
Efficient compression of large
repetitive strings

A thesis submitted in fulfillment of the requirements for the degree of

Doctor of Philosophy

Christopher Hoobin B.Eng (Hons.), B.App.Sci (Hons.),

School of Computer Science and Information Technology,

College of Science, Engineering, and Health,

RMIT University,

Melbourne, Victoria, Australia.

October, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RMIT Research Repository

https://core.ac.uk/display/32238052?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

I certify that except where due acknowledgement has been made, the work is that of the

author alone; the work has not been submitted previously, in whole or in part, to qualify

for any other academic award; the content of the thesis is the result of work which has

been carried out since the official commencement date of the approved research program;

any editorial work, paid or unpaid, carried out by a third party is acknowledged; and,

ethics procedures and guidelines have been followed.

Christopher Hoobin

School of Computer Science and Information Technology

RMIT University

October, 2015

i

Credits

Portions of the material in this thesis have previously appeared in the following publica-

tions:

• C. Hoobin, S. J. Puglisi, and J. Zobel. Sample selection for dictionary-based corpus

compression. In Proceedings of the 34th ACM International Conference on Research

and Development in Information Retrieval (SIGIR), 1137–1138, 2011.

• C. Hoobin, S. J. Puglisi, and J. Zobel. Relative Lempel-Ziv factorization for efficient

storage and retrieval of web collections. In Proceedings of the VLDB Endowment

(PVLDB), 5(3):265–273, 2011.

• T. Gagie, C. Hoobin, and S. J. Puglisi. Block graphs in practice. In Proceedings

of the 2nd International Conference on Algorithms for Big Data (ICABD), 30–36,

2014.

• C. Hoobin, T. Kind, C. Boucher, and S. J. Puglisi. Fast and efficient compres-

sion of high-throughput sequencing reads. In Proceedings of the 6th ACM Interna-

tional Conference on Bioinformatics, Computational Biology and Health Informatics

(BCB), 352–334, 2015.

This work was supported by the Australian Research Council and the Information Stor-

age, Analysis and Retrieval Group (ISAR) at RMIT University.

The thesis was typeset using the LATEX 2ε document preparation system.

All trademarks are the property of their respective owners.

ii

Contents

Abstract 1

1 Introduction 3

1.1 Key Contributions . 6

1.2 Thesis Structure . 8

2 Background 11

2.1 Preliminaries . 11

2.2 Text Indexing . 12

2.2.1 Suffix Tree . 13

2.2.2 Suffix Array . 14

2.2.3 Succinct Data Structures . 16

2.2.4 Compressed Full-Text Indexes . 18

2.3 Text Compression . 18

2.3.1 Modeling . 20

Dictionary Based Models . 22

2.3.2 Coding . 27

Statistical Coding . 27

Integer Coding . 29

2.4 Summary . 32

3 Efficient Storage and Retrieval of Web Collections 33

3.1 Compression . 35

3.1.1 Relative Lempel-Ziv Factorization 35

3.1.2 General Overview . 36

3.1.3 Dictionary Generation . 37

3.1.4 Compression Algorithm . 37

3.1.5 Pair Representation . 40

3.1.6 Dynamic Document Databases . 41

3.2 Decompression . 42

3.3 Experiments . 43

iii

3.3.1 Method . 43

3.3.2 Systems Tested . 43

3.3.3 Test Collections . 44

3.3.4 Environment . 44

3.4 Discussion . 45

3.5 Summary . 47

4 Sample Selection for Dictionary Based Corpus Compression 51

4.1 Pre-processing . 53

4.2 Post-processing . 55

4.3 Experiments . 57

4.4 Summary . 59

5 Efficient Implementation of the Block Graph Data Structure 63

5.1 Block Graph . 64

5.1.1 Extracting a Single Character . 65

5.1.2 Extracting a Substring . 66

5.1.3 Time and Space Complexity . 67

5.2 Implementation . 67

5.2.1 Navigating the Block Graph . 68

5.2.2 Representing Leaf Nodes . 70

5.2.3 Constructing the Block Graph . 70

5.3 Experiments . 71

5.4 Discussion . 72

5.5 Summary . 75

6 Fast and Efficient Compression of High-Throughput Sequencing Reads 83

6.1 FAUST . 86

6.1.1 Compression . 86

Improving Candidate Selection . 87

Reverse Complement Matching . 88

Read Representation . 89

Encoding the Read . 91

6.1.2 Decompression . 91

6.2 AFIN . 92

6.2.1 Compression . 93

Read Representation . 94

6.2.2 Decompression . 95

6.3 Experiments . 95

6.3.1 Compression Results . 97

iv

6.3.2 Decompression Results . 101

6.4 Summary . 102

7 Conclusion 105

7.1 Contributions . 105

7.2 Future Work . 107

Bibliography 111

v

List of Figures

2.1 Suffix Tree for the string sassafras$. 13

2.2 The arrays S, SA, LCP and suffixes for the string sassafras$ 15

2.3 LZ77 factorization of abaababaabaabaw using a sliding window 23

2.4 LZ77 factorization of abaababaabaabaw using an unbounded dictionary 23

2.5 LZSS factorization of abaababaabaabaw using an unbounded dictionary 25

2.6 LZ78 factorization of abaababaabaabaw using an unbounded dictionary 25

2.7 LZW factorization of abaababaabaabaw with an initial dictionary mapping . . . 27

3.1 Examining the distribution of length values in an RLZ encoding of GOV2 . . . 42

3.2 Evaluating RLZ as a document retrieval system 45

4.1 Examining dictionary sample usage in RLZ dictionaries 52

5.1 The block graph for the eighth Fibonacci string, abaababaabaababaababa 64

5.2 Visual representation of a block graph for varied truncated depths 77

5.3 Block graph and baseline index extract performance on the Repetitive Corpus . 78

5.4 Block graph and baseline index extract performance (2) 79

5.5 Block graph and baseline index extract performance (3) 80

5.6 Block graph and baseline index extract performance (4) 81

6.1 The Sequence Read Archive database growth from 2009 84

6.2 Example of high-throughput sequencing output using the FASTQ file format . 85

6.3 Visual representation of the first three blocks and their preceding scan reads . 87

6.4 A reference and block read aligned by their shared substring 88

6.5 Match length distribution between scan and block reads for an encoding 89

6.6 Two complementary strands of DNA and mapping between base pairs 89

6.7 Encoding a reference and block read . 92

6.8 Visual representation of a single Afin graph with each read aligned 93

6.9 Per block compression results using fixed and dynamic selection thresholds . . 100

vi

List of Tables

3.1 A fixed size adaptive dictionary failing to capture non-local redundancy 34

3.2 Relative Lempel-Ziv factorization of a stream of text 35

3.3 Searching for an interval in a suffix array using the Refine function 38

3.4 Redundancy in a sampled RLZ dictionary built on GOV2 40

3.5 Redundancy in a sampled RLZ dictionary built on Wikipedia 40

3.6 Evaluating RLZ as a document retrieval system using GOV2 48

3.7 Evaluating baselines as a document retrieval system using GOV2 48

3.8 Evaluating RLZ as a document retrieval system using Wikipedia 49

3.9 Evaluating baselines as a document retrieval system using Wikipedia 49

3.10 Simulating a dynamic document database . 50

4.1 Example of BMI and PreProcess-BMI using varied match lengths 54

4.2 Removing redundancy at a character level from a dictionary. 57

4.3 Evaluating pre-processed dictionaries for document retrieval using GOV2 . . . 61

4.4 Evaluating pre-processed dictionaries for document retrieval using Wikipedia . 61

4.5 Evaluating the iterative halving technique using GOV2 62

4.6 Evaluating the iterative halving technique using Wikipedia 62

5.1 A succinct representation of the block graph of the eighth Fibonacci string . . 69

5.2 Block graph and baseline index space performance on the Repetitive Corpus . 73

5.3 Block graph and baseline index time performance on the Repetitive Corpus . . 74

6.1 Generating a single Afin graph given a reference array 93

6.2 Faust and Afin compression performance on the ERA015743 dataset 98

6.3 Baseline compression performance on the ERA015743 dataset 99

6.4 Percentage reverse complement reads selected during compression. 101

vii

Abstract

When is comes to managing large volumes of data, general-purpose compressors such as

gzip are ubiquitous. They are fast, practical and available on every modern platform

from standard desktops to mobile devices. These tools exploit local redundancy in a

text using a fixed-size sliding window. This window is usually very small relative to the

text, however, in principle it can be as large as available memory. The window acts as

a dictionary. Compression is achieved by replacing substrings with pointers to previous

occurrences found in the dictionary. This type of algorithm becomes problematic when

dealing with collections that are larger than physical memory, as it fails to capture any

non-local redundancy, that is, repetition that occurs outside of its search window. With

rapid growth in the already enormous amount of data we store and process there is a

pressing need for improving compression effectiveness, reducing both storage requirements

and decompression costs. However, many systems still use general-purpose compression

tools on large highly repetitive data collections.

In this thesis we focus on addressing this issue. We explore compression in a variety of

domains where large volumes of data need to be stored and accessed, and general-purpose

compression tools are cannon. First we discuss our work on web corpus compression,

then we discuss the implementation of a practical index for repetitive texts that gives

strong theoretical bounds in terms of size and access, and finally, we discuss our work

on compression of high-throughput sequencing reads. We show that in all cases, our new

methods improve on current techniques in both run-time and compression effectiveness,

and provide important functionality such as fast decoding and random access.

CHAPTER 1
Introduction

We are witness to massive growth in the size of digital archives across all domains, from

natural language texts, to archived web crawls and biological databases. This rapid growth

presents unique challenges in many areas of computer science from data storage and main-

tenance to efficient indexing, search and retrieval. Compression plays a crucial role pro-

viding many benefits [Ziviani et al. 2000]. A compressed text takes less space, reducing

the cost of storage, transmission, and improving bandwidth across all levels of the memory

hierarchy. There are many desirable properties in a compression algorithm: the amount

of compression it achieves, the time and space requirements for compression and decom-

pression, and the ability to provide random access, that is, being able to decode from

arbitrary positions in a compressed text. This leads to a variety of applications such

as, document retrieval, query biased snippet generation [Tsegay et al. 2009], and pattern

matching directly in compressed text [Manber 1997, de Moura et al. 2000].

We measure compression effectiveness by a compression ratio, which is the size of a

compressed file as a fraction of the original text size. In most cases we consider efficient

compression and decompression speed to be mutually exclusive. For example, an Infor-

mation Retrieval system will compress a collection once and access it many times. Here,

more of an emphasis is placed on efficient decoding and random access to its compressed

text. As the collection is only compressed once concessions can be made during encoding,

for example, using slower or more memory-hungry approaches to improve compression.

On the other hand, if a collection is to be archived it is not crucial that either compression

or decompression is fast, only that it is compressed as efficiently as possible.

There exists a wealth of literature providing solutions for efficient storage and retrieval

of text collections [Bell et al. 1990, Witten et al. 1999, Baeza-Yates and Ribeiro-Neto

1999]. A classical approach for compression of natural language texts is to use a semi-

static word-based model [Moffat 1989, Horspool and Cormack 1992, Zobel and Moffat

1995b, Ziviani et al. 2000] combined with a bit-oriented Huffman code [Huffman 1952] in

3

CHAPTER 1: INTRODUCTION

which words are assigned codes based on their probability distribution. de Moura et al.

[2000] and Brisaboa et al. [2007a] extend this idea to use byte-oriented codes, observing a

minimal effect on compression size and a significant improvement in decompression speed.

The main disadvantage of this model is that a mapping of symbol to code-word must be

maintained during both compression and decompression. This is a significant drawback

when compressing larger collections as the mapping dominates the rest of the encoding.

Moffat et al. [1997] observe that a mapping grows almost linearly in the size of the text due

to the inclusion of spelling mistakes, new acronyms, and junk text. A further drawback

is that the definition of a symbol or word becomes problematic for non-English texts, for

example, Chinese texts, where sentences are written without explicit word boundaries.

A practical alternative it to use an LZ77-based algorithm. Presented by Ziv and

Lempel [1977] in their seminal paper dating back almost 40 years, LZ77 has spawned a

large family of algorithms offering a variety of trade-offs during compression and decom-

pression [Salomon 2004]. An LZ-style algorithm provides reasonable compression, fast

decoding, and forms the base of many popular general purpose compression tools such

as gzip, zip, 7zip, and xz, which in one form or another can be found on almost every

computing device from desktops and servers to mobile devices. Conventional LZ-style

compression methods exploit local redundancy in a text by encoding their input relative

to a sliding window of previously encoded substrings. This window is usually small or

at least bound by physical memory, and, as a consequence it does not accurately capture

any global redundancy present in collection. This becomes problematic when compress-

ing specific collections, such as sets of whole genomes or DNA sequencing reads, which

are known to be highly repetitive but where redundancy is usually non-local [Mäkinen

et al. 2010, Deorowicz et al. 2013]. A further disadvantage is that traditional LZ methods

do not directly support random access. Decoding must always start from the beginning

of a compressed file. There are a variety of solutions for this problem, such as adding

synchronization points to the encoding [Witten et al. 1999] or partitioning a collection

into fixed sized blocks and compressing them separately [Ferragina and Manzini 2010],

however, these tricks lead to an undesirable trade-off between compression effectiveness

and decoding speed.

A self-index is a data structure that represents a text and provides efficient random

access and pattern matching in space close to that of the compressed text. Because of this,

the index can actually replace the text [Navarro and Mäkinen 2007]. Such indexes are

usually based on compressed suffix arrays (CSA) [Sadakane 2003], or the Burrows Wheeler

Transform (BWT) of a text [Ferragina and Manzini 2005], and there are a number of

efficient implementations that work well in practice [Ferragina et al. 2009]. Navarro [2004]

present an LZ78-based self index [Ziv and Lempel 1978], however, it is was shown to

be not effective for compressing large repetitive collections. Mäkinen et al. [2010] note

the suitability of LZ77 for compression of highly repetitive collections and comment that

4

SECTION 1.0:

“LZ77 has defied for years its adaptation to a self-index form. Thus, there is a wide

margin of opportunity for such a development.” The first practical LZ77-based index was

presented by Kreft and Navarro [2010]. They describe LZ-End, an LZ77-style parsing

technique and accompanying data structure that achieves compression similar to LZ77-

based compressors and supports fast random access. To construct a self-index, a suffix

array [Manber 1997] and other uncompressed data structures are usually required to be

built on a text. This limits the utility of self-indexes to text collections that fit in available

memory, as the suffix array can require space up to eight times the size of a text [Puglisi

et al. 2007].

In recent work, Ferragina et al. [2012] describe a disk-based method for computing the

BWT of a text directly without the need of a suffix array, however, constructing an index

from the BWT still assumes that it is resident in memory, as the BWT is a permutation

of a text.

Grammar-based compression is another group of algorithms that provides efficient

compression of highly repetitive collections. Here, a text is replaced with a small context-

free grammar (CFG) which is later used to rebuild the text. A grammar can represent a

text that is exponentially larger than itself. Generating an optimal grammar for a text

is considered impractical [Charikar et al. 2005], however, most grammar-based compres-

sors compute an approximation taking various heuristic approaches. Some examples of

grammar-based compressors are LZ78 [Ziv and Lempel 1978], Sequitur [Nevill-Manning

et al. 1994], XRay [Cannane and Williams 2000], and Repair [Larsson and Moffat 1999].

This approach is capable of identifying and exploiting global redundancy throughout a

text, however, like self-indexes, grammar compressors are hindered by large memory re-

quirements during construction. Maruyama et al. [2012; 2013] give an online grammar-

based compressor, FOLCA, that works in relatively small space, however, it still assumes

that a text can fit in memory.

As we have seen, many existing approaches to text compression have inherent limita-

tions when dealing with collections that are significantly larger than physical memory. For

example, most existing or off-the-shelf LZ-based compressors can not exploit non-local du-

plication in a text due to the limited size of their dictionary, while algorithmic approaches

such as a self-index are bound by memory constraints, particularly at construction time.

General-purpose compressors such as gzip are used everywhere, especially when distribut-

ing large text collections. Such wide adoption is primarily due to accessibility and ease

of use. These tools provide a reasonable trade-off between compression effectiveness and

efficient decoding speed. With such rapid growth in digital archives and known limitations

of existing practical approaches there is a increasing need to investigate and improve the

efficiency and effectiveness of such tools.

This is the primary motivation behind the research and contributions in this thesis.

We present algorithms and data-structures for compression of large text collections that

5

CHAPTER 1: INTRODUCTION

are capable of identifying and exploiting non-local redundancy and also provide important

functionality such as efficient decoding and fast random access.

1.1 Key Contributions

Next, we provide a summary of the main contributions of this thesis.

Compression of large scale web collections. Archived web crawls contain a very

high level of redundancy, for example, many pages will contain the same boilerplate

markup or shared scripts. There could be mirrored sites fetched from different domains or

shared news articles. Over the years we have observed a dramatic increase in the size and

content of web collections from our own academic resources such as GOV21 and Clueweb,2

to public archives such as the Internet Archive3 and the Common Crawl.4

In Chapter 3 we describe a compression scheme that builds a representative sample of

a collection. This sample is then used as a dictionary in an LZ-like encoding of the whole

collection. First, we outline a novel dictionary generation technique that successfully cap-

tures non-local redundancy throughout a collection. We show that the dictionary can be

as small as 0.1% of the overall collection size, which can easily fit in physical memory, and

still provide effective compression and fast random access. We describe a number of coding

techniques that offer various trade-offs during compression and decoding. We then em-

pirically evaluate our scheme by simulating a document retrieval system and demonstrate

that it provides superior compression and significantly faster decoding throughput and

random access than current state-of-the-art baselines. Additionally, we show that com-

pression is still effective in a dynamic environment, that is, where a collection is regularly

updated with new documents.

Although our compression scheme is highly effective we noticed that a large percent-

age of the dictionary was unused during encoding, almost 30% on average. Moreover,

there was a strong skew in the samples that were used, and, even among these, there

was redundancy as some samples contained repeated material. In Chapter 4 we explore

this issue and describe two techniques to eliminate redundancy throughout a dictionary.

The first algorithm is to be used before compression in a pre-processing stage, where long

repeated substrings are identified and removed from the dictionary. Then, we describe

a more principled approach where we compute usage statistics of a dictionary during an

encoding, then eliminate unused and redundant content to create a new compact dictio-

nary. This is used to re-encode the collection, repeating this process until compression

degrades or we reach a desired dictionary size or acceptable level of redundancy. We show

1http://ir.dcs.gla.ac.uk/test collections/gov2-summary.htm
2http://lemurproject.org/clueweb09/
3https://archive.org/
4http://commoncrawl.org/

6

http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm
http://lemurproject.org/clueweb09/
https://archive.org/
http://commoncrawl.org/

SECTION 1.1: KEY CONTRIBUTIONS

that both algorithms successfully remove redundancy throughout the dictionary with a

minimal effect on compression. We observed that we can reduce the dictionary to half

its size and achieve almost identical compression. Furthermore, we can generate a finely

tuned 100 MB dictionary that provides superior compression than all practical baselines

on a 426 GB document collection. These methods give us explicit control of memory

during run-time which can be useful in restricted environments, for example, a virtual

machine instance or a lightweight device. Furthermore, this space saving can be used to

append more useful content to a dictionary in order to improve compression.

A practical compressed index with fast random access. Many compressed indexes

are designed for efficient pattern matching operations such as returning the number of

occurrences or locations of a pattern in a text. Most indexes do provide random access,

however, they are not as efficient in practice. LZ-End by Kreft and Navarro [2010] achieves

exactly the opposite. It was designed primarily for efficient random access and performs

well in practice, however, it has poor worst-case bounds for compression and random

access time. Grammar-based indexes by Rytter [2003] and Bille et al. [2011] give stronger

theoretical bounds, however, they are not practical, as they contain unwieldy constant

factors.

In Chapter 5 we give a practical implementation of the block graph data structure

by Gagie et al. [2011], an LZ-style compressed index that supports efficient random access.

We show block graphs to be competitive in both theory and practice. First, we give an

overview of the data structure detailing how to traverse the index and extract random

substrings. Then, we outline a practical implementation of a block graph and describe

in detail how to navigate and represent each component of a block graph compactly. We

show that on several standard repetitive collections our implementation provides better

compression and faster random access than LZ-End and is competitive in space with

general-purpose compressors.

Compression of high-throughput sequencing reads. Advances in high-throughput

sequencing technology have dramatically reduced the time and cost for an individual se-

quencing experiment, acting as a catalyst for a massive growth in genomic databanks,

such as the NCBI Nucleotide database5 and the Sequence Read Archive (SRA),6 which

are expected to double in size every ten months for the next decade [Cochrane et al.

2013]. With a number of ambitious projects on the horizon, such as the UK-10K project7

and those outlined by the International Cancer Genome Sequencing Consortium [Hudson

et al. 2010], both aiming to sequence tens of thousands of genomes are placing a signif-

icant burden on databanks in the near future. Such an increase in growth of biological

5http://www.ncbi.nlm.nih.gov/nucleotide
6http://www.ncbi.nlm.nih.gov/Traces/sra/
7http://www.uk10k.org/

7

http://www.ncbi.nlm.nih.gov/nucleotide
http://www.ncbi.nlm.nih.gov/Traces/sra/
http://www.uk10k.org/

CHAPTER 1: INTRODUCTION

data is creating many unique and costly challenges, from maintenance and storage to the

development of algorithms that can scale to such massive volumes of data.

Efficient compression of biological data requires methods that are quite different to

that of natural language texts in order to exploit redundancy throughout a collection,

and popular general-purpose compressors struggle to improve over a naive static codes.

In Chapter 6 we present two novel algorithms for compression of large real-world high-

throughput sequencing read collections. First, we present Faust, a scan-based LZ-style

algorithm capable of scaling to large real-world sequencing experiments. We introduce

an efficient coding scheme to represent a read in terms of another previously seen similar

read. Then, we present Afin, a second stage compression algorithm which performs a

reordering of a Faust encoding to further exploit the high levels of redundancy throughout

a collection. We empirically evaluate both algorithms against current state-of-the-art

methods and general-purpose compression tools on a collection of reads from a large

real-world sequencing experiment and find that both new methods perform efficiently in

practice. We show that Faust is competitive in compression performance to BEETL a

state-of-the-art read compression scheme by Cox et al. [2012], encoding in half the time

and providing significantly faster decoding, 17 minutes compared to 40 hours on average.

Then, we demonstrate that Afin achieves competitive compression and decoding compared

to a number of current state-of-the-art baselines.

1.2 Thesis Structure

The remainder of this thesis is structured as follows.

Chapter 2 gives an overview of the related concepts covered throughout this thesis,

from information theory to text compression, text indexing and operations on succinct

data structures.

Chapter 3 presents an efficient compression scheme for large repetitive text collections.

Our experiments focus on web crawls, however, in future chapters, we demonstrate that

it provides practical compression on a variety of real-world text collections.

Chapter 4 outlines approaches for redundancy elimination in sampled dictionaries de-

scribed in the previous chapter. We demonstrate that we can effectively remove redundant

and unused components from a dictionary, reducing its size significantly with little to no

effect on compression compared to original approaches.

Chapter 5 introduces the first practical implementation of a block graph data structure

proposed by Gagie et al. [2011] which is specifically designed for compression of large

8

SECTION 1.2: THESIS STRUCTURE

repetitive collections. We demonstrate that it is competitive in both theory and practice,

providing competitive compression and superior random access capability.

Chapter 6 presents two novel algorithms for compression of high-throughput sequencing

read data. We demonstrate that these algorithms are capable of compressing large real-

world collections, providing superior compression and decoding speeds compared to state-

of-the-art approaches.

Chapter 7 concludes and outlines directions for future work.

9

CHAPTER 2
Background

In this chapter we give an overview of text compression methods describing fundamental

algorithms, data structures and associated work in the context of the contributions in this

thesis. We begin in Section 2.1 by defining standard symbols and notation to represent

properties of strings. In Section 2.2 we discuss text indexing and its applications, from

pattern matching to text compression. We detail two classic text indexes, the suffix tree

and the suffix array, then we briefly give an overview of succinct data structures and

compressed full-text indexes. Finally, in Section 2.3 we discuss text compression, focusing

on adaptive dictionary-based modeling, which is a fundamental building block for the

work of this thesis.

2.1 Preliminaries

A string, S, of length n, is defined as a finite sequence of symbols (or characters) derived

from an alphabet Σ of size σ such that, S[1..n] = S[1]S[2]..S[n−1]S[n]. The empty string,

of length 0, is denoted ε. The alphabet defines the set of unique symbols that can occur in

a string. Throughout this thesis we will be using a number of fixed alphabets, specifically,

a binary alphabet Σ = {0, 1}, DNA nucleotides, Σ = {a, c, g, t}, and integer alphabets,

Σ = {1, 2, .., σ − 1, σ}, such as extended ASCII, Σ = {0, 1, .., 255}.
Interval notation is used to identify specific characters and substrings of S. A square

bracket denotes a closed interval, such that it includes the characters at each end point,

and a curved bracket is used to exclude them. For example, given the string, S = sassafras,

n = 9, Σ = {a, f, r, s} and σ = 4. S[5] corresponds to the character a at index 5. S[7..9],

corresponds to the substring ras, while S[7..9) corresponds to ra. The ith prefix of S

is written as S[1..i], such that, S[1..i] = S[1]S[2]..S[i]. Likewise, the jth suffix of S is

written as S[j..n] with length n− j + 1, such that, S[j..n] = S[j]S[j + 1]..S[n]. The first

11

CHAPTER 2: BACKGROUND

four prefixes of S are s, sa, sas and sass. The first four suffixes of S are sassafras, assafras,

ssafras and safras. All logarithms are of base 2 unless otherwise specified.

2.2 Text Indexing

Pattern matching plays a fundamental role in computer science with many practical appli-

cations such as the search functionality in a text editor and shell tools, for example, awk

and grep. Many of the core algorithmic problems in fields such as Information Retrieval

and Bioinformatics boil down to pattern matching problems. The definition of the exact

pattern matching problem consists of locating one or more occurrences of a pattern, P of

length m, in a string S of length n. In general, the string is usually much larger than the

pattern, that is, m� n. When n is small there are a number of efficient online solutions

that can be used. These run linear in the size of the text, such as the classic textbook

algorithms by Knuth et al. [1977] and Boyer and Moore [1977]. Both algorithms efficiently

scan the text from the beginning to the end reporting pattern occurrences. When n is

sufficiently large and a text is to be searched many times, scanning is no longer practical.

In such cases it is useful to construct an index on the text offline, such as a suffix tree or

suffix array in order to speed up the pattern matching process. Such indexes have been

described as having myriad virtues [Apostolico 1985], providing exact pattern matching

capabilities in time proportional to m, and giving solutions to a wide range of other string

processing problems from approximate pattern matching, where errors are allowed in the

pattern and/or string, to text compression. We refer the reader to Gusfield [1997] for

further reading.

The fundamental operations supported by an index data structure are count, locate

and extract.

count(P) returns the number of occurrences of a pattern P in a text T .

locate(P) returns the positions of each occurrence of a pattern P in a text T .

extract(i, j) returns the substring T [i..j].

This functionality is used as a building block for more advanced operations such as

approximate pattern matching.

Next we discuss two fundamental data structures for text indexing, the suffix tree

and the suffix array. Both play an important role as the basis for many compression

algorithms and compressed data structures [Navarro and Mäkinen 2007]. Furthermore,

we make extensive use of the suffix array throughout the body of work in this thesis.

12

SECTION 2.2: TEXT INDEXING

$ a

f
r
a
s
$

ras$ s

fras$ s

$ safras$

$ a safras$

ssafras$fras$

10

5

8 2

6 7

9

4 1

3

Figure 2.1: Suffix Tree for the string sassafras$

2.2.1 Suffix Tree

A trie [Fredkin 1960] is a tree-based data structure built on the characters of a set of

strings. Each edge is labeled with a single character from one or more of the strings that

it represents. The edges between a node and each of its child nodes must have distinct

labels. Internal nodes represent a distinct prefix from one or more of the strings in the set.

The path from the root node to a leaf node corresponds to a complete string. Inserting a

new string into a trie and searching for a pattern can be performed in linear time in the

size of the string to be inserted or searched for.

A suffix trie of a string, S, is a trie that is built on S’s set of suffixes. The basic idea

behind a suffix tree is to collapse unary paths in the suffix trie. Morrison [1968] proposed

the idea of combining unary edge labels for general tries. This was independently proposed

by Weiner [1973] in the context of the suffix tree. A suffix tree contains n leaf nodes, each

corresponding to the unique suffixes of S. The leaf nodes act as pointers to the beginning

of its corresponding suffix. The suffix tree for the string sassafras$ is shown in Figure 2.1.

Note that we append a $ to the string and consider this character to be smaller than every

other character in its alphabet, Σ. This is ensure that each suffix is prefix free, that is,

it prevents a suffix from acting as a prefix to any other suffixes in the tree. We use $ for

technical convenience, however in practice a unique termination symbol can be avoided.

Each edge is represented as a pair of indexes into S, corresponding to the beginning and

end position of the substring that it represents. For example, the right-most edge in

Figure 2.1 corresponds to (4, 10), which represents the suffix safras$.

13

CHAPTER 2: BACKGROUND

Searching for a pattern can be performed in O(mlogσ + occ) time, where m is the

pattern length and occ is the number of occurrences of the pattern in S. The logσ factor is

due to the need to choose the appropriate edge (of O(σ) possible edges) during each step

of the tree traversal. As an example, say we want to search for the pattern, P = sa on the

suffix tree in Figure 2.1. Beginning at the root node we traverse down the node via the

edge label s. Its right child, a leaf node, corresponds to the suffix ssafras$. Its middle child

contains the edge label a which matches with the current position in the pattern, so we

follow the edge to its child node. At this point we have successfully matched the pattern

sa in the suffix tree. From here we traverse the nodes rooted at our current position. Each

leaf we encounter will correspond to an occurrence of the pattern sa. In this case the

pattern is found at index 1 and 4 in S. As an alternative example, say we are searching

for the pattern asf. This time we follow the a edge from the root node. Here we can move

down its right edge, corresponding to the substring as. At this point there are two leaf

nodes, however, neither match against f, so we have determined that the pattern asf does

not occur in S.

A suffix tree can be computed in linear time [Weiner 1973, McCreight 1976, Ukkonen

1995, Farach 1997] and can be stored in O(n log n) bits. In practice suffix trees are rarely

used on large texts due to large constant factors dominating the size of the data structure.

Kurtz [1999] observed that even the most efficient suffix tree can take up to 10 times the

size of its text and, in the worst case, can be a large as 20 or more. There are many

solutions to this problem, most notably the suffix array, which will be discussed next.

2.2.2 Suffix Array

The suffix array [Gonnet et al. 1992, Manber and Myers 1993] was designed to reduce

the space requirements of the suffix tree. It is a much simpler data structure that can

achieve functionality similar to that of a suffix tree in significantly less space. The suffix

array of a string S, of length n is simply a permutation of the integers 1 to n such that

each integer corresponding to the suffix S[i..n] is sorted in lexicographical order. That is,

S[SA[i]..n] < S[SA[i+ 1]..n], for 1 ≤ i < n.

A suffix array can be stored in n log n bits, and so has the same space complexity

of a suffix tree, though with a much smaller constant of proportionality. In practice it is

much smaller, at 4n or 8n bytes depending on the width of the integer used to represent

each suffix pointer and the size of the text being indexed. A suffix array can be computed

from a suffix tree in linear time, however it is more efficient in terms of time and space

to construct it directly. Manber and Myers [1993] originally described an algorithm to

construct a suffix array in O(n log n) time. There are now a number of efficient linear-time

solutions [Ko and Aluru 2005, Kärkkäinen and Sanders 2003, Nong et al. 2009; 2011], see

Puglisi et al. [2007] for a survey of a wide range of suffix array construction algorithms.

The suffix array for the string S = sassafras$ is shown in Figure 2.2. To see the relationship

14

SECTION 2.2: TEXT INDEXING

i S[i] SA[i] LCP[i] S[SA[i]..n]

1 s 10 - $

2 a 5 0 afras$

3 s 8 1 as$

4 s 2 2 assafras$

5 a 6 0 fras$

6 f 7 0 ras$

7 r 9 0 s$

8 a 4 1 safras$

9 s 1 2 sassafras$

10 $ 3 1 ssafras$

Figure 2.2: The arrays S, SA, LCP and corresponding suffixes for the string sassafras$.

between the suffix array and the suffix tree observe that the suffix array directly maps to

an in-order traversal of leaf nodes in the suffix tree from Figure 2.1 – assuming that the

nodes in the suffix tree are arranged in lexicographical order. Moreover, there exists a

range in the suffix array, SA[lb..rb], that maps directly to each node in its suffix tree. For

example, in Figure 2.1, the range SA[2..4] maps to the node pointed to by the edge labeled

a. Furthermore, the range SA[7..10] maps to the node pointed to by the s edge. Notice

that the leaf nodes in this range are 9, 4, 1 and 3, which are identical to the corresponding

values in the suffix array range.

