such as the spatial 
resolution, imaging area, accuracy, sampling time, and the concerning technical 
specifications should be given. 

Authors’ response: Comment noted – Table 3 is added that includes necessary 
information, precision and specification of the measuring devices. Other necessary 
information is presented in the introduction for each device. 



 
       The novelty of the protocol of the paper, such as the TLS, optoNCDT, DIC, the imaging 

analysis algorithm, as compared to the existing ones, should be stressed. 

Authors’ response: Sections 1.2 and 4 are edited to better explain the novelty of the 
paper to highlight the benefits of using the newer technologies compared to the 
existing ones. 

 
       3.1. Case studies: the methods and procedures for performing the physical modeling of 

the multiple-seam subsidence should be briefed including Example 1 in [16] and Example 2; 
what is the boundary conditions when conducted the Examples 1 and 2?; descriptions on 
how to perform the measurement using the said optical and laser based monitoring 
techniques should be given. 

Authors’ response: Section 2.2 is added to further explain the physical modelling 
construction procedure. The boundary conditions of the Examples 1 and 2 are 
explained in Section 2.3 and shown in Fig. 1. The method to perform measurement 
by optical and laser based monitoring techniques are explained in Sections 3.4 and 
3.5. 

 
       3.2. Photogrammetry: how many tracking points are placed on the target surface?; 

what does it mean by "a sufficient number …."?; which part of the surface of the model is the 
target surface?;  

Authors’ response: Added “one point in every 5 cm” to make it clear how many 
tracking numbers are used. As explained in Section 3, the whole front surface of the 
sample is monitored and photographs of this surface are taken and compared by 
photogrammetry analysis.  

for a specific test case, an analytical formulation should be given for better understanding 
Fig. 4. 

Authors’ response: Comment noted – Authors believe that the analytical formulation 
for performing photogrammetry is very simple and includes basic knowledge of math. 
The introduction of photogrammetry method is edited in Section 3.2 to explain this 
method better and provide necessary information for the readers. 

       3.2.1. the algorithms introduced is too simple, more detailed introduction is suggested. 

Authors’ response: After reviewing the other reviewers’ comments it is decided to 
omit Fig. 5 and briefly explain the simple concept of extracting vertical and horizontal 
displacement from photographs in Sections 3.2 and 3.2.1. 

 
       3.3. Digital Image Correlation (DIC): the algorithm of DIC should be given. 

Authors’ response: Section 3.3 is edited and appropriate references are added that 
readers can refer to in case more detailed algorithms are needed. Authors believe 



that more analytical description of the method is considered out of the scope of this 
work.  

       3.3.1. Data acquisition and interpretation: content in this subsection has nothing to do 
with the "Data acquisition and interpretation". 
 

Authors’ response: Comment noted – the names of these sections are amended to 
better reflect the content. 

 
       3.3.2. Examples DIC analysis results: the comparison between Fig. 11, 12, 8 and 9 

should be quantitative, meanwhile, the physics of the physical simulation should be given to 
help understand the advancement that the authors were obtained. 

Authors’ response: Quantitative comparison of the Figures are added to this section 
and the physics of the phenomenon is further explained. 

 
In overall, the contents in the else sections have the similar problems to the aforementioned 
and the revisions are strongly suggested on the following aspects: 
 
       The physics of the simulation of multi-seam mining-induced subsidence should be 

introduced including the model implementation, boundary condition, loading history, testing 
procedures, testing results, etc.; 

Authors’ response: Comment noted – an explanation is added in Section 2.2. 
However, these contents have been thoroughly covered in the reference [16] by the 
same authors. As the associate editor suggested, it is avoided to repeat the contents 
of [16] in this paper. Necessary information about the model implementation, 
boundary condition, loading history, material mixtures and model construction is 
presented in the Section 2.2 (newly added) and Section 2.3. Readers can refer to the 
reference [16] for more detailed information. 

       With regard to the optical and laser based measurement technologies, besides the 
schematic illustration of the methods, analytical formulation of the algorithms should be 
given; 

Authors’ response: Analytical formulation of the optical and laser based 
measurement technologies has been added to the appropriate sections. In addition, 
number of comprehensive references is included for readers to refer in case more 
detailed formulation is required.  

 
       analysis of the testing results should be quantitative. 

Authors’ response: Quantitative analysis of the test results is added to Sections 3.2 
and 3.3. 

 
6. Conclusions: 



 
       it seems that many of the points that the authors claimed are not achieved by this 

manuscript itself; 2) what are the "recent developments in laser scanning devices and optical 
transducers"? what are the "new possibilities…"? 

       it is strongly suggested rewriting the Conclusions to highlight the finding of the paper 
with a specific manner. 

Authors’ response: Comments noted – the whole conclusion section is re-written to 
address the reviewers’ comments and better represent the contents covered in the 
paper. 

_____________________ 
Associate editor: 
 
In this manuscript, the authors present the application of a number of more or less new 
measuring techniques to traditional physical modelling of coal long-walls for subsidence 
analysis and prediction purposes. 
 
The application of these techniques, already presented by the authors in ref [16] of their 
paper, though not intrinsically new, represent and advance towards a better interpretation of 
results of expensive and time consuming physical models. 
 
Both reviewers, traditional users of physical modelling, thinks that the presented application 
is interesting, even if it does not contain new developments, but the application of new 
available techniques to a traditional approach. 
 
Based on reviewers' comment and in its own reading of the paper, this editor thinks that a 
revised shortened version of the paper, where the information already presented in ref [16] is 
abstracted could provide the basis for a suitable Technical Note. 
 

