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Abstract 

Ultraviolet radiation (UVR) plays an important a role in melanmaogenesis. This may 

occur by inducing reactive oxygen species (ROS) formation in melanocytes 

however, antioxidants may stabilise these levels post-UV exposure. Melanin itself 

may also play a role in melanmaogenesis, and the enzyme tyrosinase plays a key role 

in the synthesis of this molecule. 

Melanin is a very effective natural sunscreen and individuals possessing higher 

levels in their skin are less sensitive to the effects of UV light than those who have 

lower levels. It is known that exposure to UV radiation, especially UVA radiation, 

can generate high levels of reactive oxygen species (ROS) in the cell.  Through the 

addition of exogenous antioxidants, such as vitamin C or E, these cells would be 

better protected against the deleterious effects of these UV-induced ROS. The 

current study investigates the effects of UV radiation on melanocyte-derived cells 

which contain differing melanin levels along with the protective effect(s) that 

exogenous antioxidants (Vitamin C and E) confer. 

It is hypothesised that cells with higher melanin levels will produce less ROS than 

those with lower levels and that exogenously added antioxidants will confer a 

protective effect to these cells when exposed to UV radiation. The mechanism of 

ROS production and of the signalling pathways activated by UV radiation will be 

different in melanoma cells compared to those in melanocytes, and these differences 

may be a means by which treatment regimens may be devised that could protect 

those untransformed skin cells from the deleterious effects of UV radiation.  

In this thesis, the effect of UVR on cell viability, melanin content, ROS levels, 

Tumour Necrosis Factor-α (TNF-α), TNF-α Converting Enzyme (TACE), and furin 
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expression as well as the phosphorylation of Mitogen-activated protein kinases 

(MAPK) including p-38, c-Jun N-terminal kinases (JNK), extracellular-signal-

regulated kinases (ERK), as well as B-RAF were investigated. In addition, the effect 

of antioxidants on the above mentioned changes were examined. Lightly pigmented 

MM418-C1 and darkly pigmented MM418-C5 melanoma cells and primary human 

melanocytes (HEM) were treated with either vitamin C (1 mM) or the vitamin E 

analogue trolox (0.1 mM). Cells were exposed to either UVA and/or UVB radiation, 

and the cell viability measured after 24 h using the MTS assay.  Melanin content was 

determined spectrophotometrically, while intracellular ROS levels 2’, 7’–

dichlorofluorescein (DCFDA assay), and mitochondrial superoxide (MSO) levels 

(MitoSOx assay) were measured using flow cytometry. TNF-α was measured using 

the enzyme-linked immunosorbent assay (ELISA assay) and TACE and furin 

expression were measured using western blots. Also, changes in the expression of 

the phosphorylated signalling intermediaries p-p38, p-JNK, p-ERK and p-B-RAF 

were investigated in the first two hours post-UV exposure using Western blots. 

The effect of UVR on cell viability was examined in order to determine what doses 

will be used to investigate the effect antioxidants as outlined in this thesis. In order 

to investigate the protective effect of antioxidants on pigmented melanoma cell lines 

and melanocytes, the cells were treated with antioxidants then exposed to either 

UVA and/or UVB radiation, and the cell viability measured 24 h post-irradiation 

using the MTS assay. The MM418-C5 cells were more sensitive to UVAB radiation 

than were either    MM418-C1 or HEM cells (50% cell viability: MM418-C1 – 0.04 

J/cm
2
 UVB and 0.8 J/cm

2
 UVA; MM418-C5 – 0.03 J/cm

2
 UVB and 0.6 J/cm

2
 UVA; 

HEM – 0.16 J/cm
2
 UVB and 3.2 J/cm

2
 UVA). Only vitamin C conferred a protective 

effect to MM418-C1 cells, but not MM418-C5 and HEM cells, exposed to UVB 
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radiation. However, treating MM418-C1 cells with the antioxidants for 1 h had no 

protective effect post-UV radiation when compared to cells treated for 24 h 

before/after UV radiation. Therefore, while sensitivity to UVB was significantly 

greater than to UVA (about 20 fold) in each cell line, the melanoma cells were 

susceptible to UVR than were the melanocytes. Vitamin C afforded protection only 

to the less-pigmented melanoma cell line, suggesting that melanin might compete 

with its antioxidants effect. 

The effect of antioxidants on melanin content and tyrosinase expression post-acute 

and chronic UVR exposure was examined. The effect of acute or chronic dose of 

UVR were examined in order to see if a single large UV dose enhanced tyrosinase 

expression and increased melanin levels to a greater extent than did two smaller 

doses (with 0.5 single dose each exposure) given 24 h apart. Tyrosinase expression 

was measured by western blot, while melanin content was determined 

spectrophotometrically. Acute and chronic doses of UVA or/and UVB did not 

significantly alter tyrosinase expression in MM418-C1, MM418-C5 and HEM cells. 

Moreover, acute doses of UVB and UVAB radiation significantly increased melanin 

levels in MM418-C1 cells, but not MM418-C5 cells, while chronic doses of UVR 

had no effect on these levels in both melanoma cell lines. In addition, when both 

melanoma cell lines were treated with antioxidants, neither vitamin C nor trolox had 

an effect on intracellular melanin levels. Therefore acute UVB appears to be 

essential for tyrosinase induction in lightly pigmented melanoma cells, but not in 

highly pigmented melanoma cells, as tyrosinase levels may already be maximal in 

the latter cells and exposure to UV radiation was unable to stimulate further 

expression. There was no evidence that vitamin C-sensitive oxidative reactions were 

required for melanogenesis. 
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The effect of antioxidants on ROS production (including peroxide and superoxide) 

post-UVR exposure was examined in order to investigate the role of UVR and 

melanin in the production of ROS in melanocytes and melanoma cells. Intracellular 

ROS levels 2’, 7’–dichlorofluorescein (DCFDA assay), and mitochondrial 

superoxide (MSO) levels (MitoSOx assay) were measured using flow cytometry. 

Intracellular ROS (peroxide but not superoxide levels) were increased in       

MM418-C1, MM418-C5 and HEM cells following exposure to UVB and UVAB 

radiation. These increased ROS levels were about twice in MM418-C1 and HEM 

cells when compared to MM418-C5 cells. In UV-irradiated MM418-C1, MM418-C5 

and HEM cells, vitamin C and trolox did not significantly reduce peroxide formation 

Moreover, vitamin C and trolox had no significant effect on superoxide levels in all 

three cell lines. These results suggest UVB and UVAB significantly induced 

peroxide levels in these cells. However, melanin may have a negative regulatory 

effect post-UVR exposure, as the highest pigmented cell (MM418-C5) had the 

lowest increase in peroxide levels. 

The effect of antioxidants on TNF-α release, TACE and furin expression post-UVR 

exposure was also examined in these pigmented melanoma cells to investigate the 

role melanin may have in the presence or absence of antioxidants  on TNF-α release, 

TACE and furin expression post-UVR exposure. TNF-α was measured using the 

enzyme-linked immunosorbent assay (ELISA assay) and TACE and furin expression 

were measured using western blots. TNF-α levels released from the MM418-C1 cells 

were much higher than those from MM418-C5 cells. UVB and UVAB non-

significantly increased these levels in MM418-C1 cells in the presence of 

Interleukin-1α (IL-1α).  Exposure to UVB and UVAB radiation also non-

significantly increased TNF-α levels in MM418-C5 cells, but the addition of IL-1α 
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was not stimulatory. The antioxidants did not significantly change TNF-α levels in 

both UV-irradiated cell lines. Neither TACE nor furin expression were altered post-

UVR exposure, while the addition of IL-1α had no stimulatory effect on the 

expression of these proteins. When these cells were treated with antioxidants it did 

not affect the expression of TACE and furin. Therefore, as the TNF-α levels released 

from the UV-irradiated MM418-C1 were much higher than that from MM418-C5 

cells, it suggests that high melanin levels may negatively regulate TNF-α 

formation/release from these irradiated cells. 

UVR is known to activate signalling pathways in the cell. The effect of antioxidants 

on these pathways in the UV-irradiated cells was examined with respect to the 

expression of the phosphorylated signalling intermediaries p-p38, p-JNK, p-ERK 

and p-B-RAF in the first two hours post-UV exposure. With regards to cellular 

signalling pathways, maximal expression of p-p38 and p-JNK occurred 30 min post-

UVR in MM418-C1 and MM418-C5 cells, while p-B-RAF and p-ERK levels were 

unaffected in the irradiated cells. p-p38 and p-JNK were increased post-UVB and -

UVAB in both melanoma cell lines and HEM cells. UVB and UVAB caused the 

highest change in p-p38 and p-JNK levels in MM418-C5 compared to MM418-C1 

and HEM cells. The addition of vitamin C and trolox did not reduce the expression 

levels of p-p38 and p-JNK significantly post-UVR exposure in these cell lines. It 

appears that melanin levels affected the stimulation of p-p38 and p-JNK-1 in these 

cells where those with high levels (MM418-C5) had increased p38 signalling but 

reduced p-JNK-1 signalling compared to those cells containing less melanin 

(MM418-C1 and HEM cells). 

In summary, vitamin C and trolox did not confer protection to both pigmented 

melanoma cell lines and melanocytes from UVR-induced cell death. From this study 
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we conclude that the use of UVR doses which caused 50% cell death probably 

overwhelmed the ability of these cells to overcome this UV-induced damage, thereby 

negating any potential protective effect that may have been conferred by the 

antioxidants. Hence, in order to investigate the protective effect of externally added 

antioxidants, a lesser dose of UVR which causes 25-30% cell death is suggested for 

future studies. In addition, treating the cells with other antioxidants may help confer 

protection to the UV-irradiated cells.  
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Chapter 1. Literature Review 

1.1 Introduction 

The UV radiation component of sunlight plays an important role in the formation of 

vitamin D, which is necessary for human health. In contrast, extreme exposure to UV 

radiation can cause sunburn, accelerated skin ageing and skin cancer (1). It is well 

known that UV radiation is considered to be the primary cause of skin cancer (2) and 

as such is a major public health problem (3). In the world, an estimated 132,000 

cases of melanoma are diagnosed annually (4). As well as this, ~2.5 million cases of 

non-melanoma cancers, including basal cell carcinoma (BCC) and squamous cell 

carcinoma (SCC), are also diagnosed annually (4). In Australia, about 80% of all 

newly diagnosed cancers are skin cancers (4), the incidence rate of which is four 

times that seen in Canada, the USA and the UK (5). 

The most widespread variety of skin cancer is non-melanoma skin cancer. In 

Australia, over 434,000 people are diagnosed with one or more non-melanoma skin 

cancers each year, with almost double the incidence in men compared to women (5). 

In 2012, research published by Cancer Council Australia (CCA) showed that in 2010 

non-melanoma skin cancers cost the Australian Health System over $500m; and by 

2015, this was expected to increase to $700m (6). Melanoma is the fourth most 

common cancer diagnosed in Australia and New Zealand – which incidentally are 

the two countries with highest prevalence rate for melanoma in the world (5). 

Accounting for approximately one in ten cancer diagnoses, over 11,000 new cases of 

melanoma were diagnosed in Australia in 2010. Melanoma is more frequently 

diagnosed in men than women, and by the age of 85, males have a 1:14 probability 

of being diagnosed with melanoma while females the probability is 1:24. In 2011, 
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there were over 1,500 human deaths due to melanoma in Australia alone. As such, 

melanoma is the sixth most common cause of cancer deaths in Australian males and 

the tenth most common in Australian females (5). In order to decrease the harmful 

effects of UV radiation on the skin and to prevent skin cancer formation, it is 

essential to understand the role UV plays in tumorigenesis (5). 

 

1.2 Ultraviolet Radiation 

Our largest organ, the skin, is exposed to an elevated degree of oxidative stress from 

both exogenous and endogenous sources, such as smoking, chemical air pollutants, 

wind, etc., with the most important being ultraviolet radiation (UVR) (7, 8). UVR is 

a part of the electromagnetic spectrum emitted by the sun with wavelengths between 

100-400 nm (9). Other components of this spectrum include visible light and x-rays. 

Depending on the wavelength, UVR can be divided into three main groups: UVC 

(100-280 nm), UVB (280-320 nm) and UVA (320-400 nm) radiation (10) (See 

Figure 1.1). The ozone layer blocks all of UVC, while only 5% of UVB and 95% of 

UVA radiation emitted by the sun reaches the Earth’s surface (11, 12). 

Exposure to UVA and UVB radiation can cause health problems (11, 12). It has been 

shown that exposure to UVR can cause deleterious effects on skin tissue including 

molecular damage (11, 13). More specifically, the stimulation of oxidative damage 

by UVR induces the formation of reactive oxygen (ROS) and nitrogen species 

(RNS) (e.g. superoxide anion, hydroxyl radical, hydrogen peroxide and nitric oxide). 

The damage elicited by such species has been demonstrated to occur in lipids, 

proteins and DNA (7, 8). Furthermore, UVB has been shown to be the primary 

source of photodamage that causes DNA damage directly in the epidermis. 
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Figure ‎1.1 The ultraviolet (UV) component of the electromagnetic spectrum including the main three types 

UVA (320-400 nm), UVB (280-320 nm) and UVC (200-280 nm) (14) 

 

UVR is known to increase the level of ROS in irradiated skin cells (13, 15). Elevated 

levels of ROS can result in molecular and cellular damage which can bring about 

genetic mutations and/or activation of signal transduction pathways (13, 15), which 

may eventually cause cell carcinogenesis (13, 15). Short-term exposure to sunlight 

can cause adverse reactions such as sunburn. However, in long-term exposure, 

harmful consequences include Langerhans cell depletion and local 

immunosuppression to become systemic, both of which can lead to cutaneous 

photoageing and skin cancer (16-18). While it is acknowledged that UVR can induce 

skin cancer, the relationship between the dose, time, and tumour development is still 

being elucidated (11). 

 

1.3 Histology of the Skin 

The skin is the largest organ of the body, and represents ~15% of the total body 

weight in an adult human (19). It plays a vital role in protecting the body against 

negative environmental effects.  



5 | P a g e  

 

 

The skin provides an extensive physical barrier against mechanical, chemical, and 

microbial factors that might distress the physiological state of the body (20, 21). 

Besides those functions, the skin also operates as an immune network and provides a 

distinctive defence system against UVR through its pigments (21). 

The skin is composed of three main layers which are, from outside to inside, the 

epidermis, the dermis, and the hypodermis (subcutis) (19). The epidermis is the 

outermost layer of the skin and is also called the epithelial layer. It prevents water 

loss in order to maintain fluid homeostasis in the body. Moreover, it also prevents 

the entry of unwanted substances and organisms such as bacteria into the body. 

However, UVA and UVB can penetrate into the epidermis (Figure 1.2) and cause 

cellular damage (22). 

 

 

Figure ‎1.2 UVR penetration of the skin (22) 

 

The epidermis is thicker on some sites of the body than on others, and is composed 

of four different distinct layers which are from the bottom to the top: stratum basale, 
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stratum spinulosum, stratum granulosum and stratum corneum (21, 23). In thick skin 

only, a fifth layer of epidermis is found and is known as the stratum lucidum (24). 

The main cells found in the epidermis are keratinocytes (90-95%) and melanocytes. 

Over time the keratinocytes mature, differentiate and accumulate keratin.  

The epidermis and the dermis are separated by a single layer of cells called the 

stratum basale which is attached to a noncellular basement membrane (Figure 1.3). 

The stratum basale predominantly comprises of basal keratinocytes, and two 

differing types of neural crest-derived cells; Merkel cells which are responsible for 

transmitting the sensations of touch through the cutaneous nerves, and melanocytes 

(21). 

 

 

Figure ‎1.3 Structure of human skin 
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Contained within the stratum spinulosum are the Langerhans’ cells, which represent 

the antigen-presenting cells of the skin and perform a fundamental role in 

immunological reactions, for instance, allergic contact dermatitis (21). 

In the stratum granulosum there are keratinocytes that are flattened, polyhedral, 

nondividing and generate protein granules called keratinohyalin. These granules 

grow in size and increase in number as the nuclei of the cell progressively deteriorate 

and the cells die. These cells become flattened as the dividing cells beneath them 

increasingly thrust them toward the surface of the skin (21). 

In the stratum corneum there are corneocytes which are nonviable cells but are 

biochemically active. As keratinocytes move from the basal layer to the stratum 

corneum, they continue to differentiate resulting in cornified cells that contain 

keratin but lack cytoplasmic organelles. The cornified cells form a barrier against 

those physical and chemical environmental agents that might harmfully affect the 

body (21).  

Melanocytes originate in the embryonic neural crest and move to the epidermis 

where they produce melanin, the natural pigment in the skin. The enzyme tyrosinase 

and the melanin they produce are stored in melanosomes (Section 1.5.3). Mature 

melanosomes migrate to nearby keratinocytes to protect them from the deleterious 

effects of UVR (19, 23).  

The middle layer of the skin is the dermis (Figure 1.3). It is a supportive and fibrous 

connective tissue that protects the epidermis, however only UVA can penetrate into 

this layer (19, 23). It possesses two types of fibres: collagen and elastin. Collagen 

fibres predominate in the dermis and have enormous tensile strength, giving the skin 

its strength and toughness. Elastin gives the skin elasticity and pliability. The dermis 
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is composed of different types of cells such as fibroblasts, mast cells, vascular 

smooth muscle cells and leucocytes such as macrophages (19, 23).  

Within the dermis, fibroblasts are needed to synthesise and degrade the extracellular 

matrix (ECM). This matrix is a complex structure made up of greatly organised 

collagen, elastic, and reticular fibres (21). Mast cells are able to trigger allergic 

reactions by secreting bioactive mediators such as histamine. Furthermore, the 

dermis includes structures such as excretory and secretory glands, hair follicles and 

sensory nerve receptors (21). 

The bottom layer of the skin is the hypodermis, which is mainly composed of fatty 

tissue and represents the deepest layer of the skin. It plays a major role in 

thermoregulation, insulation, nutritional storage, as well as protection from 

mechanical injuries. The main cells found in the hypodermis are adipocytes, vascular 

endothelial cells and neurons (19, 23). 

 

1.4 Effects of Ultraviolet Radiation 

1.4.1 Skin Photoresponses 

The exposure to sunlight, containing different wavelengths of ultraviolet radiation, is 

necessary for the normal function of human skin. One of the main advantages of 

UVR exposure is the synthesis of vitamin D (25).  Vitamin D3 is synthesized via the 

action of UVB radiation (wavelength, 280–320 nm) on 7-dehydrocholesterol in the 

skin. Previtamin D3 is directly transformed to vitamin D in a heat-dependent 

process. However, excess UVB rays can convert previtamin D3 into biologically 

inactive tachysterol, lumisterol and metabolites (26). The status of vitamin D is 
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largely determined by this process, as the majority of adults are unable to obtain 

more than 5–10% of their daily requirements from food sources (27, 28). 

Calcium absorption in the human body is regulated by vitamin D in conjunction with 

the parathyroid hormone. A deficiency in vitamin D causes a reduction in bone mass, 

which leads to the incapacitating diseases of osteomalacia and osteoporosis in adults 

and causes rickets in children (29). 

On the other hand UVR can have a beneficial effect on the human body. It can be 

used in treating skin diseases, such as psoriasis vulgaris (25). Psoriasis is an 

inflammatory skin disease which is characterised by the hyperproliferation of 

keratinocytes, and is prevalent in 1–2% of the general population. Traditionally, 

UVB phototherapy has been used as a standard treatment for psoriasis despite the 

mechanisms underlying its effectiveness being only partly understood (30). 

Exposure to UVB radiation is believed to momentarily hinder cell proliferation as a 

result of DNA photo-product formation. Therefore, it has been hypothesised that the 

therapeutic effectiveness of phototherapy predominantly relates to its 

antiproliferative properties (30, 31). Furthermore, UVB phototherapy is thought to 

be an effective treatment for psoriasis by restraining cutaneous immune functions 

(32). In recent years, vitamin D has been brought into focus with regards to the 

treatment of psoriasis (33-35). Topical vitamin D derivatives have been shown to be 

effective in relieving its symptoms. It has been suggested that the favourable effect 

of exposure to UVB radiation in patients with psoriasis may be partially rationalised 

by the induction of vitamin D (33-35). 

Humans need sunlight to make vitamin D, but the amount required depends on a 

variety of factors, some of which are UV type, type of skin and personal lifestyle. 
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Across Australia, UV levels differ throughout the year. As a result, in order to make 

vitamin D, the amount of time needed in the sun varies according to location, season 

and time of day (36). 

Furthermore, the area of bare skin exposed to the sun also affects the amount of 

vitamin D made. In most cases, the more skin exposed, the more vitamin D is made. 

However, vitamin D levels do not increase further with prolonged sun exposure, on 

the contrary, the risk of developing skin cancer is increased (36). With prolonged sun 

exposure, the skin’s structural integrity is compromised by a range of responses that 

are brought about at both molecular and cellular levels leading to an increase in the 

risk of skin cancer (36, 37). The effect of excessive  acute exposure to UVR results 

in histological changes of the skin as well as cellular and molecular damage, the 

most common being sunburn (2, 25). Chronic exposure to UVR can result in 

immunosuppression, and over time cause gene mutations which can give rise to skin 

cancer (2). 

Depending on the type of UV radiation, the dose and occurrences of exposure, the 

skin’s response may diverge from acute to chronic outcomes (37-39). The skin’s 

response to UV radiation also differs based on the individual’s skin type. There are 

six types which differ in their sensitivity to UV radiation, their susceptibility to 

sunburn and/or tanning, as well as risk of developing skin cancer (Table 1.1). People 

who have very fair, pale white and often freckled skin (Type I) are very sensitive to 

UV radiation and tend to easily sunburn. They also have the greatest susceptibility to 

develop skin cancer compared to people with very dark brown to black skin (Type 

VI) (40, 41). Dark-skinned individuals tend to be less sensitive to UV radiation, and 

are less vulnerable to UV-induced damage, like photoageing. People who have type 

VI skin also have the least risk of developing skin cancer (40, 41). 
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Table ‎1.1 The sensitivity to UV, susceptibility to sunburn, tan, and develop skin cancer based on skin types and 

colour (40, 41) 

Skin 

Type 

Natural Skin 

Colour 
UV Sensitivity 

Tendency to 

burn & tan 

Risk of Skin 

Cancer 

I 
Very fair, pale white, 

often freckled 
Very high 

Always burns, 

never tans 
Greatest 

II Fair, white High 
Burns easily, tans 

minimally 
High 

III Light brown Moderate 

Burns 

moderately, 

usually tans 

High 

IV Moderate brown Less sensitive 
Burns minimally, 

tans well 
At risk 

V Dark brown Minimal Rarely burns 

Low – usually 

detected at a late 

stage 

VI 
Very dark brown to 

black 
Minimal Never burns 

Very low – 

usually detected 

at a late stage 

 

1.4.2 Skin cancer 

The primary carcinogen known to induce skin cancer is the UVR component of 

sunlight (42, 43). Skin cancer is divided into three main types: (i) squamous cell 

carcinoma (SCC), (ii) basal cell carcinoma (BCC) which are collectively called non-

melanoma skin cancers (NMSC), and (iii) cutaneous malignant melanoma (CMM) 

(43). In basal cell and squamous cell carcinomas, the most important risk factor is 

exposure to UVR (44, 45). As seen in NMSC, exposure to UVR is also a significant 

risk factor for melanoma development (46, 47).  

According to de Gruijl et al. (2001), SCC and BCC are more widespread compared 

to CMM, with SCC being the greatest in frequency. SCC and BCC are less 

aggressive and rarely metastasize, unlike that seen for CMM (43). SCC are strongly 

associated with cumulative lifetime sun exposure, whereas, BCC are linked with 

intermittent sun exposure and perhaps, more importantly, exposure during childhood 
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(44, 48, 49). It was reported that UVR caused an increase in the occurrence of SCC, 

BCC and to a lesser extent CMM (50, 51). However, despite being less frequent, 

melanoma is an aggressive form of skin cancer where its incidence in the general 

population is still increasing (52, 53). 

 

1.4.2.1 Melanoma 

UVR has been shown to be both an initiator and/or promoter in the formation of both 

non-melanoma and melanoma skin cancer (54). A person’s lifetime risk factor for 

melanoma depends on different aspects such as age, exposure period, and the 

interaction between environmental and genetic factors (55). Family history, fair skin, 

multiple moles, immunosuppression, and UVR exposure are the strongest melanoma 

risk factors. Epidemiologic studies carried out by Whiteman et al. (2001) observed 

that the highest risk for melanoma development was associated with exposure to 

intense intermittent UVR exposure and serious sunburns during childhood (56). 

Boniol et al. (2012) investigated the use of sunbeds and observed that cutaneous 

melanoma can also be attributed to the use of indoor artificial tanning devices (57). 

According to Garibyan and Fisher (2010), UVR causes DNA mutations, induces 

ROS formations, alters cutaneous immune function, and the production of growth 

factors and cytokines (58). 

Recent studies conducted by Bald et al. (2014) in mice have shown that UVR 

provokes inflammatory responses that involve macrophages and neutrophils 

stimulating melanocytic cell survival, immunoevasion, and perivascular invasion 

(59). 
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The highest risk factor among all pigmentation phototypes is associated with the red 

hair/fair skin phenotype, categorised by fair skin, freckling, and an inability to tan 

(60). This observation was traditionally attributed to reduced protection against 

UVR, however in a recent study conducted by Mitra et al. (2012), it was 

demonstrated that pheomelanin synthesis contributes to melanomagenesis via a 

UVR-independent mechanism believed to involve higher levels of ROS (61). 

Consequently, high melanoma susceptibility in individuals with red hair/fair skin is 

likely attributable to the inherent carcinogenic effects of pheomelanin synthesis in 

addition to UVR exposure (52). 

Recent studies showed that molecular defects in both tumour suppressor genes and 

oncogenes also play a role in the development of melanoma (62, 63). One of the 

main tumour suppressor genes involved in melanoma is ‘p16’, which is also known 

as CDKN2A (63). According to Agarwal et al. (2013), p16/INK4A/CDKN2A is an 

essential tumour suppressor gene that impedes cell cycle in G1 by preventing the 

binding of CDK4/6 with cyclin D1, leaving the Retinoblastoma (Rb) tumour 

suppressor protein unphosphorylated and E2F bound and inactive (64). p16 has been 

found either mutated or deleted in most melanoma cell lines (63), and as such its 

ability to exert its regulatory effect is decreased. 

Mutations in B-RAF are found in up to 50% of human melanomas (65, 66) and is 

also observed in benign melanocytic nevi (58, 67). The B-RAF gene has emerged as 

an important therapeutic target for melanoma because it encodes a serine/threonine 

kinase that plays a key role in the mitogen-activated protein kinase (MAPK) 

signalling pathway (58, 68). In melanomas, the most common B-RAF mutation 

found is a glutamic acid for valine substitution at codon 600 (B-RAF
V600E

). This 

mutation (B-RAF
V600E

) results in the constitutive activation of B-RAF, and 
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consequently MAPK. Intriguingly, <30% of mutations that cause a change at V600E 

are tandem base substitutions on the same allele, and is rarely observed in 

nonmelanocytic tumours (58, 68). 

 In addition, activation of MAPK signalling pathway, which enhances cell 

proliferation, survival invasion and tumorigenesis, has been thought to play a major 

role in melanoma formation (69, 70). 

 

1.5 Skin Molecular Response 

The development of skin cancer by UV is caused by molecular and/or cellular 

damage (14, 71). There are at least two important distinct cellular processes involved 

in skin tumorigenesis. Firstly, as a result of the effect that (direct and indirect) UV 

has on DNA to form neoplastic transformations to cause mutations, and secondly the 

interaction between UV-mediated bioactive molecules and the immune system 

which creates an environment that allows for these cells to mutate and become 

cancerous due to a suppression of the immune system’s tumour surveillance activity 

(14, 71). 

 

1.5.1 Molecular Damage 

UVR plays an important role in different biological events, including protein 

alteration, the structure of DNA and essential molecules that are involved in 

biological processes (72). Ring structures and conjugated bonds make up the 

molecular bases of DNA. These ring structures and conjugated bonds absorb photons 

of UVR with wavelengths from 200 to 300 nm (73, 74). Following UV irradiation, it 
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has been proposed that DNA damage initiates activated signalling pathways (73, 74). 

The reason being that UVR wavelengths ranging from 280 to 315  nm (UVB) are 

absorbed by DNA causing the formation of cyclopyrimidine dimers and pyrimidine-

pyrimidone photoproducts, as seen in Figure 1.4 (73, 74). UVA exposure has been 

shown to generate ROS, which can cause DNA damage, via a type II reaction (74, 

75). The main oxidised DNA base generated after UVA exposure is 8-oxo-7,8-

dehydroguanine (8-oxoGua) as seen in Figure 1.4. This oxidised base can be formed 

as an outcome of type I and II photosensitisation reactions during exposure to UV, 

by the attack of numerous ROS, including singlet oxygen (
1
O2) (74, 75). 

The formation of 8-hydroxyguanosine (8-OHG) is the most comprehensively studied 

DNA lesion (76). The importance of this lesion is due to the relative ease in which it 

is formed and because it is mutagenic, and thus it is a potential carcinogenic 

biomarker (76). Furthermore, ROS are known to be highly reactive towards DNA, 

with the oxidation of guanine to 8-OHG believed to be characteristic of such damage 

(77, 78). 

After UV irradiation, it has also been shown that damaged RNA plays a role in 

facilitating the ribotoxic stress response signalling in ribosomes. Jun N-terminal 

Kinase Pathways (JNK) and p38 MAPK pathways, as well as inhibiting protein 

synthesis, are also believed to be activated by oxidative damage of ribosomal RNA 

(37). 
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Figure ‎1.4 DNA damage induced by UV 

Sunlight induces DNA modifications. The three wavebands of UV light: below 280 nm is UVC which is 

completely blocked by the ozone layer and is principally absorbed by biomolecules. UVB (280-315 nm) is the 

minimal part, and UVA (315-400 nm) in its totality reach the surface of the Earth and can be absorbed by DNA. 

Therefore, UVA and UVB can directly initiate the formation of pyrimidine dimers (e.g. CPDs and 6-4PPs), or 

indirectly damage lipids and proteins, which in turn can also cause DNA damage, in addition to generating 

oxidised DNA bases such as 8-oxoGua (74).  

 

1.5.2 Tumour Suppressor Genes 

Tumour suppressor genes such as p53 or p16 are responsible for repairing DNA 

and/or regulating of the cell cycle clock by inhibiting the action of cyclin-dependent 

kinases (CDK) (79, 80). Many tumour suppressor genes are deleted or mutated in a 

wide range of cancers, which reduce their ability to stop or decrease neoplastic 

transformations (80).  

The p53 gene is a key tumour suppressor gene which plays an important role as a 

regulator of the genotoxic response. It is often found to be mutated in many cancers, 
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including skin cancer (46, 81). This protein controls several signalling pathways that 

respond to stimuli such as oxidative stress, hypoxia, heat shock, and DNA damage, 

to name a few (46, 81). Chen et al. (2014) showed that p53 contributed to DNA 

repair via multiple mechanisms, including control of cell cycle checkpoint activity 

along with regulation of the DNA repair machinery (46). 

UV radiation causes mutations which often lead to skin cancer. Armstrong and 

Kricker (2001) observed that p53 mutations were prevalent in NMSC (50). A single 

compromised functional copy of p53 gene can increase the susceptibility of 

keratinocytes to UV photocarcinogenesis (39), while in melanoma cells mutations in 

the p16(INK4a) gene are more common (50). 

The p16 gene is a tumour suppressor gene that is often mutated or deleted in 

melanoma cells (82). It plays an  inhibitory role in the cell cycle process, but it is still 

unclear why it is so heavily mutated in melanoma (82). Recently, it was shown to 

play an important role in controlling oxidative stress in UV-irradiated melanocytes 

(82). These cells were more susceptible to oxidative stress when this gene was 

compromised (82), which suggests that there is a potential correlation between the 

actions of this gene in regulating intracellular ROS levels (82). The p16 gene was 

activated in the epidermis exposed to 2 minimal erythemal doses (MED) of UVB 

radiation, which suggested that it may play a role in suppressing the 

hyperproliferation of the epidermis (83). 

Berking (2005) and Wang et al. (2001) suggested that UVA may be indirectly 

involved in the occurrence of melanoma via immunosuppression or stimulation of 

growth factors in the skin (84, 85). On the other hand, studies conducted by De Fabo 

et al. (2004) and Atillasoy et al. (1998) have shown that UVB, but not UVA, 
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initiates melanoma (86, 87). Therefore, it is still not clear as to how these different 

types of UV radiation can directly cause melanoma. However, it is probable that 

both UVA and UVB are synergistically involved in instigating and promoting 

melanomagenesis due to their recognised effects at the molecular level (88). 

 

1.5.3 Melanin synthesis 

The type, amount and distribution of melanin contributes to the colour of the skin. 

Melanin also performs a fundamental role in protecting the skin against harmful 

effects of UVR (89, 90). Melanocytes possess membrane-bound organelles referred 

to as melanosomes, in which melanin biosynthesis takes place (90, 91). 

Melanosomes play a vital role in photoprotection as they are transported via 

dendrites to surrounding keratinocytes. According to Fitzpatrick and Breathnach 

(1963), there is an anatomical affiliation between melanocytes and keratinocytes that 

is known as “the epidermal melanin unit”. It has been estimated that each 

melanocyte is in contact with ~40 keratinocytes in the suprabasal and basal layers 

(91, 92).  

The composition of the diversified type of pheomelanin (yellow/red pigment) and 

eumelanin (black/brown pigment) is generally attributable to variations in skin 

and/or hair colour. Many enzymes are involved in melanin synthesis, as seen in 

Figure 1.5 (93-95). 

A disturbance in melanin production can cause aesthetic problems that include skin 

hypopigmentary disorders (e.g. vitiligo), and hyperpigmentary disorders (e.g. 

melasma, freckles and post-inflammatory hyperpigmentation) that might affect the 

patients’ quality of life (96).  
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Through various signalling pathways which influence tyrosinase regulation, 

environmental factors (e.g., UVR) and endogenous factors (e.g., hormone and age) 

can mediate the stimulation of melanin production. There are numerous ways in 

which UV can aggravate melanin production in melanocytes (97, 98).  It is either by 

directly affecting melanocytes or by stimulating  keratinocytes  to  release  signal  

molecules  such  as  prostaglandin E2 (PGE2), α-melanocyte-stimulating hormone 

(α-MSH), adenocorticotropic hormone (ACTH) and endotholin-1, which can 

upregulate tyrosinase mRNA expression (97, 98). 

 

 

Figure ‎1.5 Melanin synthesis pathway 

Melanin synthesis is initially catalysed by tyrosinase and is ultimately divided into eumelanin or pheomelanin by 

numerous enzymes. 3,4-dihydroxyphenylalanine (DOPA), chrome tautomerase (DCT), and tyrosinase-related 

protein 1 (TYRP1) are involved in eumelanogenesis. So far no specific enzymes have been found that are 

involved in pheomelanogenesis (93-95). 
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Melanogenesis is controlled by a number of important signalling pathways including 

cyclic 3'-5'-cyclic adenosine monophosphate (cAMP), MAPK, melanocortin-1 

receptor (MC1R), and microphthalmia-associated transcription factor (MITF). 

MC1R-MITF signalling in particular is critical to melanocyte viability and function.   

The binding of signal molecules or melanogenic proteins (especially α-MSH to 

MC1R in melanocytes) leads to the induction of MITF, which consequently activates 

transcription of the tyrosinase gene involved in melanin synthesis (81).  

UVR has been identified as a major environmental factor in the pathogenesis of 

photoageing and skin cancers including melanoma. Hypermelanosis caused by UVR 

has been formerly suggested to correlate with melanomagenesis. It is difficult to 

determine the exact role of UVR in the development of melanoma because 

melanomagenesis depends on several factors such as skin type, genetic influence, the 

extent of sun exposure (e.g., intensity, timing and duration of UVR) and types of 

moles representing disturbed melanin synthesis (90, 99-101). 

UVR, especially UVA, instigates an immediate response in the skin that includes 

tanning (102). Tanning occurs as a result of photooxidation of melanin, amplified 

dendrite formation and the consequential induction of melanosome transfer from 

melanocytes to keratinocytes (102). Furthermore, UVR instigates a delayed response 

in which pigmentation is generated by both UVB and UVA and is correlated to the 

proliferation of melanocytes. This results in an increased transfer of melanosomes to 

keratinocytes and an elevated synthesis of melanin.  

Melanogenesis induced in response to UVR also hinges on different melanocyte cell 

types, e.g. lightly-pigmented or darkly-pigmented cells (103). Melanogenesis has 

long been known to serve as a chief defence mechanism to safeguard the skin against 
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the detrimental effects of UVR, as both eumelanin and pheomelanin are able to 

absorb UVR, limit the penetration of UVR into the skin, as well as having protective 

antioxidant properties (104). UVR can cause detrimental DNA damage and the 

repair mechanisms could interfere with cellular signals and consequently encourage 

a melanogenic response (90, 105).  

The protective role of melanin against UVR-mediated skin damage is nevertheless 

controversial. Miyamura et al. (2011) and Ou-Yang et al. (2004) both observed that 

exposure of UVA-mediated skin pigmentation (occurring as a result of the 

photooxidation of melanin without increased melanin synthesis), failed to provide a 

photoprotective effect on the skin against UVR, including UVB radiation (106, 107). 

 The photoprotective properties of melanin are complex and are conceivably 

governed by several factors which include the types of melanin (eumelanin or 

pheomelain) and UV radiation (UVA or UVB) (108, 109). According to Takeuchi et 

al. (2004), when eumelanin – present in virtually all types of human skin – functions 

as a UV filter and ROS scavenger to counterbalance the toxic intermediates, 

pheomelanin – predominantly found in fair-skinned individuals with red hair – has 

been shown to be a photosensitizer aggravating ROS formation after UVR (110). 

 

1.5.4 Reactive Oxygen Species (ROS) 

At first, the connection between melanin generation and melanoma seems counter 

intuitive, especially since the melanin pigment is protective in general (111, 112). 

However, the synthesis of melanin involves cytotoxic molecules and is tightly 

correlated within melanocytic-derived cells (112-114). Both melanocytes and 

melanoma cells display higher basal levels of ROS in comparison with fibroblasts 
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and keratinocytes (112, 115, 116). One source of these ROS are from the 

melanosome and the melanin it contains (112, 117).  

ROS are molecules which contain one or more unpaired electron(s) (118). They can 

be either harmful or beneficial to living systems, therefore they are known to 

perform a dual role in biological systems (118, 119). Examples of the beneficial 

effects of ROS include physiological roles in cellular responses to anoxia, in the 

defence against infectious agents, and in the function of numerous cellular signalling 

pathways. At low concentrations, ROS have another beneficial role in the induction 

of a mitogenic response. At high concentrations, ROS can be an essential mediator 

of oxidative stress – i.e. damage to cell structures including nucleic acids, 

membranes and lipids, and proteins (118, 120). These harmful effects of ROS can be 

balanced by both enzymatic and non-enzymatic antioxidants (118, 121). 

The skin is constantly the target of endogenous and exogenous ROS. According to 

Ibañez et al. (2011) ROS are counteracted by a vigorous system of defence – in 

particular, the biopolymer melanin performs as an intrinsic free radical trap (122). 

ROS are generally present as pollutants in the atmosphere. They are also a product of 

numerous reactions including metal-catalysed reactions, mitochondria-catalysed 

electron transport chain reactions, and are produced by neutrophils and macrophages 

during inflammation. ROS are also formed during exposure to X-rays, γ-rays and 

UV radiation (118, 123). 