Searching for a pattern can be performed inO(m log n) time using only the suffix array

and the text. The key to searching in a suffix array is to observe that all occurrences of a

pattern will be adjacent to each other, as the suffixes are sorted lexicographically. That is,

the a search will return a range in the suffix array, SA[lb..rb], that contains each position

in the text where the pattern occurs. The left and right bounds of this range can be

computed by a binary search over the array, performing O(m) character comparisons at

each step. The number of occurrences of a pattern can then be found in constant time by

returning the value rb− lb+1. We can list the locations of each occurrence in O(occ) time

by iterating through the values in the range SA[lb..rb]. Manber and Myers [1993] described

how to avoid these O(m) comparisons during each binary search to reduce the run-time

to O(m+ log n), however, this comes at the cost of two auxiliary arrays computed from

the longest common prefix (LCP) array.

Let the function lcp return the length of the longest common prefix between strings.

The LCP array represents the longest common prefix of adjacent suffixes in a suffix array.

That is, LCP[i] = lcp(S[SA[i−1]..n], S[SA[i]..n]) for 1 < i ≤ n, and LCP[1] = ∅. The LCP

array is shown in Figure 2.2. As an example, LCP[9] = 2, as the suffixes S[SA[9]..n] =

safras$ and S[SA[8]..n] = sassafras$ share a common prefix of sa. The LCP array can

be computed in linear time [Kasai et al. 2006, Kärkkäinen et al. 2009, Fischer 2011] and

combined with a suffix array can be used to replicate most of the functionality of a suffix

15

CHAPTER 2: BACKGROUND

tree, but not all. It is possible to fully replicate the functionality of a suffix tree by creating

an enhanced suffix array [Abouelhoda et al. 2004], this is achieved by including the LCP

array and a number of auxiliary arrays which are used to describe the structure of the

suffix tree it represents.

2.2.3 Succinct Data Structures

Succinct data structures are designed to have the same functionality as conventional data

structures, but using as little space as possible. Jacobson [1989] observed that we can

represent the structure of a tree or graph as a bitvector and that it is possible to simu-

late traversal of these data structures using a number of constant time operations over

the bitvector. This has led to a variety of applications, including compressed text in-

dexes [Navarro and Mäkinen 2007], succinct trees [Jacobson 1989, Munro and Raman

2001, Benoit et al. 2005, Barbay et al. 2007], graphs [Claude and Navarro 2007, Brisaboa

et al. 2009] and binary relations [Barbay et al. 2007]. Jacobson [1989] identified three

fundamental operations on bitvectors that are used as the basis for more complex func-

tionality of succinct data structures. Given a bitvector B, a position i, and a bit b (either

0 or 1) we define

access(B, i) return the bit value at position i in B.

rankb(B, i) returns the number of occurrences of b before position i in B.

selectb(B, i) returns the position of the ith b in B.

There is an interesting symmetry between rank and select, namely

rank1(B, select1(B, i)) = select1(B, rank1(B, i)) = i.

Many succinct operations can be solved in terms of each other. For example, access can

be solved in terms of rank

access(B, i) = rank1(B, i+ 1)− rank1(B, i) for i ∈ [1, n),

and rank0 can be solved in terms of rank1

rank0(B, i) = i− rank1(B, i).

Moreover, select can be solved in terms of rank, although, this typically comes with a

logarithmic time penalty as a binary search is required over the rank structure. Jacobson

[1989] gives a data structure which adds o(n) bits overhead on a bitvector and provides

constant time rank and logarithmic time select operations. Clark [1996] and Munro [1996]

later improved select to run in constant time. The main idea behind these data structures it

to maintain a hierarchical sampling of cumulative rank counts at regularly spaced intervals

16

SECTION 2.2: TEXT INDEXING

across a bitvector. A rank operation is reduced to querying the sampled blocks in constant

time before using a population count (popcnt), which counts the number of 1 bits in a

machine word. Key to the efficiency of these data structures is the speed at which popcnt

is performed. Basic methods use a lookup table of pre-computed population counts.

Another approach is to use broadword techniques such as Knuth [2007]’s sideways addition

rule, which is known to work well in practice [Vigna 2008]. As popcnt is such a widely

used operation it was recently included as a machine instruction POPCNT which was

introduced along side the SEE4.2 instruction set and vastly improves run-time.1

Raman et al. [2002] describe a compressed bitvector representation that theoretically

gives constant time rank and select operations, however, in practice it runs in O(s) time,

where s is a specified sampling rate. Claude and Navarro [2009] use a fixed sampling rate

of 15 by using a pre-computed lookup table. For larger sampling rates a lookup table is

no longer practical, as its space requirements are too large. Navarro and Providel [2012]

provide a solution for larger sampling rates by removing the lookup table altogether and

manually encoding/decoding block offsets on-the-fly. Okanohara and Sadakane [2007b]

present a number of compressed bitmap representations giving varied trade-offs in terms

of size and speed of operations, for example, their sdarray compactly represents sparse

bitvectors and provides efficient rank and select operations which is almost as fast as an

uncompressed bitvector, however, it is only effective when the bitvector is very sparse,

for example, densities below 5%. Kärkkäinen et al. [2014a] describe a hybrid scheme that

represents a bitvector by dividing it into blocks and separately encoding each with one

of a variety of techniques. This method is particularly effective when the distribution of

bits throughout a bitvector is irregular and each block can be compressed effectively by

alternative methods.

In the case of arbitrary sequences, that is, when Σ is no longer a binary alphabet, rank

and select operations can be solved using a wavelet tree [Grossi et al. 2003]. A wavelet tree

decomposes an alphabet into a balanced binary tree of depth log σ, successively halving

Σ at each node until reducing the leaf nodes, each of which will correspond to a single

character. A wavelet tree stores n bits at each level, giving a total upper bound of ndlog σe
bits. The tree can be explicitly compressed by representing the bitvectors in compressed

form [Raman et al. 2002] or implicitly compressed by replacing the balanced tree with

the Huffman tree of the sequence [Mäkinen and Navarro 2007]. Wavelet trees have been

extensively studied over the last decade and have found uses in many domains such as

compressed text indexes, which are discussed next. See Navarro [2014] for a recent review

of the wide variety of applications of wavelet trees.

1POPCNT is not actually considered part of SSE4.2, however, it was introduced at the same time. In
fact, POPCNT and LZCNT have their own dedicated CPUID bits to indicate support.

17

CHAPTER 2: BACKGROUND

2.2.4 Compressed Full-Text Indexes

The fundamental issue with classic text indexes such as the suffix tree and suffix array

is their space requirements relative to the size of the input text. Although the space

complexity for both data structures is theoretically linear in the length of the input string,

they both come with large constants, resulting in data structures that are significantly

larger than the text. Furthermore, to support pattern matching, the text is required along

with the data structure itself. In recent years there have been a number of solutions to

this problem in the form of compressed full-text indexes, also called self indexes. These

indexes provide the functionality of a classic text index in space close to that of the

compressed text, and, as a result, can actually replace the text. See Navarro and Mäkinen

[2007] for a comprehensive overview of the field. There are many variations of self-indexes

all making use of the succinct data structures described in Section 2.2.3. Most build a

compressed representation of a suffix tree [Sadakane 2007] or suffix array [Sadakane 2003,

Grossi and Vitter 2005]. There are a number of compressed self-index based on a Lempel-

Ziv family of algorithms, originally based on LZ78 [Navarro 2004, Ferragina and Manzini

2005, Arroyuelo et al. 2006], and more recently on LZ77 [Kreft and Navarro 2010, Gagie

et al. 2012; 2014]. Indexes based the Burrows Wheeler Transform (BWT) [Burrows and

Wheeler 1994] of a text is a very active area of research, for example, the large family

of FM-indexes [Ferragina and Manzini 2000, Ferragina et al. 2004, Mäkinen and Navarro

2005, Kärkkäinen and Puglisi 2011], are heavily used in Bioinformatics [Langmead et al.

2009, Simpson and Durbin 2010; 2012].

2.3 Text Compression

The core idea behind compression is to represent data in less space than its original

representation, reducing the cost in terms of time and resources to transmit and/or store

the data, for example, over a physical medium such as a network, or levels of a systems

memory hierarchy. Algorithms are divided into two distinct categories; lossless and lossy

methods. In lossless compression the aim is to encode a text without the loss of any

information, that is, the original text can be retrieved verbatim from its compressed

representation. On the other hand, lossy compression allows for a certain loss of accuracy

during encoding. This approach is suitable for data that is already an approximation, for

example, data converted from an analog source such as an image, or an audio or video

signal. The compression methods discussed throughout this thesis will be lossless.

The fundamental idea behind text compression is to take a stream of symbols and

convert them into codes. An effective compression algorithm will output codes in space

smaller than that of its original symbols. Note that the notion of a symbol is abstract, it

could be a character, word, sentence, phrase or arbitrary substring.

There is a lower bound on the number of bits required to encode a symbol. Shannon

18

SECTION 2.3: TEXT COMPRESSION

[1948] defines the information content or self-information of a symbol with a pre-defined

probability distribution as

I(p) = log(1/pi). (2.1)

Self-information represents a lower bound on the number of bits an ideal compressor

requires to represent a random symbol. The entropy of a message, S, is the average of

the information content for each individual symbol, that is

H(S) =
n∑
i=1

pi I(p). (2.2)

Manzini [2001] formalized this concept in terms of a finite string. For a string S of

length n and an alphabet Σ, the 0-order empirical entropy of a string S is defined as

H0(S) =
∑

c∈Σ,nc>0

nc
n

log
n

nc
, (2.3)

where nc is the number of occurrences of character c in S. The 0-order empirical entropy

is the average number of bits an ideal compressor which keeps statistics of single symbols

uses to encode each symbol. The idea here is that symbols with low probability have high

information content, conversely, symbols with high probability have a low information

content and require fewer bits to represent. nH0 defines a lower bound on the number of

bits required to represent a complete string. For example, the 0-order empirical entropy

of the string S = sassafras, n = 9, na = 3, nf = 1, nr = 1, ns = 4 is

H0(S) =
3

9
log

9

3
+

1

9
log 9 +

1

9
log 9 +

4

9
log

9

4
= 1.752.

The average length of a codeword for the string S using a 0-order ideal compressor is 1.752

bits and can represent S in nH0(S) = 15.768 bits.

A 0-order statistical model maintains a probability distribution of independent sym-

bol occurrences. More advanced methods for representing symbol probabilities consider

the context in which each symbol appears, for example, k symbols proceeding it, on the

assumption that knowledge these contexts will lead to a more effective probability dis-

tribution. This is especially prevalent when compressing English text. For example, if

1-order symbol statistics are computed at a character level the letter u would be highly

likely to occur after the letter q . Considering symbols as words, intuitively, given the

word suffix it would be highly likely that the next word encountered is array or tree and

extremely unlikely that it would be tambourine. Formally, the kth-order empirical entropy

of a string S is defined as

Hk(S) =
1

n

∑
α∈Σk,Sα 6=ε

|Sα|H0(Sα), (2.4)

where Sα is a collection of symbols from S comprised of all the symbols that are followed by

each context (substring) α of length k in S. It always holds that Hk+1 ≤ Hk ≤ H0 ≤ log σ.

19

CHAPTER 2: BACKGROUND

The kth-order empirical entropy of the string S = sassafras, n = 9, na = 3, nf = 1,

nr = 1, ns = 4, for k > 0 is

H1(S) =
1

9
(3H0(Sa) +H0(Sf) +H0(Sr) + 3H0(Ss))

=
1

9
(3H0(sfs) +H0(r) +H0(a) + 3H0(asa))

= 0.611.

H2(S) =
1

9
(H0(Saf) +H0(Sas) +H0(Sfr) +H0(Sra) + 2H0(Ssa) +H0(Sss))

=
1

9
(H0(r) +H0(s) +H0(a) +H0(s) + 2H0(sf) +H0(a))

= 0.222.

H3(S) =
1

9
(H0(Safr) +H0(Sass) +H0(Sfra) +H0(Ssaf) +H0(Ssas) +H0(Sssa))

=
1

9
(H0(a) +H0(a) +H0(s) +H0(r) +H0(s) +H0(f))

= 0.

Note that higher order models offer lower average entropy per symbol as we have a

more effective model of S. Theoretically, by k = 3, we are sure which symbol will occur

next.

2.3.1 Modeling

Rissanen and Langdon [1981] categorize text compression into two distinct parts: modeling

and coding. In this section we discuss modeling and we follow with a discussion of coding

techniques in the next. A model is essentially a collection of information about an input

such as statistical probabilities of symbol occurrences, or a description of other types of

repetitiveness in the data. In order to provide effective compression it is critical that

the model provide an accurate representation of its input. There are a wide range of

modeling techniques used in text compression [Bell et al. 1989]. A 0-order statistical

model maintains a probability distribution of individual symbol occurrences. Advanced

statistical models use higher order probability distributions and are efficient in practice,

for example, the Prediction by Partial Matching (PPM) algorithm of Cleary and Witten

[1984].

Coding is the process of representing symbols using information from the model. The

core idea is to map short codewords to frequently occurring symbols, and longer codewords

to rarer symbols. Statistical models provide information to a coder which in turn maps

symbols to variable length codewords. An alternative approach is dictionary modeling.

Here substrings are replaced with codewords. The model maintains a dictionary comprised

20

SECTION 2.3: TEXT COMPRESSION

of a set of strings. A text is compressed in terms of phrases in the dictionary and the

encoding is simply pointers referencing the dictionary.

There are many approaches to predict probabilities in a model. A static model is a

fixed mapping between symbol and codeword. The model does not depend on the input

symbols at all. Both the encoder and decoder share the model so there is no need to

communicate it with the encoding. Static models are useful when properties of the input

are known in advance. For example, compressing Human DNA using a static code for

each of the four neuclotides, Σ = {a, c, g, t}, a = 00, c = 01, g = 10, t = 11 is efficient in

practice because each symbol occurs with almost equal probability.

A semi-static model computes symbol probabilities off-line in an initial pass of the

text. Compression is performed in a second pass using information gained from the model.

If a fixed length code is used to represent each symbol a static and semi-static model can

provide random access to the text, that is, direct access to the compressed data at any

point in an encoding. Random access to compressed data is a desirable aspect of many

compression systems, for example, information retrieval systems or document databases

where specific documents or snippets of text are extracted from large compressed files.

The main disadvantage of static and semi-static models is that the dictionary needs to

be transmitted with the encoding to the decoder. Compressing large collections with

a semi-static model can be problematic, as the vocabulary can grow significantly larger

than physical memory. In our own experiments a parsing of Clueweb09 Category A,

a 15TB English text web crawl 2 generated a 13GB uncompressed vocabulary. Most

notably, close to 50% of the lexicon was comprised of non-word symbols that occurred

only once throughout the collection. Such hurdles to scalability have not been reported

before in literature due to the relatively small collection sizes used in experiments. For

example, Turpin et al. [2007] use a semi-static model for document compression, but the

collections they used were less than 100GB. In general, overall compression achieved by

a semi-static approach is limited by its insensitivity to any global repetitive properties of

the collection. The best case for these methods is a reduction of the text size to around

20% of its original size not including the space required for the model.

Adaptive models avoid the explicit storage and transmission of the model with an

encoding. Both compression and decompression begin with no information about its input

or some predetermined state. They progressively learn an effective model by adapting to

knowledge of previously encountered symbols. This is an online approach as it requires

only one pass over the text, which is useful if the text is significantly larger than memory

and a semi-static model is not be feasible. A disadvantage of adaptive models is the extra

cost of maintaining and updating the model during both compression and decompression.

2http://lemurproject.org/clueweb09

21

http://lemurproject.org/clueweb09

CHAPTER 2: BACKGROUND

Dictionary Based Models

In this section we give an overview of adaptive dictionary-based models, which act as the

basis for the contributions in this theses.

LZ77 [Ziv and Lempel 1977] An LZ77 encoder examines an input sequence through

a window that consists of two components; a dictionary that contains a portion of recently

encoded sequences and a look-ahead buffer, which contains the next portion of the text

to be encoded. The dictionary is built from previously occurring substrings in a text.

It is typically implemented as a fixed size sliding window, however, it can be allowed to

extend back to the beginning of a text. The look-ahead buffer can also be fixed length or

unbounded giving a space time trade-off between window size and compression effective-

ness. Compression involves finding the longest substring in the dictionary that matches

the current prefix in the look-ahead buffer. When a match is found in the dictionary,

for example, a substring of length i, the model notifies the coder and slides the window

i + 1 positions across the text. This model does not directly support random access to

the compressed text. In fact, due the to adaptive nature of the dictionary, decoding must

commence at the beginning of the text or at specific synchronization points coded in the

output [Witten et al. 1999].

A traditional LZ77 encoder outputs a triple (p, l, c), where p is an offset into the

dictionary from the current position in the look-ahead buffer, l is the length of the longest

substring matching in both buffers, and c is the character in the look-ahead buffer that

directly follows the match. This triple is commonly known as an LZ factor or phrase. The

set of LZ factors for the entire text is the LZ factorization or LZ parse. If the current

character to encode is not found in the dictionary we output (0, 0, c), identifying c as a

literal character.

An example of traditional LZ77 factorization using a fixed size sliding window of four

characters on the string S = abaababaabaabaw is shown in Figure 2.3. At the top of the

figure we show the various stages of the LZ77 factorization including the (p, l, c) factors.

Observe how the window slides across the text, advancing after each factor. Underlined

characters correspond to a match in the dictionary and look-ahead buffer or a single literal

character. Gray characters in the look-ahead buffer correspond to the c element of each

computed factor. At the bottom of the figure we show the textual representation of the

LZ factorization. Note that the position values in Figure 2.3 are relative values. That is,

they correspond to an offset into the dictionary from the current position in the text.

There is a wide range of LZ77-based algorithms (see Salomon [2004] for a detailed

overview). They tend to fall into three main classes; restrictions on window size, methods

of substring selection in the dictionary, and methods of coding LZ factors. All aspects

give varying compromises between speed, memory and compression effectiveness. The

larger the window the slower it will be to search for factors and more memory that will be

22

SECTION 2.3: TEXT COMPRESSION

Dictionary Output

abaababaabaabaw (0,0,a)

a baababaabaabaw (0,0,b)

ab aababaabaabaw (2,1,a)

abaa babaabaabaw (3,2,b)

aba abab aabaabaw (2,1,a)

abaab abaa baabaw (3,3,b)

abaababaaa baab aw (2,1,w)

a b aa bab aa baab aw

Figure 2.3: LZ77 factorization of the string abaababaabaabaw using a sliding dictionary
window of four characters. On the left shows the position of the window and the look-
ahead buffer during an encoding. The right shows each computed LZ factor (p, l, c) where
p is the relative position or offset from the beginning of the look-ahead buffer, l is the
length of the factor and c is the current symbol at the beginning of the look-ahead buffer.

Dictionary Output

abaababaabaabaw (0,0,a)

a baababaabaabaw (0,0,b)

ab aababaabaabaw (1,1,a)

abaa babaabaabaw (2,2,b)

abaabab aabaabaw (3,4,b)

abaababaabaa baw (2,2,w)

a b aa bab aabaa baw

Figure 2.4: LZ77 factorization of the string abaababaabaabaw using an unbounded dic-
tionary. On the left shows the growth of the unbounded dictionary during an encoding.
The right shows each computed LZ factor (p, l, c) where p is the absolute position or offset
from the beginning of text, l is the length of the factor and c is the current symbol at the
beginning of the look-ahead buffer.

consumed, however, the dictionary will have a greater selection of strings to select from,

and in turn compression should improve. On the other hand, using a smaller window may

reduce run-time and use significantly less memory, but at the cost of worse compression,

as the dictionary does not represent the text very well.

An example of LZ77 factorization using an unbounded window is shown in Figure 2.4.

Note that each factor’s position value is now absolute, that is, it corresponds to an index

23

CHAPTER 2: BACKGROUND

in the uncompressed text and not an offset from its current position. At the top of the

diagram we see the incremental stages of the factorization. At the bottom we show the

textual representation of the LZ factorization. In this example the string is factorized

with one less factor compared with using a small four character window. While this is not

a remarkable improvement, on larger texts the difference can be significant.

There are many methods for selecting phrases in a dictionary. When the dictionary

is small (for example zlib typically uses a dictionary of less than 32KB), the most effective

method is to hash all possible strings and to select the longest match. As the dictionary

fits comfortably in higher levels of cache (L2 cache sizes on a current CPU range in

megabytes), using more advanced methods would incur additional costs. When using

a larger window it is better to create an index over the dictionary to improve selection

time such as a multi-level hash [Sadakane 2000], a suffix tree [Gusfield 1997], or a suffix

array [Chen et al. 2008, Goto and Bannai 2013, Kärkkäinen et al. 2013a;b; 2014b]. Phrase

selection has an effect on both compressed size and decoding speed. For example, the

final factor in Figure 2.4, (2, 2, w), which corresponds to the substring ba, occurs in four

distinct positions in S. Selecting the substring closest to the current position in the stream

will improve cache locality and reduce the encoding size if a fixed window is used by being

able to encode smaller position offset values.

Traditional LZ77 codes a factor in dlogDe + dlogLe + dlog σe bits, where D is the

length of the dictionary window and L is the length of the look-ahead buffer. Most practi-

cal general-purpose LZ77 implementations use statistical coding techniques, for example,

DEFLATE/zlib/gzip uses a Huffman code and LZMA/LZMA2/7zip/xz uses range coding.

These methods are discussed later in this chapter. We experiment with factor coding in

our work on semi-static dictionary compression in Chapter 3.

A desirable aspect of most adaptive dictionary-based models is their fast decoding

throughput. LZ77 decoding is simple and effective. The decoder maintains a window in an

identical manner to the encoder, however, it does not build any complex data structures

over the dictionary. For each factor it read,s it simply copies phrases from the dictionary

to its output stream.

LZSS [Storer and Szymanski 1982] If there are a large proportion of rarely occurring

characters in a string, the LZ77 parse just discussed will output many wasteful (0, 0, c)

factors. The most common variation of LZ77 that is used by many general-purpose com-

pressors is LZSS by Storer and Szymanski [1982]. The main contribution of LZSS was to

represent LZ factors as a double (p, l), identifying that the character field is potentially

wasteful and can be represented more efficiently. Another improvement was to include

character literals in the output stream when it is more expensive to code the factor. This

was achieved by adding a flag bit before each output to identify if the next entry is a factor

or a literal character. A variation of LZSS is to encode characters with the double (0, c)

24

SECTION 2.3: TEXT COMPRESSION

Dictionary Output

abaababaabaabaw (0,a)

a baababaabaabaw (0,b)

ab aababaabaabaw (1,1)

aba ababaabaabaw (1,3)

abaaba baabaabaw (2,5)

abaababaaba abaw (1,3)

abaababaabaaba w (0,w)

a b a aba baaba aba w

Figure 2.5: LZSS-style factorization of string abaababaabaabaw using an unbounded dic-
tionary. On the left shows the growth of the unbounded dictionary during an encoding.
The right shows each computed LZ factor (p, l) where p is the absolute position or offset
from the beginning of text and l is the length of the factor.

Dictionary Output

abaababaabaabaw 1 = a (0,a)

a baababaabaabaw 2 = b (0,b)

ab aababaabaabaw 3 = aa (1,a)

abaa babaabaabaw 4 = ba (2,a)

abaaba baabaabaw 5 = baa (4,a)

abaababaa baabaw 6 = baab (5,b)

abaabababbaab aw 7 = aw (1,w)

a b aa ba baa baab aw

Figure 2.6: LZ78 factorization of string abaababaabaabaw using an unbounded dictionary.
The left depicts the position of the look-ahead buffer. The middle contains each dictionary
entry and the right shows the (i, c) pairs where i is an index to a phrase in the dictionary
and c is the next character in the text.

as large modern dictionaries force this case to be an extremely rare occurrence, saving

1 bit per factor, which can be significant when compressing larger texts. An example

of LZSS factorization using an unbounded dictionary is shown in Figure 2.5. Bell [1986]

expand LZSS, by encoding position offsets with a variable-bit code and length values with

an Elias-γ code.

25

CHAPTER 2: BACKGROUND

LZ78 [Ziv and Lempel 1978] Bounded-window LZ77-based algorithms make an im-

plicit assumption that redundancy in a text is local, in which repetitions occur close to

each other. If the dictionary window is not sufficiently large enough to capture redundancy

in a text, compression will be poor.

Ziv and Lempel [1978] propose an alternative approach where an explicit dictionary of

phrases is used instead of a sliding window over previously seen text. Each factor is coded

as a double (i, c) where i is an index or identifier to an existing phrase in the dictionary

and c is the next character to encode in the text. The concatenation of the existing phrase

and character forms a new entry in the dictionary. When a character does not exist in the

dictionary it is identified by the double (0, c) where 0 is treated as a special index that

does not point to a phrase, in other words, the 0 acts as a flag. The LZ78 factorization

for the string S = abaababaabaabaw is shown in Figure 2.6. Each line corresponds to a

single step during the factorization. On the left is the current position in the text being

processed. An underlined substring corresponds to an phrase match in the dictionary.

The middle column is the index/phrase value that is added to the dictionary during each

step. The right column is the output of the encoder. At the bottom of the figure we show

the textual representation of the LZ factorization.

Encoding is faster than LZ77 as there is no need to search for matching substrings in

the dictionary. Dictionary lookup can be solved efficiently with the use of a trie, however,

there is a time penalty during decoding as the dictionary has to be built and maintained.

As each factor is comprised of an existing phrase and a new character, the decoder simply

adds each new entry to the dictionary as it is executes. A disadvantage of having an

explicit dictionary is that is continuously grows. Moreover, phrases in dictionary might

not actually be used again. In practice a dictionary can not grow infinitely. There are a

number of possible approaches to mitigate the issue, such as to simply stop adding phrases

when it reaches a predefined size. Another method is to reset the dictionary and start

from an empty state. For this to work the encoder must write a special reset code to the

output stream. When the decoder encounters the symbol it will reset its dictionary.

LZW [Welch 1984] Similar to the improvements made by LZSS, Welch [1984] proposed

a technique for removing the character element from a LZ78 double (i, c) and to simply

output phrase indexes from the dictionary. An example of LZW factorization for the

string S = abaababaabaabaw is outlined in Figure 2.7. Initially, all symbols of the strings

alphabet are added to the dictionary. Each unique symbol in S is added to the dictionary

and assigned an index, in this case Σ = {a, b, w} and 1 = a, 2 = b and 3 = w. Encoding

works just like LZ78. We continually read symbols from the look-ahead buffer until we

create a phrase that we have not seen before. Then, we output the code for the previous

known phrase and assign a code for the new unknown phrase. For example, in Figure 2.7

we begin with the symbol a. This phrase exists in the dictionary so we concatenate it with

26

SECTION 2.3: TEXT COMPRESSION

Dictionary Output

abaababaabaabaw 4 = ab 1

a baababaabaabaw 5 = ba 2

ab aababaabaabaw 6 = aa 1

aba ababaabaabaw 7 = aba 4

abaab abaabaabaw 8 = abaa 7

abaababa abaabaw 9 = abaab 8

abaababaabaa baw 10 = baw 2

abaababaabaaba w 3

a b a ab aba abaa ba w

Figure 2.7: LZW factorization of string abaababaabaabaw with an initial dictionary map-
ping for the alphabet Σ = {a, b, w} of 1 = a, 2 = b and 3 = w.

the next symbol in the string, giving the phrase ab. As ab is not found in the dictionary

we output the code, 1 = a, add 4 = ab into the dictionary, and advance in the string

treating the last symbol as the new phrase. The process is repeated until we reach the

end of the string. Decoding initially populates the dictionary with each symbol in the

phrase alphabet and then proceeds in the same manner as LZ78.

2.3.2 Coding

In this section we cover a number of common coding techniques, from statistical Huffman

and arithmetic coding to static bit-, byte- and word-oriented codes.

Statistical Coding

In this section we briefly cover the two most important although quite different statis-

tical coding techniques, Huffman coding and Arithmetic coding. Huffman or minimum

redundancy coding is usually faster than arithmetic coding, however, arithmetic coding

is capable of achieving significantly better compression. The effectiveness of statistical

coding methods hinge on the accuracy of the probability distribution given by the model.

If the model fails to accurately represent its input, compression will be poor.

Huffman Code [Huffman 1952] Huffman coding is a method for computing an opti-

mal minimum redundancy code for a set of symbols given their probability distribution.

In its most basic form the core of the algorithm is the Huffman tree. This tree is used to

assign prefix-free codewords to each symbol given knowledge of the symbol’s probability

27

CHAPTER 2: BACKGROUND

distribution. A prefix-free code implies that no code word is a prefix of another codeword.

This is necessary in order to determine where one code stops and another begins.

Constructing a Huffman tree is conceptually straightforward. For each symbol we

create a leaf node corresponding to its probability. The two least frequent symbols are

combined into a subtree with its root node containing the sum of their probabilities and

added back to the set of nodes. This process is repeated, merging symbols and subtrees

and combining their probabilities, until there is a single node remaining, which is the root

of the tree. The path from the root to a leaf node corresponds to a unique codeword for a

symbol. Moving down the tree to a left child appends a 0 to the code and moving the right

child appends a 1. Efficient techniques for generating minimum redundancy codes avoid

computing the Huffman tree altogether using table based methods, which vastly improved

decoding [Moffat and Turpin 1997; 1998]. Huffman coding with a static or semi-static

model requires the symbol probabilities to be transmitted with the encoding, which can

be costly, however, coding can also be performed with an adaptive model [Cormack and

Horspool 1984, Lu and Gough 1993].

Traditionally, codewords were assigned to symbols at a character level by a bit-

oriented code. This generally leads to poor compression of natural language texts to

around 60% of their original size [Moffat and Turpin 2002]. Using words as symbols leads

to much better compression, as the word distribution of natural language texts is much

more biased than the character distribution [Ziviani et al. 2000]. A word-based Huffman

code can compress typical natural language texts to nearly 25% [Moffat 1989, Witten et al.

1999].

de Moura et al. [2000] describe two byte-oriented coding techniques, Plain Huffman

(PH) and Tagged Huffman (TH). These schemes provide much faster encoding and decod-

ing speeds at a cost of slightly reduced compression performance (5% to 10%) compared to

bit-oriented codes. Operating at a byte level eliminates the need for expensive bit manip-

ulations required in traditional Huffman coding. These codes support random access as

each byte represents a codeword boundary. In Tagged Huffman codes a flag bit is reserved

in each byte to signal the start of a codeword. This allows for fast compressed pattern

matching: a pattern can be encoded with the same model and searched for directly in the

compressed text.

Brisaboa et al. [2007a] discuss End Tagged Dense Codes (ETDC), an improvement

to Tagged Huffman coding, by modifying the flag bit to symbolize the end of a code-

word. This reduces the requirement to build a Huffman tree to ensure each symbol is a

valid prefix code. Dense codes provide a useful space trade-off to Tagged Huffman codes.

They are simpler to implement and are faster at compression and decompression. Like

the other Huffman approaches, it is necessary to build an explicit dictionary of symbols.

There is a family of dense codes described in literature that can be used for corpus com-

pression. In later work, Brisaboa et al. [2007b] describe Pair-Based and Phrase-Based

28

SECTION 2.3: TEXT COMPRESSION

End-Tagged Dense Codes (PETDC and PhETDC), two extensions to ETDC that use

symbols of a higher order. In PETDC symbols can be either words or pairs of words. In

PhETDC symbols are considered words or phrases of words. It is reported that PETDC

can reduce a text by 70%, and PhETDC by 77%, outperforming all current zero-order

word-based semi-static compressors [Brisaboa et al. 2007b]. A Dynamic End Tagged Dense

Code (DETDC) [Brisaboa et al. 2008] is a dynamic version of ETDC, where the model

is transmitted along with the encoding, much like an adaptive compression algorithm.

A Dynamic Lightweight End Tagged Dense Code (DLETDC) [Brisaboa et al. 2010] is a

modification to this scheme that reduces the cost of transmitting the model.

Arithmetic Code [Rissanen 1976; 1979] A limitation of Huffman coding is that

each codeword for a symbol must approximate log 1/p with an integral number of bits.

As a consequence the minimum codeword length for a symbol in a Huffman code is 1

bit. If a symbol had a 33% probability of occurring next then its optimal code length

is log 1/0.33 = 1.58 bits, however, a Huffman code would at best use a 2 bit codeword.

Furthermore, if a symbol had a 95% probability of occurrence it should be coded in close

to 0.074 bits. A Huffman code will be approximately 13 times larger. Arithmetic coding

is effective when dealing with such highly skewed probability distributions. Rather than

replacing symbols with separate codewords, arithmetic coding encodes an entire string as

a single real number represented as a binary fraction selected in the interval [0, 1), in space

very close to entropy.