Therefore, this editor invites the authors to submit a revised version of their manuscript in the 
form of a Technical Note (removing abstract and limiting the number of figures, if possible), 
where the main advantages of the combined approach are highlighted and where the 
information overlapping with a similar previous publication [16] was limited. Additionally, the 
authors should answer the comments of the reviewers in a separate letter, incorporating the 
most relevant issues in the new version of the manuscript. 
 
If the authors are willing to submit such a document, it will be considered for publication in 
the form of a Technical Note. 

********************************************************************************************************* 
Authors’ response: 

Comments by the associate editor are highly appreciated. Authors are willing to submit the 
revised paper in the form of a Technical Note. Thus, the paper is shortened and the 
information already presented in the reference [16] is abstracted and repetition is avoided. 
Abstract is removed and the number of Figures is reduced to be appropriate for a Technical 



Note (12 Figures). However, authors preferred not to delete some Figures as they contain 
key information, thus, they are grouped with other related Figures as subfigures. In addition, 
Section 1.1 (Common physical test set-ups) is omitted and a summary of common test set-
ups is presented in Table 1.  

All the comments provided by the other two reviewers are responded separately. Based on 
these comments, mainly, the novelty of the paper in the revised form is stressed and more 
emphasis is made on the newly introduced methods of optical and laser based 
measurement techniques. Advantages of the combined approach are also highlighted and 
the physical modelling protocol is explained better. 

********************************************************************************************************* 

 

 



 Application of 3D laser scanner, optoNCDT devices, DIC analysis and photogrammetry in 
physical modelling of subsidence has been demonstrated 

 A new method for monitoring fracture propagation pattern has been introduced 
 A physical testing protocol for modelling mining-related problems has been presented 
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Application of 3D laser scanner, optical transducers and digital image processing techniques in physical 

modelling of mining-related strata movement with special focus on mining-induced subsidence  
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a School of Civil, Environment and Chemical Engineering, RMIT University, Melbourne, Australia 
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* Corresponding author. E-mail address: behrooz.ghabraie@rmit.edu.au (B. Ghabraie). 

Keywords: Physical modelling of mining-related problems, mining-induced subsidence, substrata movement, cavity 

growth mapping 

1. Introduction 

Physical and numerical modelling techniques are the primary tools used for investigating geotechnical and 

mining-related issues [1]. With advances in computer technologies over the past few decades, numerical modelling 

techniques have become more popular, comprehensive and reliable. Numerical methods are also generally more 

economical and quicker than physical modelling techniques. However, numerical methods are known to be 

inadequate in simulating detailed ground behaviour [1], such as strata response and failure around multiple 

excavations. Physical modelling, on the other hand, continues to be of great interest amongst researchers for 

investigating complicated mining problems. Physical modelling, at its best, illustrates the physics of the 

phenomenon, indicates the main principles that cause the most important observations and has the ability to predict 

behaviour under certain conditions, which may have not yet been known [2]. There are many examples of the 

successful application of physical modelling in investigating a broad range of mining-related problems [1, 3-7]. In 

rock mechanics and mining science, physical models allow researchers to observe the actual process of cracking, 

material failures and development of the ground movement around a model underground excavation [8]. This ability 

places physical modelling techniques ahead of other methods in investigating the mechanisms at work where the 

processes of deformation are poorly understood. 

One example of the application of physical modelling in developing an understanding of the mechanism of a 

mining-related problem is mining-induced ground surface subsidence. During the 1970s and 1980s, with the growing 

problem of ground subsidence, in-depth investigations of subsidence mechanism were conducted by number of 

researchers, [8-10] for example. Physical modelling was shown to be a particularly useful tool for understanding the 

mechanism of the substrata movement, crack propagation, caving process and the progressive propagation of the 

subsidence towards the ground surface [8]. The understanding of the ground movement mechanism, which the 

physical models provided, played a significant role in developing prediction methods for the mining-induced 

subsidence at the time that sophisticated numerical models and computer programs were not available. 

An increasing demand for energy resources has made multiple-seam coal mining common practice for coal 

mining operators in countries such as Australia, China and US, [11-13] for example. This has presented new 

challenges to subsidence engineers, as observational data shows significant change in the magnitude and profile of 

the subsidence due to multiple-seam mining [14-16]. This problem, together with increased public awareness of the 

potential dangers of ground subsidence, including safety concerns for the nearby residential towns/structures and 

damages to the environment (e.g. farmland loss, valley closure, surface cracks, etc.), have required subsidence 

engineers to better understand the in-depth mechanism behind the multiple-seam subsidence [12, 16-18]. Accurate 

*Revised Manuscript
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numerical modelling of such complicated problem, which must be able to simulate anisotropic material, non-linear 

material behaviour, weak interfaces, fracture development, rock caving and large displacement, is deemed to be 

extremely costly and time consuming. Whereas, physical modelling can, again, play an important role in assisting 

engineers to understand the mechanisms and ground movement characteristics of multiple-seam mining-induced 

subsidence. 

Many researchers have established their own methods and choice of materials for physical modelling. As a 

result many different methods of analysis and data acquisition have also been used. Depending on the purpose of 

the study, photogrammetry, displacement sensors, strain gauges or dial gauges were commonly used to record the 

required output. A summary of the model materials and measurement systems is presented in Table 1.  

