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The following content is taken, in part, from the PhD thesis of the primary author, Matthew Leonard.

Sodium nitrite in dimethylformamide substitutes nitro for bromine alpha to an amide carbonyl in high
yield at a tertiary site. Hammett plots show a strongly positive p value (+0.67), indicating a negatively-
charged transition state, in contrast to the typical Sy1/Sy2 mechanism domain for Kornblum substitutions.

Introduction

The Kornblum substitution is the replacement of a halogen on
an organic compound by a nitro group by using sodium nitrite
(NaNO,) as a nitrite source and DMF as solvent. The reaction
proceeds in high yields at room temperature and does not
require anhydrous conditions. It was discovered and widely
characterized by Nathan Kornblum (Figure 1) at Purdue
University, Indiana in the 1950s [1, 2, 3].

In 1991 Noboru Ono published a textbook that summarized the
key methods for the preparation of nitro compounds [4]
followed by an updated version in 2001 [5] (while writing this
book, Ono collaborated with Kornblum, who was late in his
career and died shortly after). Ono named the substitution “the
Kornblum reaction” in both the 1991 and 2001 versions [4, 5].
However, in 2002 the term “Kornblum reaction” was used by
Mamedov et al. to refer to the Kornblum oxidation [6], which
is a different reaction that was also elucidated by Kornblum.
Yet a third reaction has also been named after Kornblum,
namely the Kornblum-DeLaMare rearrangement [7]. We

R\/X

NaNO2

propose that the X—NO, substitution that was characterized by
Kornblum be described as the ‘Kornblum substitution’. We
here discuss and further characterize the Kornblum
substitution.

Figure 1. Nathan Kornblum

The Kornblum substitution was summarized by Ono and others
as occurring on primary and secondary halogeno compounds,
but not tertiary where a HX elimination product is consistently
observed [4, 5, 8, 9] (Figure 2). Kornblum’s original
observations [2] support this view.
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Figure 2. The Kornblum substitution
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However, we have found that the Kornblum substitution does
proceed on a tertiary centre that is alpha to an anilide carbonyl
group. We have hence used the Kornblum substitution to
prepare an o-nitroisobutyranilide (2) in order to perform an

O

HN
Br

NaNO,

alternative synthesis of the hydantoin anti-baldness compound
RU58841, a process that we published in 2014 [10]. The
reaction was simple and performed in high yield with low cost
materials (Figure 3).
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Figure 3. An a-nitroisobutyranilide from an a-bromoisobutyranilide

We had discovered that it was possible to do a Kornblum
substitution on the a-bromoisobutyranilide (1) when we
observed that the product of 1 treated with NaNO, in DMF
appeared as an M—89 signal on a GC-MS. We found that an
aryl isocyanate (Ar-NCO) was forming with the loss of
2-nitropropane under the high temperature conditions of the
GC-MS injector port, but that at room temperature the
a-bromoisobutyranilide Q) readily formed the
a-nitroisobutyranilide (2), which could be crystallized by the

3 O

addition of water.

We note that among Kornblum’s original writings on the topic,
in one paper Kornblum described the substitution as occurring
on primary and secondary carbons alpha to a carbonyl [11]. He
subsequently placed a patent on this process for the preparation
of o-nitroesters from a-haloesters which included an example
of a tertiary nitro compound — the preparation of ethyl
a-nitroisobutyrate (4) from ethyl a-bromoisobutyrate (3) [12]
(Figure 4).
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Figure 4. Preparation of ethyl a-nitroisobutyrate from Kornblum’s 1957 patent [12]

The example in this patent of a tertiary halo—nitro substitution
alpha to a carbonyl seems to have remained unnoticed; in 1971
Sayo et al. used a longer four-step synthesis to achieve a library
of a-nitroisobutyranilides [13], which could have been done in
two steps if they had used the pathway shown in figure 3.

The Kornblum substitution was subsequently performed on a
tertiary alpha carbon twice more by other workers, neither of
whom commented on the novelty of the substitution’s
occurring at a tertiary halo carbon. In 1957 Kissinger and
Ungnade [14] stated that they followed Kornblum’s method
from his 1956 paper [2] to prepare ethyl a-nitroisobutyrate (4)
from ethyl a-bromoisobutyrate (3); in 1977 Gelbard and
Colonna [15] carried out the Kornblum substitution on tertiary
halo ethyl esters in order to characterize the effectiveness of a
new type of nitrite resin. These three reports have gone
generally unnoticed by the organic synthesis community; later
publications in the 1990s and 2000s still regarded the
Kornblum substitution as not proceeding on a tertiary centre
[16-18]. Kornblum spoke entirely in terms of Sy2 and Syl
mechanisms, and the general belief is that a bromo-nitro
substitution will not proceed at such sites due to steric

hindrance on the tertiary carbon, which impedes an Sy2
pathway [19]. It does encourage Sy1, but the nitrite ion is an
ambident nucleophile [20], and Syl substitution by nitrite is
known usually to involve nucleophilic attack by the harder
oxygen atom (acting under charge control [21]), giving an alkyl
nitrite product (R-O-N=0) [8]. Sy2, on the other hand, sees
nucleophilic attack occur from the softer nitrogen atom (under
orbital control) to furnish an alkyl nitro compound (R-NO,)
[8]. The concept that an Syl or an Sy2 process will control the
product of an attack by an ambident nucleophile has been
called “Kornblum’s rule” [20].

A 1997 paper by Glushkov and co-workers [22] shows
evidence that Kornblum’s rule does not apply to tertiary halo
carbons with an alpha carbonyl. The authors expected that
Kornblum’s rule would see thiocyanate ions (SCN") attacking
the carbocation from a tertiary halo compound in an Syl
manner to form an isothiocyanate (R-NCS), but instead from
their substrates they observed thiocyanate products (R'-SCN)
(Figure 5), which are the expected result of an Sy2 substitution
(attack by the more polarizable atom on the ambident
nucleophile).
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Figure 5. Chloro-thiocyanate substitution as observed by Glushkov et al. [20]

Glushkov et al. postulated that the destabilizing effect of an
alpha carbonyl prevented the formation of a carbocation and
caused their substitution to occur by an Sy2 process [20]. Their
language, like many others’, suggests that they consider Syl
and Sy2 to be the only two options.

It has been frequently noted that nucleophilic substitution
reactions alpha to a carbonyl show atypical properties [23, 24].
They are, in particular, unusually fast [25-31], though how
much so depends on the nucleophile and other circumstances
[32—40]. Various mechanistic reasons have been proposed for
this. Some authors argue that addition takes place initially at
the carbonyl, followed by either a 1,2-shift of the nucleophile
to the alpha position [41-47], or, alternatively, formation of an
epoxide that reacts with further nucleophile at the alpha
position [40, 48—55]. Other authors reject this and contend that
the reacting nucleophile makes an ordinary SN2-like attack at
the carbon bearing the leaving group, but is assisted by
interaction with carbonyl 7* antibonding orbitals that
temporarily accept electron density (often described as
conjugation with the p orbitals or the @ system, or as an
enolate-like transition state)[34, 37, 38, 56—65], or alternatively
by purely electrostatic effects [23, 66—69]. More recently a
halfway position between these two extremes has been urged:
that the attacking nucleophile bridges the carbonyl and the
alpha carbon (and, by the principle of microscopic reversibility,
the leaving group must also bridge both positions) [70]. This

Results and Discussion

In order to prepare a library of a-bromoisobutyranilides,
anilines of varied substitution were selected with both greater
and lesser electron withdrawing capacity than R = phenyl and
also aniline itself. The library of a-bromoisobutyranilides were
then each exposed to a 10:1 molar ratio of sodium nitrite to

mechanism has been supported by recent computational studies
[71-73], some of which suggest that there is a bifurcation in
the potential energy surface after the transition state, a situation
in which conventional transition state theory breaks down and
molecular dynamics may become important [74—77]. It has also
been suggested that substitution is by Sy1 reaction, and that this
is accelerated by neighbouring group participation by the
carbonyl, creating a 2H-oxirenium cation [78], or by prior
enolisation on the other side, creating an allylic system [79];
other suggestions include via a carbene produced from an
enolate [67], and through nucleophilic attack at the halogen
[32, 41, 67]. Evidence for each mechanism, and against other
mechanisms, has been found by different workers in different
reactions, and many writers give evidence that different
mechanisms dominate in different circumstances [23, 32, 55,
73].

In most papers Kornblum generally described the substitution
as Sy2, but in one paper he described it as more Sy2 than Syl
in nature, but with properties of both [80]. As the substitution’s
proceeding on a tertiary centre is at odds with Kornblum’s
stated Sy2 mechanism, we suspected that a different
mechanism was operative. We have therefore prepared a library
of a-nitroisobutyranilides to show prima facie trends of the rate
of Br—NO, substitution, and to prepare Hammett plots from the
rate data to indicate any charge in the transition state that would
hint at the mechanism.

reactant compound using DMF as solvent at ambient
temperature. The rate of conversion was monitored by taking
hourly aliquots for GC-MS analysis. It was observed that the
more electron-withdrawn the compound, the faster the bromo-
nitro substitution took place.

Table 1. a-Bromoisobutyranilides monitored for their rate of Br—NO, substitution

Bromo compound Nitro compound R-Substituents
o 1 2 p-cyano-m-trifluoromethyl
5 6 H
HN 7 8 p-methyl
9 10 0-carboethoxy
/ Br 11 12 o-nitro
’ 13 14 m-nitro
N \ 15 16 p-nitro
R 17 18 0-bromo
19 20 o-chloro

3 | This journal is © The Royal Society of Chemistry [2015]
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O 21 22 m-chloro
23 24 p-chloro
HN 25 26 0-methoxy
27 28 m-methoxy
/ Br 29 30 p-methoxy
’ 31 32 benzyl in place of phenyl
\ \ 33 34 n-butyl in place of phenyl
R 35 36 2,4-dinitro

As well as a-bromoisobutyranilides, which have an aryl group
beyond the amide nitrogen, two compounds with an alkyl
group in place of the aryl, n-butyl and benzyl, were also
prepared, and found to undergo bromo-nitro substitution but at
a much reduced rate compared with the aryl compounds. An
additional a-bromoisobutyranilide with 2,4-dinitro substitution
(35) was not characterized due to extreme difficulty of isolation
but its rate of Br—NO, substitution to give 36 could be easily
monitored. It is therefore included in the graph to show the
additional increase in rate when the compound’s R group had
the electron withdrawing capacity of two nitro groups and, as
expected, it proceeds much faster than the mono-nitros and the
CN/CF; substituted compounds (1).