UVR has been found to take part in ROS generation – the action of UVB is 

facilitated by specific photoproducts (e.g. pyrimidine dimers), whereas UVA is well 

known to act mainly through the induction of ROS (10, 124). Additionally, in the 

presence of molecular oxygen, ROS are formed from the reaction between light and 
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photosensitizers (125). UVR has been shown to generate superoxide (O2
•−

) radicals, 

hydroxyl radical, hydrogen peroxide (H2O2), and singlet oxygen (126-128). 

Larsson et al. (2006) and Van Laethem et al. (2006) have shown that UVB radiation 

also stimulates the production of ROS (124, 129). It is possible that ROS may: (i) 

serve as an upgrade to intensify the signal for activation of pathways besides the 

main UVB-induced DNA damage signalling; or (ii) behave as a substitute 

mechanism, when DNA damage has been repaired, and as a result, UVB-induced 

signalling does not advance through this route (130). 

It has also been found that irradiating human melanocytes with UVR (UVA 25%, 

75% UVB) caused dose-dependent generation of H2O2 (131, 132). Also, the same 

UVR dose resulted in a decrease in the expression of Heme oxygenase-1 and the 

activity of catalase (132-134). 

Moreover, H2O2 is thought to be the main type of ROS produced by UVR, as a 

product of melanomagenesis itself. Since it is able to diffuse outside the melanosome 

to reach other cellular compartments, H2O2 is suggested to play an important role in 

melanoma. In pigmented melanomas, structural alterations of melanosomal 

membranes may lead to significant leakage of reactive melanin precursors, including 

free radical species (114, 122). Ibañez et al. (2011) and Policastro et al. (2009) 

observed that tumour cells produce high levels of ROS. With regards to melanoma, 

they have found an increase in H2O2 levels in human melanoma cells in comparison 

with primary melanocytes (122, 135).  

In addition, an imbalance in the antioxidant system has been observed in human 

melanomas. This imbalance can generate endogenous ROS. Moreover, it has been 

suggested that this melanin dysregulation effect results in it becoming a prooxidant 
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(136), where it can also induce damage to the DNA (122, 137). Thus, increased 

DNA damage and high rates of mutation is associated with the oxidative stress 

characteristic of melanoma cells. In relation to this, Ibañez et al. (2009; 2011) and 

Warters et al. (2005) have shown high levels of basal DNA damage in melanoma 

cells (122, 137, 138).  

It is reported that H2O2 is involved in signal transduction pathways in cancer (122). 

In melanoma for example, increased levels of H2O2 induce mitogenic signals, such 

as those related to extracellular signal-regulated kinases 1/2 (ERK-1/2) pathway,  

epidermal growth factor receptor (EGFR), and signal responses to stress, for 

example p38 MAPK pathways and  JNK (122). Following acute and chronic 

exposure to UVR, ROS are produced in the skin and are involved in signal 

transduction pathway activation (139). ROS have been shown to phosphorylate cell 

surface receptors, which sequentially activate the MAPK signalling pathway (129, 

140).   

Generation of ROS, apart from activating cell survival signalling pathways, can also 

induce cell cycle arrest and apoptotic pathways, which may play a role in the 

pathogenesis of cancer and melanoma in particular (122, 141). Meyskens et al. 

(2001) suggested that there is a strong correlation between UVR effects and their 

capability to create oxidative damage and the development of melanoma (139). 

 

1.5.5 Cell Signalling Pathways 

Numerous different physiological processes are mediated in part by the MAPK 

signalling cascades, such as: development, growth and proliferation, stress 

responses, and immunity (142, 143). The MAPKs include three main signalling 
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pathways: ERK, JNK and p38 (142, 144). Both JNK and p38 MAPKs are activated 

by environmental stressors, such as heat, oxidative stress and ionizing radiation (142, 

145). 

In most melanomas, the MAPK pathway is activated as a result of mutations in 

either B-RAF or NRAS (65, 66). These mutations are known as a marker for benign 

melanocytic proliferation and every stage of invasive and metastatic melanoma (65, 

66). 

Dysregulation of the signalling pathways caused by UVR exposure can result in 

altered gene expression, the production and release of cytokines, as well as 

disruption of the cell cycle (43, 130). In this section, I have focused on the effect that 

UVR has on the B-RAF and MAPK signalling cascade (p38 MAPK, JNK and ERK 

signalling pathways) because they have been shown to play a role in the initiation of 

melanoma. Figure 1.6 illustrates the role of UV radiation in the activation of cell 

signalling pathways in melanocytes. 
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Figure ‎1.6 Proposed role UVR may play in the signalling pathways and activation of genes in melanocytic 

cells 

RAS is believed to be activated by unknown receptors in the melanocyte as a response to UVR. This leads to the 

activation of B-RAF, which further leads to the activation of ERK. RAS also plays a role in the activation of JNK 

and p38 as a response to UVR. Cross talk is assumed to occur between these signalling pathways suggesting that 

ERK, JNK and p38 would ultimately activate each other. Following activation of gene transcription the relevant 

profurin is activated, which in turn cleaves mTACE from its precursor protein (pTACE). mTACE then cleaves 

sTNF-α from its precursor mTNF-α on the cell membrane (37, 146). 

 

 

1.5.5.1 B-RAF 

B-RAF is a serine/threonine protein kinase and a member of the RAF family (147-

149). A-RAF, B-RAF and C-RAF are three isoforms of the RAF protein kinase, 

which lie downstream from RAS (147-149). RAS activates RAF leading to 

activation of mitogen-activated ERK-activating kinase (MEK), and in turn activates 

other protein kinases like ERK (147, 148). ERK signalling is involved in regulating 

gene expression, cell proliferation, cell survival, various ion fluxes and apoptosis 

(147, 148). In addition, hyper-activation of MAPK pathway has been investigated in 
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melanoma caused by mutation of the B-RAF protein which may be involved in 

melanomagenesis (147, 148). 

In ~50% of human melanomas, activation of mutated B-RAF can be found (65, 66, 

150). Davies et al. (2002) found that a change from T → A at nucleotide 1796 was 

found in 35 of 38 (i.e. 92%) of B-RAF mutations in melanoma (151). Of all B-RAF 

mutations, the V600E mutation was found to be of high frequency in malignant 

melanoma (152). V600E was previously known as V599E; a change of designation 

from V599E to V600E resulted from difficulties in sequencing the GC-rich exon 1 of 

the B-RAF gene. The sequence was updated in 2003, following the insertion of 3 bp 

into the coding sequence. This resulted in the addition of one amino acid to the 

length of the B-RAF protein, leading to an increase in the positions of all published 

mutations by one – hence B-RAF
V599E

 became B-RAF
V600E

 (152).  

This mutation is distinct from the CC → TT or C → T alterations associated with 

pyrimidine dimer formation following UV exposure (151), and suggests that UVR 

was not responsible for this mutation in B-RAF (151, 153). It has been shown that 

there is a correlation in cancers between aberrant ERK signalling and the mutations 

of B-RAF, which can occur at different sites within the pathway (151). B-RAF
V600E

 

is one of the most active B-RAF mutants, and in murine melanocytes it enhanced the 

activation of ERK signalling to induce proliferation and transformation, which 

allowed the cells to become tumorigenic (148). While B-RAF
V600E

 plays an 

important role in the development of melanoma, it is unable to initiate 

melanomagenesis which requires the involvement of different factors and signalling 

pathways (147). For melanocytes to become cancerous, other mutations are required, 

such as UV-induced mutations in p16, p53 (Section 1.5.2) and NRAS that are the 

most noteworthy (122, 154).  
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Through two known cascades, the RAS/MAPK and the RAS/Phosphoinositide        

3-Kinase (PI3K) signalling streams, the RAS signalling network regulates cell 

growth, cell proliferation, survival and invasion. The RAS family of small GTP-

binding proteins lies at the start of the RAS/RAF/MEK/ERK MAPK pathway, which 

is responsible in activating a large number of growth-promoting genes in response to 

cytokines and growth factors (122, 155). A gene encoding a member of the RAS 

family is N-RAS, which has been shown to be mutated in 15-30% of melanomas 

(122, 155).  

It has been suggested by Ibañez et al. (2011) and Berger et al. (2009) that UV 

exposure has a probable association with the spatial distribution of N-RAS mutated 

tumours on the skin (122, 156). However, Edwards et al. (2004) showed that          

B-RAF
V600E

 is not a UV signature mutation (153). Moreover, activating mutations of 

both RAS and B-RAF are known to be harboured by melanomas (70, 152). This 

suggests that ERK, which is downstream of these pathways, may play a significant 

role in the oncogenic behaviour of these tumours (70). It is therefore essential to 

investigate the role ERK plays in melanocytes in response to UVR.   

 

1.5.5.2 Extracellular Signal-Regulated Kinase Pathway (ERK) 

ERK is a member of the MAPK family and is involved in cell proliferation (157). It 

exists in many isoforms with the main ones being ERK-1/2 (37, 158). ERK 

signalling has been shown to be involved in melanocyte proliferation (159). The 

activation of mutated B-RAF
V600E

 in turn hyper-activates ERK-1/2 signalling in 

melanoma (37, 160). 



29 | P a g e  

 

 

In order to survive, melanocytes need numerous growth factors, which are secreted 

by surrounding keratinocytes. However, the ability to secrete autocrine growth 

factors is acquired by melanocytic cells during the process of malignant 

transformation (70, 161, 162). Autocrine growth factors secreted by these 

transformed melanocytic cells include basic fibroblast growth factor (bFGF),           

α-MSH, epidermal growth factor (EGF) and stem cell factor (70, 161, 162). 

In melanoma, ERK can be activated by at least two pathways involving growth 

factors. The first “classical” pathway involves the direct activation of the RAS/RAF 

pathway that is regulated by receptor tyrosine kinases, such as the c-Kit ligand SCF 

(70, 163, 164). The second pathway involves the prior activation of adenylate 

cyclase that is used by G-protein-coupled receptors, such as the α-MSH activated 

melanocortin receptors (70, 163, 164). This leads to an increase in intracellular 

cAMP levels and RAS activation (70, 165). α-MSH can activate ERK in 

melanocytes/melanoma, but as this stimulation is only temporary it is not believed to 

be mitogenic (70, 165).  

Satyamoorthy et al. (2003) investigated the activation of MAPK in 19 different 

melanoma cell lines. They examined whether MAPK was mediated by a 

combination of B-RAF
V600E

 signalling and autocrine growth factor stimulation. All 

19 melanoma cell lines harboured     B-RAF mutations. This finding suggests that 

melanoma growth, invasion, and metastasis are ascribable to constitutively activated 

ERK. This activation is seemingly mediated by a combination of autocrine growth 

factors and activation of B-RAF
V600E

 signalling (160). 

Yanase et al. (2001) found that ERK-1/2 was activated by 1 kJ/m
2
 UVA in cultured 

human epidermal melanocytes. They suggested that UVA irradiation-
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induced melanin synthesis is correlated with the activation of ERK-1/2 via upstream 

signals. This activation can be caused by ROS or by activated tyrosine kinase 

receptors, but is not due to damaged DNA (166). Furthermore, treating the cells with 

antioxidants such as N-acetyl-L-cysteine (NAC), or tyrosine kinase inhibitors, 

suppressed the activation of ERK-1/2 (166). Yanase et al. (2001) suggested that 

ERK-1/2 was activated by UVA, which induces melanomagenesis; and that 

antioxidants played a role in regulating ERK, as well as controlling cell proliferation 

(166).  

He et al. (2008) found that exposing HaCaT cells to UVA induced cyclin D1 

accumulation and AKT (also known as protein kinase B-PKB) phosphorylation up to 

3 hours post-exposure. In contrast, UVA did not change ERK activation, which 

suggested that in low doses it has no effect on the ERK/MAPK pathway, but 

increased both cyclin D1 expression and AKT activation in these cells (167). 

According to Lee et al. (2010), mouse skin epidermal JB6 P+ cells exposed to 0.05 

J/cm
2
 UVB induced the phosphorylation of ERK, p38, and JNK. When the cells 

were treated with the antioxidant Kaempferol the phosphorylation of these cell 

signalling pathways was reduced (168).  

When melanocytes were irradiated with UVB, both JNK and p38 MAP kinase were 

activated, while that of ERK was transiently inactivated (169, 170). These results 

suggest the involvement of different cell signalling pathways (such as p38 and JNK) 

in the development of melanoma. 
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1.5.5.3 p38 Mitogen Activated Protein Kinase 

Many different factors including UVR and pro-inflammatory cytokines activate the 

p38 MAPK signalling cascade, of which there are four known isoforms: α, β, γ and δ 

(171). The isoform p38α has been examined extensively and is possibly the most 

physiologically relevant kinase implicated in the inflammatory response (172). 

UVR-induced p38 MAPK signalling ultimately results in the activation of numerous 

transcription factors, such as p53, c-Myc, and activating transcription factor 2 (ATF-

2) that promote the expression of genes involved in regulating cell proliferation, 

DNA repair, and apoptosis (173, 174). However, under most circumstances, acute 

UVR exposure induces pro-inflammatory cytokines which activate p38α and p38β 

MAPK leading to severe skin damage including apoptosis, necrosis and 

inflammation (173, 174). 

The activation of p38 MAPK following UV exposure plays a role in both cell 

survival and cell death pathways. Chouinard et al. (2002) found that UVB radiation 

activated p38 which led to stabilised p53. This activation provides an adaptive 

response by which keratinocytes can resist UVB-induced apoptotic cell death (175). 

Moreover, Bachelor et al. (2004) investigated the effect of inhibiting p38 MAPK on 

UVA-irradiated HaCaT cells. They found that 250 kJ/m
2
 UVA rapidly increased p38 

MAPK phosphorylation. Inhibition of p38 MAPK with SB202190 rapidly increased 

a cleavage of caspase-9, caspase-8, and caspase-3 in the UVA-irradiated cells. 

However, UVA irradiation alone had no effect on these activities in this cell line 

(176). 

It has been shown that stressful stimuli and/or pro-inflammatory cytokines activate 

the p38 MAPK and JNK signalling pathways, while ERK is activated by mitogens 
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involved in the regulation of cell survival (171). Moreover, exposure of melanocytes 

to UVB results in the activation of p38 and JNK, but not ERK-1/2 (170). It was also 

found that UVB exposure induces the phosphorylation of Ca
2+

/cAMP response 

element-binding protein (CREB) via the p38 MAPK signalling pathway in normal 

human melanocytes (170).  

Muthusamy and Piva (2013) observed the activation of the p38 MAPK pathway in 

melanocytes (HEM cells) and melanoma cells (MM96L cells) following UV 

irradiation over the first two hours (177). In HEM at 5 min post-irradiation, low 

doses of UV (4 kJ/m2 UVA and/or 0.2 kJ/m2 UVB) radiation immediately increased 

phospho-p38 (p-p38) levels. UVB stimulated the highest increase in p-p38 levels 

compared to other types of UVR, in comparison with sham-irradiated controls. 

Similar results were observed following exposure to higher doses of UVR             

(40 kJ/m2 UVA and/or 2 kJ/m2 UVB). At 5 min post-UV radiation,  p-p38 levels 

increased in comparison with sham-irradiated controls, with UVB inducing the 

highest increase (177).  

Muthusamy and Piva (2013) also found that in MM96L, UVR at low doses induced 

a small (<2-fold) increase in the levels of p-p38. In contrast, high UVR doses 

induced a greater increase (10-fold) in these levels and also in comparison with 

HEM cells (177). Thus, it can be seen that the activation of UVR-induced signalling 

pathways differs depending on cell type, UV type and dose. 

According to a study conducted by Liu et al. (2013) in N/TERT-1 cells (an 

immortalized human keratinocyte cell line), UVB (3.6 kJ/m
2
) and solar UV (SUV) 

(60 kJ UVA/m
2
 + 3.6 kJ UVB/m

2
), but not UVA (60 kJ UVA/m

2
), greatly activated 

p38α and its downstream target proteins, mitogen- and stress-activated protein 
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kinases (MSK2) and heat shock protein 27 (HSP27). Following UV exposure, the 

other isoforms of p38, including p38β, p38γ, and p38δ were not activated. These 

results provide supporting evidence that SUV strongly activates the p38α signalling 

pathway (178). Additionally, Liu et al. (2013) found that JNK signalling was also 

activated post-irradiation, and thus the role of this pathway needs to be examined 

when investigating UV-induced cell signalling pathways (178). 

 

1.5.5.4 Jun N-terminal Kinase Pathway (JNK) 

A major subgroup of the MAPK pathway is c-Jun N-terminal kinase (JNK), which 

plays an important role in regulating cell death pathways. JNK consist of three main 

isoforms: JNK-1, JNK-2, and JNK-3 (179, 180). The phosphorylation of JNK/ 

Stress-activated protein kinases (SAPK) occurs in response to UV irradiation and 

other stress stimuli (181). The alternative forms of JNK, i.e. JNK-1, -2 and -3, appear 

to differ in their ability to bind and phosphorylate different substrate proteins, and 

can also be differentially activated (181, 182).  

The JNK signalling pathway is known to mediate both survival and apoptosis of 

tumour cells. Although JNK-1 and JNK-2 have been shown to differentially regulate 

the development of skin cancer, the underlying mechanism remains unclear (183). 

Lopez-Bergami et al. (2007) have found a mechanism that links ERK with JNK 

signalling in human melanoma cells (157). Phosphorylation of JNK via protein 

kinase C (PKC) results in its activation in response to numerous stimuli. JNK 

activation by PKC occurs through many stimuli including cytokines, such as TNF-α, 

and external stressors, such as UVR (157, 184).  The receptor for activated C-kinase 

(RACK1) is an adaptor protein that is involved in PKC signalling, which also 
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activates JNK. Increased  RACK1 expression has been found in melanoma, 

suggesting that it and JNK plays a role in tumorigenesis (157). That is, JNK is up-

regulated by the effect of ERK on c-Jun activation of RACK1 transcription (157). 

The function of JNK in apoptosis is poorly understood; it has been suggested 

previously that it is proapoptotic, antiapoptotic, or plays no role at all (185, 186). 

While JNK may play an important role in UVR-induced apoptosis, it has been found 

that it suppresses apoptosis in IL-3 dependent haematopoietic cells through the 

activation of Bcl-2-associated death promoter (BAD) which is a member of the 

proapoptotic Bcl-2 family of proteins (179). Therefore, the role of JNK in either pro- 

or antiapoptotic functions depends on many factors, including cell type, the nature of 

the cell-death stimuli, its activation period and the activity of other signalling 

pathways. Understanding the role of JNK in the regulation of apoptosis may help to 

find new strategies for the prevention and treatment of some cancers (179).  

Recently, Liu et al. (2013) indicated that the phosphorylation of JNKs was increased 

when N/TERT-1 cells were exposed to SUV (60 kJ UVA/m
2
 + 3.6 kJ UVB/m

2
) 

(178). Exposure to higher doses of SUV (90 kJ UVA/m
2
 + 5.4 kJ UVB/m

2
) caused 

the cells to undergo apoptosis within 3 h (178). In cell exposed to UVR, JNK 

signalling is activated, whereby JNK-1 is stimulated more than JNK-2.  

Muthusamy and Piva (2013) found that in melanocytic-derived cells, JNK-1 was 

highly activated post-UVR when compared to JNK-2. In HEM cells, low dose UV 

induced a 11-fold increase in phospho-JNK-1 (p-JNK-1) levels between 5 and 15 

min following UVB (0.2 kJ/m2) radiation, while for UVAB radiation the levels 

remained at 9-fold until 30 min post-exposure. Following UVA (4 kJ/m2), p-JNK-1 

levels increased by 7-fold between 5 and 30 min post-irradiation. After exposure to 
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high dose UVR, the pattern of p-JNK-1 was similar in HEM cells, where these levels 

peaked at 15 min post-irradiation. UVB (2 kJ/m2) radiation induced the highest 

levels (10-fold) of p-JNK-1 post-irradiation while UVA induced the lowest levels (7-

fold).  In contrast, phospho-JNK-2 (p-JNK-2) levels were less than 2-fold in HEM 

cells exposed to either low or high dose UV radiation (177). In MM96L cells,         

p-JNK-1 levels were highest (<2-fold) at 15 min following exposure to low UVB 

levels, while minimal phosphorylation of JNK-2 was observed following exposure to 

low dose UVR. In these cells, high dose UVR stimulated a rapid and sustained 

activation of p-JNK-1 over 60 min, except for those cells exposed to UVB radiation 

(177). UVA radiation triggered a 4 to   5-fold increase in p-JNK-1 levels, while UVB 

generated a weaker response (2-fold increase). P-JNK-2 levels were also elevated 

(4–8-fold) after high dose UV-irradiation, except for UVB-irradiated MM96L cells 

(177). In general, HEM cells had higher p-JNK levels than did MM96L cells 

following low dose UV radiation, however the responses at higher doses were 

greater in the melanoma cells, except when exposed to UVB radiation. This result 

suggests that UV-induced JNK pathways may play a different role in melanocytes 

compared to melanoma cells (177). 

As the p38 MAPK and JNK pathways are regulated differently in HEM and MM96L 

cells, it suggests that the functions performed by both pathways in melanocytes may 

differ to that seen in melanoma cells. While these pathways are usually involved in 

maintaining homeostasis in normal cells, they may also be involved in pro-

tumorigenic activities in tumour cells. This may in part be due to mutations acquired 

in MM96L cells, which are upstream of the MAPK pathways. These pathways may 

act on their own, or in conjunction with ERK, to promote oncogenesis. As such, 

besides the ERK pathway, the p38 and JNK pathway should be probed further in 
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identifying their supportive roles in melanomagenesis (177). Also, these signalling 

pathways play a role in regulating the production and release of the cytokines from 

skin cells exposed to UVR (130). 

 

1.5.6 Tumour Necrosis Factor-α (TNF-α) and Interleukin-1α (IL-1α) 

TNF-α belongs to the TNF ligand superfamily, and can exist in one of two forms; a 

26 kDa membrane-bound form (mTNF-α) and a 17 kDa soluble form (sTNF-α) 

(187-189). The action of the metalloproteinase TNF-α Converting Enzyme (TACE) 

can cleave TNF-α from its membrane bound precursor between Ala
76

 - Val
77 

to its 

mature form sTNF-α (190, 191). 

The pro-inflammatory cytokine TNF-α is produced by numerous cells including 

macrophages, lymphocytes, fibrobroblasts, keratinocytes and melanocytes in 

response to infection, inflammation, and other environmental stresses (187, 192-

194). A varied array of biological effects is induced by TNF-α. Depending on the 

cell type, TNF-α may stimulate cell proliferation, differentiation or apoptosis (192, 

195). Moreover, the biological responses of TNF-α are mediated through TNF-

Receptor 1 (192, 195). 

As an environmental stressor, UVR induces the production and release of cytokines 

such as TNF-α and Interleukin-1 (IL-1) from skin cells (190, 191). Following 

exposure to UVR, the release of TNF-α plays a role in the inflammatory response 

(190, 191). It has been found that in some skin cell lines, TNF-α can be mediate by 

UVR enhanced tumorigenesis (39, 130, 190, 191). In addition to UVR causing 

changes to cell signalling activity, it can also affect cytokine levels in melanocyte-

derived cells (177, 196). 
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In vitro studies performed by Rasmussen et al. (2010) and Marionnet et al. (1997) 

showed that in response to UVR, keratinocytes, fibroblasts, and skin equivalents can 

produce IL-1α (197, 198). Neighbouring cells, which express IL1 receptors such as 

melanocytes, can be activated via paracrine/autocrine signalling by IL-1α (199, 200).  

In a study carried out by Fujisawa et al. (1997), small amounts of TNF-α were 

released from dermal fibroblasts when exposed to UVB alone or treated with IL-1α. 

However, when the fibroblasts were exposed to both UVB and IL-1α ~10-fold 

greater quantities of TNF-α were released (201, 202). Therefore, it is suggested that 

the increase in TNF-α mRNA levels is mediated through a synergistic effect of UVB 

and IL-1α (201). 

Bashir et al. (2009) investigated the synergistic effect of UVB (30 mJ/cm
2
) in the 

presence/absence of numerous cytokines including IFN-α2b, TNF-α, or IL-1α in 

human keratinocytes. They found that UVB and IL-1α had a synergistic effect in 

increasing the secretion of TNF-α (protein and mRNA) levels in keratinocytes (203).  

Muthusamy et al. (2011) observed similar results in melanocytes to Bashir et al. 

(2009). They found that exposing melanocytes to UVB radiation alone did not 

induce high levels of TNF-α release. However, the addition of IL-1α enhanced TNF-

α levels post-UVB exposure in both HEM (120-fold) and in MM96L cells (101-

fold). As the TNF-α levels post-UVB exposure were higher in HEM than MM96L 

cells, this suggests that high levels of inflammation may not be necessary for cells 

which have acquired malignancy (196). 

Muthusamy and Piva (2013) observed that UVAB radiation generated a similar 

increase in TNF-α levels to that found in UVB radiation in both HEM and MM96L 
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cells; while the effects of UVA radiation were less than that for UVB and UVAB 

(177). 

Furthermore, Muthusamy and Piva (2013) found that HEM cells were less sensitive 

than MM96L cells to UVR. They suggested that high levels of TNF-α may confer 

protection to these cells from UV-induced cell death, while the lower levels in 

MM96L could have made them more susceptible (177).  

It has been suggested that TNF-α is involved in mediating immunosuppression in 

skin cells, however this mechanism is not well understood (130). There may be 

numerous factors that affect the function of TNF-α in immunosuppression post 

exposure to UVR; these include type and dose of UVR, and the effect of other 

cytokines (130).  

As mentioned earlier, the cleaving of TNF-α is carried out by the enzyme TACE. As 

a result, the role and function of TACE in the irradiated cells was also investigated.  

 

1.5.7 TNF-α Converting Enzyme (TACE) 

TACE is an enzyme that belongs to the disintegrin and metalloprotease (ADAM) 

family of proteases (204, 205). It is also known as ADAM 17 (204, 205), and cleaves 

mTNF-α to form sTNF-α (189, 204). Besides cleaving TNF-α, numerous diverse 

processing events, such as transforming growth factor-α (TGF-α) precursor, amyloid 

precursor protein (APP) cleavage TNF-R1, TNF-R2 and L-selectin, are also carried 

out by TACE (206, 207).  
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Some metalloproteases have been reported to be activated in epidermal cells after 

UV irradiation (146, 208). However, it is unknown if UV irradiation regulates the 

expression of TACE on the membrane of skin cells. 

Skiba et al. (2005) found that UVA and UVB irradiation significantly upregulated 

the induction of TACE mRNA in HaCaT cells, with highest levels detected after 

UVA irradiation. However, the time course of TACE mRNA induction did not 

appear to be related to that of TNF-α (209). Although their study suggested a 

potential role of TACE post-UVR in human keratinocyte cell lines, up to date, no 

studies have been performed using melanocytes. 

Sharma et al. (2014) demonstrated the role of TACE in skin inflammation and 

associated carcinogenesis. The data from this study suggested that selective blockade 

of TACE suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced 

epidermal hyperplasia, the infiltration of inflammatory cells and cytokine levels 

leading to protection against skin inflammation. The results also indicated that 

blockade of inflammatory events facilitated via TACE inhibition may play an 

important role in preventing skin tumorigenesis in mice. These findings provide a 

new approach for the topical delivery of a TACE inhibitor against skin inflammation 

and tumorigenesis, which may overcome the toxicity associated with systemic 

exposure (210). 

It has been suggested that TACE inhibition  post-UV exposure may inhibit the 

stimulation of surviving irradiated cells (187). This may have the potential of 

decreasing the incidence of skin cancer development that may occur from prolonged 

exposure to sunlight. However, it is unclear whether the increase seen in TACE 
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activity in UV-irradiated skin cells is due to an increase in numbers, or whether it is 

due to a higher level of activity (187).  

Furin is known to activate TACE as well as matrix metalloproteases (MMP) (187), 

and as such the effect that UV radiation may have on this proprotein convertase also 

needs to be investigated. 

 

1.5.8 Furin 

The biological activity to many precursor enzymes, such as TACE (187, 207, 211, 

212) and MMP (187, 213, 214), is conferred by proprotein convertases (PCs) via 

endo-proteolytic cleavage at the C-terminal side of paired basic amino acids. Several 

mammalian proprotein convertases have been identified including PC1-PC7 and 

furin (215-217).  

PCs have been distributed according to their involvement in a variety of 

physiological and pathological processes. Furin, PACE-4, PC5/PC6, and PC7 are 

expressed in a broad range of tissues and cell lines; whereas particular members, 

such as PC1, PC2, and PC4, exhibit a tissue-specific distribution (215-217). 

Because furin plays a role in various diseases, considerable energy has been directed 

towards conceiving specific inhibitors that may have therapeutic applications. 

Although several inhibitors have been developed, none are completely furin-specific 

(218). The first synthesised furin inhibitors were peptidyl chloromethyl ketones 

(187, 219). 

The maturation of both TACE and MMP within skin cells is carried out by furin and 

other PCs. Furin and PC7 process ProTACE to its mature form – which increases its 
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proteolytic activity (187, 207, 211). As TACE travels through the Golgi 

compartment, its maturation occurs in which the prodomain is removed by furin 

(187, 205, 211, 220). When large amounts of mature TACE are detected in furin 

overexpressing cells, it seems that proTACE is a main substrate for this enzyme 

(187, 211). 

Crucial steps in melanoma metastasis include basement membrane degradation and 

remodeling of the extracellular matrix (ECM) by proteolytic enzymes such as 

MMPs. These enzymes have been found to interact with a wide range of non-matrix 

proteins, such as growth factors and their receptors, cell adhesion molecules, and 

apoptosis mediators (221). Furin plays a key role in tumour metastasis through their 

activation of MMPs, which play a role in this process (146, 222). 

 

1.6 Antioxidants 

It has been reported that UVR plays a role in the induction of ROS, which can cause 

cellular damage and lead to skin carcinogenesis (18, 118, 128). Exposure to ROS can 

lead to oxidative damage. Oxidative damage accumulates during the life cycle of the 

cell, and radical-related damage to DNA, proteins and lipids has been suggested to 

play an important role in the development of age-dependent diseases, for example: 

cancer, neurodegenerative disorders, arteriosclerosis, and arthritis (118, 223). 

However, the presence of the cell’s antioxidant defence system is designed to 

counteract oxidative damage from ROS (118, 223). 

Antioxidants play a role in stabilising ROS by donating an extra electron. The basic 

principle of the activity of many antioxidant compounds (AH) is through redox 

transitions (224). A redox transition involves the single electron donation from an 
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antioxidant to the free radical species (R) to stabilise it. The product of this electron 

transfer to the free radical is an antioxidant-derived radical that is seen in the 

following equation (224). 

                                              AH + R· → A· + RH 

A cellular redox imbalance can be induced by oxidative stress and has been observed 

in some types of cancer cells compared to their non-cancerous counterparts (76). The 

permanent modification of genetic material is likewise caused by oxidative stress, 

which can initiate ageing, mutagenesis and carcinogenesis (76, 118).  

UVR may generate ROS in the cell. Also, particular exogenous chemicals may cause 

redox cycle post-cell metabolism. As a consequent step, electron production can be 

transferred to molecular oxygen generating superoxide (O2
•−

). Regardless of their 

origin, ROS may interact with cellular biomolecules, for example DNA, which leads 

to modification and possibly deleterious outcomes for the cell (225). Also, it has 

been found that hydroxyl radicals interact with DNA molecules causing damage to 

both purine and pyrimidine bases (118). This damage caused by ROS in many types 

of tissues illustrates the role that free radicals play in DNA oxidation and may be one 

of the first steps in carcinogenesis (76, 118). 

It has been reported that free radical-mediated DNA damage has been involved in 

forming numerous cancers. Many products have been found from DNA oxidation 

and damage induced by ROS, including single- and double-stranded breaks, purine, 

pyrimidine or deoxyribose modifications, and cross-links between bases (118, 225, 

226). Arrest/induction of transcription, induction of signal transduction pathways, 

replication errors and genomic instability occur as a result of this damage (118, 225, 

226). 
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UV radiation induces two of the most abundant mutagenic and cytotoxic DNA 

lesions such as cyclobutane–pyrimidine dimers (CPDs) and 6–4 photoproducts      

(6–4PPs) (73, 74, 227). The adverse effects of solar radiation on living systems are 

mostly attributed to the small amount of UVB that is absorbed by cellular DNA. 

UVA wavelengths are less efficient in inducing such damage because they are not 

absorbed by native DNA. However, they can still produce secondary photoreactions 

of existing DNA photoproducts or cause damage via indirect photosensitizing 

reactions (227) as described above (Section 1.5.1). 

Antioxidants play a key role in the regulation of the effect of ROS by direct removal 

of the free radicals (pro-oxidants) to maintain and protect cells from their damage 

(118). The main features of antioxidants include: reducing free radicals, interactions 

between the antioxidants in an ‘antioxidant network’, direct effects on gene 

expression, easy and quick absorption, and effectiveness in different environments, 

such as aqueous and membrane domains (118). In addition, antioxidants can 

modulate cell signalling pathways and such modulations can help to avoid cancer 

formation (76, 228). These can occur by: (a) controlling the regulation of normal cell 

cycle; (b) increasing the activity of phase II detoxification enzymes; (c) inducing 

apoptosis and inhibiting proliferation; and (d) inhibiting tumour metastasis (76). 

Antioxidants fall into two main types, enzymatic and non-enzymatic. Enzymatic 

antioxidants include catalase (CAT), glutathione peroxidase (GPx), and superoxide 

dismutase (SOD). Some well-known non-enzymatic antioxidants are α-tocopherol 

(vitamin E), ascorbic acid (vitamin C), glutathione (GSH) and flavonoids (76, 118). 

Antioxidants tend to act in hydrophilic or hydrophobic environments, while some 

can act in both regions of the cell. For example, vitamin C interacts with superoxide 
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in aqueous environments, while Vitamin E reduces it in lipophilic environments, 

such as the plasma membrane (118). 

 

1.6.1 Vitamin C 

Vitamin C (ascorbic acid or ascorbate) is a water-soluble non-enzymatic antioxidant 

(229) – its structure is seen Figure 1.7. The role of vitamin C donating an electron to 

stabilise molecules with an unpaired electron is well known (230). Ascorbate, known 

as AscH−, reacts with free radicals, producing the stabilised form of tricarbonyl 

ascorbate radical (AscH•). ROS reacting with vitamin C can also form the semi-

dehydroascorbate radical (Asc•−), a weakly reactive radical which causes acceptable 

levels of oxidative stress in the cell (118). It may be able to decrease DNA damage 

through either directly reducing radical species, which directly affects DNA bases, or 

by protecting the proteins responsible for DNA repair (230). 

 

 

Figure ‎1.7 Ascorbic acid structure (231) 

 

Vitamin C does not absorb UV light but exerts an UV-protective effect by 

neutralizing free radicals, while this effect is not seen with sunscreens (232, 233). 
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Under laboratory conditions, it has been shown that application of 10% topical 

Vitamin C reduced UVB-induced erythema by 52% and sunburn cell formation by 

40-60% in porcine skin (232, 233). 

It was shown that when vitamin C was administered in vivo it reduced oxidative 

DNA markers while regulating cellular functions, such as gene expression and 

apoptosis in human lymphocytes (118, 234). Moreover, it has been shown that there 

is a link between the antioxidant activity of vitamin C and its role in preventing cell 

death (118).  In many studies, vitamin C has been shown to protect against cell death 

triggered by various stimuli, and a major proportion of this protection has been 

linked with its antioxidant ability (118, 235). Also, it was reported that the anti-

apoptotic activity of vitamin C has revealed its role in modulating immune system 

function (118). Several studies reported the mechanisms by which vitamin C 

regulates the AP-1 complex, including the Fos and Jun superfamilies (118). 

Ascorbate-treated cells exposed to UVB irradiation led to a 50% decrease in JNK 

phosphorylation (which activated AP-1), therefore inhibiting signalling via this 

pathway (118). 

According to Telang (2013), the efficacy of vitamin C was increased eight-fold when 

used in combination with ferulic acid (a potent antioxidant of plant origin) and 

vitamin E. Ferulic acid enhanced the stability of vitamin C and E, and it was 

observed that using this combination can confer a protection from acute and chronic 

photodamage. This combination of antioxidants inhibited thymine dimer formation 

and apoptosis.  It has therefore been suggested that this combination can be used for 

skin cancer prevention (232, 233).  
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1.6.2 Vitamin E 

Vitamin E is known as a non-enzymatic antioxidant that is fat-soluble. It exists in 

eight different forms and α-tocopherol is  known  to  be  the  most  active  form  of  

this  vitamin. α-Tocopherol is a potent antioxidant and is thought to be the main 

membrane-bound antioxidant in the cell (118, 236, 237), and its main role is to 

protect against lipid peroxidation (118, 238). 

Vitamin E is a peroxyl radical scavenger, and can terminate the chain reaction of 

lipid damage caused when free radicals attack membranes (239, 240). This vitamin is 

found at high levels in the stratum corneum (239, 240). This outermost layer of the 

epidermis is often exposed to environmental stressors directly, including UVR. 

Thiele et al. (1998) found that vitamin E is highly susceptible to suberythemogenic 

UVR, resulting in its depletion before the occurrence of visible skin reactions. Thus, 

the depletion of vitamin E in the stratum corneum layer is a sensitive and early in 

vivo marker of photo-oxidation induced by sunlight (241).  

The application of vitamin E to the skin, as well as its percutaneous absorption is 

made possible due to its lipophilic nature. Krol et al. (2000) showed that the topical 

applications of vitamin E reduced the occurrence of UV-induced skin cancers in 

mice (242).  

By acting as a free radical cascade-breaking antioxidant in the skin, endogenous      

α-tocopherol can inhibit lipid peroxidation induced by UV. Moreover, the levels of 

dietary derived α-tocopherol in the skin are increased by an adaptive response to 

chronic UV effect. However, the efficiency of topical application of α-tocopherol is 

reliant on numerous factors (242). 
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Vitamin E confers protection against UV-induced skin photodamage by reducing the 

formation of cyclobutane-pyrimidine photoproducts (242-244). However, topically 

applied  α-tocopherol, when applied to mouse skin was quickly reduced by UVB in a 

dose-dependent manner (242).  

Roshchupkin et al. (1979) found that UVR increased the erythemal response of skin 

to UV light. However, when the skin was pre-treated with topical vitamin E, the 

erythemal response of skin post-UVR was significantly reduced (245).  

Lopez-Torres et al. (1998) observed that α-tocopherol conferred protection to 

hairless mice against UV-induced oxidative damage, by reducing the formation of 

epidermal lipid hydroperoxides (236). Ichihashi et al. (1999) suggested that 

melanomagenesis may be suppressed by α-tocopherol if used as a skin whitening 

agent, perhaps via inhibiting tyrosine hydroxylase activity in an indirect way. α-

Tocopherol decreased the levels of 8-hydroxydeoxyguanosine (8-OHdG) produced 

indirectly in guinea pig skin exposed to 2 MED UVB (246). As it did not suppress 

the formation of cyclobutane pyrimidine dimers and (6-4) photoproducts,                

α-tocopherol may have reduced oxidative DNA damage, thereby retarding the 

development of skin cancer (246). 

Kuchide et al. (2003) found that UVB induced 8-OHdG levels in the epidermal cells 

of hairless mice, which were reduced when these mice were given dietary                

α-tocopherol – highlighting their scavenging activity against ROS (243). 