1.1. Improved data acquisition and measurement tools 

Although numerical modelling techniques have undergone significant improvements since they were 

invented a few decades ago, physical modelling techniques and the monitoring devices in mining-related studies 

have not been significantly improved from the early models (Table 1). Only recently, a few examples of utilizing 

newer technologies, such as laser based measuring devices, infrared and acoustic measurement have been reported 

in the literature [16, 21-23]. It is now considered advantageous to employ some of these new measurement 

techniques and provide researchers with a practical and yet easy to use systematic approach for putting together the 

best possible combination of new and old measuring technologies for physical modelling of mining related problems.  

In many mining-related problems, studying the mechanism of ground movement due to excavating an 

underground opening requires understanding the overall ground movement pattern, monitoring fracture growth 

after multiple extractions, precise measurement of ground deformation and mapping of both horizontal and vertical 

displacement. The common measurement techniques in the available examples of physical modelling (Table 1), such 

as stress/strain gauges and photogrammetry, provide researchers with discrete or point-based measurements. 

Although accurate measurement of the substrata and surface deformation is possible by photogrammetry (by 

placing sufficient number of target points on the model test), producing a contour deformation map of the whole 

model is typically deemed to be time consuming with high operational cost. In addition, most of the newly 

developed methods of crack propagation monitoring, such as, infrared and acoustic measurement, are either 

expensive to use and computationally taxing or unable to produce an illustrative output. 

The recent developments in digital photography and laser based technologies have made it possible to 

monitor the physical modelling results relatively easier with higher accuracy. Digital Image Correlation (DIC) 

technique is able to produce a 2D full-field map of the substrata displacement using high resolution photographs. 

This technique can be a suitable substitute for photogrammetry if a contour map of the substrata displacement is 

required. In addition, non-contact laser based technologies, such as 3D laser scanners, devices that can measure 

length, temperature and acceleration without making any contact with the sample (optical displacement 

transducers, for example) have been improved tremendously over the past decade and became available to research 

organizations. Utilizing these advanced monitoring devices, image processing techniques and surveying technologies 

can help researchers measure the dynamic displacement of a point, ground subsidence on a surface and crack 

propagation pattern around an underground excavation. Measurements from these devices can also be edited by 

readily available computer programs to generate outputs suitable for further analysis and investigation. 



In this paper, practical application of new optical and laser based technologies are discussed, together with 

2D displacement analysing techniques, such as, photogrammetry and image processing. Application of Digital Image 

Correlation (DIC) analysis to extract 2D full-field displacement measurement, a novel approach of cavity growth 

mapping by means of 3D Terrestrial Laser Scanner (TLS), subsidence mapping of a surface and real-time one 

dimensional displacement measurement by means of optical Non-contact Displacement Transducer (optoNCDT) are 

explained. This paper, for the first time, combines the latest technologies in 3D laser scanning and optical non-

contact measuring devices to study two case studies of multiple-seam mining-induced ground surface subsidence. It 

is believed that deploying these new measuring devices alongside innovative analysis and illustration techniques 

would significantly improve the quality of the outputs and researchers’ interpretation of the results. It would as well 

reduce the computational/operational cost, time and effort and help eliminating errors which might take place 

during data acquisition process. 

In addition, in the following sections, a practical physical modelling protocol has been introduced based on 

the purpose of a study, the ability of various monitoring devices to produce different output parameters and other 

important factors, such as, processing time, accuracy of the measurement and discrete/full-field measurement. This 

protocol assists researchers to choose the preferred combination of monitoring devices and post-analysing 

techniques to extract the desired parameters from the physical modelling. It is hoped that the presented modelling 

protocol could be readily adapted to investigate a range of mining-related and tunnelling problems. 

2. Physical modelling of mining-induced ground surface subsidence 

The most important factor in physical modelling is choosing an appropriate construction material that can 

simulate and behave in a similar way to the real case problem. The material is a personal choice of the researchers 

and can vary depending on the purpose of the study, availability and cost of the material. However, the strength of 

the material, dimensions of the model and density of the constructed material should satisfy the basic conditions in 

accordance with similarity theory. Under this condition only, a problem can be simulated accurately and 

measurements can be compared with the real case.  

2.1. Similarity theory 

A scaled physical model has to be designed in accordance with the laws of similarity theory [5]. Whittaker 

and Reddish [8] stated that for the purpose of physical simulation, only parameters with major influence on the 

mechanical behaviour of the material should be considered in the calculations, including the strength of the 

material, its density and geometry. These parameters should satisfy the fundamental condition of the similarity 

theory as [5]: 

 Eq. 1 

where 

  ,  ,  Eq. 2 

In Eq. 1 and 2, , is the constant of geometry, , is the constant of strength, , is the constant of density 

similarity between the model and prototype case, , is length,  is compressive strength,  is density, subscript  

stands for prototype and subscript  stands for model. 

2.2. Physical modelling material and construction procedure 



The model construction process, choice of material and strength parameters of the model as well as their 

relation to the real case problem have been previously discussed by Ghabraie et al. [16]. The same modelling 

techniques, material mixture ratio and similarity constants are used in the present study. The model is gravity loaded 

in which rock layers are simulated with sand-plaster-water mixtures and are casted into layers with a thin layer of 

fine sawdust in between each layer to model stratified rock formation. Wooden blocks are used to simulate the 

longwall panels. Withdrawing the wooden blocks mimics extraction of longwall panels. The similarity constants and 

material properties used in this paper are summarised in Table 2. 