Some general trends in the bromo-nitro substitution were

immediately apparent before any calculations were applied to
the data. The first principle that overrides all others is that the
reaction goes faster when the R group is more electron
withdrawing, no matter how the R group is configured.
Changes such as switching between ortho, meta and para
substituted groups have a comparatively small effect on rate.
An overview of the rate data is shown in Figure 6. The %
substrate is plotted logarithmically: most compounds showed
close to pseudo-first order behaviour. The sodium nitrite was
present in ten-fold excess; it has limited solubility in DMF and
excess solid was present. The solution was rapidly stirred,
keeping the nitrite concentration constantly near saturation.
Approximate straight lines of best fit are shown.

Bu O Bn 4'MEC5H4 X 4'MGOC5H4
Substitution rates 3-MeOCeHs 4 CeHs 4-CICeHa O 2-MeOCeHa
+ 3'C|CGH4 2'C|CsH4 Z'BrCsH4 & 2'Et01CC5H4
3-NO,CeH,4 © 4-NO,C¢Hs @ 4-CN-3-CF3CeH3; A 2-NO,CgH4
® 2,4-diNO,CeH3

3-&

diNOzC6H3

2-NO,C¢Ha
1 T T

Ha ) -MeOCeHs

4-MeOC¢H,

\
C5H5 \ A

0 50 100

time (h)

150 200 250

Figure 6. Substitution rate for tertiary a-bromoisobutyranilides
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It was observed that reactions of ortho substituted
a-bromoisobutyranilides proceeded faster than the equivalent

substituent on the aryl ring closer to the site of halo-nitro
substitution facilitates the substitution through some form of

meta or para isomers for the three substituents, methoxy, steric acceleration. This is shown in figures 7-9.
chloro and nitro, for which we had data. It may be that a
100 % 100 4
‘ “ 1

90 Methoxy 90 ) Nitro

a0 20 %

. —— 25 — 26 (ortho) o] — 1 — 12 (ortho)
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Figure 7. Substitution rate for methoxy substituted a- Figure 9. Substitution rate for nitro substituted a-
bromoisobutyranilides bromoisobutyranilides
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Figure 8. Substitution rate for chloro substituted a-

bromoisobutyranilides

The rate varied much less between the three chloro substituted
compounds than it did for the nitro and methoxy compounds.
The diference could be steric, or perhaps due to nitro and
methoxy’s capability for hydrogen bonding; both can bend with
free rotation and contain free electron pairs.

However, one exception to the first principle of increased rate

Br—NO, Substitution at low nitrite concentration

Our reaction conditions used saturated sodium nitrite in DMF.
To investigate the dependence of the rate on nitrite
concentration, we sought to increase the solubility of nitrite
ions in DMF by using a co-solvent. Kornblum reported that the
addition of 8% urea to the DMF dissolved far more NaNO,
which further increased the rate of substitution [11]. When we
tried the reaction this way we observed a slight reduction in
rate, and saw no increase in solubility. We are puzzled by
Kornblum’s use of urea. He may have intended it to react with
free nitrous acid [81] (which he discussed as responsible for the
degradation of the desired nitro products), but there may have
been reaction with some nitrite.

Therefore we instead used a low concentration experiment to
compare the substitution rate of 1 — 2 in a saturated solution of
NaNO, in DMF with rates observed in solutions that contained
only 75% and 50% the concentration of a saturated NaNO,

with more electron-withdrawing R groups is that bromo in the
ortho position gives significantly faster reaction than chloro in
the ortho position. As bromo and chloro are quite similar
except for size, it appears that in this case we are observing
steric facilitation of the nearby substitution by the larger bromo
group managing to outweigh the normally stronger effect of
rate increasing with electronegativity.

This contrasts with reported observations that ortho substituted
phenacyl bromides are less reactive in nucleophilic substitution
by pyridine or t-butylamine [41, 42, 65].

solution. The reaction rate was lowered under these conditions
(Figure 10).

100 \

95

1 - 2 Reaction rate by nitrite concentration

e0

o
o

% start material
»
o

75 —— low nitrite ~ T T
— 1
70 —+— med nitrite e Tl
—=— high nitrite -
65 H“‘-\
-
50
o 1 2 time(h) 3 a 5

Figure 10. Effect of nitrite concentration on 1 — 2 reaction rate
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This change in rate is evidence against an Sy1 mechanism as
the rate-limiting step of an Sy1 reaction would be the formation
of a cationic intermediate, independent of the presence of

Hammett plots

First-order plots of In(%substrate) against time were prepared
for the reactions of the compound library. The slope of these is
—k’, where k' is the pseudo-first-order rate constant. As has
been mentioned, a dilution experiment showed that the reaction
rate depends also on nitrite concentration, so these reactions are
only pseudo first order due to the nitrite concentration’s
remaining effectively constant throughout the reaction. The
nitrite  concentration was the same in each experiment:
~5 mmol of the a-bromoisobutyranilide reactant (1-2 g) with
NaNO, (4.00 g, 44.9 mmol) in 40 mL of DMF.

Data and plots for individual compounds are shown in the ESI,
with linear regression analysis. The linearity of these first order
plots is reasonably good, except for the fastest reactions,
especially 1 — 2. In many cases, however, there was some
noticeable deviation from linearity or accuracy at the longer
time scales and using the earlier portion of the data (never
fewer than nine data points) gave more accurate linearity and
improved the R? value considerably (these are shown in the
ESI). As well as the usual decline of analytical accuracy at
lower concentrations, a small amount of the formed nitro
product may degrade by further reaction with nitrite ions via a
nitroso intermediate to produce the alkyl nitrite by-product (a
process described by Kornblum [82]).

The k' values obtained from these graphs for the meta and para
substituted anilides were used to construct Hammett plots. The
meta examples, when plotted (as logyo k'/ k'yy) against ordinary
Ometa Values [83] (which are based on K, values for benzoic
acids), gave a reasonable fit (R? = 0.97) and showed a positive
p value of 0.70, indicating that the transition state develops a
negative charge relative to the starting species in the rate-
determining step.

The para substituted compounds are more complex to consider
because ‘through conjugation’ is possible, where a canonical
form can be drawn that puts the charge right at the para
position and potentially on the substituent itself. A Hammett
plot against ordinary ¢ values (from benzoic acid K, values)
gave a fit that was not terribly good (R? = 0.92). A plot using ¢*
values [84] (based on benzylic Syl solvolysis, with a positive
charge next to the ring), which have strong through-conjugation
effects with electron-donating substituents gave a much worse
fit (R? = 0.76). We then tried o~ values, * originally based on
phenol K, values, so a negative charge next to the ring and
strong through-conjugation effects with electron-withdrawing
substituents: this gave the best fit of all (R> = 0.99) and a p of
+0.67: in the phenol acidity standard p is 2.01.

! We have normally used the preferred o, values of Hansch, Leo and
colleagues [85, 86]. However there is disagreement concerning the best
value of o, for methoxy. Hansch et al. prefer —0.26, which is
essentially o, (—0.27); but this and similar values are only obtained
when the anilinium acidity is used as the basis of measurement. When
using aqueous phenols, p-methoxyphenol’s acidity requires a ¢, in the
range —0.10 to —0.135 [87-92], and these values give the best fit to our
data.

nitrite ions. This clearly cannot be an exclusive Syl process
and we can declare that the nitrite must be taking part in the
rate-limiting step.

This result implies that not only does this reaction have a
negative charge on the transition state, but that charge can
readily conjugate onto the ring.

A combined Hammett plot of both meta and para substituted
compounds, USiNg G meta and G para Values, 2 gave R? = 0.992
and a p value of 0.68 (Figure 11).

2 We used Chuchani and Frohlich’s values of 6, and o p for methoxy
[92] and Zeng’s values of ¢  for chloro and nitro [93]. The remaining

o p values are from Hansch, Leo and colleagues [85, 86].
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Figure 11. Hammett plot

The positive p implies a mechanism in which the nucleophile
attacks first, before the leaving group leaves. One might think
that the large p and the correlation with ¢~ implies the negative
charge that forms must be on the nitrogen, but this isn’t

"

.0 R
C—N B E———
R/

necessarily so. In anilides there is strong m character in the
nitrogen—carbonyl bond and therefore the whole group has a ©
system that is planar with and conjugated with the aromatic
ring’s 7 system (Figure 12).

o,
fo) R

Figure 12. Planar and conjugated anilide 7 system

Therefore the negative charge that forms could be on the amide
carbonyl, or on the position a to the carbonyl, as even there it
will be conjugated with the ring (cf hydrolysis of cinnamic
esters, which has p = 1.27.).

If the mechanism started with deprotonation of the amide NH,
where would it go next? One can only imagine forming an
a-lactam, which would surely break open at the carbonyl. In

any case, that mechanism wouldn’t be available when the
starting compound was an a-bromoester, and we know they
also react [1, 12]. Hence it appears that it must start with at
least partial addition at the carbonyl, or formation of an enolate.
This provides several possibilities, each of which has several
sub-possibilities:

7 | This journal is © The Royal Society of Chemistry [2015]
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1. In the rate-determining step nitrite adds to the carbonyl as nitro, forming a negative oxygen. The carbonyl re-forms pushing the
nitro to do a 1,2-shift onto the adjacent atom (like a semipinacol rearrangement), displacing the halogen (which may leave first to
give either a carbocation or an epoxide). [cf. 41-47].