Given a set of symbols, a statistical model and an initial interval [0, 1), each symbol

is assigned a sub-interval proportional to its probability distribution. When a symbol is

encoded the interval is reduced to the sub-interval it corresponds to. The updated interval

is now divided into sub-intervals based on the static or adaptive symbol probabilities from

the model. Once the last symbol has been processed the value that represents the entire

encoding is a real number selected from the final interval.

Arithmetic coding is most useful when coupled with a high-order adaptive compres-

sion model and is especially effective on large alphabets [Witten et al. 1987, Moffat et al.

1998]. If the model has fixed probabilities, that is, a static or semi-static model is used, an

arithmetic coder will run considerably slower than a Huffman coder [Moffat and Turpin

1997]. Range Coding [Nigel and Martin 1979] is a form of arithmetic coding where encod-

ing is performed across alternative bases, for example, bytes rather than bits.

Integer Coding

Integer coding is useful in the situation where it is problematic or undesirable to compute

a model of the input, such as when the input is too large to process in memory or when

the source alphabet is unbounded. This section describes methods to compress arbitrary

29

CHAPTER 2: BACKGROUND

positive integers without reliance on a statistical model. The basic idea is to let both the

encoder and decoder process integers and codewords independently.

Unary Code The unary code of an integer x is a sequence of x 1 bits followed by a

single 0 bit. Alternatively, this could be represented as a sequence of x 0 bits followed

by a single 1 bit. For example, the integer 7 would be encoded as 11111110 or 00000001.

Decoding is straightforward: read from the input stream one bit at a time counting the

number of bits until a change. In the case where x is assumed to be a positive non-zero

value, that is, x > 0, the integer can be coded as a sequence of (x − 1) 1 bits, followed

by a single 0 bit. Using this method the integer 7 would be encoded as 1111110. Unary

codes are useful when encoding small values, however, they quickly become ineffective

when representing larger numbers.

Elias Gamma Code [Elias 1975] An Elias γ-code represents a positive integer x > 0,

as a concatenation of two separate codes: a prefix and a binary suffix. The prefix is

encoded as a unary code of the value 1 + blog xc and the binary suffix is encoded as the

value x− 2blog xc in blog xc bits, for a total of 1 + 2blog xc bits. For example, the γ-code of

the integer 7 is derived as follows. The unary prefix is, 1 + blog 7c = 3, which corresponds

to the code 110. The binary suffix is, 7−2blog 7c = 3, so we encode the value 3 in blog 7c = 2

bits, that is, 11. Concatenating both values results in γ-code, 11011. To decode a γ-code

first we decode the unary prefix, xp, then the next xp − 1 bits are read which represents

the binary suffix code, xb. The final value can be computed as x = 2xp−1 + xb.

Elias Delta Code [Elias 1975] An Elias δ-code is similar to a γ-code. It separates a

code into two components, a prefix and a binary suffix, however, its prefix code is encoded

as a γ-code instead of unary. For example, the δ-code for integer 7 is derived as follows.

First the prefix value, 1 + blog 7c = 3, is encoded as a γ-code, 101. The binary suffix

remains the same as its γ representation, that is, 7− 2blog 7c = 3 is encoded in blog 7c = 2

bits, resulting in 11. Concatenating the prefix and binary suffix gives the δ-code, 10100.

A δ-code for an integer x can be encoded in 1 + 2blog log 2xc + blog xc bits. Decoding

operates in the same manner as γ decoding.

δ-codes are efficient at representing larger integer values, however, for small values a

γ-code will be shorter. As an example, the δ-code for the value 4 is encoded in 4 bits, where

as the γ-code takes 3 bits. Conversely, the δ-code for 1,000,000 takes 28 bits compared to

the γ-code which takes 39 bits [Witten et al. 1999].

Golomb Code [Golomb 1966] For a positive integer x > 0 and a parameter b, a

Golomb code is represented as two parts: first a unary code of a quotient, q = 1+b(x−1)/bc
and second, the binary representation of its remainder r = x− qb− 1. Depending on the

value of b, the remainder r may require blog bc or dlog be bits. Golomb codes are generally

30

SECTION 2.3: TEXT COMPRESSION

more space efficient than Elias codes and they are faster to decode if an appropriate b

value is selected. Witten et al. [1999] suggest b = 0.69 · x̄ where x̄ is the average of the

integer values to be coded.

A Rice code [Rice and Plaunt 1971] is a variation of a Golomb code where b is

restricted to powers of 2. This improves encoding and decoding speed as masks and bit

shifts can be used to generate codes. A further advantage is that the remainder r will

always stored in dlog be bits. The disadvantage of a fixed b value is that compression could

be less effective than traditional Golomb codes as the optimal value for b might not be

close to a power of 2.

Variable Byte Codes Variable byte codes, also known as Vbyte, Varint, or nibble

codes are a useful family of codes that trade space efficiency for fast processing. They are

used extensively across a variety of applications from relational database and information

retrieval systems [Scholer et al. 2002, Zobel and Moffat 2006] and serialization protocols.

Operating at a byte-level results in significantly faster encoding and decoding throughput

compared to bit-level codes.

A variable byte code represents a positive integer x in one or more bytes. For each

byte a single bit, usually the most significant bit, is used as an identifier to tell the decoder

to stop or continue decoding the current integer value. The remaining lower bits of the

byte are used to store the binary representation of an integer, seven bits at a time. We

can store the integer values 0 ≤ x < 27 in one byte, 27 ≤ x < 214 in two bytes, and so on.

Variable byte coding uses blog128(x)c+ 1 bytes to represent an integer x.

For example, the variable byte code for the value 42 is 00101010. The underlined 0

bit tells the decoder to stop. To encode the value 142 we require two bytes, 10001110

00000001. The first byte contains a continue bit and the first seven bits of the integer.

The second byte contains a stop bit and the remaining bits of the integer. Note that to

construct the final value the continue codes must be removed and each subsequent byte

must be shifted into its correct position. In this case, the second byte is shifted 7 bits to

the left, resulting in 10001110.

A nibble code is a generalization of variable byte codes where the size of the bits used

to store the code is parameterized. For example, reducing the size of the block to a 4 bit

nibble, or to increase it to 16 bits. A nibble code uses blogR(x)c+ 1 where R = 2n−1 and

n is the size of the nibble in bits.

Simple9 [Anh and Moffat 2005] Simple9 is a word-aligned integer code. This scheme

is particularly useful for compressing large arrays of small integer values, for example, a

gapped posting list from an inverted file, and is efficient in practice. The basic idea is to

pack groups of integers into 32-bit words. For each 32-bit word, 4 high bits are used as

a selector and the remaining 28 bits are used to store integers. The value of the selector

31

CHAPTER 2: BACKGROUND

is used to determine how the codes are represented. In Simple9 there are 9 different

coding schemes, for example, 28 groups of 1-bit integers or 9 groups of 3-bit integers

(containing one wasted bit), see Anh and Moffat [2005] for further detail. [Zhang et al.

2008] identified that 9 coding schemes in a 4 bit selector is wasteful, furthermore, some

coding schemes contained unused bits. They proposed Simple16 an extension to Simple9

that specifies 16 efficient coding scheme to avoid redundant bits. Recently Anh and Moffat

[2010] extended their work to use 64-bit words and observed a dramatic improvement when

targeting x86 64 architecture.

2.4 Summary

In this chapter we gave an overview of the core concepts, algorithms and data structures

for text compression. This began with a discussion of the pattern matching problem, text

indexing, and details of two classic data structures, the suffix tree and suffix array, both

of which have utility not only in pattern matching, but also for text compression and a

wide variety other problems. This was followed by a brief discussion of compact data

structures and compressed full-text indexes. We then discussed text compression focusing

primarily on LZ-based adaptive dictionary methods, which forms a foundation for the

work throughout the rest of this thesis. Finally, we discussed coding methods. First we

described two statistical coding techniques, Huffman coding and arithmetic coding, which

are slow in practice, but achieve compression close to empirical entropy given an accurate

model. We then covered integer coding techniques which are useful when we do not have

much information about the input or when the source alphabet is unbounded.

32

CHAPTER 3
Efficient Storage and Retrieval of Web

Collections

Storage of digital collections is arguably one of the most challenging problems of the in-

formation age [Berman 2008]. Compression plays a central role and is a fundamental

component of any information retrieval system [Witten et al. 1999, Ziviani et al. 2000,

Manning et al. 2008, Büttcher et al. 2010, Croft et al. 2010]. Compression improves both

search and retrieval by reducing the effect of disk-seek time and read latency, thus increas-

ing bandwidth between levels of the memory hierarchy [Zobel and Moffat 1995a, Scholer

et al. 2002, Büttcher and Clarke 2007]. In the context of text retrieval, a compression

algorithm first must maintain a compact representation of the collection. Second, it must

provide fast random access to specific documents of the collection for retrieval and post-

processing tasks, including batch tasks, such as indexing and processing, or query-biased

snippet generation [Tombros and Sanderson 1998, Turpin et al. 2007, Tsegay et al. 2009].

Generally, the time it takes to decompress a document is far more important than the

initial compression time, as a document will usually be encoded once but decoded many

times. However, the compression algorithm must at least be practical and scalable, that

is, it must be capable of compressing collections orders of magnitude larger than primary

memory in reasonable time and simultaneously provide efficient compression. With the

recent rapid growth in digital collections, corpus compression is as important a challenge

as ever.

A standard approach to document compression is to store groups of documents in

fixed-size blocks, and then compress each block with a general purpose compression library,

such as ZLIB. This approach implies a classical trade-off between space and time. Using

a small block means that there is less data available for the compressor to learn about

the redundancy present, and thus compression is less effective. If a larger block is used

retrieval speed is compromised, as half of the block must be decoded on average for access

to an individual document.

33

CHAPTER 3: EFFICIENT STORAGE AND RETRIEVAL OF WEB COLLECTIONS

Table 3.1: An illustration of a fixed size adaptive dictionary compressor failing to capture
non-local redundancy. The window of size 4 is contained in the box. The text to compress
begins directly after the window. An example of global redundancy is highlighted in grey.

...abaababaabaababbaabbbbabb abba abaababaabaaba...

Conventional adaptive compression methods exploit local redundancy in a text by

encoding its input relative to a sliding window of previously encoded substrings. This

window is usually small or at least bound by primary memory and, as a consequence, it

does not accurately capture any global redundancy present in a collection. An illustration

of this behavior is shown in Table 3.1. A stream of text is in the process of being com-

pressed using a fixed size sliding window of size 4. This window currently contains the

substring abba. The text that we are to compress, the look-ahead buffer, begins directly

to the right of the window and currently begins with the substring abaa. The next factor

to be computed would be the pair (0,2), denoting that a shared substring occurs in look-

ahead buffer and the window at position 0, of length 2, corresponding to the substring

ab. Because of the restricted window size, adaptive algorithms fail to detect that a longer

substring in the look-ahead buffer abaababaabaaba, which is much larger than the sliding

window, has already occurred in the text (highlighted in grey). While this is somewhat of

a trivial example, consider if the window was now 4 GB, and that the document collection

was 400 GB. Even with a window of this size a great deal of duplication may fall outside

of it. Given the disparity in size of the collection with respect to the dictionary window

this is entirely plausible, for example, a web crawl could store multiple copies of a large

website, that is, mirrored sites that are hosted on different domains. Furthermore, a num-

ber of news sites could report exactly the same article from a content distributor such as

the Associated Press. Another example of global redundancy in web content is pages that

share similar boilerplate style sheet markup or javascript. If such redundancy is stored in

separate blocks before compression or placed outsize of an adaptive compressors search

window, compression will not be as effective. Where data that can be sorted in a way

such that similar documents are adjacent, for example sorting by URL [Ferragina and

Manzini 2010], existing block-oriented methods can yield better compression at the cost

of extremely slow retrieval.

In this chapter we propose a novel yet straightforward solution to exploit non-local

redundancy. We build a representative sample of the collection and use it as a dictionary

in an LZ-like encoding of the rest of the collection – where each document is compressed

relative to the dictionary. The dictionary size is a parameter, but, as we show compression

is effective when the dictionary only occupies a small fraction of current desktop mem-

ory. We demonstrate that using a dictionary as small as 0.1% of the collection size our

34

SECTION 3.1: COMPRESSION

Table 3.2: An example of the relative Lempel-Ziv factorization given a dictionary (top),
a string to encode (middle), its factors (position/length pairs), and, their corresponding
substrings (bottom).

1 2 3 4 5 6 7 8
d[i] c a b b a a b b

... b b a a n c a b b b b a a b c a ...

(3, 4) (n, 0) (1, 4) (3, 5) (1, 2) → (bbaa) (n) (cabb) (bbaab) (ca)

algorithm provides much better compression than existing approaches as well as achieving

dramatically faster decompression and random access speed. The specific focus of our

compression scheme is on methods that provide fast decompression for use in batch pro-

cessing tasks but also allow for reasonably efficient random access to arbitrary documents

in the compressed collection. In Section 3.1, we introduce our compression scheme. Then,

in Section 3.1.3 we propose a simple yet highly effective method for generating a dictionary

that accurately represents a large document collection and successfully captures much of

its global repetitiveness. In Section 3.1.5 we discuss practical methods for compression of

the LZ factors out method produces. We empirically evaluate our approach in Section 3.3

against current standard block oriented baselines and conclude in Section 3.5.

3.1 Compression

We now present our compression scheme. The algorithm resembles a traditional LZ77

factorization, where strings are encoded in terms of previously occurring substrings. How-

ever, we perform an LZ factorization against a pre-defined set of sub-strings or dictionary.

We call this a relative Lempel-Ziv factorization (RLZ). In the next section we formally

describe the algorithm, then we discuss dictionary generation techniques and practical

methods for representing factors, which altogether provide efficient compression and ef-

fective document retrieval.

3.1.1 Relative Lempel-Ziv Factorization

At the core of our compression scheme is relative Lempel-Ziv factorization [Ziv and Merhav

1993, Kuruppu et al. 2010]. Let x = x[1..n] be a string of length n, and a dictionary

d = d[1..m] be a string of length m, where m ≤ n. The relative Lempel-Ziv factorization

35

CHAPTER 3: EFFICIENT STORAGE AND RETRIEVAL OF WEB COLLECTIONS

of x with respect to d, is a set of z substrings, x = w1w2..wz, such that each substring

wj , j ∈ 1..z, is either:

1. The longest factor, i.e., substring, of d starting at the current position in x; or

2. a single character c in x, that does not occur d.

Each factor wj is represented as a pair (pj , lj), where pj specifies an offset to a position

in the dictionary d and lj denotes the length of the factor in d. When a character c in x

does not occur in d we use a special pair representation where the position field, pj , stores

the missing character and its length value, lj , is set to 0 indicating that there was no match.

As an example, the relative Lempel-Ziv factorization of the string, bbaancabbbbaabca with

respect to a dictionary cabbaabba is shown in Figure 3.2. Five factors are computed. The

first factor, (3, 4), corresponds to the substring bbaa, at offset 3 and length 4 in d. The

second factor is (n, 0), as the character n does not exist in the dictionary. Then follows

(1, 4), the substring cabb beginning at offset 1, and finally, the factors, (3,5) and (1,2)

corresponding to the substrings bbaab and ca at offsets 3 and 1 respectively.

3.1.2 General Overview

Our compression scheme operates as follows.

1. We construct a dictionary, d, of total length m characters, by concatenating a selec-

tive sampling of substrings from documents in a collection. The size of m is dictated

by the user and/or the available primary memory. Dictionary generation is discussed

in Section 3.1.3.

2. For each document, x, in the collection we factorize x relative to d into factors (or

pairs) denoted (p, l), and encode each pair efficiently. Section 3.1.5 outlines a number

practical compressed pair representations offering different space-time trade-offs.

3. We store a document map which provides the position on disk of each encoded

document. This component is common to all large scale document retrieval systems.

4. To access a desired document we first locate the beginning of the document and

number of compressed factors using the document map, and then decode the (p, l)

pairs, translating each factor into text via the dictionary, d.

Random access is achieved as the dictionary is no longer adaptive, and can be made

small enough to be held in memory. Two of the most important aspects to consider during

encoding are dictionary generation and pair representation. For effective compression the

dictionary must capture the overall structure of the collection – representing its globally

repetitive properties. Furthermore, each pair must be encoded in a compact form and

36

SECTION 3.1: COMPRESSION

support fast decoding and random access. In the next sections we describe a simple

yet highly effective dictionary generation technique then examine efficient methods for

representing factors.

3.1.3 Dictionary Generation

Before we perform a relative LZ factorization we must first construct a dictionary. It is

critical that the contents of the dictionary represent the complete collection reasonably

well. The goal is to capture global repetition across the collection that semi-static and

adaptive algorithms fail to detect, either due to their block-oriented nature or limitations

on window size. This poses a significant challenge as we aim to compress collections

that are much larger than the physical memory of a typical server. A naive approach

such as processing the collection and recording the most frequently occurring n-grams or

substrings would be unfeasible as space usage would rapidly exceed memory. Substrings

and statistics could be stored in a disk based index, however, we would face similar memory

issues and there would be a significant impact on run time.

We found the following approach to be highly effective. We treat a collection as a

single string and extract evenly spaced samples (substrings) across the collection. For a

collection string, x = x[1..n] of length n, we wish to generate a dictionary, d = d[1..m]

of length m, using samples of length s. That is, we take m/s samples at positions

0, n/(m/s), 2n(m/s), ... We expect that if a collection is comprised of similar documents,

for example, a web crawl, any sufficiently frequent material in a collection would be cap-

tured during this sampling process and should generate an effective representation of a

collection. In Section 3.3 we shall see in that this technique does indeed generate a very

effective dictionary for typical web data.

An undesirable aspect of this sampling method is that the dictionary is highly likely

to contain redundant information, that is, many samples will share similar content or

substrings. We explore and address this issue in the next chapter.

3.1.4 Compression Algorithm

We can compute the RLZ factorization in O(n logm) time and O(m) words of memory,

using a variation of CSP2 for traditional LZ77 factorization [Chen et al. 2008]. The main

idea is to construct the suffix array of the dictionary and use it as an index to parse each

input document into factors. As described in Section 2.2.2, the suffix array SA[1..n] of a

text x = x[1..n] is an array of pointers to all the suffixes of x arranged in lexicographic

order, such that x[SA[i]..n] < x[SA[i+ 1]..n]. For every substring of x, x[i..j], there exists

an interval in SAx, SAd[lb..rb], such that SAx[lb], SAx[lb+ 1], SAx[..], SAx[rb] contains

positions to every occurrence of x[i..j] in x. As the suffixes are ordered lexicographically

the interval boundaries lb and rb can be calculated with successive binary searches. The

37

CHAPTER 3: EFFICIENT STORAGE AND RETRIEVAL OF WEB COLLECTIONS

Table 3.3: An example demonstrating the Refine function where we are searching for the
current prefix of x in dictionary d. To achieve this we refine the range SAd[lb..rb] such
that the longest prefix of x is found in d. In this example we output the factor (3, 4),
corresponding to a match in the dictionary at position 3 and length 4.

i 1 2 3 4 5 6 7 8 9
d[i] c a b b a a b b a
SAd 9 4 8 6 2 3 7 5 1

i d[SAd[i]] .. d[m]

1 a
2 a a b b a
3 a b b a
4 a b b a a b b a
5 b a
6 b a a b b a
7 b b a
8 b b a a b b a
9 c a b b a a b b a

j 1 2 3 4 5 6 7 8 9

x[j] b b a a n c a b b
lb 5 7 8 8 -1
rb 8 8 8 8 -1

pseudo-code in Algorithm 1 outlines the factorization procedure. Given a string, x, and

a dictionary, d, the function RLZEncode computes a factorization of x relative to d. This

is achieved with successive calls to Factor, where we use the suffix array of the dictionary,

SAd, for efficient matching. To facilitate document retrieval we stop factorization each time

we encounter a document boundary, returning the current (pos, len) pair. Furthermore,

we maintain a document map indicating the offsets of each document boundary in the

encoding, which is used to provide random document access.

Refine calibrates the left and right boundary of suffix array, SAd[lb..rb], such that

the suffixes of length l in the interval between these bounds matches the current prefix

in x, x[i..i+ l]. The length of the match increases with each successful call to Refine. As

the suffix array is ordered lexicographically, each boundary or edge of the interval can be

calculated using a binary search. An example of the factorization process is demonstrated

in Table 3.3. The dictionary, d = cabbaabba, and input sequence, x = bbaancabbbbaabca,

from Table 3.2 are used. Initially, we compute the suffix array of d, SAd. Factorization

begins from the first position in the input sequence. We call Factor(1, x, d). The first

call to Refine returns the interval (5, 8). The first character of the suffixes between this

interval match the first character in x. The second call to Refine returns the interval

(7, 8). The suffixes in this interval match the first two characters in x. The longest match

38

SECTION 3.1: COMPRESSION

is 4 characters and occurs in the interval (8, 8). The value of SAd[8] contains the suffix

position in d where the match occurred, in this case 3. The length of the match is 4, so

Factor will return the pair (3, 4) and we call factor with the new offset Factor(5, x, d).

Note that when we break from the while loop on line 5 of the function Factor there

will be rb − lb + 1 occurrences of the current shared factor. That is, each index value in

the range lb..rb will correspond to a position in d that matches the current prefix of the

input stream of length j − i. In the example above there was only one result, however,

in practice this range will be larger and one must consider what is the most appropriate

index in d to select. In our implementation we opted to always select the left most index,

SAd[lb], however, considering the size of the dictionary one could avoid costly lower level

cache misses by selecting the index closest to the position of the previously encoded factor.

Algorithm 1 RLZEncode performs a relative LZ factorization of the string x with respect
to d. The output is a set of (pos,len) pairs.

1: function RLZEncode(x, d)
2: i← 1
3: while i ≤ len(x) do
4: (pos, len) ← Factor(i, x, d)
5: output (pos, len)
6: if len = 0 then
7: i← i+ 1
8: else
9: i← i+ len

1: function Factor(i, x, d)
2: lb← 1
3: rb← len(d)
4: j ← i
5: while j ≤ len(x) do
6: if lb = rb and d[SAd[lb] + j − i] 6= x[j] then
7: – The current character in d does not match x[j]
8: – so we can no longer refine the interval in SAd
9: break

10: (lb, rb) ← Refine(lb, rb, j − i, x[j])
11: if (lb, rb) is no longer a valid interval then
12: break
13: j ← j + 1
14: if x[j] is at a document boundary then
15: break
16: if j = i then return (x[j], 0)
17: else return (SAd[lb], j − i)

39

CHAPTER 3: EFFICIENT STORAGE AND RETRIEVAL OF WEB COLLECTIONS

Table 3.4: Average factor length and percentage of unused bytes in an RLZ dictionary for
varied dictionary and sample sizes built on a 426 GB GOV2 corpus.

Size (GB) Samp. (KB) Avg.Fact. Unused (%)

2.0 0.5 46.01 39.62
2.0 1.0 46.83 24.28
2.0 2.0 46.77 28.10
2.0 5.0 46.09 20.65

1.0 0.5 41.30 36.00
1.0 1.0 41.80 31.38
1.0 2.0 41.62 25.66
1.0 5.0 40.93 17.84

0.5 0.5 37.07 32.91
0.5 1.0 37.35 28.64
0.5 2.0 37.15 23.65
0.5 5.0 36.45 16.20

Table 3.5: Average factor length and percentage of unused bytes in an RLZ dictionary for
varied dictionary and sample sizes built on a 256 GB Wikipedia corpus.

Size (GB) Samp. (KB) Avg.Fact. Unused (%)

2.0 0.5 38.70 27.34
2.0 1.0 39.11 21.33
2.0 2.0 39.13 17.29
2.0 5.0 38.97 12.22

1.0 0.5 34.54 23.72
1.0 1.0 34.85 18.52
1.0 2.0 34.81 13.99
1.0 5.0 34.63 9.56

0.5 0.5 31.05 21.15
0.5 1.0 31.22 15.83
0.5 2.0 31.17 11.53
0.5 5.0 30.96 7.41

3.1.5 Pair Representation

Efficient encoding of the (p, l) pairs is a critical component of the compression scheme, for

which we explored several approaches. In practice we encode the two components of a pair

separately. We observed that the position values had no significant skew in distribution

to exploit using common compression methods. That is, in each pair the p values appear

to be spread randomly across the dictionary, and are therefore difficult to compress. We

represent each p value as a single unsigned 32-bit integer and concentrated on finding

an efficient encoding for the length elements (the l values). Results in Table 3.4 and

Table 3.5 show the average factor length recorded for varied combinations of dictionary

40

SECTION 3.1: COMPRESSION

size and sampling size across two document collections. Note that the average factor length

remained relatively stable across all runs, ranging from 30 to 40 characters. Furthermore,

we observed that a significant percentage of length values in an encoding were always less

than 100, and usually no greater than the sample size used to generate the dictionary.

This is illustrated in Figure 3.1, which plots histograms of encoded length values for

a factorization of the GOV2 collection using a 0.5 GB dictionary and varying sample

periods. Note that factor lengths are restricted to the length of the sample used when

generating each dictionary. This can be observed in Figure 3.1 where each dictionary

sampling plots a vertical line of points at its sample length. Note that the dictionary

where 512 byte samples were used there are a number of points where the length values

are greater than its sample length. Examining this group of factors showed that these

samples were concatenated groups of white space or junk characters.

Observe that, irrespective of the sample period the bulk of length values remain

small. In light of this we used a variable byte (Vbyte) code [Williams and Zobel 1999,

de Moura et al. 2000] to encode length values, which provides a reasonable trade-off

between compression and decoding speed [Scholer et al. 2002, Trotman 2003]. Using

Vbyte, the majority of length values are encoded in just a single byte. Representing

both position and length values as byte oriented codes provides a great advantage during

decoding – as costly mask and shift operations required by bit oriented codes are avoided.

Closer inspection of the position values revealed that while the distribution of the p

values across the entire collection was rather flat, applying a general-purpose compressor

(ZLIB) to the p values for each document separately gave a significant boost to compres-

sion, suggesting that the p values within each document can be quite skewed. This effect is

manifested by substrings that are repeated within a file, but not present in the dictionary.

These substrings get factorized into the same set of pairs, which are then repeated in the

document’s RLZ factorization. Applying a local compressor to the pairs captures these

local repetitions and improves overall compression. We observed the same phenomenon

in the length values. That is, they contained higher-order patterns at a document level.

3.1.6 Dynamic Document Databases

A further virtue of our method is its application in a dynamic environment where docu-

ments are appended to the collection over time. Due to the nature of our sampling process,

as long as additional documents maintain similar characteristics to the initial collection

there will be little impact on compression effectiveness.

If per-document compression degrades below a specific threshold there are several

ways to compensate. If there is no constraint on memory, we can sample the new docu-

ments and append them to the dictionary. This method avoids an expensive re-encoding

process as the previous pair codes are still valid. The suffix array will need to be re-

computed in order to include the new samples during factorization, however, this takes

41

CHAPTER 3: EFFICIENT STORAGE AND RETRIEVAL OF WEB COLLECTIONS

1 10 100 1000 10000

1
e
+

0
0

1
e
+

0
2

1
e
+

0
4

1
e
+

0
6

1
e
+

0
8

Encoded Length Values

F
re

q
u
e
n
c
y

512B

1KB

2KB

5KB

10KB

Figure 3.1: Frequency histogram of length values in an RLZ encoding of the 426 GB
GOV2 corpus using a 0.5 GB dictionary and varied sample periods.

relatively little time. If there are constraints on memory, the dictionary can be regen-

erated taking the additional documents into consideration. This invalidates the original

encoding, and, as a consequence, the collection will need to be compressed again.

3.2 Decompression

The decompression algorithm is extremely efficient. No auxiliary data structures are re-

quired, only the compressed file and its dictionary. If random document retrieval is desired

a document map is also required, however, its size is trivial compared to both the encoding

and dictionary. We give the pseudo-code for decoding in Algorithm 2. We decode the

collection a single pair at a time. If the length component of the pair is set to 0 then

the position value contains a single character that is not found in the dictionary. Other-

wise, the position value corresponds to an offset in d for which we output the substring

d[pos..pos+ len). To extend the algorithm to support random document retrieval we add

an initial seek operation, which moves to the position in the compressed collection of the

first pair of the desired document and then begin decoding. As the whole dictionary is

resident in memory and no other work is required (for example, maintaining an adaptive

dictionary and needing to recompute it at regular intervals or including sequence points)

decoding is tremendously fast.

42

SECTION 3.3: EXPERIMENTS

Algorithm 2 RLZDecode decodes a relative Lempel-Ziv encoding e with respect to a
dictionary d. Pairs are decoded on at a time and correspond to substrings in d.

1: function RLZDecode(e, d)
2: for (pos, len) ∈ e do
3: if len = 0 then
4: output pos
5: else
6: output d[pos .. pos+ len)

3.3 Experiments

In this section we empirically evaluate RLZ, comparing it to five baseline algorithms that

are commonly used in document storage and retrieval systems all offering a variety of

space-time trade-offs.

3.3.1 Method

To simulate various aspects of a document retrieval system, two access patterns were used

throughout our experiments. First, we used a sequential list of 100,000 document IDs

to simulate requests from large-scale batch processing systems. Second, to simulate the

typical behavior of a document retrieval system we generated a list of 100,000 document

IDs from the ranked output of real queries into a search engine. Each collection was

indexed using the Zettair search engine,1 then queried using default settings and a log

sourced from topics 20,001 to 60,000 from the 2009 Million Query Track.2 The top 20

document IDs for each query were concatenated to a list and capped at 100,000.

3.3.2 Systems Tested

The first baseline is simply a raw concatenation of uncompressed documents with a map

specifying offsets to each document location. The next group of baselines use a stan-

dard block oriented approach where documents are grouped into fixed-size blocks and

compressed with a general purpose adaptive algorithm. We use ZLIB3 and LZMA4 as

these were the two best systems reported in the extensive study by Ferragina and Manzini

[2010]. On the other side of the adaptive spectrum we include Snappy5 and LZ4,6 both

byte-oriented adaptive compressors, which are commonly used in massively distributed

storage systems, offering efficient decoding at the cost of compression effectiveness. Block

1http://www.seg.rmit.edu.au/zettair
2http://trec.nist.gov/data/million.query09.html
3http://www.zlib.net
4http://www.7-zip.org/sdk.html
5http://code.google.com/p/snappy/
6https://code.google.com/p/lz4/

43

http://www.seg.rmit.edu.au/zettair
http://trec.nist.gov/data/million.query09.html
http://www.zlib.net
http://www.7-zip.org/sdk.html
http://code.google.com/p/snappy/
https://code.google.com/p/lz4/

CHAPTER 3: EFFICIENT STORAGE AND RETRIEVAL OF WEB COLLECTIONS

sizes for all baselines begin as a single document per block, identified as 0.0 MB, and

increase in size from 0.1 MB, 0.2 MB, 0.5 MB to 1.0 MB.

RLZ runs are identified by their dictionary size and the (position, length) coding

schemes that were used to compress each document. Methods used were Z, ZLIB with

Z BEST COMPRESSION enabled, V, variable byte coding and U, unsigned 32 bit inte-

gers. Dictionary sizes used in the evaluation section were 0.5 GB, 1.0 GB and 2.0 GB.

Unless stated otherwise, all RLZ dictionaries were generated from 1 KB samples. To

evaluate the performance of our method in a dynamic environment we simulate collec-

tion update behavior by generating dictionaries from fixed prefixes of a collection. We

then use these dictionaries to compress the complete collection, observing any impact on

compression.

3.3.3 Test Collections

Two document collections were used. TREC GOV2 is a 426 GB web crawl of the .gov

top level domain in 2004. This consists of roughly 25 million documents, with an average

document size of 18 KB. The second collection is a 256 GB English Wikipedia snapshot

sourced from Clueweb09,7 consisting of approximately 6 million documents and an average

document size of 45 KB. Experiments were conducted on both collections sorted in natural

web crawl order.

3.3.4 Environment

All document retrieval experiments were conducted on an Intel Xeon 3.0 GHz processor

with 4 GB of main memory. The disk was a Seagate Scandisk II, 1Tb, 7200 RPM, with

32 MB cache. The operating system was Red Hat Enterprise Linux Server release 5.5

(Tikanga), running Linux kernel version 2.6.18. The compiler used was GCC 4.1.2 with

full optimizations. All time results were recorded as wall clock time. As the compressed

collections used for evaluation were significantly larger than internal memory it is impor-

tant to account for disk seek and read latency as they are the dominant cost in document

retrieval. We ensured each collection was the only one present on the disk for each run, to

eliminate disk position bias. Caches were dropped between each run with sync && echo

3 > /proc/sys/vm/drop caches. No other processes were running during each exper-

iment. We define compression ratio as a percentage of the encoded output against the

original collection size.