2.3. Boundary conditions and plane strain assumption 

While the ratio between the dimensions of the model and prototype case is controlled by similarity theory, 

the total size of the model should be chosen with respect to the boundary conditions. Boundaries should be placed 

in a distance from the panels that result in negligible stress fluctuation on the boundaries [1, 6]. Lubricating the 

boundaries reduces the friction and results in boundary condition as shown in Fig. 1a. Under this condition, a section 

of the longwall panel can be assessed under plane strain assumption. This assumption is only valid if one dimension 

of the longwall panel (length) is sufficiently long such that the effect of the start and end of the panel has negligible 

influence on the deformation characteristics and stress fluctuation of the middle of the panel. This is commonly the 

case for coal longwall panels, where a section of the panel along its width can be modelled under plane strain 

condition. 

It should be noted that in order to build the physical model, the sample needs to be casted between front 

and back supports. Enough lubrication should be applied on these parts to reduce building up any unnecessary stress 

during casting. It is also assumed that the model thickness has negligible effect on stress fluctuation along its 

thickness during the test. 

3. Model test set-up and measurement techniques 

The proposed physical modelling set-up encompasses some of the recent technologies (Sec 1.2) for surface 

and substrata movement analysis. The equipment used in this new model test set-up includes optical Non-contact 

Displacement Transducer (optoNCDT), Terrestrial Laser Scanner (TLS) and digital camera. Technical specification and 

measurement precision of these devices are abstracted in Table 3. Each of these devices can be employed for 

distinct purposes. The output of each method can as well be used to cross check and validate the measurements of 

other methods. In all of these methods, displacement analyses can be done by monitoring the changes between the 

initial stage and desired stage of the test. A schematic view of the model test set-up is shown in Figs. 1a and b. The 

digital camera (in the centre) and TLS (next to the camera) are placed in front of the model to monitor the front 

surface. The optoNCDTs are placed above the top surface of the model to monitor the surface subsidence. In the 

following sections, various techniques for data acquisition and interpretation are presented. The application of each 

method is then discussed by means of two example case studies. 

3.1. Case studies 

To illustrate the application of the proposed physical modelling set-up and measurement techniques, two 

examples of multiple-seam subsidence problems have been modelled. The two scenarios have different mining 

configurations (Fig. 1c and d) and were initially designed to improve the understanding of mechanism of the 

multiple-seam subsidence. The mechanism of subsidence and ground movement development for Example 1 has 



previously been discussed in Ghabraie et al. [16]. This example is a model of two partially overlapping longwall 

panels with thin interburden thickness (Fig. 1c). The upper panel was extracted first (stage 1) and after the model 

was stabilized, the lower panel was extracted (stage 2). The second example is a symmetric pattern of multiple-seam 

mining with thicker interburden layers (Fig. 1d). The two upper panels in this model were extracted (stage 1) before 

commencement of the lower panel extraction (stage 2). Photographs, 3D scan of the model and surface subsidence 

measurements by optical transducers were captured after the end of each stage. To avoid repetition, the content 

already covered in the published work by Ghabraie et al. [16] is not reported here and the photogrammetry and DIC 

analysis results for case 2 only (Fig. 1d) are presented.  

3.2. Photogrammetry 

Photogrammetry is a popular, cheap and simple measurement method used in physical modelling of mining-

related problems and yet one of the most reliable measurement techniques if suitable equipment is used. There are 

various examples of this measurement method in physical modelling in the literature (Table 1). Only equipment 

required for this method is a high resolution camera. Using this method, photos at different stages of the test are 

compared with each other to derive the displacement vectors. The number of tracking points can be chosen in 

accordance with the purpose of the model and desired measurement precision (one point in every 5 cm in this 

study). These target points can then be used to extract displacement vectors between any two stages of the model. 

This is achieved by placing two photos of two stages of the model together and tracing the tracking points on the 

surface of the model (Fig. 2). Horizontal and vertical displacement at each point can then be derived by extrapolating 

the vertical and horizontal component of each displacement vector. 

3.2.1. Examples photogrammetry results 

In case of subsidence analysis, measurement of surface vertical (subsidence) and horizontal displacement 

profiles are of significant importance. Many of the key subsidence parameters can be measured based on the 

photogrammetry measurements of surface displacement profiles, such as, limit of the subsidence for each stage, 

maximum subsidence, subsidence factor, location of the maximum subsidence and incremental subsidence after 

each stage. Examples’ photos used for photogrammetry analysis are shown in Fig. 3. Given the quality of these 

photos in this study, displacement vectors to an accuracy of approximately  mm can be measured. 

Figs. 3c and d show the profiles of surface vertical and horizontal displacement in the case 2 after stage 1 

and 2. It can be seen that the magnitude of subsidence after the lower extraction is increased significantly, resulting 

in the maximum subsidence of approximately  of the combined extraction thickness of both layers above the 

overlapping parts of the panels. This observation agrees well with field observations of mining induced multiple-

seam subsidence [14]. Because of the presence of a thick interburden in this case the magnitude of surface 

measured horizontal displacement was relatively small (less than  mm). These displacements are smaller than the 

minimum accuracy of the photogrammetry analysis ( mm). This is inferred to be the reason for observing 

fluctuations in the measured horizontal displacement in Fig. 3d. The accuracy of the results can definitely be 

improved by utilizing a higher resolution digital camera. 

3.3. Digital Image Correlation (DIC) 

DIC was first introduced during the 1980s by Sutton et al. [31,39]. It is a method to measure full-field 

deformation pattern of deformed samples [31, 32]. By having two photos of different stages of the test, 



displacement contours can be drawn by tracking number of target points in the reference photo and the deformed 

one [33]. A region of interest (ROI) is introduced in the beginning of the analysis and then the deformation is 

measured by optimizing the correlation between the target points in two (or more) images [32] (Fig. 4a). This 

analysis can be done using various algorithms. These algorithms have been discussed extensively by other 

researchers in the literature [39-41].  Based on these algorithms, a number of open source and free software 

packages and codes are available for researchers to be used for DIC analysis. In this paper NCORR_v1_1 was 

employed, which is a Matlab code developed by Justin Blaber. 