SIANC Y O
HT . HT& . HT&
C)
R ¢ Br —B NO,

Br R r R

Figure 13. Possible mechanism number one

2. In the rate-determining step nitrite adds to the carbonyl as nitrite, forming a negative oxygen. The carbonyl re-forms, pushing the
nitrite nitrogen onto the adjacent atom in a four-centre reaction and displacing the halogen (which may leave first to give either a
carbocation or an epoxide).

- N=0O

(§ vos S 0

“T& o “T& “T&
)

R Br R (Br —Br R NO,

Figure 14. Possible mechanism number two

3. The negative oxygen formed in possibilities 1 or 2 could form an epoxide by displacing the adjacent bromide (which may leave
first), then more nitrite could add at the other side of the epoxide. The carbonyl re-forms, pushing off the first nitrite. [cf. 40,

48-55].
O:N O OoN O_> OZN) -NO,
Br \_O
HN —— HN 2 —
I "
R R
ONO o~ -
° ONQ 0 ONOY -NO,
Br 0]
i o AN — T X
| o |
R —Br R |
R
0
—>  HN
R NO,

Figure 15. Possible mechanism number three
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4. The nitrite nucleophile bridges the carbonyl and the alpha carbon. Some electron density temporarily resides in the carbonyl n*
antibonding orbital. The nucleophile finally displaces bromide in an Sy2-like attack [cf. 70—-73].

Q “NO;

— HN

R

——
O
NO>
| —_— HT
' €]
. —Br
Br R NO,

Figure 16. Possible mechanism number four

5. The rate-determining step is nucleophilic attack by nitrite (through nitrogen) at the bromine, with enolate as leaving group and
forming nitryl bromide. The enolate formed could then react with the nitryl bromide to form the nitro product.

i,

HIT ‘\ - =
R Br“\
“NO,
@)
S
—Br R NO,

o:) Enolate o

HN X <> HN e

Figure 17. Possible mechanism number five

None of these options can be ruled out completely. The
plausibility of mechanism 4 is supported by the molecular
computations on reactions of (non-tertiary) a-halo carbonyls
with nucleophiles [71-73], and by an observation of
stereospecific substitution with second-order kinetics at a
tertiary centre alpha to a carbonyl [94]. The report from
Edwards and Grieco for a long time remained an isolated
witness, but is now joined by recent evidence of definite
stereoinversion in tertiary o-chloroesters reacted with azide,
thiols and fluoride [95, 96]. The bridging lowers the energy of
the transition state, and, by delivering the nucleophile to the
right position, may overcome the steric problems of tertiary
Sn2. The p value is similar to the values (ca. 1.05) obtained
from reaction of phenacyl chlorides with carboxylate, which
were interpreted as supporting a bridging mechanism [70],
though the same paper references other substitutions of
phenacyl halides in which the p value was much less.

However mechanism 5 is the only mechanism of these in which
a full negative charge is directly part of the m system,
supporting maximum through-resonance. Although
nucleophilic attack on halogen as a means to substitution was
considered by some early researchers [32, 41, 67] it rarely
appears in modern papers, though it is very similar to what
happens in the specific reduction of a-halo carbonyls by soft
nucleophiles. [97]. For example, it is commonly accepted that
the a-halogenation of carbonyl compounds proceeds by the
reaction of enol or enolate with molecular bromine, displacing
bromide anion [cf. 98, 99]. This reaction is known to be
reversible, so the principle of microscopic reversibility requires
that the reduction of a-bromo carbonyl compounds by reaction
with bromide occur by attack by bromide at the bromine, as has
been pointed out by Altschul and Bartlett [100] and Newman
[101]. Nitryl bromide is known to form and last for up to 30
min under some conditions [102].

RSC Advances, [2015], [vol], 00—00
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Br—NO, Substitution in the absence of O,

It has been suggested to us that as the reactions were carried
out under air this substitution may be proceeding by means of a

Conclusions

The Kornblum substitution has been robust from its inception
and the few rules that govern it are widely known; mainly that
it proceeds with primary or secondary but not tertiary carbons.
We have re-addressed these rules for the examples shown here

O

N3N02

radical mechanism involving elemental oxygen (O,). A later
experiment ruled out this proposal as the reaction proceeded at
the same rate in the absence of oxygen.

where the substitution is seen to proceed on tertiary
halo-carbons that are a to a carbonyl (Figure 17), albeit
probably by a different mechanism to the standard Kornblum
substitution.

O

HN

| DMF, RT |
R

R X

NO,

Figure 18. Kornblum substitution on a tertiary a-carbon

Many earlier researchers discussed substitution mechanisms in
terms of a comparison between Syl and Sy2, a dichotomy that
implied that these are the only two possibilities [103, 104], and
Kornblum himself wrote this way when discussing the reaction
presented above [1, 22, 105]. However, this type of Kornblum
substitution does not behave like the usual Syl or Sy2 and it
adds to the growing repertoire of substitutions that do not fit
into the simple Sy1/Sy2 model that earlier researchers had
leaned upon [106].

Further, the reaction represents a good way to prepare alpha-
nitro ketones, esters and amides which are versatile building
blocks in organic synthesis as the nitro group may be reduced
to an amino group. The preparation of our library of
a-nitroisobutyranilides using the Kornblum substitution
represents a far more convenient route to these compounds than

Experimental section
General

IR spectra were measured from 4000-650 cm * using a Varian
1000 FTIR spectrometer with a diamond Attenuated Total
Reflectance (ATR) attachment. Reaction rate was monitored
using a Varian CP-3800 gas chromatograph equipped with an
SGE Analytical Science BPX5 column (column width
0.25 mm, film width 0.25 pm) which was adjoined to a Varian
Saturn 2200 GC/MS/MS. Accurate mass spectra were
measured using a Waters GCT Premier HR-TOFMS equipped
with an Agilent 7890 GC column. NMR spectra were obtained
using a Bruker Avance 300 MHz spectrometer. Chemical shifts

what has been reported previously [13]. Ono quoted the
Kornblum substitution as high vyielding for primary and
secondary alkyl halides (50-70%), but low yielding (0-5%) for
tertiary alkyl halides [4, 5]. We may now add to this that the
Kornblum substitution is very high yielding (70-99%) for
tertiary alkyl halides alpha to an anilide carbonyl.
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in *H NMR spectra are relative to chloroform at 7.24 ppm; in
3C NMR spectra are relative to the central peak of
deuterochloroform at 77.5 ppm.

Rather than using IUPAC names, we have named the
compounds as a-bromoisobutyranilides and
a-nitroisobutyranilides in order to match the names given to
them by Sayo et al. [13] who have an earlier reported the
synthesis of some of the compounds in this category. Seven of
the a-nitroisobutyranilides prepared by Sayo et al. have been
prepared by our new method. Table 2 compares our measured
melting points to those of Sayo et al.
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Table 2. Comparison of a-Nitroisobutyranilide melting points

o Compound R= m.p. (°C) Sayo et al.[13]
HN 6 H 104-107 104-105
8 p-Me 115-118 115-116
NO, 14 m-NO, 135-136 135-136
=4 16 p-NO, 138-140 137.5-139
| 22 m-Cl 125-128 134.5-136
N \ 24 p-Cl 124-127 121-122.5

R 30 p-OMe 69-71 73-74

Acylation reactions

The library of reactant compounds was prepared by reacting
anilines (or in two cases, benzylamine and n-butylamine) with
a-bromoisobutyryl bromide. All reactions were carried out at
room temperature using ~21.5 mmol (1.5-4 g) of the reactant
amine, dissolved in 1,2-dichloroethane (35 mL). Oven-dried
K,COj5 (3.00 g, 21.7 mmol) was added, then a 5% molar excess
of a-bromoisobutyryl bromide was added last, dropwise. The
flask was sealed and the reaction allowed to stir overnight at
700 rpm. The following morning the solvent was removed by
rotary evaporation, and the residue was partitioned between
ethyl acetate and water. The ethyl acetate fraction was dried
(MgSOQy,), evaporated, and the residue, if solid, recrystallized
from methanol.

p-Cyano-m-trifluoromethyl-a-bromoisobutyranil

ide (1)
p-Cyano-m-trifluoromethylaniline (3.96 g, 21.3 mmol) gave
7029 (21.1 mmol, 99% yield) of pure

p-cyano-m-trifluoromethyl-a-bromoisobutyranilide (1).
Characterization data for 1 are provided in our 2014 publication
[10] where it is given the correct IUPAC name of
“2-Bromo-N-[4-cyano-3-(trifluoromethyl)phenyl]-2-methylpro
panamide”.

a-Bromoisobutyranilide (5)

Aniline (2.00g, 21.5 mmol) gave 4.04g (16.8 mmol, 78%
yield) of pure a-bromoisobutyranilide (5) as white needles that
looked like ground coconut, m.p. 89-92 °C; Ry = 0.54 in 4:1
hexanes/EtOAc, 0.74 in 65:35 hexanes/EtOAc and 0.95 in 1:1
hexanes/EtOAC; IR(cm'l): 3275, 3042, 2993, 2924,
1660 (C=0), 1594, 1551, 1513, 1461, 1401, 1372, 1355, 1318,
1295, 1234, 1187, 1141, 962, 900, 862, 815, 767, 738, 677; H
NMR (300 MHz, 26 mg : 0.4 mL CDCly): & 2.06 (6H, s, CH3),
§7.15 (1H, tt, ArH* J2, J8), §7.36 (2H, tt, ArH® J2, 18),
8 7.54 (2H, dt, ArH?, J 2, J 8), 5 8.46 (1H, br, s, NH); *C NMR
(75 MHz, 137 mg : 0.4 mL CDCls): 5 32.8 (s, C-3a), 5 63.2
(s, C-2), $120.3 (s, C-2), 8 125.1 (s, C-4"), 8 129.3 (s, C-3),
5137.6 (s, C-1"), 8 170.2 (s, C-1); GC-(El) TOF-HRMS: calc’d
m/z for C,1qH,NOBr: 241.0102, observed: 241.0095.