A more water soluble analog of vitamin E is trolox whose structure can be seen in 

Figure 1.8. Peus et al. (2001) showed that in primary keratinocytes, trolox reduced 

the level of UVB-induced intracellular hydrogen peroxide (128). Trolox was also 

shown to modulate the UVB-induced phosphorylation of EGFR, ERK-1/2 and p38 
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in these cells. The authors explained that these effects were only partly due to the 

inhibition of trolox on UVB-induced intracellular H2O2 generation (128). The results 

demonstrated that the increased pre-treatment of the cells with trolox was a 

significant factor affecting signal transduction and cellular outcomes (128). 

 

 

Figure ‎1.8 Structure of  trolox (247) 

  

Muthusamy et al. (2011) found that pre-treating HEM and MM96L melanoma cells 

with α-tocopherol prior UV exposure decreased UVB-induced TNF-α secretion by 

53% in melanocytes, but not in melanoma cells. α-Tocopherol did not affect UVB-

induced p38 MAPK pathway activation in these cells and suggests that its effects 

were unrelated to signalling via this pathway (196). However, it was not clear if      

α-tocopherol could exert its effects via other signalling pathways. 

Therefore in summary, UVR is known to increase ROS levels in the skin, which may 

lead to oxidative damage (248). Similarly, antioxidants have been shown to 

moderate the deleterious effect of ROS (248). Vitamin C and E are considered to be 

the main antioxidants found in the skin, and they prevent or decrease oxidative stress 

by neutralising ROS in the cells (240, 248).  It has been found that the amount of 

vitamins reaching the skin from daily nutrient intake is insufficient for 
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photoprotection, so it has been suggested that the use of topically applied vitamin C 

and E may confer photoprotection (240, 248). As vitamin C levels in the skin are 

depleted by UV exposure, and through topical application its levels may be restored 

(248). It has been observed that the oral and topical application of antioxidants in 

conjunction with sunscreens enhance photoprotection in the skin (248, 249). 

 

1.7 Summary 

UVR has been shown to play a role in the activation of different signalling pathways 

through the generation of ROS especially ERK-1/2. The hyperactivation of these 

signalling pathways plays a role in melanoma development. The p16 tumour 

suppressor gene plays a key role in suppressing tumorigenesis and melanomagenesis, 

possibly by controlling intracellular ROS levels. UVR is involved in the activation of 

cytokines that include TNF-α, which is regulated by MAPK signalling pathways. 

TNF-α plays a role in the UVR-induced immune response, and is released in its 

mature form by the action of TACE, which regulates its release. Furin is a proprotein 

convertase enzyme that is involved in the maturation and activation of TACE. UVR 

has been suggested to play a role in the activation of these key genes in melanocytes. 

B-RAF is a member of RAF family upstream of the MAPK signalling pathways, and 

is involved in the activation of pathway intermediates such as ERK, while p38 and 

JNK can be activated by UVR, or by cross-talk of these cell signals. These signalling 

pathways are involved in different cellular functions including cell survival, cell 

proliferation and cell death. Antioxidants are known to play an important role in the 

protection of the cells from oxidative damage by scavenging free radicals.  
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We hypothesised that cells with higher melanin levels will produce less ROS than 

those with lower levels and that exogenously added antioxidants will confer a 

protective effect to these cells when they are exposed to UV radiation. The 

mechanism of ROS production and of the signalling pathways activated by UV 

radiation will be different in melanoma cells compared to those in melanocytes, and 

these differences may be a means by which treatment regimens may be devised that 

could protect those untransformed skin cells from the deleterious effects of UV 

radiation.  

Therefore, the role antioxidants play in primary epidermal melanocytes and 

differently pigmented melanoma cells (MM418-C1 and MM418-C5) will be 

examined in this project, to see whether these molecules confer a protective effect on 

irradiated melanocytes – if so, then they may be added to the skin to enhance the 

protective effect of sunscreens.  

 

1.8 Aims of the project 

I investigated the effect antioxidants have on the functions of UV-irradiated 

melanocytes and melanoma cells. As part of this study, I propose to investigate if: 

1. Antioxidants confer protection to melanocytes exposed to UV-radiation.  

2. Antioxidants alter the activity of B-RAF and other MAPK signalling pathways in 

UV-irradiated melanocytes. 

3. Antioxidants reduce the release of TNF-α from UV-irradiated melanocytes.  

4. Antioxidants affect the expression of furin and TACE in UV-irradiated 

melanocytes.  
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 5. Antioxidants alter the formation of melanin in cells following exposure to UV 

radiation. 

6. The UV-induced responses seen in melanoma cells differ to that observed in 

melanocytes.  
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CHAPTER 2 
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Chapter 2. Materials and Methods 

2.1 Materials 

2.1.1 Cell lines 

Lightly pigmented (MM418-C1) and darkly pigmented human melanoma (MM418-

C5) cell lines were kindly donated by Drs Peter Parsons and Glen Boyle from the 

Queensland Institute of Medical Research (QIMR) (Brisbane, Australia), these two 

cell lines were grown from the same primary tumour and possess the following 

genetic mutations: BRAF
V600E

, NRAS
WT

 and PTEN
WT

 (250). The human epidermal 

melanocytes (HEM) were purchased from Promo Cell (Melbourne, Australia) and 

did not contain any genetic mutations (Figure 2.1). All solutions used in the series of 

experiments described in this thesis were kept at 37°C for MM418-C1 and MM418-

C5 cells, while those for HEM cells were kept at room temperature (RT 20°C) unless 

specified otherwise. 

 

 

Figure ‎2.1 The cell lines used in this thesis 
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2.1.2 Chemicals and biochemicals 

The chemicals and biochemicals used in this project were: Roswell Park Memorial 

Institute (RPMI) 1640 medium, (1%) Penicillin-Streptomycin-Glutamine, 0.5% 

Trypsin-EDTA, Inactivated Foetal Bovine Serum (FBS), Medium 254 for 

melanocytes, and Human Melanocyte Growth Supplement (HMGS) were purchased 

from Gibco (Melbourne, Australia). Phosphate-Buffered Saline (PBS), phenol red-

free Hank’s Buffered-Salt Solution (HBSS), 0.4% (w/v) Trypan Blue solution, 

Mercaptoethanol, Phosphatase inhibitor, Tris, Tetramethylethylenediamine 

(TEMED), Ammonium Persulfate (APS), Ponceau S, Acetic acid, Tween 20, Human 

recombinant IL-1α, Neutral red, Ascorbic acid, Ethylaminediaminetetraacetic acid 

(EDTA) 2′, 7′-Dichlorofluorescin diacetate (DCF-DA) and Melanin, were purchased 

from Sigma (Sydney, Australia); CellTiter 96® AQueous Non-Radioactive Cell 

Proliferation Assay (MTS) was obtained from Promega; MitoSOX™ Red 

Mitochondrial Superoxide Indicator was purchased from Invitrogen; Bovine Serum 

Albumin (BSA)  was obtained  from Bovogen (Melbourne, Australia); Glycine, 

Sodium Dodecyl Sulfate (SDS) and NaCl were from Astral Scientific (Sydney, 

Australia); Furin rabbit polyclonal antibody, TACE (ADAM 17) rabbit polyclonal 

antibody, Tyrosinase rabbit polyclonal antibody and GAPDH antibody  were 

obtained from Abcam (Sapphire Bioscience, Sydney, Australia); Complete Protease 

inhibitor cocktail tablets were purchased  from Roche (Sydney, Australia); 40% 

Acrylamide-Bis solution and Kaleidoscope Prestained Standards were obtained from 

BioRad (Sydney, Australia); ECL Select western blotting detection reagent was 

purchased from GE Healthcare (Australia); Pierce BCA protein assay kit was 

obtained from ThermoFisher Scientific (Melbourne, Australia); Phospho-p38 rabbit 

polyclonal antibody, phospho-JNK rabbit polyclonal antibody and phospho-B-RAF 
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rabbit polyclonal antibody were purchased from Cell Signaling  (Genesearch, 

Brisbane, Australia); Human TNFα ELISA Kit was from Scientifix (Melbourne, 

Australia) and Nitrocellulose Membrane was obtained from Amersham Biosciences 

(Sydney, Australia). 

 

2.1.3 Labware used in the project 

The 75 cm² tissue culture flasks, 60 mm × 15 mm petri dishes as well as 6-well, 24-

well and 96-well tissue culture plates were purchased from Greiner Bio-one 

(Interpath Services, Melbourne, Australia); Microcon YM-10 micro-concentrators 

(10 kDa) were from Millipore (Sydney, Australia); 1.5 ml microcentrifuge tubes 

were obtained from All-Lab Scientific (Sydney, Australia); 15 and 50 ml centrifuge 

tubes were from Biotix (Melbourne, Australia); while 200 and 1000 μl pipette tips 

were purchased from ThermoFisher Scientific (Melbourne, Australia). 

 

2.2 Techniques 

2.2.1 Cell culture 

2.2.1.1 HEM cells 

HEM cells were cultured with Medium 254 supplemented with 1% (v/v) Human 

Melanocyte Growth Supplement and 1% (v/v) Penicillin-Streptomycin-Glutamine. 

The spent culture media was discarded and replaced with fresh media every three to 

four days. The cells were grown in 75 cm² tissue culture flasks, which were placed in 

a 5% CO₂ cell incubator that was maintained at 37°C. 
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2.2.1.2 MM418-C1 and MM418-C5 melanoma cell lines 

RPMI medium 1640 containing 10% (v/v) heat-inactivated Foetal Bovine Serum 

(FBS) plus 1% (v/v) Penicillin-Streptomycin-Glutamine, was used to culture both 

melanoma cells lines. The media was changed and replaced with fresh tissue culture 

media every two to three days. The 75 cm
2
 tissue culture flasks were used for cell 

subculturing and were placed in a 5% CO₂ incubator maintained at 37°C. 

 

2.2.2 Subculture 

2.2.2.1 HEM cells 

HEM cultures normally reached confluency between seven to ten days. Confluence 

was monitored visually using an inverted light microscope (Olympus CK2, 

Australia). 

Once confluent, the spent culture media was aspirated and the cells washed twice 

with sterile Trypsin-EDTA solution. After the second wash, the cells were incubated 

with 2 ml of sterile Trypsin-EDTA solution for 45 to 60 sec. Cells were dissociated 

by gentle tapping of the flask. The trypsinised cell suspension was collected in a 15 

ml centrifuge tube containing 4 ml of 1% (v/v) Trypsin Neutraliser and centrifuged 

(400 g for 5 min at 20°C) in a Universal 16 R centrifuge (HD Scientific, Melbourne, 

Australia). The supernatant was discarded and the cell pellet resuspended in 1 ml of 

tissue culture media. Approximately 250 μl of the cell suspension was added to a 75 

cm
2
 tissue culture flask containing 20 ml tissue culture media. Then the flask was 

capped and sprayed with 70% (v/v) ethanol before being placed in the CO2 incubator 

as described previously. In setting up for an experiment, when the cultures in the 

flask reached 80% confluency, the cells were trypsinised and added to 20 ml of 
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tissue culture media. To each 60 mm petri dish, 4 ml of cell suspension was added 

using a sterile pipette. 

 

2.2.2.2 MM418-C1 and MM418-C5 melanoma cell lines 

MM418-C1 and MM418-C5 cell cultures took between five to six days to reach 

confluency. Confluence was monitored visually using an inverted light microscope. 

When confluency reached 80%, the media in the flask was aspirated and the cells 

were washed twice with pre-warmed (37°C) sterile PBS. Then, the cells were 

washed with pre-warmed sterile Trypsin-EDTA solution. After this, 2 ml of sterile 

Trypsin-EDTA was added into the flask and the cells incubated for 1-2 min in the 

CO2 incubator. Gentle tapping of the flask from the side was used to detach the cells 

in each flask. An aliquot (0.5 ml) of the cell suspension was added to 20 ml of RPMI 

1640 medium containing 10% (v/v) FBS, 1% (v/v) penicillin-streptomycin-

glutamine in a 75 cm
2
 tissue culture flasks, as described previously (Section 2.2.1.2). 

When the cultures reached 80% confluency the cells were trypsinised. 

 

2.3 UV-irradiation 

2.3.1 UV lamp output 

The solar simulator BioSun (Vilber Lourmat, France) was the source of UVA and 

UVB radiation used to irradiate the cells. As specified by the manufacturers (Vilber 

Lourmat), the BioSun contained UVA fluorescent tubes (T-40.L) with a maximal 

output at 365 nm, and UVB fluorescent tubes (T-40.M) with a maximal output at 
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312 nm. The computer connected to the solar simulator monitored the UV radiation 

and the temperature, as seen in Table 2.1. 

Table ‎2.1 UV type, dose and exposure times used in the experiments in this thesis 

UV type 

UV Dose (J/cm
2
) 

MM418-C1 MM418-C5 HEM 

UVA 

Acute = 0.6 Acute = 0.4 Acute = 3.2 

Chronic = 0.3 Chronic = 0.2 Chronic = 1.6 

UVB 

Acute = 0.03 Acute = 0.02 Acute = 0.16 

Chronic = 0.015 Chronic = 0.01 Chronic = 0.08 

UVAB 

Acute = 0.6+0.03 Acute = 0.4+0.02 Acute = 3.2+0.16 

Chronic = 

0.3+0.015 

Chronic = 

0.2+0.015 
Chronic = 1.6+0.08 

 

2.3.2 UV type and dose  

Cells were exposed to different doses of UVA and/or UVB radiation as mentioned in 

the results section. The outputs of the UV lamps were checked regularly and the 

following UV doses and their exposure times were controlled by computer software. 

UVAB refers to cells exposed to UVA plus UVB radiation. Reference is made 

throughout the thesis to cells irradiated with UVAB radiation, and in this situation 

the cells were exposed to UVA prior to being exposed to UVB.  

The UV doses that the cells were exposed to were based on the UVB dose that was 

found to cause 50% cell death 24 h post-exposure (See Section 3). As the UVB 

component of sunlight which reaches the Earth’s surface is approximately 1/20
th

 that 

of UVA radiation (251), the latter dose was 20x that of the UVB component. Cell 

viability was determined using the MTS assay (Section 2.4). Furthermore, according 



59 | P a g e  

 

 

to Samanek et al. (2006), the doses indicated above for melanocytes equate to 8 min 

of solar UV exposure in the city of Melbourne (Australia) at midday on a summer’s 

day (January). The authors calculated that 10 min of solar exposure, under the above 

mentioned conditions, was equivalent to 1 MED (252). 

The cell lines used in this study differed with respect to their melanin content; hence 

as a result the UV doses given to each cell line was different. 

 

2.3.3 UV-irradiation of cells 

The cells were grown in 24 well plates and were used in experiments investigating 

the effect of UV radiation on cell viability (Section 2.4), melanin content (Section 

2.5) and cellular ROS levels (Section 2.6). Cells cultured in 60 mm petri dishes 

(Section 2.7) were used to study the expression of signalling pathway intermediates 

(Section 2.7), TACE and Furin (Section 2.8) and for the secretion of TNF-α by the 

cells (Section 2.9).  Once the cultures in the plates or petri dishes reached ~ 80% 

confluency, the spent tissue culture media was discarded and the cells were gently 

washed twice with pre-warmed sterile PBS. Then, the PBS was removed and 1 ml of 

pre-warmed sterile phenol red-free HBSS was gently added to the side of the well in 

a 24 well plate, while 3 ml was added to a 60 mm petri dish. The tissue culture plate 

or petri dish was placed in the middle of the shelf in the UV cabinet and was exposed 

to UV-irradiation without the lid. The cells were exposed to the type and dose of UV 

radiation as mentioned in Table 2.1. In the case of UVA, the plate and petri dishes 

were covered with a glass (10 mm thick) to avoid UVB radiation.  

Immediately following UV irradiation, the HBSS was gently aspirated from the 

tissue culture plate or petri dish, after which 1 ml of fresh tissue culture media was 
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gently added to the side of the plate or 3 ml to a petri dish. The tissue culture plates 

or Petri dishes were returned to the cell incubator for various time points as 

mentioned in the results section. 

 

2.4 Antioxidant treatments 

In those cells grown in 24 well plates, these were treated with vitamin C, where 10 

µl of a stock solution (100 mM vitamin C) was then added to 990 µl of media in a 

well of the tissue culture plate. The final concentration of vitamin C in the tissue 

culture media was 1 mM. 

For cultures treated with trolox, a stock solution of trolox (10 mM dissolved in 10% 

(v/v) DMSO) was prepared. Then, 10 µl of stock solution was added to 990 µl of 

tissue culture media in the well of a tissue culture plate. The final concentration of 

trolox in the tissue culture media was 0.1 mM. As trolox was suspended in DMSO, 

the effect of this solvent on cell viability was also examined. To 990 µl of fresh 

tissue culture media, 10 µl of the DMSO stock solution (10% (v/v) DMSO) in tissue 

culture media was added to each well of a tissue culture plate. The plates were 

placed in a 5% CO2 incubator for 24 h at 37°C before and after UV exposure. 

Cells cultured in 60 mm petri dishes were used to study the expression of signalling 

pathway intermediates, as well as that of TACE and furin. In those cultures in 60 

mm petri dish treated with vitamin C, 30 µl of a vitamin C stock solution (100 mM) 

was then added to 2970 µl of media in the dish. The final concentration of vitamin C 

in tissue culture media was 1 mM. 
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For cultures treated with trolox, a stock solution of trolox (10 mM dissolved in 10 % 

(v/v) DMSO) was prepared. Then, 30 µl of stock solution was added to 2970 µl of 

tissue culture media in the dish. The final concentration of trolox in the tissue culture 

media was 0.1 mM. As trolox was suspended in DMSO, the effect of this solvent on 

cell viability was also examined. In 2970 µl of fresh media, 30 µl of the DMSO 

stock solution (10% (v/v) DMSO) in tissue culture media was added to each dish. 

The petri dishes were placed in a 5% CO2 incubator for 24 h at 37°C before and after 

UV exposure for TACE and furin levels (Section 2.8), and for the secretion of TNF-

α by the cells (Section 2.9). For cell signalling experiments, the petri dishes were 

incubated for 24 h with the antioxidants prior to being exposed to UV radiation 

(Section 2.8). 

 

2.5 Cell viability assay 

Cell viability was determined 24 h post-UV exposure using the MTS assay. In these 

experiments, the cells were seeded into wells of a 24 well tissue culture plates in 

triplicate. The plates were incubated overnight to allow for cell attachment. On the 

next day, the tissue culture media was aspirated and the cells washed twice with pre-

warmed sterile PBS. After which, pre-warmed sterile HBSS (500 µl) was added to 

each well. Then, the cells were irradiated with different doses of UV (A and/or B) 

radiation as described in Table 2.1. Immediately post UV-radiation, the HBSS 

solution was discarded and 1 ml fresh tissue culture media was added to the sham- 

and UV- irradiated cells. 
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2.5.1 Antioxidant effects on cell viability 

At 23 h post-irradiation (see Section 2.3.2), the tissue culture media was removed 

and the UV-irradiated cells washed twice with pre-warmed sterile PBS. Then 300 µl 

of fresh tissue culture media was added to the cells followed by 60 µl of MTS 

reagent. In a blank well, 300 µl of fresh tissue culture media, along with 60 µl of 

MTS reagent, was added.  The plates were placed in the CO2 incubator (37
o
C) for 60 

min before being read at 490 nm on a CLARIOstar® plate reader (BMG LABTECH, 

Mornington, Australia). Cell viability was calculated as the percentage of treated 

viable cells compared to the sham-irradiated (control) cells – which were shown as 

100% viability. 

 

2.6 Melanin measurements 

2.6.1 Protein concentration determination 

The amount of protein in the cell cultures was measured using the Bicinchoninic 

Acid (BCA) kit as described in the manufacturer’s instructions using Bovine serum 

albumin (BSA) as the protein standard. Briefly, in a 96 well plate 10 µl of protein 

standards (0-20 µg) in duplicate and 10 µl of cell lysate were added in duplicate to 

the wells.  After which 200 μl of BCA solution was added to each well. The plates 

were incubated for 1 h at 37°C and read at 560 nm on a CLARIOstar® plate reader.  

The standards on the plate were used to establish a protein standard curve. 
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2.6.2 Melanin level 

Cells were treated with antioxidants and UV-radiation as described in section 2.4. 

After 24 h or 48 h post-exposure, the cells were washed twice with pre-warmed 

sterile PBS. After which 100 µl of 1 M NaOH was added to each well. The plates 

were agitated on a platform shaker for 30 min before 400 µl of H2O was added to 

each well. On a 96 well plate, 100 µl of melanin standards (0-10 µg) were added in 

duplicate, as well as 100 µl of cell extract were added to the wells in duplicate. The 

plates were read at 475 nm on a CLARIOstar® plate reader. The standards on the 

plates were used to establish a melanin standards curve.  

 

2.7 Formation of Intracellular ROS  

Intracellular ROS formation in the irradiated cells was detected using two different 

flow cytometry-based fluorescent assays to measure intracellular peroxide, as well as 

mitochondrial superoxide levels. 

 

2.7.1 Intracellular peroxide formation 

In order to measure the peroxide formation in the treated melanocytes and melanoma 

cells post-UV exposure, 2′,7′-Dichlorofluorescin diacetate (DCFDA) was used (253).   

A 100 μM working solution was prepared by diluting the DCFDA stock solution in 

HBSS. In 24 well plates, melanocyte and melanoma cells were grown as described in 

section 2.4.1. Prior to the cells being exposed to UV-radiation they were washed 

with 0.5 ml of sterile PBS, after which 250 µl of DCFDA solution (100 µM in 

HBSS) was added to each well. The plates were incubated for 30 min in a humidified 
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and dark incubator at 37°C and 5% CO2. This step is necessary to allow the cells to 

first take up the indicator. 

At the end of this period, the cells were washed twice with 0.5 ml of sterile PBS. 

After which the cells were exposed to UV-radiation and then treated with 

antioxidants, as previously described (Section 2.4.1). A positive control was used on 

the same plate to generate a consistent amount of peroxide. The positive control well 

in this experiment was exposed to UVB as it is known to generate peroxide (254). 

After that, the plate was incubated in the incubator for 24 h. 

At the end of the 24 h incubation period, the cells in plates were trypsinised before 

being resuspended and placed into flow cytometry tubes and centrifuged for 5 min at 

400 g. After centrifugation, the supernatant was discarded and the cell pellet 

suspended in 300 µl of PBS. The tubes were then assayed by flow cytometry 

(Section 2.7.2). 

 

2.7.2 Flow cytometry of intracellular peroxide formation 

The effect of antioxidants on the level of peroxide in UV-irradiated melanocytes and 

melanoma cells was measured by flow cytometry. For this, either 10,000 events or 

the number of events after 3 min per tube were recorded. The reason for the latter 

was because cells that were exposed to UVB and UVAB radiation generally had 

lower cell numbers and viability compared to UVA- or sham-irradiated cells and, as 

such, 10,000 events may not be achieved by the flow cytometer for these samples. In 

these experiments, each treatment was performed in triplicate and the mean 

fluorescence intensity used to measure the amount of peroxide generated in the cell. 

The BD FACSDiva™ software (Becton Dickinson, Sydney, Australia) was used to 
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import the data set to Excel Microsoft files (Excel Microsoft 2010, Redmond, 

California) for the analysis. The mean±SEM of three samples were determined and 

were represented as the fold of increase compared to untreated sham-irradiated 

controls, which was given the value of unity (1). 

 

2.7.3 Mitochondrial superoxide formation 

In order to measure superoxide production in treated melanocytes and melanoma 

cells post UV-exposure, MitoSOX™ Red mitochondrial superoxide indicator for 

live-cell imaging (Invitrogen, USA) was used (255).   A 2.5 μM working solution 

was prepared by diluting the stock solution in HBSS. Melanocyte and melanoma 

cells were grown in 24 well plates as described in section 2.4.1. Prior to the cells 

being exposed to UV-radiation, they were washed with 0.5 mL of sterile PBS, after 

which 250 µl of 2.5 µM MitoSOX Red in HBSS was added to each well. The plates 

were incubated for 30 min in a humidified and dark incubator at 37°C and 5% CO2. 

This step is necessary to allow the cells to first take up this indicator. 

At the end of this period, the cells were washed twice with 0.5 ml of sterile PBS. 

After which, the cells were exposed to UV-radiation and then treated with 

antioxidants, as previously described (Section 2.4.1). A positive control was used on 

the same plate to ensure a consistent generation of superoxide radicals. The positive 

control well in this experiment contained 3.33 mM xanthine, 1 mM EDTA, 10 mM 

potassium phosphate buffer, phenol red-free media and xanthine oxidase (4 U/ml). 

After that the plate was incubated in the incubator for 24 h. 

At the end of 24 h incubation period, the cells in the plates were added into flow 

cytometry tubes and centrifuged for 5 min at 300 g. After centrifugation, the 
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supernatant was discarded and the cell pellet suspended in 300 µl of PBS. The tubes 

were then read by flow cytometry (Section 2.7.2). 

 

2.7.4 Flow cytometry of mitochondrial superoxide formation 

The effect of antioxidants on mitochondrial superoxide levels in UV-irradiated 

melanocyte and melanoma cells was measured by flow cytometry. Here either 

10,000 events or the number of events after 3 min per tube were recorded. As stated 

in Section 2.7.2, the reason for the latter was because cells exposed to UVB and 

UVAB radiation generally had lower cell numbers and viability compared to UVA- 

or sham-irradiated cells. In these experiments, each treatment was performed in 

triplicate and the mean fluorescence intensity used to measure the amount of 

mitochondrial superoxide generated in the cell. The BD FACSDiva™ software was 

used to import the data set to Excel files for the analysis. The mean±SEM of three 

samples were determined and were represented as the fold of increase compared to 

untreated sham-irradiated controls, which was given the value of unity (1). 

 

2.8 Western blotting 

2.8.1 Preparation of cell lysates 

Following exposure to UV radiation, the cells grown in 60 mm Petri dishes were 

harvested at different time points, as described in the results section. The cells in the 

petri dishes were washed twice with ice-cold PBS (4°C) before 100 μl of ice-cold 

Lysis buffer (Appendix 1) was added. The attached cells were scraped vigorously 

using a cell scraper and the lysate was placed in a 1.5 ml microfuge tube that was 
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kept on a shaker for 20 min at 4°C. After this, the lysate was centrifuged (10,000 g 

for 5 min at 4°C), an 80 µl aliquot of the supernatant was placed in a fresh microfuge 

tube. Duplicate aliquots (5 µl) of the supernatant were used for protein 

determination, as described previously (Section 2.5.1). 

To the tubes containing the cell lysates, 20 μl of Laemmli buffer (Appendix 2) was 

added (256) and were then boiled for 5 min in a water-bath at 95°C. After which the 

samples were stored at -80°C until the proteins were resolved by SDS PAGE gel 

electrophoresis (Section 2.7.2). 

 

2.8.2 SDS PAGE gels 

SDS PAGE running gels (10%) were prepared (Appendix 3) and set in Mini Protean 

III Multicasting Chambers (BioRad, Sydney, Australia). In order to get a straight 

edge on the gel, 0.1% (w/v) SDS was carefully layered on the top of the running gel. 

Once the running gel had set, the SDS was removed and, a stacking gel (Appendix 4) 

was added along with a 10 lane comb.  

Once the stacking gel had set, the comb was removed and the whole gel placed in a 

western blot tank containing running buffer [25 mM Tris, 192 mM Glycine, 3.5 mM 

SDS, (pH8.8)]. Using a gel loading pipette tip, 5 µl of the protein markers 

[Kaleidoscope Prestained Standards (BioRad)] was placed in the first well of each 

gel while the cell protein lysates (30 µg) were added to subsequent wells. After all 

the cell lysates had been added to the gel, it was run at a constant voltage of 120 V 

for 90 min. 
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2.8.3 Immunoblotting 

Following electrophoresis, the proteins on the SDS page gel were electro-transferred 

onto a pre-wet nitrocellulose membrane, which had been pre-soaked in ice-cold 

(4°C) transfer buffer [25 mM Tris, 192 mM Glycine, 20% (v/v) Methanol] for 10 

min, using a wet transfer unit (BioRad) at a constant voltage of 105 V for 80 min. 

Once the transfer was completed, the efficiency of wet transfer was determined by 

observing the bands on the membrane, which had been soaked in Ponceau S solution 

[0.1% (w/v) Ponceau S in 0.05% (v/v) acetic acid] for 2-3 min. The stained 

membranes were either rinsed with Tris-buffered Saline Tween-20 (TBST) [20 mM 

Tris, 138 mM NaCl, 0.05% (v/v) Tween 20, pH 7.6] or water at room temperature 

(RT).  

The nitrocellulose membrane was blocked in Blocking buffer using [2.5% (w/v) 

BSA in TBST] and left on an orbital shaker for 1 h at room temperature. After that, 

the membrane was incubated in a container with 5 ml of 5% (w/v) BSA (in TBST) 

containing the primary antibody [1:1000 phospho-p38 rabbit polyclonal antibody, 

1:1000 phospho-JNK rabbit polyclonal antibody, 1:2000 phospho-ERK rabbit 

polyclonal antibody, 1:1000 furin rabbit polyclonal antibody, 1:1000 TACE (ADAM 

17) rabbit polyclonal antibody or 1:1000 tyrosinase rabbit polyclonal antibody] 

overnight with gentle agitation on a rocker at 4°C. The next day, the membrane was 

washed thrice (10 min / wash) with TBST. After which, it was placed in a container 

containing 5 ml of 2.5% (w/v) BSA (in TBST) containing the secondary antibody 

(1:2000 Goat HRP conjugated anti-Rabbit Ig) and incubated on an orbital rocker for 

1 h at RT. After which the membranes were washed thrice (10 min / wash) with 

TBST at RT. 
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After the final wash, the membrane was exposed to 1 ml Chemilucent solution 

[prepared as per the manufacturer’s instructions] for 5-20 sec (GE Healthcare, 

Brisbane, Australia)]; after which the proteins were detected using a Chemidox XRS 

system (Bio-Rad). The membrane was positioned in the Chemidox XRS unit and 

digital images were taken by CCD high-resolution camera. These images were 

analysed using Bio-Rad’s Quantity One Digital Imaging Software (Version 4.5.1). 

After a blot had been imaged on the Chemidox XRS unit, it was stripped using 

stripping buffer for 15 min at RT. Then the blot was washed thrice with TBST (5 

min/wash) at RT. After the last wash, the blot was blocked with Blocking buffer for 

1 h on the rocker at RT. Then it was washed with TBST, before being incubated in 5 

ml of 2.5% (w/v) BSA (in TBST) containing the GAPDH antibody 1:4000 with 

gentle agitation on a shaker for 1 h at RT. The GAPDH antibody was used as a 

loading control to ensure that an equal amount of cell lysate was loaded into each 

lane.  

 

2.8.4 Quantifying protein expression 

The levels of protein expression on the western blots were calculated using the 

values of pixels for the bands as detected on the images. The pixels for the protein 

and GAPDH bands were first corrected by removing the background values for the 

gel (i.e. the region of the blot which had no visible band was used to correct the 

number or pixels for the protein band of interest). The expression of the protein band 

was corrected for by its corresponding loading control. In the untreated sham-

irradiated controls, this was given the value of unity (1). The change in the level of 
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protein expression due to treatment was expressed as folds of the corresponding 

untreated control sample. 

In the case of JNK-1/2, ERK-1/2 and pTACE/mTACE expression, the fold level of 

both bands were combined when calculating total JNK, ERK or TACE expression. 

The individual contribution of isoforms in the treated cells was then calculated (See 

Appendix 4). 

 

2.9 ELISA 

The levels of TNF-α in the media of treated cells was measured 24 h post UV-

irradiation using a Human TNFα ELISA Kit (BD Biosciences) as per the 

manufacturer’s protocol. Immediately after UV exposure, 1.5 ml of fresh tissue 

culture media was added to the cells in 60 mm petri dish. In some cases, directly 

after UV exposure, 10 ng/ml of IL-1α was also added to the media, as it has been 

shown to stimulate TNFα release from UV-irradiated cells (177, 202). After 24 h, the 

media was placed in a 10 ml centrifuge tube and centrifuged (400 g) for 5 min. 

Aliquots (1 ml) were placed into a 1.5 ml microfuge tube and stored at -80°C until 

assayed, usually within 14 days. The media samples were thawed and were 

concentrated using Microcon YM-10 microconcentrators (10 kDa filter) as per the 

manufacturer‘s protocol. Briefly, 0.5 ml of media was centrifuged (4°C for 30 min at 

10,000 g) and the concentrate placed in a well of a 96 well plate and assayed for 

TNF-α as per the manufacturer’s protocol. 

Prior to the addition of the concentrated media samples, wells in a 96 well plate were 

coated with 100 μl of capture antibody solution and the plate incubated overnight at 

4°C. Then, the plate was washed thrice with Washing Buffer [PBS containing 0.05% 
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(v/v) Tween 20], before the wells were blocked by adding 300 μl of Assay Buffer 

[PBS containing 1% (w/v) BSA] for 60 min at 37°C. Then the wells were washed 

thrice with Washing Buffer. At this stage the plates were ready to be used for the 

ELISA assay. 

To duplicate wells of a prepared 96 well plate, 100 μl of TNF-α standards (0-2000 

pg/ml) were added. At the same time, the microconcentrated samples (as described 

above) were added to duplicate wells and the plate incubated at 37°C for 60 min. 

After which, the wells were washed thrice with Washing Buffer. After this step, the 

Detection Antibody (100 μl) was added to each well and the plate incubated at 37°C 

for 60 min. Next, the plate was washed thrice with Washing Buffer. After which, 100 

μl of pre-diluted Streptavidin-(HRP) was added to each well and the plate placed in 

the dark for 20 min at RT. Then, the plate was washed thrice with Washing Buffer, 

before 100 μl of substrate solution was added to each well. Next, 50 μl of stop 

solution was added to each well and the plate incubated at RT for 30 min. The plates 

were then read at 450 nm within 30 min with λ correction at 570 nm, using the 

FlexStation 3 microplate reader. The levels of TNF-α present in the media were 

determined by comparison to the standard curve. 

 

2.10 Statistical method analysis 

In this project, the GraphPad Prism program (Version 6.0, GraphPad Software,      

La Jolla, USA) was used for statistical analysis. The results of experiments in this 

project were represented as the mean ± the Standard Error of the Mean (SEM) from 

three independent experiments. The statistical significance was calculated by one-
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way ANOVA followed by Bonferroni’s multiple comparisons post-test. The results 

were measured significant if p<0.05. 

In the case of some experiments, which include the measurement of superoxide, 

tyrosinase expression, TACE and furin expression, the results of these experiments 

were represented as the mean ± Standard Deviation (SD) from one-two independent 

experiments. In these experiments, no statistical analysis were performed due to the 

low number of replicates.  
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Chapter 3. The Effect of Antioxidants on Melanocyte-Derived Cells 

3.1 Introduction 

Human skin tissue comprises three main layers; these include (from the outside): the 

epidermis, the dermis, and the hypodermis. In the epidermis, the main cell types are 

keratinocytes and melanocytes (19). About 90-95% of the cells found in the 

epidermis are keratinocytes while the rest consist of melanocytes, Langerhans cells 

and Merkel cells (19). Melanocytes produce melanin, which is the natural pigment in 

the skin (19).  It has been found that vitamin D, which is a hormone that is 

synthesised in the skin post-UVB exposure, also plays a role in skin pigmentation. 

Alghamdi et al. (2013) observed low vitamin D levels in vitiligo and in patients who 

had autoimmune diseases (257). It has been suggested that vitamin D supplements 

may help in preventing damage of melanocytes that can cause vitiligo and 

autoimmune diseases (257). Sunlight emits different types of UV radiation of which 

UVB is involved in the production of vitamin D3 in the skin (130, 196).  

A high dose of UVR is an environmental carcinogen; because it can cause damage to 

the skin and may induce skin cancer (130, 196). Melanocytes can be transformed to 

melanomas, which in general are highly metastatic cancers (258, 259). They can 

metastasise to different organs in the human body, such as the brain, liver and lungs 

(258, 260). UVR is known as the main cause of the development of melanoma; 

however the type of UV, including UVA versus UVB, period of UV exposure, the 

presence of melanocytic nevi, family history of melanoma and hereditary genetic 

mutations, can all contribute to melanoma formation (258, 260). UVR can also 

mediate different immunological and inflammatory reactions by activating receptors, 
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damaging DNA/RNA, as well as producing reactive oxygen species (ROS) (16, 

196). 

The different types of ROS produced in the skin as a result of exposure to UVR 

include superoxide anions, singlet oxygen, hydrogen peroxide and hydroxyl radicals 

(261). These ROS are short-lived molecules which may cause oxidative damage in 

DNA, cellular proteins and lipids (141). This damage can lead to the activation of 

signal transduction pathways and genetic changes which initiate carcinogenesis in 

UV-irradiated skin cells (141). It has been shown that lipid peroxidation products 

and antioxidant enzyme levels are increased in melanomas compared to benign nevi 

(55, 261). In addition to that, it was found that melanoma progression was correlated 

to the dysregulation of oxidative stress in a mouse model (55, 261). These findings 

indicate that oxidative stress/damage induced by UVR can contribute to the 

pathogenesis of melanoma (55, 261), and that antioxidants may be used as 

preventative therapy. Antioxidants have been known to reduce ROS levels in the 

skin that were induced by UVR (248).  

Cotter et al. (2007) showed that exposing the immortalised mouse melanocyte cell 

line (Melan-A) to 960 J/m
2
 UVR increased endogenous peroxide levels by 3–5 fold 

at 48 h post-irradiation, compared to unirradiated cells (261). However, pre-treating 

these cells with 1–10 mM N-acetylcysteine (NAC) significantly reduced the UV-

induced peroxide levels (261). The same UV dose also increased endogenous 

superoxide levels two-fold compared to the unirradiated cells. When the melan-A 

cells were treated with 5–10 mM of NAC, there was a modest and significant 

reduction in superoxide levels (261). 
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Vitamin C and E are considered to be the predominant antioxidants in the skin, 

which neutralize ROS before they cause oxidative stress (248, 249). However, the 

levels of vitamins that reach the skin from nutritional uptake are limited. It has been 

suggested that using topical applications of these vitamins may increase the levels of 

photoprotection in the skin. Indeed, it has been shown that topical application of 

vitamin C and E can decrease both erythema and sunburn cell formation (248, 249). 

In animal and human studies it has been shown that topical vitamin E reduced both 

sunburn and skin damage induced by chronic UVB, as well as photocarcinogenesis 

(248, 249).  

 α-Tocopherol (vitamin E) has been shown to be preventative in different conditions 

of oxidative stress (262). Treatment with α-tocopherol acetate reduced lipid 

peroxidation, oedema and erythema caused by UVB in the skin (262). In cells 

exposed to UVA radiation, α-tocopherol reduced the upregulation of IL-8 mRNA 

and protein expression along with increased the activator protein-1 (AP-1) DNA 

binding activity (262, 263).  

Muthusamy et al. (2011) found that UVB (2 kJ/m
2
) was more cytotoxic in MM96L 

melanoma cells when compared to HEM cells (196). The viability of UVB-irradiated 

MM96L cells was significantly decreased 24 h post-irradiation compared to the 

sham-irradiated controls, while no significant reduction in HEM viability post-UVB 

was observed. When both cells were treated with 0.625 µg/ml of α-tocopherol 24 h 

prior to UVB exposure, no protective effect was seen (196). 

Eberlein-Konig et al. (2005) reported that the topical application of vitamin C 

reduced the levels of free radicals and/or sunburnt cells caused by prolonged sun 

exposure (249). It has been shown that exposure to UVR can reduce vitamin levels 
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in the skin (249). Thus, it has been suggested that the application of topical vitamin 

C would confer protection to skin cells exposed to UVR (249). 

In order to maintain the normal physiologic state of the skin, ascorbic acid scavenges 

most of the ROS, resulting in the oxidation of ascorbate to dehydroascorbate. 