DIC method’s ability to produce colour coded displacement contour graphs is of great interest for 

researchers. This method of analysis provides researchers with a full-field view of the model’s substrata movement 

pattern (both vertical and horizontal displacement). The visualized output of this method can be readily used to 

study the general mechanism of ground movement around an underground opening. In addition, DIC analysis only 

takes a few minutes to perform and can be done right after the test.  Only basic knowledge of the DIC technique is 

required to perform the analysis. However, because of using limited number of target points to derive the final 

displacement contour, displacement measurements by DIC method is not as accurate as the photogrammetry.   

3.3.1. Examples DIC analysis results 

Results of the DIC substrata vertical deformation analysis of the two stages of the case 2 are shown in Figs. 

4b and c. These results can be used to investigate the mechanism causing the strata layers deform after each stage 

of the test, locate maximum displacement, monitor the development of the ground movement from the coal seam 

to the surface, determine the limit of the subsidence and examine the effects of the lower extraction on the upper 

panel. 

Figs.4b and c provide a clear illustration of the substrata vertical movement pattern after extraction of the 

upper and lower panels in case 2. It can be observed that the vertical strata deformation is increased above the 

upper panels after extraction of the lower panel in case 2 (Fig. 4c). In the area above the overlapping parts of the 

upper panels, because of the closure of existing cavities after the upper panels’ extraction, substrata movement is 

almost doubled (compare Fig. 4b and c). Comparing the ground surface deformation pattern from DIC outputs with 

Fig. 3, indicates a reasonable correlation between DIC and photogrammetry results (compare surface deformation in 

Fig. 4c and Fig. 3c, for example). 

3.4. Optical Non-Contact Displacement Transducer (optoNCDT) devices 

optoNCDT devices are designed for one dimensional length measurements. A basic optical displacement 

transducer measures changes in length of an object to specific accuracy depending on the type of the device used. 

OptoNCDT using a laser beam light can measure the changes in distance from an object to fraction of a millimetre. 

Depending on the type of the optoNCDT, it can measure distance of an object between 0.5 to 2000 mm from the 

pointer [34]. The device projects a light beam to the measurement target, which is reflected back to the optical 

receiving position-sensitive element. If the position of the target point is changed, the location of the reflected light 

on the receiving element is changed accordingly. Figure 5 illustrates the working mechanism of an optoNCDT. The 

distance of the target point at any time can be measured using triangulation [42-43]. With this method, distance 

can be calculated as follow 

   Eq. 3 



where , is the distance from the pointer to the lens, , is the distance from the lens to the receiving element, and 

, is the measured distance from the original location are known (Fig. 5). 

3.4.1. Data acquisition and interpretation 

The data from optoNCDT devices can be easily transferred and recorded to a computer. With suitable 

software packages the data can be automatically recorded in user-defined time spans (or whenever the conductor 

manually starts recording the data). An important advantage of using optoNCDT compare to other measuring 

techniques is its ability to capture real time data during the time that the test is being conducted. This provides the 

researchers with the benefit of analysing the surface deformation data during the testing.  

Monitoring the final static state of the model requires permitting the model to reach its final displacement 

state after performing each stage of the test. Similarity theory can be used to calculate the suitable time ratio 

between the real case and the laboratory test. This ratio then can be used to approximate the required time that 

should be left between each stage of the test. An easier, and yet more accurate method, is to monitor the dynamic 

surface subsidence until it reaches its final status after conducting each stage of the test. The optoNCDTs are capable 

of doing this by actively monitoring one dimensional displacement on number of fixed target points (Fig. 1a). Using 

this data, the final stage of the test can be determined when the displacement values converge to (stabilize at) a 

certain measurement (Fig. 6). Suitable data can then be captured at the final static stage of the test.  

In addition to dynamic subsidence measurement, data from optoNCDT devices can be used as an alternative 

method to measure one dimensional deformation on any surface of the model. This method is quicker than other 

measurement methods and provides researchers with initial displacement measurements just after conducting the 

test. 

3.4.2. Examples dynamic vertical deformation measurements results 

Using optoNCDT devices, the dynamic vertical deformation of the model top surface during the test can be 

measured from the beginning of the test. According to the observations, after initiating the extraction, the strata 

take a few minutes to respond [35]. The caving process, then, starts in the area above the extraction and the 

deformation becomes evident on the ground surface (Fig. 6a). By extracting the whole panel, the ground movement 

is developed significantly on the ground surface. This is followed by a stabilization phase, the time in which the strata 

reach its final state and the ground movements stabilize. 

This dynamic measurement of the surface deformation can indicate the final stage of the test (Fig. 6). This 

stage is considered as the appropriate time for the researchers to take the final data (photographs and 3D laser scan) 

for further analysis of the ground movement profile.    

3.5. Terrestrial Lase Scanner (TLS) 

TLS instruments can observe surface movement on numerous scales, including millimetres to tens of meters. 

These surfaces are generated from clouds of points or ‘point clouds’ consisting of a multitude of observed positions 

in the instruments coordinate system or other coordinate system (Fig. 7a). By repeatedly remeasuring these surfaces 

in the same coordinates system it is possible to measure displacement anywhere within the point cloud. This 

technology differs from optical transducers, which measure displacement, but only at discrete locations.  