p-Methyl-a-bromoisobutyranilide (7)

p-Toluidine (2.30 g, 21.5 mmol) gave 4.72 g (18.5 mmol, 86%
yield) of pure p-methyl-a-bromoisobutyranilide (7) as little
amber prisms, m.p. 95-98 °C; R¢ = 0.63 in 4:1 hexanes/EtOAc,
0.78 in 65:35 hexanes/EtOAc and 0.93 in 1:1 hexanes/EtOAc;
IR(cm): 3297, 3195, 3032, 3006, 2984, 2919, 1652 (C=0),

1601, 1533, 1512, 1470, 1404, 1319, 1297, 1236, 1193, 1164,
1100, 1022, 1009, 946, 938, 893, 813, 767, 755, 696; 'H NMR
(300 MHz, 35 mg : 0.4 mL CDCl;):  2.05 (6H, s, CH3), 5 2.33
(3H, s, ArCH,),  7.15 (2H, d, ArH3, J 8), § 7.42 (2H, d, ArH?,
J8), 58.40 (1H, br, s, NH); *C NMR (75 MHz, 135mg :
0.4 mL CDCly): 8 21.2 (s, ArCH3), & 32.8 (5, C-3a), & 63.4 (s,
C-2), §120.3 (s, C-2), $129.7 (s, C-3"), §134.8 (s, C-1),
5 135.1 (s, C-4'), 8 170.1 (s, C-1); GC-(El) TOF-HRMS: calc’d
m/z for C4;H14,NOBI: 255.0259, observed: 255.0254.

0-Carboethoxy-a-bromoisobutyranilide (9)

Ethyl anthranilate (3.60 g, 21.8 mmol) gave 6.26 g (20.1 mmol,
92% yield) of pure o-carboethoxy-a-bromoisobutyranilide (9)
as little amber prisms, m.p. 59-61°C; R; = 0.63 in 4:1
hexanes/EtOAc, 0.82 in 65:35 hexanes/EtOAc and 0.95 in 1:1
hexanes/EtOAC; IR(cm™): 3189, 3117, 3076, 2974, 2937, 1696
(C=0), 1680 (C=0), 1605, 1592, 1467, 1449, 1365, 1298,
1271, 1239, 1199, 1170, 1144, 1105, 1086, 1050, 1016, 969,
947, 856, 763, 730, 700; *H NMR (300 MHz, 30 mg : 0.4 mL
CDCly): §1.42 (3H, t, ethyl CHy), & 2.07 (6H, s, CH5), & 4.42
(2H, q, ethyl CH,), § 7.12 (1H, td, ArH* J 2, J 8), § 7.56 (1H,
td, ArH®, J 2, J8), §8.08 (1H, dd, ArH®, J2, J8), §8.70 (1H,
dd, ArH® J2, J8), §11.90 (1H, br, s, NH); *C NMR
(75 MHz, 145mg : 0.4mL CDCl3): 514.4 (s, ethyl CH,),
832.1 (s, C-3ap), 8 60.5 (s, C-2), 5 61.8 (s, ethyl CH,), 5 116.2
(s, C-2", 8 120.5 (s, C-6"), 5 123.2 (s, C-4"), 5 131.2 (s, C-3),
5134.7 (s, C-5", 81414 (s, C-1"), 5 168.3 (s, ester C=0),
81710 (s, C-1); GC-(EI) TOF-HRMS: calc’d m/z for
C13H15NO3Br: 312.0235, observed: 312.0222.

o-Nitro-a-bromoisobutyranilide (11)

o-Nitroaniline (2.90 g, 21.0 mmol) gave 5.83 g (20.4 mmol,
97% vyield) of pure o-nitro-a-bromoisobutyranilide (11) as
bright yellow needles, m.p. 67-70 °C; R 0.61 in 4:1
hexanes/EtOAc, 0.80 in 65:35 hexanes/EtOAc and 0.83 in 1:1
hexanes/EtOAc; IR(cm™): 3320, 3118, 2985, 1701 (C=0),
1606, 1584, 1544, 1496, 1458, 1427, 1391, 1374, 1335, 1268,
1221, 1145, 1112, 1077, 1044, 1009, 945, 891, 862, 787, 742,
681; *H NMR (300 MHz, 32 mg : 0.4 mL CDCly):  2.07 (6H,
s, CHj3), 8 7.23 (1H, td, ArH* J 2, J8), 6 7.68 (1H, td, ArH®,
J2,J8),358.25 (1H, dd, ArH?, J 2, J 8), §8.73 (1H, dd, ArH®,
J2,38),511.34 (1H, br, s, NH); *C NMR (75 MHz, 138 mg :
0.4 mL CDCly): §32.2 (s, C-3am), 860.7 (s, C-2), §122.1 (5,
C-3%, §124.0 (s, C-4), §126.1 (s, C-6"), §134.7 (s, C-1"),
§136.1 (s, C-5"), §137.0 (s, C-2), §171.3 (s, C-1); GC-(EI)
TOF-HRMS: calc’d m/z for CyoHy;3N,O3Br:  285.9953,
observed: 285.9949.
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m-Nitro-a-bromoisobutyranilide (13)

m-Nitroaniline (2.90 g, 21.0 mmol) gave 5.83 g (20.4 mmol,
97% vyield) of pure m-nitro-a-bromoisobutyranilide (13) as
yellowish shards, m.p. 98-101°C; R; = 0.44 in 4:1
hexanes/EtOAc, 0.69 in 65:35 hexanes/EtOAc and 0.92 in 1:1
hexanes/EtOAC; IR(cm’l): 3370, 3090, 2980, 2931, 1694
(C=0), 1590, 1525, 1484, 1418, 1392, 1374, 1349, 1315, 1298,
1243, 1152, 1108, 1079, 1007, 958, 893, 874, 813, 735, 673,
692, 673; *H NMR (300 MHz, 45 mg : 0.4 mL CDCl,): 5 2.06
(6H, s, CHj), 5 7.51 (1H, t, ArH® J8), 5 7.90 (1H, dd, ArH®,
J2,18),57.99 (1H, dd, ArH* J2, J8), 58.46 (1H, t, ArH?,
J2), $8.66 (1H, br, s, NH); *C NMR (75 MHz, 138 mg :
0.4 mL CDCly): §32.4 (s, C-3a), & 61.9 (s, C-2), §115.2 (s,
C-2", §119.6 (s, C-4"), 5126.1 (s, C-6"), §130.0 (s, C-5'),
5138.8 (s, C-1"), 5148.7 (s, C-3"), 8 170.8 (s, C-1); GC-(El)
TOF-HRMS: calc’d m/z for CloHllNzogBr: 2859953,
observed: 285.9963.

p-Nitro-a-bromoisobutyranilide (15)

p-Nitroaniline (2.90 g, 21.0 mmol) gave 5.35¢g (18.7 mmol,
89% vyield) of pure p-nitro-a-bromoisobutyranilide (15) as tiny
yellow needles, m.p. 116-120°C; Ry = 0.40 in 4:1
hexanes/EtOAc, 0.67 in 65:35 hexanes/EtOAc and 0.93 in 1:1
hexanes/EtOAC; IR(cm’l): 3406, 3115, 2929, 2931, 1698
(C=0), 1612, 1596, 1534, 1496, 1404, 1334, 1300, 1243, 1194,
1177, 1142, 1101, 945, 882, 854, 831, 750, 691, 674; 'H NMR
(300 MHz, 30 mg : 0.4 mL CDCly): § 2.05 (6H, s, CHy), 8 7.74
(2H, dt, ArH?, J 2, J 8), 5 8.23 (2H, dt, ArH? J 2, J8), 58.72
(1H, br, s, NH); *C NMR (75 MHz, 122 mg : 0.4 mL CDCls):
5324 (s, C-3apm), 8 62.1 (s, C-2), 5 119.7 (s, C-2"), 8 125.2 (s,
C-3"), 5 143.5 (s, C-1'), 8 144.1 (s, C-4), 5 170.7 (s, C-1); GC-
(E) TOF-HRMS: calc’d m/z for CygH131N,O3Br: 285.9953,
observed: 285.9929.

0-Bromo-a-bromoisobutyranilide (17)

o-Bromoaniline (3.70 g, 21.5 mmol) gave 6.79 g (21.3 mmol,
99% vyield) of pure o-bromo-a-bromoisobutyranilide (17) as a
clear, low-viscosity amber oil; R¢ = 0.70 in 4:1 hexanes/EtOAc,
0.85 in 65:35 hexanes/EtOAc and 0.96 in 1:1 hexanes/EtOAc;
IR(cm™): 3352, 2984, 2934, 1685 (C=0), 1588, 1520, 1434,
1300, 1155, 1110, 1025, 939, 745, 683; *H NMR (300 MHz,
144 mg : 0.4 mL CDCls): 5 2.06 (6H, s, CH3), 5 7.01 (1H, td,
ArH* J2,38), 6 7.33 (1H, td, ArH® J 2, J 8), & 7.56 (1H, dd,
ArH3 32, 38), 5832 (1H, dd, ArHS, J 2, J 8), §9.04 (1H, br,
s, NH); °C NMR (75 MHz, 144 mg : 0.4 mL CDCly): & 32.7
(s, C-3am), 6 62.7 (s, C-2), 6 114.4 (s, C-2%), 6 121.8 (s, C-6"),
8125.9 (s, C-5), 6 128.6 (s, C-3"), 8 132.6 (s, C-4"), 6 135.8 (s,
C-17, 8170.3 (s, C-1); GC-(El) TOF-HRMS: calc’d m/z for
C1oH11NOBr,: 318.9207, observed: 318.9194.