7http://lemurproject.org/clueweb09

44

http://lemurproject.org/clueweb09

SECTION 3.4: DISCUSSION

●

●

●
●●

0 5 10 15 20 25 30 35

0
50

00
10

00
0

15
00

0
20

00
0

Sequential document retrieval − GOV2 426GB

Compressed size (GB)

D
oc

um
en

ts
/s

ec
on

d

●

RLZ UV
RLZ UZ
RLZ ZV
RLZ ZZ
ZLIB
LZMA
LZ4
SNAPPY

●

●

●
●●

0 5 10 15 20 25 30 35

0
50

00
10

00
0

15
00

0
20

00
0

Sequential document retrieval − Wikipedia 256GB

Compressed size (GB)

D
oc

um
en

ts
/s

ec
on

d

●

RLZ UV
RLZ UZ
RLZ ZV
RLZ ZZ
ZLIB
LZMA
LZ4
SNAPPY

●

●

●

●

●

0 5 10 15 20 25 30 35

0
20

40
60

80
10

0
12

0
14

0

Query log document retrieval − GOV2 426GB

Compressed size (GB)

D
oc

um
en

ts
/s

ec
on

d

●

RLZ UV
RLZ UZ
RLZ ZV
RLZ ZZ
ZLIB
LZMA
LZ4
SNAPPY ●

●

●

●

●

0 5 10 15 20 25 30 35

0
20

40
60

80
10

0
12

0
14

0
Query log document retrieval − Wikipedia 256GB

Compressed size (GB)

D
oc

um
en

ts
/s

ec
on

d

●

RLZ UV
RLZ UZ
RLZ ZV
RLZ ZZ
ZLIB
LZMA
LZ4
SNAPPY

Figure 3.2: Compressed size against documents retrieved per second for sequential (top)
and query log (bottom) document retrieval requests on GOV2 (left) and Wikipedia (right)
collections for varied RLZ pair combinations and baseline block sizes. RLZ runs used 0.5,
1.0 and 2.0 GB dictionaries. Baseline runs used 0.0, 0.1 MB, 0.2 MB, 0.5 MB and 1.0 MB
blocks.

3.4 Discussion

Compression statistics and document retrieval times for RLZ and block-oriented baselines

are shown in Figure 3.2 and Tables 3.6 to 3.9. RLZ clearly outperforms all baselines in

terms of time and space for both sequential and query-log document request scenarios.

Comparing cases with similar memory requirements and compression effectiveness, for se-

quential access our RLZ approaches a thousand times the speed of the competitor methods.

Excepting cases where the compression achieved by the competitor methods is particu-

larly poor, the sequential speed of RLZ is generally at least ten times greater, and the

random-access speed is always better by a significant margin. LZ4 and Snappy compress-

45

CHAPTER 3: EFFICIENT STORAGE AND RETRIEVAL OF WEB COLLECTIONS

ing single documents per block gave competitive sequential decoding speeds compared to

RLZ’s slowest coding scheme, ZZ, however, both achieved significantly worse compression

results, a difference of 20% compression effectiveness on average.

The effectiveness of RLZ compression validates our dictionary sampling hypothesis

that we are capturing global repetitive properties of a collection that the baselines cannot

detect. A key factor attributing to the performance of RLZ decoding speed is that the

dictionary is static and present in memory. Decoding can start immediately. The com-

pressed baselines incur a penalty initializing a new dictionary for each document request.

The baselines are subject to the further penalty of having to decode at least half a block

on average to retrieve a document. Ordered document requests have much faster decod-

ing rates due to sequential disk access. UV pair coding was the fastest method due to

its cheap decoding procedure. ZZ was the slowest method, but it was still faster than all

baselines and achieves excellent overall compression at 9.26% using a 2.0 GB dictionary.

Query log requests were much slower than sequential requests due to latency dur-

ing disk operations. Focusing on the compressed baselines, the fastest throughput was

achieved by each baseline implementation where single documents were encoded in each

block. This was expected because there was no additional overhead when decoding a

document. At the same time, the single document methods were the largest of the block-

oriented encodings as there was less redundancy to exploit. This mirrors results reported

by Ferragina and Manzini [2010]. Figure 3.2 clearly outlines the differences between the

two types of baseline compressors. ZLIB and LZMA, both implementing bit-oriented adap-

tive compression schemes achieve better compression at the cost of decoding throughput.

Furthermore, LZ4 and Snappy, which use byte-oriented adaptive schemes sacrifice com-

pression effectiveness for improved sequential decoding speeds. Although LZ4 and Snappy

clearly give a significant improvement in sequential decoding throughput compared to the

other two general-purpose baselines (ZLIB and LZMA), random access speeds were actu-

ally slower. Compressing documents in larger blocks, for example, 0.5 MB and 1.0 MB

gave speeds similar to that of ZLIB and LZMA, however, on smaller blocks we observed

that they achieved much slower speeds, up to 30 documents per second less on average.

After close examination of the each algorithms reference implementation it was found that

LZ4 and Snappy both incur a large initialization penalty before decoding starts compared

to ZLIB and LZMA.

A larger dictionary was beneficial for ordered document requests on both collections,

but there was no clear benefit to the use of a larger dictionary for query-log document

requests. All RLZ methods had consistent access speeds, averaging over 100 documents

per second. ZZ and ZV pair coding methods ran slightly faster on the Wikipedia collection.

We attribute this to Wikipedia’s average document size being much larger, and ZLIB being

able to compress the pairs more effectively.

Results in Table 3.10 demonstrate that our algorithm responds well in a dynamic

46

SECTION 3.5: SUMMARY

environment, where new documents are added to the collection. In our simulation we

generated 1.0 GB dictionaries from 90% to 1% prefixes of GOV2 and Wikipedia. We

observed less than 1% difference in compression relative to the original dictionary. Indeed,

the loss when using a dictionary from a 1% prefix of Wikipedia was only a 1.35% reduction

in compression effectiveness. This demonstrates that RLZ should provide a highly robust

compression method in the presence of dynamic updates to a document database system.

3.5 Summary

In this chapter we described an efficient compression scheme capable of scaling to large

real-world text collections. RLZ provides both highly effective compression and fast se-

quential decoding and random access to individual documents. We proposed a dictionary

generation technique which although simple, successfully captures global repetitive prop-

erties of a collection and provides excellent overall compression. We empirically demon-

strated that our algorithm can dramatically outperform state-of-the-art block-oriented

techniques, primarily because it is able to capture global repetition in large collections,

which block-oriented techniques and general-purpose adaptive compressors inherently

miss. We also demonstrated that RLZ works well in a dynamic environment where the col-

lection is regularly updated. An additional virtue of RLZ is its scalability: it is lightweight

at compression time, both in principle and in practice. An undesirable side effect of the

sampling technique is a high percentage of redundancy exists throughout a dictionary,

especially on highly repetitive collections. In the next chapter we explore this issue and

outline methods of redundancy elimination in a RLZ dictionary at various stages of com-

pression.

47

CHAPTER 3: EFFICIENT STORAGE AND RETRIEVAL OF WEB COLLECTIONS

Table 3.6: Sequential and Query-log retrieval speed in documents per second on a 426 GB
GOV2 corpus for varied combinations of RLZ dictionaries sizes and position–length codes.

Size (GB) Pos–Len Enc. (%) Sequential Query Log

2.0 ZZ 9.26 12,857 112
1.0 ZZ 9.98 10,449 113
0.5 ZZ 10.74 9,752 116

2.0 ZV 9.35 18,694 110
1.0 ZV 10.17 16,591 109
0.5 ZV 11.04 14,310 114

2.0 UZ 10.68 15,288 109
1.0 UZ 11.87 13,902 106
0.5 UZ 13.18 11,779 110

2.0 UV 10.77 21,622 110
1.0 UV 12.06 20,327 109
0.5 UV 13.48 16,107 109

Table 3.7: Sequential and Query-log retrieval speed in documents per second on a 426 GB
GOV2 corpus for baseline ASCII and blocked LZ files.

Alg. Block (MB) Enc. (%) Sequential Query Log

ascii - 100.00 8,982 28

ZLIB 0.0 24.13 6,263 96
ZLIB 0.1 20.54 1,509 67
ZLIB 0.2 19.38 773 53
ZLIB 0.5 18.66 313 45
ZLIB 1.0 18.43 153 36

LZMA 0.0 22.33 1,490 91
LZMA 0.1 17.24 338 60
LZMA 0.2 14.29 180 47
LZMA 0.5 11.92 78 33
LZMA 1.0 10.81 41 22

LZ4 0.0 31.56 13,595 66
LZ4 0.1 29.48 4,118 54
LZ4 0.2 29.03 2,262 51
LZ4 0.5 28.75 918 50
LZ4 1.0 28.65 427 45

Snappy 0.0 32.16 11,185 78
Snappy 0.1 30.84 3,504 70
Snappy 0.2 30.67 1,868 65
Snappy 0.5 30.67 749 59
Snappy 1.0 30.65 346 51

48

SECTION 3.5: SUMMARY

Table 3.8: Sequential and Query-log retrieval speed in documents per second on a 256 GB
Wikipedia corpus for varied combinations of RLZ dictionaries sizes and position–length
codes.

Size (GB) Pos–Len Enc. (%) Sequential Query Log

2.0 ZZ 9.56 7,898 125
1.0 ZZ 10.68 7,786 129
0.5 ZZ 11.77 6,932 129

2.0 ZV 9.74 13,360 132
1.0 ZV 10.92 12,766 130
0.5 ZV 12.07 11,156 130

2.0 UZ 12.67 9,351 104
1.0 UZ 14.16 9,563 105
0.5 UZ 15.74 8,557 103

2.0 UV 12.85 17,422 112
1.0 UV 14.40 17,979 114
0.5 UV 16.05 15,834 117

Table 3.9: Sequential and Query-log retrieval speed in documents per second on a 256 GB
Wikipedia corpus for baseline ASCII and blocked LZ files.

Alg. Block (MB) Enc. (%) Sequential Query Log

ascii - 100.00 2,093 50

ZLIB 0.0 24.13 2,610 98
ZLIB 0.1 20.54 1,690 90
ZLIB 0.2 19.38 902 80
ZLIB 0.5 18.66 355 64
ZLIB 1.0 18.43 172 48

LZMA 0.0 22.33 604 93
LZMA 0.1 17.24 437 86
LZMA 0.2 14.29 271 79
LZMA 0.5 11.92 123 55
LZMA 1.0 10.81 65 32

LZ4 0.0 36.93 6,168 61
LZ4 0.1 30.01 4,044 60
LZ4 0.2 28.21 2,485 56
LZ4 0.5 27.13 1,049 54
LZ4 1.0 26.79 502 48

Snappy 0.0 36.29 4,070 62
Snappy 0.1 32.21 3,386 61
Snappy 0.2 31.04 2,008 58
Snappy 0.5 30.90 813 52
Snappy 1.0 30.78 381 45

49

CHAPTER 3: EFFICIENT STORAGE AND RETRIEVAL OF WEB COLLECTIONS

Table 3.10: Simulating a dynamic document database by compressing 426 GB GOV2 and
265 GB Wikipedia corpus using ZZ pair codes relative to 1 GB dictionaries built from
varied prefixes of the collection.

Prefix % GOV2 Enc. % WP Enc. %

100.0 9.89 10.68
90.0 9.92 10.70
80.0 10.41 10.73
70.0 10.79 10.76
60.0 10.88 10.89
50.0 11.10 10.11
40.0 11.17 11.11
30.0 11.35 11.25
20.0 11.38 11.37
10.0 11.40 11.64
1.0 12.04 11.04

50

CHAPTER 4
Sample Selection for Dictionary Based

Corpus Compression

In the previous chapter we presented a simple yet highly effective sampling technique to

a generate dictionary which is suitable for efficient large-scale corpus compression. Key

to the effectiveness of the method is that the dictionary forms a representative sample

of the collection. The aim is to capture the global repetition across a collection that

adaptive compression algorithms do not detect. To create a dictionary of size m we

consider the collection as a single concatenated string of length n and take samples of

lengths s at evenly-spaced intervals. That is, we take m/s samples from n/(m/s) evenly

spaced locations throughout the collection, on the assumption, which our experiments

have confirmed, that any sufficiently frequent material in the document collection is likely

to be captured in this process.

Although our sampling method successfully captures non-local duplication and pro-

vides excellent compression, there is a high volume of redundant content found throughout

the dictionary. Indeed, in experiments we observed that a significant percentage of each

dictionary was unused, almost 30% on average. Furthermore, there was a strong skew

in the samples that were used, and even among these, there was redundancy as some

samples contained repeated material. Figure 4.1 plots dictionary sample usage sorted by

frequency when compressing the 256 GB Wikipedia collection with 0.5 GB, 1.0 GB and

2.0 GB dictionaries and 1 KB sample sizes. For each dictionary there was a very small

set of about 200 frequently used samples that were accessed close to six million times on

average. Interestingly, the content of these samples were comprised of incomprehensible

strings of whitespace, HTML markup and junk text. On the other hand, the vast majority

of dictionary samples were rarely used, and many were completely untouched, especially

with larger dictionaries. For example, the 0.5 GB, 1.0 GB and 2.0 GB dictionaries used

in Figure 4.1 had 20 KB, 50 KB and 150 KB completely unused samples respectively.

51

CHAPTER 4: SAMPLE SELECTION FOR DICTIONARY BASED CORPUS COMPRESSION

0 500000 1000000 1500000 2000000

1e
+

00
1e

+
02

1e
+

04
1e

+
06

Dictionary Samples

S
am

pl
e

U
sa

ge
0.5GB
1.0GB
2.0GB

Figure 4.1: Dictionary sample usage (sorted by frequency) using 0.5 GB, 1.0 GB and
2.0 GB RLZ dictionaries with 1 KB samples on a 256 GB Wikipedia corpus.

In this chapter we present methods to identify and remove redundancy throughout

a sampled dictionary. This gives the opportunity to make a number of improvements

to the compression scheme during encoding and decoding stages. First we can replace

unnecessary and redundant content with more appropriate samples that will improve

compression effectiveness. On the other hand, such methods can be used to reduce the

overall memory footprint of the compressor to facilitate use on memory-constrained devices

such as phones and tablets. A further advantage of a smaller dictionary is that it improves

decoding efficiency as the dictionary will exhibit improved behavior across all levels of

the cache hierarchy. In Section 4.1 we outline a pre-processing method that removes

long repetitive substrings from a dictionary before compression. Then, in Section 4.2

we discuss alternative methods where redundant samples and characters are removed in

a post-processing stage after compression. In Section 4.3 we evaluate our methods and

demonstrate that we can reduce a dictionary by 50% or more – making it less than 0.1% of

the overall collection size – while having no significant effect on compression effectiveness.

Finally, in Section 4.4 we conclude.

52

SECTION 4.1: PRE-PROCESSING

4.1 Pre-processing

As a consequence of the sampling method vast quantities of redundant information can be

captured during the dictionary generation process. An example of such redundancy can

be found in the Wikipedia collection that we have been using throughout our experiments.

Each document is prefixed with a Web Archive Header (WARC).1 This header provides

metadata specific to the web crawl, for example, a unique document identifier and a time

stamp indicating when a document was fetched. In our experiments we observed that a

2 GB dictionary using 1 KB sampling on the 256 GB Wikipedia collection sampled WARC

header elements approximately half a million times. While this redundancy only equates

to a small component of the dictionary, it serves as an example of global redundancy in a

collection that is only needed to be stored once – and not half a million times.

Such redundancy can be removed in a pre-processing step, that is, before compression

is performed using a variation of the pre-compression technique proposed by Bentley and

McIlroy [2001], (BMI). They describe an LZ-style algorithm where substring matches are

restricted to a minimum length. Long and possibly distant repetitive substrings are iden-

tified and replaced with a position/length code directly in the text. This is implemented

by inserting a unique escape code in the text, then, efficiently encoding the position and

length values with a byte-oriented code, for example, Vbyte. The output is then passed to

a second stage general purpose compression algorithm such as ZLIB which encodes short

and closer repetitive substrings. Naturally decoding is also a two-step process. That is,

an encoding must initially be uncompressed with a general purpose algorithm, then each

embedded position/length code needs to be identified and expanded in a second pass.

This method is effective when the input is highly redundant, such as collections of

natural language texts or clustered documents, and was recently used in the compression

scheme outlined in BigTable [Chang et al. 2008], a massively distributed storage system.

The algorithm restricts substring matches to a minimum length b. That is, all matches

with a length less than b are ignored. BMI hashes non-overlapping substrings of length b,

that is, x[1..b], x[b+1..2b], x[2b+1..3b], etc., and then scans the text searching for matches.

We make a slight modification to the algorithm where we hash all overlapping substrings,

that is, x[1..b], x[2..b + 1], x[3..b + 2], and so on. This ensures that we detect all possible

matches and not a smaller subset. The algorithm is used to detect redundancy throughout

a sampled dictionary, however, when we identify a repetitive substring we simply remove

it from the dictionary and continue processing. In Section 4.3 we show that this method

is highly effective at reducing redundancy throughout a sampled dictionary and only has

a minimal effect on compression.

Examples of this encoding scheme using various restricted match lengths on the string

acaacacaacaacaca are shown in Table 4.1. The middle column displays the output of BMI

1http://www.digitalpreservation.gov/formats/fdd/fdd000236.shtml

53

http://www.digitalpreservation.gov/formats/fdd/fdd000236.shtml

CHAPTER 4: SAMPLE SELECTION FOR DICTIONARY BASED CORPUS COMPRESSION

Algorithm 3 PreProcess-BMI accepts a text x of length n and removes all repeated
substrings in x with a length of at least b.

1: function PreProcess-BMI(x, n, b)
2: i← 0
3: initialize hash of x[1..b]
4: for j ← b to n do
5: store (hash, j − b)
6: update hash to include x[j] and exclude x[j − b]
7: if j − b+ 1 < i then
8: continue
9: (pos, len)← FindMatch(hash)

10: if len > b then
11: output x[i..pos)
12: i← pos+ len

Table 4.1: Example output of BMI and PreProcess-BMI for a variety of match lengths,
b, on the string acaacacaacaacaca. The middle column displays the original BMI output
(left) and each pair’s corresponding substring (right). PreProcess-BMI output is shown in
the right column where all repetitive substrings larger than b have been removed.

b BMI output Output

1 ac(0,1)(0,3)(1,5)(3,5) → ac a aca caaca acaca ac
2 aca(0,3)(4,2)(0,8) → aca aca ca acaacaca aca
4 acaac(0,6)(3,5) → acaac acaaca acaca acaac
8 acaacaca(0,8) → acaacaca acaacaca acaacaca

(left) and each pairs corresponding substring (right). The column on the right displays

our desired output, where all repetitive substrings of length greater than or equal to b

have been removed. Note that a pair can be self-referential. An example of this is shown

in Table 4.1 where the minimum match length is restricted to 4. The first pair returned

is (0,6). This indicates that a match of length 6 was found at index 0. Note that at this

point the algorithm has only processed 5 characters. The sixth character is referenced

from the actual match. That is, once we have exhausted the current input buffer, in this

case the substring abaab at index 4, we wrap around to the beginning of the substring

and resume matching characters. This process continues until we reach the desired match

length. The pseudo-code for our variation of BMI is outlined in Algorithm 3. A rolling

hash [Karp and Rabin 1987] is used to represent all overlapping substrings of length b in

a string x of length n, storing n − b + 1 values in a table for fast lookup. On line 2 we

initialize a pointer, i, indicating how much of the string we have processed. Line 4 begins

a scan through the string searching for matching substrings of length b. Line 7 prevents

matching in string that we have already processed. If the function FindMatch identifies a

matching substring, we greedily expand the match forward and backward in the string.

54

SECTION 4.2: POST-PROCESSING

Algorithm 4 PostProcess-IH accepts a RLZ encoding e, its dictionary d which used a
block size of b for sampling. The function returns a new dictionary where half of the
least-frequently used samples have been removed.

1: function PostProcess-IH(e, d, b)
2: initialize new dictionary d′ to null
3: initialize sample usage array C[0..|d|/b] to zero
4: for each (pos, len) factor in e do
5: if len = 0 then
6: continue
7: for i← pos to pos+ len− 1 do
8: C[i/b]← C[i/b] + 1
9: i← i+ b

10: sort C by decreasing frequency
11: for i← 0 to (|d|/b)/2 do
12: d′ ← d′ + d[C[i]]

13: return d′

For example, pre-compression of the string acacacacacacacac with match length restricted

to 2 would output ac(0, 14), as forward expansion would match to the end of the string.

On completion we compress the collection once more relative to the new, smaller and less

redundant dictionary.

4.2 Post-processing

In this section we consider redundancy elimination from a dictionary after the collection

has been compressed.

Our first approach, iterative halving, is defined as follows. We decode the collection

and compute usage statistics for each dictionary sample. For each RLZ pair we increment

a counter corresponding to the sample that the factor occurred in. Once the pairs have

been processed we sort the samples by frequency in descending order and generate a new

dictionary, half the size of its original, comprised of the most frequently used samples.

Then, we compress the collection relative to the newly created dictionary. This process

can be repeated until we reach a desired dictionary size or compression degrades to a preset

threshold. Such an approach gives explicit control of memory use and should maximize

compression effectiveness for a given number of samples. The pseudo-code for the iterative

halving algorithm, PostProcess-IH, is outlined in Algorithm 4. Note that if a dictionary d

of length |d| used sample blocks of length b, there will be |d|/b sample counters, see lines

3 and 11. Furthermore, it is possible that a factor is located across a number of samples,

see lines 7 to 9.

An alternative approach is to remove redundancy at a byte level. This time, during

decoding we record statistics of the individual usage of characters in the dictionary. More

55

CHAPTER 4: SAMPLE SELECTION FOR DICTIONARY BASED CORPUS COMPRESSION

Algorithm 5 PostProcess-B accepts a RLZ encoding e and its dictionary d. The function
returns a new dictionary all unused bytes have been removed.

1: function PostProcess-B(e, d)
2: initialize new dictionary d′ to null
3: initialize byte usage bitvector BV [0..|d|] to zero
4: for each (pos, len) factor in e do
5: if len = 0 then
6: continue
7: for i← pos to pos+ len− 1 do
8: BV [i]← 1

9: for i← 0 to |d| do
10: if BV [i] = 0 then
11: continue
12: d′ ← d′ + d[i]

13: return d′

precisely, we store a bitvector – one bit for each character in the dictionary – and set a

bit to 1 if its corresponding dictionary character was used during decompression. We can

then generate a new dictionary removing all unused characters, which are identified by

still having a 0 bit by the end of the decoding process. Pseudo-code for the byte-level

redundancy removal, PostProcess-B, is outlined in Algorithm 5.

Unlike iterative halving we do not need to re-encode the collection relative to the

newly computed dictionary, instead, we can avoid the significant computational step by

translating each RLZ position value to its new position using rank operations on the

bitvector that was used for redundant byte removal. That is, for any position value from

the original encoding, oldpos, we can compute its position in the new dictionary with:

newpos = rank1(bv, oldpos)

An example of this procedure is illustrated in Table 4.2 where we factorize the input

string naabcbcbc relative to the dictionary d = aabcanad. After factorization we compute

a bitvector, BV , where each 1 bit corresponds to a used character during encoding. The

new dictionary, d′, is generated by removing all unused characters from d. Then, we

translate each of the original factor’s position values using a rank operation on BV . For

example, the first factor in the encoding occurs at position 5 in d. The rank at position

5 in BV is 3, that is, rank1(bv, 5) = 3, therefore, the factor is translated to (3,2), as the

substring na now occurs at position 3 in d′. The complete translation of the encoding

relative to the new dictionary d′ is shown on the final line. Pseudo-code for the extended

algorithm, PostProcess-BE, which includes translating the original encoding relative to

the newly computed dictionary is described in Algorithm 6. Note that the ComputeRank

function generates a data structure that answers rank calls on a bitvector in constant

time. This can be in compressed or uncompressed form.

56

SECTION 4.3: EXPERIMENTS

Table 4.2: Removing redundancy at a character level from a dictionary d (top) after
compression in a post-processing step. A new dictionary is computed d′ (middle) and the
factorization is translated to match factors in the new dictionary (bottom).

0 1 2 3 4 5 6 7
d[i] a a b c a n a d

bv[i] 0 1 1 1 0 1 1 0
rank1[i] 0 0 1 2 3 3 4 5

... n a a b c b c b c ...

(5, 2) (1, 3) (2, 2) (2, 2) → (na) (abc) (bc) (bc)

0 1 2 3 4
d’[i] a b c n a

(3, 2) (0, 3) (1, 2) (1, 2) → (na) (abc) (bc) (bc)

A drawback of removing byte level redundancy is that the dictionary can no longer

be used in an iterative halving run as there is no clear way to identify sample boundaries.

4.3 Experiments

The same experimental environment was used as described in the previous chapter. Pre-

and post-processing schemes were implemented and evaluated on both GOV2 and Wikipedia

document collections. All compression results reported used the ZZ encoding scheme de-

scribed in Section 3.1.5 and 1 KB uniform sampling.

Pre-processed dictionary results are shown in Tables 4.3 and 4.4. Initial sampled

dictionaries sizes were 0.5 GB, 1.0 GB, 2.0 GB and 4.0 GB. Each dictionary was passed

through our pre-processing algorithm using varied minimum match block lengths. Given a

raw dictionary and a block length each table reports the reduced pre-processed dictionary

size, its compression effectiveness and the percentage of bytes which remained unused once

it was used in an encoding.

Note that the original dictionaries contain a very high percentage of unused bytes at

30% and 20% on average for GOV2 and Wikipedia respectively. Setting a small minimal

match length of 64 bytes reduced each dictionary by approximately a factor of three and

only contributed to a 2% reduction in compression on average. Larger minimal match

57

CHAPTER 4: SAMPLE SELECTION FOR DICTIONARY BASED CORPUS COMPRESSION

Algorithm 6 PostProcess-BE accepts a RLZ encoding e and its dictionary d. The func-
tion returns a new dictionary where all unused bytes have been removed and a new RLZ
encoding where each position value has been updated to valid positions in the new dictio-
nary.

1: function PostProcess-BE(e, d)
2: initialize new encoding e′ to null
3: initialize new dictionary d′ to null
4: initialize byte usage bitvector BV [0..|d|] to zero
5: for each (pos, len) factor in e do
6: if len = 0 then
7: continue
8: for i← pos to pos+ len− 1 do
9: BV [i]← 1

10: for i← 0 to |d| do
11: if BV [i] = 0 then
12: continue
13: d′ ← d′ + d[i]

14: rank1 ← ComputeRank(BV)
15: for each (pos, len) factor in e do
16: if len > 0 then
17: pos← rank1(pos)

18: e′ ← e′ + (pos, len)

19: return (e′, d′)

length values used on 2.0 GB and 4.0 GB dictionaries reduced their size by close to 50%

and had an even smaller effect on compression effectiveness, 0.5% on average. All pre-

processed dictionaries contained significantly less redundant information than their initial

counterparts, with a smaller minimum match length achieving the lowest percentages of

unused content. However, this comes at the price of worse compression, as the dictionary

is smaller. All compression results reported by pre-processed dictionaries were signifi-

cantly better than each baseline that was outlined in Tables 3.7 and 3.9 from the previous

chapter. A minimal match length of 512 bytes reduced a 4.0 GB dictionary from GOV2

and Wikipedia by half and compressed the collection to 8.90% and 8.39% respectively.

Iterative halving results are reported in Tables 4.5 and 4.6. Each of the initial sampled

dictionaries were halved in size until it reached 100 MB in size. As can be seen, halving

dictionary size led to a small increase in encoding size, less than 1% per iteration. Even

at a ten-fold reduction in dictionary size, compression was still better than all reported

practical baselines outlined in the previous chapter.

Across both collections halving each dictionary in size using PostProcess-IH consis-

tently reported better compression than its equivalent unprocessed dictionary. For exam-

ple, a 4.0 GB sampled dictionary reduced to 2.0 GB compressed GOV2 to 8.67% where

as a raw sampled 2.0 GB dictionary compressed GOV2 to 9.26%.

58

SECTION 4.4: SUMMARY

Just like the pre-processing results, compression is always most effective starting with

a larger sampling of the collection, then tuning the dictionary size by eliminating redun-

dancy. Observe that all 100 MB dictionaries computed by iterative halving, which is

0.02% and 0.04% the size of GOV2 and Wikipedia collections respectively, compress both

collections to 13% on average — a result significantly better than all reported baselines

and with such a restricted dictionary size. This compression result is also similar to the

UZ pair encoding results reported in the previous chapter, which sacrifices compression

effectiveness to dramatically improve decoding and random access time. As we are select-

ing the most frequently used samples during each iteration, unused dictionary percentages

rapidly drop, essentially halving during each step with GOV2 dictionaries and even faster

on Wikipedia, dropping to an average of 6% by the first iteration and slowly improving

during subsequent iterations.

4.4 Summary

In this chapter, we explored techniques to remove redundant components of a sampled

dictionary used for corpus compression. First, we described a pre-processing technique

where long repetitive substrings are removed from a dictionary before compression is per-

formed. We demonstrated that this method works well in practice, successfully removing

large quantities of redundant substrings from a dictionary with no discernible effect on

compression effectiveness. Next, we examined dictionary usage after compression. By

computing usage statistics during decompression at a sample and character level we can

make a more informed decision about which parts of the dictionary can be removed. First

we described a sample-based technique where we make multiple passes of a collection,

each time reducing dictionary size by half and keeping the most frequently used samples.

We find that by the first iteration, while halving the overall size dictionary, has a minimal

effect on compression, 0.2% on average. Furthermore, we showed that we can iteratively

reduce the dictionary down to 100 MB of its original size and still maintain superior

compression compared to each of the blocked baselines reported in the previous chapter.

Finally, we described an alternative post-processing technique where unused characters

are removed from a dictionary. We outlined a method to translate an existing encoding

position values to point to its new position in the dictionary (where unused characters

have been removed) without the need to re-encode the collection.

Results in this section lead to some interesting questions regarding the best method

to generate a dictionary for corpus compression. We have shown that selective sampling,

although a simple technique, provides efficient compression. Moreover, a finely tuned

100 MB dictionary achieves superior compression than all practical baselines. A small

dictionary could be suitable for light-weight devices or provide the opportunity to add

more effective samples to the dictionary — as we have seen, larger sampled dictionaries

59

CHAPTER 4: SAMPLE SELECTION FOR DICTIONARY BASED CORPUS COMPRESSION

compress our two text collections to under 10% of their original size. One possibility would

be to identify areas in a collection that compressed poorly during an encoding, then, once

we have removed all redundant samples from the dictionary we can and add new samples

from the poorly compressed areas, repeating the process for a number of iterations. An

ideal solution however would generate an efficient dictionary before compression. We leave

this as a problem for future work.

60

SECTION 4.4: SUMMARY

Table 4.3: Compression results and percentage of unused dictionary bytes for pre-processed
dictionaries with varied dictionary size and minimal match lengths on the 426 GB GOV2
corpus.

Orig. (GB) New. (GB) Block (B) Enc. (%) Unused (%)
0.5 - - 10.74 32.91
0.5 0.3 512 10.86 12.39
0.5 0.2 256 11.06 5.72
0.5 0.2 128 11.41 2.31
0.5 0.1 64 12.40 1.40
1.0 - - 9.98 36.00
1.0 0.6 512 10.13 12.38
1.0 0.5 256 10.36 5.17
1.0 0.4 128 10.76 2.42
1.0 0.3 64 11.89 1.61
2.0 - - 9.26 39.62
2.0 1.2 512 9.43 7.32
2.0 1.0 256 9.68 5.77
2.0 0.8 128 10.12 2.61
2.0 0.6 64 11.39 1.87
4.0 - - 8.53 37.43
4.0 2.0 512 8.98 13.82
4.0 1.9 256 9.12 5.96
4.0 1.6 128 9.48 2.84
4.0 1.2 64 10.85 2.16

Table 4.4: Compression results and percentage of unused dictionary bytes for pre-processed
dictionaries with varied dictionary size and minimal match lengths on the 256 GB
Wikipedia corpus.

Orig. (GB) New. (GB) Block (B) Enc. (%) Unused (%)
0.5 - - 11.77 21.15
0.5 0.4 512 11.86 5.25
0.5 0.3 256 12.01 3.55
0.5 0.2 128 13.38 2.90
0.5 0.1 64 13.26 2.79
1.0 - - 9.89 23.72
1.0 0.8 512 10.80 6.52
1.0 0.6 256 10.99 4.38
1.0 0.5 128 11.31 3.69
1.0 0.3 64 12.33 3.42
2.0 - - 9.06 27.34
2.0 1.5 512 9.56 6.58
2.0 1.2 256 9.95 5.31
2.0 1.0 128 10.34 4.64
2.0 0.6 64 11.52 4.21
4.0 - - 7.71 19.95
4.0 2.0 512 8.39 7.39
4.0 2.0 256 8.64 5.28
4.0 1.8 128 8.62 5.21
4.0 1.2 64 10.22 4.30

61

CHAPTER 4: SAMPLE SELECTION FOR DICTIONARY BASED CORPUS COMPRESSION

Table 4.5: Compression results and percentage of unused dictionary bytes for post-
processed dictionaries using iterative halving on the 426 GB GOV2 corpus.