Despite ascorbic acid being commonly used to confer a protection and maintaining 

the physiology of the skin, it hardly penetrates the skin and its instability in 

formulations decreases its clinical ability to confer better efficacy (262, 264). 

Panich et al. (2011) found that ascorbic acid, even at high doses (120 μM), was not 

toxic to G361 human melanoma cells. These researchers found that ascorbic acid 

prevented the UVA-mediated inactivation of catalase, depletion of glutathione, and 

production of nitric acid and oxidant formation through suppression of iNOS  and 

eNOS mRNA. They concluded that UVA-dependent melanomagenesis can be 

protected by ascorbic acid, and may be due to the enhancement of the cell’s 

antioxidant defence capacity and by inhibiting nitric oxide (NO) production (265). 

As described previously, UVR plays a role in the generation of ROS, which can 

cause oxidative stress in the skin. It has been suggested that the use of antioxidants 

can reduce UV-induced ROS in skin cells (248, 249). Also, Masnec et al. (2010) 

suggested that to regulate photocarcinogenesis and photoageing in skin cells, 

adequate levels of antioxidants are essential (248). As such, the aims of this chapter 

are to investigate the effect of selected doses of UVA, UVB and UVAB on cell 

viability and ROS generation (Peroxide and Superoxide levels) in lightly pigmented 

melanoma cells (MM418-C1), darkly pigmented melanoma cells (MM418-C5) and 

human epidermal melanocytes (HEM) at 24 h post-UVR. The melanoma cells were 

chosen as they have differing melanin levels, allowing us to observe if this pigment 
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plays a protective role in reducing the effects of UV radiation on these cells. HEM 

cells were used to investigate if the effects elicited by UVR in primary melanocytes 

differed to that seen in the melanoma cells. Moreover, this study aims to look at the 

protective effect of treating these cells for 24 h before/after UVR with vitamin C and 

trolox. Consequently the effects that these antioxidants have on cell viability and 

ROS generation in UV-irradiated MM418-C1, MM418-C5 and HEM were 

investigated in this study. 

 

3.2 Results 

3.2.1 MTS optimal incubation time  

In order to be able to determine the effect of UV radiation on cell viability, the 

optimal incubation time of MTS with the cultured cells needed first to be undertaken. 

MTS measures mitochondrial activity which involves the reduction of tetrazolium 

compounds to a coloured formazan product, which can be read 

spectrophotometrically, which correlates to the number of viable cells. The 

absorbance reflects the number of metabolically active cells in the well. 

MM418-C1, MM418-C5 and HEM cell cultures were seeded (5 x 10
4
) in 24 well 

plates and incubated in a humidified atmosphere (37°C and 5% CO2) until they 

reached 80% confluency (see section 2.2.2). Then 60 µl of MTS reagent was added 

to 300 µl of fresh tissue culture media in each well and incubated at different time 

points over 4 h. The absorbance was read at 490 nm. A blank (cell-free) well was 

used to record the background and was used to correct the absorbance levels. The 

time course of the reduction of MTS by MM418-C1, MM418-C5 and HEM cells can 

be seen in Figure 3.1.  
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(A) 

 

(B) 

 

(C) 

 
Figure ‎3.1 Time course of MTS reduction by MM418-C1, MM418-C5 and HEM cells 

MTS was added to cultures of (A) MM418-C1, (B) MM418-C5 and (C) HEM cells for different times over 4 h. 

Results represent the mean±SEM of three replicates that were performed in triplicate. 
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3.2.2 Effect of UVA on cell viability 

As the majority component (95%) of sunlight is UVA, the cells were exposed to 

different doses of UVA and/or UVB radiation in the ratio of 20:1 (251). Hence 

MM418-C1 and MM418-C5 cells were exposed to different doses of UVA (up to 2 

J/cm² for MM418-C1 and 1.2 J/cm² for MM418-C5) as seen in Figure 3.2. These 

UVA doses did not have a significant cytotoxic effect on these cells. The viability of 

MM418-C1 cells fell from 100% (control) to 89% at 2 J/cm
2
 UVA exposure. UVA 

at 1.2 J/cm
2
 did not cause any loss of viability in MM418-C5 cells when compared 

to the unirradiated controls.  

(A) 

 

(B) 

 
 

Figure ‎3.2 Effect of UVA irradiation on MM418-C1 and MM418-C5 cell viability 

The viability of (A) MM418-C1 and (B) MM418-C5 cells at 24 h post-exposure to different doses of UVA was 

determined using the MTS assay and expressed as a % of that of the unirradiated controls which were given the 

value of 100%. Results represent the mean±SEM from triplicates of three separate experiments. 



81 | P a g e  

 

 

 

3.2.3 Effect of UVB on cell viability 

The cytotoxic effect of UVB radiation is considerably greater than that for the same 

UVA dose (251), therefore the cells were exposed to different doses of UVB 

radiation in order to obtain a dose that caused 50% cell death at 24 h post-irradiation. 

HEM, MM418-C1 and MM418-C5 cells were exposed to a range of UVB doses and 

the cell viability determined using the MTS assay at 24 h post-irradiation.  

In Figure 3.3 it can be seen that increasing doses of UVB radiation were cytotoxic in 

the three cell types. In MM418-C1 cells a dose of 0.04 J/cm
2 

UVB caused a 50% loss 

of cell viability at 24 h-post exposure. In the more darkly pigmented MM418-C5 cell 

line, only 0.03 J/cm
2 

UVB was required to cause a 50% drop in cell viability 24 h-

post irradiation. HEM cells on the other hand, were less affected by exposure to 

UVB radiation than the two melanoma cell lines with 0.16 J/cm
2 

UVB required to 

cause approximately 50% loss of cell viability 24 h-post irradiation. In all 

subsequent experiments, the cells were exposed to this dose of UVB radiation. As 

sunlight contains both UVA and UVB light in the ratio of approximately 20:1 (251), 

the cells were also exposed to both UVA and UVB radiation in this same ratio, as 

seen in Section 3.2.4. 
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Figure ‎3.3 Effect of UVB  irradiation on  MM418-C1, MM418-C5 and HEM cell viability 

The viability of (A) MM418-C1, (B) MM418-C5 and (C) HEM cells at 24 h post-exposure to different doses of 

UVB was determined using the MTS assay and expressed as a % of that of the unirradiated controls which were 

given the value of 100%. Results represent the mean±SEM from triplicates of three separate experiments. 

Statistical significance from sham was calculated by one-way ANOVA followed by Bonferroni’s multiple 

comparisons post-test. **p ≤ 0.01; ***p ≤ 0.001 

 

 

3.2.4 Effect of UVAB on cell viability 

The UV component of sunlight consists of 90-95% UVA and 5-10% UVB, thus the 

cells were exposed to UVA and UVB radiation at a ratio of 20:1 (251). The UVB 

dose was that determined in Section 3.2.3 for each cell line. The corresponding UVA 

dose was 20x that of the UVB dose. In the experiments when the cells were exposed 

to both UVA and UVB radiation, they were exposed to UVA prior to UVB, and for 

simplicity we have termed this as UVAB radiation. These cells were exposed to 

UVAB radiation and the viability determined 24 h post-exposure using the MTS 

assay. Due to the limited availability of HEM cells these were not exposed to UVAB 

radiation.  
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Increasing doses of UVAB radiation were shown to be cytotoxic on both melanoma 

cell lines (Figure 3.4). However no significant difference was observed in the effect 

of these doses when compared to the cytotoxic effect elicited by UVB alone (Figure 

3.3). A dose of 0.8 J/cm
2
 UVA + 0.04 J/cm

2 
UVB was shown to cause 52% of cell 

death in MM418-C1 cells. Similarly, a dose of 0.06 J/cm
2
 UVA+ 0.03 J/cm

2 
UVB 

caused 52% cell death in MM418-C5 cells. These doses were similar to that seen for 

MM418-C1 and MM418-C5 cells where 0.04 J/cm
2 

and 0.03 J/cm
2 

UVB, 

respectively caused approximately 50% cell death. The UV doses used in all 

subsequent experiments for the different melanocyte-derived cell lines are 

summarised in Table 3.1. 

 

Table ‎3.1 Types and doses of UVAB, based on 50% cytotoxicity by UVB, that were tested 

 Dose (J/cm
2
) 

Cell line UVA UVB UVAB 

MM418-C1 0.8 0.04 0.8+0.04 

MM418-C5 0.6 0.03 0.6+0.03 

HEM 3.2 0.16 3.2+0.16 
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(A) 

 

(B) 

 
 

Figure ‎3.4 Effect of UVAB irradiation on MM418-C1 and MM418-C5 cell viability 

The viability of (A) MM418-C1 and (B) MM418-C5 cells at 24 h post-exposure to different doses of UVAB was 

determined using the MTS assay and expressed as a % of that of the unirradiated controls which were given the 

value of 100%. Results represent the mean±SEM from triplicates of three separate experiments. Statistical 

significance from sham was calculated by one-way ANOVA followed by Bonferroni’s multiple comparisons 

post-test. *p ≤ 0.01; ***p ≤ 0.001  
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3.2.5 Effect of vitamin C on cell viability 

The effect of different concentrations of vitamin C (ascorbic acid) on the viability of 

MM418-C1 and MM418-C5 cells at 24 h post-exposure was tested using the MTS 

assay. Vitamin C concentrations ranging from 0.01–5 mM were added to the cells 

and after 24 h the cell viability was measured as seen in Figure 3.5.  

Vitamin C was shown to be relatively non-toxic at doses between 0.01–1 mM in 

both cell lines, however when added at doses >1 mM it caused significant cell death. 

Therefore, 1 mM vitamin C was chosen as the dose to test the effect of this 

antioxidant in the studies described in this thesis. 
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(A) 

 

(B) 

 

 

Figure ‎3.5 Effect of vitamin C  on  MM418-C1 and MM418-C5 cell viability 

The viability of (A) MM418-C1 and (B) MM418-C5 cells treated with vitamin C (0–5 mM) for 24 h was 

determined using the MTS assay and expressed as a % of that of the unirradiated controls which were given the 

value of 100%. Results represent the mean±SEM from triplicates of three separate experiments. Statistical 

significance from sham was calculated by one-way ANOVA followed by Bonferroni’s multiple comparisons 

post-test. ***p ≤ 0.001  
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3.2.6 Effect of DMSO on the viability of UV-irradiated cells 

As vitamin E is poorly soluble in aqueous solution, I used its more aqueous analog 

form trolox to measure the effect of this vitamin’s antioxidant properties. As trolox 

is partially soluble in an aqueous solution, it was necessary to solubilize it in 

dimethyl sulfoxide (DMSO) in order to obtain millimolar concentrations. Therefore, 

it was important to determine what volume of this solvent (DMSO) could be added 

to the cells that was not cytotoxic. The effect of 24 h exposure to DMSO on the 

viability of UV-irradiated MM418-C1 and MM418-C5 cells was determined, as 

shown in Figure 3.6. 

It can be seen that at concentration of 0.2% (v/v) or higher DMSO was increasingly 

cytotoxic on MM418-C1 exposed to UVB or UVAB radiation; however it did not 

affect the viability of irradiated MM418-C5 cells. In UVA-irradiated MM418-C1 

cells, DMSO at 0.5% (v/v) significantly decreased cell viability; however it did not 

affect the viability of UVA-irradiated MM418-C5 cells.   

Overall, 0.1% (v/v) DMSO was shown to cause negligible cytotoxic effects, while at 

higher concentrations there was a small amount of cell death irrespective of whether 

the cells had been exposed to UV radiation. Therefore, trolox was dissolved in 

DMSO, such that the final incubation volume of the carrier solvent used in all 

experiments was 0.1% (v/v).  
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(B) 

 

 

Figure ‎3.6 Effect of DMSO  on the viability of UV-irradiated  MM418-C1 and MM418-C5 cells 

The effect of DMSO (0-0.5% v/v) on the viability of UV-irradiated (A) MM418-C1 and (B) MM418-C5 cells 

was examined. The cells were exposed to UVA and/or UVB radiation as described in Table 3.1. Cell viability 

was determined 24 h post-UV exposure using the MTS assay. Results represent the mean±SEM from samples of 

three separate experiments. Statistical significance was calculated by one-way ANOVA followed by Bonferroni’s 

multiple comparisons post-test. Significant difference between sham and UVR is represented by (*). Significant 

difference between different DMSO concentrations in UVA-irradiated MM418-C1 is represented by (£), while in 

UVB-irradiated MM418-C1 it is represented by (#), and in UVAB-irradiated MM418-C1 cells it is represented 

by ($). ££ p ≤ 0.01, ***, ###, $$$ p ≤ 0.001  
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3.2.7 Effect of trolox on cell viability 

In section 3.2.6, it was shown that 0.1% (v/v) DMSO was tolerated by the cells. 

Therefore, trolox was suspended in DMSO at 100x final concentration and diluted in 

tissue culture media. The final concentration of DMSO in all incubations tested was 

0.1% (v/v). The effect of 24 h exposure to different concentrations of trolox           

(0–1 mM) on the viability of MM418-C1 and MM418-C5 cells was examined as 

seen in Figure 3.7. Trolox was shown to be well tolerated by the cells at 

concentrations below 0.1 mM, but at 1 mM it was shown to be cytotoxic. Therefore, 

0.1 mM trolox was used as the dose to test the effect of this antioxidant in all 

subsequent experiments outlined in this thesis. 
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               Trolox (mM) 

 

(B) 

 

 
            Trolox (mM) 

 

Figure ‎3.7 Effect of trolox  on  MM418-C1 and MM418-C5 cell viability 

The viability of (A) MM418-C1 and (B) MM418-C5 cells treated with trolox (0–1 mM) for 24 h was determined 

using the MTS assay and expressed as a % of that of the untreated controls which were given the value of 100%. 

Results represent the mean±SEM from triplicates of three separate experiments. Statistical significance from 

sham was calculated by one-way ANOVA followed by Bonferroni’s multiple comparisons post-test.              

***p ≤ 0.001  
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3.2.8 Effect of antioxidants on the viability of UV-irradiated cells 

The effect of the antioxidants Vitamin C and trolox on the viability of UV-irradiated 

(UVA, UVB and UVAB) melanocyte-derived (MM418-C1, MM418-C5 and HEM) 

cells at 24 h post-exposure was measured using the MTS assay (Section 2.4.1). The 

cells were treated with these antioxidants for 24 h before and after UV exposure. The 

aim of this experiment was to determine if these antioxidant vitamins conferred 

protective effect on the viability of these irradiated cells. Cells were treated with 

vitamin C (1 mM), trolox (0.1 mM) and DMSO (0.1% as the vehicle control for 

trolox treatment) and exposed to selected doses of UVA and/or UVB radiation (See 

Table 3.1). 

The effects of the antioxidants on the viability of UV-irradiated MM418-C1 cells are 

seen in Figure 3.8A. In the sham-irradiated controls, the addition of vitamin C, trolox 

and DMSO had no significant effect on cell viability. It was noted that trolox caused 

a slight increase in cell viability however this effect was not significant.  

While there was a slight decrease (8%) in the viability of the cells exposed to UVA 

radiation (0.8 J/cm
2
) neither vitamin C nor trolox had an effect on these cells. When 

the MM418-C1 cells were exposed to UVB, cell viability fell 52%, and by 48% 

following exposure to UVAB. In the UVB-irradiated  MM418-C1 cells, only vitamin 

C was shown to significantly enhance cell viability (14%), but trolox did not have a 

protective effect. While in the UVAB-irradiated MM418-C1 cells, neither vitamin C 

nor trolox had a significant protective effect.   

The effects of the antioxidants on the viability of UV-irradiated MM418-C5 

melanoma cells are seen in Figure 3.8B. In the sham-irradiated controls, the addition 

of vitamin C, trolox and DMSO had no significant effect on cell viability.  
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Figure ‎3.8 Effect of antioxidants on the viability of UV-irradiated MM418-C1, MM418-C5 and HEM cells 

The effect of vitamin C, DMSO and  trolox on the viability of UV-irradiated (UVA and/or UVB) (A)      

MM418-C1, (B) MM418-C5 and (C) HEM cells were measured 24 h post-exposure using the MTS assay. 

Results represent the mean±SEM from triplicate samples of three separate experiments. Statistical significance 

was calculated by one-way ANOVA followed by Bonferroni’s multiple comparisons post-test. Significant 

difference between sham and UVR is represented by (*). Significant difference between untreated and 

antioxidants in the UVB-irradiated cells is represented by (#).*,#p ≤ 0.05; ***p ≤ 0.001 
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Whereas there was a slight decrease in the viability of the cells exposed to UVA 

radiation, neither vitamin C nor trolox had an effect. When the cells were exposed to 

UVB radiation, cell viability fell 53% which was similar to that caused by UVAB 

exposure (54%). In the UVB and UVAB-irradiated MM418-C5 cells, neither 

vitamin C nor trolox conferred a protective effect on cell viability.   

The effects of the antioxidants on the viability of UV-irradiated human epidermal 

melanocytes (HEM) are seen in Figure 3.8C. In the sham-irradiated controls, vitamin 

C and DMSO had no effect on cell viability, while trolox elicited a slight protective 

effect.  

UVA radiation had no effect on HEM cell viability. Vitamin C had no effect on these 

cells. Trolox had a slight protective effect in the UVA-irradiated cells but this was 

not significantly different from the UVA-only or trolox-only values. 

When the HEM cells were exposed to either UVB or UVAB radiation, there was a 

52% loss of cell viability. Both vitamin C and trolox appeared to confer a small 

protective effect on these UV-irradiated cells. 

 

3.2.9 Effect of 60 min antioxidant pre-treatment on the viability of UV-

irradiated MM418-C1 cells 

In order to determine whether the period of antioxidant treatment used in these 

experiments were too long, the effect of a shorter exposure period of 60 min (1 h) 

was tested with respect to the viability of the most antioxidant responsive     

MM418-C1 cells exposed to UVR. In this experiment, MM418-C1 cell viability was 

measured at 24 h post-UV radiation using the MTS assay, in cells pre-exposed to 

antioxidants for either 1 or 24 h prior to exposure to UVR.  
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The effect of pre-treating the cells with the antioxidants for 1 h prior to UV exposure 

is seen in Figure 3.9A. In the sham-irradiated controls, the addition of vitamin C, 

trolox and DMSO had no significant effect on cell viability. When these cells were 

exposed to either UVA, UVB or UVAB radiation, 1 h pre-treatment with vitamin C 

or trolox did not confer any protective effect to the viability of these cells. 

The effects of prolonged treatment (24 h) with the antioxidants on the viability of 

UV-irradiated MM418-C1 cells are seen in Figure 3.9B. In the sham-irradiated 

controls, vitamin C, trolox and DMSO had no significant effect on cell viability. 

When the cells were exposed to either UVA or UVAB radiation, 24 h pre-treatment 

with vitamin C or trolox did not confer protection to these cells. In the UVB-

irradiated cells, only vitamin C given to the cells 24 h prior irradiation increased cell 

viability (14%); while trolox did not confer any protective effect. 
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Figure ‎3.9 Effect of antioxidant pre-treatment times on the viability of UV-irradiated MM418-C1 cells 

Vitamin C, DMSO and trolox were added to MM418-C1 cells for either (A) 1 h or (B) 24 h prior to exposure to 

UV (A and/or B) radiation. Cell viability was measured 24 h post-irradiation using the MTS assay. Results 

represent the mean±SEM from samples for three separate experiments. Statistical significance was calculated by 

one-way ANOVA followed by Bonferroni’s multiple comparisons post-test. Significant difference between sham 

and UVR is represented by (*). Significant difference between untreated and antioxidants in the UVB-irradiated 

cells is represented by (#). #p ≤ 0.05; ***p ≤ 0.001 
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3.2.10 Effect of antioxidants on peroxide levels in UV-irradiated cells 

Intracellular ROS levels specifically that of peroxides (O2
2-

), were quantified using 

DCFDA by flow cytometry (See Section 2.7).  The cells were treated with the 

antioxidants 24 h before and/or after being exposed to UV radiation (UVA and/or 

UVB). The antioxidants were then re-added to the cells and cellular peroxide levels 

measured 24 h post-irradiation. The cellular levels of peroxide were expressed as a 

percentage of that seen in the untreated sham-irradiated cells, which were given a 

value of 100%. 

In MM418-C1 cells treatment with vitamin C, DMSO and trolox had no effect on the 

peroxide levels in the sham-irradiated cells (Figure 3.10A). UVA radiation alone 

caused a non-significant 1.75-fold increase in peroxide levels in these cells. 

However, treatment with the antioxidants (vitamin C and trolox) had no effect on the 

peroxide levels in these irradiated cells. When the cells were exposed to UVB 

radiation, there was a significant 3.70-fold increase in peroxide levels compared to 

the sham-irradiated controls. Pre-treatment with the antioxidants caused a slight 

decrease in cellular peroxide levels but these were not statistically significant. 

UVAB radiation also significantly increased peroxide levels by 5.29-fold in these 

cells compared to sham-irradiated controls. As with that seen for the UVB-irradiated 

cells, pre-treatment with the antioxidants caused a slight decrease in peroxide levels 

but these were not statistically significant.  

In the MM418-C5 cells, treatment with vitamin C and trolox on the sham-irradiated 

cells had no effect on cellular peroxide levels (Figure 3.10B). 
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Figure ‎3.10 Effect of antioxidants on peroxide levels in UV-irradiated MM418-C1, MM418-C5 and HEM 

cells 

The effect of vitamin C, DMSO and trolox on the peroxide levels of UV-irradiated (UVA and/or UVB) (A) 

MM418-C1, (B) MM418-C5 and (C) HEM cells were measured 24 h post-exposure. Results represent the 

mean±SEM from triplicate samples for three separate experiments. Statistical significance from sham was 

calculated by one-way ANOVA followed by Bonferroni’s multiple comparisons post-test. **p ≤ 0.01,           

***p ≤ 0.001   
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UVA radiation alone increased peroxide levels by 1.20-fold in the MM418-C5 cells. 

This increase was not significant. However, the addition of the antioxidants had no 

effect on these peroxide levels. When the cells were exposed to UVB radiation, there 

was a significant increase (2.13-fold) in peroxide levels in these cells compared to 

the sham-irradiated controls. Treatment of the UVB-irradiated cells with antioxidants 

slightly increased cellular peroxide levels but this was not statistically significant. 

UVAB radiation significantly increased (2.62-fold) peroxide levels in the MM418-

C5 cells compared to the sham-irradiated controls. Antioxidant treatment (vitamin C 

and trolox) had no effect on the peroxide levels in these irradiated cells. 

In the HEM cells, treatment with vitamin C, DMSO and trolox on the sham-

irradiated cells had no effect on cellular peroxide levels (Figure 3.10C). Exposure to 

UVA radiation slightly increased peroxide levels in these cells, however, this 

increase was not significant.  However, the addition of the antioxidants had no effect 

on these levels. When the cells were exposed to UVB radiation there was a 

significant increase (3.72-fold) in cellular peroxide levels compared to sham-

irradiated controls. Treatment of these irradiated cells with the antioxidants caused a 

slight decrease in peroxide levels in these cells. UVAB radiation also significantly 

increased (4.01-fold) peroxide levels in these cells when compared to sham-

irradiated controls. In agreement to that seen for UVB-irradiated cells, pre-treatment 

with the antioxidant slightly decreased the peroxide levels in these cells but this was 

not statistically significant. 

Overall, it can be seen that pre-treatment with antioxidants did not cause any 

significant reduction in peroxide levels after these cells (MM418-C1, MM418-C5 

and HEM) were exposed to UVR.  
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3.2.11 Effect of antioxidants on superoxide levels in UV-irradiated cells 

Intracellular superoxide levels were measured on MM418-C1, MM418-C5 and HEM 

cells treated with antioxidants 24 h before and after exposure to UVR. Immediately 

post-irradiation, the antioxidants were added to the cells and after 24 h the 

superoxide levels were measured using MitSOX Red mitochondrial superoxide 

indicator by flow cytometry. The cellular levels of superoxide were expressed as a 

percentage of that seen in the untreated sham-irradiated cells, which were given a 

value of 100%. 

In the MM418-C1 cells, vitamin C, DMSO and trolox had no effect on the 

superoxide levels in the sham-irradiated cells (Figure 3.11A). UVA radiation did not 

change the superoxide levels in these cells. Treatment with vitamin C caused a slight 

decrease in superoxide levels but increasing number of experiments is needed to do 

statistical analysis for these results; unlike that of DMSO and trolox which had no 

effect. When the cells were exposed to UVB or UVAB radiation, there were no 

changes in the superoxide levels in these cells compared to that seen in the sham-

irradiated controls. Treatment with vitamin C caused a slight decrease in superoxide 

levels, while trolox had no effect. 

In the MM418-C5 cells, treatment with vitamin C, DMSO and trolox had no effect 

on the mitochondrial superoxide levels in the sham-irradiated cells (Figure 3.11B). 

UVA radiation had no effect on the mitochondrial superoxide levels. Antioxidant 

treatment had no effect on the superoxide levels in the UVA-irradiated cells. When 

the cells were exposed to UVB or UVAB radiation, there was a slight increase in 

mitochondrial superoxide levels, but these were not significant. Treatment of either 

of these irradiated cells with vitamin C caused a slight decrease in the superoxide 
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levels, but these were not significant. Trolox treatment had no effect on the 

mitochondrial superoxide levels in either of these irradiated melanoma cells. 

(A) 

 

(B) 

 

(C) 

 
 

Figure ‎3.11 Effect of antioxidants on superoxide levels in UV-irradiated MM418-C1, MM418-C5 and HEM 

cells 

The effect of vitamin C, DMSO and trolox on the superoxide levels of UV-irradiated (UVA and/or UVB) (A) 

MM418-C1, (B) MM418-C5 and (C) HEM cells were measured 24 h post-exposure. Results represent the 

mean±SEM from triplicate samples for two separate experiments. 
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When vitamin C was added to the sham-irradiated HEM cells, a slight increase in 

superoxide levels was observed. Treating the cells with DMSO and trolox had no 

effect on these levels (Figure 3.11C). 

Exposure to UVA radiation had no effect on the mitochondrial superoxide levels. 

Vitamin C slightly increased superoxide levels in these irradiated cells, while trolox 

treatment had no effect. When the cells were exposed to UVB and UVAB radiation, 

no changes of mitochondrial superoxide levels were observed. Vitamin C treatment 

slightly increased superoxide levels in these irradiated cells, while trolox had no 

effect.  

Overall, it can be seen that UVR radiation did not affect mitochondrial superoxide 

levels in these cells. In addition, treatment with any of the antioxidants did not 

significantly reduce superoxide levels after these cells (MM418-C1, MM418-C5 and 

HEM) were exposed to UVR. 

 

3.3 Discussion 

Sunlight plays a role in the ROS formation in the skin (132, 266), which has been 

known to be a major player in the development of skin cancers (132, 266). 

Moreover, exposing the skin to UVA and/or UVB radiation that are emitted by 

sunlight can induce ROS production, as well as impairing the natural defences of 

antioxidants in the skin. Also, while there are many etiological factors that can cause 

melanomagenesis, acute exposure of UVR is one of the main factors involved in this 

process (132). 

In this study, MM418-C1, MM418-C5 and HEM cells were exposed to different 

doses of UVB in order to find a dose which caused ~50% cell death (Figure 3.3). 
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These doses were chosen to study the effect of antioxidants on UV-irradiated cells 

for one important reason – if cell killing was less than 50%, then the effects elicited 

by the antioxidants on UV-irradiated cells may have been too small to detect a 

difference, while on the other hand, killing more than 50% of cells may have resulted 

in insufficient cells left alive to adequately measure the antioxidant effect. In order to 

obtain the UV doses used in this study, both melanoma cell lines were exposed to a 

wide range of UVA and UVAB doses to obtain a dose-response profile on cell 

viability (Figures 3.2 & 3.4). According to a study carried out by Samanek et al. 

(2006), 10 min of solar UV exposure in the city of Melbourne (Australia) at midday 

on a summer’s day (January) causes 1 MED on the skin of a person with type II skin 

(252). As such, the doses selected in this project equates to 8 min of solar UV 

exposure for melanocytes. 

Both MM418-C1 and MM418-C5 cells were shown to be more sensitive to UVB 

radiation than were HEM cells. Of particular interest was the observation that the 

lightly pigmented MM418-C1 cells had a similar sensitivity to UVR than did the 

darkly pigmented MM418-C5 cells. Muthusamy et al. (2011) found that UVB 

radiation was more cytotoxic on MM96L melanoma cells compared to HEM. They 

suggested that the MM96L cells either had lower melanin content or a less efficient 

repair mechanism for damaged DNA than did the HEM cells (196). 

Melanin is believed to confer a photoprotective effect to the human skin, however it 

can also exhibit phototoxic properties (265, 267). It has been assumed UV-induced 

melanin overproduction can be biologically harmful and may be involved in the 

initiation of melanoma (265, 267). 
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Jenkins et al. (2013) found that melanin in the skin generated different responses to 

UV radiation. It has a protective role in melanocytes and keratinocytes via absorbing 

UV radiation. However, the synthesis of melanin by melanocytes when exposed to 

UVR enhanced the production of intracellular ROS, which may in turn play a role in 

melanoma formation (116). 

Kvam et al. (2003) investigated membrane damage in the melanocytes of both 

pigmented and unpigmented albino mice post UVA-radiation. This UVA-induced 

damage has been shown to initiate melanoma (267). Also, they found that pigmented 

cells were less susceptible to UVA-induced membrane permeability and 

peroxidation compared to that seen in the unpigmented albino mice (267).  

De Leeuw et al. (2001) examined the effect of different levels of melanin in 

melanocytes exposed to UVA and UVB radiation. A higher melanin level was 

shown to confer a greater protection to those cells exposed to UVB, while no 

differences were observed in cells exposed to UVA radiation (268). While the effect 

of UVA on the cell lines tested had no effect on cell viability, there were differences 

in the effect elicited by UVB exposure.  

In this study, we have shown that MM418-C5 cells have more melanin than do 

MM418-C1 cells (Chapter 4). Despite having more melanin, MM418-C5 were more 

sensitive to UVB radiation than were MM418-C1 cells. This is in contrast with De 

Leeuw et al.’s (2001) study, which showed that higher levels of melanin conferred 

better protection from UVB than lower levels of melanin (268). However, as many 

studies have suggested (116, 265, 267, 269), higher doses of UVB can be more 

cytotoxic in the presence of melanin due to its double-edged effect as being photo-

protective or phototoxic post-UV exposure. On the other hand, similar to                

http://www.hindawi.com/78162093/
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De Leeuw et al.’s (2001) study, our results showed that UVA at the doses tested did 

not have a significant effect on cell viability in MM418-C1, MM418-C5 and HEM 

cells compared to that elicited by UVB radiation (Figures 3.2, 3.3 & 3.4). The results 

from the present study suggest that higher levels of melanin have photo-toxic 

properties post exposure to high doses of UVB or UVAB.  

Antioxidants in the skin, including vitamins C and E, play a vital role in the 

protection of epidermal cells from the deleterious effect of UVR (240). Vitamin C 

protects the aqueous environment, while vitamin E confers protection to the 

membranes (240). 

Doses of vitamin C up to 1 mM were shown to be well tolerated in the sham-

irradiated melanocytes and melanoma cells (Figure 3.5). However at higher 

concentrations (2–5 mM) it was shown to be cytotoxic to both melanoma cell lines, 

with MM418-C1 being more sensitive than MM418-C5 cells. 

In addition to vitamin C, the cytotoxic effect of the water soluble form of vitamin E 

(trolox) was also tested. DMSO was used as a solvent vehicle for trolox in this study 

and, as such, its effect on cell viability was also determined. In the sham-irradiated 

cells, DMSO doses as high as 0.5% (v/v) were reasonably well tolerated, however 

when applied to UV-irradiated MM418-C1 cells, a significant decrease in cell 

viability was observed (Figure 3.6). This was not observed in MM418-C5 cells 

(Figure 3.6). Therefore, a dose of 0.1% (v/v) DMSO was used in all experiments as 

it was shown to be nontoxic at this concentration. Similar to that seen for vitamin C, 

trolox at low doses was not cytotoxic, while at higher doses (1 mM) it was shown to 

cause significant levels of cell death (Figure 3.7). As with that seen for vitamin C, 

trolox was more cytotoxic against MM418-C1 cells and this could relate to the lower 
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melanin levels within these cells. Further experiments would need to be performed to 

confirm if melanin itself confers protection against very high levels of antioxidants 

in these pigmented cells.  

In this study, neither vitamin C (1 mM) nor trolox (0.1 mM) treatment had any effect 

on the viability of UV-irradiated MM418-C1, MM418-C5 and HEM cells. In the 

MM418-C1 cells, vitamin C significantly increased the viability of the cells post-

UVB exposure, while trolox had no effect on these cells. Moreover, none of the 

antioxidants conferred a protective effect to MM418-C5 cells post-UVB and-UVAB 

exposure. In the HEM cells, both antioxidants caused a slight increase in cell 

viability post-UVB and-UVAB exposure but these were not significant (Figure 3.8). 

Vitamin E   has  eight  naturally  occurring  compounds  of  which  α-tocopherol is 

the most abundant form and has the highest biological activity (243). It confers a 

protection to the lipophilic cellular structures from the damage caused by oxygen 

free radicals. However, some studies have shown α-tocopherol’s cellular functions 

are independent of its antioxidant/radical scavenging ability (243, 270). These have 

suggested that trolox may have less of an effect on cell viability or free radicals 

generated from high doses of UVR. 

Peus et al. (2000) found that pre-treating keratinocytes for 24 h with 20 μg/ml of 

trolox enhanced the survival of cells exposed to 0.4 kJ/m
2 

of UVB (128). They also 

found that the protective effect of this form of vitamin E on keratinocytes was 

reduced by increasing the pre-treatment time before UVB exposure (128). The 

results of this study may help explain why the 1 h pre-treatment did not enhance the 

viability of the UV-irradiated MM418-C1 cells (Figure 3.9). Muthusamy et al. 
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(2011) found that pre-treating melanocytes and MM96L for 24 h with α-tocopherol 

(0.625 μg/ml) did not confer protection to these cells from UVB radiation (196). 

Thus, these findings together suggest that these antioxidants do not directly protect 

these cells from the cytotoxic effects of high UVR doses. The effect of pre-

incubation of the antioxidants on cell survival post-UV should be examined to 

determine the optimal time and dose which confers maximal protection to the 

irradiated cells. 

It has been found that, UVB exposure can generate ROS, which can cause 

carcinogenesis through DNA damage and activation of cytokines (243).  It has been 

suggested that antioxidants may play a role in reducing the oxidative damage caused 

by UVB that may lead to the induction of skin cancer in mice (243). 

UV irradiation has been shown to induce ROS formation in the skin including 

hydrogen peroxide, superoxide, hydroxyl radicals and singlet oxygen (261, 271). 

Redmond et al. (2014) studied the direct effects of UVA on human fibroblasts, 

keratinocytes and melanocytes, and found that toxicity was lower in the pigmented 

melanocytes compared to the other cells (272). In agreement with cell viability 

findings, UVA (10 J/cm
2
) generated less ROS in melanocytes compared with other 

cell types – and this may be due to the presence of melanin. Redmond et al. (2014) 

suggested that melanin conferred protection against UVA irradiation by its ability to 

absorb these UV photons (272). 

In this study, the selected UVA doses did not increase peroxide levels in UV-

irradiated melanocyte and melanoma cells, which is in contrast with the study by 

Redmond et al. (2014). The difference observed in the results may be due to UVA 

doses and cell lines used in this study. In my study, the UVA doses were about       
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3–10-fold lower than those used in the study by Redmond et al. (272). Furthermore, 

both of the antioxidants used in this study had no effect on peroxide levels. 

However, UVB and UVAB significantly induced peroxide levels in these cells, with 

the lowest increase in peroxide levels being observed in MM418-C5 cells, which 

suggests that melanin may prevent or maintain the formation of these ROS (Figure 

3.10). 

Peus et al. (2000) observed that trolox inhibited H2O2 levels in UVB-irradiated 

keratinocytes in a concentration-dependent manner. This reduction of H2O2 levels by 

trolox led to modulated phosphorylation levels of EGFR, ERK and p38 in these 

irradiated cells (128). However, in the irradiated melanocyte-derived cells these 

antioxidants did not have a modulatory effect on ROS production. Thus, in 

comparison with previous studies, my findings suggest that prolonged of pre-

treatment with antioxidants (ascorbic acid and trolox) may confer a photo-protective 

effect, as it may help in quenching the generated peroxide levels generated as a result 

of UV exposure. 

Cotter et al. (2007) showed that different concentrations of the antioxidant NAC   

(1–10mM) decreased peroxide levels generated in UV-irradiated mouse primary 

melanocytes. While, there was an increase in superoxide levels at 24 h post-UV 

exposure, the authors found that the protective effect of NAC on peroxide levels was 

greater (261). They suggested that there may be a direct interaction between the UV 

and melanin, which induces superoxide formation but this is not modulated by 

cellular GSH levels (261, 273). In this study, cellular GSH levels were not examined, 

however in future studies a study of the protective effect of GSH antioxidants is 

recommended. 
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It was shown that when endogenous sensitizers absorb UV light, and in that process 

become excited, they can generate ROS. These ROS can interact with DNA, 

proteins, and fatty acids causing oxidative damage (7, 274). Tada et al. (2010) 

showed that melanin has an ability to scavenge ROS, especially O2
•−

 and 
1
O2 (275). 

Melanin also has a photoprotective effect, with two proposed underlying 

mechanisms as follows: (i) an efficient UV filter, and (ii) as a scavenger of ROS (7). 

In addition, the interaction between melanin and the superoxide anion (O2
•−

) has 

been suggested to be involved in the pivotal photoprotective mechanism of this 

cellular pigment (276, 277). As this study confirmed, melanin has a scavenging or 

quenching activity against O2
•−

 and 
1
O2 (275). In contrast to its photoprotective 

function, it was recently reported that melanin – especially pheomelanin – also acts 

as a potent UVB photosensitizer that generates ROS upon UV irradiation (110). 

Thus, it has been suggested that melanin sometimes behaves like a double-edged 

sword and can be either beneficial or deleterious  (278). 

The results observed in this study suggest that the doses of UVA, UVB and UVAB 

used are not directly involved in the production of superoxide in MM418-C1, 

MM418-C5 and HEM cells (Figure 3.11). These results are in agreement with Cotter 

et al. (2007) who showed that in melanocytes, UVR generated more peroxide levels 

than superoxide levels in melanocytes (261). 

Vitamin C was shown to only confer protection on the viability of less-pigmented      

MM418-C1 cells post-UVB exposure, but not in MM418-C5 and HEM cells. Trolox 

had no protective effect on any of the cell lines tested. Moreover, UVB and UVAB 

significantly increased the peroxide levels in all cells, with the highest levels 

observed in MM418-C1 cells and the lowest in MM418-C5 cells. This suggests that 

UVB can generate peroxide in melanocytes and melanoma cells. Furthermore, 
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melanin can maintain and reduce peroxide levels in these cells following exposure to 

UVB and UVAB radiation. However, as no significant changes were detected with 

antioxidant treatment, this suggests that either the sampling times or doses used were 

insufficient to quench the peroxide levels generated by UV exposure. These findings 

also suggest that the protective effect of vitamin C in UVB-irradiated MM418-C1 

cells was not from its scavenging effect on ROS, but may be due to a different 

mechanism or pathway. It may be possible that the weak photo-protective effect of 

these vitamins on HEM and melanoma cells could be improved by prolonging the 

time of pre-treatment with antioxidants, or by exposing the cells to less cytotoxic UV 

doses. Furthermore, as no significant changes in superoxide levels were measured 

with or without UV, and in the presence or absence of antioxidants, it suggested that 

the doses used in this study did not generate superoxide levels in these cells.  
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Chapter 4. The effect of antioxidants on tyrosinase expression and 

melanin content 

4.1 Introduction 

Epidermal melanocytes produce melanin, which is a pigment responsible for giving 

skin its colour and for conferring protection from the deleterious effects of UV 

radiation (279). Abnormalities in melanomagenesis have been observed in many skin 

diseases, including melanoma (280). 