0-Chloro-a-bromoisobutyranilide (19)

o-Chloroaniline (2.75 g, 21.6 mmol) gave 5.23 g (18.9 mmol,
88% vyield) of pure o-chloro-a-bromoisobutyranilide (19) as a
clear, low-viscosity amber oil; Ry = 0.66 in 4:1 hexanes/EtOAc,
0.86 in 65:35 hexanes/EtOAc and 0.96 in 1:1 hexanes/EtOAc;
IR(cm Y): 3365, 2985, 2934, 1686 (C=0), 1593, 1514, 1439,
1304, 1154, 1111, 1054, 1034, 940, 746, 698; 'H NMR
(300 MHz, 139 mg : 0.4 mL CDCly): §2.04 (6H, s, CHs),
§7.04 (1H, td, ArH*, J 2, J8), 57.26 (1H, td, ArH®, J 2, J 8),
§7.36 (1H, dd, ArH® J 2, J8), §8.30 (1H, dd, ArH®, J 2, J 8),
§9.04 (1H, br, s, NH); **C NMR (75 MHz, 139 mg : 0.4 mL

CDClj): 632.8 (s, C-3am), 662.9 (s, C-2), 61215 (s, C-6"),
$124.0 (s, C-2"), 5 125.4 (s, C-5"), 6 128.0 (s, C-3"), 5 129.4 (s,
C-4", $134.7 (s, C-1"), 5 170.4 (s, C-1); GC-(El) TOF-HRMS:
calc’d m/z for C1oH1;NOCIBr: 274.9713, observed: 274.9710.

m-Chloro-a-bromoisobutyranilide (21)

m-Chloroaniline (2.75 g, 21.6 mmol) gave 5.88 g (21.3 mmol,
99% vyield) of pure m-chloro-a-bromoisobutyranilide (21) as
white needles with a slight redness to them, m.p. 91-95 °C; R¢
= 0.53 in 4:1 hexanes/EtOAc, 0.78 in 65:35 hexanes/EtOAC
and 0.94 in 1:1 hexanes/EtOAC; IR(cm’l): 3291, 2998, 2977,
2931, 1663 (C=0), 1593, 1521, 1424, 1285, 1244, 1162, 1109,
919, 875, 860, 782, 758, 697, 682; *H NMR (300 MHz, 31 mg :
0.4 mL CDCly):  2.06 (6H, s, CH3), 8 7.14 (1H, dt, ArH* J 2,
J8), 7.28 (1H, t, ArH®, J8), §7.39 (1H, dq, ArH®, J 2, J8),
§7.70 (1H, t, ArH? J2), 58.47 (1H, br, s, NH); *C NMR
(75 MHz, 136 mg : 0.4 mL CDCl,): 6 32.8 (s, C-3a), 6 62.9
(s, C-2), 61185 (s, C-6", 6 120.5 (s, C-2"), 5 125.3 (s, C-4"),
8130.3 (s, C-5"), 8 135.1 (s, C-3"), 6 139.0 (s, C-1"), 8 170.6 (s,
C-1); GC-(ElI) TOF-HRMS: calc’d m/z for CyyH1;NOCIBr:
274.9713, observed: 274.9686.

p-Chloro-a-bromoisobutyranilide (23)

p-Chloroaniline (2.75 g, 21.6 mmol) gave 4.45 g (16.1 mmol,
75% vyield) of pure p-chloro-a-bromoisobutyranilide (23) as
colourless needles, m.p. 119-121°C; Ry = 0.52 in 4:1
hexanes/EtOAc, 0.78 in 65:35 hexanes/EtOAc and 0.91 in 1:1
hexanes/EtOAC; IR(cm’l): 3285, 3188, 3122, 3071, 2988,
2941, 2895, 1656 (C=0), 1591, 1552, 1529, 1478, 1459, 1418,
1398, 1372, 1351, 1305, 1287, 1254, 1240, 1187, 1142, 1092,
1074, 999, 962, 914, 904, 888, 864, 854, 792, 704, 683; 'H
NMR (300 MHz, 43 mg : 0.4 mL CDCly): & 2.04 (6H, s, CH3),
§7.30 (2H, dt, ArH® J 2, J8), §7.49 (2H, dt, ArH? J2, J 8),
58.45 (1H, br, s, NH); *C NMR (75 MHz, 157 mg : 0.4 mL
CDCls): 6 32.6 (s, C-3a), 862.8 (s, C-2), §121.7 (s, C-2,
5129.3 (s, C-3", 8 130.1 (s, C-4"), 8 136.2 (s, C-1"), 8 170.3 (s,
C-1); GC-(El) TOF-HRMS: calc’d m/z for CioHy;NOCIBE:
274.9713, observed: 274.9706.

0-Chloro-a-bromoisobutyranilide (25)

0-Methoxyaniline (2.40 g, 21.6 mmol) gave 4.92 g (18.2 mmol,
84% vyield) of pure o-chloro-a-bromoisobutyranilide (25) as a
clear, brown-metallic oil; R; = 0.60 in 4:1 hexanes/EtOAc, 0.81
in 65:35 hexanes/EtOAc and 0.93 in 1:1 hexanes/EtOAcC;
IR(cm™): 3380, 2983, 2936, 2839, 1677 (C=0), 1600, 1522,
1486, 1459, 1433, 1336, 1290, 1250, 1218, 1176, 1157, 1110,
1047, 1026, 940, 773, 744; 'H NMR (300 MHz, 28 mg :
0.4 mL CDCl5): 62.06 (6H, s, CH3), §3.92 (3H, s, O—CHy),
§6.90 (1H, dd, ArH3, J 2, J8), §6.98 (1H, td, ArH®, J 2, J 8),
§7.08 (1H, td, ArH*, J2, J8), §8.33 (1H, dd, ArH®, J 2, J8),
§9.13 (1H, br, s, NH); **C NMR (75 MHz, 133 mg : 0.4 mL
CDCly): §32.5 (s, C-3am), 6 56.0 (5, O—CHs), & 62.8 (s, C-2),
§110.2 (s, C-37), § 119.5 (s, C-6'), § 121.0 (s, C-5"), 5 124.4 (s,
C-4%, 8 127.4 (s, C-1"), 8 148.5 (s, C-2"), 5 169.9 (s, C-1); GC-
(El) TOF-HRMS: calc’d m/z for CyH,NO,Br: 271.0208,
observed: 271.0195.

m-Chloro-a-bromoisobutyranilide (27)

m-Methoxyaniline  (240g, 21.6mmol) gave 544¢g
(20.1 mmol, 93% yield) of pure
m-chloro-a-bromoisobutyranilide (27) as white needles, m.p.
112-114 °C; Rf = 0.47 in 4:1 hexanes/EtOAc, 0.75 in 65:35
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hexanes/EtOAc and 0.93 in 1:1 hexanes/EtOAc; IR(cm™):
3454, 3340, 3003, 2961, 2942, 2897, 1660 (C=0), 1597, 1546,
1528, 1510, 1462, 1442, 1414, 1375, 1355, 1299, 1232, 1183,
1172, 1141, 1111, 1032, 962, 902, 865, 823, 764; 'H NMR
(300 MHz, 31 mg : 0.4 mL CDCl3): 3 2.10 (6H, s, CHs), & 3.86
(3H, s, 0-CHy), § 6.75 (1H, dd, ArH*, J 2, J 8), 5 7.05 (1H, dd,
ArH®, 32, 38), 57.30 (1H, dd, ArH®, J2, J8), §7.37 (1H, t,
ArH2, J2), §8.49 (1H, br, s, NH); **C NMR (75 MHz, 31 mg :
0.4 mL CDCly): 8 32.9 (s, C-3a), 8 55.7 (s, O—CHs), 5 63.5 (5,
C-2), 105.8 (s, C-6"), 5111.3 (s, C-2"), 5112.4 (s, C-4),
130.1 (s, C-5'), § 139.0 (s, C-1'), § 160.6 (s, C-3"), 5 170.3 (s,
C-1); GC-(El) TOF-HRMS: calc’d m/z for Cy;H;,NO,Br:
271.0208, observed: 271.0216.

p-Chloro-a-bromoisobutyranilide (29)

p-Methoxyaniline (2.40 g, 21.6 mmol) gave 5.80 g (21.4 mmol,
99% vyield) of pure p-chloro-a-bromoisobutyranilide (29) as
white needles, m.p. 88-89 °C; R = 0.46 in 4:1 hexanes/EtOAc,
0.72 in 65:35 hexanes/EtOAc and 0.91 in 1:1 hexanes/EtOAc;
IR(cm™): 3319, 3007, 2982, 2962, 2841, 1654 (C=0), 1601,
1539, 1508, 1468, 1444, 1412, 1372, 1316, 1300, 1273, 1232,
1223, 1197, 1184, 1164, 1106, 1031, 952, 933, 890, 831, 809,
763, 751, 675; *H NMR (300 MHz, 25 mg : 0.4 mL CDCly):
52.07 (6H, s, CH3), 53.82 (3H, s, O-CHj3), 56.90 (2H, dt,
ArH® J2,38),87.45 (2H, dt, ArH?, J 2, J 8), § 8.40 (1H, br, s,
NH); C NMR (75 MHz, 25 mg : 0.4 mL CDCly): §32.4 (s,
C-3am), 8555 (5, O-CHjy), §63.3 (5, C-2), 5114.6 (5, C-3"),
§121.8 (s, C-27), 5 130.5 (s, C-1'), 5 156.8 (5, C-4"), 5 169.9 (s,
C'l), GC'(EI) TOF-HRMS: calc’d m/z for C11H14NOZBr:
271.0208, observed: 271.0197.

Substitution reactions

Unless otherwise stated, reactions were carried out at room
temperature using ~5mmol (1-2g) of the reactant bromo
compound (1-2 g) with NaNO, (4.00 g, 44.9 mmol) in DMF
(40 mL) and a magnetic stirrer at 700 rpm.

The rates were monitored by periodically removing 1 mL of the
reacting mixture, placing it in dichloromethane (2 mL) and
washing with water (4 x 3 mL) in a 5 mL screw cap vial. The
dichloromethane layer was then dried (MgSO,) and analysed
by GC-MS.

The time between each aliquot was determined for each
reaction by trial in an initial rough experiment.