Modern TLS instruments generate point clouds by measuring the distance or range from the centre of the 

instrument to the target surface. This occurs by either measuring the time of flight (TOF) of the signal or the phase 



change of the reflected signal (Fig. 7b and c). This concept is based on Electromagnetic Distance Measurement and 

the range of the target can be found using the following equations using two methods of TOF (Eq. 4) and phase 

change (Eq. 5) [44]:  

  Eq. 4 

 Eq. 5 

where  is the distance or range,  is the speed of electromagnetic radiation (known value),  is the 

measured travel time,  is the integer number of wavelengths,  is the value of the wavelength (known 

value) and  is the fractional part of the wavelength ( ), where  is the phase angle. Each 

measurement type is more suited to specific applications. The TOF approach can measure over very large distances 

(e.g.  m), but is slower and less accurate than phase based observations. Phase based observations are rapid and 

accurate but presently limited to shorter ranges. Newer instruments, such as hybrid phase-pulse laser scanners 

combine the range and low noise sensitivity of the time of flight technique, with the high accuracy  mm at  m) 

at short range of phase shift technology [36]. Unlike photographs, which are made of coloured points (pixels), the 

point cloud is a cluster of measurement points. Each point is defined by an - -  coordinates information. This 

makes it possible to view the point cloud from different angles by simply changing the local coordinate system 

(manipulating the point cloud scene). 

TLS and Airborne Terrestrial Laser Scanning (ALS) have already been employed for mine subsidence 

measurements in Australia. Examples include subsidence mapping at Illawarra coal mine [37] and near the city of 

Wollongong [38]. However, there are very few examples of the application of TLS for laboratory-based scaled 

physical subsidence modelling and only recently has TLS been used for this purpose [16, 22]. 

3.5.1. Surface subsidence and cavity growth mapping by TLS 

Modern TLS are capable of measurements at rates of hundreds of thousands of observations a second, 

generating massive 3D point cloud scenes. Using these devices, conducting a high resolution 3D scan of the whole 

physical model takes only a few minutes. This makes it possible to conduct a 3D scan after completing of each stage 

of the physical modelling. Various 3D scans of different stages of the test can then be compared and desired 

parameters can be extracted. Also, the ability to view the model (point cloud) from various angles provides 

engineers with the possibility to investigate the results in a 3D environment when the model is no longer available 

[16].  

One dimensional surface deformation can be easily measured on a section of the point cloud, in a timely 

manner, by comparing the point clouds after each stage of the test. This can be done by using point cloud software, 

such as Trimble Realworks ©, which puts together the two chosen surfaces and map the surface deformation (Fig. 

8a). 

In addition to the common practice of laser scanning, a new technique has been developed and is 

introduced in this paper to map the cavity growth pattern on any surface of the model. This technique is based on 

the working mechanism of the TLS, that the signal sent from the laser scanner can reach the depth of the cracks in 

the model, if the laser scanner is located at an appropriate location. The wider the fracture’s width is, the greater its 

depth is and, thus, the farther the signal can reach (with the maximum of model’s thickness). Therefore, considering 

the surface of the model to be on -  plane (in local coordinates of the laser scanner),  axis indicates the depth of 



the cavities. By assigning colours to different  values, projection of each cavity on -  plane can be drawn (Fig. 8b). 

Warm and cold colours can be assigned to deep and shallow cavities respectively. In Fig. 8b, for instance, negative 

values on  axis indicate deep cavities, i.e. warm colour (red), and  indicates zero cavity (any point on X-Y 

plane), i.e. cold colour (blue). 

The cavity growth maps for different stages of the test can be compared together to monitor the fracture 

development pattern. An important factor in achieving high quality cavity growth maps is the resolution of the scan. 

If the resolution is equal or less than the fractures aperture in the model, some of the fractures would not appear in 

the point cloud. For example, if the laser scanner has the resolution of  mm, fractures with aperture of  mm or less 

cannot be modelled appropriately. 

3.5.2. Examples cavity growth mapping results 

The introduced cavity growth mapping technique has been used for the first time in physical modelling of a 

mining-related problem. The colour coding of the cavity growth map makes it possible to investigate the changes in 

fractures size and aperture by comparing two stages of the model. Figs. 9a and b indicate that the depth and 

aperture of the fractures above the upper panels in both examples are severely different in stage one and two.  

The crack propagation pattern and the influence of one extraction on the existing cracks around another 

extraction are of great importance in mining engineering. It can be seen that in both examples, fractures in 

overburden in the area above and close to the overlapping parts of the panels become closed after the stage two for 

both models (Figs. 9a and b). It is also visible that areas above the outer parts of the upper panels in both models are 

less altered than the area above the overlapping panels.  

3.6. Hybrid TLS-DIC technique 

Producing the colour coded displacement contours of a surface of the model from the point cloud, similar to 

what the DIC method can produce, is prone to error, extremely time consuming and in many cases impossible to 

perform. On the other hand, the ground surface vertical deformation contour produced by TLS has significantly 

better accuracy than the DIC output. However, by combining these two methods, a highly accurate ground surface 

vertical deformation and a full-field substrata movement profile can be achieved. By using image editing programs, 

the ground surface deformation contour by TLS and the DIC substrata movement profile can be combined to 

produce a 3D view of the whole model’s subsidence profile (Fig. 10a). This hybrid approach is easy to perform in a 

timely manner and at the same time provides engineers with an accurate 3D illustration of surface subsidence 

profile and substrata movement pattern. Also, the combined view of the displacement contour of both examples 

show that the laser scanner ground surface deformation and DIC measurements agree well.  