Orig. (GB) New. (GB) Enc. (%) Unused (%)
0.5 - 10.74 32.91
0.5 0.2 11.13 2.51
0.5 0.1 12.45 0.49
1.0 - 9.98 36.00
1.0 0.5 10.23 2.91
1.0 0.2 11.74 0.56
1.0 0.1 12.37 0.49
2.0 - 9.26 39.62
2.0 1.0 9.39 3.69
2.0 0.5 11.03 0.60
2.0 0.2 11.65 0.59
2.0 0.1 12.44 0.38
4.0 - 8.53 37.43
4.0 2.0 8.67 4.56
4.0 1.0 10.32 0.72
4.0 0.5 10.93 0.67
4.0 0.2 11.74 0.51
4.0 0.1 12.32 0.42

Table 4.6: Compression results and percentage of unused dictionary bytes for post-
processed dictionaries using iterative halving on the 256 GB Wikipedia corpus.

Orig. (GB) New. (GB) Enc. (%) Unused (%)
0.5 - 11.77 21.15
0.5 0.2 12.41 2.38
0.5 0.1 13.06 1.20
1.0 - 10.68 23.72
1.0 0.5 11.03 3.25
1.0 0.2 12.17 1.51
1.0 0.1 13.09 1.31
2.0 - 9.56 27.34
2.0 1.0 9.93 4.65
2.0 0.5 10.96 2.12
2.0 0.2 12.03 1.76
2.0 0.1 13.15 0.94
4.0 - 7.71 19.95
4.0 2.0 8.31 4.12
4.0 1.0 9.37 1.67
4.0 0.5 10.55 1.23
4.0 0.2 11.70 0.73
4.0 0.1 12.59 0.71

62

CHAPTER 5
Efficient Implementation of the Block

Graph Data Structure

In Chapter 3 we presented a technique for compressing large, highly repetitive text collec-

tions that performs well in practice. Its effectiveness hinges on the dictionary representing

the global repetitive properties of the collection. Because a sampling of the collection is

used to generate the dictionary, if repetition throughout the collection is not uniform, or

the sampling just happens to provide a poor representation of the collection, compression

will suffer. As a consequence, theoretical analysis on the algorithm is difficult. In this

chapter we approach the same problem – text compression and fast random access – by

constructing an index that is competitive in both theory and practice.

Indexing highly repetitive texts to achieve fast random access has been studied ex-

tensively in recent years, see Grossi [2013] for a survey of the field. There are many

approaches to the problem, such as LZ78 [Sadakane and Grossi 2006, Arroyuelo et al.

2012], the BWT [Ferragina and Venturini 2007] and grammar-based compression [Rytter

2003, Charikar et al. 2005, Bille et al. 2011, Maruyama et al. 2012; 2013]. Grammar-based

compressors, such as Rytter [2003] and Charikar et al. [2005] give strong theoretical guar-

antees, and yet, there exists no feasible method to implement the algorithms in practice.

A practical implementation of OLCA by Maruyama et al. [2012], a grammar-based al-

gorithm exists, however, it does not support random access. Recently, Maruyama et al.

[2013] proposed FOLCA, another grammar-based algorithm, and found that substring ex-

traction was almost twice as slow as their baselines. In light of this, it was noted by Sirén

et al. [2008] that algorithms based on LZ77 [Ziv and Lempel 1977] are better suited for

compression of highly repetitive texts. Recently Kreft and Navarro [2010] introduced a

variant of LZ77 called LZ-End and a supporting data structure that works well in practice

but lacks good worst-case bounds for both compression and random access.

In this chapter we outline a practical implementation of the block graph by Gagie et al.

[2011], an LZ-style data structure that supports fast random access in practice, but also

63

CHAPTER 5: EFFICIENT IMPLEMENTATION OF THE BLOCK GRAPH DATA STRUCTURE

(1..8, 0)
(1..8, 2)
(1..8, 4)

(1..4, 1)
(1..4, 2)
(1..4, 0)

(1..4, 0)
(1..4, 1)
(1..4, 2)

(1..8, 3)
(1..8, 0)

abaa aaba baba

1..21

1..16 9..21

1..8 5..12

1..4 3..6 5..8

9..16 13..20 17..21

7..10 9..12 15..18 17..2013..16
(1..4, 1)
(1..4, 0)
(1..4, 1)

(1..4, 1)
(1..4, 2)
(1..4, 0)

(1..4, 0)
(1..4, 1)
(1..4, 0)

Figure 5.1: The block graph for the eighth Fibonacci string, abaababaabaababaababa,
truncated at depth 3. Internal nodes are represented as ovals. Leaf nodes are represented
as rectangles and their child pointers are a pair (n, o), where n is the internal node at the
same depth of its parent where the child’s block first occurred at offset o.

has strong theoretical bounds for compression and random access. We compare the block

graphs against the current state-of-the-art methods, LZ-End by Kreft and Navarro [2010],

OLCA, a variation of RLZ from Chapter 3 and adaptive general-purpose compressors.

The rest of the chapter is organized as follows. In Section 5.1 we give an overview of

the block graph data structure. This is followed a high level discussion covering traversal

of the block graph for substring extraction. In Section 5.2 we outline a practical implemen-

tation of a block graph and describe in detail how to navigate and represent its distinct

components compactly. We empirically evaluate our implementation in Section 5.3 against

a number of state-of-the-art indexes that provide fast random access. In Section 5.4 we

discuss our results and conclude in Section 5.5.

5.1 Block Graph

A block graph is a directed acyclic graph (DAG) built on a string x[1..n]. The general

structure of a block graph is best described visually. In Figure 5.1 we show an illustration

of a block graph for the eighth Fibonacci string, abaababaabaababaababa. Each node,

(i..j), maps to a substring, x[i..j], which we call the nodes block. The root, or source

node, corresponds to the complete text, x[1..n]. A node, v, can have up to three children,

representing the first, middle and last half of its substring. Note that a node’s middle

child corresponds to the overlap between its first and last siblings. This implies that a

node can have two parents. For example, the node (5..8) in Figure 5.1 acts as the right

child of (1..8) and the left child of (5..12). This overlap plays an important role during

64

SECTION 5.1: BLOCK GRAPH

construction when assigning leaf node pointers, which will be discussed in detail later.

Consider a text of length n = 2h for some value h. For simplicity we use a length

that is a power of two, however, in practice this is not a requirement. If n is not a power

of 2 we append blank characters until it is. Once the block graph has been constructed we

remove all redundant nodes, that is, nodes comprised entirely of blanks, and adjust any

remaining nodes with blocks, (i..j) where j > n to (i..n). For example, the block graph in

Figure 5.1 represents a string of length 21. The text would have initially been padded to

x[1..32] and redundant nodes trimmed during construction. Furthermore, its block (9..21)

would have originally represented the substring (9..24) and was truncated to (9..21).

We consider the root node to be at depth 0 and the block graph to have a maximum

possible depth of t = 2dlogne. We can reduce the size of the block graph by truncating it

at a depth where storing three pointers takes less space than storing a block of characters

explicitly. A node at depth d will have a block size, b = 2t−d, corresponding to the

substring x[i..i + b]. For each node we add pointers to three children, x[i..i + b/2), x[i +

b/4..i+ 3b/4) and, x[i+ b/2..i..b), creating them if necessary, as a node may already exist

due to child pointer overlap. If a node’s block is the first occurrence of its substring in x

we mark it as an internal node. If a nodes is not unique, that is, its block has previously

occurred in x we identify it as a leaf node. In Figure 5.1, internal nodes are represented

as ovals and leaf nodes are rectangles.

The main operation during block graph construction is assigning leaf nodes and up-

dating their pointers. Say we have established that a leaf node is a block that has already

occurred in x. We update its children to point to an offset in an internal node at the same

level as its parent. This is one reason for the overlapping blocks, as the child at a leaf node

will be fully contained in an internal node at its parents depth. We represent a leaf node

pointer as a pair (n, o), where n corresponds to the node that contains the first occurrence

of a child’s block at offset o. For example, the block (17..21) in Figure 5.1, corresponds to

x[17..21] = ababa, which first occurs at x[4..8]. We turn it into a leaf node by updating

its child pointers (17..20) and (19..21), corresponding to the blocks x[17..20] = abab and

x[19..21] = aba, which first occur in positions 4 and 1 in x respectively. Therefore, we

replace (17..21)’s pointer to (17..20) by a pointer to (1..8) and the offset 3, and replace its

pointer to (19..21) by another pointer to (1..8) and the offset 0.

5.1.1 Extracting a Single Character

Extracting a single character from a block graph is straightforward. We begin at the root

node and descend through the graph via nodes that contain x[i]. If there are two child

nodes that contain the specific index we are looking for we make an arbitrary choice, in

our implementation we always select the left-most path. If we descend to a leaf node, u

such that x[i] is the jth character in u’s block we follow one of its pointers to an internal

node and adjust the extract index by the pointers offset. That is, if u stores a pointer to

65

CHAPTER 5: EFFICIENT IMPLEMENTATION OF THE BLOCK GRAPH DATA STRUCTURE

internal node v and offset c, we follow u’s pointer to v and extract the (j + c)th character

in v’s block. Finally, when we reach the depth where internal nodes store raw text in-place

of node pointers we return x[i].

For example, if we wanted to extract the 17th character from the block graph shown

in Figure 5.1 we could take the following path. Beginning at the root node we descend to

(9..21) as it is the only child from the root that contains x[17]. From (9..21) we can follow

its middle or right child as they both contain x[17]. If we descend to its middle child,

(13..20), once more, we are presented with the choice to follow either (13..20)’s middle

or right child. Suppose we select its middle child again, the leaf node (15..18). All three

children of (15..18) point to an offset in an internal node at same depth of its parent.

Its left child (15..16) corresponding to the substring x[15..16] = ba has been replaced

by a pointer to (1..4) at offset 1, signifying that the first occurrence of this substring is

located at x[2..3]. Similarly, its middle child (16..17), x[16..17] = aa has been replaced

by a pointer to (1..4) at offset 2, indicating that its first occurrence it located at x[3..4].

Finally, the right child, (17..18), x[17..18] = ab has been replaced by a pointer to (1..4) at

offset 0, corresponding to x[1..2]. Suppose we follow the middle pointer, (16..17). Since

we were going to extract the second character from (16..17) and the middle pointer takes

us to (1..4) at offset 2, we end up extracting the fourth character in (1..4). This node is an

internal node at the block graph’s truncated depth, so it stores the substring x[1..4] = abaa.

Finally, we extract the fourth character from 1..4, x[4] = a, which is equivalent to x[17].

5.1.2 Extracting a Substring

Extracting a substring from x is slightly more complicated. The procedure is similar

to extracting a single character, however, as we descend through the graph, once the

substring interval length, j − i+ 1 is longer than half of the current block length we need

to split the query in two.

There are a number of scenarios to consider when extracting a substring from a

block graph. If the current node u is at the lowest depth of the graph, that is, where

internal nodes store text instead of pointers, we simply return the required substring x[i..j].

Otherwise, we are at an internal or a leaf node and need to determine if the requested

interval x[i..j] is fully contained in one of its children. If so we descend to the appropriate

child and continue, otherwise, we need to split the interval into two or three sub-intervals.

As an example, consider the function extract(u, i, j), where u is a node in a block graph

and (i, j) represent the range of characters to extract in u’s block. Say the current state

of an extract call traversing the block graph from Figure 5.1 is extract(1..8, 1, 8). That

is, we are at node (1..8) and want to extract the substring x[1..8]. As the interval is not

fully contained in one of u’s children we have to split the query. This could be achieved

with two extract calls, for example, extract(1..4, 1, 4) and extract(5..8, 5, 8), or three, for

example, extract(1..4, 1, 3), extract(3..6, 4, 5) and extract(5..8, 6, 8). Although it is possible

66

SECTION 5.2: IMPLEMENTATION

to split into three sub-intervals it is never ideal, and, due to the overlap in child nodes the

same outcome can always be achieved by partitioning into two sub-intervals. In doing so

we avoid the cost of an extra function call.

For a more complete example, say we want to extract the substring, x[6..10] of

length 5 from the block graph in Figure 5.1. We begin at the root node and call, ex-

tract(1..21, 6, 10). We move to its left child by calling, extract(1..16, 6, 10), then its middle

child, extract(5..12, 6, 10). Here the node (5..12) is of length 8. As our query is of length 5,

which is greater than half the length of the current block, we need to split the query into

two sub-intervals. In this case we call, extract(5..8, 6, 8), which corresponds to a text block,

so we extract the text aba. For the second sub-interval we call, extract(7..10, 9, 10). (7..10)

is a leaf node. We want to access is right child, corresponding to the block (9..10). The

child pointer directs us to the internal node (1..4) at offset 0. We move to (1..4), adjusting

the interval to account for the offset, which is 0 in this case, by calling extract(1..4, 1, 2).

As (1..4) is a text node we extract the substring, ab. Concatenating the result of the two

sub-intervals gives abaab, which corresponds to the substring, x[6..10].

5.1.3 Time and Space Complexity

Gagie et al. [2011] show that the block graph contains O(z log n) nodes, where z is the

number of phrases in the LZ77 parse of a text, therefore requires O(z log n) words of space.

The maximum depth of a block graph is log n. For each node we either descend to

one of its children or follow a leaf pointer to an internal node in constant time. Therefore,

we can extract a single character x[i] in O(log n) time.

Substring extraction proceeds in exactly the same manner as above, that is, descend-

ing through the block graph to each node in constant time, until m, the length of the

substring to extract, is more than half the size of the current block. In Section 5.1.2 we

show that a node at depth d, with a block length of b = 2dlogne−d, and a substring query

of length b/2 < m ≤ b, can always partitioned into two auxiliary extract calls, for which

each call continues descending through the graph in constant time. Summing across each

level we can extract a substring in O(log n+m) time.

Gagie et al. [2011] note that we can remove the top d levels of the block graph

and reduce the space and access time. For example if d = log z, then we store a total

of O(z log n log(n/z)) bits and need only O(log(n/z)) time for access. However, as we

discuss in Section 5.4, this would give a negligible improvement in practice, as the top d

levels represent a very small component of the block graph.

5.2 Implementation

In this section we describe an implementation of a block graph which is efficient in practice.

The main idea is to represent the shape of the graph (the internal nodes and their pointers)

67

CHAPTER 5: EFFICIENT IMPLEMENTATION OF THE BLOCK GRAPH DATA STRUCTURE

using bitvectors and operations from succinct data structures, and to carefully allocate

space for the leaf nodes depending on their distance from the root. Below we make use

of two familiar operations for bitvectors: rank and select. Given a bitvector B, a position

i, and a type of bit b (either 0 or 1), rankb(B, i) returns the number of occurrences of b

before position i in B and selectb(B, i) returns the position of the ith b in B. Efficient

data structures supporting these operations have been extensively studied, [Okanohara

and Sadakane 2007a, Raman et al. 2007, Kärkkäinen et al. 2014a], we give an overview of

this topic in Section 2.2.3.

Recall that each level of the block graph consists of a number of nodes, either internal

nodes, or leaves. Let Bd be a bitvector which indicates whether the ith node (from the

left) at depth d is a leaf, Bd[i] = 0, or an internal node, Bd[i] = 1. We define another

bitvector Rd, where Rd[i] = 1 if and only if Bd[i] = 1 and Bd[i + 1] = 1 for i < n − 1.

That is, we mark a 1 bit for each instance of two adjacent internal nodes in Bd, otherwise

Rd[i] = 0. Let Ld be an array that holds leaf nodes at depth d. The structure of a leaf

node is discussed below. Finally, let T be the concatenation of the textual representations,

that is, the corresponding substrings of all internal nodes at the truncated depth, d′. As

adjacent text blocks share 2logn−d′−1 characters, we concatenate only the last half of a

new adjacent block to T . Non-adjacent blocks are fully concatenated. We utilize bitvector

Rd at this level so that we can extract the correct substrings; however, we mark Rd[i] = 1

if the ith node at the truncated depth is a text block.

Table 5.1 gives the bitvectors B and R, and text block T for the block graph in

Figure 5.1. Note that there is no need to store B0 and R0 as there is only ever one root

node. Furthermore, at the truncated depth there are three adjacent internal nodes of

length 4. Instead of storing the concatenation of the three blocks abaa, aaba and baba,

we only store the last half of each adjacent block, that is abaa, ba and ba, resulting in the

string abaababa.

5.2.1 Navigating the Block Graph

The main operation is to traverse from an internal node to one of its three children. Say

we are currently at the jth internal node at depth d of the block graph, that is, we are at

Bd[i], where i = select1(Bd, j). Each internal node has three children. If these children

were independent then locating the left child of the current node would simply be three

times the node’s position on its level, that is 3j = 3 · rank1(Bd, i). However, in a block

graph, adjacent internal nodes share exactly one child, so we correct for this by subtracting

the number of adjacent internal nodes at this depth prior to the current node — this is

given by rank1(Rd, i). To find the position corresponding to the left child of a node in

Bd+1 we compute leftchild(Bd, i) = 3 · rank1(Bd, i)− rank1(Rd, i). Note that we are using

zero indexing for B, R and T arrays, as it simplifies calculations.

Given the address of the left child, it is easy to find the center or right child by adding

68

SECTION 5.2: IMPLEMENTATION

Table 5.1: A succinct representation of the block graph from Figure 5.1. One bits in Bd
bitvectors represent internal nodes at depth d. One bits in Rd bitvectors represent runs of
adjacent internal nodes at depth d. The array T contains the text at the truncated depth.

i 01234567

B1 11
R1 10

B2 11010
R2 10000

B3 11100000
R3 11000000

T abaababa

1 or 2, respectively. If Bd[i] = 0 then we are at a leaf node, and its leaf information is

at Ld[rank0(Bd, i)]. Once we reach the truncated depth we access the text of an internal

node by computing its offset in T . The length of a block at the truncated depth d′ is

b′ = 2logn−d′ . To compute a block’s offset in T we first compute its index assuming

that all text blocks were fully concatenated, rank1(Bd, i) · b′, then we account for any

overlapping adjacent text blocks of length b′/2. Therefore, rank1(Bd, i)·b′−rank1(Rd, i)·b′/2
corresponds to the index of the ith text block in T .

For example, to extract the 17th character using the bitvectors in Table 5.1 we will

follow the same path outlined in Section 5.1.1, that is, (9..21), (13..20), (15..18), (16..17),

then (1..4). Starting at depth 1 the bitvector B1 states that there are two internal nodes,

corresponding to (1..16) and (9..21) at index 0 and 1 respectively. We want to find the

position in B2 of (9..21)’s middle child, (13..20). The position of (9..21)’s left child is

3 · rank1(B1, 2) − rank1(R1, 2) = 3 · 1 − 1 = 2. Then we add one to get the index of its

middle child, at position 3. That is, B2[3] corresponds to the node (13..20). We compute

access(B2, 3) = 1, so it is an internal node. We want to follow its middle child again to

get to (15..18). We compute 3 · rank1(B2, 3)− rank1(R2, 3) = 3 · 2− 1 = 5, then add 1 to

get the index of its middle child, 6. Continuing, B3[6] corresponds to the node (15..18).

access(B3, 6) = 0, so it is a leaf node. We lookup the position and offset for (15..18)’s

middle child, (16..17) in the L3 calling L3[rank0(B3, 6)], which returns (0,2) corresponding

to the node (1..4) and offset 2. This time access(B3, 0) = 1 which means it is a text node

as we are at the truncated depth of the block graph. We required the second character in

(16..17), so we need the index of the second character plus the leaf offset in (1..4), which

is index 3. We know that (1..4) is the first block at this depth, therefore, its text block

will begin at T [0], however, in the general case, to compute the index of a text block in T ,

we would use rank1(B3, 0) · 4− rank1(Rd, 0) · 2 = 0 · 2− 0 · 2 = 0, where 4 is the length of a

69

CHAPTER 5: EFFICIENT IMPLEMENTATION OF THE BLOCK GRAPH DATA STRUCTURE

block at the truncated depth and 2 is the length of overlap between adjacent text blocks.

Finally, we have an offset into T and an index in (1..4) of the character we are after, we

return T [3].

Substring extraction operates in a similar manner. Note from Section 5.1.2 that care

must be taken to reduce the number of extract partitions when descending through the

graph.

5.2.2 Representing Leaf Nodes

In a block graph, leaves point to internal nodes. For each leaf we store two values, the

position of the destination node on the current level, and an offset in the destination node

pointing to the beginning of the leaf block. Note that we do not need to store the depth

of the destination node. It is, by definition, on the level above the leaf pointer, and we

know this by keeping keep track of the depth at each step in a traversal. To improve

compression we store leaf pointer and offsets in two separate arrays.

At depth d there are no more than 2d+1 − 1 possible nodes, so we can store each

pointer in dlog(2d+1 − 1)e bits. However, if we record the number of nodes at each depth

we can reduce number of bits required for the pointer array at the cost of an extra rank

operation. For example, at depth 2 in Figure 5.1 there are 5 nodes — 3 internal nodes and

2 leaf nodes. A leaf node will only point to an internal node at the same depth so we can

reduce the number of bits required for each leaf pointer at depth 2 from dlog(22+1 − 1)e
= 3 bits, to dlog(3)e = 2 bits. To fetch the index of the ith internal node at level d we call

rank0(Bd, i).

For the offsets array we observe that the length of a node at depth d is b = 2dlogne−d,

and a child pointer node represents a block of length b/2. A leaf node can have an offset

value in the range 0 ≤ i ≤ b/2, so we can store each offset in dlog(b/2 + 1)e bits.

In Section 5.4 we examine the three components of a block graph, its bitvectors, leaf

blocks and text blocks. We find that the bitvectors represent a very small percentage of a

block graph and the dominant cost is storing the leaf nodes. In our practical implementa-

tion we store leaf pointers in dlog(2d+1−1)e bits, however, a more compact representation

may be of interest when indexing larger collections.

5.2.3 Constructing the Block Graph

Construction of a block graph is straightforward. We build the graph in a top-down

manner, that is, we begin at the root node and update node pointers a level at a time,

truncating the graph at a specified block length. For each node at the current level we

initially check if it is a leaf node, if so, we assign it leaf pointers and offsets and continue.

Otherwise, the node is an internal node and we link them to their child internal nodes,

70

SECTION 5.3: EXPERIMENTS

creating them if necessary. We then continue the procedure, operating on the nodes we

created at the next depth.

The computational bottleneck during construction is determining if a node is a leaf

node, that is, if its block has already occurred in the input text. Once we have detected a

leaf node we can use the same operation with a smaller block to assign leaf node pointers.

To perform this efficiently we compute the suffix array of the input text and use its pattern

matching capability we described Section 2.2.2.

Our implementation uses a suffix array. If the input text is too large to store an

index in memory, we use a disk-based variant of the doubling algorithm [Arge et al. 1997,

Crauser and Ferragina 2002] described by Dementiev et al. [2008], to compute the leaf

blocks at each level before we build the block graph.

5.3 Experiments

We implemented the block graph as described in Section 5.2 with a reference implementa-

tion available online1 and evaluated its compression effectiveness on texts from the Pizza-

Chili Repetitive Corpus,2 a standard test bed for data structures designed for repetitive

strings. All three categories of texts were used, ranging from highly compressible artifi-

cial texts, such as the 41st Fibonacci string, to pseudo-real texts that were generated by

artificially adding repetitiveness to existing collections, and real texts such as collections

of Wikipedia articles, source code and DNA.

We evaluate our implementation against the LZ-End data structure by Kreft and

Navarro [2010], OLCA by Maruyama et al. [2012], and two general-purpose compressors

gzip and xz. We were unable to test against FOLCA, a more recent data structure

by Maruyama et al. [2013] as their source code is not available. However, their experiments

show that, apart from requiring fewer resources during construction, that decompression

and random access is twice as slow on average compared to LZ-End. Finally, we compare

against an implementation of RLZ from Chapter 3 that was altered to support data

without explicit document headers.

LZ-End and OLCA were run with default arguments. gzip and xz were run with

their highest compression setting -9. RLZ used a dictionary generated from 1 KB uni-

form sampling. Each dictionary was generated to be 2% of each test collection in size.

Throughout our experiments we tested block graphs with varied truncated depths such

that the smallest blocks were 4, 8, 16, 32 and 64 bytes. Note that OLCA, gzip and xz

provide compression only, not random access, and are included as reference points for

achievable compression. We did not include self-indexes in our experiments such as the

LZ-Index by Navarro [2004] or RLCSA by Sirén et al. [2008] as experiments by Ferragina

1http://www.github.com/choobin/block-graph
2http://pizzachili.dcc.uchile.cl/repcorpus.html

71

http://www.github.com/choobin/block-graph
 http://pizzachili.dcc.uchile.cl/repcorpus.html

CHAPTER 5: EFFICIENT IMPLEMENTATION OF THE BLOCK GRAPH DATA STRUCTURE

et al. [2009] and Kreft and Navarro [2010] both show that they achieve slightly worse

compression and slower extraction speeds compared to LZ-End.

Random access was evaluated on Block graphs, LZ-End and RLZ extracting sub-

strings of varied lengths from a single character to 218 characters in length. Each run

of extractions was performed across 10,000 randomly-generated queries. Experiments

were conducted on an Intel Core i7-2600 3.4 GHz processor with 8 GB of main mem-

ory, running Linux 3.3.4; code was compiled with GCC version 4.7.0 targeting x86 64

with full optimizations. Caches were dropped between runs with sync && echo 1 >

/proc/sys/vm/drop caches. Time values were reported using wall clock time.

5.4 Discussion

Compression results are presented in Tables 5.2 and 5.3. We report compressed space in

MB and time in seconds respectively. Regarding the two general-purpose compressors,

gzip provided the worst compression overall, specifically on the artificial and pseudo-real

collections. gzip on real collections was somewhat competitive, but still worst overall

with the exception of two collections, Escherichia coli and influenza, which it actually

compressed better than OLCA, LZ-End and Block graphs. As expected, gzip had the

fastest compression time across all texts due to the nature of its algorithm. xz provides

superior compression on all pseudo-real and real texts, with significantly better results

than all other algorithms. xz was also competitive in run-time compared to OLCA and

Block graphs and faster than LZ-End. It is important to note that while xz provides

superior compression and gzip gives the fastest decoding speeds that they both do not

support random access.

RLZ and OLCA compression results were very similar, preforming slightly worse than

LZ-End and Block graph’s and better than gzip in terms of size. Furthermore, compression

time was four times faster than LZ-End and twice as fast as Block graphs on pseudo-real

and real texts. We observed no significant degradation in compression effectiveness for

Block graph up to truncated block size of 32. This is expected as three pointers on a 64

bit machine is 24 bytes, and block lengths are always powers of two, so best compression

should be achieved between block a length of 16 and 32. Compression degraded using a

truncated block length of 64 by 5% on average, however, it provides random access speeds

an order of magnitude faster than other Block graphs and LZ-End. LZ-End’s compression

time performance was the worst overall, being four times slower compressing artificial

collections and twice as slow on real texts compared to Block graphs.

Figure 5.2 gives an overview of the relative sizes of each Block graph component,

its bitvectors, leaf block and text blocks on real texts using truncated block lengths of

4, 8, 16 and 32. The first key observation is that for all truncated block lengths the

size of the bitvectors is insignificant compared to the leaf and text blocks. That is,

72

SECTION 5.4: DISCUSSION

T
a
b

le
5.

2:
S

iz
e

in
M

B
co

m
p

re
ss

in
g

ar
ti

fi
ci

a
l

(t
op

),
p

se
u

d
o-

re
al

(m
id

d
le

)
an

d
re

al
(b

ot
to

m
)

te
x
t

co
ll

ec
ti

o
n

s
fr

o
m

th
e

R
ep

et
it

iv
e

C
or

p
u

s
w

it
h

b
a
se

li
n

e
ge

n
er

al
-p

u
rp

os
e

co
m

p
re

ss
o
rs

,
R

L
Z

,
O

L
C

A
,

L
Z

-E
n

d
,

an
d

B
lo

ck
gr

ap
h

s.
B

lo
ck

gr
a
p

h
s

w
er

e
tr

u
n

ca
te

d
at

te
x
t

le
n

gt
h

4
,

8
,

16
,

32
an

d
64

.
R

L
Z

u
se

d
a

d
ic

ti
on

a
ry

2%
of

ea
ch

co
ll

ec
ti

on
si

ze
an

d
1

K
B

u
n

if
or

m
sa

m
p

li
n

g
.

C
o
ll

e
c
ti

o
n

A
S

C
II

G
Z

IP
X

Z
R

L
Z

O
L

C
A

L
Z

-E
n

d
B

g
4

B
g
8

B
g
1
6

B
g
3
2

B
g
6
4

fi
b

41
26

7
1.

17
0.

19
0
.9

4
0
.0

0
2
3
7

0
.0

0
1
5
4

0
.0

0
2
2
5

0
.0

0
2
1
9

0
.0

0
2
4
8

0
.0

0
2
1
2

0
.0

0
2
1
4

rs
.1

3
21

6
1.

09
0.

13
0
.7

7
0
.0

0
2
7
7

0
.0

0
2
3
8

0
.0

0
2
5
3

0
.0

0
2
4
8

0
.0

0
2
4
2

0
.0

0
2
4
4

0
.0

0
2
4
5

tm
29

26
8

1.
42

0.
45

0
.9

3
0
.0

0
3
1
6

0
.0

0
2
7
4

0
.0

0
2
4
7

0
.0

0
2
4
1

0
.0

0
2
3
6

0
.0

0
2
3
4

0
.0

0
2
3
9

d
b

lp
.x

m
l.

00
00

1.
1

10
0

18
.3

5
0.

15
0
.3

7
1
.0

5
1
.2

3
1
.6

6
1
.3

8
1
.3

1
1
.3

9
1
.5

0
d

b
lp

.x
m

l.
00

00
1.

2
10

0
18

.5
1

0.
15

0
.4

4
1
.0

7
1
.2

8
1
.6

5
1
.3

8
1
.3

1
1
.3

9
1
.5

0
d

b
lp

.x
m

l.
00

01
.1

10
0

18
.3

9
0.

18
0
.4

5
2
.2

0
1
.7

0
4
.0

9
3
.6

8
3
.6

0
3
.8

9
4
.6

5
d

b
lp

.x
m

l.
00

01
.2

10
0

19
.8

5
0.

18
1
.4

2
2
.2

4
2
.1

6
4
.0

7
3
.6

6
3
.5

9
3
.8

7
4
.6

2
d

n
a.

00
1.

1
10

0
28

.4
8

0.
52

1
.3

5
1
0
.2

6
6
.4

9
1
8
.2

8
1
8
.1

8
1
8
.3

0
2
0
.0

3
2
5
.8

5
en

gl
is

h
.0

01
.2

10
0

44
.6

0
0.

56
1
0
.2

7
1
2
.4

5
1
1
.1

3
2
1
.6

4
1
9
.0

3
1
8
.3

9
2
0
.1

2
2
6
.0

1
p

ro
te

in
s.

00
1.

1
10

0
40

.3
6

0.
61

1
.3

5
9
.9

7
7
.0

3
2
1
.0

4
1
8
.0

9
1
9
.8

4
2
5
.7

5
3
8
.2

4
so

u
rc

es
.0

01
.2

10
0

36
.0

2
0.

45
1
0
.0

0
1
0
.3

2
1
0
.6

2
2
1
.0

2
1
8
.8

8
1
8
.3

1
2
0
.0

5
2
5
.9

7
E

sc
h

er
ic

h
ia

C
ol

i
11

2
31

.5
3

5.
18

2
8
.8

9
5
8
.4

5
4
9
.1

0
4
9
.7

0
4
9
.5

7
4
5
.3

3
4
6
.9

1
5
3
.2

3
ce

re
46

1
12

0.
08

5.
07

5
1
.3

8
7
8
.3

0
4
1
.3

4
5
7
.6

8
5
7
.5

4
5
4
.5

9
5
7
.9

6
5
9
.6

6
co

re
u

ti
ls

20
5

49
.9

2
3.

70
3
7
.6

4
6
6
.7

0
3
5
.8

8
4
2
.8

0
3
3
.1

9
3
0
.4

3
3
3
.0

0
3
8
.7

8
ei

n
st

ei
n

.d
e.

tx
t

92
28

.7
9

0.
10

0
.5

7
0
.8

0
0
.8

3
1
.1

4
1
.0

2
1
.0

0
1
.0

8
1
.3

0
ei

n
st

ei
n

.e
n

.t
x
t

46
7

16
3.

66
0.

33
2
.5

5
2
.0

2
2
.2

4
3
.5

2
3
.0

7
3
.0

1
3
.1

9
3
.7

6
in

fl
u

en
za

15
4

10
.6

3
1.

59
8
.0

7
1
9
.4

9
2
1
.5

0
3
3
.1

6
3
2
.9

7
3
3
.3

2
3
7
.8

9
5
0
.8

6
ke

rn
el

25
7

69
.3

9
2.

07
3
0
.1

3
3
9
.9

5
1
9
.3

4
2
1
.2

1
1
5
.6

9
1
3
.8

4
1
4
.0

5
1
5
.2

0
p

ar
a

42
9

11
6.