For preparative reactions, apart from the preparation of 2,
which could be obtained by addition of water to the DMF
reaction mixture, the substitutions were worked up on
completion by the removal of DMF on a rotary evaporator with
water bath at 70 °C and vacuum rigorously kept at 25 Torr,
with Dow Corning high vacuum grease freshly applied to the
joins and Keck clips used to hold the flask onto a non-
reversible splash-guard. The residue was partitioned between
water and ethyl acetate and the ethyl acetate fraction was
evaporated. After TLC of the residue to determine a suitable
eluent, the product was purified by column chromatography
(40 mm diameter) on 43-60p silica (~150g) with
pre-adsorption on ~10g of silica. This method typically
produced 800-1300 mg of highly pure nitro substitution
product as observed by NMR.

N-Benzyl-a-bromoisobutyramide (31)

Benzylamine (2.30 g, 21.5 mmol) gave 4.33g (17.0 mmol,
79% vyield) of pure N-benzyl-a-bromoisobutyramide (31) as a
fine white powder, m.p. 77-80°C; Ry = 0.38 in 41
hexanes/EtOAc, 0.64 in 65:35 hexanes/EtOAc and 0.90 in 1:1
hexanes/EtOAC; IR(cm’l): 3300, 3065, 3030, 2973, 2939,
2920, 1642 (C=0), 1533, 1495, 1471, 1453, 1418, 1355, 1292,
1195, 1102, 1081, 1014, 922, 826, 752, 729, 699, 693; *H NMR
(300 MHz, 23 mg : 0.4 mL CDCl): 5 1.99 (6H, s, CHy), & 4.47
(2H, d, CH, J 8), §7.02 (1H, br, s, NH), & 7.30 (2H, m, ArH?),
5734 (2H, m, ArH®, §7.36 (1H, m, ArH%; *C NMR
(75 MHz, 125 mg : 0.4 mL CDCly): § 32.7 (s, C-3a), & 44.5
(s, CHyp), 862.9 (s, C-2), 5127.7 (s, C-27), §127.8 (s, C-4"),
§129.0 (s, C-3", 5138.0 (s, C-1'), §172.2 (s, C-1); GC-(El)
TOF-HRMS: calc’d m/z for C1;H14,NOBr: 255.0259, observed:
255.0265.

a-Bromo-N-butylisobutyramide (33)

n-Butylamine (1.60 g, 21.9 mmol) gave 3.05g (13.8 mmol,
63% vyield) of pure a-bromo-N-butylisobutyramide (33) as a
clear, pale yellow, low-viscosity oil; IR(cm™): 3348, 2959,
2932, 2873, 1649 (C=0), 1528, 1465, 1437, 1370, 1301, 1282,
1225, 1190, 1112, 738; *H NMR (300 MHz, 26 mg : 0.4 mL
CDCly): 50.96 (3H, t, Alkyl* J8), 51.38 (2H, sextet, Alkyl®
J 8), 5 1.54 (2H, sextet, Alkyl? J 8), §1.97 (6H, s, CH3), & 3.28
(2H, sextet, Alkyl* J8), §6.73 (1H, br, s, NH); °C NMR
(75 MHz, 147 mg : 0.4 mL CDCly): §13.9 (s, C-4), 5 20.2 (s,
C-3", 8 31.5 (s, C-2'), 5 32.8 (5, C-3a8), 6 40.3 (s, C-1"), 5 63.3
(s, C-2), 5 172.0 (s, C-1); GC-(El) TOF-HRMS: calc’d m/z for
CgH1gNOBI: 221.0415, observed: 221.0417.

p-Cyano-m-trifluoromethyl-
a-nitroisobutyranilide (2)

1 (p-cyano-m-trifluoromethyl-a-bromoisobutyranilide) (1.68 g,
5.03 mmol) was added to NaNO, and DMF. The reaction was
worked up by addition of 20 mL of deionized water which
caused the product to begin to precipitate. The flask was placed
in a crystal fridge at 8 °C overnight and then the crystals
collected by Bichner funnel filtration to give 1.88g of
intensely white needles 2 to 10 mm in length. These were
found to be p-cyano-m-trifluoromethyl-a-nitroisobutyranilide
(2) which was co-crystallized in a 1:1 ratio with DMF (86%
yield when corrected for the DMF), m.p. 129-131 °C. A DMF
free version of 2 could be prepared by repeated liquid/liquid
extraction using water/ethyl acetate which provides a white
amorphous powder of the same m.p. Characterization data for 2
are provided in our 2014 publication [10] where it is given the
correct IUPAC name of
“N-[4-Cyano-3-(trifluoromethyl)phenyl]-2-methyl-2-nitropropa
namide”.

a-Nitroisobutyranilide (6)

5 (a-Bromoisobutyranilide) (1.20 g, 4.98 mmol) gave 870 mg
(4.18 mmol, 84% yield) of pure a-nitroisobutyranilide (6) as an
extremely shiny crystalline powder with a hint of orange, m.p.
104-107 °C; Ry = 0.32 in 4:1 hexanes/EtOAc, 0.56 in 65:35
hexanes/EtOAc and 0.87 in 1:1 hexanes/EtOAc; IR(cm™):
3256, 3199, 3136, 3076, 1655 (C=0), 1598, 1549, 1538, 1492,
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1459, 1440, 1399, 1373, 1352, 1321, 1266, 1233, 1189, 1143,
963, 894, 859, 752, 695, 666; *H NMR (300 MHz, 26 mg :
0.4 mL CDCly): 6 1.94 (6H, s, CHg), § 7.17 (1H, tt, ArH* J 2,
J8), §7.34 (2H, tt, ArH® J2, J8), 57.48 (2H, dt, ArH? J 2,
J8), §7.98 (1H, br, s, NH); C NMR (75 MHz, 26 mg :
0.4 mL CDCly): §24.9 (s, C-3a8), 8 91.6 (s, C-2), §120.8 (s,
C-2"), 5125.8 (s, C-4"), 5129.5 (s, C-3), 5136.8 (s, C-17),
5164.7 (s, C-1); GC-(EI) TOF-HRMS: calc’d m/z for
C10H1oN,03: 208.0848, observed: 208.0846.

p-Methyl-a-nitroisobutyranilide (8)

7 (p-Methyl-a-bromoisobutyranilide) (1.28 g, 5.02 mmol) gave
970 mg (4.37 mmol, 87% yield) of pure p-methyl-
a-nitroisobutyranilide (8) as orange shards of various
morphology, m.p. 115-118°C; Ry = 038 in 41
hexanes/EtOAc, 0.61 in 65:35 hexanes/EtOAc and 0.87 in 1:1
hexanes/EtOAc; IR(cm™): 3274, 3120, 3042, 2993, 2924,
2893, 2860, 1660 (C=0), 1594, 1550, 1522, 1513, 1460, 1436,
1401, 1372, 1355, 1318, 1295, 1259, 1234, 1187, 1179, 1141,
961, 900, 862, 815, 770, 738, 678; *H NMR (300 MHz, 21 mg :
0.4 mL CDClj): 81.93 (6H, s, CHj), 82.32 (3H, s, ArCH,),
§7.13 (2H, d, ArH?, J 8), § 7.35 (2H, d, ArH?, J 8), 5 7.91 (1H,
br, s, NH); *C NMR (75 MHz, 42 mg : 0.4 mL CDCly): § 21.3
(s, ArCHsy), 8 24.9 (s, C-3ap), 6 91.6 (s, C-2), § 121.1 (s, C-2),
§129.9 (s, C-3'), 5 134.3 (s, C-1'), 5 135.5 (5, C-4"), 5 164.9 (s,
C'l), GC'(EI) TOF-HRMS: calc’d m/z for CllH14N203:
222.1004, observed: 222.1006.

0-Carboethoxy-a-nitroisobutyranilide (10)

9 (o-Carboethoxy-a-bromoisobutyranilide) (1.56 g, 5.00 mmol)
gave 1381mg (4.95mmol, 99% vyield) of pure
o-carboethoxy-a-nitroisobutyranilide (10) as white, amorphous
powder, m.p. 84-87 °C; R = 0.43 in 4:1 hexanes/EtOAc, 0.69
in 65:35 hexanes/EtOAc and 0.93 in 1:1 hexanes/EtOAc;
IR(cm™): 3177, 3120, 3082, 2991, 1699 (C=0), 1685 (C=0),
1608, 1594, 1551, 1529, 1466, 1455, 1366, 1351, 1303, 1277,
1251, 1238, 1182, 1139, 1090, 1016, 857, 763, 700; *H NMR
(300 MHz, 25 mg : 0.4 mL CDCly): § 1.42 (3H, t, ethyl CHs),
51.98 (6H, s, CH3), & 4.41 (2H, q, ethyl CH,), § 7.16 (1H, td,
ArH* J2,38),57.57 (1H, td, ArH®, J 2, J 8), §8.08 (1H, dd,
ArH® 32, J8), §8.66 (1H, dd, ArH®, J 2, J 8), 5 11.81 (1H, br,
s, NH); *C NMR (75 MHz, 68 mg : 0.4 mL CDCl4/0.1 mL
de-DMSO): 6 14.9 (s, ethyl CHs), 8 24.3 (s, C-3ap), 8 62.5 (s,
ethyl CHy), § 92.3 (s, C-2), 4 118.9 (s, C-2'), 5 122.0 (s, C-6"),
5125.2 (s, C-4"), 5 131.6 (s, C-3"), 6 135.1 (s, C-5"), 8 139.8 (s,
C-1, 31665 (s, C-1), 51682 (s, ester C=0); GC-(El)
TOF-HRMS: calc’d m/z for Cy3H15N,Os: 279.0981, observed:
279.0972.

o-Nitro-a-nitroisobutyranilide (12)