In melanocytes, melanin synthesis is induced by the binding of α-melanocyte 

stimulating hormone (α-MSH) to the melanocortin-1 receptor (MC1R). This binding 

process upregulates the cyclic adenosine monophosphate (cAMP) pathway (280). 

Upregulated cAMP activates microphthalmia-associated transcription factor (MITF), 

which is the master gene responsible for melanocyte differentiation. MITF activates 

at least three enzymes which are necessary for the synthesis of melanin, these 

enzymes include tyrosinase-related protein 1 (TRP1), tyrosinase-related protein 2 

(TRP2) and tyrosinase (280).   

Tyrosinase is a copper-containing metalloglycoprotein and it is the rate-limiting 

enzyme in melanin synthesis. It has several substrates, including L-tyrosine, 

dihydroxyphenylalanine  (L-DOPA) and 5,6-dihydroxyindole (90). Synthesis of 

melanin depends on the amino acid tyrosine (95, 279). Briefly, L-tyrosine is 

hydroxylated to form L-DOPA, which is oxidized to form L-DOPA quinone, which 

in turn is processed and forms either pheomelanin (reddish pigment) or eumelanin 

(brownish-black pigment) (91, 279). Two important events result in cutaneous 

pigmentation: firstly, melanin synthesis by melanocytes and secondly, the 

transmission of melanin-containing melanosomes to neighbouring keratinocytes. 
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However, in all types (I-VI) of human skin the number of melanocytes per area of 

skin is constant, while within keratinocytes the size, number and distribution of 

melanosomes can vary  (281).  

Melanin has been shown to have a photoprotective role from investigations reporting 

the correlation between the incidence of sun-induced skin cancer and skin 

pigmentation levels (281, 282). Moreover, people with fair skin are about 70 times 

more likely to develop skin cancer than are people who have dark skin (281, 283). 

The melanin shielding effect results from the ability of eumelanin to act as a physical 

barrier to UVR, which reduces its ability to penetrate through the epidermis (281). 

Moreover, much more eumelanin is present in dark skin compared to fair skin, which 

confers greater protection against UV-induced damage in the former. Also, the 

photoprotective properties of eumelanin are well documented to be superior to 

pheomelanin. Gloster et al. (2006) and Halder et al. (1995) mentioned that the 

melanin of people with dark skin has double the protective effect to that seen in fair 

skinned people in preventing UVB in penetrating the epidermis (111, 281, 284). 

Only 55% of UVA and 24% of UVB from UVR exposure penetrated the epidermis 

of fair skinned individuals, while in dark skin only 17.5% of UVA and 7.4% of UVB 

penetrated the same region (281, 284). 

It is well known that melanin confers protection in the skin against UV-induced 

photo-damage. Melanin itself can also be toxic post-UVR exposure (281, 285). For 

example, Kvam et al. (1999) observed that induced melanin synthesis in human and 

mice melanoma cell lines did not confer protection against UVA-induced oxidative 

DNA base damage. UVA irradiation was shown to double 8-OHdG levels in human 

melanoma cells that had a high melanin content compared to those with low melanin 
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levels (285). They suggested that the induction of premutagenic UVA-induced 

oxidative DNA base damage was due to melanin synthesis and not its level (285).  

A study conducted in vivo suggested that melanin – mainly pheomelanin – can cause 

cell death because it works as a sensitizer for UVA and UVB radiation (110, 281). In 

UVA-irradiated skin cells, melanin has been shown to act as a photosensitizer, 

producing ROS that induced single strand DNA breaks (281, 286, 287). 

Pheomelanin is prone to photodegradation, resulting in the production of superoxide 

anions and hydrogen peroxide, which could cause DNA mutations in melanocytes or 

other cell types (281). Melanocytes containing pheomelanin have a higher rate of 

apoptotic cell death post-UVR than do cells containing eumelanin (281, 288). In 

addition to this, pheomelanin induces histamine release, which contributes to oedema 

and erythema induced by sun exposure in fair skinned individuals (281, 289).  

Hill et al. (2000) observed that in mouse cell lines possessing different melanin 

content, UVB exposure induced pigment production which was shown to be photo-

protective (288). Induced pigment levels were shown to act as a photosensitizer for 

cell survival post-UVA exposure (288). Moreover, in pigmented mouse melanocytes 

(melan-A and melan-B) UVB caused more DNA damage and the cells were more 

sensitive to killing compared to albino melanocytes (melan-C) (288). However, 

melanin conferred protection to these cells from killing by UVA (288). UVA caused 

more DNA damage in the heavily-pigmented cells compared to the lightly-

pigmented cells (288). However, these heavily-pigmented cells were resistant to 

killing by UV. It was found that increased DNA damage in the lightly-pigmented 

cells post-UVA was due to pheomelanin acting as a photosensitizer (288). Noonan et 

al. (2012) showed that UVA can initiate melanomas and involves melanin, and 

occurs in association with oxidative DNA damage in melanocytes (290). However, 
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DNA damage induced directly by UVB initiated melanoma formation in a pigment-

independent manner (290).  

Melanocytes may be protected by endogenous melanin that directly absorbs UV-

generated photons and oxygen radicals, however at higher UV doses melanin can be 

oxidized, leading to the generation of ROS (291). In the absence of UV exposure, the 

pro-oxidative nature of melanin production is directly associated with higher 

melanocyte basal levels of intracellular ROS, which increase significantly following 

p16 depletion (116). Jenkins et al. (2013) stated that the existence of melanin in the 

skin appears to be double-sided; on the one hand, melanin protects melanocytes and 

proximate keratinocytes in the skin via its ability to absorb UV radiation, but on the 

other hand, melanin synthesis in melanocytes causes higher levels of intracellular 

ROS that may increase an individual’s tendency to develop melanoma (116). 

It has been found that the melanocytes were exposed to high levels of oxidative 

stress by hydrogen peroxide and other types of ROS that were generated  through  

melanogenesis (279, 292). It has been shown that ROS play an important role in 

regulating melanin synthesis, as inhibitors or scavengers of ROS generation were 

found to reduce UV-induced melanogenesis (279, 293). Thus, it has been suggested 

that using antioxidants may reduce UV-induced melanomagenesis. Chakraborty et 

al. (1996) showed that the expression of proopiomelanocortin (POMC), which is 

complemented by α-MSH production and release, was induced by UVB in 

keratinocytes and melanocytes. This increased expression of POMC was reduced by 

the intracellular sulfhydryl free radical scavenger NAC. They suggested that UVB-

induced POMC expression might include a cellular response to oxidative stress (279, 

294). Endogenous antioxidant stimulation by metallothionein reduced melanin 

synthesis in melanocytes (279, 295). Consequently, using antioxidants to confer a 
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protection to human skin from the deleterious effects of UVR is considered a trend 

and has, in recent years, received increasing attention in the fields of dermatology 

and new skin care product development (279, 296). 

Thus, the aims of this study are firstly, to observe the effect of acute or chronic dose 

of UV radiation on tyrosinase levels in the MM418-C1, MM418-C5 and HEM cells.  

In other words, does a single large UV dose induced expression of tyrosinase to a 

greater extent than does two smaller doses? The second aim of this study is to 

observe the effect of an acute or chronic dose of UV radiation on melanin levels, in 

order to see if a single large UV dose enhanced production more than did two 

smaller doses. The third aim of this study is to investigate if vitamin C and trolox 

have an effect on melanin levels in melanocyte and pigmented melanoma cells post 

UV-irradiation. 

 

4.2 Results 

4.2.1 Effect of acute and chronic doses of UV on tyrosinase expression in 

melanocyte- derived cells 

The effect of an acute or chronic dose of UVR on tyrosinase levels in the 

melanocyte-derived cells were examined in order to see if a large single UV dose 

induced greater expression of tyrosinase than did two smaller doses (0.5 single dose 

each exposure) given 24 h apart. The aim of these experiments was to observe if 

tyrosinase expression (Figure 4.1) was increased by (a) single acute UV exposure or 

(b) chronic exposure of UV radiation in MM418-C1, MM418-C5 and melanocytes. 
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MM418-C1 cells were exposed to a single dose UVA (0.8 J/cm
2
) and/or UVB (0.04 

J/cm
2
) or two chronic doses (0.4 J/cm

2
 UVA and/or 0.02 J/cm

2
 UVB) given 24 h 

apart, the results of which are shown in Figure 4.2. 

 

(A) 

 
 

(B) 

 
 

(C) 

 
 

Figure ‎4.1 A representative Western blot showing changes in tyrosinase expression in acute/chronic UV-

irradiated (A) MM418-C1, (B) MM418-C5 and (C) HEM cells 

MM418-C1 cells were exposed to either a single dose UVA (0.8 J/cm2) and/or UVB (0.04 J/cm2) or two chronic 

doses (0.4 J/cm2 UVA and/or 0.02 J/cm2 UVB) given 24 h apart. MM418-C5 cells were exposed to a single dose 

UVA (0.6 J/cm2) and/or UVB (0.03 J/cm2) or two chronic doses (0.3 J/cm2 UVA and/or 0.015 J/cm2 UVB) given 

24 h apart. HEM cells were exposed to a single dose UVA (3.2 J/cm2) and/or UVB (0.16 J/cm2) or two chronic 

doses (1.6 J/cm2 UVA and/or 0.08 J/cm2 UVB) given 24 h apart. Cell lysates were run on western blots. The 

blots were probed with an anti-tyrosinase and an anti-GAPDH antibody (see section 2.8). 
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It can be seen from Figure 4.2A that exposure to either acute or chronic UVA 

radiation did not increase tyrosinase expression in MM418-C1 cells. Exposure to 

UVB did not alter tyrosinase expression in these cells. However, while an acute dose 

of UVAB radiation increased the expression of tyrosinase, this was not significant 

(Figure 4.2A). 

MM418-C5 cells were exposed to a single dose UVA (0.6 J/cm
2
) and/or UVB (0.03 

J/cm
2
) or two chronic doses (0.3 J/cm

2
 UVA and/or 0.015 J/cm

2
 UVB) given 24 h 

apart, the results of which are shown in Figure 4.2B. It can be seen that exposure to 

either acute or chronic UVA radiation did not change tyrosinase expression in 

MM418-C5 cells. Of interest was the observation that tyrosinase expression was 

decreased in these cells exposed to either acute UVB or UVAB radiation. Chronic 

exposure to UVAB also reduced tyrosinase expression in these cells, but this differed 

to that seen for chronic UVB exposure, however the latter effect was not significant 

(Figure 4.2B).  

HEM cells were exposed to a single dose UVA (3.2 J/cm
2
) and/or UVB (0.16 J/cm

2
) 

or two chronic doses (1.6 J/cm
2
 UVA and/or 0.08 J/cm

2
 UVB) given 24 h apart, the 

results of which are shown in Figure 4.2C. It can be seen that either acute or chronic 

exposure to UVA radiation did not alter tyrosinase expression in these cells. The 

same observation was also made in the cells exposed to both forms of UVB 

radiation, as well as an acute dose of UVAB radiation. Of interest was that chronic 

UVB radiation increased tyrosinase expression, but this was not significant (Figure 

4.2C). 

Tyrosinase levels were calculated from the images of the western blots as described 

in Section 2.8.4. Changes in the expression of tyrosinase were expressed as a fold 
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change to that level seen in unirradiated controls. Tyrosinase levels in the 

unirradiated controls were expressed as value of unity (1).   

(A) 

 

(B) 

 

(C) 

 
 

Figure ‎4.2 The effect of acute and chronic UV doses on tyrosinase levels in melanocyte-derived cells  

Tyrosinase activity was measured in (A) MM418-C1 (B) MM418-C5 (C) HEM following exposure to acute or 

chronic doses of UVA and/or UVB radiation. Tyrosinase levels were expressed as a ratio to that seen in sham-

irradiated controls, which was given a value of 1. Data is represented as the mean±SD from two separate 

experiments. Due to the low number of replicate samples no statistical comparisons were made.   
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4.2.2 The effect of antioxidants on melanin levels in melanoma cells 

4.2.2.1 The effect of antioxidants on melanin levels in MM418-C1 cells 

The effect of antioxidants (vitamin C, DMSO or trolox) on the melanin levels in 

lightly-pigmented MM418-C1 cells exposed to an acute or chronic doses of UV 

radiation, were examined in order to see if a large single UV dose (acute) enhanced 

more melanin production than did two smaller doses (0.5 single dose each exposure) 

(chronic) given 24 h apart. These cells were exposed to a single dose (UVA 0.8 

J/cm
2
) and/or UVB 0.04 J/cm

2
) or two chronic doses (0.4 J/cm

2
 UVA and/or 0.02 

J/cm
2
 UVB) given 24 h apart. The melanin levels were measured 48 h after the initial 

exposure to UV radiation, the results of which are shown in Figure 4.3. 

It can be seen that exposure to UVA radiation, be it acute (Figure 4.3A) or chronic 

(Figure 4.3B), did not enhance melanin formation in these cells. The addition of 

antioxidants had no effect on melanin formation in these irradiated cells. Melanin 

levels were higher in these cells following exposure to either acute or chronic UVB 

or UVAB radiation dose (Figure 4.3). Exposure to an acute UVB or UVAB dose 

caused a significant increase (2.0 and 2.3-fold, respectively) in melanin levels 

(Figure 4.3A), but not in cells exposed to chronic UV exposure (Figure 4.3B). When 

the MM418-C1 cells were treated with the antioxidants (vitamin C, DMSO or 

trolox), no reduction in melanin levels were observed even if these cells were 

exposed to an acute or chronic dose of UVB or UVAB radiation. This suggests that 

the antioxidants do not influence melanin production in these UV-irradiated cells. 
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(A) 

 

(B) 

 

 

Figure ‎4.3 Effect of antioxidants on melanin levels in MM418-C1 cells exposed to acute and chronic doses of 

UV radiation 

Melanin levels were measured in MM418-C1 exposed to (A) an acute dose of UVA and/or UVB or (B) a chronic 

doses of UVA and/or UVB in the presence or absence of 1 mM of vitamin C, 0.1% (v/v) DMSO and 0.1 mM 

trolox. These antioxidants were added 24 h prior and post exposure to UVR. Data is represented as the 

mean±SEM from triplicate samples from three separate experiments. Statistical significance from sham was 

calculated by one-way ANOVA followed by Bonferroni’s multiple comparisons post-test. *p ≤ 0.05 
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4.2.2.2 The effect of antioxidants on melanin levels in MM418-C5 cells 

MM418-C5 cells are darkly-pigmented melanoma cells and contain 1.43 μg 

melanin/mg cell protein, which was 2.3-fold higher than that seen in the lightly 

pigmented MM418-C1 cells. 

The effect of antioxidants on acute or chronic dose of UV radiation on melanin 

levels in these cells were examined in order to see if a large single UV dose (acute) 

enhanced more melanin production than did two smaller doses (0.5 single dose each 

exposure) (chronic) given 24 h apart. MM418-C5 cells were exposed to a single dose 

UVA (0.6 J/cm
2
) and/or UVB (0.03 J/cm

2
) or two chronic doses (0.3 J/cm

2
 UVA 

and/or 0.015 J/cm
2
 UVB) given 24 h apart. The melanin levels were measured 48 h 

after the initial exposure to UV radiation, the results of which are shown in Figure 

4.4. 

It can be seen that exposure to UVA radiation, be it acute (Figure 4.4A) or chronic 

(Figure 4.4B) did not enhance melanin formation in these cells. The addition of 

antioxidants had no effect on melanin formation in these cells exposed to UVA 

radiation. Similarly, melanin levels were unchanged in cells exposed to either acute 

or chronic UVB or UVAB exposure (Figure 4.4). When these UV-irradiated (UVB 

and UVAB) cells were treated with antioxidants (vitamin C or trolox), no change in 

melanin levels were observed in those cells exposed to acute or chronic radiation 

dose. This suggests that the antioxidants do not influence melanin production in 

these cells following exposure to UV radiation. 

When comparing Figure 4.3A and Figure 4.4A together, it appears that lightly-

pigmented cells (MM418-C1) were induced by UVB and UVAB radiation to have 

similar melanin levels to that seen in untreated darkly-pigmented cells (MM418-C5). 
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This suggests that only lightly-pigmented cells are responsive to these UV doses, 

whereas darkly-pigmented cells are already at that level of melanin and are therefore 

unresponsive. 

 

(A) 

 

(B) 

 
Figure ‎4.4 Effect of antioxidants on melanin levels in MM418-C5 cells exposed to acute and chronic doses of 

UV radiation 

Melanin levels were measured in MM418-C5 exposed to (A) an acute dose of UVA and/or UVB or (B) a chronic 

doses of UVA and/or UVB in the presence or absence of 1 mM of vitamin C, 0.1% (v/v) DMSO and 0.1 mM 

trolox. These antioxidants were added 24 h prior and post exposure to UVR. Data is represented as the 

mean±SEM from triplicate samples from three separate experiments. 
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4.2.2.3 The effect of antioxidants on melanin levels in HEM cells 

Experiments performed using MM418-C1 and MM418-C5 cells (Sections 4.2.2.1 

and 4.2.2.2) were repeated using HEM cell cultures. However, in the HEM cells, 

melanin was not detected in either the sham-irradiated controls or in those cells 

exposed to acute and chronic doses of UVR. As a result, changes were made to the 

experimental protocol in order to detect melanin levels in the HEM cells. Whereas 

the melanoma cells were grown in 24 well plates, HEM were grown in 60 mm petri 

dishes. The cells were trypsinised and the cell pellet dissolved in 250 μl of 0.2 M 

NaOH instead of 1 ml of 0.2 M NaOH. Neither of these changes resulted in melanin 

being detected in the HEM cells.  

Other numerous possible changes to the protocol were also identified. These 

included treating the cells with a melanin precursor, such as tyrosine or 3-isobuty-1-

methxlzanthine (IBMX) to enhance melanin production (267, 297). However, due to 

time limitations, these experiments were not performed (for further discussion please 

see Chapter 7). 

 

4.3 Discussion 

The effect of an acute or chronic dose of UVR on tyrosinase expression and melanin 

levels in MM418-C1, MM418-C5 and HEM were examined in order to see if a large 

single UV dose induced higher tyrosinase expression and melanin levels in the cells 

than did two smaller doses (0.5 single dose each exposure) given 24 h apart. 

MM418-C1, MM418-C5 and HEM cells were exposed to a single dose of either 

UVA and/or UVB or two chronic doses given  24 h apart. The results from this study 

may help our understanding of the role played by UVR in melanogenesis. Moreover, 
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the effect of antioxidants (vitamin C or trolox) on the melanin content was compared 

in order to investigate the role these molecules may play in this process.  

It can be seen that acute and chronic doses of UVA did not have an effect on the 

expression of tyrosinase in the cell lines examined. It was also observed that neither 

UVB nor UVAB radiation had any effect on tyrosinase expression in these cells 

(Figure 4.2).  

Panich et al. (2011) found that UVA may play a role in melanogenesis due to 

oxidative stress. They found that irradiating G361 melanoma cells with (8 J/cm
2
) of 

UVA significantly increased the cellular tyrosinase activity (265), however the UVA 

doses used in this study were 0.8 J/cm
2
 for MM418-C1, 0.6 J/cm

2
 for MM418-C5 

and 3.2 J/cm
2
 for HEM, which suggests that UVA has different effects depending on 

the doses and the type of cells exposed. However, more experiments will need to be 

performed to confirm that this is the case. 

Gu et al. (2014) looked at the effect of UVB on melanogenesis in melanocytes, cell 

differentiation and phosphorylation of MAPK.  They found that exposing 

melanocytes from skin type III to 0.02 J/cm
2
 UVB once a day for 5 days led to an 

increase in the melanin formation and the activation of c-jun N-terminal kinases 

(JNK)/p38/MITF/tyrosinase in these cells (298). In the current study, the UVB doses 

used did not induce tyrosinase activity in both pigmented melanoma cells and 

melanocytes. It should be noted that UVAB radiation also elicited a similar effect to 

that of UVB radiation with respect to tyrosinase expression.  

The doses used in this experiment were those which caused ~50% cell killing. These 

UV doses did not change the levels of tyrosinase expression in these cells. The UVB 

doses used did not enhance melanin synthesis in the cells while causing 50% cell 
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death. If the cells were exposed to smaller doses of UVR over longer periods of time, 

this may enhance tyrosinase expression, however further experiments would help 

confirm this suggestion.  

Moreover, tyrosinase is considered to be the main target of melanogenesis inhibitors 

(279) and these compounds have been used to treat abnormal skin pigmentation 

diseases (279, 299). However, microphthalmia-associated transcription factor 

(MITF), tyrosinase-related protein-1 (TRP-1) and tyrosinase-related protein-2 (TRP-

2), also contribute in the synthesis of melanin (279).  

Microphthalmia-associated transcription factor (MITF) is a key transcription factor 

for tyrosinase. When upregulated, it enhanced tyrosinase expression. MITF has also 

been shown to be closely related with melanocyte survival (300). Nishioka et al. 

(1999) investigated the effect of tyrosinase, tyrosinase related protein TRP-1 and 

TRP-2 on cell growth, differentiation and cell death in melanocytic cells. They found 

that low doses of UVB upregulated the expression of tyrosinase and TRP-1, as well 

as melanin content in these cells. The expression and activity of TRP-2 was not 

linked with pigmentation, but only with cell proliferation (301). 

Nishioka et al. (1999) observed significant suppression of cell proliferation in a 

melanoma cell line exposed to low or high doses of UVB-irradiation. They observed 

that TRP-2 expression was decreased in UVB-irradiated cells, and transfection of 

this protein was able to confer protection to these cells against the apoptotic effect of 

UVB radiation. These results suggest that the regulation of cell survival/growth of 

melanocytes irradiated with UVB is correlated to that of TRP-2 expression (301).  

These results suggest that the doses of UV used in this study were too high to have 
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an effect on tyrosinase, but may have had an effect on MITF, TRP-1 and TRP-2 with 

regards to cell survival.  

UVA can cause indirect damage to DNA through generation of ROS, while UVB 

causes direct DNA damage (299). It has been suggested that melanin confers 

protection to the cell’s DNA against the effect of UVR through either working as a 

scavenger of ROS or as a UV filter (302). In this study, the chosen dose of acute 

UVB and UVAB radiation significantly increased the melanin levels in MM418-C1, 

but not MM418-C5 cells; whereas the acute dose of UVA did not alter the melanin 

level in either cell line. Our findings suggest that the increase in melanin in MM418-

C1 induced by an acute UVB dose was not due to the activation of tyrosinase but 

due to other enzymes involved in this pathway, such as TRP-1. Nishioka et al. 

(1999) found that chronic exposure to low doses of UVB induced melanin content in 

melanocytic cells. They found that an increase in melanin content was associated 

with upregulated tyrosinase and TRP-1 expression (301).  

Moreover, the doses used here of UVB caused ~50% cell death, but had no effect on 

melanin levels in the darkly pigmented cells.  This finding suggests that UVB at the 

doses used did not affect cells with high melanin levels. 

When looking at the effect of chronic doses of UVB on both cell lines, it can be seen 

that they enhanced melanin levels. Neither UVA nor UVAB had any effect on the 

melanin levels in both cell lines. These results suggest that repeated exposure to 

lower doses of UVB radiation over a period of time will increase melanin formation. 

Panich et al. (2011) found that exposing the G361 cells to (8 J/cm
2
) of UVA 

increased tyrosinase levels but not melanin. When the UVA dose was increased to  
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16 J/cm
2
, melanin levels were significantly induced (265). The authors suggested 

that increasing the UVA doses may enhance melanin levels in the cell. 

Panich et al. (2011) also found that by pre-treating G361 cells with 120 µM of 

ascorbic acid, melanin levels fell while tyrosinase activity (or its mRNA levels) were 

unaffected post-UVA exposure (265). Additionally, they found that ascorbic acid 

conferred protection against UVA-dependent melanin synthesis. This may be due to 

improvements in the defence capacity of antioxidants and suppression in the 

production of nitric oxide in the irradiated cells (265). Recently, Panich et al. (2013) 

found that a single dose of UVA (16 J/cm
2
) significantly induced tyrosinase activity 

and the formation of melanin in G361 melanoma cells. However, a single dose of 

UVA (8 J/cm
2
) only significantly induced tyrosinase expression, but not melanin 

formation, in the same cells. They also found that pre-treating cells with Thai herb 

extracts (AVS073) for 30 min prior to UVA exposure suppressed UVA-augmented 

tyrosinase activity and inhibited melanin formation. Pre-treatment with AVS073 

suppressed cellular oxidative stress, GSH depletion and GST inactivation in G361 

melanoma cells exposed to UVA radiation. The authors concluded that the AVS073 

formula had anti-melanogenic effects, possibly through improving the cell’s redox 

state by upregulating GSH and GST levels (303). 

Yoko et al. (2004) found that treating B16 melanoma cells with 50 μg/ml of α-

tocopherol for four days significantly reduced its level of melanin. Furthermore, the 

simultaneous treatment of α-tocopherol inhibited tyrosinase activity in these cells 

(304). In this study, I observed that neither vitamin C nor trolox had a significant 

effect on melanin levels in the melanocytic cells post-UV radiation. In this 

experiment, I was unable to detect melanin levels in the irradiated HEM cells. 
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Kvam et al. (2003) found that tyrosine treatment modulated melanin synthesis in 

melanocytes post-UVA exposure. In their experiments, three types of immortalized 

mouse melanocytes were used: black mouse melanocytes (melan-A), brown mouse 

melanocytes (melan-B) and unpigmented albino mouse melanocytes (melan-C). 

When these cells were cultured in media containing tyrosine, there was an increase 

in melanin levels found in the cells (267).  

The experiments using HEM cells should be repeated and the cells could be grown in 

media containing tyrosine, which may enhance melanin synthesis. Also, it has been 

shown that IBMX can induce melanin synthesis in melanocytic-derived cells, and 

HEM cells could be treated with this compound to enhance melanin production 

(305). 

In future studies these experiments should be performed to see if they can enhance 

melanin synthesis in HEM cells. And if so, it will allow for the effect of UVR and 

antioxidants to be examined (see Chapter 7). 
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Chapter 5. The effect of antioxidants on TNF-α, TACE and furin in 

UV-irradiated melanoma cells  

5.1 Introduction 

Inflammation is a notable feature observed in many types of epithelial cancers, and 

plays a vital role in the initiation and progression of these tumours. Recently, many 

studies have shown the role that cytokines play in forming a connection between 

inflammation and cancer (306-308). Tumour necrosis factor-α (TNF-α) is a cytokine 

that plays an important role in many inflammatory and malignant diseases (306, 

309). It is a member of the TNF ligand superfamily and is a type II transmembrane 

glycoprotein of 234 amino acids (187). TNF-α exists in either a membrane-bound 

(mTNF-α) or soluble form (sTNF-α) (187). Many different types of cells can 

produce TNF-α; for example, macrophages, dendritic cells, leucocytes, fibroblasts, 

keratinocytes and melanocytes (187). TNF-α plays an important role in different 

processes including: inflammation, cellular proliferation, differentiation,  

tumorigenesis and apoptosis (187). It has been found that the soluble form of TNF-α 

is involved in most of these cellular processes, but there is increasing evidence 

showing that mTNF-α is also biologically active (187). 

It has been demonstrated in numerous studies that TNF-α induces chemokines in the 

skin (203, 310-312). In dermal endothelial cells, UVB induces nitric oxide synthase 

(iNOS) activity, which plays a vital role in UVB-induced inflammation of human 

skin (203, 313-316). 

It has been shown that UVR can stimulate both TNF-α mRNA and protein 

production in the skin (146, 196, 202, 317). The addition of IL-α to keratinocytes 

and fibroblasts has been shown to significantly enhance TNF-α secretion post-UVB 
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exposure (203). UVB, but not UVA, was shown to induce TNF-α production in 

keratinocytes and fibroblasts (146, 202).  Muthusamy et al. (2011) revealed that at 

24 h post-UV exposure, TNF-α levels were induced in human epidermal 

melanocytes (HEM) and MM96L melanoma cells treated with IL-1α   (10 ng/ml) 

and then exposed to UVB (2 kJ/m
2
) (196). When pre-treated with antioxidants         

[α-tocopherol, CO2-supercritical fluid extract of green-lipped mussels (CO2-SFE) 

and 5β-scymnol] 24 h prior to UVB exposure, levels of TNF-α secreted by HEM 

cells, but not in MM96L cells, were reduced (196).  

Cytokines may also be involved in anti- or pro-tumorigenic activities in the 

development of melanoma (318, 319). For example, it has been found that CREB-

associated proteins and ATF2 transcription factors are involved in altering the 

resistance of melanoma to UV-irradiation (318). Also, it has been reported that in 

melanoma cells, ATF2 conferred resistance to radiation through elevated 

transcription and TNF-α expression. This elevation may cause an anti-apoptotic 

signal in some melanoma cell lines (318). On the other hand, RelA was shown to 

inhibit the expression of the TNF-related apoptosis-inducing ligand receptors (319). 

Therefore, an investigation on the effect of UV radiation on TNF-α release in 

melanocyte-derived cells is warranted. Exogenous TNF-α was shown to inhibit 

apoptosis in melanoma cells with abrogated B-RAF signalling (320). Cell cycle 

arrest and apoptosis were induced by the inhibition of mutated B-RAF
V600E

 

signalling in these cells (320). However, the activation of the NF-κB pathway by the 

addition of external TNF-α, reduced apoptosis and led to melanoma cell survival 

(320). TNFα-mediated cell survival was also inhibited by the depletion of NF-κB 

subunits (p50 and p65). Together, these findings suggest that the presence of TNFα 

in the tumour microenvironment may help in melanoma progression (320). 
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Through the action of tumour necrosis factor-α converting enzyme (TACE), sTNF-α 

is cleaved from its membrane-bound precursor (189, 321). TACE is known also as 

ADAM 17 (A Disintegrin and Metalloproteinase Domain 17), which is a member of 

ADAM family of proteases (187). TACE has two forms in the mammalian cells. 

Pro-TACE is located in the endoplasmic reticulum and proximal Golgi body, while 

the mature form of TACE is found in the cytoplasm and on the plasma membrane 

(187). It was found that some metalloproteases are activated post-UV exposure in 

epidermal cells (146, 208). Skiba et al. (2005) found that the induction of TACE 

mRNA in HaCaT cells was upregulated significantly by both UVA and UVB 

irradiation (209). Additionally, they also showed that UVA increased the levels of 

TACE mRNA more than UVB did. However, the induction of TNF-α mRNA was 

not related to the time course of TACE mRNA induction in these cells (209). 

The proprotein convertase furin is localized to the constitutive secretory pathway 

(322-324), and plays an important role in the activation of many enzymes, including 

TACE and matrix metalloproteases (MMP) from their respective preproforms (209, 

325, 326). Furin is found in most cells and the phosphorylation of basic amino acid 

sites is responsible for its activation (323, 327). Recently, it has been shown that the 

enhancement of metastatic spread and the proliferation of tumour cells are linked to 

the increase of furin expression in head, neck, breast and lung cancer cells (213, 328, 

329). This could be a result of extracellular matrix degradation by the activation of 

MMPs, which in turn were activated by furin (329, 330). Skiba et al. (2005) reported 

that UVA and UVB induced furin mRNA expression in HaCaT cells (209). Huynh et 

al. (2009) found that UV type and doses had different effects on furin expression in 

keratinocyte-derived cell lines (322). They observed that UVA (20 kJ/m
2
) and/or 

UVB (2 kJ/m
2
)  irradiation downregulated furin expression in the keratinocyte cell 
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line (HaCaT cell) at 24 post-UV exposure, while UVB and UVAB induced furin 

expression in the squamous cell carcinoma cell line (Colo16) at 24 h post-UV 

exposure (146). 

The effect of UVR on the production of TNF-α and the expression of TACE and 

furin in melanocytes and melanoma cell is poorly understood. Thus, the aim of this 

study was divided into two parts. The first part was to investigate the effect that 

acute doses of UVA and/or UVB (Table 2.1), in the presence and absence of IL-1α, 

had on the production of TNF-α, and the expression of TACE and furin in both light- 

and dark-pigmented melanoma cells (MM418-C1 and MM418-C5). The second part 

was to look at the effect of vitamin C and trolox (which is the analog form of vitamin 

E) on the production of TNF-α and the expression of TACE and furin at 24 h post-

UV exposure in both cell lines. 

 

5.2 Results 

5.2.1 Effect of antioxidants on TNF-α release from UV-irradiated melanoma 

cells 

The effects of UV-radiation on TNF-α release in MM418-C1 and MM418-C5 were 

measured 24 h post-exposure in the presence or absence of antioxidants [vitamin C 

(1 mM) and trolox (0.1 mM) with DMSO (0.1% v/v)] using an ELSIA assay. IL-1α 

has been shown to enhance the production of TNF-α in melanocytes and melanoma 

cells post-UV exposure (196). The purpose of these experiments was to observe the 

effect of UV radiation on TNF-α release from melanocyte-derived cells and whether 

IL-1α enhanced its production. The effect of antioxidants on the release of TNF-α 

from these irradiated melanoma cells were also investigated.  
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5.2.1.1 Effect of antioxidants on TNF-α release from UV-irradiated      

MM418-C1 cells 

In the presence of IL-1α, TNF-α levels released from sham-irradiated controls were 

similar to that seen in the untreated cells (63.4±7.7 pg/ml vs 57.1±9.0 pg/ml) (Figure 

5.1A). When the cells were treated with vitamin C, DMSO and trolox, there was no 

change in TNF-α levels released from the cells, compared to untreated sham-

irradiated controls. In the sham-irradiated cells treated with IL-1α, the antioxidants 

slightly increased TNF-α released from these cells when compared to those cells not 

treated with this cytokine; however, this difference was not significant. 

When the cells were exposed to UVA radiation, there was a slight increase in the 

release of TNF-α compared to sham-irradiated controls (81.2±11.8 pg/ml vs 

57.1±9.0 pg/ml) (Figure 5.1B). When the UVA-irradiated cells were treated with 

vitamin C, there was a 22% reduction in TNF-α level released from the cells. Trolox 

addition also reduced TNF-α levels, while DMSO alone had no effect (Figure 5.1B). 

The addition of IL-1α to the UVA-irradiated cells resulted in a 23% reduction in 

TNF-α secreted from these cells. Treatment with vitamin C caused a 54% increase in 

TNF-α levels secreted from UVA-irradiated cells treated with IL-1α, while DMSO 

and trolox treatment were shown to have no effect. However, these changes were not 

significant. 

When the cells were exposed to UVB radiation, the level of TNF-α released from 

these cells (161.2±25.6 pg/ml vs 57.1±9.0 pg/ml) was greater than that seen in the 

sham-irradiated controls (Figure 5.1C). When the antioxidants were added to the 

UVB-irradiated cells, vitamin C increased TNF-α levels released from the cells by 

165%, however neither trolox nor DMSO had any effect. 
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(A) 

 

(B) 

 

(C) 

 

(D) 

 
Figure ‎5.1 Effect of antioxidants on TNF-α‎release‎from‎UV-irradiated MM418-C1 cells 

TNF-α levels were measured in the cells exposed to (A) sham-irradiation, (B) UVA radiation, (C) UVB radiation 

and (D) UVAB radiation. The cells were pre-treated with vitamin C (1 mM), DMSO (0.1% v/v) and trolox (0.1 

mM) 24 h prior to being exposed to UVA (0.8 J/cm2) and/or UVB (0.04 J/cm2) radiation. The antioxidants were 

added to the irradiated cells and TNF-α levels measured 24 h post-irradiation. Cells were also treated with IL-1α 

(10 ng/ml) to observe its effect on TNF-α secretion (denoted as “α” in the 𝑥-axis labels). Data is represented 

asthe mean±SEM for three separate experiments. For statistical analysis, one-way ANOVA followed by 

Bonferroni’s multiple comparisons post-test was carried out.  
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When IL-1α was added to the UVB-irradiated cells there was a 137% increase in 

TNF-α levels secreted by the cells, compared to those only exposed to UVB 

radiation. Treating the cells with vitamin C and trolox resulted in a further increase 

in the already elevated TNF-α levels (85% and 54%, respectively). DMSO treatment 

had no effect on TNF-α secretion, however, these differences were not significant. 

Following exposure to UVAB radiation, there was a two-fold increase in the level of 

TNF-α released from the cells, when compared to sham-irradiated controls 

(167.8±42.9 pg/ml vs 81.2±11.8 pg/ml) (Figure 5.1D). When the antioxidants were 

added to these irradiated cells, no effects on the levels of secreted TNF-α were seen.  

When IL-1α was added to the UVAB-irradiated cells, there was a 249% increase in 

the levels of TNF-α secreted by the cells compared to those only exposed to UVAB 

radiation. When these irradiated cells were treated with vitamin C, there was a 

further 20% increase in the level of TNF-α secreted by the cells; however treatment 

with DMSO or trolox had no effect, however, these differences were not significant. 
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5.2.1.2 Effect of antioxidants on TNF-α release from UV-irradiated MM418-

C5 cells 

The levels of endogenous TNF-α released from MM418-C5 cells were less than that 

released from MM418-C1 cells (13.41±4.5 pg/ml vs 57.1±9 pg/ml). In the presence 

of IL-1α, TNF-α levels released from sham-irradiated controls (MM418-C5 cells) 

were 49% higher than that seen in the untreated cells (Figure 5.2A). Vitamin C 

treatment in the unirradiated untreated cells reduced the levels of secreted TNF-α by 

62%; while trolox caused a slight increase by 55%. Neither of these differences were 

significant. 

 When the MM418-C5 cells were treated with IL-1α, the addition of antioxidants had 

no effect on the release of TNF-α from these cells (Figure 5.2A). In the UVA-

irradiated MM418-C5 cells, the levels of TNF-α released from these cells were 

similar to that seen in the sham-irradiated controls (Figure 5.2B). Treatment of these 

irradiated cells with vitamin C, DMSO and trolox had no effect on the secretion of 

TNF-α.  

The addition of IL-1α to the UVA-irradiated cells had no effect on TNF-α secretion. 

When these cells were treated with the antioxidants (vitamin C and trolox) or DMSO 

alone, no effects were observed. 

In the UVB-irradiated cells, the levels of TNF-α released from the cells were three 

times than that seen in the sham-irradiated controls (42.0±4.2 pg/ml vs 13.4±4.5 

pg/ml) (Figure 5.2C). The addition of vitamin C and trolox reduced the level of 

TNF-α released from the cells by 69% and 35%, respectively. Neither of these 

differences were significant. 
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Figure ‎5.2 Effect of antioxidants on TNF- α‎release‎from‎UV-irradiated MM418-C5 cells 

TNF-α levels were measured in the cells exposed to (A) sham-irradiation, (B) UVA radiation, (C) UVB radiation 

and (D) UVAB radiation. The cells were pre-treated with vitamin C (1 mM), DMSO (0.1% v/v) and trolox (0.1 

mM) 24 h prior to being exposed to UVA (0.6 J/cm2) and/or UVB (0.03 J/cm2) radiation. The antioxidants were 

added to the irradiated cells and TNF-α levels measured 24 h post-irradiation. Cells were also treated with IL-1α 

(10 ng/ml) to observe its effect on TNF-α secretion (denoted as “α” in the 𝑥-axis labels). Data is represented as 

the mean±SEM for triplicate samples from three separate experiments. For statistical analysis, one-way ANOVA 

followed by Bonferroni’s multiple comparisons post-test was carried out. 
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The addition of IL-1α to the UVB-irradiated MM418-C5 cells did not enhance the 

secretion of TNF-α by these irradiated cells. When the antioxidants were added to 

the IL-1α treated UVB irradiated cells, only vitamin C treatment caused a 26% 

reduction in the levels of TNF-α secreted from the cells, however this was not 

significant. 