07
6.

09
6
0
.1

8
8
2
.9

7
5
7
.4

1
7
2
.3

9
7
2
.1

3
6
7
.8

4
7
0
.6

6
8
0
.9

9
w

or
ld

le
ad

er
s

49
8.

28
0.

51
3
.5

1
3
.8

8
4
.5

2
6
.6

2
5
.8

3
5
.7

2
6
.3

7
7
.9

7

73

CHAPTER 5: EFFICIENT IMPLEMENTATION OF THE BLOCK GRAPH DATA STRUCTURE

T
ab

le
5
.3

:
R

u
n

-tim
e

in
secon

d
s

to
com

p
ress

artifi
cial

(top
),

p
seu

d
o-real

(m
id

d
le)

an
d

real
(b

ottom
)

tex
t

collection
s

from
th

e
R

ep
etitive

C
o
rp

u
s

w
ith

b
a
selin

e
gen

eral-p
u

rp
ose

co
m

p
ressors,

R
L

Z
,

O
L

C
A

,
L

Z
-E

n
d

,
an

d
B

lo
ck

grap
h

s.
B

lo
ck

grap
h

s
w

ere
tru

n
cated

at
tex

t
len

gth
4
,

8
,

1
6,

3
2

an
d

6
4
.

R
L

Z
u

sed
a

d
ictio

n
ary

2%
of

each
collection

size
an

d
1

K
B

u
n

iform
sam

p
lin

g.

C
o
lle

c
tio

n
G

Z
IP

X
Z

R
L

Z
O

L
C

A
L

Z
-E

n
d

B
g
4

B
g
8

B
g
1
6

B
g
3
2

B
g
6
4

fi
b

41
2

103
6
2

3
9

1
9
8

7
7

74
74

74
74

rs.1
3

1
8
5

6
6

3
2

3
1
2

6
2

60
60

60
60

tm
29

2
110

9
2

9
8

3
1
9

9
0

86
86

86
86

d
b

lp
.x

m
l.00

0
01.1

3
36

1
3

2
9

1
0
8

4
0

37
36

35
34

d
b

lp
.x

m
l.00

0
01.2

3
36

1
4

3
0

1
2
1

3
1

29
27

26
25

d
b

lp
.x

m
l.00

0
1.1

3
38

1
3

2
9

1
2
8

5
4

50
48

46
43

d
b

lp
.x

m
l.00

0
1.2

4
36

1
5

3
3

1
4
7

5
2

48
46

42
39

d
n

a.00
1
.1

89
74

1
2

2
6

1
6
4

1
1
6

114
99

84
70

en
g
lish

.00
1
.2

9
5
1

1
1

4
2

1
6
6

1
0
8

94
80

67
53

p
ro

tein
s.001

.1
3

54
9

2
9

1
2
1

1
0
2

90
80

70
61

so
u

rces.0
01.2

1
4

4
6

8
3
3

1
2
1

1
0
2

91
79

66
53

E
sch

erich
ia

C
oli

9
6

11
7

3
3

3
6

1
8
1

1
9
7

197
121

80
53

cere
3
72

43
6

9
5

1
3
4

1
0
1
6

6
0
5

578
490

437
387

coreu
tils

1
2

95
3
6

8
8

2
9
5

1
6
9

138
108

83
64

ein
stein

.d
e.tx

t
5

2
1

1
1

2
7

1
7
3

2
5

23
22

22
21

ein
stein

.en
.tx

t
2
6

11
0

9
2

1
7
2

5
5
2

1
6
0

152
150

147
146

in
fl

u
en

za
3
1

91
2
6

3
2

2
1
8

2
1
1

210
188

156
119

kern
el

14
111

3
6

9
8

3
1
9

1
2
7

101
79

67
60

p
a
ra

363
408

1
0
5

1
2
8

7
6
2

5
3
5

495
379

307
255

w
orld

lea
d

ers
2

2
2

7
1
1

4
8

2
9

27
25

23
20

74

SECTION 5.5: SUMMARY

the efficient leaf pointer representation outlined in Section 5.2.2 would have an almost

negligible improvement in space at the cost of an extra rank call for each leaf node during

traversal. However, we do not believe this method would be of value when compressing

larger collections such as GOV2 from Section 3. We leave this for future work.

When truncating the graph at low depth, for example, where the final block is length

4 and 8, the leaf blocks dominate the size of the block graph. At higher depths, such as

where the final block is of length 16 and 32, the text blocks take up at least half the overall

size of the block graph, and, most notably, have no significant impact on compression

effectiveness. Furthermore, in some cases a higher truncated depth slightly improves

compression, for example, coreutils and Escherichia Coli. This raises some interesting

questions, such as how compressible the concatenated text is and what can be done to

reduce the text while still providing random access.

Extract results for all Repetitive Corpus texts are shown across Figures 5.3 to 5.6.

Observe that for substring extraction with lengths less than 26 all algorithms performed

at nearly the same speed, around 9 million characters per second. The mean extraction

speed for LZ-End runs never exceeded 9 million characters per second. All block graph

implementations achieved faster substring extraction than LZ-End. The larger the trun-

cated block length, the faster the algorithm performed, as it minimizes the number of

nodes to access during traversal. This can be seen on all graphs, especially for extraction

of larger substrings where we observe an exponential increase in speed as we increase the

truncated block length.

RLZ works well in practice across all text collections, repeating our findings from

Chapters 3 and 4, that it is a practical and efficient method for compression that supports

fast random access. Most importantly, our experiments show that block graphs generally

achieve compression comparable to that achieved by LZ-End while supporting significantly

faster substring extraction.

5.5 Summary

In this chapter we presented the first practical implementation of the block graph data

structure by Gagie et al. [2011]. First, we gave a conceptual overview of the data struc-

ture and described its random access capabilities at a high level. Then, we outlined a

practical implementation of a block graph using bitvectors and operations on succinct

data structures. Finally we empirically evaluated our implementations against a number

of general-purpose compressors and LZ-End, a current state-of-the-art compressed index

that provides fast random access.

We found that although xz, a general purpose compressor, achieves much better com-

pression, block graphs achieve better compression than gzip except on the Escherichia Coli

and influenza files. Most importantly, our experiments show that block graphs generally

75

CHAPTER 5: EFFICIENT IMPLEMENTATION OF THE BLOCK GRAPH DATA STRUCTURE

achieve compression comparable to that achieved by LZ-End while supporting signifi-

cantly faster substring extraction, demonstrating that block graphs are competitive in

both theory and practice.

76

SECTION 5.5: SUMMARY

010203040506070

ce
re

/4 ce
re

/8 ce
re

/1
6 ce

re
/3

2
co

re
ut

ils
/4

co
re

ut
ils

/8

co
re

ut
ils

/1
6

co
re

ut
ils

/3
2

ein
ste

in.
en

.tx
t/4

ein
ste

in.
en

.tx
t/8

ein
ste

in.
en

.tx
t/1

6

ein
ste

in.
en

.tx
t/3

2

Esc
he

ric
hia

_C
oli

/4

Esc
he

ric
hia

_C
oli

/8

Esc
he

ric
hia

_C
oli

/1
6

Esc
he

ric
hia

_C
oli

/3
2

inf
lue

nz
a/

4

inf
lue

nz
a/

8

inf
lue

nz
a/

16

inf
lue

nz
a/

32 ke
rn

el/
4

ke
rn

el/
8

ke
rn

el/
16

ke
rn

el/
32 pa
ra

/4 pa
ra

/8 pa
ra

/1
6 pa

ra
/3

2

wor
ld_

lea
de

rs
/4

wor
ld_

lea
de

rs
/8

wor
ld_

lea
de

rs
/1

6

wor
ld_

lea
de

rs
/3

2

Te
xt

/D
ep

th

Size (MB)

C
om

po
ne

nt
s

B
itv

ec
to

rs

Le
af

 b
lo

ck
s

Te
xt

 b
lo

ck
s

Figure 5.2: Visual representation of the relative space requirements of a block graphs
three components, its bitvectors, leaf blocks and text blocks for a variety of input files and
truncated depths.

77

CHAPTER 5: EFFICIENT IMPLEMENTATION OF THE BLOCK GRAPH DATA STRUCTURE

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0
10

0
20

0
30

0
40

0
50

0

cere (440M)

log(extract length)

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

●

Block graph 32
Block graph 16
Block graph 8
Block graph 4
LZ−End
RLZ

0 2 4 6 8 10 12 14 16 18

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0
10

0
20

0
30

0
40

0
50

0

coreutils (196M)

log(extract length)
E

xt
ra

ct
io

n
sp

ee
d

(M
ch

ar
s/

s)

●

Block graph 32
Block graph 16
Block graph 8
Block graph 4
LZ−End
RLZ

0 2 4 6 8 10 12 14 16 18

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0
10

0
20

0
30

0
40

0
50

0

einstein.en.txt (446M)

log(extract length)

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

●

Block graph 32
Block graph 16
Block graph 8
Block graph 4
LZ−End
RLZ

0 2 4 6 8 10 12 14 16 18

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0
10

0
20

0
30

0
40

0
50

0

Escherichia_Coli (108M)

log(extract length)

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

●

Block graph 32
Block graph 16
Block graph 8
Block graph 4
LZ−End
RLZ

0 2 4 6 8 10 12 14 16 18

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0
10

0
20

0
30

0
40

0
50

0

influenza (148M)

log(extract length)

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

●

Block graph 32
Block graph 16
Block graph 8
Block graph 4
LZ−End
RLZ

0 2 4 6 8 10 12 14 16 18

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0
10

0
20

0
30

0
40

0
50

0

kernel (247M)

log(extract length)

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

●

Block graph 32
Block graph 16
Block graph 8
Block graph 4
LZ−End
RLZ

0 2 4 6 8 10 12 14 16 18

Figure 5.3: Extraction speeds in millions of characters per second versus the binary log-
arithm of the length of the extracted substring. Each data point is averaged over 10,000
random substring extractions.

78

SECTION 5.5: SUMMARY

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0
10

0
20

0
30

0
40

0
50

0

para (410M)

log(extract length)

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

●

Block graph 32
Block graph 16
Block graph 8
Block graph 4
LZ−End
RLZ

0 2 4 6 8 10 12 14 16 18

● ● ●
●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ●

0
10

0
20

0
30

0
40

0
50

0

world_leaders (45M)

log(extract length)

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

●

Block graph 32
Block graph 16
Block graph 8
Block graph 4
LZ−End
RLZ

0 2 4 6 8 10 12 14 16 18

● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0
10

0
20

0
30

0
40

0
50

0

dna.001.1 (100M)

log(extract length)

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

●

Block graph 32
Block graph 16
Block graph 8
Block graph 4
LZ−End
RLZ

0 2 4 6 8 10 12 14 16 18

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0
10

0
20

0
30

0
40

0
50

0
english.001.2 (100M)

log(extract length)

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

●

Block graph 32
Block graph 16
Block graph 8
Block graph 4
LZ−End
RLZ

0 2 4 6 8 10 12 14 16 18

● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ●

0
10

0
20

0
30

0
40

0
50

0

proteins.001.1 (100M)

log(extract length)

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

●

Block graph 32
Block graph 16
Block graph 8
Block graph 4
LZ−End
RLZ

0 2 4 6 8 10 12 14 16 18

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0
10

0
20

0
30

0
40

0
50

0

sources.001.2 (100M)

log(extract length)

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

●

Block graph 32
Block graph 16
Block graph 8
Block graph 4
LZ−End
RLZ

0 2 4 6 8 10 12 14 16 18

Figure 5.4: Extraction speeds in millions of characters per second versus the binary log-
arithm of the length of the extracted substring. Each data point is averaged over 10,000
random substring extractions.

79

CHAPTER 5: EFFICIENT IMPLEMENTATION OF THE BLOCK GRAPH DATA STRUCTURE

● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0
10

0
20

0
30

0
40

0
50

0

dblp.xml.0001.1 (100M)

log(extract length)

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

●

Block graph 32
Block graph 16
Block graph 8
Block graph 4
LZ−End
RLZ

0 2 4 6 8 10 12 14 16 18

● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

0
10

0
20

0
30

0
40

0
50

0

dblp.xml.0001.2 (100M)

log(extract length)

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

●

Block graph 32
Block graph 16
Block graph 8
Block graph 4
LZ−End
RLZ

0 2 4 6 8 10 12 14 16 18

● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ●

0
10

0
20

0
30

0
40

0
50

0

dblp.xml.00001.1 (100M)

log(extract length)

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

●

Block graph 32
Block graph 16
Block graph 8
Block graph 4
LZ−End
RLZ

0 2 4 6 8 10 12 14 16 18

● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

0
10

0
20

0
30

0
40

0
50

0

dblp.xml.00001.2 (100M)

log(extract length)

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

●

Block graph 32
Block graph 16
Block graph 8
Block graph 4
LZ−End
RLZ

0 2 4 6 8 10 12 14 16 18

Figure 5.5: Extraction speeds in millions of characters per second versus the binary log-
arithm of the length of the extracted substring. Each data point is averaged over 10,000
random substring extractions.

80

SECTION 5.5: SUMMARY

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0
10

0
20

0
30

0
40

0
50

0

fib41 (256M)

log(extract length)

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

●

Block graph 32
Block graph 16
Block graph 8
Block graph 4
LZ−End
RLZ

0 2 4 6 8 10 12 14 16 18

● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ●

0
10

0
20

0
30

0
40

0
50

0

rs.13 (207M)

log(extract length)

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

●

Block graph 32
Block graph 16
Block graph 8
Block graph 4
LZ−End
RLZ

0 2 4 6 8 10 12 14 16 18

● ● ● ●
● ●

●
● ● ● ● ● ● ● ● ● ● ● ●

0
10

0
20

0
30

0
40

0
50

0

tm29 (256M)

log(extract length)

E
xt

ra
ct

io
n

sp
ee

d
(M

ch
ar

s/
s)

●

Block graph 32
Block graph 16
Block graph 8
Block graph 4
LZ−End
RLZ

0 2 4 6 8 10 12 14 16 18

Figure 5.6: Extraction speeds in millions of characters per second versus the binary log-
arithm of the length of the extracted substring. Each data point is averaged over 10,000
random substring extractions.

81

CHAPTER 6
Fast and Efficient Compression of

High-Throughput Sequencing Reads

Recent advances in high-throughput DNA sequencing technology has dramatically changed

bioinfomatics and life sciences research, providing faster and more affordable sequencing

for research groups all over the world [Kircher and Kelso 2010]. We are now witness to

exponential growth in the generation of genomic data. Figure 6.1 plots the growth of the

Sequence Read Archive, a biological database for DNA sequencing data, from its con-

ception in 2009 to the present day. Note the y-axis is logarithmic. This rapid growth is

completely unprecedented, and more importantly, is expected to double every ten months

for the next decade [Cochrane et al. 2013]. This poses many unique, costly and immediate

challenges, from maintenance and storage to the development of algorithms that can scale

to such volumes of data. To put this growth in context, Moore’s law observes that the

number of transistors in integrated circuits doubles every two years. It is no wonder that

sequence archives around the world are having trouble keeping up.

The output of a modern DNA sequencing experiment consists of millions of short

sequences, typically 30 to 100 characters (or bases) each. Coupled with metadata and

a quality score these sequences are often referred to as reads, dating back to a time

when nucleotides were identified by physically reading the output of a sequencing experi-

ment [Flicek and Birney 2009]. Metadata associated with a sequence contains information

such as sequence identifiers and optional machine-specific content. The quality values

state how confident the sequencing machine was for each reported base. The output from

a sequencer is typically arranged in a standardized format, for example, the FASTQ for-

mat [Cock et al. 2010] which is used in the most recent generation of Solexa/Illumina

high-throughput sequencers. An example FASTQ sequence is shown in Figure 6.2, the

first line contains the metadata, this is followed by the actual nucleotide sequence, then a

plus symbol, and finally, the quality scores.

83

CHAPTER 6: FAST AND EFFICIENT COMPRESSION OF HIGH-THROUGHPUT SEQUENCING

READS

Figure 6.1: The Sequence Read Archive (SRA) database growth from its conception in
2009 to the present day.1

At a high level, a sequencer takes samples or reads randomly across a DNA fragment.

As the reads are not evenly distributed a much larger sample set is required with respect to

the size of the input sequence. This is called coverage. A typical sequencing of a human

genome aims for about 30 times coverage, otherwise there will not be enough overlap

between the reads to facilitate accurate assembly. Sequencing with a high coverage leads

to high levels of redundancy, which, in turn gives us a good idea of how compressible a

collection is. It is interesting to note that the reads themselves are not very useful. We

need to reconstruct the DNA sequence from the reads before we can perform any sort of

biological analysis, such as aligning against another sequence and searching for similarities.

This process is called assembly, where an algorithm determines the most likely position

for each read in a sequence and then constructs it from the alignment. This sequencing

data is not neglected post assembly. It is still valuable to store, if only to verify a the

validity of an assembled sequence in the future.

Sequence archives store their data in compressed form. In most cases they use a

general purpose tool such as gzip, which offers little improvement over a trivial static

encoding of the reads using two bits per base. There are some practical reasons for

using gzip however, most notably that the file format is easily handled on most desktop

computers.

Compression of read data is a very active area of research. Compression methods

1Image sourced from the Sequence Read Archive Overview http://www.ncbi.nlm.nih.gov/Traces/sra/

84

http://www.ncbi.nlm.nih.gov/Traces/sra/

SECTION 6.1:

@SRR002271.2580 FC2012M_R1:1:1:582:726/1

AAACCAGCACATCATGCACATGTACCCCTGAACTTA

+

IIIIIIIIIIIIIIIIIGIIII9IA;II59+-CIII

Figure 6.2: An example of high-throughput sequencing output using the FASTQ file
format.

can be classified as belonging to one of two categories: reference and non-reference based

algorithms. A reference-based algorithm aligns each read to a reference genome. Then,

each read is encoded in terms of its difference from the part of the genome to which is

aligns best. As there are usually few differences between individual genomes in the same

species, reference-based compression can achieve a very compact encoding [Fritz et al.

2011, Kozanitis et al. 2011, Yanovsky 2011, Jones et al. 2012]. However, reference-based

compression is not always feasible or desirable. First, the reference sequence is separate

from the encoding. If the reference becomes corrupt or even misplaced, the reads can

no longer be decoded. The reference sequence can be very large, and may not be stored

locally, so decoding depends on an internet connection. Perhaps most importantly, some

experiments do not have references, for example, in metagenomics, where the sequence

sample contains unknown organisms or communities of organisms, such as, bacteria, a

human gut sample, or from seawater.

Non-reference based approaches vary, but typically treat compression as a string

problem and employ techniques such as Huffman coding [Tembe et al. 2010, Deorowicz

and Grabowski 2011a], LZ77 [Chen et al. 2002], or BWT [Mantaci et al. 2005, Cox et al.

2012]. Another approach is to perform reordering of the reads then compress with a general

purpose compression tool such as gzip or bzip2 [Hach et al. 2012]. Some schemes focus

solely on compression of the read data [Cox et al. 2012]. Others focus on compressing

whole sequencer output (reads, quality scores and other meta-data), see Bonfield and

Mahoney [2013] for a recent review. There has also been a recent focus on quality score

compression [Wan et al. 2012, Janin et al. 2013, Ochoa et al. 2013, Cánovas and Moffat

2013].

In this chapter we focus on read compression and present two novel algorithms for

the task. In Section 6.1 we introduce Faust, a scan-based LZ-style compression algorithm.

First we detail the algorithm, then discuss practical techniques to implement it efficiently.

In Section 6.2 we introduce Afin, an extension of Faust that performs a reordering of

the reads in order to gain an improvement in compression and decoding throughput. In

Section 6.3 we evaluate both algorithms on a large real-world read database against current

state-of-the-art compression algorithms and popular general-purpose baselines. Finally,

in Section 6.4 we conclude and provide directions for future work.

85

CHAPTER 6: FAST AND EFFICIENT COMPRESSION OF HIGH-THROUGHPUT SEQUENCING

READS

6.1 FAUST

We now present Faust, an algorithm capable of scaling to large real-world high-throughput

sequencing experiments. At a high level the algorithm resembles a Lempel-Ziv parse with

a slight twist. Instead of encoding a string in terms of previously occurring substrings as

in traditional LZ77 outlined in Section 2.3.1. Faust encodes full reads against previously

occurring reads. To achieve this the collection is divided into fixed-size blocks. We con-

struct an index for each block in turn and perform a scan of all the reads up the start of

the current block. The reads in a block are identified as block reads. Reads in a scan are

identified as scan reads. For each scan read we query the index to find a set of block reads

that will compress well with respect to the current scan read – recording the best matches

as we go. Once the scan is complete we compress the block reads against their most

suitable matching scan read. This process is repeated for every block in the collection. In

the next section we formally describe the compression algorithm. This is followed by a

discussion of practical methods to improve run-time and compression. Finally, we discuss

efficient methods to compress a read in terms of another read.

6.1.1 Compression

Consider a collection of n reads each of length l. We split the collection into m fixed-

sized blocks of length b, where m = dn/be and each block is comprised of bb/lc reads.

Note that the final block could be smaller than b, however, this will have no impact on the

algorithm. Algorithm 7 gives the pseudo code for the compression routine. Throughout the

description we will refer to the current block as B, and all previously occurring reads as S.

For example, block k, Bk, is comprised of reads contained in the range R[kb, .., (k+1)b−1]

and Sk, contains the reads in the range R[0, .., kb − 1]. A visual representation of R and

S blocks is shown in Figure 6.3. Note the absence of S in the first block.

We compute the suffix array of Bk, then scan each read in Sk. For each read s we

compute its matching statistics [Abouelhoda et al. 2004] with respect to the current block,

Bk, that is, MSs|Bk . The matching statistics corresponds to an array of triples, (s, e, l),

where s, .., e maps to the range in the suffix array of Bk such that the suffixes beginning

at positions SABk [si], SABk [si + 1], .., SABk [se] are prefixed with the text s[i, li]. This is

used to compute a set of candidate reads in Bk that could use s as a reference to encode

against.

For each block read we maintain a pointer to the most suitable scan read to compress

against. This pointer is initially set to null. If the pointer is still null at the end of a scan

then we encode the read using a static two bit code. We compress each candidate read

against s, the current scan read, and update its pointer if s provides better compression

than its existing reference. Figure 6.4 expands on this. In the figure we have two reads

A and B which are used as references to encode two reads in the current block. At the

86

SECTION 6.1: FAUST

Figure 6.3: A visual representation of the first three blocks and their preceding scan reads.

bottom of the figure we show the values of the reference and block reads aligned by their

shared factor. The red bases in each reference read can be safely ignored and the blue bases

in each block read need to be retained in order to reconstruct the read during decoding.

Clearly not all block reads will be assigned a pointer by the end of each scan. In fact,

the first block, B0 = R[0, b − 1] will have no pointers assigned – as there is no prefix of

reads to scan before it. In Section 6.1.1 we describe efficient methods to compress a read

in terms of another.

Improving Candidate Selection

Candidate selection represents a significant run-time bottleneck during compression. The

matching statistics of a scan read with respect to a block generates a large number of

candidates, many of which are not useful. Figure 6.5 plots the distribution of shared

factor lengths between scan reads and block reads for a Faust run on ERA015743, a

collection of approximately 670 million reads of length 100. Note that the vast majority

of length values is greater than 80. To avoid redundant comparison of scan reads that

share a short factor, we filter candidates with factors less than a specified length.

A further method to improve run-time and compression performance is to use a

87

CHAPTER 6: FAST AND EFFICIENT COMPRESSION OF HIGH-THROUGHPUT SEQUENCING

READS

Figure 6.4: Top: A visual representation of two reads, A and B which are currently the
selected candidate reference reads for compression of two reads in the block kb. Bottom:
The two sets of reference and block reads aligned by their shared common factor. The
black base identify the shared factor. The red and blue bases denote their differences.

dynamic threshold that will increase as we process the collection. The idea here is that

blocks at the beginning of the collection have few scan reads to select from, so we use a

small length threshold in order to expand the number of candidates. Conversely, blocks

closer to the end of the collection have a much larger pool of reads to select from so we

do not need to be as selective. As you can see from Figure 6.5 a great number of reads

share long common factors. In this case we can set a high length threshold, essentially

removing all shorter matches from the selection pool.

Reverse Complement Matching

In a sequencing experiment it is not known which DNA strand a given read has been

sequenced from. However, sequences from opposite strands are related to each other in

a precise way, with a sequence on one side being called the reverse complement of the

sequence on the other. These strands are held together by hydrogen bonds where Adenine

(A) complements Thymine (T), and Cytosine (C) complements Guanine (G). As a small

example, given the sequence AACG, its complement is TTGC, and its reverse complement

is CGTT. A larger example is shown in Figure 6.6 displaying two complementary DNA

strands. Note that each strand is read in opposite directions. We can check if the reverse

complement of each scan read is suitable to compress against block reads, essentially

doubling the number of scan reads for each block. Allowing reverse complement matching

requires us to store a single bit identifier per read during encoding and has a negative an

impact on run-time during compression, by up to 25% on average, see Section 6.3.1.

88

SECTION 6.1: FAUST

●●
●
●●●●●●●●●●●

●
●●●●●●●●●●●●

●
●●●●●●●

●
●
●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

0
50

00
00

10
00

00
0

15
00

00
0

20
00

00
0

Match length

F
re

qu
en

cy

Figure 6.5: Match length distribution between scan and block reads for a full Faust
encoding of ERA015743, a collection of approximately 670 million reads of length 100
representing 40 times coverage of a human genome.

AAACCAGCACATCATGCACATGTACCCCTGAACTTA

TAAGTTCAGGGGTACATGTGCATGATGTGCTGGTTT

A = T

T = A

C = G

G = C

Figure 6.6: Top: Two complementary strands of DNA. Bottom: Mapping of complemen-
tary base pairs. Note that each strand is read in opposite directions.

Read Representation

To represent the encoded reads compactly there are a number of scenarios to consider.

Initially we will discuss the most common read representation, where we encode one read

in terms of another. Then we will cover two important corner cases: when we find no

reference for a block read, and when there is a full match between a block read and a scan

read.

89

CHAPTER 6: FAST AND EFFICIENT COMPRESSION OF HIGH-THROUGHPUT SEQUENCING

READS

Algorithm 7 FaustEncode compresses a collection of reads R, each of length l, using a
candidate selection length threshold t.

1: function FaustEncode(R, l, t)
2: for each block in R do
3: for i← 0 to |block| do
4: ref [i]← ∅
5: nbits[i]← 2l . Reads without a reference are coded in 2 bits per base.

6: for each read in R[0, block) do
7: C ← ∅
8: for i← 0 to l − t do
9: (si, ei, li)←MSread|block[i]

10: if li > t then
11: C ← C ∪ Candidates(si, ei)

12: for i← 0 to |C| do
13: n← Encode(read,C[i])
14: if nbits[C[i]] < n then
15: ref [C[i]]← read
16: nbits[C[i]]← n

17: CompressBlock(block, ref)

Unlike an LZ parse, where factors are encoded as doubles or triples, we require a

5-tuple. First, we need to store the index of the scan read that we are using to construct

the current block read. Then, we need information about the shared factor, specifically,

the alignment position in both reads and the length of the factor. A visualization of this

is shown in Figure 6.7. At the top of the figure there are two reads Areference and Ablock,

which are both aligned by their shared factor at positions 5 and 2 respectively. The length

of the factor is 40 bases. The red bases in Areference can be ignored and the blue bases

in Abase are required to construct the Ablock during decoding. The middle of the figure

displays the fields we require in the 5-tuple. At the bottom we show the actual 5-tuple

used to encode Ablock in terms of Areference. Note that the final field is the concatenation

of the blue non-factor bases. We can infer the position of the non-factor bases (that is,

if they are positioned to the left or right of the shared factor) from the alignment of the

block read position. In the current example, two bases occur on the left of the shared

factor, as the block read aligns at index 2, and the remaining bases are to the right.

There are two scenarios where an alternative encoding is required. The first is when

a block read has not been assigned a reference read. It is quite possible that we do not

find a suitable reference during a scan. In fact, this will always occur for the reads in the

first block, as there are no reads preceding it. In this case we encode the read using a two

bit static code for each base. A further possibility is that a block read finds a number of

candidate reads during a scan, however, the two bit static code was more efficient. The

second scenario is where a read and its reference fully match. In this case there is no need

90

SECTION 6.1: FAUST

to store the 5-tuple, we store the reference value and a flag indicating that the reads fully

match.

Encoding the Read

In this section we describe the specific way in which 5-tuples are encoded. We denote the

length of the read as l, the length threshold used during compression as t and the position

of the aligned shared factor in the reference read and the read to encode as rf and ef

respectively.

The reference field can be represented in terms of the number of reads we have cur-

rently processed. For example, if we are processing a block k and each block is comprised

of n reads we can represent the reference field in

dlog(kn+ 1)e bits

We reserve the value kn to denote that the current read has no reference and that

each base is represented as a two bit static code. It is important to note that we can skip

the reference field altogether for the reads in the first block. We know they will never be

assigned a reference so we encode each read as with a static code and save ndlog(n+ 1)e
bits. The example in Figure 6.7 does not include reverse complement matching. However,

as explained earlier, it can be incorporated with a single binary flag to indicate if we are

compressing against the plain reference read or the reverse complement of the reference

read. We store both factor alignment positions in

dlog(l − t+ 1)e bits

Note that we are using the value (l − t) to signify that there is a full match between

the scan and block read – the second corner case described above. This also acts as an

indicator to the decoder that we do not need to read the final position and length values

of the tuple for the current read.

The length field depends entirely on the largest index value of both read positions.

Using the example in Figure 6.7 the largest alignment index is 5. Therefore we store the

position values in dlog(40− 5 + 1)e bits, or more formally

dlog(l −max(rp, ep) + 1)e bits

6.1.2 Decompression

Decompression is straightforward. Initially we decode the first block of reads that were

compressed in two bits per base. Then, we process the rest of the collection a read at a

time. For a given compressed read we first decode a reference field. If the reference is

greater than the number of processed reads we know that the current read is compressed

91

CHAPTER 6: FAST AND EFFICIENT COMPRESSION OF HIGH-THROUGHPUT SEQUENCING

READS

Figure 6.7: Top: The two reads Areference and Ablock aligned by their shared common
factor. Middle: The fields used to represent a a compressed read. Bottom: The actual
values used to compress Ablock in terms of Areference.

using a static two bit code. Otherwise, we fetch the reference read, either from memory

or disk, and continue decoding the first alignment position. There are two remaining

scenarios. The read could either be a full or partial match with respect to its reference.

If it is a full match we simply write the reference read to the output stream. In the case

of a partial match we need to decode the remaining position value, length value and the

non-factor bases before we can reconstruct the new read.

The most costly operation during decoding is fetching the reference read. Currently

our implementation works entirely in memory by representing uncompressed reads stat-

ically in two bits per base. If physical memory is limited or the complete collection can

not fit in memory we can delay fetching reference reads until we have reached the limit

of available memory, then access each needed reference a batch, with a single scan of the

currently decoded file on disk.

6.2 AFIN

We now describe Afin, an algorithm that introduces an extra processing step that per-

forms a reordering of the reads in such a way that we can almost completely eliminate

the reference fields from a Faust encoding, obtaining a significant improvement in both

compression performance, decoding throughput and memory requirements.

The core idea is to identify relationships between reads and their references. If we

can place reads that share the same reference read close to each other, we can reduce

the number of bits needed for the reference field, or possibly eliminate it altogether. An

added bonus is that during decoding we avoid the costly operation of fetching reference

reads from random positions in the already decoded collection. Because of the way Faust

processes the collection, a reference for a given read can only be found in the reads of

its prefix up to beginning of the block that the read is currently in. As we continue to

process blocks these reads could also serve as a reference themselves. This relationship

between reads and their references enables us to construct trees of reads. The concept is

92

SECTION 6.2: AFIN

Figure 6.8: Top: A visual representation of a single Afin graph. In this example read A
acts as a reference for read B. Furthermore, read B acts as a reference for two reads, read
C and D and so on. Bottom: The aligned read graph rooted at A in depth first order.

Table 6.1: An example of the (read, reference) array R sorted by the reference field, and
the corresponding array T generated for the example graph in Figure 6.8.

i Rread Rref T [read]
0 A ∅ A → 1
1 B A B → 2
2 C B C → 4
3 D B D → 5
4 E C E → ∅
5 F D F → ∅

demonstrated in Figure 6.8, where read A acts as a reference for read B. Furthermore,

read B acts as a reference for two reads, C and D, and so on. When we reorder the reads

and align them by their shared factor it is easy to see that we have successfully clustered

a group of reads. In the next section we describe the algorithm to simulate the traversal

of each graph. Then, we discuss how decoding works in the absence of the reference field.