3.7. Comparison of different measurement techniques 

One of the advantages of using various measurement techniques is that they can be used for cross-checking 

and elimination of possible errors that may occur during the data collection. Fig. 10b illustrate that all the three 

measurement methods correlate resonably well in measuring the surface vertical deformation profile. The 

photogrammetry and laser scanner output are commonly more accurate than the optical transducers. This is 

because of the set-up of the model test and that the optical transducers are not fixed in one location and they need 

to be relocated on the sliding bar to monitor number of target points (Fig. 1). This make them vulnerable to 

vibrations and thus less accurate measurement.   



4. Physical modelling protocol 

The proposed combination of measuring devices and the set-up of the physical test explained in the previous 

sections provide researchers with a variety of output parameters. Each measurement method monitors specific 

ground subsidence parameters used by subsidence engineers. The DIC method can produce full-field displacement 

map of the model while photogrammetry can extract accurate displacement measurement for all the target points 

on the model surface. In addition, dynamic subsidence measurement by optoNCDT becomes extremely useful at the 

time of performing the physical modelling and can produce real time displacement readings on desired points. It can 

as well be utilized to determine an appropriate time for data taking at the end of each stage of the test. The new 

method of cavity growth mapping can precisely illustrate the fracture growth pattern around an underground 

excavation. With high-tech laser scanning devices, performing a close range 3D scan of the model test with the 

resolution of a fraction of a millimetre is possible in a timely manner. This provides engineers with the ability to 

monitor the finest cracks with width of less than 1 mm on the model surface at different stages of the test and 

produce a detailed map of the fracture propagation around an underground excavation. 

The combination of these measurement devices, together with other available monitoring techniques, can 

also be used in studying various mining-related problems. Various data acquisition devices and methods of analysis 

can be utilized to acquire a range of output parameters. The decision to choose appropriate monitoring devices and 

method of analysis rely heavily on the purpose of the study. A physical model can be constructed based on the 

similarity theory rules with suitable material properties, size and boundary conditions. Then appropriate data 

acquisition devices and analysing techniques can be selected in accordance with the role they play in meeting the 

aim of the study. Under this process only, physical modelling technique would serve to tackle an issue in an efficient 

manner. Fig. 11 shows a physical modelling protocol for mining-related problems based on the previously published 

works (Table 1) and introduced methods in previous sections. 

In addition to the purpose of a study, choosing suitable measuring device depends on other factors, such as, 

the quality of the output, accuracy and processing time. These factors can be significantly different between each 

method. For example, to monitor the cavity growth and failure/cracking process, 3D laser scanner, Acoustic Emission 

(AE) measuring system and infrared thermography technique can be used. The signal from AE measurement system 

can depict the transition from elastic to plastic. It can also show the occurrence of local cracking around discrete AE 

sensors at different times [23]. But, AE measurements are unable to produce an illustrative output. Infrared 

thermography requires complicated calculation process [21]. The cavity growth mapping with 3D laser scanner can 

precisely monitor full-field cracking and caving process in a timely manner, however it cannot show the failure areas 

as clear as the AE measuring system.  

Another factor that should be considered in designing an experimental set-up is that some of the methods 

are able to produce secondary outputs. For instance, photogrammetry can be used to derive full-field displacement 

contours with extra effort if sufficient target points are placed on the target surface of the model. Photogrammetry 

can also be used for monitoring cracking by visual inspection of the photographs at different stages of the modelling. 

However, achieving secondary outputs are deemed to increase the computational cost and effort.  

By means of the physical modelling protocol shown in Fig. 11 one could determine suitable measures, which 

can produce the desired parameters, and address the purpose of a study. For example, to study the caving process 



around an underground working panel, researchers would need to measure stress, monitor failure and crack 

propagation patterns in the surrounding rock (see the connections between red and blue parts in Fig. 11). To achieve 

this, stress/strain gauges could be used to measure stress along with the laser scanner, AE measuring system or 

infrared thermography for failure and crack propagation monitoring (see the connections between blue and green 

parts in Fig. 11). Accuracy, analysing time and discrete/full-field measurement output of these devices also need to 

be considered in order to obtain the most suitable output. 

5. Further application of the physical modelling protocol 

The proposed physical testing protocol is believed to have broad application in physical modelling of mining-

related problems. The monitoring system of combination of photography, optical transducers and TLS, together with 

dynamic subsidence measurement, photogrammetry, DIC and cavity growth analysing methods has the ability to 

monitor the surface and subsurface displacement profile for a vast area related to underground mining and 

tunnelling. By utilizing number of modifications to the proposed physical modelling set-up, many other mining-

related issues can be physically modelled. For instance, optoNCDT devices can be used in monitoring the 

convergence or displacement on inner borders of an underground excavation by installing them on a standing pillar 

and pointing the light beam on the surface of the excavation (Fig. 12). With this set-up, real time dynamic 

deformation of the excavation’s surface during the testing can be measured. The in-situ stress condition can be 

modelled by applying surface load on each side of the frame. If surface subsidence needs to be investigated, 

optoNCDT devices can be installed on a sliding bar and dynamic surface subsidence measurements can be captured. 

Target points should be placed on the front and top surface of the model for proper photogrammetry analysis. 3D 

TLS and a digital camera must be placed in front of the model and close to the centre of the model to reduce the 

image distortion. The proposed physical modelling protocol has no restriction in using strain/stress gauges. These 

can be readily installed within the material without interfering with other measurement devices.  