11 (o-Nitro-a-bromoisobutyranilide) (1.36 g, 4.74 mmol) gave
1000 mg (3.95 mmol, 83% yield) of pure o-nitro-
a-nitroisobutyranilide (12) as a deep yellow, cauliflower-
shaped crystalline nuggets, m.p. 82-84 °C; Rs = 0.38 in 4:1
hexanes/EtOAc, 0.70 in 65:35 hexanes/EtOAc and 0.90 in 1:1
hexanes/EtOAc; IR(cm™): 3392, 2924, 2854, 1706 (C=0),
1607, 1588, 1548, 1497, 1454, 1431, 1396, 1374, 1335, 1270,
1224, 1161, 1140, 1075, 898, 861, 854, 789, 742, 688; *H NMR
(300 MHz, 18 mg : 0.4 mL CDCl3): 8 2.00 (6H, s, CH3), 5 7.28
(1H, td, ArH% J2,38), §7.70 (1H, tt, ArH® J 2, J8), 58.27
(1H, dd, ArH® J 2,7 8), 5 8.71 (1H, dd, ArH®, J 2, J 8), 5 11.09
(1H, br, s, NH); **C NMR (75 MHz, 18 mg : 0.4 mL CDCly):

524.6 (s, C-3a), 8 91.6 (s, C-2), 6 122.7 (s, C-3"), 6 124.9 (s,
C-4"), 6 126.3 (s, C-6), 5134.1 (s, C-1"), 8 136.5 (s, C-5",
§137.2 (s, C-2'), § 165.9 (s, C-1); GC-(EI) TOF-HRMS: calc’d
m/z for CygH11N30s: 253.0699, observed: 253.0705.

m-Nitro-a-nitroisobutyranilide (14)

13 (m-Nitro-a-bromoisobutyranilide) (1.43 g, 4.74 mmol) gave
1028 mg (4.06 mmol, 86% yield) of pure m-nitro-
a-nitroisobutyranilide (14) as a pale yellow, clean looking
crystalline powder, m.p. 135-136°C; Ry = 0.27 in 4:1
hexanes/EtOAc, 0.57 in 65:35 hexanes/EtOAc and 0.84 in 1:1
hexanes/EtOAC; IR(cm’l): 3347, 3093, 2923, 2854, 1659
(C=0), 1617, 1553, 1532, 1458, 1434, 1401, 1373, 1350, 1317,
1287, 1262, 1234, 1192, 1145, 1089, 1079, 970, 909, 882, 856,
824, 809, 734, 693, 671; *H NMR (300 MHz, 50 mg : 0.4 mL
ds-DMSO): 31.93 (6H, s, CHs), 57.67 (1H, t, ArH® J8),
58.01 (1H, dd, ArH®, J 2, J 8), 5 8.07 (1H, dd, ArH* J 2, J8),
58.61 (1H, t, ArH® J2), 510.40 (1H, br, s, NH); °C NMR
(75 MHz, 50 mg : 0.4 mL dg-DMSO): § 24.6 (s, C-3a), 8 92.5
(s, C-2), 6115.7 (s, C-2"), 6 119.8 (s, C-4"), 5 127.4 (s, C-6"),
8131.3 (s, C-5"), 6 140.2 (s, C-1"), 5 148.8 (s, C-3"), 4 167.5 (s,
C'l), GC'(E') TOF-HRMS: calc’d m/z for C10H11N305:
253.0699, observed: 253.0694.

p-Nitro-a-nitroisobutyranilide (16)

15 (p-Nitro-a-bromoisobutyranilide) (1.43 g, 4.74 mmol) gave
980mg (3.87 mmol, 82% yield) of pure p-nitro-
a-nitroisobutyranilide (16) as a fine, white fluffy powder, m.p.
138-140 °C; Rs = 0.19 in 4:1 hexanes/EtOAc, 0.45 in 65:35
hexanes/EtOAc and 0.87 in 1:1 hexanes/EtOAc; IR(cm™):
3352, 1709 (C=0), 1615, 1597, 1547, 1506, 1464, 1409, 1400,
1374, 1346, 1307, 1249, 1221, 1181, 1160, 1142, 1115, 898,
848, 829, 816, 752, 691; *H NMR (300 MHz, 27 mg : 0.4 mL
de-DMSO): & 1.94 (6H, s, CH5), 5 7.94 (2H, dt, ArH?, J 2, J 8),
§8.29 (2H, dt, ArH3, J2, J8), §10.50 (1H, br, s, NH); ¥*C
NMR (75 MHz, 27 mg : 0.4 mL dg-DMSO): 8 24.5 (s, C-3a),
§92.5 (s, C-2), 6121.2 (s, C-2'), 8 125.7 (s, C-3"), §144.0 (s,
C-4%, § 145.1 (s, C-1'), § 167.4 (s, C-1); GC-(El) TOF-HRMS:
calc’d m/z for C1gH11N3Os: 253.0699, observed: 253.0702.

0-Bromo-a-nitroisobutyranilide (18)

17 (o-Bromo-a-bromoisobutyranilide) (1.61 g, 5.02 mmol)
gave 1082 mg (3.77 mmol, 75% vyield) of pure o-bromo-
a-nitroisobutyranilide (18) as an amber oil; Ry = 0.48 in 4:1
hexanes/EtOAc, 0.69 in 65:35 hexanes/EtOAc and 0.91 in 1:1
hexanes/EtOAc; IR(cm™): 3398, 3339, 2997, 2925, 1699
(C=0), 1590, 1548, 1519, 1464, 1436, 1398, 1373, 1346, 1299,
1237, 1207, 1167, 1143, 1121, 1047, 1026, 896, 855, 750; H
NMR (300 MHz, 26 mg : 0.4 mL CDCly): § 1.98 (6H, s, CH3),
§7.04 (1H, td, ArH* J2, J8), 57.34 (1H, td, ArH® J2, J8),
87.56 (1H, dd, ArH® J2, J8), §8.24 (1H, dd, ArH®, J 2, J 8),
58.52 (1H, br, s, NH); *C NMR (75 MHz, 66 mg : 0.4 mL
CDCly): §24.9 (s, C-3am), 914 (s, C-2), 51148 (s, C-2)),
51226 (s, C-6), 5 126.8 (s, C-5'), $ 128.9 (s, C-3"), 5 132.8 (5,
C-4", 5134.9 (s, C-1"), 5 164.9 (s, C-1); GC-(El) TOF-HRMS:
cale’d m/z for C1gH41N,O3Br: 285.9953, observed: 285.9961.

0-Chloro-a-nitroisobutyranilide (20)

19 (o-Chloro-a-bromoisobutyranilide) (1.38 g, 4.99 mmol)
gave 955mg (3.94 mmol, 79% yield) of pure o-chloro-
a-nitroisobutyranilide (20) as an amber oil; R = 0.43 in 4:1
hexanes/EtOAc, 0.70 in 65:35 hexanes/EtOAc and 0.90 in 1:1
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hexanes/EtOAc; IR(cm™): 3352, 2998, 2922, 2852, 1697
(C=0), 1594, 1549, 1518, 1467, 1441, 1398, 1373, 1347, 1302,
1238, 1168, 1144, 1128, 1055, 1035, 897, 856, 751, 690; 'H
NMR (300 MHz, 21 mg : 0.4 mL CDCly): § 1.97 (6H, s, CHy),
§7.11 (1H, td, ArH* J2, J8), 57.30 (1H, td, ArH®, J2, J 8),
8 7.40 (1H, dd, ArH3, J 2, J 8), 5 8.26 (1H, dd, ArHS, J 2, J 8),
58.58 (1H, br, s, NH); *C NMR (75 MHz, 39 mg : 0.4 mL
CDClg): 824.9 (s, C-3p), 8915 (s, C-2), §122.2 (s, C-6'),
§124.2 (s, C-2), 8 126.2 (s, C-5), 5 128.2 (s, C-3), 5 129.5 (s,
C-4", 5133.8 (s, C-1"), 5 164.7 (s, C-1); GC-(El) TOF-HRMS:
calc’d m/z for CoH11N,O5Cl: 242.0458, observed: 242.0462.

m-Chloro-a-nitroisobutyranilide (22)

21 (m-Chloro-a-bromoisobutyranilide) (1.38 g, 4.99 mmol)
gave 1135mg (4.68 mmol, 94% yield) of pure m-chloro-
a-nitroisobutyranilide (22) as a light orange crystalline mass
with multiple nucleation points, m.p. 125-128 °C; R; = 0.47 in
4:1 hexanes/EtOAc, 0.72 in 65:35 hexanes/EtOAc and 0.89 in
1:1 hexanes/EtOAc; IR(cm’l): 3385, 3188, 3122, 3071, 2988,
2941, 2895, 1656 (C=0), 1590, 1552, 1528, 1478, 1459, 1418,
1398, 1372, 1351, 1304, 1287, 1254, 1240, 1231, 1187, 1142,
1092, 1074, 999, 914, 904, 888, 854, 791, 704, 682; *H NMR
(300 MHz, 18 mg : 0.4 mL CDCl5): 5 1.82 (6H, s, CH3), 5 6.99
(1H, d, ArH* J8), 5 7.14 (1H, td, ArH® J 2, J8), §7.43 (1H,
d, ArH®, J 8), §7.64 (1H, m, ArH?), § 9.38 (1H, br, s, NH); °C
NMR (75 MHz, 18 mg : 0.4 mL CDClIs/2 drops dg-DMSO):
824.7 (s, C-3am), 8 91.2 (s, C-2), 5118.9 (s, C-6'), § 121.0 (s,
C-2%), 8124.7 (s, C-4), 5129.8 (s, C-5", §134.2 (s, C-3"),
§139.3 (s, C-1'), 5 165.8 (s, C-1); GC-(El) TOF-HRMS: calc’d
m/z for C1oH11N,05Cl: 242.0458, observed: 242.0475.

p-Chloro-a-nitroisobutyranilide (24)

23 (p-Chloro-a-bromoisobutyranilide) (1.38 g, 4.99 mmol)
gave 1070 mg (4.41 mmol, 88% vyield) of pure p-chloro-
a-nitroisobutyranilide (24) as a pale yellow, clean looking
crystalline powder, m.p. 124-127°C; Ry = 0.38 in 4:1
hexanes/EtOAc, 0.67 in 65:35 hexanes/EtOAc and 0.90 in 1:1
hexanes/EtOAC; IR(cm'l): 3303, 3195, 3126, 3057, 3002,
2924, 2854, 1664 (C=0), 1599, 1547, 1533, 1492, 1460, 1400,
1379, 1353, 1308, 1287, 1241, 1188, 1145, 1087, 1014, 960,
904, 864, 820, 747, 708, 695, 667; *H NMR (300 MHz, 21 mg :
0.4 mL CDCls): § 1.94 (6H, s, CHy), § 7.30 (2H, d, ArH?, J8),
§7.44 (2H, d, ArH?, J8), §8.01 (1H, br, s, NH); *C NMR
(75 MHz, 21 mg : 0.4 mL CDCls): § 25.0 (s, C-3a), 8 91.7 (5,
C-2), 61223 (s, C-2"), §129.5 (s, C-3"), 5 131.0 (s, C-4",
5135.5 (s, C-1"), 8 164.8 (s, C-1); GC-(El) TOF-HRMS: calc’d
m/z for C1oH11N,03Cl: 242.0458, observed: 242.0477.