6.2.1 Compression

The pseudo code for this algorithm is outlined in Algorithms 8 and 9. From the Faust

output we generate an array R of (read, reference) pairs, where R[i].read corresponds to

the ith read in the collection and R[i].reference is its reference assigned by Faust. We

then sort these pairs by their reference field. This clusters groups of reads that share

the same reference. We scan the sorted pairs and in a complimentary array, T , store a

mapping of read to the position of its first occurrence as a reference in R. That is, for

the read i, the value T [i] gives us the position in R where i first occurs as a reference.

93

CHAPTER 6: FAST AND EFFICIENT COMPRESSION OF HIGH-THROUGHPUT SEQUENCING

READS

Algorithm 8 AfinEncode accepts an array R of (read, reference) pairs, where R[i].read
corresponds to the i′th read in the collection and R[i].reference is the reference read used
by Faust during compression.

1: function AfinEncode(R)
2: sort(R) by reference field
3: T [R[0].reference]← 0
4: for i← 1 to |R| do
5: if R[i− 1].reference != R[i].reference then
6: T [R[i].reference] = i

7: for i← 0 to |R| do
8: if R[i].reference == ∅ then
9: EncodeRead(R[i])

10: Traverse(i, T [R[i].read], R, T)

Algorithm 9 The recursive traversal function used in AfinEncode. Four parameters are
required. The current parent and child index into R, the sorted reference array R, and
the array T.

1: function Traverse(parent, child,R, T)
2: if child == ∅ then return

3: while R[child].reference == R[parent].read do
4: EncodeRead(R[child])
5: Traverse(child, T [R[child].read])
6: child← child+ 1

As an example, Table 6.1 displays the R and T arrays for the for the tree in Figure 6.8.

On the left, R is sorted by the reference field, where A has no reference, A references B,

B references C and D, etc.. On the right we have the mapping from a read to its first

occurrence in R, where A maps to index 1, B maps to 2, C maps to 4, and so on. Note

that E and F are not used as a reference so they do not map to a position in R.

Clearly a tree root is a pair in R that has not been assigned a reference. For each

tree, starting at the root, we preform a depth first traversal of its tree. We simulate this

traversal using T , which lets us jump into the sorted pairs and process each cluster of

reads that share the same reference. For each child node, if T [R[child].read] is assigned a

mapping we know that the current read has children, that is, it is used as a reference, so

we recurse on child and continue the traversal. Otherwise, it is never used as a reference

so the read corresponds to a leaf node in the tree and we backtrack in the recursion. We

traverse each tree in the same manner.

Read Representation

Now that we have removed the reference field and reordered the collection, we need to store

a small amount of information with an encoded read in order to describe the structure of

each tree. To achieve this we identify four types of tree nodes.

94

SECTION 6.3: EXPERIMENTS

1. A root node that has not been assigned a reference, R[i].reference = ∅.

2. An internal node that acts as a reference for a number of child reads and has been

assigned a reference, T [i] 6= ∅ and R[i].reference 6= ∅.

3. A plain leaf node where no reads use it as a reference, that is, T [i] = ∅ and

R[i].reference = R[parent].read.

4. A leaf node that is at the end of a run of nodes sharing the same reference, that is,

T [i] = ∅, R[i].reference = R[parent].read, andR[i+1].reference 6= R[parent].read.

We replace each reference field with a code identifying its node type. As there are

only four types we can represent each node type using a two bit header. When translating

from the Faust read representation to Afin, care must be taken if a dynamic threshold has

been used in the Faust encoding. These runs increase the length threshold once they have

processed half of the collection. The problem is that Afin performs a reordering of the

reads, removing the middle point. That is, there is no longer an effective way to determine

which threshold value was used for each read. This is important as the two alignment

fields rely on this value when encoding and decoding. We solve this by encoding each read

with respect to the largest threshold value used during the Faust encoding. An alternative

solution would be to include a flag bit in a similar manner to the reverse complement bit.

This evaluation is left for future work.

6.2.2 Decompression

Decompression is slightly more complicated in Afin than Faust, as we now need a way to

traverse each tree and determine each node reference. The pseudo-code for decoding is

given in Algorithm 10. We maintain a stack of reads which are used to simulate the depth

first traversal of each tree. Initially, only the root node of a tree is on the stack. As a root

node has no assigned reference it is coded in two bits per base. If an internal root node is

encountered, it is decoded with respect to the current reference, that is, the read at the

top of the stack, then we push the internal node onto the stack. In the case of a plain leaf

node, decoding is carried out respect to the current reference, and the process continues

without pushing. Finally, if a leaf node is encountered at the end of a run of leaf nodes

that share the same reference (described as node type 4 earlier) its decoded like a plain

leaf node, after which the current reference is popped from the top of the stack – as there

are no other reads that use it as a reference.

6.3 Experiments

Both the Faust and Afin compression schemes were implemented for varied fixed and dy-

namic length selection thresholds as well as encoded with and without reverse complement

95

CHAPTER 6: FAST AND EFFICIENT COMPRESSION OF HIGH-THROUGHPUT SEQUENCING

READS

Algorithm 10 AfinDecode decodes a compressed Afin stream.

1: function (AfinDecode)
2: top← 0
3: while there are more reads to decode do
4: read← NextRead()
5: if read is the root of a graph then
6: S[0]← read . Clear stack and push the new read to the top.
7: top← 1
8: WriteRead(read)
9: continue

10: reference← S[top− 1]
11: DecodeRead(read, reference)
12: if the read is an internal reference node then
13: S[top]← read . Push the current read to the top of stack.
14: top← top+ 1

15: if the read is the last leaf node in a run then
16: top← top− 1 . Pop the top read from the stack.

matching. Each run is identified by A-T[-RC], where A is the algorithm used, T defines the

threshold values used, and the optional -RC suffix indicates whether reverse complement

matching was used.

We evaluated our compressors against BEETL [Cox et al. 2012], a current state-of-the-

art read compression utility using two variants, reverse lexicographical ordering (RLO)

and same as previous (SAP) ordering. BEETL is a two-stage compression algorithm.

The first stage preforms disk based suffix sorting to compute the BWT of a collection.

beetl-rlo sorts the collection such that the reverse of each read is in lexicographical order,

then computes the BWT and performs run length-encoding (RLE) of the output. beetl-

sap performs an implicit permutation the collection to obtain a more compressible BWT

text. In the second stage its output is compressed using PPMd, a statistical compression

algorithm. This was achieved via 7zip using the following arguments -m0=PPMd -mo=16

-mmem=2048m. In addition, we compared against a number of state-of-the-art read

compression algorithms. SCALCE [Hach et al. 2012], using arguments -B55G (fast) and

-B10G (slow) respectively. fastqz [Bonfield and Mahoney 2013] using arguments e (fast)

and c (slow). fqzcomp [Bonfield and Mahoney 2013] using arguments -n1 -q2 -s1 (fast)

and -n2 -q3 -s8+ -b (slow), SRComp [Selva and Chen 2013] and Quip [Jones et al. 2012].

We compare against two common general purpose compression tools, gzip and 7zip.

They are based on LZ77 parsing, however, gzip restricts its dictionary to 32 KB, has a max-

imum factor length of 255 characters and uses a Huffman code to compress each LZ pair.

7zip can extend its dictionary and look-ahead buffer to maximum of 4 GB and compresses

pairs using range coding. gzip was executed with -9 and 7zip, -mo=16 -mmem=2048m.

Finally, we compare against an implementation of RLZ from Chapter 3 which was altered

96

SECTION 6.3: EXPERIMENTS

to support read data. First, dictionary generation was modified to sample full reads. We

used two dictionary sampling methods: uniform and randomly distributed. Pair encoding

was also changed. Position values were encoded in log(|dictionary|) bits and length values

were encoded in log(|read|) bits. Runs can be identified by RLZ-D-T where D corresponds

to the size of the dictionary and T is either U or R, indicating, respectively, a uniform or

randomly sampled dictionary.

Experiments were run on ERA0157432, the same read collection used in Cox et al.

[2012]. ERA015743 is a 135 GB sequencing of a whole human genome using paired 100 base

reads. The collection is comprised of 670 million reads corresponding to an approximate

coverage of 40 times. Each read was extracted from its FASTQ markup and concatenated

into a single string. Once stripped of metadata and quality scores, a 53 GB file remains.

Experiments were conducted on a 16 core Intel E5-2670 CPU with 64 GB of main

memory running Linux (CentOS 6.3) and g++ (GCC 4.7.2) using -march=native -O3.

Peak memory usage was recorded using libmemusage, a tool from GNU glibc that hooks

core memory allocation functions and records run-time statistics. All memory experiments

were preformed separately to timing experiments. Time values were reported using wall

clock time. We define compression ratio as a percentage of the encoded output against

the original collection size.

6.3.1 Compression Results

Compression results for Faust, Afin and each of the baseline runs are shown in Ta-

bles 6.2 and 6.3. All Faust runs reported were constructed using a block size of 2 GB.

Combinations of fixed and dynamic candidate selection thresholds were used. In Table 6.2

the top table displays runs where no reverse complement matching was preformed and the

bottom displays runs where it was enabled. Overall, the Faust run that achieved the best

compression result was faust-16/32-rc, however, it was also the slowest, with an overall

time of 32 hours. This slow run-time can be attributed to the increased number of read

candidates that result from a very small selection threshold. The Faust run with the most

practical of time and space trade-off was faust-32/64-rc, compressing only 0.3 % worse

than faust-16/32-rc while running in half the time at 18 hours. The general trend for all

combinations of run types is that a lower selection threshold gives better the compression,

at the cost of run time. Results using a dynamic threshold satisfied our hypothesis that

increasing the selection threshold once we process later blocks in the collection would

have little to no effect on compression and demonstrate an improvement in run-time.

For example, faust-32-rc compressed ERA015743 to 5.31 GB and ran in 31 hours, while

faust-32/64-rc compressed it to 5.35 GB and ran in 18.51 hours.

Figure 6.9 plots per block compression for Faust runs with varied fixed (left) and

dynamic (right) selection thresholds. Note each initial block compresses to 25% as the

2http://www.ebi.ac.uk/ena/data/view/ERP000460

97

http://www.ebi.ac.uk/ena/data/view/ERP000460

CHAPTER 6: FAST AND EFFICIENT COMPRESSION OF HIGH-THROUGHPUT SEQUENCING

READS

Table 6.2: Encoding and decoding results for Faust and Afin experiments for varied fixed
and dynamic selection threshold values and optional reverse complement checking on
ERA015743, a 53 GB collection of reads.

Encoding Decoding
Method Enc. (GB) Time (Hrs.) Peak (GB) Time (Min.) Peak (GB)

faust-32 5.68 21.84 34.95 14.45 13.27
faust-64 6.22 11.11 35.08 14.36 13.27
faust-70 6.42 10.51 34.82 14.35 13.27
faust-80 7.28 10.24 35.21 14.68 13.27
faust-16/32 6.11 25.01 33.51 15.09 13.27
faust-32/64 6.32 13.78 33.46 14.54 13.27
faust-35/70 6.38 12.29 33.46 14.65 13.27
faust-40/80 6.72 13.27 33.46 14.26 13.27
afin-32 3.99 0.17 22.81 11.06 5.28e-3
afin-64 4.53 0.18 22.81 10.43 5.26e-3
afin-70 4.73 0.18 22.81 10.20 5.26e-3
afin-80 5.59 0.19 22.81 10.70 5.26e-3
afin-16/32 4.43 0.17 22.81 12.45 5.26e-3
afin-32/64 4.49 0.18 22.81 12.15 5.27e-3
afin-35/70 4.50 0.17 22.81 12.69 5.26e-3
afin-40/80 4.90 0.18 22.81 12.02 5.26e-3

Encoding Decoding
Method Enc. (GB) Time (Hrs.) Peak (GB) Time (Min.) Peak (GB)

faust-32-rc 5.31 31.60 35.81 18.46 13.27
faust-64-rc 5.62 18.02 35.76 17.96 13.27
faust-70-rc 5.71 13.54 34.40 18.85 13.27
faust-80-rc 6.30 10.24 34.64 17.85 13.27
faust-16/32-rc 5.26 32.63 34.24 18.01 13.27
faust-32/64-rc 5.35 18.51 34.74 17.95 13.27
faust-35/70-rc 5.36 16.65 34.78 17.88 13.27
faust-40/80-rc 5.49 15.49 34.07 17.80 13.27
afin-32-rc 3.62 0.15 22.81 8.16 5.27e-3
afin-64-rc 3.93 0.15 22.81 8.38 5.27e-3
afin-70-rc 4.02 0.15 22.81 8.38 5.26e-3
afin-80-rc 4.61 0.16 22.81 8.85 5.25e-3
afin-16/32-rc 3.53 0.18 22.81 9.83 5.28e-3
afin-32/64-rc 3.60 0.18 22.81 9.06 5.26e-3
afin-35/70-rc 3.53 0.15 22.81 9.56 5.28e-3
afin-40/80-rc 3.73 0.16 22.81 9.45 5.25e-3

98

SECTION 6.3: EXPERIMENTS

Table 6.3: Encoding and decoding results for baseline compressors, gzip and 7zip, RLZ,
BEETL, SCALCE, fastqz, fqzcomp, SRComp and Quip on ERA015743, a 53 GB collection
of reads.

Encoding Decoding
Method Enc. (GB) Time (Hrs.) Peak (GB) Time (Min.) Peak (GB)

2bpb 13.40 0.15 4.10e-6 - -
gzip 15.01 16.38 4.36e-3 9.53 4.43e-3
7zip 12.86 17.50 0.698 15.57 1.82e-2
rlz-0.1g-u 14.20 26.20 0.50 12.09 0.1
rlz-0.5g-u 12.62 25.17 2.50 12.39 0.5
rlz-1.0g-u 11.64 24.50 5.00 11.45 1.0
rlz-2.0g-u 10.37 26.11 10.00 11.50 2.0
rlz-0.1g-r 14.20 26.89 0.50 12.01 0.1
rlz-0.5g-r 12.61 25.38 2.50 13.51 0.5
rlz-1.0g-r 11.94 25.00 5.00 12.33 1.0
rlz-2.0g-r 10.26 25.45 10.00 11.16 2.0
beetl-rlo 6.49 46.53/2.33 46.3/2.10 121/ - 2.05/ -
beetl-sap 6.95 27.68/2.63 44.1/2.10 64/3954 2.05/40.20
SCALCE (fast) 1.20 2.85 10.00 78.03 1.48
SCALCE (slow) 0.85 3.50 55.00 74.52 1.48
fastqz (fast) 15.12 1.11 0.01 54.00 0.01
fastqz (slow) 11.01 1.20 1.65 712.12 0.23
fqzcomp (fast) 25.03 1.43 0.15 371.01 0.15
fqzcomp (slow) 26.11 1.37 0.15 369.01 0.23
SRComp 0.76 0.80 54.19 8.98 2.06
Quip 30.02 3.17 0.58 206.01 0.61

block is encoded using two bits per base, and subsequent blocks consistently improve

as the scan range increases. When using a length threshold of 80, compression actually

gets worse after the first block before smoothing out. Note the degrading compression

for dynamic threshold runs when the threshold increases halfway through a run. This

is quite prominent for larger threshold combinations, for example, 35/70 and 40/80, and

has almost no effect with smaller. It is clearly beneficial to include reverse complement

matching during encoding, giving a consistent improvement in compression – close to 2 %

on average. Table 6.4 displays the percentage of overall reverse complement reads selected

during each Faust run. With close to a 40 % selection rate it is an indication that it

clearly improves compression. Furthermore, the expected doubling of run-time was not

observed, with an actual increase of an acceptable 20-30%.

Peak memory usage during encoding averaged at 35 GB. This is due to our decision

not to use any compressed data structures for the block index, primarily to improve run

time. Memory usage can be controlled by adjusting the block size giving a nice space-

time trade-off. The minor fluctuations in memory across all runs is due to the use of

a small dynamic container for storing selection candidates, that is, runs with smaller

selection thresholds will have slightly higher peak memory values as the container will

allocate more memory. We note that our resource requirements are more efficient than

99

CHAPTER 6: FAST AND EFFICIENT COMPRESSION OF HIGH-THROUGHPUT SEQUENCING

READS

0 5 10 15 20 25

10
15

20
25

Fixed threshold block compression (ERA 53GB)

Block Index

B
lo

ck
 C

om
pr

es
si

on
 (

%
)

80
70
64
32
80rc
70rc
64rc
32rc

0 5 10 15 20 25
10

15
20

25

Dynamic threshold block compression (ERA 53GB)

Block Index

B
lo

ck
 C

om
pr

es
si

on
 (

%
)

40/80
35/70
32/64
16/32
40/80rc
35/70rc
32/64rc
16/32rc

Figure 6.9: Per block compression values for Faust runs for varied fixed (left) and dynamic
(right) selection thresholds.

both BEETL runs and run faster than both general purpose algorithms.

Afin runs performed excellently. Each run executed in approximately 10 minutes on

top of its corresponding Faust run. As Afin processes Faust output, there was a slight

difference in encoding times for runs that did not check reverse complements. This is

attributed to the Faust encoding being slightly larger and taking more time to decode.

The best overall afin compression result was afin-32/64-rc, reducing faust-32/64-rc from

5.26 GB to an impressive 3.53 GB, almost half the size of the best performing BEETL

baseline and competitive with SCALCE and SRComp. Peak memory was fixed for each

run at 22.8 GB.

Baseline compression results are shown in Table 6.3. A key observation is that RLZ,

the two general purpose compressors gzip and 7zip and baselines fastqz, fqzcomp and

Quip struggle to compete against the naive 2 bit static code, with 7zip and the larger

dictionary RLZ runs achieving only slightly better compression. gzip uses very minimal

memory due to its restricted dictionary. Although 7zip was configured to use its maximum

sized dictionary, peak memory usage reached 0.7 GB and only marginally improved on

compression compared to gzip. RLZ memory requirements were fixed and correspond to

the size of the index built its the input dictionary. There was no noticeable difference in

space or time using uniform or randomly sampled reads.

Both BEETL runs achieved competitive compression to an average Faust encoding

and compressed 2% worse on average than faust-32/64-rc, the most practical run. Two

time results were reported for BEELT runs. For encoding, the first is for computing the

BWT and the second for 7zip compression. These times are reversed when reporting de-

coding. As expected, BWT computation was the dominant cost in terms of time and space

100

SECTION 6.3: EXPERIMENTS

Table 6.4: Percentage reverse complement reads selected during compression.

Method % RC

faust-32-rc 45.17
faust-64-rc 41.39
faust-70-rc 40.15
faust-80-rc 36.88
faust-16/32-rc 46.90
faust-32/64-rc 44.30
faust-35/70-rc 43.84
faust-40/80-rc 42.61

for both runs. beetl-rlo run-time was 19 hours longer than beetl-sap. This is attributed to

the cost of the additional run length encoding stage once the BWT was computed. Mem-

ory requirements for both runs were close to 10 GB greater than corresponding Faust

runs. It is important to note that both BEETL runs perform a reordering of the reads

during compression so it is really only comparable to Afin which is far superior in both

encoding and decoding. Preserving read order may be desirable during sequence assembly

for example, if paired reads are stored together. SCALCE and SRComp runs achieved

the best overall compression results, reducing the collection to approximately 1 GB in

2 hours. The two best SCALCE and SRComp runs required 55 GB of memory and were

competitive to the Afin runs in terms of space and memory usage.

6.3.2 Decompression Results

Decompression results for Faust and Afin runs are reported in Table 6.2. Faust runs

that did not perform reverse complement matching decoded in 15 minutes on average

which is faster than 7zip and four minutes slower than gzip. Runs that did include

reverse complement matching decoded in an average of 18 minutes. The increased run-

time is attributed to the extra computation required for temporally computing the reverse

complement of a reference read. Faust decodes an order of magnitude faster than the most

competitive baselines. beetl-sap required 66 hours, and beetl-rle was stopped at the 96

hour mark. It is important to note the this difference in run-time is due to the disk-based

BWT inversion, which is a costly task. Peak memory for Faust runs was fixed at 13.27 GB,

the size of the complete collection encoded in 2 bits per base.

The most notable algorithm was Afin. afin-*-rc runs were superior to all baselines

in terms of compressed size and decoding speed. Furthermore, the decoding runs were

competitive in memory with gzip, requiring only 5.27 MB on average, which compared to

gzip’s 4.43 MB is an impressive result. Note Afin’s peak memory values fluctuate slightly

due the size of the stack required for traversal of each tree. Similar to our observation

during encoding, the Afin runs that do not match against reverse complement reads are

slightly slower because they are processing a larger compressed file. RLZ runs decoded

101

CHAPTER 6: FAST AND EFFICIENT COMPRESSION OF HIGH-THROUGHPUT SEQUENCING

READS

in 12 minutes on average, faster than Faust runs, slower than Afin and similar to both

general purpose algorithms. No decoding results were reported for the 2 bit static code.

There is no need to translate it back as it already provides efficient random access.

Although SCALCE achieved significantly better compression, their decoding time was

up to 3 times slower than corresponding Faust runs and up to 7 times slower than Afin

runs. Peak memory was fixed at 1.48 GB, approximately 10 times less than reported Faust

runs, but significantly larger than Afin. Fastqz, fqzcomp and Quip runs achieved the poor

decoding times longer than one hour to complete, although, they required little memory.

SRComp achieved better decoding results than Faust runs and was competitive in time

compared to Afin, decoding in 8.98 minutes and reaching only 2.0 GB peak memory.

6.4 Summary

In this chapter we presented two algorithms for compression of short DNA read collections

produced by high-throughput sequencing experiments: Faust, a scan-based algorithm,

which encodes reads against suitable previously occurring reads, and Afin, which performs

a reordering of the reads in a Faust encoding to exploit the high levels of redundancy

throughout a collection. We evaluated both algorithms against current baselines and

general purpose compressors on a large real-world sequencing experiment and found that

both methods perform well in practice.

In summary, Faust and Afin achieve a 20% improvement in compression compared

to general purpose compressors, and encode in similar time. Faust achieves a 2% im-

provement in compression compared to BEETL, a current state-of-the-art algorithm for

read compression. Furthermore, it runs in half the time and in 10 GB less memory. Afin

compresses to half the size of each BEETL run and took 10 minutes longer on average

than its corresponding Faust run. Note that the Afin run-time includes the initial Faust

step, so they are all slightly slower than their corresponding Faust run. Both BEETL

runs perform a reordering of the input reads which is not desirable in many contexts, such

as collections of paired reads. While Afin does reorder the reads, Faust does not. Faust

decoding runs are twice a slow as gzip and very similar to 7zip. Afin decodes quicker than

gzip (by an average of 2 minutes) which is a notable achievement. gzip is renowned for

sacrificing compression effectiveness for fast decoding speed. Afin not only provides sig-

nificantly better compression but actually decodes faster. BEETL runs decode in similar

time to their encoding results as they need to perform BTW inversion. Both Faust and

Afin encode using half the memory required by BEETL. Clearly, both general purpose

algorithms compress using significantly less memory, as that is how they were designed, at

the sacrifice of compression effectiveness. Faust represents the complete read collection in

memory during decoding in a two bit static code which is up to four times more effective

than BEETL decoding runs. The best performing baselines were SCALCE and SRComp,

102

SECTION 6.4: SUMMARY

compressing to 0.85 GB and 0.76 GB respectively. Encoding time was significantly better

than Faust and Afin runs, however, both algorithms required approximately 55 GB of

memory where Faust and Afin required 35 GB and 22 GB respectively. In terms of decod-

ing SRComp was competitive to Afin in terms of time, however, used significantly more

memory. Finally, Afin decoding requires only slightly more memory than gzip (100 KB

on average) which is quite remarkable.

103

CHAPTER 7
Conclusion

We conclude by giving an overview of the key findings and contributions in this thesis and

follow with an outline of directions for future work.

7.1 Contributions

This thesis has presented novel algorithms and data structures for text compression ca-

pable of scaling to modern real-world text collections, providing efficient compression,

decompression and most importantly, supporting fast random access capabilities. We be-

gan in Chapter 2 by identifying a fundamental limitation shared by many existing text

compression approaches: the inability to exploit non-local redundancy throughout a text,

primarily due to constraints on available memory and the growing disparity between text

size and the upper levels of a CPU’s memory hierarchy. Algorithms that do provide effi-

cient compression, such as LZMA2, are generally slow at decoding and do not explicitly

allow random access, two very undesirable aspects of a compression algorithm.

In Chapter 3 we presented an efficient semi-static compression scheme for large repet-

itive text collections. We focused our experiments on compression of large web crawls due

to the highly redundant nature of such data, however, in Chapter 5 and Chapter 6 we

demonstrated that our method is effective across a variety of very different datasets. We

described a simple yet effective dictionary generation technique that successfully captures

non-local redundancy throughout large texts, providing efficient compression up to half

the size of current practical real-world baselines, as well as fast decoding and random

access. We proposed a number of coding techniques that offer a variety of trade-offs

during compression and decoding such as a byte-oriented codes to achieve fast decoding,

and the use of higher-order compressors for example, zlib, to further exploit redundancy

throughout a document factorization.

105

CHAPTER 7: CONCLUSION

We demonstrated that this approach is suitable for compression in a dynamic envi-

ronment where a collection grows over time. As long as additional documents maintain

similar characteristics as the current documents in a collection we observed that there was

an insignificant impact on compression effectiveness. In the scenario where per-document

compression degrades below a predetermined threshold we described two technique to

enrich the dictionary in order to improve compression. If memory is not constrained we

can sample each new document using the technique from 3.1.3 and append them to the

current dictionary. An index of the dictionary will need to be recomputed in order to

include the new samples during encoding, however, the existing encoding is still valid and

avoids the costly process of re-encoding the complete collection. In the case where there

are constraints on memory, the dictionary can be regenerated taking the additional docu-

ments into consideration. Unfortunately, this approach invalidates the original encoding,

and, as a consequence, the collection will need to be compressed once more.

In Chapter 4 we investigated methods to refine the size of a sampled dictionary by

removing redundant and unused substrings. This gives explicit control over memory, where

we can add useful content to a dictionary in order to improve compression, or to generate

a more compact dictionary that achieves similar compression with a smaller memory

footprint. Although our sampling method successfully captures non-local redundancy

and provides excellent compression, we observed a large proportion of the dictionary was

unused or contained redundant content. Furthermore, we identified that there was a strong

skew in the samples that were used throughout an encoding, and even among these, we

noticed that most of these samples contained repeated material themselves.

We described two techniques to remove redundancy in a sampled dictionary. First, we

outlined a pre-processing method where long repetitive substrings are removed from the

dictionary before compression is performed. We demonstrated that this method works

well in practice, successfully removing large quantities of redundant substrings from a

dictionary with no discernible effect on compression effectiveness. Then, we examined

dictionary redundancy post-compression. Usage statistics at a sample and character level

we recorded during decoding and were used to to make a more informed decision about

which components of a dictionary can be removed. We outlined a method where a dic-

tionary is iteratively halved in size by removing least used samples or characters. The

collection is then re-encoded relative to the new dictionary. This process is continued

until we reach a desired dictionary size of compression effectiveness degrades to a prede-

termined ratio. We demonstrated that a reduced dictionary gave no discernible impact on

compression. Furthermore, a finely tuned dictionary as small as 100 MB can successfully

compress both test collections more effectively than all practical baselines.

In Chapter 5 we presented the first practical implementation of the block graph

data structure proposed by Gagie et al. [2011]. A block graph is an LZ-style compressed

index that is efficient in practice, but also gives strong theoretical bounds in terms of

106

SECTION 7.2: FUTURE WORK

compression and random access. We empirically evaluated our implementation against a

number of general-purpose compressors, a variation of RLZ from Chapter 3, as well as

LZ-End, a current state-of-the-art compressed index that provides fast random access.

Our experiments demonstrated that the index competitive in both theory and practice,

achieving compression close to that of LZ-End and gzip while giving superior random

access speeds, especially for longer substrings.

Finally, in Chapter 6, motivated by advances in high-throughput sequencing tech-

nology which has reduced the time and cost of an individual sequencing experiment and

subsequently caused massive growth in genomic databases worldwide. Such databases cur-

rently compress read output with general-purpose tools such as gzip. We identified that

methods for efficient compression of biological data are quite different to that of natural

language texts in order to exploit redundancy throughout a collection, and that general-

purpose compressors are not suitable for the task for example, representing the output of

an experiment using a naive 2-bit per base code gives equal or better compression effective-

ness. We presented two novel algorithms for compression of high-throughput sequencing

read data. Faust, a scan-based LZ-style algorithm, which encodes reads against suitable

previously occurring reads, and is capable of scaling to large real-world sequencing exper-

iments. Then, we presented Afin, an algorithm that performs a reordering of the reads

in a Faust encoding to exploit the high levels of redundancy throughout a collection. We

demonstrated that both algorithms improve compression of large real-world read collec-

tions and found that each method performs well in practice providing significantly faster

decoding compared to general-purpose compressors and BEETL, a current state-of-the-

art compression scheme. Faust only achieves a 2% improvement in compression compared

to BEETL, but compressed in runs in half the time and in 10 GB less memory. Afin

compresses to half the size of each BEETL run and took 10 minutes longer on average

than its corresponding Faust run. Most notably, Afin decodes in time quicker than gzip

(by an average of 2 minutes). gzip is renowned for sacrificing compression effectiveness for

fast decoding speed. Afin not only provides significantly better compression but decodes

more efficiently in terms of both time and space.

7.2 Future Work

In this section, we discuss potential areas for future work.

Dictionary generation The problem of generating a representative sample, or dictio-

nary, of a large text collection is very much an open problem. For effective compression

a dictionary must sufficiently capture repetitive properties of a text. As collections can

potentially be much larger than physical memory this is becoming a non-trivial task.

107

CHAPTER 7: CONCLUSION

In Chapter 3 we described a simple yet highly effective sampling technique for relative

compression of large text collections. An issue with this approach is that it makes a

general assumption that redundancy throughout a collection is uniformly distributed. On

collections where this is not the case, compression will may deteriorate severely. There

are a number of way to mitigate this issue. Combined with the dictionary refinement

techniques discussed in Chapter 4, a simple approach would be to conceptually partition

a collection into blocks and record how well each block compresses relative to the current

dictionary. Once we have removed redundant content from the dictionary we can add new

samples from areas in the collection that were identified to have compress poorly. This

could be an iterative approach where we stop after a predefined number of steps, or by

reaching some defined equilibrium state between dictionary size and achieved compression.

Generating a dictionary to represent a text has many parallels with grammar compres-

sion and the well known smallest grammar problem [Charikar et al. 2005]. Constructing

a dictionary from a partially constructed grammar, such as Repair, would be an interest-

ing avenue to explore. The block graph data structure from Chapter 5 might also prove

fruitful here, as we could use the concatenation of the textual representation of selected

internal nodes as a dictionary.

Improving factorization There are a number of improvements to factorization tech-

niques that can be explored in order to increase the efficiency our compression scheme.

Kuruppu et al. [2011] find that compression can be significantly improved by using simple

non-greedy factorization techniques such as those described by Horspool [1995]. A further

improvement at the cost of run-time would be to compute the matching statistics of each

document with respect to the dictionary and use it to determine its optimal factorization.

Deorowicz and Grabowski [2011b] identify that suffix scanning described in Sec-

tion 3.1.4 was a significant run-time bottleneck during compression. They replaced the

suffix array with a hash-based system and observed notable improvement in compression

time. On the other hand, there are various methods to enhance a suffix array to improve

scanning and other operations [Abouelhoda et al. 2004]. A simple method would be to

pre-compute the start and end positions for each character range in the initial few char-

acters of the each suffix in the suffix array. This could dramatically improve scanning

speed as the initial scans will always incur the most cache misses. Decoding throughput

can be improved by providing cache friendly factor selection. In general a factor might

occur in many places throughout the dictionary. Our factorization method outlined in

Section 3.1.4 selects the first instance of each factor, however, if presented with a number

of positions it makes sense to select the index closest to the most recently encoded factor.

Another issue is the many choices for compression of position and length values, all

with various space-time trade-offs. We observed the existence of higher-order patterns

in the factor values throughout all experimental runs, which could be further exploited

108

SECTION 7.2: FUTURE WORK

to improve both space and throughput such as using alternative integer codes, such as

simple9 [Anh and Moffat 2005] or PForDelta [Zukowski et al. 2006] may substantially

improve on a vbyte code and give relevant points on the trade-off curve. Finally, we

note that our compression scheme can be easily adapted to perform compressed pattern

matching [Manber 1997, de Moura et al. 2000]. The main drawback of this proposal is

that during compression we require an index, such as a suffix array, to remain in memory

in order to compress the pattern relative to a dictionary. However, we note that existing

approaches to this problem use word-based semi-static modeling, as discussed in Chapter 1,

and are not suitable for compression of larger text collections as their vocabularies size

becomes a dominant cost of an encoding.

Block graphs A interesting avenue for research on block graphs would be to explore

methods of construction in external memory. To achieve this we need an efficient method

to determine leaf nodes during construction, specifically, an algorithm or data structure

that is not constrained by physical memory. A disk-based doubling algorithm [Crauser

and Ferragina 1999, Arge et al. 2002, Dementiev et al. 2008] would be suitable. Originally

used for computing suffix arrays in external memory, it can easily be adapted to output

and identify leaf nodes during each iteration.