In the UVAB-irradiated cells, TNF-α levels were nearly five-fold higher than that 

seen in the sham-irradiated controls (64.1±5.9 pg/ml vs 13.4±4.5 pg/ml) (Figure 

5.2D). When these cells were treated with vitamin C or trolox, there was a reduction 

in TNF-α levels by 54% and 48%, respectively.  

When the UVAB-irradiated cells were treated with IL-1α, TNF-α levels fell by 35% 

compared to the untreated irradiated cells. Further treatment with vitamin C and 

DMSO had no effect on the levels of TNF-α secreted from these cells, while trolox 

increased these levels by 39%.  The effect of trolox was shown to be not significant. 

In summary, the levels of TNF-α released from MM418-C1 cells were about four-

fold higher than those released from the MM418-C5 under all experimental 

conditions. The addition of IL-1α also caused a greater stimulation of TNF-α release 

in the MM418-C1 cells than compared to MM418-C5 cells that had been exposed to 

UVR. These results suggest that melanin may play a role in suppressing the release 

of TNF-α, especially when the cells are exposed to high UV doses.   
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5.2.2 Effect of antioxidants on TACE expression from UV-irradiated 

melanoma cells 

The effect of antioxidants on the expression of TACE in both melanoma cells were 

examined, in the presence or absence of IL-1α (10 ng/ml), at 24 h post-UV exposure. 

The cells were treated with vitamin C (1 mM), DMSO (0.1% v/v) and trolox (0.1 

mM) 24 h prior to being exposed to either UVA and/or UVB radiation. Following 

UV exposure, the antioxidants were re-added to the cells and at 24 h post-irradiation 

the expression of TACE (pTACE and mTACE) was detected using western blots. 

 

5.2.2.1 Effect of antioxidants on TACE expression from MM418-C1 UV-

irradiated cells 

The rabbit polyclonal TACE antibody used in this study detected both pTACE (120 

kDa) and mTACE (80 kDa) as seen in Figure 5.3. Changes in the expression of the 

two isoforms of TACE were expressed as a fold change to the total level (pTACE 

and mTACE) seen in the unirradiated controls. The expression of UV-induced 

pTACE and mTACE were calculated as a fraction of total TACE levels. Total TACE 

levels in sham-irradiated control were expressed as unity (1). 
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Figure ‎5.3 A representative western blot probed for TACE in MM418-C1 cells 

Changes in the level of TACE expression were observed in UV-irradiated MM418-C1 cells treated with 

antioxidants [vitamin C (1 mM), DMSO (0.1% v/v) and trolox (0.1 mM)] in the presence or absence of IL-1α. 

The cells were exposed to either sham or UVA radiation (0.8 J/cm2) in the (A) absence or (B) presence of IL-1α. 

Cells were exposed to either UVB (0.04 J/cm2) or UVAB (0.8 J/cm2 UVA + 0.04 J/cm2 UVB) in the (C) absence 

or (D) presence of IL-1α. 

 

In the sham-irradiated MM418-C1 cells, the majority (89±6%) of TACE is in the 

mature form, with the rest being pTACE (Figure 5.4A). Antioxidant treatment 

(vitamin C and trolox) or DMSO had little or no effect on the expression of TACE in 

these cells. When IL-1α was added to the sham-irradiated cells, no changes in the 

total amount of TACE was seen, although there was a slight decrease in pTACE 

levels (Figure 5.4A). When these cells (sham-irradiated + IL-1α) were treated with 

the antioxidants, only vitamin C enhanced TACE expression (1.9±0.9-fold vs 

1.2±0.6-fold). This change was due to increased mTACE levels, while those of 

pTACE were lower. Treatment with DMSO and trolox had no effect on TACE levels 

in these cells. 
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UVA radiation had no effect on TACE expression (Figure 5.4B). Treatment with 

trolox resulted in a 46% decrease in TACE levels, which was mainly due to mTACE. 

When these cells were treated with vitamin C and DMSO, no changes in TACE 

expression were observed.  In the UVA-irradiated cells treated with IL-1α, no 

changes in TACE expression were observed. A similar result was also observed 

when these cells were treated with antioxidants. 

Exposure to UVB radiation did not alter TACE levels in the MM418-C1 cells 

(Figure 5.4C). Treatment with vitamin C and DMSO had no effect on TACE 

expression in these cells, while trolox increased total TACE levels by 169%. When 

IL-1α was added to the UVB-irradiated cells, no effect on TACE levels was 

observed (Figure 5.4C). When these irradiated cells were treated with the 

antioxidants (vitamin C and trolox), no changes in the levels of TACE expression 

were seen. However, when DMSO was added to these cells, an unexpected increase 

was observed in TACE expression.  
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Figure ‎5.4 Effect of antioxidants on the expression of TACE in UV-irradiated MM418-C1 cells 

TACE (mTACE and pTACE) levels were measured in (A) sham- (B) UVA- (0.8 J/cm2), (C) UVB- (0.04 J/cm2), 

and (D) UVAB-irradiated (0.8 J/cm2 UVA+ 0.04 J/cm2 UVB) MM418-C1 cells, 24 h post-irradiation cultured in 

the presence or absence of IL-1α (10 ng/ml), and treated with either vitamin C (1 mM), DMSO (0.1% v/v), trolox 

(0.1 mM) or nothing (Controls). Data represents the mean±SD from samples for two separate experiments. No 

statistical comparisons were made due to the low number of replicate samples. 
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TACE levels were elevated (2.7±1.0-fold) in UVAB-irradiated cells mainly due to 

increased mTACE levels (Figure 5.4D). When these UVAB-irradiated cells were 

treated with vitamin C, DMSO and trolox, a slight increase in TACE levels were 

seen which was due to elevated mTACE levels. When the UVAB-irradiated cells 

were treated with IL-1α, no further increase in TACE expression was observed. 

Treatment with antioxidants caused a slight decrease in TACE expression in these 

cells. 

 

5.2.2.2 Effect of antioxidants on TACE expression from MM418-C5  

UV-irradiated cells 

As mentioned earlier (5.2.2.1), the effects of UV radiation, IL-1α and antioxidants on 

the expression of TACE in MM418-C5 cells were determined using western blots. 

The effects of these agents on the expression of pTACE and mTACE were compared 

to the level of total TACE (pTACE + mTACE) seen in the unirradiated controls, 

which was expressed as unity (1). 

In the MM418-C5 sham-irradiated controls, the majority (81±1%) of TACE was in 

the mature form, the rest being pTACE (Figure 5.6A). Treatment with antioxidants 

(vitamin C and trolox), or DMSO alone had little or no effect on TACE expression 

in these cells. When IL-1α was added to the sham-irradiated cells, no increase in 

TACE levels was seen (Figure 5.6A). When these cells (sham-irradiated + IL-1α) 

were treated with vitamin C and trolox, a slight increase of mTACE levels was 

observed. 
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Figure ‎5.5 A representative western blot probed for TACE in MM418-C5 cells 

Changes in the level of TACE expression were observed in UV-irradiated MM418-C5 cells treated with 

antioxidants [vitamin C (1 mM), DMSO (0.1% v/v) and trolox (0.1 mM)] in the presence or absence of IL-1α. In 

(A) cells were exposed to either sham or UVA radiation (0.6 J/cm2) in the (A) absence or (B) presence of IL-1α. 

Cells were exposed to either UVB (0.03 J/cm2) or UVAB (0.6 J/cm2 UVA + 0.03 J/cm2 UVB) in the (C) absence 

or (D) presence of IL-1α. 

 

UVA radiation had no effect on TACE expression (Figure 5.6B). When these cells 

were treated with vitamin C and trolox, a slight increase in TACE expression was 

seen. In the UVA-irradiated cells treated with IL-1α, TACE expression was not 

changed. Also, a slight elevation in TACE expression was observed when these 

irradiated cells were treated with vitamin C and trolox. 

Exposure to UVB radiation increased TACE levels in MM418-C5 cells (Figure 

5.6C). In addition, when these cells were treated with vitamin C, DMSO and trolox, 

there was an increase in TACE levels. When IL-1α was added to the UVB-irradiated 

cells, TACE levels were reduced compared to that seen in the irradiated cells alone 

(Figure 5.6C). Moreover, when these cells were treated with antioxidants, there was 

a reduction in the expression of TACE in these cells, which were similar to that seen 

in the untreated UVB-irradiated cells treated with IL-1α. 



146 | P a g e  

 

 

TACE levels were not changed when the cells were exposed to UVAB radiation 

(Figure 5.6D). Treating these cells with vitamin C, DMSO or trolox had no effect on 

TACE levels. When the UVAB-irradiated cells were treated with IL-1α, no change 

in TACE expression was observed. Treatment with vitamin C caused a decrease in 

TACE expression, which was unexpected and this experiment would to be repeated 

to confirm the observed result, while DMSO and trolox had no effect. 
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Figure ‎5.6 Effect of antioxidants on the expression of TACE in UV-irradiated MM418-5 cells 

TACE (mTACE and pTACE) levels were measured in (A) sham- (B) UVA- (0.6 J/cm2), (C) UVB- (0.03 J/cm2), 

and (D) UVAB-irradiated (0.6 J/cm2 UVA+ 0.03 J/cm2 UVB) MM418-C5 cells, 24 h post-irradiation cultured in 

the presence or absence of IL-1α (10 ng/ml), and treated with either vitamin C (1 mM), DMSO (0.1% v/v), trolox 

(0.1 mM) or nothing (Controls). Data represents the mean±SD from samples for one-two separate experiments. 

No statistical comparisons were made due to the low number of replicate samples. 
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5.2.3 Effect of antioxidants on Furin expression in UV-irradiated melanoma 

cells 

The effect of antioxidants on the expression of furin in both melanoma cell lines 

were examined, in the presence or absence of IL-1α (10 ng/ml), at 24 h post-UV 

exposure. The cells were treated with vitamin C (1 mM), DMSO (0.1% v/v) and 

trolox (0.1 mM) 24 h prior to being exposed to either UVA and/or UVB radiation. 

Following UV exposure, the antioxidants were re-added to the cells and at 24 h post-

irradiation the expression of furin was detected using western blots. 

 

5.2.3.1 Effect of antioxidants on Furin expression from UV-irradiated 

MM418-C1 cells 

Changes in the expression of furin were expressed as a fold change to the level seen 

in unirradiated controls. Furin levels in the unirradiated controls were expressed as 

unity (1). 

In the sham-irradiated cells, vitamin C, DMSO and trolox had no effect on furin 

levels in the MM418-C1 cells (Figure 5.8A). Furthermore, IL-1α reduced furin 

expression by 30% in these cells. When these cells were treated with DMSO or 

trolox, no changes in furin expression were observed, while vitamin C caused a 60% 

reduction. 
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Figure ‎5.7 A representative western blot probed for furin in MM418-C1 cells 

Changes in the level of furin expression were observed in UV-irradiated MM418-C1 cells treated with 

antioxidants [vitamin C (1 mM), DMSO (0.1% v/v) and trolox (0.1 mM)] in the presence or absence of IL-1α. 

The cells were exposed to either sham or UVA radiation (0.8 J/cm2) in the (A) absence or (B) presence of IL-1α. 

Cells were exposed to either UVB (0.04 J/cm2) or UVAB (0.8 J/cm2 UVA + 0.04 J/cm2 UVB) in the (C) absence 

or (D) presence of IL-1α. 

 

UVA radiation had no effect on furin expression in MM418-C1 cells (Figure 5.8B). 

Antioxidant treatment slightly decreased in furin levels. In the UVA-irradiated cells 

treated with IL-1α, furin levels were 10% higher compared to the untreated irradiated 

cells. Neither DMSO nor trolox treatment had an effect on furin expression, while 

vitamin C caused a 70% drop in expression, compared to cells not treated with      

IL-1α. 

Exposure to UVB radiation slightly reduced furin levels (Figure 5.8C). Trolox 

treatment increased furin levels by 48%, while that of vitamin C and DMSO caused 

no effect in these cells. In the UVB-irradiated cells treated with IL-1α, furin levels 

decreased by 32% in comparison to the untreated irradiated cells. When these cells 

were treated with the antioxidants, there was a slight reduction in furin levels, but in 

cells given DMSO there was a slight increase. 
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UVAB radiation caused a slight increase in furin levels when compared to the sham-

irradiated controls (Figure 5.8D). Trolox treatment increased furin levels by 34%, 

while vitamin C and DMSO had no effect in these cells. The addition of IL-1α to the 

UVAB-irradiated cells had no effect on furin expression (Figure 5.8D). When the 

antioxidants were added to these treated cells, vitamin C enhanced furin expression 

by 87% while trolox decreased levels by 66%.  
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Figure ‎5.8 Effect of antioxidants on the furin expression from UV-irradiated MM418-C1 cells 

Furin levels were measured in the cells exposed to (A) sham-irradiation, (B) UVA radiation, (C) UVB radiation 

and (D) UVAB radiation. The cells were pre-treated with vitamin C (1 mM), DMSO (0.1% v/v) and trolox (0.1 

mM) 24 h prior to being exposed to UVA (0.8 J/cm2) and/or UVB (0.04 J/cm2) radiation. The antioxidants were 

added to the irradiated cells and furin levels measured 24 h post-irradiation. Cells were also treated with IL-1α 

(10 ng/ml) to observe its effect on furin secretion. Data is represented as the mean±SD for samples from two 

separate experiments. No statistical comparisons were made due to the low number of replicate samples. 
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5.2.3.2 Effect of antioxidants on Furin expression from UV-irradiated 

MM418-C5 cells 

When comparing the effect of UV radiation, IL-1α and antioxidants on the 

expression of furin in this cell line, changes in the expression of furin were expressed 

as a fold change to the level seen in unirradiated controls. Furin levels in the 

unirradiated controls were expressed as unity (1). 
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Figure ‎5.9 A representative western blot probed for furin in MM418-C5 cells 

Changes in the level of furin expression were observed in UV-irradiated MM418-C5 cells treated with 

antioxidants [vitamin C (1 mM), DMSO (0.1% v/v) and trolox (0.1 mM)] in the presence or absence of IL-1α. 

The cells were exposed to either sham or UVA radiation (0.6 J/cm2) in the (A) absence or (B) presence of IL-1α. 

Cells were exposed to either UVB (0.03 J/cm2) or UVAB (0.6 J/cm2 UVA + 0.03 J/cm2 UVB) in the (C) absence 

or (D) presence of IL-1α. 

 

In the sham-irradiated cells, vitamin C treatment decreased furin expression by 80%, 

while trolox increased levels by 190% (Figure 5.10A). When IL-1α was added to the 

sham-irradiated cells, a slight increase in furin expression was observed. Trolox 

slightly increased furin levels of IL-1α treated cells, while treatment with vitamin C 

and DMSO did not have an effect. 
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Exposure to UVA radiation resulted in a 2.5±1.1-fold increase in furin levels (Figure 

5.10B). When these cells were treated with antioxidants, there was a slight decrease 

in furin levels. When the UVA-irradiated cells were treated with IL-1α, furin levels 

fell by 48% compared to the untreated irradiated cells. Treatment with trolox 

increased furin levels by 123%. However, neither vitamin C nor DMSO had any 

effect.  

UVB radiation enhanced the expression of furin in the cells by 60% when compared 

to the unirradiated controls (Figure 5.10C). Treating the cells with antioxidants 

slightly increased furin levels. In the UVB-irradiated cells treated with IL-1α, furin 

levels were elevated in comparison to the untreated irradiated cells, however due to a 

large degree of experimental error more data points are needed before a definitive 

statement on the effect of UVB and antioxidants have on furin expression can be 

made. When these cells were treated with the antioxidants, trolox increased furin 

expression by 18%, while neither vitamin C nor DMSO had an effect.   

UVAB radiation slightly increased furin levels when compared to the sham-

irradiated controls (Figure 5.10D). Treatment with vitamin C, DMSO or trolox had 

no effect in these cells. In the UVAB-irradiated cells treated with IL-1α, furin levels 

increased by 420% compared to that observed in the untreated irradiated cells. 

Antioxidant treatment was shown to have no effect on furin expression in these cells. 

Due to the large variation in the levels of furin detected in the UVB- and UVAB-

irradiated cells treated with IL-1α, further replicates need to be tested to confirm the 

extent by which IL-1α modulates the expression of this protein in these irradiated 

cells.  
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Figure ‎5.10 Effect of antioxidants on the expression of furin in UV-irradiated MM418-C5 cells 

Furin levels were measured in the cells exposed to (A) sham-irradiation, (B) UVA radiation, (C) UVB radiation 

and (D) UVAB radiation. The cells were pre-treated with vitamin C (1 mM), DMSO (0.1% v/v) and trolox (0.1 

mM) 24 h prior to being exposed to UVA (0.6 J/cm2) and/or UVB (0.03 J/cm2) radiation. The antioxidants were 

added to the irradiated cells and furin levels measured 24 h post-irradiation. Cells were also treated with IL-1α 

(10 ng/ml) to observe its effect on furin secretion. Data is represented as the mean±SD for samples from two 

separate experiments. No statistical comparisons were made due to the low number of replicate samples. 
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5.3 Discussion 

 To the best of my knowledge, there are only a few studies that have looked at the 

effect UVR has on the secretion of TNF-α from keratinocytes, melanocytes and their 

tumour cell derivatives. While Skiba et al. (2005), Hynh et al. (2009) and Ravi 

(2010) have investigated the effect of different UVR types on TACE and furin 

mRNA and protein expression in keratinocytes (146, 209, 322), no one has done so 

using melanocytes or melanoma cells. In this study, I have investigated the effect of 

different types of UVR on TNF-α secretion, TACE and furin expression in lightly-

pigmented MM418-C1 and darkly-pigmented  MM418-C5 melanoma cells. The cell 

lines were chosen in order to enhance our understanding of the role melanin may 

play with regards to the effect UVR has on these proteins. 

While there are studies that looked at the effect of antioxidants on TNF-α post UV-

irradiated cells (196), no studies have been performed investigating the effect of 

antioxidants on UV-irradiated melanocytes or melanoma cells on TACE and furin. In 

this study, I investigated the effect of non-enzymatic antioxidants (vitamin C and 

trolox) on TNF-α, TACE and furin in UV-irradiated melanoma cells. 

Unfortunately due to time constraints, it was not possible to investigate HEM 

(Human Epidermal Melanocytes) as part of this study. I have made suggestions in 

section 7.3 about what experiments could be performed if these cells were available.   

 

5.3.1 The effect of antioxidants on TNF-α release from UV-irradiated 

melanoma cells 

UVR has been shown to play a role in cytokine gene expression and the induction of 

TNF-α, which in turn has been shown to regulate cell signalling in keratinocytes (39, 
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196, 209) and cause a myriad of pro-inflammatory effects in the skin (203). IL-1α is 

a member of the IL-1 cytokine family, which is involved in the regulation of many 

cellular responses to injury and infection (146, 331). IL-1α is produced following 

UV radiation of keratinocytes, fibroblasts and skin equivalents under in vitro 

conditions (196-198). On neighbouring cells like melanocytes, which express IL-1 

receptors, IL-1α can initiate cell signalling in a paracrine/autocrine fashion (196, 

199, 200). Bashir et al. (2009) found that the synergistic effect of IL-1α and UVB 

enhanced the formation of TNF-α in human keratinocytes and fibroblasts (203). 

They also observed that the secretion of TNF-α was enhanced following exposure to 

UVB, but not by UVA radiation (203). In addition, Ravi (2010) found that exposure 

to the synergistic effect of IL-1α and UVAB [UVA (40 kJ/m
2
) followed by (2 kJ/m

2
) 

UVB] resulted in a significant increase in TNF-α in HEK, HaCaT and Colo 16 cells  

(146). Ravi (2010) also found that UVAB increased TNF-α formation/release from 

HEK cells (33-fold) followed by HaCaT cells (4.2-fold), with the lowest increase 

seen in Colo 16 cells (SCC cell line)(3.5-fold) when compared to their respective 

untreated UVAB-irradiated cells (146). Also, they showed that TNF-α levels fell 

80% post-UVA radiation in Colo 16 compared to sham-irradiated controls. However, 

treating the cells with IL-1α increased TNF-α secretion from UVA-irradiated cells 

compared to unirradiated controls (146). 

In this present study, IL-1α enhanced the release of TNF-α from both sham- and UV-

irradiated MM418-C1 cells. While these increases were not significant, the greatest 

increase was observed in the UVAB-irradiated cells, while the lowest increase was 

observed in UVA-irradiated cells (Figure 5.1). These results were similar to a study 

on the SCC cell line Colo 16 cells (146). In the presence of IL-1α there was an 
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increase in TNF-α levels secreted from the UV-irradiated Colo 16 cells, which was 

only statistically significant in UVAB-irradiated cells (146). 

Muthusamy et al. (2011) found that TNF-α levels were not induced by UVB in HEM 

and MM96L melanoma cells in the absence of IL-1α (196). However, when IL-1α 

was added to UVB-irradiated cells there was a significant increase in TNF-α release 

in HEM (120-fold) and MM96L melanoma cells (101-fold), compared to the sham-

irradiated untreated cells (196).  

The results obtained here show similar results to Ravi (2010) and Muthusamy et al. 

(2011) in that UVR increased the TNF-α released from cancerous epidermal cells, 

however the responses differed depending on the cell type, type of UV and the 

radiation doses used (146, 196). 

The level of TNF-α secreted from MM418-C1 cells were 4.5-fold that seen in 

MM418-C5 cells (Figures 5.1 and 5.2). The reduced levels seen in MM418-C5 cells 

may be related to the increased levels of melanin present in these cells. Exposure to 

UVA radiation did not increase TNF-α levels, even if IL-1α was present. In UVB-

irradiated cells, there was a slight increase in TNF-α levels, but IL-1α addition had 

no effect. In the UVAB-irradiated cells there was a non-significant increase in   

TNF-α levels, although IL-1α addition appeared to have a suppressive effect. The 

difference between MM418-C1 and MM418-C5 cells shows that higher melanin 

levels in the latter cells reduced the production of TNF-α in those cells exposed to 

UVR, even if IL-1α was present.   

The addition of antioxidants to the MM418-C1 cells did not have a significant effect 

on TNF-α secreted from the UV-irradiated cells, even if they were treated with      

IL-1α. In the MM418-C5 cells, vitamin C reduced TNF-α secreted from sham-
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irradiated cells, as well as in those cells exposed to UVB or UVAB radiation that 

were supplemented with IL-1α. Trolox only reduced TNF-α levels in UVAB-

irradiated cells that were not supplemented with IL-1α. Overall, it was observed that 

treatment with the antioxidants did not significantly modulate the release of TNF-α 

from the UV-irradiated melanoma cell lines. 

Muthusamy et al. (2011) found that α-tocopherol did not significantly affect the 

secretion of TNF-α from UVB-irradiated MM96L cells (196), which was similar to 

that observed in this study. Pupe et al. (2003) looked at the effect of different 

antioxidants on TNF-α mRNA levels released from UVB-irradiated keratinocytes 

(332).  When these UVB-irradiated cells were treated with 3 mM NAC, increased 

levels of TNF-α mRNA were observed. When the cells were treated with vitamin C 

(1 mM) and vitamin E (50 μM), minimal effects on TNF-α mRNA levels were 

observed. These results suggested that vitamin C and E had a weak effect on the 

levels of TNF-α mRNA released from UVB-irradiated keratinocytes (332). While 

TNF-α mRNA expression levels were not examined in this study, one can speculate 

that the antioxidants had minimal effects on these levels. 

The lower levels of TNF-α produced in the UV-irradiated darkly-pigmented 

MM418-C5 cells suggests that, due to its ability to absorb higher levels of UVB-

photons, this may have moderated the secretion of TNF-α when compared to that 

seen in melanoma cells containing less melanin. Further studies on the role that 

melanin plays in modulating UV cellular responses are warranted. Similarly, the 

effect of other antioxidants, such as NAC, has on modulating the secretion of TNF-α 

from the UV-irradiated cells, should also be investigated.   
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5.3.2 The effect of antioxidants on TACE expression in UV-irradiated 

melanoma cells 

Recently, numerous studies have focused on the importance of cytokines as a 

connection between inflammation and cancer, as TNF-α has been shown to be 

involved in many inflammatory diseases including Crohn’s disease, as well as 

ulcerative and rheumatoid arthritis (306-308). While TNF-α may play a role in 

tumour growth and metastasis by acting as an endogenous tumour promoter 

contributing to tissue remodelling and stromal development (306, 333), in another 

study it was shown to have a conflicting role in malignant diseases – where high 

doses of TNF-α damaged tumour blood vessels and was shown to be a powerful anti-

cancer agent (306, 308). Therefore, it is important to know how this cytokine is 

activated in tumour cells. 

TNF-α converting enzyme (TACE), also called metalloproteinase ADAM-17, 

cleaves membrane pre pro form mTNF-α to its soluble mature form (sTNF-α) (189, 

306, 334). TACE itself exists as two forms within the cell: an inactive pre pro form 

(pTACE) and a mature form (mTACE). Furin is one enzyme which is responsible for 

the activation of TACE in the cell (146, 187, 211).  

In this current study, the expressions of both forms of TACE were investigated at 24 

h post-irradiation in the presence or absence of IL-1α in both melanoma cell lines. 

To the best of my knowledge, no other studies have shown the effect antioxidants 

may play a role in this process in these tumour cells. 

Individual pTACE and mTACE levels were expressed as a ratio of the sum of both 

TACE forms detected in sham-irradiated controls. Ge et al. (2009) found that both 

higher levels of TACE activity and protein were present in the tumour cells and 
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tissue of the head and neck region, compared to that found in normal keratinocytes 

or oral mucosa (335). They suggested that the increase in TACE expression could 

have biological and clinical relevance which can be used as biomarkers in the 

prognosis of cancer (335). Sjarma et al. (2014) found that preventing skin 

tumorigenesis in mice can be achieved by the blocking of inflammatory events 

facilitated through the inhibition of TACE activation (306). Ravi (2010) observed 

that UVR reduced the expression of pTACE in HEK and HaCaT at 24 h post-UV 

exposure, while that of mTACE was higher in HEK, HaCaT and Colo 16 cells. Ravi 

also found that UVR increased the expression of both forms of TACE in Colo 16 

cells, however, it reduced expression in both HEK and HaCaT cells (146). In this 

study, UVR had no effect on the total expression of TACE post-UVA or UVB in 

both melanoma cells; while UVAB increased levels in these cells. This increase was 

due to higher levels of mTACE. Treating the cells with antioxidants did not affect 

the expression of pTACE or mTACE in the irradiated cells, except that trolox 

enhanced mTACE levels in the UVB-irradiated cells. The addition of IL-1α to the 

MM418-C1 cells caused no change in total TACE expression post-UV radiation, and 

treatment with the antioxidants (vitamin C and trolox) had no effect on these levels. 

Furthermore, in UVB-irradiated cells treated with IL-1α DMSO increased total 

TACE expression. Exposure of MM418-C1 cells to UVAB elevated total TACE 

expression. Treating these UVAB-irradiated cells with antioxidants caused a slight 

increase in TACE levels.  

In the MM418-C1 cells, TACE levels were not increased in the cells post-UVR. The 

addition of IL-1α did not enhance the expression of TACE in the irradiated cells. 

This differed to the results of Ravi (2010), which showed that IL-1α reduced the 

levels of both forms of TACE in HEK, HaCaT and Colo 16 cells post-UVA and -
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UVB exposure (146). In the UVAB-irradiated cells, IL-1α enhanced pTACE and 

mTACE levels in HEK and HaCaT cells, but not in Colo 16 cells. Thus, my results 

suggest that IL-1α may not have a synergistic effect with UV-radiation in both 

pigmented melanoma cells. Similar to MM418-C1, treating MM418-C5 cells with 

antioxidants did not change TACE expression either in sham-irradiated cells or post-

UV exposure. This result may not be unexpected, as both MM418-C1 and    

MM418-C5 cells are derived from the same tumour, and therefore they would be 

expected to have similar levels of TACE and furin expression. It may be beneficial 

to investigate the effect IL-1α and UVR may have on TACE and for furin expression 

in melanoma cells, by comparing cells derived from both primary and secondary 

tumours. It would be expected that the expression of both enzymes would be higher 

in cells obtained from the secondary tumour, as they undergo metastasis their levels 

of enzymes (e.g. MMPs), which degrade the extracellular matrix, would be higher to 

that seen in both benign and primary tumours.  

Overall UVR did not change the TACE levels in both melanoma cell lines and these 

results are in agreement with that seen in the SCC Colo 16 cells (146, 335). The 

addition of antioxidants did not affect the expression of TACE which suggests that 

they do not play a role in modulating its synthesis.  

The addition of IL-1α, which stimulated TNF-α production in the irradiated  

MM418-C1 cells but not MM418-C5, did not influence the expression of TACE in 

either cell. This suggests that the activation of TACE is unrelated to that of TNF-α 

production in these cells. However, further experiments are required to confirm this 

observation. 
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5.3.3 The effect on antioxidants on furin expression in UV-irradiated 

melanoma cells 

Furin is a proprotein convertase (PC) that is expressed in different tissues at low 

levels (335). It plays an important role in the process of many diseases including 

cancer metastasis (146, 220, 336, 337). UVR has been shown to induce the activity 

of many proteases in the skin (322). One of these proteases is furin, which is 

expressed in epidermal cells. As UVR is the main environmental cause of skin 

cancers, the effect it plays on furin expression in both melanocytes and melanoma 

cell lines is important but still unknown. Likewise, the effect antioxidants have on 

furin levels in melanocytic cells post-UVR is not well understood.  

Bassi et al. (2001) looked at the furin expression in a number of SCC cell lines and 

found that the most invasive cells had the highest furin expression (338). Huynh et 

al. (2009) observed that furin expression in HaCaT cells was reduced post-UV 

exposure, but it increased in Colo 16 cells exposed to UVB or UVAB radiation 

(322). Ravi (2010) found that while furin expression was induced by UVR in HaCaT 

and Colo 16 cells, it was not in HEK cells (146). Endogenous levels of furin were 

less in Colo 16 cells compared to that seen in HaCaT cells (146). Exposure to UVAB 

radiation enhanced furin expression in HaCaT, while UVB elicited a similar effect in 

Colo 16 cells. Ravi (2010) suggested that the difference observed in her results may 

be due to the fact that Huynh et al. (2009) used both attached and detached cells in 

their experiments, while Ravi (2010) only used attached cells in her study. In my 

study, I found that UVR did not change the expression of furin in both MM418-C1 

and MM418-C5 cell lines, which differed to that seen in irradiated keratinocytic cells 

(146, 322). This suggests that UVR does not influence the expression of furin in the 

melanoma cells compared to that seen in SCC cells. The difference in melanin levels 
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of the two melanoma cell lines also did not have an effect on furin levels in the UV-

irradiated cells. 

 Ravi (2010) also found that the addition of IL-1α to the keratinocyte-derived cells 

had minimal effects on furin expression, and suggested that this cytokine does not 

play a role in regulating the expression of this enzyme. 

In this study, IL-1α did not alter furin expression in UV-irradiated MM418-C1 cells, 

which agreed with that seen in keratinocyte-derived cells (146). In the darkly-

pigmented      MM418-C5 cells, IL-1α addition also did not significantly affect furin 

levels in the UV-irradiated cells, however, further experiments are needed to confirm 

this is correct.  

None of the antioxidants studies in this chapter had an effect on furin expression in 

either of the UV-irradiated melanoma cells, irrespective of whether they had been 

treated with IL-1α or not.  

The mechanism by which furin is regulated in the melanoma cells is not clear, and 

other factors may be involved in this mechanism. Further studies on the regulation of 

furin levels in melanocytic cells are warranted, and would form the basis for further 

studies in understanding melanoma metastasis. The MM418 cell lines are derived 

from primary human melanoma, so the regulation of furin in secondary human 

melanoma cell lines can also be examined in order to see if there is a difference in 

furin levels post-UVR between primary and secondary melanoma cell lines as it may 

implicate in the tumour cell invasive process.  
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Chapter 6. Effect of antioxidants on UV-activated cell signalling 

pathway activity in melanocyte-derived cells 

6.1 Introduction 

UVR is one of the main carcinogens that can transform melanocytes to melanoma 

(65, 258). UVR can initiate molecular interactions which differ depending on 

whether they are initiated by UVA and/or UVB radiation. Furthermore, these 

interactions can give rise to abnormal cellular processes including: genetic alteration, 

cell signalling and causing either the upregulation or downregulation of cytokine 

release (258). Moreover, UVR plays an important role in melanomagenesis by 

inducing the alteration of genetic/epigenetic changes in melanocyte chromosomes 

(339). The RAS/RAF/MEK/ERK (MAPK) and PI3K/PTEN/AKT pathways are the 

two main signalling pathways observed in human melanomas (339), and are 

constitutively activated via genetic alterations (339). It was found that the mutations 

of RAF, RAS and PTEN contribute to abnormal proliferation and tissue invasion for 

melanoma development and progression (339). 

The B-RAF/ERK (extracellular-regulated kinase) signalling pathway in melanoma 

cells has been extensively studied (258, 340). However, the link between p38, JNK 

and nuclear factor-κB (NFκB), which are the other mitogen-activated protein kinases 

(MAPK), has not been fully associated with the incidence of melanoma (258). On 

the other hand, it has been suggested that the synergistic effect between 

activation/inhibition of these signalling pathways and the use of chemotheraptic 

agents can cause cytotoxicity in melanoma cells (341, 342). Moreover, it has been 

suggested that these signalling pathways maybe involved in the malignant 

transformation of melanocytes (343, 344).  
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It has been suggested that p38 and JNK play a role in apoptosis, the development of 

melanoma and chemoresistance, and as such, they need to be examined more 

thoroughly as this interaction appears to differ with different types of UVR and cell 

types  (258). 

Also, Muthusamy and Piva (2013) found that p38 MAPK and JNK pathways are 

activated differently in UV-irradiated melanocytes and melanoma cells (MM96L) 

(177). They suggested  that the UV response in these cells was cell type-dependant 

(177). Thus, it has been suggested that the other MAPK pathways may play a role in 

the development and progression of melanoma on their own, or in connection with, 

ERK (340).  Thus, the usage of topical applications containing antioxidants may 

regulate the activation of these signalling pathways, as well as decrease the 

deleterious effects elicited by these pathways. 

Vitamin C (ascorbic acid) is an antioxidant that has numerous physiological and 

pharmacological functions in different processes including: antioxidation and 

cardiovascular disease (345, 346). It was found that topical applications containing 

vitamin C restored the depleted levels of this antioxidant in the skin caused by UV 

exposure (248). Moreover, some studies observed that photoprotection was enhanced 

in human and animal skin by using topical applications of antioxidants (such as 

vitamin C) (248, 249). Vitamin C and/or E have also been shown to reduce chronic 

UVB-induced photodamage and photocarcinogenesis in animal skin (248, 249). 

Lee et al. (2011) found that the phosphorylation of p38 was induced by ascorbic 

acid, while no effect was found on p-ERK levels in B16F10 melanoma cells (347). 

They also found that the inhibition of p38 MAPK pathways resulted in the reduction 

of tyrosinase expression mediated by ascorbic acid in B16F10 melanoma cells (347). 
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These results showed that the activation of p38 MAPK signalling pathways and 

subsequent up-regulation of Microphthalmia-associated transcription factor (MITF), 

tyrosinase and tyrosinase-related protein (TRP) expression was increased by the 

addition of ascorbic acid in melanoma cells (347).    

Peus et al. (2001) have shown that trolox – which is a water-soluble analog of 

vitamin E (α-tocopherol) – is an antioxidant with preventative and protective 

potential against the harmful effects of UV radiation on human skin (128). They also 

showed that a physiological UVB dose activated epidermal growth factor receptor 

(EGFR)/(ERK-1/2) and p38 signalling pathways though ROS, and this activation 

was modulated by pre-treatment with trolox (128).  Trolox strongly inhibited the 

activation of ERK-1/2 at a lower concentration, and p38 activation at a higher 

concentration, when it was added to keratinocytes prior to exposure to UV radiation 

(128). However, no significant reduction was observed in UVB-induced EGFR 

phosphorylation in these cells (128). Of interest was the finding that, the longer 

trolox was added to the cells pre-UVB exposure, the greater was the survival rate 

(128). A study by Muthusamy et al. (2011) showed that the lipophilic antioxidants α-

tocopherol, CO2-supercritical fluid extract (CO2-SFE) of green-lipped mussel oil and 

5β scymnol reduced the production of TNF-α in melanocytes, but not in MM96L 

melanoma cells, that were treated with IL-1α and exposed to UVB radiation (196). 

This reduction was not due to the intracellular p38 signalling pathway inhibition, 

instead it appeared that these antioxidants mediated their effects through different 

signalling pathways (196). 

Recently, it has been suggested that MAPK (p38, MAPK and JNK) pathways play a 

role in the malignant transformation of melanocytes and the progression of 

melanoma (318, 343). For example, Alexaki et al. (2008) found that JNK, especially 
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JNK-1, supported the growth of melanoma growth cells. This process occurred 

through either regulating the progression of the cell cycle or apoptosis (343). Also, 

p38 was found to play a role in sensitising melanoma cells to UV-induced 

programmed cell death – this happened in response to aberrant TRAF2 signalling 

pathways (318). 

In this study, I have investigated the effect of different types of UV on MAPK 

signalling pathways in cultured MM418-C1, MM418-C5 and HEM cells. These cell 

lines have been selected in order to observe the effect of UVR in normal 

melanocytes and in oncogenic processes (e.g. melanoma cells). The different 

pigmented melanoma cell lines were chosen to observe the effect that melanin may 

play in the cells following exposure to UV radiation. 

This study investigated the effect of UVR on the phosphorylation of B-RAF, ERK, 

JNK and p-38 in melanocytes and pigmented melanoma cell lines, and the effect that 

vitamin C and trolox had on these signalling intermediates.  

 

6.2 Results 

6.2.1 Effect of antioxidants on UV-activated cell signalling pathway activity 

Changes in the levels of B-RAF, ERK, p38 and JNK in the UV-irradiated cells were 

observed over the first 2 h post UV-exposure. B-RAF is located upstream of the 

MAPK kinase family which regulates ERK, while p38 and JNK respond to stress 

stimuli such as UV radiation. MM418-C1 and MM418-C5 cells were exposed to 

either UVA and/or UVB radiation as seen in Table 2.1. In this investigation, the 

reason for conducting a time course experiment was to identify the maximal 

expression time point for these proteins and to look at the effect that antioxidants 
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may have on their expression levels post-UV exposure. When investigating HEM 

cells, the effects that antioxidants had on the expression of these proteins post-UV 

exposure were examined at the same time points as for the melanoma cell lines. 

Western blots were run using cell lysates and the respective proteins were resolved 

using relevant antibodies, as described in Section 2.8. GAPDH levels were also 

measured for each cell lysate and were used as a loading control for the expression 

of each signal pathway intermediate, as described in Section 2.8.  