0-Methoxy-a-nitroisobutyranilide (26)

25 (o-Methoxy-a-bromoisobutyranilide) (1.40 g, 5.15 mmol)
gave 868 mg (3.65 mmol, 71% vyield) of pure o-methoxy-
a-nitroisobutyranilide (26) as tiny, pretty, orange prisms or
various morphology, m.p. 67-70°C; R = 0.40 in 4:1
hexanes/EtOAc, 0.65 in 65:35 hexanes/EtOAc and 0.89 in 1:1
hexanes/EtOAc; IR(cm™): 3331, 3043, 3005, 2964, 2936,
2901, 2838, 1675 (C=0), 1594, 1553, 1521, 1493, 1460, 1432,
1403, 1375, 1357, 1322, 1287, 1262, 1220, 1177, 1142, 1112,
1042, 1025, 963, 899, 862, 849, 780, 748, 739, 724, 666; 'H
NMR (300 MHz, 19 mg : 0.4 mL CDCly): § 1.95 (6H, s, CH3),
83.91 (3H, s, O-CHy), 5 6.90 (1H, dd, ArH3 J 2, J8), 5 6.97
(1H, td, ArH®, J2, J 8), 57.10 (1H, td, ArH* J 2, J8), 58.28
(1H, dd, ArH® J2, J8), 58.62 (1H, br, s, NH); °C NMR

(75 MHz, 57 mg : 0.4 mL CDCly): & 24.9 (s, C-3as), 3 56.2 (s,
O-CHy), 5916 (s, C-2), 5110.4 (s, C-3), §120.3 (s, C-6'),
§121.4 (s, C-5), 8 125.3 (s, C-4"), 5 126.9 (s, C-1"), 5 148.7 (s,
C-2'), $164.4 (s, C-1); GC-(El) TOF-HRMS: calc’d m/z for
C11H1N,0,: 238.0954, observed: 238.0952.

m-Methoxy-a-nitroisobutyranilide (28)

27 (m-Methoxy-a-bromoisobutyranilide) (1.40 g, 5.15 mmol)
gave 981 mg (4.12 mmol, 80% yield) of pure m-methoxy-
a-nitroisobutyranilide (28) as a crystalline mass of orange
tipped needles, m.p. 97-99°C; Ry = 029 in 41
hexanes/EtOAc, 0.55 in 65:35 hexanes/EtOAc and 0.85 in 1:1
hexanes/EtOAc; IR(cm™): 3276, 3223, 3154, 3007, 2943,
2838, 1665 (C=0), 1614, 1597, 1539, 1489, 1451, 1427, 1397,
1373, 1344, 1320, 1301, 1277, 1267, 1208, 1182, 1149, 1031,
953, 844, 788, 764, 749, 727, 686; *H NMR (300 MHz, 28 mg :
0.4 mL CDCly): 81.93 (6H, s, CHs), 5 3.80 (3H, s, O—CHj),
56.72 (1H, dd, ArH* J 2, J 8), 5 6.96 (1H, dd, ArH®, J 2, J 8),
87.22 (1H, 1, ArH®, 1 8), § 7.26 (1H, d, ArH? J 2), 6 7.98 (1H,
br, s, NH); *C NMR (75 MHz, 120 mg : 0.4 mL CDCly):
824.6 (s, C-3am), 8 55.5 (s, 0—CHj3), 6 91.5 (s, C-2), 6 106.8 (s,
C-6'), 6111.6 (s, C-2), 6113.2 (s, C-4"), 4 130.0 (s, C-5"),
8138.0 (s, C-17), 6 160.4 (s, C-3"), 6 165.2 (s, C-1); GC-(EI)
TOF-HRMS: calc’d m/z for C1;H14N,0,4: 238.0954, observed:
238.0954.

p-Methoxy-a-nitroisobutyranilide (30)

29 (p-Methoxy-a-bromoisobutyranilide) (1.40 g, 5.15 mmol)
gave 1078 mg (4.53 mmol, 77% yield) of pure p-methoxy-
a-nitroisobutyranilide (30) as tiny, pretty, pale yellow needles,
m.p. 69-71 °C; Ry = 0.16 in 4:1 hexanes/EtOAc, 0.48 in 65:35
hexanes/EtOAc and 0.80 in 1:1 hexanes/EtOAc; IR(cm™):
3346, 3003, 2961, 2939, 2898, 2840, 1660 (C=0), 1597, 1545,
1530, 1510, 1462, 1440, 1414, 1403, 1375, 1356, 1311, 1299,
1268, 1232, 1184, 1173, 1141, 1112, 1031, 962, 901, 863, 850,
824, 764; 'H NMR (300 MHz, 28 mg : 0.4 mL CDCl,): § 1.92
(6H, s, CHj), 83.79 (3H, s, O—CHs), 5 6.86 (2H, d, ArH?, J 8),
§7.37 (2H, d, ArH? J8), 57.87 (1H, br, s, NH); **C NMR
(75 MHz, 120 mg : 0.4 mL CDClg): & 24.9 (5, C-3a), & 55.8
(s, O—CHj), 8 91.5 (s, C-2), § 114.5 (s, C-3"), 5 122.9 (s, C-2"),
§129.8 (s, C-1), 8 157.5 (s, C-4"), §164.9 (s, C-1); GC-(EI)
TOF-HRMS: calc’d m/z for Cy;H14N,O,: 238.0954, observed:
238.0971.

N-Benzyl-a-nitroisobutyramide (32)

31 (N-Benzyl-a-bromoisobutyramide) (1.40 g, 5.47 mmol) was
added to NaNO, and DMF and the reaction heated at 120 °C
for 4 h. After cooling the standard workup method gave
952 mg (4.29 mmol, 78% yield) of pure
N-benzyl-a-nitroisobutyramide (32) as white, crystalline,
cauliflower-shaped nodules, m.p. 87-88 °C; R; = 0.23 in 4:1
hexanes/EtOAc, 0.49 in 65:35 hexanes/EtOAc and 0.76 in 1:1
hexanes/EtOAcC; IR(cm’l): 3295, 3088, 3028, 3003, 2930,
1652 (C=0), 1547, 1496, 1453, 1427, 1405, 1374, 1356, 1312,
1288, 1236, 1209, 1162, 1077, 1055, 1029, 1000, 865, 747,
732, 698, 671; 'H NMR (300 MHz, 19 mg : 0.4 mL CDCly):
8 1.85 (6H, s, CH5), 6 4.45 (2H, d, CH, J 8), & 6.46 (1H, br, s,
NH), § 7.22-7.37 (5H, m, ArH*®); *C NMR (75 MHz, 55 mg :
0.4 mL CDCl,): 824.8 (s, C-3a), 844.4 (s, CH,), 91.0 (s,
C-2), 6127.8 (s, C-2'), 6128.1 (s, C-4"), 6129.1 (s, C-3",
8137.5 (s, C-1"), 6 167.2 (s, C-1); GC-(EI) TOF-HRMS: calc’d
m/z for C11H14N,03: 222.1004, observed: 222.1001.
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N-Butyl-a-nitroisobutyramide (34)

33 (N-Butyl-a-nitroisobutyramide) (1.30 g, 5.86 mmol) was
added to NaNO, and DMF and the reaction heated at 120 °C
for 4 h. After cooling the standard workup method gave
653 mg (3.47 mmol, 59% yield) of pure
N-butyl-a-nitroisobutyramide (34) as orange, translucent,
shard-shaped crystals, m.p. 61-64 °C; IR(cm%): 3322, 3085,
2957, 2934, 2874, 1654 (C=0), 1620, 1542, 1465, 1440, 1403,

Br—NO, Substitution in the absence of O,

Preparation of p-cyano-m-trifluoromethyl-
a-nitroisobutyranilide (2) was carried out using two 100 mL
Schlenk flasks. Into one flask was placed 1.68g of
p-cyano-m-trifluoromethyl-a-bromoisobutyranilide (1) and into
the other was placed 4.00 g of NaNO,. 20 mL of DMF was
added to each flask which was then sealed with a rubber
septum and placed under positive pressure of nitrogen.
Nitrogen from the top of a liquid nitrogen tank was passed
through a Dreschel bottle containing a solution of 5g

Br—NO, Substitution at low nitrite concentration

Preparation of p-cyano-m-trifluoromethyl-
a-nitroisobutyranilide (2) was carried out in tandem in three
100 mL flasks of the same shape and all using the same shape
magnetic stirrer, stirred at 700 rpm. The flasks were in the same
room, on the same bench and the reaction started at the same
time. The only difference was in the amount of sodium nitrite
used. Each reaction used 35 mL of DMF which was taken from
the same bottle immediately before use. As it was measured
that at room temperature, 50 mL of DMF was required to
dissolve 205 mg of NaNO,, the saturated reaction used 144 mg
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