In Section 5.4 we found that the dominant cost in our block graph implementation

was storing leaf nodes. Furthermore, as we truncated the depth of a block graph this was

offset by the cost of storing text blocks. Improving the compression of both node types

at higher truncated depths could provide a significant improvement in compression.

Read compression The core idea behind Faust and Afin is to encode a read in terms

of a previously observed similar read. Searching for candidate reads represents the most

computationally expensive task during compression. We proposed a method that identifies

candidate reads that share long common substrings and demonstrated that it is efficient

in practice. However, there is a serious limitation to our selection method. We only select

candidate reads that contain mutations at either end of a read. Consider two identical

reads with a single mutation in the center of both reads. Our scheme will fail to identify

that both reads are similar, as their longest common substring is only half the size of the

read. This drawback essentially excludes a large group of possible candidates.

It is important to note that our initial experiments into read compression used edit

distance as a metric for candidate selection, which avoided this issue altogether. However,

we found that encoding the differences between reads, that is, representing the insertion,

deletion and substitution operations became very costly when the number of mutations

increased between reads, and did not result in efficient compression. A future area of

research would be to explore different candidate selection techniques or use a number of

techniques with separate encodings. For example, we could combine our existing approach

109

CHAPTER 7: CONCLUSION

and the edit distance heuristic, selecting the most compact representation for each block

read. During an encoding a read would incur an additional flag bit to identify the method

it was coded with, however, we expect this to be mitigated by the increased candidate

selection pool.

110

Bibliography

M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees with enhanced suffix

arrays. Journal of Discrete Algorithms, 2(1):53–86, 2004.

V. N. Anh and A. Moffat. Inverted index compression using word-aligned binary codes.

Information Retrieval, 8(1):151–166, 2005.

V. N. Anh and A. Moffat. Index compression using 64-bit words. Software Practice and

Experience, 40(2):131–147, 2010.

A. Apostolico. The myriad virtues of subword trees. In A. Apostolico and Z. Galil,

editors, Combinatorial Algorithms on Words, volume 12, pages 85–96. Springer Berlin

Heidelberg, 1985.

L. Arge, P. Ferragina, R. Grossi, and J. S. Vitter. On sorting strings in external memory.

In Proceedings of the 29th ACM Symposium on Theory of Computing, pages 540–548.

ACM, 1997.

L. Arge, O. Procopiuc, and J. S. Vitter. Implementing I/O-efficient data structures using

TPIE. In Proceedings of the 10th European Symposia on Algorithms (ESA), pages 88–

100. Springer, 2002.

D. Arroyuelo, G. Navarro, and K. Sadakane. Reducing the space requirement of LZ-

index. In Proceedings of the 17th Annual Symposium on Combinatorial Pattern Match-

ing (CPM), pages 318–329. Springer, 2006.

D. Arroyuelo, G. Navarro, and K. Sadakane. Stronger Lempel-Ziv based compressed text

indexing. Algorithmica, 62(1–2), 2012.

R. A. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley

Longman Publishing Co., Inc., 1999.

J. Barbay, M. He, J. I. Munro, and S. S. Rao. Succinct indexes for strings, binary relations

and multi-labeled trees. In Proceedings of the 18th Symposium on Discrete Algorithms

(SODA), pages 680–689, 2007.

111

CHAPTER 7: BIBLIOGRAPHY

T. Bell. Better OPM/L text compression. IEEE Transactions on Communications, 34

(12):1176–1182, 1986.

T. Bell, I. H. Witten, and J. G. Cleary. Modeling for text compression. ACM Computing

Surveys, 21(4):557–591, 1989.

T. C. Bell, J. G. Cleary, and I. H. Witten. Text compression. Prentice-Hall, Inc., 1990.

D. Benoit, E. D. Demaine, J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Representing

trees of higher degree. Algorithmica, 43(4):275–292, 2005.

J. Bentley and D. McIlroy. Data compression with long repeated strings. Journal of

Information Sciences, 135(1-2):1–11, 2001.

F. Berman. Got data?: A guide to data preservation in the information age. Communi-

cations of the ACM, 51(12):50–56, 2008.

P. Bille, G. M. Landau, R. Raman, K. Sadakane, S. R. Satti, and O. Weimann. Ran-

dom access to grammar-compressed strings. In Proceedings of the 22nd Symposium on

Discrete Algorithms (SODA), pages 373–389, 2011.

J. K. Bonfield and M. V. Mahoney. Compression of FASTQ and SAM format sequencing

data. PLOS ONE, 8(3):e59190, 2013.

R. S. Boyer and J. S. Moore. A fast string searching algorithm. Communications of ACM,

20(10):762–772, 1977.

N. R. Brisaboa, A. Fariña, G. Navarro, and J. R. Paramá. Lightweight natural language

text compression. Information Retrieval, 10:1–33, January 2007a.

N. R. Brisaboa, A. Fariña, G. Navarro, and J. R. Paramá. Improving semistatic compres-

sion via pair-based coding. 4378:124–134, 2007b.

N. R. Brisaboa, A. Fariña, G. Navarro, and J. R. Paramá. New adaptive compressors for

natural language text. Software Practice and Experience, 38:1429–1450, 2008.

N. R. Brisaboa, S. Ladra, and G. Navarro. k2-trees for compact web graph representation.

In Proceedings of the 19th Symposium on String Processing and Information Retrieval

(SPIRE), pages 18–30. Springer, 2009.

N. R. Brisaboa, A. Fariña, G. Navarro, and J. R. Paramá. Dynamic lightweight text

compression. ACM Transactions on Information Systems, 28:10:1–10:32, July 2010.

M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm. 1994.

112

SECTION 7.2: BIBLIOGRAPHY

S. Büttcher and C. L. A. Clarke. Index compression is good, especially for random access.

In Proceedings of the 16th ACM Conference on Information and Knowledge Manage-

ment (CIKM), pages 761–770. ACM, 2007.

S. Büttcher, C. L. A. Clarke, and G. V. Cormack. Information Retrieval: Implementing

and Evaluating Search Engines. MIT Press, 2010.

A. Cannane and H. E. Williams. A compression scheme for large databases. In Proceedings

of the 11th Australasian Database Conference (ADC), page 6. IEEE, 2000.

R. Cánovas and A. Moffat. Practical compression for multi-alignment genomic files. In

Proceedings of the 36th Australasian Computer Science Conference, pages 51–60, 2013.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra,

A. Fikes, and R. E. Gruber. Bigtable: A distributed storage system for structured data.

ACM Transactions on Computer Systems, 26(2):1–26, 2008.

M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and A. Shelat.

The smallest grammar problem. IEEE Transactions on Information Theory, 51(7):

2554–2576, 2005.

G. Chen, S. J. Puglisi, and W. F. Smyth. Lempel-Ziv factorization using less time &

space. Mathematics in Computer Science, 1(4):605–623, 2008.

X. Chen, M. Li, B. Ma, and J. Tromp. DNACompress: fast and effective DNA sequence

compression. Bioinformatics, 18(12):1696–1698, 2002.

D. R. Clark. Compact Pat Trees. PhD thesis, University of Waterloo, Madison, 1996.

F. Claude and G. Navarro. A fast and compact web graph representation. In Proceedings

of the 17th Symposium on String Processing and Information Retrieval (SPIRE), pages

118–129. Springer, 2007.

F. Claude and G. Navarro. Practical rank/select queries over arbitrary sequences. In

Proceedings of the 15th International Conference on String Processing and Information

Retrieval (SPIRE), pages 176–187. Springer, 2009.

J. G. Cleary and I. Witten. Data compression using adaptive coding and partial string

matching. IEEE Transactions on Communications, 32(4):396–402, 1984.

G. Cochrane, B. Alako, C. Amid, L. Bower, A. Cerdeño-Tárraga, I. Cleland, R. Gibson,

N. Goodgame, M. Jang, S. Kay, et al. Facing growth in the European nucleotide archive.

Nucleic Acids Research, 41(D1):D30–D35, 2013.

113

CHAPTER 7: BIBLIOGRAPHY

P. J. Cock, C. J. Fields, N. Goto, M. L. Heuer, and P. M. Rice. The sanger FASTQ

file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants.

Nucleic Acids Research, 38(6):1767–1771, 2010.

G. V. Cormack and R. N. Horspool. Algorithms for adaptive huffman codes. Information

Processing Letters, 18(3):159–165, 1984.

A. J. Cox, M. J. Bauer, T. Jakobi, and G. Rosone. Large-scale compression of genomic

sequence databases with the Burrows–Wheeler transform. Bioinformatics, 28(11):1415–

1419, 2012.

A. Crauser and P. Ferragina. On constructing suffix arrays in external memory. In Pro-

ceedings of the 7th European Symposia on Algorithms (ESA), pages 224–235. Springer,

1999.

A. Crauser and P. Ferragina. A theoretical and experimental study on the construction

of suffix arrays in external memory. Algorithmica, 32(1):1–35, 2002.

B. Croft, D. Metzler, and T. Strohman. Search Engines: Information Retrieval in Practice.

Addison-Wesley, 2010.

E. S. de Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast and flexible word

searching on compressed text. ACM Transactions Information Systems, 18:113–139,

2000.

R. Dementiev, J. Kärkkäinen, J. Mehnert, and P. Sanders. Better external memory suffix

array construction. Journal of Experimental Algorithmics, 12:1–24, 2008.

S. Deorowicz and S. Grabowski. Compression of DNA sequence reads in FASTQ format.

Bioinformatics, 27(6):860–862, 2011a.

S. Deorowicz and S. Grabowski. Robust relative compression of genomes with random

access. Bioinformatics, 27(21):2979–2986, 2011b.

S. Deorowicz, A. Danek, and S. Grabowski. Genome compression: a novel approach for

large collections. Bioinformatics, 29(20):2572–2578, 2013.

P. Elias. Universal codeword sets and representations of the integers. IEEE Transactions

on Information Theory, 21(2):194–203, 1975.

M. Farach. Optimal suffix tree construction with large alphabets. In Proceedings of the

38th Annual Symposium on Foundations of Computer Science, pages 137–143. IEEE,

1997.

114

SECTION 7.2: BIBLIOGRAPHY

P. Ferragina and G. Manzini. Opportunistic data structures with applications. In Pro-

ceedings of the 41st Symposium on Foundations of Computer Science, pages 390–398.

IEEE, 2000.

P. Ferragina and G. Manzini. Indexing compressed text. Journal of the ACM, 52(4):

552–581, 2005.

P. Ferragina and G. Manzini. On compressing the textual web. In Proceedings of the

3rd ACM International Conference on Web Search and Data Mining (WSDM), pages

391–400. ACM, 2010.

P. Ferragina and R. Venturini. A simple storage scheme for strings achieving entropy

bounds. Theoretical Computer Science, 372(1):115–121, 2007.

P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. An alphabet-friendly FM-index. In

Proceedings of the 11th International Conference on String Processing and Information

Retrieval (SPIRE), pages 150–160. Springer, 2004.

P. Ferragina, R. González, G. Navarro, and R. Venturini. Compressed text indexes: From

theory to practice. Journal of Experimental Algorithmics, 13:12, 2009.

P. Ferragina, T. Gagie, and G. Manzini. Lightweight data indexing and compression in

external memory. Algorithmica, 63(3):707–730, 2012.

J. Fischer. Inducing the LCP-array. In Algorithms and Data Structures, pages 374–385.

Springer, 2011.

P. Flicek and E. Birney. Sense from sequence reads: methods for alignment and assembly.

Nature Methods, 6:S6–S12, 2009.

E. Fredkin. Trie memory. Communications of the ACM, 3(9):490–499, 1960.

M. H.-Y. Fritz, R. Leinonen, G. Cochrane, and E. Birney. Efficient storage of high through-

put DNA sequencing data using reference-based compression. Genome Research, 21(5):

734–740, 2011.

T. Gagie, P. Gawrychowski, and S. J. Puglisi. Faster approximate pattern matching in

compressed repetitive texts. In Proceedings of the 22nd International Symposium on

Algorithms and Computation (ISAAC), pages 653–662, 2011.

T. Gagie, P. Gawrychowski, J. Kärkkäinen, Y. Nekrich, and S. J. Puglisi. A faster

grammar-based self-index. In Proceedings of the 6th International Conference on Lan-

guage and Automata Theory and Applications (LATA), volume 7183 of LNCS, pages

240–251, 2012.

115

CHAPTER 7: BIBLIOGRAPHY

T. Gagie, P. Gawrychowski, J. Kärkkäinen, Y. Nekrich, and S. J. Puglisi. LZ77-based self-

indexing with faster pattern matching. In Proceedings of the Latin American Symposium

on Theoretical Informatics (LATIN), volume 8392 of LNCS, pages 731–742, 2014.

S. Golomb. Run-length encodings. IEEE Transactions on Information Theory, 12(3):

399–401, 1966.

G. H. Gonnet, R. A. Baeza-Yates, and T. Snider. New indices for text: PAT trees and

PAT arrays. In Information retrieval, pages 66–82. Prentice-Hall, Inc., 1992.

K. Goto and H. Bannai. Simpler and faster Lempel-Ziv factorization. In Proceedings of

the 23rd Data Compression Conference (DCC), pages 133–142. IEEE, 2013.

R. Grossi. Random access to high-order entropy compressed text. In A. Brodnik, A. López-

Ortiz, V. Raman, and A. Viola, editors, Space-Efficient Data Structures, Streams, and

Algorithms, pages 199–215. Springer-Verlag, 2013.

R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees with applications to

text indexing and string matching. SIAM Journal on Computing, 35(2):378–407, 2005.

R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes. In Pro-

ceedings 14th ACM Symposium on Discrete Algorithms (SIAM), pages 841–850, 2003.

D. Gusfield. Algorithms on strings, trees and sequences: computer science and computa-

tional biology. Cambridge University Press, 1997.

F. Hach, I. Numanagić, C. Alkan, and S. C. Sahinalp. SCALCE: boosting sequence

compression algorithms using locally consistent encoding. Bioinformatics, 28(23):3051–

3057, 2012.

R. N. Horspool. The effect of non-greedy parsing in Ziv-Lempel compression methods.

In Proceedings of the 5th Data Compression Conference (DCC), pages 302–311. IEEE,

1995.

R. N. Horspool and G. V. Cormack. Constructing word-based text compression algorithms.

In Proceedings of the 2nd Data Compression Conference (DCC), pages 62–71, 1992.

T. J. Hudson, W. Anderson, A. Aretz, A. D. Barker, C. Bel l, R. R. Bernabé, M. Bhan,

F. Calvo, I. Eerola, D. S. Gerhard, et al. International network of cancer genome

projects. Nature, 464(7291):993–998, 2010.

D. Huffman. A method for the construction of minimum-redundancy codes. Proceedings

of the Institute of Radio Engineers, 40(9):1098–1101, 1952.

G. Jacobson. Space-efficient static trees and graphs. In Proceedings of the 30th Annual

Symposium on Foundations of Computer Science, pages 549–554. IEEE, 1989.

116

SECTION 7.2: BIBLIOGRAPHY

L. Janin, G. Rosone, and A. J. Cox. Adaptive reference–free compression of sequence

quality scores. Bioinformatics, 2013. doi: 10.1093/bioinformatics/btt257.

D. C. Jones, W. L. Ruzzo, X. Peng, and M. G. Katze. Compression of next-generation

sequencing reads aided by highly efficient de novo assembly. Nucleic Acids Research,

40(22):e171–e171, 2012.

J. Kärkkäinen and S. J. Puglisi. Fixed block compression boosting in FM-indexes. In

Proceedings of the 18th Symposium on String Processing and Information Retrieval

(SPIRE), volume 7024 of LNCS, pages 174–184, 2011.

J. Kärkkäinen and P. Sanders. Simple linear work suffix array construction. In Automata,

Languages and Programming, pages 943–955. Springer, 2003.

J. Kärkkäinen, G. Manzini, and S. J. Puglisi. Permuted longest-common-prefix array. In

Combinatorial Pattern Matching, volume 5577 of LNCS, pages 181–192. Springer Berlin

Heidelberg, 2009.

J. Kärkkäinen, D. Kempa, and S. J. Puglisi. Lightweight Lempel-Ziv parsing. In Proceed-

ings of the 12th International Symposium on Experimental Algorithms (SEA), volume

7933 of LNCS, pages 139–150. Springer, 2013a.

J. Kärkkäinen, D. Kempa, and S. J. Puglisi. Linear time Lempel-Ziv factorization: Simple,

fast, small. In Proceedings of the 24th Annual Symposium on Combinatorial Pattern

Matching (CPM), pages 189–200. Springer, 2013b.

J. Kärkkäinen, D. Kempa, and S. J. Puglisi. Hybrid compression of bitvectors for the FM-

index. In Proceedings of the 24th Data Compression Conference (DCC), pages 302–311,

2014a.

J. Kärkkäinen, D. Kempa, and S. J. Puglisi. Lempel-Ziv parsing in external memory. In

Proceedings of the 24th Data Compression Conference (DCC), pages 153–162. IEEE,

2014b.

R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching algorithms. IBM

Journal of Research and Development, 31(2):249–260, 1987.

T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time longest-common-

prefix computation in suffix arrays and its applications. In Proceedings of the 17th An-

nual Symposium on Combinatorial Pattern Matching (CPM), pages 181–192. Springer,

2006.

M. Kircher and J. Kelso. High-throughput DNA sequencing–concepts and limitations.

Bioessays, 32(6):524–536, 2010.

117

CHAPTER 7: BIBLIOGRAPHY

D. E. Knuth. The Art of Computer Programming, Pre-Fascile 1A. Draft of Section 7.1.3:

Bitwise Tricks and Techniques. 2007.

D. E. Knuth, J. James H. Morris, and V. R. Pratt. Fast pattern matching in strings.

SIAM Journal on Computing, 6(2):323–350, 1977.

P. Ko and S. Aluru. Space efficient linear time construction of suffix arrays. Journal of

Discrete Algorithms, 3(2):143–156, 2005.

C. Kozanitis, C. Saunders, S. Kruglyak, V. Bafna, and G. Varghese. Compressing genomic

sequence fragments using SlimGene. Journal of Computational Biology, 18(3):401–413,

2011.

S. Kreft and G. Navarro. LZ77–like compression with fast random access. In Proceedings

of the 20th Data Compression Conference (DCC), pages 239–248. IEEE, 2010.

S. Kurtz. Reducing the space requirement of suffix trees. Software Practice and Experience,

29(13):1149–71, 1999.

S. Kuruppu, S. J. Puglisi, and J. Zobel. Relative Lempel-Ziv compression of genomes

for large-scale storage and retrieval. In Proceedings of the 17th Symposium on String

Processing and Information Retrieval (SPIRE), pages 201–206. Springer, 2010.

S. Kuruppu, S. J. Puglisi, and J. Zobel. Optimized relative Lempel-Ziv compression

of genomes. In Proceedings of the 34th Australasian Computer Science Conference

(ACSC), pages 91–98. Australian Computer Society, Inc., 2011.

B. Langmead, C. Trapnell, M. Pop, S. L. Salzberg, et al. Ultrafast and memory-efficient

alignment of short DNA sequences to the human genome. Genome Biology, 10(3):R25,

2009.

N. J. Larsson and A. Moffat. Offline dictionary-based compression. In Proceedings of the

9th Data Compression Conference (DCC), pages 296–305. IEEE, 1999.

W. W. Lu and M. P. Gough. A fast-adaptive huffman coding algorithm. IEEE Transac-

tions on Communications, 41(4):535–538, 1993.

V. Mäkinen and G. Navarro. Succinct suffix arrays based on run-length encoding. In

Proceedings of the 16th Annual Symposium on Combinatorial Pattern Matching (CPM),

pages 45–56. Springer, 2005.

V. Mäkinen and G. Navarro. Implicit compression boosting with applications to self-

indexing. In Proceedings of the 14th International Conference on String Processing and

Information Retrieval (SPIRE), pages 229–241. Springer, 2007.

118

SECTION 7.2: BIBLIOGRAPHY

V. Mäkinen, G. Navarro, J. Sirén, and N. Välimäki. Storage and retrieval of highly

repetitive sequence collections. Journal of Computational Biology, 17(3):281–308, 2010.

U. Manber. A text compression scheme that allows fast searching directly in the com-

pressed file. ACM Transactions on Information Systems, 15(2):124–136, 1997.

U. Manber and E. W. Myers. Suffix arrays: A new method for on-line string searches.

SIAM Journal on Computing, 22(5):935–948, 1993.

C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval.

Cambridge University Press, 2008.

S. Mantaci, A. Restivo, G. Rosone, and M. Sciortino. An extension of the Burrows

Wheeler transform and applications to sequence comparison and data compression. In

Combinatorial Pattern Matching, volume 3537 of LNCS, pages 178–189. Springer, 2005.

G. Manzini. An analysis of the Burrows-Wheeler transform. Journal of the ACM, 48(3):

407–430, 2001.

S. Maruyama, H. Sakamoto, and M. Takeda. An online algorithm for lightweight grammar-

based compression. Algorithms, 5(2):214–235, 2012.

S. Maruyama, Y. Tabei, H. Sakamoto, and K. Sadakane. Fully-online grammar com-

pression. In Proceedings of the 20th Symposium on String Processing and Information

Retrieval (SPIRE), pages 218–229, 2013.

E. M. McCreight. A space-economical suffix tree construction algorithm. Journal of the

ACM, 23(2):262–272, 1976.

A. Moffat. Word-based text compression. Software Practice and Experience, 19(2):185–

198, 1989.

A. Moffat and A. Turpin. On the implementation of minimum redundancy prefix codes.

IEEE Transactions on Communications, 45(10):1200–1207, 1997.

A. Moffat and A. Turpin. Efficient construction of minimum-redundancy codes for large

alphabets. IEEE Transactions on Information Theory, 44(4):1650–1657, 1998.

A. Moffat and A. Turpin. Compression and Coding Algorithms. Kluwer Academic Pub-

lishers, 2002.

A. Moffat, J. Zobel, and N. Sharman. Text compression for dynamic document databases.

IEEE Transactions on Knowledge and Data Engineering, 9(2):302–313, 1997.

A. Moffat, R. M. Neal, and I. H. Witten. Arithmetic coding revisited. ACM Transactions

on Information Systems, 16(3):256–294, 1998.

119

CHAPTER 7: BIBLIOGRAPHY

D. R. Morrison. PATRICIA-practical algorithm to retrieve information coded in alphanu-

meric. Journal of the ACM, 15(4):514–534, 1968.

J. I. Munro. Tables. In Proceedings of the 16th Conference on Foundations of Software

Technology and Theoretical Computer Science, pages 37–42. Springer, 1996.

J. I. Munro and V. Raman. Succinct representation of balanced parentheses and static

trees. SIAM Journal on Computing, 31(3):762–776, 2001.

G. Navarro. Indexing text using the Ziv-Lempel trie. Journal of Discrete Algorithms, 2

(1):87–114, 2004.

G. Navarro. Wavelet trees for all. Journal of Discrete Algorithms, 25:2–20, 2014.

G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Computing Surveys, 39

(1):2, 2007.

G. Navarro and E. Providel. Fast, small, simple rank/select on bitmaps. In Experimental

Algorithms, pages 295–306. Springer, 2012.

C. G. Nevill-Manning, I. H. Witten, and D. L. Maulsby. Compression by induction of

hierarchical grammars. In Proceedings of the 4th Data Compression Conference (DCC),

pages 244–253. IEEE, 1994.

G. Nigel and N. Martin. Range encoding: An algorithm for removing redundancy from a

digitised message. In Proceedings of the Institution of Electronic and Radio Engineers

International Conference on Video and Data Recording, pages 24–27, 1979.

G. Nong, S. Zhang, and W. H. Chan. Linear suffix array construction by almost pure

induced-sorting. In Proceedings of the 19th Data Compression Conference (DCC), pages

193–202. IEEE, 2009.

G. Nong, S. Zhang, and W. H. Chan. Two efficient algorithms for linear time suffix array

construction. IEEE Transactions on Computers, 60(10):1471–1484, 2011.

I. Ochoa, H. Asnani, D. Bharadia, M. Chowdhury, T. Weissman, and G. Yona. Qual-

Comp: a new lossy compressor for quality scores based on rate distortion theory. BMC

Bioinformatics, 14(1):187, 2013.

D. Okanohara and K. Sadakane. Practical entropy-compressed rank/select dictio-

nary. In Proceedings of the 8th Workshop on Algorithm Engineering and Experiments

(ALENEX), 2007a.

D. Okanohara and K. Sadakane. Practical entropy-compressed rank/select dictionary.

In Proceedings of the 9th Workshop on Algorithm Engineering and Experimentation

(ALENEX), 2007b.

120

SECTION 7.2: BIBLIOGRAPHY

S. J. Puglisi, W. F. Smyth, and A. H. Turpin. A taxonomy of suffix array construction

algorithms. ACM Computing Surveys, 39(2):4, 2007.

R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries with applications to

encoding k-ary trees and multisets. In Proceedings of the 13th annual ACM Symposium

on Discrete Algorithms (SIAM), pages 233–242, 2002.

R. Raman, V. Raman, and S. R. Satti. Succinct indexable dictionaries with applications

to encoding k-ary trees, prefix sums and multisets. ACM Transactions on Algorithms,

3(4), 2007.

R. Rice and J. Plaunt. Adaptive variable-length coding for efficient compression of space-

craft television data. IEEE Transactions on Communication Technology, 19(6):889–897,

1971.

J. Rissanen. Generalized kraft inequality and arithmetic coding. IBM Journal of research

and development, 20(3):198–203, 1976.

J. Rissanen. Arithmetic codings as number representations. Acta Polytechnica Scandi-

navica, 31:44–51, 1979.

J. Rissanen and G. G. Langdon. Universal modeling and coding. IEEE Transactions on

Information Theory, 27(1):12–23, 1981.

W. Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-

based compression. Theoretical Computer Science, 302(1–3):211–222, 2003.

K. Sadakane. Improving the speed of LZ77 compression by hashing and suffix sorting.

IEICE transactions on fundamentals of electronics, communications and computer sci-

ences, 83(12):2689–2698, 2000.

K. Sadakane. New text indexing functionalities of the compressed suffix arrays. Journal

of Algorithms, 48(2):294–313, 2003.

K. Sadakane. Compressed suffix trees with full functionality. Theory of Computing Sys-

tems, 41(4):589–607, 2007.

K. Sadakane and R. Grossi. Squeezing succinct data structures into entropy bounds. In

Proceedings of the 17th annual ACM Symposium on Discrete Algorithms (SODA), pages

1230–1239. ACM, 2006.

D. Salomon. Data Compression: The Complete Reference. Springer, 2004.

F. Scholer, H. E. Williams, J. Yiannis, and J. Zobel. Compression of inverted indexes

for fast query evaluation. In Proceedings of the 25th ACM International Conference

121

CHAPTER 7: BIBLIOGRAPHY

on Research and Development in Information Retrieval (SIGIR), pages 222–229. ACM,

2002.

J. J. Selva and X. Chen. Srcomp: Short read sequence compression using burstsort and

elias omega coding. PLoS ONE, 8(12):e81414, 12 2013.

C. E. Shannon. The mathematical theory of communication. Bell Systems Technical

Journal, 27(379–423):623–656, 1948.

J. T. Simpson and R. Durbin. Efficient construction of an assembly string graph using

the FM-index. Bioinformatics, 26(12):i367–i373, 2010.

J. T. Simpson and R. Durbin. Efficient de-novo assembly of large genomes using com-

pressed data structures. Genome Research, 22(3):549–556, 2012.

J. Sirén, N. Välimäki, V. Mäkinen, and G. Navarro. Run-length compressed indexes are

superior for highly repetitive sequence collections. In Proceedings of the 15th Symposium

on String Processing and Information Retrieval (SPIRE), pages 164–175, 2008.

J. A. Storer and T. G. Szymanski. Data compression via textual substitution. Journal of

the ACM, 29(4):928–951, 1982.

W. Tembe, J. Lowey, and E. Suh. G-SQZ: compact encoding of genomic sequence and

quality data. Bioinformatics, 26(17):2192–2194, 2010.

A. Tombros and M. Sanderson. Advantages of query biased summaries in information

retrieval. In Proceedings of the 21st ACM Internationl Conference on Research and

Development in Information Retrieval (SIGIR), pages 2–10. ACM, 1998.

A. Trotman. Compressing inverted files. Information Retrieval, 6(1):5–19, 2003.

Y. Tsegay, S. J. Puglisi, A. Turpin, and J. Zobel. Document compaction for efficient

query biased snippet generation. In Proceedings of the 31st European Conference on

IR Research on Advances in Information Retrieval (ECIR), pages 509–520. Springer-

Verlag, 2009.

A. Turpin, Y. Tsegay, D. Hawking, and H. E. Williams. Fast generation of result snippets

in web search. In Proceedings of the 30th ACM International Conference on Research

and Development in Information Retrieval (SIGIR), pages 127–134. ACM, 2007.

E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.

S. Vigna. Broadword implementation of rank/select queries. In Experimental Algorithms,

pages 154–168. Springer, 2008.

122

SECTION 7.2: BIBLIOGRAPHY

R. Wan, V. N. Anh, and K. Asai. Transformations for the compression of FASTQ quality

scores of next-generation sequencing data. Bioinformatics, 28(5):628–635, 2012.

P. Weiner. Linear pattern matching algorithms. In Proceedings of the 14th IEEE Sympo-

sium on Switching and Automata Theory (SWAT), pages 1–11. IEEE, 1973.

T. A. Welch. A technique for high-performance data compression. Computer, 17(6):8–19,

1984.

H. E. Williams and J. Zobel. Compressing integers for fast file access. The Computer

Journal, 42(3):193–201, 1999.

I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data compression.

Communications of the ACM, 30(6):520–540, 1987.

I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes : Compressing and Indexing

Documents and Images. Morgan Kaufmann, 2nd edition, 1999.

V. Yanovsky. ReCoil - an algorithm for compression of extremely large datasets of DNA

data. Algorithms for Molecular Biology, 6(1):1–9, 2011.

J. Zhang, X. Long, and T. Suel. Performance of compressed inverted list caching in

search engines. In Proceedings of the 17th International conference on World Wide Web

(WWW), pages 387–396. ACM, 2008.

J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE

Transactions on Information Theory, 23:337–343, 1977.

J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding. IEEE

Transactions on Information Theory, 24(5):530–536, 1978.

J. Ziv and N. Merhav. A measure of relative entropy between individual sequences with

application to universal classification. IEEE Transactions on Information Theory, 39

(4):1270–1279, 1993.

N. Ziviani, E. S. de Moura, G. Navarro, and R. Baeza-Yates. Compression: A key for

next–generation text retrieval systems. Computer, 33:37–44, 2000.

J. Zobel and A. Moffat. Adding compression to a full-text retrieval system. Software

Practice and Experience, 25(8):891–903, 1995a.

J. Zobel and A. Moffat. Adding compression to a full-text retrieval system. Software

Practice and Experience, 25(8):891–903, 1995b.

J. Zobel and A. Moffat. Inverted files for text search engines. ACM computing surveys,

38(2):6, 2006.

123

CHAPTER 7: BIBLIOGRAPHY

M. Zukowski, S. Héman, N. Nes, and P. Boncz. Super-scalar RAM-CPU cache compres-

sion. In Proceedings of the 22nd International Conference of Data Engineering (ICDE),

page 59. IEEE, 2006.

124

	Abstract
	Introduction
	Key Contributions
	Thesis Structure

	Background
	Preliminaries
	Text Indexing
	Suffix Tree
	Suffix Array
	Succinct Data Structures
	Compressed Full-Text Indexes

	Text Compression
	Modeling
	Dictionary Based Models

	Coding
	Statistical Coding
	Integer Coding

	Summary

	Efficient Storage and Retrieval of Web Collections
	Compression
	Relative Lempel-Ziv Factorization
	General Overview
	Dictionary Generation
	Compression Algorithm
	Pair Representation
	Dynamic Document Databases

	Decompression
	Experiments
	Method
	Systems Tested
	Test Collections
	Environment

	Discussion
	Summary

	Sample Selection for Dictionary Based Corpus Compression
	Pre-processing
	Post-processing
	Experiments
	Summary

	Efficient Implementation of the Block Graph Data Structure
	Block Graph
	Extracting a Single Character
	Extracting a Substring
	Time and Space Complexity

	Implementation
	Navigating the Block Graph
	Representing Leaf Nodes
	Constructing the Block Graph

	Experiments
	Discussion
	Summary

	Fast and Efficient Compression of High-Throughput Sequencing Reads
	FAUST
	Compression
	Improving Candidate Selection
	Reverse Complement Matching
	Read Representation
	Encoding the Read

	Decompression

	AFIN
	Compression
	Read Representation

	Decompression

	Experiments
	Compression Results
	Decompression Results

	Summary

	Conclusion
	Contributions
	Future Work

	Bibliography