The proposed protocol is particularly useful for surface and subsurface deformation analysis after any type 

of underground excavation or mining activity. Some examples of various applications of the proposed testing 

protocol include:  

 Shallow tunnelling displacement and associated surface displacement;  

 Tunnel face/roof failure and associated surface displacement;  

 Single and multiple-seam mining substrata deformation, crack propagation and subsidence analysis;  

 Cavern stability analysis.  

6. Conclusions 

Application of some recent optical and laser based measurement devices together with number of data 

analysis methods for physical modelling of mining-induced subsidence have been presented in this paper. Two 

examples of physical modelling of multiple-seam mining-induced ground subsidence are modelled and appropriate 

parameters are recorded using a digital camera, an Optical Non-Contact Displacement Transducer (optoNCDT) and a 

3D Terrestrial Lase Scanner (TLS). With the proposed physical test set-up and data interpretation methods, authors 

were able to perform and obtain: 

 Photogrammetry analysis– discrete vertical and horizontal displacement measurement at various points 

 Digital Image Correlation (DIC) analysis – a full-field substrata displacement measurement 



 Dynamic surface subsidence measurement by use of optical transducers 

 Surface subsidence measurement by 3D TLS, photogrammetry and optical transducers and 

 Cavity growth mapping by means of 3D scan of the model. 

In addition, a physical modelling protocol has been introduced that takes into account number of commonly 

used monitoring techniques together with newly developed methods. This includes an innovative approach of cavity 

growth mapping, which has been used for the first time in modelling a mining related problem, and dynamic surface 

deformation monitoring. 

By using the proposed protocol, researchers would be able to choose an appropriate combination of 

monitoring devices in accordance with the purpose of a study.  The precision of each method, analysing time and the 

ability to produce full-field/discrete readings are also considered in the proposed protocol. It is hoped that this 

protocol would assist researchers in the field of underground mining and tunnelling with a practical and easy way to 

configure an appropriate experimental set-up and achieve the desired output.  
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Measurement devices and 
techniques 

Acquired parameter Purpose of model Model material Authors 

Photogrammetry Subsidence curve, 
fracture propagation, 
principal strain 

Subsidence 
analysis 

Sand-plaster-water Whittaker et al. [3, 19] 
and Whittaker and 
Reddish [8] 

Photogrammetry Displacement, caving 
process 

Multiple-seam 
stability 

Sand-plaster-water Wold [10] 

Photogrammetry - strain 
gauges - flexural gauges 

Displacement, stress, 
loads on lining 

Tunnel stability Sand, talcum, 
gypsum, etc. 

Piede [24] 

Load cells - laser displacement 
sensor 

Earth pressure, 
surface settlement 

Distribution and 
variation of the 
earth pressure 
and surface 
settlement after 
tunnelling 

Aluminium  rods 
and blocks 

Park and Adachi [20] 

Mini-multi-point 
extensometer - strain gauge - 
optical fiber sensor meter - 
acoustic measurement system  

Displacement, yield 
zones, cavern inner 
destruction 

Stability of an 
underground 
cavern  (3D) 

Material similar to 
the original rock 

Li et al. [1] 

Photogrammetry (VMS and 
EngVis software) 

Displacement Pile-soil-tunnelling 
interaction 

Multi-sized 
aluminium rods  

Lee and Bassett [7] 

Photogrammetry - strain 
gauges 

Stress distribution Top coal caving Sand, gypsum, lime 
and loess 

Xie et al. [25] 

Photogrammetry - dial gauges Displacement Rock deformation 
around block 
caving extraction 

Barite powder, iron 
powder, glycerol, 
etc. 

Ren et al. [6] 

Infrared thermography - 
strain measurement 

Fractured and failure 
zones 

Roadway tunnel Gypsum, water He et al. [21] 

Photogrammetry Displacement Subsidence 
analysis 

Aggregates, lime 
and gypsum  

Huayang et al. [26] 

Photogrammetry - 
displacement sensors  

Displacement Gas in multiple-
seam 

Plaster, grits, soot, 
etc. 

Liu et al. [27] 

Photogrammetry - stress 
sensors 

Displacement, ground 
stress, failure shape 

Tunnel stability Barite, sand, 
plaster, etc. 

Huang et al. [28] 

Photogrammetry  -LVDT Displacement, caving 
process 

Longwall caving 
and water flow 

Sand, barite, 
gypsum, etc. 

Sui et al. [12] 

Laser scanner Surface settlement Subsidence 
analysis (3D) 

Gravel Thongprapha et al. [22] 

Photogrammetry - wire strain 
gauges - steel wire pressure 
cells   

Fracture 
development, 
structural stress, rock 
pressure 

Tunnel stability Clay, slag and sand  Lei et al. [29] 

Photogrammetry - FBG - 
multi-point extensometer 

Displacement, stress, 
rock failure 

Roadway tunnel 
stability 

Siltstone, silica 
aggregates, gypsum, 
etc. 

Li et al. [30] 

Photogrammetry - strain 
gauges - displacement meters 
- Acoustic emission (AE) 

Displacement, strain, 
cracking behaviour 

Tunnel stability Barite powder, 
sand, expansion soil 

Lin et al. [23] 

 

Table 1



 
Density 
( ) 

Strength 
( ) 

Geometry 
( ) 

Real case    
Model test    
Similarity constants    

 

Table 2



Device Distance to 
model 

Measurement 
precision 

Output 
type 

TLS ~2m ~2mm at m digital-3D 

Camera ~2m 10.2 MP  digital-2D 

optoNCDT ~0.02-0.2m 0.001mm digital-1D 

 

Table 3
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