 

6.2.1.1 Effect of UV radiation on cell signalling pathway activity in MM418-C1 

cells 

6.2.1.1.1 Effect of UV radiation on B-RAF activity  

B-RAF is found upstream of the MAPK kinase family and it is mutated in up to 50% 

of melanomas (65, 66). Due to its importance in melanomas, the levels of 

phosphorylated B-RAF (p-B-RAF) were observed at different time points post-UV 

exposure of MM418-C1 cells, as seen in Figure 6.1. 
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Figure ‎6.1 A representative western blot showing changes in p-B-RAF levels in UV-irradiated MM418-C1 

cells during the first 120 min post-exposure  

MM418-C1 cells were exposed to either UVA (0.8 J/cm2) and/or UVB (0.04 J/cm2) radiation. At different time 

points post-irradiation (0, 5, 15, 30, 60 and 120 min), cell lysates were run on western blots. The blots were 

probed with an anti-p-B-RAF antibody and an anti-GAPDH antibody, which was used to monitor protein levels 

in the cell lysates (See Section 2.8).  

 

In the MM418-C1 cells, levels of p-B-RAF did not change during the first 120 min 

post-UVA exposure (Figure 6.2). A similar observation was also noted for p-B-RAF 

levels in cells exposed to UVB or UVAB over the same time period. As intracellular 

p-B-RAF levels do not change post-UV radiation it suggests that UV does not 

activate this signalling pathway intermediate. This finding is in agreement with that 

seen previously as B-RAF
V600E

 is not a UV-signature mutation in melanomas. 

Thomas et al. (2006) suggested that B-RAF mutations could still increase from error 

replication of DNA damage caused by UVR. 
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Figure ‎6.2 Time course of p-B-RAF expression in UV-irradiated MM418-C1 cells 

The effect of UVA (0.8 J/cm2) and/or UVB (0.04 J/cm2) radiation on the expression of p-B-RAF was measured at 

different time points (0-120 min). Data is represented as the mean±SEM from three separate experiments. 

 

 

6.2.1.1.2 Effect of UV radiation on ERK-1/2 activity 

ERK is a member of MAPK kinase family occurring downstream from RAF (157). 

In this experiment, the levels of phosphorylated ERK-1/2 (p-ERK-1/2) were 

observed at different time points up to 120 min post-UV exposure of MM418-C1 

cells, as seen in Figure 6.3. 
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Figure ‎6.3 A representative Western blot showing changes in p-ERK-1/2 levels in UV-irradiated MM418-C1 

cells during the first 120 min post-exposure 

MM418-C1 cells were exposed to either UVA (0.8 J/cm2) and/or UVB (0.04 J/cm2) radiation. At different time 

points post-irradiation (0, 5, 15, 30, 60 and 120 min), cell lysates were run on western blots. The blots were 

probed with an anti-p-ERK-1/2 and an anti-GAPDH antibody to monitor the level of protein present in the cell 

lysate (See Section 2.8).  

 

B-RAF plays an important role in activating the ERK signalling pathway. As two 

isoforms of ERK exist (37, 158), each of the levels of phosphorylated ERK-1 and 

ERK-2 were monitored over the first 120 min post-UV exposure. A polyclonal 

phosphorylated ERK-1 and ERK-2 antibody was used in western blots in order to 

observe the expression of these proteins     post-UV (A and/or B) exposure. The 

phosphorylation levels of ERK-1 (44 kDa) and ERK-2 (42 kDa) following UV 

exposure were calculated as a percentage of the total ERK-1 and ERK-2, when 

normalised to that of the protein loading control GAPDH. 

Exposure to UVA had no effect on p-ERK-1 levels over the first 120 min, which 

remained at control levels (0.48-fold). Similar to that seen for ERK-1, p-ERK-2 

levels were not changed post-UVA in the first 30 min; after this time, they reached a 

peak (0.68-fold) at 60 min before falling back to that of sham-irradiated control 
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levels (0.51-fold) at 120 min (Figure 6.4A and B), but this was not statistically 

significant.  

Following UVB exposure, p-ERK-1 levels decreased gradually from 0.48-fold at 0 

min reaching a minimum at 15 min (0.33-fold). p-ERK-1 levels then gradually rose 

and reached 0.55-fold at 120 min. Following exposure to UVB, p-ERK-2 levels rose 

in the first 5 min (0.61-fold) compared to unirradiated controls at 0 min (0.51-fold). 

After this, the levels gradually decreased to a minimum at 30 min (0.55-fold) before 

rising to 0.83-fold at 120 min (Figure 6.4A and B). 

When exposed to UVAB radiation, p-ERK-1 levels rose from that at 0 min to a peak 

at 60 min (0.65-fold) before falling to 0.51-fold by 120 min. Exposure to UVAB 

radiation saw an initial decrease in p-ERK-2 levels to 0.48-fold at 15 min. After 

which p-ERK-2 levels increased to a maximum of 0.79-fold at 60 min before 

returning to baseline levels (0.59-fold) at 120 min. 

In summary, exposure to UV-radiation had a minimal effect on p-ERK levels within  

MM418-C1 cells, and suggests that UV does not directly signal via this intermediate 

of the MAPK pathway.  
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(A) 

 

 

(B) 

 

 

Figure ‎6.4 Time course of p-ERK 1/2 expression in UV-irradiated MM418-C1 cells 

The effect of UVA (0.8 J/cm2) and/or UVB (0.04 J/cm2) radiation on the expression of (A) p-ERK-1 and (B)     

p-ERK-2 proteins at different time points (0-120 min) were determined by western blots. Expression of p-ERK-1 

and p-ERK-2 was calculated as the relative component of the total level of p-ERK (1+2) found in the sham-

irradiated controls. Data is represented as the mean±SEM from three separate experiments.  
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6.2.1.1.3 The effect of UV radiation on JNK-1/2 activity 

JNK is a member of MAPK family, which is known to be activated by UV and other 

stressors (142, 145). In this experiment, the levels of phosphorylated JNK-1/2        

(p-JNK-1/2) were observed at different time points post-UV exposure. A polyclonal 

antibody was used to probe for p-JNK-1/2 protein (46/54 kDa) using western blots, 

as seen in Figure 6.5. 

 

 

 

Figure ‎6.5 A representative western blot showing changes in p-JNK-1/2 levels in UV-irradiated MM418-C1 

cells during the first 120 min post-exposure 

MM418-C1 cells were exposed to either UVA (0.8 J/cm2) and/or UVB (0.04 J/cm2) radiation. At different time 

points post-irradiation (0, 5, 15, 30, 60 and 120 min), cell lysates were run on western blots. The blots were 

probed with an anti-p-JNK-1/2 and an anti-GAPDH antibody which was used to monitor protein levels in the cell 

lysates (see Section 2.8).  

 

Similar to that of ERK, two isoforms of JNK exist in the cell (181). In this 

experiment, the expression levels of p-JNK-1 and p-JNK-2 were measured in the 

first 120 min post-UV (A and/or B) exposure. A polyclonal p-JNK-1 and p-JNK-2 
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antibody was used in western blots in order to observe the effect of UV radiation on 

the expression of these proteins. The phosphorylation levels of JNK-1 (46-48 kDa) 

and JNK-2 (56 kDa) following UV exposure were calculated as a percentage of the 

total JNK-1 and JNK-2 in control (sham-irradiated controls). The value of the total 

level of JNK (1+2) in the sham-irradiated control was given the value of unity (1). 

Due to the high variability in the data, statistically significant changes were not seen, 

however an overview of the observed trends are described below. 

In MM418-C1 cells, UVA exposure sharply raised the levels of p-JNK-1 from 

0.8±0.1-fold at 0 min, to 3.2±2.9-fold in the first 5 min post-UV exposure, as seen in 

Figure 6.6A. These levels slowly increased, reaching a peak of 4.4±4.1-fold at 60 

min, after which they dropped to 3.5±3.3-fold at 120 min. In the case of p-JNK-2 

levels in MM418-C1 cells, UVA irradiation increased these levels in the first 5 min 

(0.9±0.4-fold) compared to sham-irradiated controls (0.2±0.1-fold) at 0 min (Figure 

6.6B). Following this, these levels dropped to 0.7±0.1-fold at 15 min, before rising 

again to a peak at 60 min (1.3±0.1-fold), after which they fell to 0.8±0.1-fold at 120 

min. 

In response to UVB radiation, p-JNK-1 levels increased gradually reaching a peak of 

9.7±6.9-fold at 30 min compared to sham irradiated controls (0.8±0.1-fold) at 0 min. 

However, these levels decreased to 5.3±2.6-fold at 60 min before increasing again to 

8.0±3.9-fold at 120 min.  On the other hand, UVB radiation had less effect on the 

expression of p-JNK-2 in MM418-C1. There was a gradual increase in p-JNK-2 

levels from 0.2±0.1-fold at 0 min reaching a peak (1.2±0.7-fold) at 30 min. At 60 

min, p-JNK-2 levels fell to 0.7±0.1-fold, before rising to 0.9±0.4-fold at 120 min.  
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Figure ‎6.6 Time course of p-JNK 1/2 expression in UV-irradiated MM418-C1 cells 

The effect of UVA (0.8 J/cm2) and/or UVB (0.04 J/cm2) radiation on the expression of (A) p-JNK-1 and (B)      

p-JNK-2 proteins at different time points (0-120 min) were determined by western blots. Expression of p-JNK-1 

and p-JNK-2 was calculated as the relative component of the total level of p-JNK (1+2) found in the sham-

irradiated controls. Data is represented as the mean±SEM from three separate experiments. 
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Exposure to UVAB immediately increased p-JNK-1 levels from 0.8±0.1-fold at 0 

min to 4.3±2.8-fold at 30 min. These levels fell to 3.9±2-fold at 60 min before 

increasing again to 4.1±2.6-fold at 120 min. On the other hand, the levels of p-JNK-2 

in general were unaffected in the cells following exposure to UVAB radiation. 

In general, UVA radiation had little or no effect on either p-JNK-1 or p-JNK-2 

levels, whereas UVB and UVAB increased p-JNK-1 levels within the cell and once 

activated, they remained high for up to 2 h post-irradiation.  This differed to that 

seen for p-JNK-2 in general, where UV radiation did not alter expression levels over 

the 2 h post-irradiation period. 

 

6.2.1.1.4 Effect of UV radiation on p38 activity  

The p38 protein is also a member of MAPK family and, like JNK, is activated when 

the cell is exposed to external stressors such as UV radiation (171). In this 

experiment, the levels of phosphorylated p38 (p-p38) were observed at different time 

points post-UV exposure. A polyclonal antibody was used to probe for p-p38 protein 

(43 kDa) in western blots, as seen in Figure 6.7. 

In UV-irradiated MM418-C1 cells, there was a rapid increase in p-p38 levels after 5 

min (3.0±1.2-fold) (Figure 6.8). After which, the p-p38 levels fell to 1.7±0.3-fold at 

15 min before rising to maximal levels (8.0±5.0-fold) at 60 min, before falling to 

2.3±1.1-fold at 120 min.  

When the cells were exposed to UVB radiation, p-p38 levels rapidly increased from 

1.0±0.1-fold at 0 min, peaking at 30 min (11.3±6-fold), before falling to 10.5±3.6-

fold at 120 min.  
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Figure ‎6.7 A representative Western blot showing changes in p-p38 levels in UV-irradiated MM418-C1 cells 

during the first 120 min post-exposure 

MM418-C1 cells were exposed to either UVA (0.8 J/cm2) and/or UVB (0.04 J/cm2) radiation. At different time 

points post-irradiation (0, 5, 15, 30, 60 and 120 min), cell lysates were run on western blots. The blots were 

probed with an anti-p-p38 and an anti-GAPDH antibody which was used to monitor protein levels in the cell 

lysates (see Section 2.8).  

 

 

A similar observation was seen in cells exposed to UVAB radiation. Here p-p38 

levels rapidly increased to a peak of 12.5±1.5-fold after 15 min, where they remained 

constant over the next 105 min (11.2±0.7-fold at 120 min).  

In summary, it can be seen that UVR enhanced p-p38 levels in the MM418-C1 cells 

following exposure. Maximal increases in p-p38 levels were seen when the cells 

were exposed to UVB or UVAB radiation, but not UVA radiation. This finding 

agrees with what was seen in previous studies (37, 177).  
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Figure ‎6.8 Time course of p-p38 expression in UV-irradiated MM418-C1 cells 

The effect of UVA (0.8 J/cm2) and/or UVB (0.04 J/cm2) radiation on the expression of p-p38 protein at different 

time points (0-120 min) were determined by western blots. Expression of p-p38 was calculated as the relative 

component of the total level found in the sham-irradiated controls. Data is represented as the mean±SEM from 

three separate experiments. Statistical significance was calculated by one-way ANOVA followed by Bonferroni’s 

multiple comparisons post-test. Significant difference between sham and UVAB is represented by (*). *p ≤ 0.05; 

**p ≤ 0.01; ***p ≤ 0.001 

 

 

 

6.2.1.2 Effect of UV radiation on cell signalling pathway activity in MM418-C5 

cells 

6.2.1.2.1 Effect of UV radiation on B-RAF activity 

The level of p-B-RAF in UV (A and/or B)-irradiated MM418-C5 cells was observed 

at different time points up to 120 min post-exposure. A polyclonal antibody was 

used to probe for p-B-RAF protein (86 kDa) in western blots, as seen in Figure 6.9. 
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Figure ‎6.9 A representative Western blot showing changes in p-B-RAF levels in UV-irradiated MM418-C5 

cells during the first 120 min post-exposure  

MM418-C5 cells were exposed to either UVA (0.6 J/cm2) and/or UVB (0.03 J/cm2) radiation. At different time 

points post-irradiation (0, 5, 15, 30, 60 and 120 min), cell lysates were run on western blots. The blots were 

probed with an anti-p-B-RAF antibody and an anti-GAPDH antibody, which was used to monitor protein levels 

in the cell lysates (see Section 2.8).  

 

 

In UVA-irradiated MM418-C5 cells, p-B-RAF levels fell over the first 60 min 

reaching minimum levels (0.7±0.2-fold) at 60 min before returning to untreated 

control levels at 120 min (Figure 6.10). In the UVB-irradiated cells, p-B-RAF levels 

fell to 0.6± 0.1-fold at 15 min and remained relatively constant for the next 105 min 

(0.6±0.1-fold at 120 min). When exposed to UVAB radiation, p-B-RAF levels 

increased to 1.5±0.1-fold after 5 min and remained elevated until 60 min (1.4±0.1-

fold) before returning to control levels at 120 min.  
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Figure ‎6.10 Time course of p-B-RAF expression in UV-irradiated MM418-C5 cells 

The effect of UVA (0.6 J/cm2) and/or UVB (0.03 J/cm2) radiation on the expression of p-B-RAF was measured at 

different time points (0-120 min). Data is represented as the mean±SEM from three separate experiments. 

 

 

6.2.1.2.2 Effect of UV radiation on p-ERK-1/2 activity 

In this experiment, the level of phosphorylated ERK-1/2 was observed at different 

time points post-UV exposure in MM418-C5 cells. A polyclonal antibody was used 

to probe for p-ERK-1/2 protein (44/42 kDa) in western blots (Figure 6.11). 

Exposure to UVA resulted in the gradual increase of phosphorylated ERK-1 levels 

from 0.4±0.1-fold at 0 min, to a peak of 0.6±0.1-fold at 30 min.  After which levels 

fell to 0.3±0.1-fold at 120 min (Figure 6.12). 

In response to UVB exposure, p-ERK-1 levels gradually increased from 0.4±0.1-fold 

at 0 min reaching 0.5±0.1-fold at 120 min. 
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Figure ‎6.11 A representative Western blot showing changes in p-ERK-1/2 levels in UV-irradiated MM418-C5 

cells during the first 120 min post-exposure 

MM418-C5 cells were exposed to either UVA (0.6 J/cm2) and/or UVB (0.03 J/cm2) radiation. At different time 

points post-irradiation (0, 5, 15, 30, 60 and 120 min), cell lysates were run on western blots. The blots were 

probed with an anti-p-ERK-1/2 and an anti-GAPDH antibody, which was used to monitor protein levels in the 

cell lysates (see Section 2.8).  

 

 

In response to UVAB radiation, p-ERK-1 levels rose from 0.4±0.1-fold at 0 min to 

0.8±0.1-fold at 60 min before falling slowly to 0.7±0.1-fold at 120 min. UVA 

radiation increased p-ERK-2 levels from 0.6±0.1-fold at 0 min, peaking at 0.8±0.2-

fold at 30 min before falling to 0.5±0.1-fold at 120 min (Figure 6.12B). In UVB-

irradiated MM418-C5 cells, p-ERK-2 levels fell from 0.7±0.1-fold at 0 min to 

0.5±0.1-fold at 5 min, after which they increased to 0.7±0.1-fold at 30 min and 

remained constant for the next 90 min. Exposure to UVAB resulted in an increase in 

p-ERK-2 levels from 0.7±0.1-fold at 0 min to a peak of 1.6±0.5-fold at 60 min, after 

which they fell to 1.0±0.2-fold at 120 min.  
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Figure ‎6.12 Time course of p-ERK-1/2 expression in UV-irradiated MM418-C5 cells 

The effect of UVA (0.6 J/cm2) and/or UVB (0.03 J/cm2) radiation on the expression of (A) p-ERK-1 and (B)     

p-ERK-2 proteins at different time points (0-120 min) were determined by western blots. Expression of p-ERK-1 

and p-ERK-2 was calculated as the relative component of the total level of p-ERK (1+2) found in the sham-

irradiated controls. Data is represented as the mean±SEM from three separate experiments. 
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6.2.1.2.3 Effect of UV radiation on p-JNK-1/2 activity 

In this experiment, the levels of phosphorylated JNK-1/2 were observed at different 

time points post-UV exposure in MM418-C5 cells. A polyclonal antibody was used 

to probe for p-JNK-1/2 protein in western blots (Figure 6.13). 

 

 

 

Figure ‎6.13 A representative Western blot showing changes in p-JNK-1/2 levels in UV-irradiated MM418-C5 

cells during the first 120 min post-exposure 

MM418-C5 cells were exposed to either UVA (0.6 J/cm2) and/or UVB (0.03 J/cm2) radiation. At different time 

points post-irradiation (0, 5, 15, 30, 60 and 120 min), cell lysates were run on western blots. The blots were 

probed with an anti-p-JNK-1/2 and an anti-GAPDH antibody, which was used to monitor protein levels in the 

cell lysates (see Section 2.8).  

 

When the cells were exposed to UVA radiation, p-JNK-1 levels increased from 

0.7±0.1-fold peaking at 4.5±1.7-fold at 30 min, before falling to 2.9±1.3-fold at 120 

min (Figure 6.14).  In the UVB-irradiated cells, p-JNK-1 levels gradually increased 

from 0.7±0.1-fold at 0 min reaching a peak at 60 min (4.8±0.6-fold), before falling to 

2.9±0.1-fold at 120 min. UVAB radiation caused p-JNK-1 levels to rise from 

0.7±0.1-fold to 1.9±0.1-fold at 5 min. There was a sharp significant increase in        
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p-JNK-1 levels which peaked at 15 min (6.8±0.2-fold) and stayed significantly 

elevated at 30 min (6.5±0.3-fold) before falling to 3.6±0.3-fold at 120 min. 

UVA slightly increased p-JNK-2 levels from 0.3±0.1-fold at 0 min to 0.3±0.1-fold at 

15 min. The levels continued to increase and peaked at 30 min (0.6±0.4-fold), before 

falling to 0.3±0.1-fold at 120 min (Figure 6.14B). UVB radiation did not alter         

p-JNK-2 levels during the first 5 min (0.3±0.1-fold), after which these levels 

increased reaching a peak at 30 min (0.8±0.4-fold) before falling to 0.4±0.2-fold at 

120 min. Exposure to UVAB radiation caused the p-JNK-2 levels to increase from 

0.3±0.1-fold at 0 min to a peak of 1.2±0.2-fold at 30 min, after which it fell to 

0.4±0.2-fold at 120 min.  
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Figure ‎6.14 Time course of p-JNK-1/2 expression in UV-irradiated MM418-C5 cells 

The effect of UVA (0.6 J/cm2) and/or UVB (0.03 J/cm2) radiation on the expression of (A) p-JNK-1 and (B)      

p-JNK-2 proteins at different time points (0-120 min) were determined by western blots. Expression of p-JNK-1 

and p-JNK-2 was calculated as the relative component of the total level of p-JNK (1+2) found in the sham-

irradiated controls. Data is represented as the mean±SEM from three separate experiments. Statistical 

significance was calculated by one-way ANOVA followed by Bonferroni’s multiple comparisons post-test. 

Significant difference between sham and UVAB is represented by (*). *p ≤ 0.05 
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6.2.1.2.4 Effect of UV radiation on p-p38 activity 

In this experiment, the levels of phosphorylated p38 were observed at different time 

points post-UV exposure in the MM418-C5 cells. A polyclonal antibody was used to 

probe for p-38 protein in western blots (Figure 6.15). 

 

 

 

Figure ‎6.15 representative Western blot showing changes in p-p38 levels in UV-irradiated MM418-C5 cells 

during the first 120 min post-exposure 

MM418-C5 cells were exposed to either UVA (0.6 J/cm2) and/or UVB (0.03 J/cm2) radiation. At different time 

points post-irradiation (0, 5, 15, 30, 60 and 120 min), cell lysates were run on western blots. The blots were 

probed with an anti-p-p38 and an anti-GAPDH antibody, which was used to monitor protein levels in the cell 

lysates (see Section 2.8).  

 

In the UVA-irradiated MM418-C5 cells, p-p38 levels increased over time reaching a 

peak (11.2±3.9-fold) at 30 min, before falling to 2.2±0.5-fold at 120 min, as seen in 

Figure 6.16.  

Following exposure to UVB radiation, p-p38 levels rapidly increased significantly 

over the first 15 min (16.5±2.0-fold) before significantly increasing to a peak 

(17.4±2.0-fold) at 60 min, after which it fell to 15.8±1.9-fold at 120 min, which 

remain significantly higher than the 0 min time point.  
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In the UVAB-irradiated cells, p-p38 levels sharply increased reaching a significant 

peak (38.7±6.4-fold) at 30 min. At 120 min, p-p38 levels fell to 24.8±1.7-fold, which 

was significantly higher than the 0 min time point. 

 

 

Figure ‎6.16 Time course of p-p38 expression in UV-irradiated MM418-C5 cells 

The effect of UVA (0.6 J/cm2) and/or UVB (0.03 J/cm2) radiation on the expression of p-p38 protein at different 

time points (0-120 min) were determined by western blots. Expression of p-p38 was calculated as the relative 

component of the total level found in the sham-irradiated controls. Data is represented as the mean±SEM from 

three separate experiments. Statistical significance was calculated by one-way ANOVA followed by Bonferroni’s 

multiple comparisons post-test. Significant difference between sham and UVB is represented by (#). Significant 

difference between sham and UVAB is represented by (*). #,*p ≤ 0.05; ##, **p ≤ 0.01; ***p ≤ 0.001 

 

6.2.1.3 Effect of antioxidants on UV-activated cell signalling pathways in 

MM418-C1 cells 

In this study, 30 min was chosen as the time point to measure the effect of 

antioxidants on the expression of signalling intermediate pathways in UV-irradiated 

cells. This time point was chosen as it can be seen that the majority of 



190 | P a g e  

 

 

phosphorylated signalling intermediates (Section 6.2.1.1 and 6.2.1.2) were at 

maximal levels 30 min post-irradiation. 

 

6.2.1.3.1 Effect of antioxidants on B-RAF activity in irradiated MM418-C1 cells 

A sample blot of p-B-RAF expression in the UV-irradiated MM418-C1 cells treated 

with antioxidants is seen in Figure 6.17. 

 

  

  

Figure ‎6.17 A representative western blot showing changes in p-B-RAF levels in 30 min post-UV irradiated 

MM418-C1 cells pre-treated with antioxidants for 24 h 

The effect of UVA (0.8 J/cm2) and/or UVB (0.04 J/cm2) radiation on the expression of p-B-RAF was measured at 

30 min post-irradiation. The cells were pre-treated with antioxidants (Vitamin C: 1 mM, DMSO: 0.1% (v/v), 

trolox: 0.1 mM) for   24 h prior to being exposed to UV-radiation. The blots were probed with an anti-p-B-RAF 

and an anti-GAPDH antibody to monitor the level of protein in the cell lysates. 

 

The effects of vitamin C (1 mM), DMSO (0.1% v/v) and trolox (0.1 mM) on            

p-B-RAF levels in MM418-C1 cells were measured 30 min post-UV (A and/or B) 

exposure. In the sham-irradiated cells, only vitamin C slightly decreased p-B-RAF 

levels (28%) in the cells, while DMSO and trolox treatment had no effect (Figure 

6.18). 
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In the UVA-irradiated cells, p-B-RAF levels in untreated cells were similar to that 

seen in the sham-irradiated controls. While treatment with vitamin C and DMSO 

caused a slight increase in p-B-RAF levels (35% and 38%, respectively), trolox had 

no effect.  

p-B-RAF levels were increased (86%) in UVB-irradiated cells when compared to the 

sham-irradiated controls. When these irradiated cells were treated with vitamin C 

and DMSO, p-B-RAF levels increased (75% and 33%, respectively), while trolox 

caused a slight reduction. 

In the UVAB-irradiated cells, p-B-RAF levels were higher than that seen for UVB-

irradiated cells and were 187% higher than that of unirradiated controls. Treatment 

with vitamin C, DMSO or trolox reduced p-B-RAF levels in these irradiated cells 

(32%, 56% and 58%, respectively). 

 

 

Figure ‎6.18 Effect of antioxidants on p-B-RAF levels in UV-irradiated MM418-C1 cells 

MM418-C1 cells were pre-treated with vitamin C (1 mM), DMSO (0.1% v/v) and trolox (0.1 mM) 24 h before 

exposure to either UVA (0.8 J/cm2) and/or UVB (0.04 J/cm2) radiation.  At 30 min post-irradiation, the effect of 

these treatments on      p-B-RAF expression in the cells was determined using western blots. Data is represented 

as the mean±SEM from three separate experiments. 
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6.2.1.3.2  Effect of antioxidants on ERK-1/2 activity in irradiated MM418-C1 cells 

A sample blot of p-ERK-1/2 expression in the UV-irradiated MM418-C1 cells 

treated with antioxidants is seen in Figure 6.19. 

 

 

Figure ‎6.19 A representative western blot showing changes in p-ERK-1/2 levels in 30 min post-UV irradiated 

MM418-C1 cells pre-treated with antioxidants for 24 h 

The effect of UVA (0.8 J/cm2) and/or UVB (0.04 J/cm2) radiation on the expression of p-ERK-1/2 was measured 

at 30 min post-irradiation. The cells were pre-treated with antioxidants (Vitamin C: 1 mM, DMSO: 0.1% (v/v), 

trolox: 0.1 mM) for   24 h prior to being exposed to UV-radiation. The blots were probed with an anti-p-ERK-1/2 

and an anti-GAPDH antibody to monitor the level of protein in the cell lysates. 

 

The effects of vitamin C (1 mM), DMSO (0.1% v/v) and trolox (0.1 mM) on           

p-ERK-1 and p-ERK-2 levels were measured 30 min post-UV (A and/or B) exposure 

in MM418-C1 cells as seen in Figure 6.20. Treatment of the cells with vitamin C, 

DMSO and trolox increased    p-ERK-1 expression in the sham-irradiated cells. The 

largest increase (200%) was seen in those cells treated with trolox. 
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(A) 

 

(B) 

 

Figure ‎6.20 Effect of antioxidants on p-ERK 1/2 levels in UV-irradiated MM418-C1 cells 

MM418-C1 cells were pre-treated with vitamin C (1 mM), DMSO (0.1% v/v) and trolox (0.1 mM) 24 h before 

exposure to either UVA (0.8 J/cm2) and/or UVB (0.04 J/cm2) radiation. At 30 min post-irradiation, the effect of 

these treatments on (A) p-ERK-1 and (B) p-ERK-2 expression in the cells was determined using western blots. 

Data is represented as the mean±SEM from three separate experiments. 
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UVA radiation increased p-ERK-1 levels by 65% compared to that seen in the sham-

irradiated cells. Treatment with vitamin C, DMSO and trolox slightly increased       

p-ERK-1 levels, but these were not statistically significant. 

UVB radiation increased p-ERK-1 levels by 120% in the MM418-C1 cells. 

Treatment with vitamin C and DMSO slightly enhanced p-ERK-1 levels, while 

trolox caused a slight reduction (15%), however none of these changes were 

statistically significant. 

p-ERK-1 levels were increased by 85% in the UVAB-irradiated cells which was less 

than that seen following UVB radiation. Treatment with vitamin C, DMSO and 

trolox slightly reduced p-ERK-1 levels, but these were not statistically significant.  

In the sham-irradiated controls, p-ERK-2 levels were higher than that of p-ERK-1 

(66% and 34%, respectively). Like that seen for p-ERK-1 levels in MM418-C1 cells, 

pre-treatment with vitamin C, DMSO and trolox enhanced p-ERK-2 levels in the 

unirradiated cells (Figure 6.20B). The greatest increase (63%) in p-ERK-2 levels 

were seen in those cells treated with trolox.  

In the UVA-irradiated MM418-C1 cells, p-ERK-2 levels were 40% higher than that 

in sham-irradiated controls. However, when these cells were treated with vitamin C, 

DMSO and trolox, no statistically significant effects on p-ERK-2 levels were seen. 

 UVB radiation increased p-ERK-2 levels by 80% to that seen in sham-irradiated 

controls. Treatment with vitamin C and DMSO slightly increased p-ERK-2 levels in 

these cells, while trolox had no effect. 

Exposure to UVAB caused a 40% increase in p-ERK-2 levels compared to that seen 

in sham-irradiated controls. Treatment with vitamin C, DMSO and trolox caused a 
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slight reduction (33%, 41% and 48%, respectively) in p-ERK-2 levels post-UV 

exposure in these cells.  

 

6.2.1.3.3  Effect of antioxidants on JNK-1/2 activity in irradiated MM418-C1 cells 

A sample blot of p-JNK-1/2 expression in the UV-irradiated MM418-C1 cells 

treated with antioxidants is seen in Figure 6.21.  

 

 

Figure ‎6.21 A representative western blot showing changes in p-JNK-1/2 levels in 30 min post-UV irradiated 

MM418-C1 cells pre-treated with antioxidants for 24 h 

The effect of UVA (0.8 J/cm2) and/or UVB (0.04 J/cm2) radiation on the expression of p-JNK-1/2 was measured 

at 30 min post-irradiation. The cells were pre-treated with antioxidants (Vitamin C: 1 mM, DMSO: 0.1% (v/v), 

trolox: 0.1 mM) for 24 h prior to being exposed to UV-radiation. The blots were probed with an anti-p-JNK-1/2 

and an anti-GAPDH antibody to monitor the level of protein in the cell lysates. 

 

The effects of vitamin C (1 mM), DMSO (0.1% v/v) and trolox (0.1 mM) on           

p-JNK-1/2 levels in MM418-C1 cells were measured 30 min post-UV (A and/or B) 

exposure. 
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Treatment with vitamin C, DMSO and trolox caused a slight reduction in p-JNK-1 

levels compared to that seen in the untreated sham-irradiated controls (Figure 

6.22A). These changes were not statistically significant. 

In the UVA-irradiated MM418-C1 cells, p-JNK-1 levels were slightly lower than 

that seen in the sham-irradiated controls. Treatment with vitamin C had no effect, 

while that of DMSO and trolox slightly increased p-JNK-1 levels in these irradiated 

cells. 

 UVB radiation increased p-JNK-1 levels (670%) compared to that seen in the sham-

irradiated controls. Treatment of the irradiated cells with vitamin C, DMSO and 

trolox slightly increased p-JNK-1 levels post-UVB exposure (32%, 48% and 11%, 

respectively) however these changes were not statistically significant. 

In the UVAB-irradiated cells, p-JNK-1 levels were 236% higher than that seen in the 

sham-irradiated controls, but this increase was not statistically significant. Treatment 

of these cells with vitamin C, DMSO and trolox had no effect on p-JNK-1 levels. 

In the sham-irradiated controls, p-JNK-1 levels were 2.5-fold higher than that of     

p-JNK-2. Treating the sham-irradiated cells with vitamin C, DMSO or trolox caused 

a slight decrease in p-JNK-2 levels compared to that seen in the untreated cells 

(Figure 6.22B).  

In the UVA-irradiated cells, p-JNK-2 levels fell by 49% compared to that seen in the 

sham-irradiated controls. The addition of vitamin C, DMSO or trolox did not alter 

the p-JNK-2 levels in these irradiated cells. 
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In the UVB-irradiated cells, p-JNK-2 levels were 40% higher than that seen in the 

sham-irradiated controls. When these cells were treated with vitamin C, DMSO or 

trolox, no changes in p-JNK-2 levels were observed. 

In the UVAB-irradiated MM418-C1 cells, p-JNK-2 levels were 49% higher than that 

seen in the sham-irradiated controls. Treatment with vitamin C, DMSO or trolox 

caused a slight reduction (16%, 48% and 63%, respectively) in the levels of p-JNK-2 

in these irradiated cells, however none of these changes were statistically significant.  

(A) 

 

(B) 

 
 

Figure ‎6.22 Effect of antioxidants on p-JNK-1/2 levels in UV-irradiated MM418-C1 cells 

MM418-C1 cells were pre-treated with vitamin C (1 mM), DMSO (0.1% v/v) and trolox (0.1 mM) 24 h before 

exposure to either UVA (0.8 J/cm2) and/or UVB (0.04 J/cm2) radiation. At 30 min post-irradiation, the effect of 

these treatments on (A) p-JNK-1 and (B) p-JNK-2 expression in the cells was determined using western blots. 

Data is represented as the mean±SEM from three separate experiments. 
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6.2.1.3.4  Effect of antioxidants on p-p38 activity in irradiated MM418-C1 cells 

A sample blot of p-p38 expression in the UV-irradiated MM418-C1 cells treated 

with antioxidants is seen in Figure 6.23. 

 

 

Figure ‎6.23 A representative western blot showing changes in p-p38 levels in 30 min post-UV irradiated 

MM418-C1 cells pre-treated with antioxidants for 24 h 

The effect of UVA (0.8 J/cm2) and/or UVB (0.04 J/cm2) radiation on the expression of p-p38 was measured at 30 

min post-irradiation. The cells were pre-treated with antioxidants (Vitamin C: 1 mM, DMSO: 0.1% (v/v), trolox: 

0.1 mM) for 24 h prior to being exposed to UV-radiation. The blots were probed with an anti-p-p38 and an     

anti-GAPDH antibody to monitor the level of protein in the cell lysates. 

 

The effects of vitamin C (1 mM), DMSO (0.1% v/v) and trolox (0.1 mM) on p-p38 

levels in MM418-C1 cells were measured 30 min post-UV (A and/or B) exposure. In 

the case of sham-irradiated controls, trolox increased p-p38 levels in MM418-C1 by 

57%, while vitamin C and DMSO had no significant effects (Figure 6.24).  

Exposure to UVA enhanced p-p38 levels by 86% compared to that seen in the sham-

irradiated controls. Treatment with the antioxidants further increased p-p38 levels in 

the UVA-irradiated cells, with the highest increase (82%) due to DMSO treatment.  
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In the UVB-irradiated cells, p-p38 levels were 470% higher than that seen in the 

sham-irradiated controls. Neither vitamin C nor DMSO had an effect on the p-p38 

levels, but trolox increased these levels by 78% compared to the untreated UVB-

irradiated cells, however this was not statistically significant.  

In the UVAB-irradiated cells p-p38 levels were 1238% higher than that seen in the 

sham-irradiated controls. Treatment with vitamin C resulted in a further 9% increase 

in p-p38 levels. However, treatment with both DMSO and trolox resulted in a drop 

in p-p38 levels in these cells. The largest decrease was caused by trolox (31%), 

however this was not statistically significant. 

 

  

Figure ‎6.24 Effect of antioxidants on p-p38 levels in UV-irradiated MM418-C1 cells 

The effect of UVA (0.8 J/cm2) and/or UVB (0.04 J/cm2) radiation on the expression of p-p38 was measured at 30 

min post-irradiation. The cells were pre-treated with antioxidants (Vitamin C: 1 mM, DMSO: 0.1% (v/v), trolox: 

0.1 mM) for 24 h prior to being exposed to UV-radiation. Data is represented as the mean±SEM from three 

separate experiments. Statistical significance from sham was calculated using a one-way ANOVA followed by 

Bonferroni’s multiple comparisons post-test. *p ≤ 0.05 
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6.2.1.4 Effect of antioxidants on UV-activated cell signalling pathways in 

MM418-C5 cells 

6.2.1.4.1 Effect of antioxidants on B-RAF activity in irradiated MM418-C5 cells 

A sample blot of p-B-RAF expression in the UV-irradiated MM418-C5 cells treated 

with antioxidants is seen in Figure 6.25. 

 

 

Figure ‎6.25 A representative western blot showing changes in p-B-RAF levels in 30 min post-UV irradiated 

MM418-C5 cells pre-treated with antioxidants for 24 h 

The effect of UVA (0.6 J/cm2) and/or UVB (0.03 J/cm2) radiation on the expression of p-B-RAF was measured at 

30 min post-irradiation. The cells were pre-treated with antioxidants (Vitamin C: 1 mM, DMSO: 0.1% (v/v), 

trolox: 0.1 mM) for   24 h prior to being exposed to UV-radiation. The blots were probed with an anti-p-B-RAF 

and an anti-GAPDH antibody to monitor the level of protein in the cell lysates. 

 

The effects of vitamin C (1 mM), DMSO (0.1% v/v) and trolox (0.1 mM) on           

p-B-RAF levels in MM418-C5 cells were measured 30 min post-UV (A and/or B) 

exposure. In the sham-irradiated controls, while treatment with vitamin C, DMSO 

and trolox slightly decreased p-B-RAF levels, these were not statistically significant 

(Figure 6.26).  
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In the UVA-irradiated MM418-C5 cells, p-B-RAF levels were 26% lower than that 

of the unirradiated controls. Treatment with the antioxidants did not have any 

significant effect on p-B-RAF levels in these irradiated cells. 

In the UVB-irradiated cells, p-B-RAF levels were similar to that seen in the sham-

irradiated controls. As with that seen in the UVA-irradiated cells, antioxidant 

treatment had no effect on p-B-RAF levels.  

Like that seen for UVB, exposure of MM418-C5 cells to UVAB radiation did not 

alter p-B-RAF levels. When these cells were treated with the antioxidants, no effects 

on p-B-RAF levels were seen. 

 

 

Figure ‎6.26 Effect of antioxidants on p-B-RAF levels in UV-irradiated MM418-C5 cells 

MM418-C5 cells were pre-treated with vitamin C (1 mM), DMSO (0.1% v/v) and trolox (0.1 mM) 24 h before 

exposure to either UVA (0.6 J/cm2) and/or UVB (0.03 J/cm2) radiation.  At 30 min post-irradiation, the effect of 

these treatments on p-B-RAF expression in the cells was determined using western blots. Data is represented as 

the mean±SEM from three separate experiments. 
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6.2.1.4.2 Effect of antioxidants on ERK-1/2 activity in irradiated MM418-C5 cells 

A sample blot of p-ERK-1/2 expression in the UV-irradiated MM418-C5 cells 

treated with antioxidants is seen in Figure 6.27. 

 

 

 

Figure ‎6.27 A representative western blot showing changes in p-ERK-1/2 levels in 30 min post-UV irradiated 

MM418-C5 cells pre-treated with antioxidants for 24 h 

The effect of UVA (0.6 J/cm2) and/or UVB (0.03 J/cm2) radiation on the expression of p-ERK-1/2 was measured 

at 30 min post-irradiation. The cells were pre-treated with antioxidants (Vitamin C: 1 mM, DMSO: 0.1% (v/v), 

trolox: 0.1 mM) for 24 h prior to being exposed to UV-radiation. The blots were probed with an anti-p-ERK-1/2 

and an anti-GAPDH antibody to monitor the level of protein in the cell lysates. 

 

The effects of vitamin C (1 mM), DMSO (0.1% v/v) and trolox (0.1 mM) on           

p-ERK-1 and p-ERK-2 levels were measured 30 min post-UV (A and/or B) exposure 

in MM418-C5 cells as seen in Figure 6.28. Treatment of the cells with vitamin C, 

DMSO and trolox caused no effect on p-ERK-1 expression in the sham-irradiated 

cells (Figure 6.28). 
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UVA radiation had no effect on p-ERK-1 levels when compared to that seen in the 

sham-irradiated controls. Treatment with vitamin C and DMSO had no effect on     

p-ERK-1 levels, while trolox decreased these levels by 23%. 

(A) 

 

(B) 

 

 

 

Figure ‎6.28 Effect of antioxidants on p-ERK-1/2 levels in UV-irradiated MM418-C5 cells 

MM418-C1 cells were pre-treated with vitamin C (1 mM), DMSO (0.1% v/v) and trolox (0.1 mM) 24 h before 

exposure to either UVA (0.6 J/cm2) and/or UVB (0.03 J/cm2) radiation. At 30 min post-irradiation, the effect of 

these treatments on (A) p-ERK-1 and (B) p-ERK-2 expression in the cells was determined using western blots. 

Data is represented as the mean±SEM from three separate experiments. 
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There was a 20% increase in p-ERK-1 levels in the UVB-irradiated cells compared 

to that of the sham-irradiated controls. Antioxidant (vitamin C, DMSO or trolox) 

treatment had no effect on p-ERK-1 levels in these irradiated cells.  

In the UVAB-irradiated cells, p-ERK-1 levels were 41% higher than that seen in the 

sham-irradiated controls. When these cells were treated with DMSO and trolox,      

p-ERK-1 levels fell by 17% and 33%, respectively, while vitamin C had no effect. 

In sham-irradiated controls, p-ERK-2 levels were two-fold higher than that of          

p-ERK-1 (Sham irradiated control p-ERK-1: 0.34-fold and p-ERK-2: 0.66-fold). 

When these cells were treated with the antioxidants, there was a slight decrease in    

p-ERK-2 levels, but these were not statistically significant (Figure 6.28B). 

In the UVB-irradiated cells, p-ERK-2 levels were 71% higher than that seen in the 

sham-irradiated controls. Treatment of these cells with vitamin C, DMSO or trolox 

caused a slight increase in p-ERK-2 levels by 12%, 15% and 36% respectively, 

although none were statistically significant.   

In the UVA-irradiated MM418-C5 cells, p-ERK-2 levels fell by 14% when 

compared to the sham-irradiated controls. Treatment with vitamin C or DMSO did 

not affect p-ERK-2 levels, however trolox caused these levels to fall by 16%, but this 

was not statistically significant. 

UVAB radiation caused a 41% increase in p-ERK-2 levels compared to that seen in 

the sham-irradiated controls. Treatment of the cells with vitamin C, DMSO or trolox 

reduced p-ERK-2 levels, and while trolox caused the greatest reduction in p-ERK-2 

levels (36%), this was not statistically significant.  
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6.2.1.4.3 Effect of antioxidants on p- JNK-1/2 activity in irradiated MM418-C5 

cells 

A sample blot of p-JNK-1/2 expression in the UV-irradiated MM418-C5 cells 

treated with antioxidants is seen in Figure 6.29. 

 

 

Figure ‎6.29 A representative western blot showing changes in p-JNK-1/2 levels in 30 min post-UV irradiated 

MM418-C5 cells pre-treated with antioxidants for 24 h 

The effect of UVA (0.6 J/cm2) and/or UVB (0.03 J/cm2) radiation on the expression of p-JNK-1/2 was measured 

at 30 min post-irradiation. The cells were pre-treated with antioxidants (Vitamin C: 1 mM, DMSO: 0.1% (v/v), 

trolox: 0.1 mM) for 24 h prior to being exposed to UV-radiation. The blots were probed with an anti-p-JNK-1/2 

and an anti-GAPDH antibody to monitor the level of protein in the cell lysates. 

 

 

The effects of vitamin C (1 mM), DMSO (0.1% v/v) and trolox (0.1 mM) on           

p-JNK-1/2 levels in MM418-C5 cells were measured 30 min post-UV (A and/or B) 

exposure. Treating the cells with vitamin C, DMSO or trolox increased p-JNK-1 

levels (20%, 20% and 35%, respectively) compared to that seen in the untreated 

sham-irradiated cells (Figure 6.30A). 
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In the UVA-irradiated cells, p-JNK-1 levels were increased by 200%, however this 

was not significant. Treatment of these cells with the antioxidants had no effect on 

these levels. 

In the UVB-irradiated cells, p-JNK-1 levels increased by 353% to that seen in the 

sham-irradiated controls. Treatment with vitamin C or trolox further increased         

p-JNK-1 levels by 41% and 96%, respectively, while DMSO had no effect.  

UVAB radiation increased p-JNK-1 levels by 892% to that seen in the sham-

irradiated controls. While vitamin C treatment further enhanced p-JNK-1 levels by 

33%, neither DMSO nor trolox had any effect.  

In the sham-irradiated controls, p-JNK-1 levels were higher than that of p-JNK-2 

(89% and 11%, respectively). When the cells were treated with antioxidants,           

p-JNK-2 levels fell by 62% when compared to the untreated controls (Figure 6.30B). 

UVA radiation caused a 65% increase in p-JNK-2 levels compared to that seen in the 

sham-irradiated controls. Antioxidant (vitamin C, DMSO or trolox) treatment was 

shown to have no effect on p-JNK-2 levels in these cells. 

UVB radiation caused a 1018% increase in p-JNK-2 levels compared to that seen in 

the sham-irradiated controls, however this increase was not significant. Antioxidant 

treatment had no effect on the p-JNK-2 levels in these irradiated cells. 

Like that seen for UVB, UVAB radiation increased p-JNK-2 levels in the cells by 

936% compared to that observed in the sham-irradiated controls, however this 

increase was not significant. Treating the cells with antioxidants was shown to have 

no effect on p-JNK-2 levels in these cells. 

 



207 | P a g e  

 

 

(A) 

 

 

(B) 

 

 

Figure ‎6.30 Effect of antioxidants on p-JNK-1/2 levels in UV-irradiated MM418-C5 cells 

MM418-C5 cells were pre-treated with vitamin C (1 mM), DMSO (0.1% v/v) and trolox (0.1 mM) 24 h before 

exposure to either UVA (0.6 J/cm2) and/or UVB (0.03 J/cm2) radiation. At 30 min post-irradiation, the effect of 

these treatments on (A) p-JNK-1 and (B) p-JNK-2 expression in the cells was determined using western blots. 

Data is represented as the mean±SEM from three separate experiments. 
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6.2.1.4.4 Effect of antioxidants on p38 activity in irradiated MM418-C5 cells 

A sample blot of p-p38 expression in the UV-irradiated MM418-C5 cells treated 

with antioxidants is seen in Figure 6.31. 

 

 

Figure ‎6.31 A representative western blot showing changes in p-p38 levels in 30 min post-UV irradiated 

MM418-C5 cells pre-treated with antioxidants for 24 h 

The effect of UVA (0.6 J/cm2) and/or UVB (0.03 J/cm2) radiation on the expression of p-p38 was measured at 30 

min post-irradiation. The cells were pre-treated with antioxidants (Vitamin C: 1 mM, DMSO: 0.1% (v/v), trolox: 

0.1 mM) for 24 h prior to being exposed to UV-radiation. The blots were probed with an anti-p-p38 and an     

anti-GAPDH antibody to monitor the level of protein in the cell lysates. 

 

 

The effects of vitamin C (1 mM), DMSO (0.1% v/v) and trolox (0.1 mM) on p-p38 

levels in MM418-C5 cells were measured 30 min post-UV (A and/or B) exposure. In 

the sham-irradiated controls, vitamin C and trolox increased p-p38 levels (30% and 

80%, respectively) in these cells while DMSO had no effect (Figure 6.32). 
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Figure ‎6.32 Effect of antioxidants on p-p38 levels in UV-irradiated MM418-C5 cells 

The effect of UVA (0.6 J/cm2) and/or UVB (0.03 J/cm2) radiation on the expression of p-p38 was measured at 30 

min. The cells were pre-treated with antioxidants (Vitamin C: 1 mM, DMSO: 0.1% (v/v), trolox: 0.1 mM) for 24 

h prior to being exposed to UV-radiation. Data is represented as the mean±SEM from three separate experiments. 

Statistical significance from sham was calculated using a one-way ANOVA followed by Bonferroni’s multiple 

comparisons post-test. *p ≤ 0.05; **p ≤ 0.01 

 

In the UVA-irradiated cells, p-p38 levels were 850% higher than that seen in the 

sham-irradiated controls. Vitamin C and trolox treatment reduced p-p38 levels by 

43% and 33%, respectively in the cells, while DMSO had no effect. 

UVB exposure significantly increased (4480%) p-p38 levels compared to that seen 

in the sham-irradiated controls. When the cells were treated with vitamin C and 

DMSO, p-p38 levels were increased, however trolox had no effect. 

The p-p38 levels in the UVAB-irradiated cells were significantly higher (7810%) 

than that seen in the sham-irradiated controls. Treatment of these irradiated cells 

with the antioxidants did not cause any significant changes in p-p38 levels in these 

cells.  
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6.2.1.5 Effect of antioxidants on UV-activated cell signalling pathways in HEM 

cells 

The effect of antioxidants on cell signalling pathway activity was also examined in 

UV-irradiated HEM cells 30 min post-UV exposure. Due to material limitations, the 

time course study for HEM was not performed. As the results for the time course 

study for MM418-C1 and MM418-C5 cells were similar, it was assumed that it 

would also be the same in HEM cells. Moreover, Muthusamy and Piva (2013) 

observed that the time course of UV activated cell signalling pathway activity was 

similar in HEM and MM96L melanoma cells (177), and as such it supports this 

assumption made above. 

 

6.2.1.5.1 Effect of antioxidants on B-RAF activity in irradiated HEM cells 

A sample blot of p-B-RAF expression in the UV-irradiated HEM cells treated with 

antioxidants is seen in Figure 6.33. 
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 Figure ‎6.33 A representative western blot showing changes in p-B-RAF levels in 30 min post-UV irradiated 

HEM cells pre-treated with antioxidants for 24 h 

The effect of UVA (3.2 J/cm2) and/or UVB (0.16 J/cm2) radiation on the expression of p-B-RAF was measured at 

30 min post-irradiation. The cells were pre-treated with antioxidants (Vitamin C: 1 mM, DMSO: 0.1% (v/v), 

trolox: 0.1 mM) for 24 h prior to being exposed to UV-radiation. The blots were probed with an anti-p-B-RAF 

(86 kDa) and an anti-GAPDH antibody to monitor the level of protein in the cell lysates. 

  

 

The effects of vitamin C (1 mM), DMSO (0.1% v/v) and trolox (0.1 mM) on           

p-B-RAF levels were measured 30 min post-UV (A and/or B) exposure in HEM 

cells, as seen in Figure 6.34. Treatment with vitamin C, DMSO or trolox did not alter 

p-B-RAF levels in the sham-irradiated cells (Figure 6.34).  
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Figure ‎6.34 Effect of antioxidants on p-B-RAF levels in UV-irradiated HEM cells 

HEM cells were pre-treated with vitamin C (1 mM), DMSO (0.1% v/v) and trolox (0.1 mM) 24 h before 

exposure to either UVA (3.2 J/cm2) and/or UVB (0.16 J/cm2) radiation.  At 30 min post-irradiation, the effect of 

these treatments on p-B-RAF expression in the cells was determined using western blots. Data is represented as 

the mean±SEM from three separate experiments. 

 

UVA radiation did not alter the p-B-RAF levels in these cells. Treatment with the 

antioxidants did not alter p-B-RAF levels in these irradiated cells.  

UVB radiation increased p-B-RAF levels by 80% compared to that seen in the sham-

irradiated controls. While treatment with vitamin C had no effect on p-B-RAF levels, 

DMSO and trolox reduced these levels by 29 % and 24%, respectively. None of 

these changes were statistically significant. 

UVAB radiation increased p-B-RAF levels by 290% compared to that of the sham-

irradiated cells. In comparison with that seen in the UVB-irradiated cells, treatment 

with vitamin C, DMSO and trolox decreased p-B-RAF levels, although these 

changes were not statistically significant. 
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6.2.1.5.2 Effect of antioxidants on p-ERK-1/2 activity in HEM irradiated cells 

A sample blot of p-ERK-1/2 expression in the UV-irradiated HEM cells treated with 

antioxidants is seen in Figure 6.35. 

 

 

Figure ‎6.35 A representative western blot showing changes in p-ERK-1/2 levels in 30 min post-UV irradiated 

HEM cells pre-treated with antioxidants for 24 h 

The effect of UVA (3.2 J/cm2) and/or UVB (0.16 J/cm2) radiation on the expression of p-ERK-1/2 was measured 

at 30 min post-irradiation. The cells were pre-treated with antioxidants (Vitamin C: 1 mM, DMSO: 0.1% (v/v), 

trolox: 0.1 mM) for 24 h prior to being exposed to UV-radiation. The blots were probed with an anti-p-ERK-1/2 

(42 kDa) and an anti-GAPDH antibody to monitor the level of protein in the cell lysates. 

 

 

The effects of vitamin C (1 mM), DMSO (0.1% v/v) and trolox (0.1 mM) on           

p-ERK-1 and p-ERK-2 levels were measured 30 min post-UV (A and/or B) exposure 

in HEM cells, as seen in Figure 6.36. In the sham-irradiated controls, while vitamin 

C, DSMO and trolox increased p-ERK-1 levels by 18%, 33% and 36%, respectively 

(Figure 3.36A), these changes were not significant. 
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In the UVA-irradiated cells, p-ERK-1 levels were 57% higher to that seen in the 

sham-irradiated controls. When these cells were treated with vitamin C, DMSO or 

trolox, p-ERK-1 levels fell by 15%, 60 % and 67 %, respectively; however these 

changes were not statistically significant. 

UVB radiation did not alter p-ERK-1 levels when compared to that seen in the sham-

irradiated controls. Vitamin C treatment increased p-ERK-1 levels by 30%, while 

DMSO and trolox were less stimulatory. However, none of these changes were 

statistically significant. 

In the UVAB-irradiated HEM cells, p-ERK-1 levels were 42% higher than that seen 

in the sham-irradiated controls. Vitamin C treatment further increased p-ERK-1 

levels by 30%, while DMSO and trolox were inhibitory (40% and 48%, 

respectively), however these changes were not statistically significant.  

 In the sham-irradiated controls, p-ERK-2 levels were higher than that of p-ERK-1 

(67% and 33%, respectively). In the sham-irradiated cells, treatment with vitamin C, 

DMSO or trolox slightly increased p-ERK-2 levels, however these were not 

statistically significant. 

UVA radiation increased p-ERK-2 levels by 53% compared to that seen in the sham-

irradiated controls. Treatment with vitamin C, DMSO and trolox reduced p-ERK-2 

levels in these cells. Trolox treatment had the greatest effect and reduced p-ERK-2 

levels by 64%, however this was not statistically significant. 
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(A) 

 

(B) 

 

 

Figure ‎6.36 Effect of antioxidants on p-ERK-1/2 levels in UV-irradiated HEM cells 

HEM cells were pre-treated with vitamin C (1 mM), DMSO (0.1% v/v) and trolox (0.1 mM) 24 h before 

exposure to either UVA (3.2 J/cm2) and/or UVB (0.16 J/cm2) radiation. At 30 min post-irradiation, the effect of 

these treatments on (A) p-ERK-1 and (B) p-ERK-2 expression in the cells was determined using western blots. 

Data is represented as the mean±SEM from three separate experiments. 

 

 

In the UVB-irradiated cells, p-ERK-2 levels were similar to that seen in the sham-

irradiated controls. Treatment with vitamin C, DSMO and trolox slightly increased 

p-ERK-2 levels, however these changes were not statistically significant. 
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Exposure to UVAB radiation increased p-ERK-2 levels by 95% compared to the 

sham-irradiated controls. Treatment with vitamin C slightly increased p-ERK-2 

levels while DMSO and trolox decreased these levels. However these changes were 

not statistically significant. 

 

6.2.1.5.3 Effect of antioxidants on p-JNK-1/2 activity in irradiated HEM cells 

A sample blot of p-JNK-1/2 expression in the UV-irradiated HEM cells treated with 

antioxidants is seen in Figure 6.37. 

 

  

Figure ‎6.37 A representative western blot showing changes in p-JNK-1/2 levels in 30 min post-UV irradiated 

HEM cells pre-treated with antioxidants for 24 h 

The effect of UVA (3.2 J/cm2) and/or UVB (0.16 J/cm2) radiation on the expression of p-JNK-1/2 was measured 

at 30 min post-irradiation. The cells were pre-treated with antioxidants (Vitamin C: 1 mM, DMSO: 0.1% (v/v), 

trolox: 0.1 mM) for 24 h prior to being exposed to UV-radiation. The blots were probed with an anti-p-JNK-1 (46 

kDa), anti-p-JNK-2 (54 kDa) and an anti-GAPDH antibody to monitor the level of protein in the cell lysates. 
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The effects of vitamin C (1 mM), DMSO (0.1% v/v) and trolox (0.1 mM) on           

p-JNK-1/2 levels in HEM cells were measured 30 min post-UV (A and/or B) 

exposure, as seen in Figure 6.38. In the sham-irradiated cells, treatment with vitamin 

C, DMSO or trolox had no effect on p-JNK-1 expression in these cells (Figure 6.38).  

 

(A) 

 

(B) 

 

 

Figure ‎6.38 Effect of antioxidants on p-JNK-1/2 levels in UV-irradiated HEM cells 

HEM cells were pre-treated with vitamin C (1 mM), DMSO (0.1% v/v) and trolox (0.1 mM) 24 h before 

exposure to either UVA (3.2 J/cm2) and/or UVB (0.16 J/cm2) radiation. At 30 min post-irradiation, the effect of 

these treatments on (A) p-JNK-1 and (B) p-JNK-2 expression in the cells was determined using western blots. 

Data is represented as the mean±SEM from three separate experiments. 
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Exposure to UVA radiation slightly decreased p-JNK-1 levels in these cells 

compared to unirradiated controls. Treating these irradiated cells with vitamin C, 

DMSO and trolox had no effect on p-JNK-1 levels. 

UVB radiation increased p-JNK-1 levels by 356% compared to that seen in sham-

irradiated controls. When these cells were treated with vitamin C or trolox, p-JNK-1 

levels were slightly increased, while DMSO had no effect, however these changes 

were not statistically significant. 

In the UVAB-irradiated cells, p-JNK-1 levels were 186% higher than that seen in the 

UVB-irradiated cells. Treating the cells with vitamin C slightly increased p-JNK-1 

levels, while DMSO and trolox reduced these levels by ~51%, however, these 

changes were not statistically significant. 

In the sham-irradiated HEM cells, treatment with vitamin C, DMSO and trolox had 

no effect on cellular p-JNK-2 levels (Figure 6.38B). Exposure to UVA radiation had 

no effect on p-JNK-2 levels in the HEM cells. When these cells were treated with 

vitamin C, DMSO or trolox, no effect on p-JNK-2 levels were observed. UVB 

radiation caused a 119% increase in p-JNK-2 levels in the cells which was not 

significant. When these cells were treated with vitamin C, DMSO or trolox no effect 

on p-JNK-2 levels were observed. Exposure to UVAB radiation also slightly 

increased p-JNK-2 levels in the cells, which was not statistically significant. When 

these cells were treated with vitamin C and DMSO, no effects on p-JNK-2 levels 

were seen, while trolox was slightly inhibitory.   
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6.2.1.5.4 Effect of antioxidants on p-p38 activity in irradiated HEM cells 

A sample blot of p-p38 expression in the UV-irradiated HEM cells treated with 

antioxidants is seen in Figure 6.39. 

 

 

Figure ‎6.39 A representative western blot showing changes in p-p38 levels in 30 min post-UV irradiated HEM 

cells pre-treated with antioxidants for 24 h 

The effect of UVA (3.2 J/cm2) and/or UVB (0.16 J/cm2) radiation on the expression of p-p38 was measured at 30 

min post-irradiation. The cells were pre-treated with antioxidants (Vitamin C: 1 mM, DMSO: 0.1% (v/v), trolox: 

0.1 mM) for 24 h prior to being exposed to UV-radiation. The blots were probed with an anti-p-p38 (43 kDa) and 

an anti-GAPDH antibody to monitor the level of protein in the cell lysates. 

 

 

The effects of vitamin C (1 mM), DMSO (0.1% v/v) and trolox (0.1 mM) on p-p38 

levels in HEM cells were measured 30 min post-UV (A and/or B) exposure. In the 

sham-irradiated HEM cells, vitamin C, DMSO and trolox treatment had no effect on 

p-p38 levels in these cells (Figure 6.40). 
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Figure ‎6.40 Effect of antioxidants on p-p38 levels in UV-irradiated HEM cells 

The effect of UVA (3.2 J/cm2) and/or UVB (0.16 J/cm2) radiation on the expression of p-p38 was measured at 30 

min. The cells were pre-treated with antioxidants (Vitamin C: 1 mM, DMSO: 0.1% (v/v), trolox: 0.1 mM) for 24 

h prior to being exposed to UV-radiation. Data is represented as the mean±SEM from three separate experiments. 

Statistical significance from sham was calculated using a one-way ANOVA followed by Bonferroni’s multiple 

comparisons post-test. *p ≤ 0.05 

 

UVA radiation increased p-p38 levels by 250% compared to the sham-irradiated 

controls. Treatment of these cells with vitamin C and trolox reduced (15% and 50%, 

respectively) in   p-p38 levels, while DMSO had no effect, however these changes 

were not statistically significant. 

UVB radiation increased p-p38 levels by 1410% compared to that seen in the sham-

irradiated controls, however these changes were not statistically significant. Treating 

the cells with vitamin C, DMSO or trolox had no significant effect on p-p38 levels. 

In the UVAB-irradiated cells the p-p38 levels were significantly higher (2460%) 

than that seen in the sham-irradiated controls. The addition of vitamin C and DMSO 

had no effect on p-p38 levels in these cells, however trolox caused a 29% reduction 

in these levels, but this was not statistically significant.   
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6.3 Discussion 

The most prevalent genetic alteration in human melanoma is the B-RAF mutation, of 

which the V600E point mutation is the most prominent (151). In cell culture and 

animal models, the B-RAF
V600E

 mutation in melanocytes results in senescence (348-

350). The B-RAF
V600E

 mutation on its own does not induce melanoma formation 

under in vitro or in vivo conditions (348-350). Therefore, to achieve at least partial 

suppression of the senescence response, additional genetic alterations are needed for 

the B-RAF
V600E

 expressing melanocytes to become cancerous (350). 

Luo et al. (2013) reported that a loss of ARF is able to enhance spontaneous 

melanoma formation and cause profound sensitivity to neonatal UVB exposure in a 

transgenic B-RAF
V600E

 mouse model (350). Moreover, they suggested that the ARF 

deletion promotes melanomagenesis by acting in concert with B-RAF
V600E

 to 

increase the load of DNA damage caused by UVR, but not by abrogating p53 

activation (350).  

UVR is epidemiologically-linked to cutaneous melanoma development, however the 

molecular mechanisms caused by sunlight exposure that drive melanomagenesis are 

still poorly understood (282, 351). In a recent study, Viros et al. (2014) investigated 

the role of UVR in accelerating oncogenic B-RAF-driven melanomagenesis (352). 

They found that, a single dose of UVR that represented mild sunburn in humans 

induced clonal expansion of the melanocytes. Exposure to repeated doses of UVR 

increased melanoma burden in genetically-modified mice which expressed B-

RAF
V600E

 in their melanocytes (352). Moreover, this study observed that the use of 

sunscreen (UVA superior: UVB SPF50) delayed the onset of UVR-driven melanoma 

in these mice. However, the use of sunscreen only provided limited protection to 
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these mice (352). They also observed that the mutant Trp53 accelerated B-RAF
V600E

-

driven melanomagenesis in these mice (352). 

B-RAF
V600E

 is not a direct UV signature mutation (153). In MM418-C1 and 

MM418-C5 cells, which contain the B-RAF
V600E

 mutation, UVR did not 

significantly increase p-B-RAF expression in both cell lines and their expression 

remains constant post-UVR. The HEM cells used in this study possess wild type    

B-RAF, and as such, UVR was shown to not enhance p-B-RAF levels in these cells. 

I was unable to find in the literature if UVR modulated B-RAF signalling in 

melanocytic-derived cells.  

When the melanoma cells and HEM cells were treated with vitamin C and trolox, 

there was no effect on the expression of B-RAF post UV-exposure. These findings 

suggest that vitamin C and trolox do not have an effect on B-RAF expression in 

these cells post-UV irradiation, which may be due to the fact that UVR does not 

activate signalling via this molecule.   

Alsina et al. (2003) found that MEK/ERK activation is increased in melanoma cells 

possessing B-RAF and N-RAS mutations (353). Collisson et al. (2003) also 

observed that treating melanoma cells with MEK inhibitors (CI1040) resulted in the 

inhibition of cell proliferation in melanoma cells possessing mutant RAS/B-RAF but 

not in those cells having unmutated proteins (354). Uribe et al. (2006) found that the 

activation of ERK in melanocytic nevi was not correlated with B-RAF mutations 

(355). Also, they found that beside B-RAF mutations, many other factors can 

activate ERK in these cells. These factors include regulation by suppression of RAS 

kinase inhibitors and the overexpression of B-RAF (355).  
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A recent study by Gu et al. (2014)  has shown that exposing melanocytes from skin 

phenotype III to UVB radiation (20 mJ/cm
2
) daily for 5 days induced the activation 

of melanogenesis, the expression of JNK, p38, MITF and tyrosinase, but it did not 

activate ERK (298). UVR did not enhance the phosphorylation of ERK-1/2 in both 

the HEM and melanoma cell lines used in this study; which was in agreement with 

that seen in Gu et al.’s study (298). The results suggest that UV does not directly 

activate ERK these cells.  

In the UVB-irradiated HEK cells, there was an increase in the phosphorylation of 

EGFR, ERK-1/2 and p38 pathway intermediaries (128). Pre-treatment of these HEK 

cells with trolox resulted in a reduction in phosphorylated signalling intermediaries. 

This reduction was due to the inhibitory effect of trolox on the generation of 

intracellular H2O2 in HEK cells post-UVB irradiation (128). However, in my 

experiments using melanocyte-derived cells, neither vitamin C nor trolox had an 

effect on ERK levels post-UV exposure. This may not be unexpected as UV-

radiation was shown not to stimulate ERK-1/2 in the melanocyte-derived cells. 

In the case of p38, a member of the MAPK family believed to be activated 

differently post-exposure to different types of UV, Muthusamy and Piva (2013) 

found that p38 MAPK and JNK pathways were activated differently in melanocytes 

and melanoma cells (MM96L) post-UV exposure  (177). They found that exposing 

MM96L to UVA (40 kJ/m
2
) and UVAB (40 kJ/m

2
 + 2 kJ/m

2
) (1 MED) radiation 

resulted in a sharp increase of p-p38 levels after 5 min, however UVB (2 kJ/m
2
) had 

a less stimulatory effect on p-p38 levels. When the HEM cells were exposed to the 

same doses of UV, the activation of p38 was less pronounced (177). UVB stimulated 

p-p38 levels in HEM to a greater extent than that seen in MM96L cells. This 

suggests that the p38 signalling pathway is both UV type and dose dependent  (177). 
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This finding was supported by Liu et al.’s (2010) results indicating that UVA, but 

not UVB, degraded the transcription factor MITF in melanocytes and melanoma 

cells, which showed that both UV types were activated differently in these cells 

(340). My results indicated that UVAB significantly increased p38 activation at 30 

min post-exposure in both melanoma (MM418-C1 and MM418-C5) cells. Exposure 

to UVB caused a non-significant increase in the activation of p38 in both cell lines. 

However UVA only induced a small increase in p-p38 levels in both melanoma cell 

lines. This finding agrees with Muthusamy and Piva (2013) regarding the effect of 

different UV types on melanoma cell lines in the activation of p38; however it differs 

depending on the dose and types of UV to which these cells are exposed. Thus, these 

results are supported by the previous study, which suggested that p38 signalling 

pathway seemed to be both UV type and dose dependent in melanoma cells (177). 

Moreover, my results show that UVB and UVAB resulted in an increase in the 

activation of p38 in MM418-C5 cells which was twice that seen in MM418-C1 cells. 

This suggests that p38 may have a role in the regulation of melanin in melanoma 

cells post-UVR, and by increasing the levels of p38 that can modulate melanin 

synthesis, the deleterious effect of UV radiation can be minimised. This suggestion 

is supported by studies reported that UVR plays a role in the activation of MAPK 

family of signalling molecules, including JNK-1/2, p38 MAPK and ERK-1/2 in 

melanocytes, which regulate the synthesis of melanin (356-358).   

The effect of UVR on HEM was also investigated, and like that seen in both 

melanoma cell lines, UVAB-irradiation caused a significant increase in p38 

compared to that of UVA and UVB alone. These results are in agreement with 

Muthusamy and Piva (2013), who found that UVB increased the activation of p38 in 

HEM to a much greater extent to that seen in MM96L cells (177). My results 
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showed that both UVB and UVAB increased the p38 activation in HEM more than 

in MM418-C1 cells. However, in MM418-C5 cells, UVB and UVAB had the highest 

effect on p38 activation compared to MM418-C1 and HEM cells. As mentioned 

previously, this may be due to the role that p38 plays in the modulation of melanin 

synthesis post-UVB and -UVAB radiation in these cells. Unfortunately, the effect of 

UVR on HEM cells over 120 min could not be investigated due to time and material 

limitations. Muthusamy and Piva (2013) found that the effect of UVR on both HEM 

and melanoma cells were similar, in that both JNK and p38 were activated post-UV. 

It was expected that the same result would be seen if HEM cells used in this study 

were exposed to UVR. 

Furthermore, my results looked at the effect of antioxidants on p38 activation at 30 

min post-UVR in MM418-C1, MM418-C5 and HEM cells. The cells were treated 

with vitamin C (1 mM), DMSO (0.1% v/v) and trolox (0.1 mM) for 24 h before-UV 

and for 30 min post-UV exposure. No significant effects due to antioxidants 

treatment were observed in p38 levels post-UVR in all three cell lines. As mentioned 

earlier in Chapter 3, this study showed that neither vitamin C nor trolox had any 

significant suppressing effect on the generated peroxide level post-UV radiation in 

these cells. From these findings, it can be suggested that these antioxidants do not 

have an effect on ROS generation and so does not have an effect on the activation of 

p38 post-UVR. This suggestion is supported by Peus et al. (2001), who found that 

exposing HEK cells to physiological doses of UVB induced the phosphorylation of 

EGFR, ERK-1/2 and p38 pathway (128). It was found that these activations were 

modulated by pre-treatment of trolox via the suppressing effect of this molecule on 

the generation of intracellular peroxide levels post-UVB in HEK cells (128).   
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Moreover, Muthusamy et al. (2011) found that p38 activation post-UVB in MM96L 

melanoma and HEM cells was not significantly affected by treating these cells with              

α-tocopherol, CO2 SFE and 5β-scymnol. They suggested that these compounds may 

have a protective effect from UV radiation in these cells. However these compounds 

have been suggested to have no direct effect on p38 activation post-UV radiation 

(196). In this study, the results showed that neither vitamin C nor trolox had a 

significant effect on p38 activation post-UV radiation, which agreed with that seen 

previously (196).     

Alexaki et al. (2008) mentioned that G2/M cycle arrest induced by JNK inhibition 

was shown to render melanoma cells more susceptible to death (343). Johnson and 

Nakamura (2007) mentioned that JNK signalling pathway, including both isoforms 

JNK-1/2, are activated predominately in skin cells (181). Moreover, Muthusamy and 

Piva (2013) suggested that JNK and two other signalling pathways (p38 and NF-kB) 

also play a role in the progression and metastasis of melanoma (177).  

In this study, UVA, UVB and UVAB were shown to increase the phosphorylation of 

JNK-1 to a greater extent than of JNK-2 in both melanoma cells over 120 min. These 

results agreed with that seen previously (196). This study  suggested that JNK-1 was 

mainly activated post-UVR, unlike that of JNK-2 (177). Alexaki et al. (2008) found 

that some melanoma cells had a high ratio of JNK-1 to JNK-2 (e.g. WM852, WM 

793 and sk28 melanoma cell lines), however other melanoma cell lines had a low 

ratio (e.g. 888mel, WM983A and Gerlach melanoma cell lines) in response to UVR 

(343). Additionally, the role that each isoform of JNK played in melanoma cells is 

still not well understood (343). Alexaki et al. (2008) found that siRNA of JNK-1 

inhibited the growth of melanoma cells in WM852, WM 793 and sk28 cell lines 

expressing high JNK-1. On the other hand, inhibition of JNK-induced apoptosis but 



227 | P a g e  

 

 

did not affect cell growth in WM983B melanoma cell line, which possess high ratio 

of    JNK-1/2 (343). 

Also, my results found that UVB and UVAB increased JNK-1 levels more than 

those of JNK-2 in the HEM and melanoma cells. Moreover, similar to the effect of 

UVR on p38 activation, UVR induced a greater activation of JNK-1 in MM418-C5 

than that seen in MM418-C1 and HEM cells. In addition to that, UVR had its lowest 

effect on JNK-1 activation in MM418-C1 cells. This suggests that the activation 

JNK differs in depending on the cell types and UVR. It is possible that melanin may 

also have an effect on JNK activation post-UVR. Furthermore, treating the cells with 

antioxidants had a significant effect of UVR-induced JNK-1 activation in      

MM418-C1, MM418-C5 and HEM cells. This suggests that these antioxidants are 

not protective to these cells through the activation of JNK in UV-induced cell 

damage.  

To summarise, in this study the signalling pathways examined in the chosen cell 

lines were UV-dose and type dependent. B-RAF and ERK signalling pathways were 

not significantly activated post different types of UVR in both the melanoma cells 

and melanocytes, while JNK and p38 were activated differently in all cell lines in 

response to different types of UVR. Also, because p38 and JNK levels were higher 

in MM418-C5 compared to MM418-C1, a correlation between melanin and these 

pathways in response to UVR is suggested. This relationship can be explained by the 

studies showing that JNK-1/2 and p38 MAPK in melanocytes can be activated by 

UVR, and that these activations regulate the synthesis of melanin (356-358). 

Moreover, treating the cells with antioxidants did not show a significant effect on 

these signalling pathways post-UV radiation. The reasons for this could be due to the 

fact that no significant effects of antioxidants on ROS generation were observed         



228 | P a g e  

 

 

post-UVR in these cell lines. Also, this may be due to the high UV doses chosen for 

these experiments which caused ~50% cell death. Further investigations could be 

conducted to see whether antioxidant pre-treatments would confer protection to UV-

irradiated cells exposed to doses which caused less cell death (e.g. 25-30%). 
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Chapter 7. General discussion, conclusions and further 

investigation 

7.1 General discussion 

The melanoma cell lines MM418-C1 (lightly pigmented) and MM418-C5 (darkly 

pigmented), as well as others, have been used in studies on the inhibitory effect of 

cystamine on melanin synthesis (359) and HOX genes (360). Cultured melanoma 

cells are an appropriate model system to study the effect of UVA radiation in vitro, 

because it has been shown that UVA may induce the alterations of skin tissue at a 

structural and functional level (361, 362). Previous studies have suggested that 

melanoma cells behave slightly differently from normal primary melanocytes with 

regards to their antioxidant response to ROS (362, 363). 

Three different human melanocyte-derived cell types were used in this study: 

MM418-C1, MM418-C5 and HEM (Human Epidermal Melanocytes). These cells 

were used to: (a) study the effect of UV-radiation between normal and cancerous 

melanocytes with regards cell viability, ROS generation, tyrosinase expression, 

melanin synthesis, MAPK signalling pathways, TNF-α formation, and the expression 

of TACE and furin; and (b) to study the effect of antioxidants on these responses and 

the extent that melanin levels moderated these responses. 

UVA and UVB radiation were used in this study – but not UVC. This is because 

UVC radiation is essentially blocked by the ozone layer, and thus does not reach the 

Earth’s surface or the skin (39). Hence, the irradiations performed in this thesis were 

only UVA and/or UVB.  

In order to investigate the effect of antioxidants on UV-irradiated melanocytes and 

pigmented melanoma cells, the cells were exposed to UVA and/or UVB doses that 
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caused ~50% cell death (Table 2.1). Furthermore, the effect of acute or chronic dose 

of UV radiation were examined in order to see if a single large UV dose enhanced 

tyrosinase expression, or increased melanin levels to a greater extent than did two 

smaller doses (with 0.5 single dose each exposure) given 24 h apart.  

In this study, both melanoma cells were more susceptible to UVR than were the 

HEM cells (Figure 3.3 and Table 2.1). These results were in agreement with 

Muthusamy et al. (2013) who suggested that melanocytes either have a more 

efficient DNA repair mechanism in comparison to melanoma cells, or reliable 

factor(s) can be conferred on them from UV radiation. These authors suggested that 

melanin plays a role in absorbing UVR and reducing its cytotoxic effect (177). 

However, the darkly pigmented melanoma cells (MM418-C5) used in this study 

were shown to be more susceptible to UVR than both the lightly pigmented   

MM418-C1 and HEM cells. This result can be explained by Jenkins et al. (2013) 

who mentioned that the presence of melanin in the skin seems to be a “double-edged 

sword” with UV exposure. That is, by absorbing UV radiation, melanin has a 

protective role for melanocytes and keratinocytes in the skin; however the synthesis 

of melanin in melanocytes is also involved in the generation of high levels of 

intracellular ROS that may initiate melanoma (116). Thus, the high melanin levels in 

MM418-C5 cell may make these cells more sensitive to UVR.  

In this study, only UVB and UVAB significantly increased peroxide levels in both 

melanoma cell lines and melanocytes, with the lowest increase observed in   

MM418-C5 cells (Figure 3.10). This suggests that melanin may regulate the 

production of peroxide post-UVR exposure, as these cells (MM418-C5) contained 

the highest level of this pigment. On the other hand, all types of UVR did not 

significantly change superoxide levels in these cell lines. Jenkins et al. (2013) 

http://www.hindawi.com/78162093/
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suggested a link between ROS and melanin synthesis, where inhibition of 

melanogenesis decreased intracellular ROS levels (116). In the cell lines used in this 

study, the acute and chronic doses of all types of UV did not significantly increase 

tyrosinase levels, which is one of the main enzymes involved in melanin synthesis 

(280). While only acute doses of UVB and UVAB significantly increased melanin 

levels in the MM418-C1 cells, no effect was seen in MM418-C5 cells. These results 

suggest that the increase of melanin synthesis is correlated with high levels of 

peroxide post-UVR, which is in agreement with earlier studies (116). While melanin 

levels in melanocytes could not be detected, these experiments will need to be 

repeated in order to examine the effect that antioxidants have on the levels of this 

pigment in these cells following exposure to UVR. 

UVR has been shown to play a role in the activation of MAPK family of signalling 

molecules, including JNK-1/2, p38 MAPK and ERK-1/2 in melanocytes (356-358).  

It has been suggested that MAPK pathways regulate the synthesis of melanin, and 

ROS have been shown to stimulate the activation of ERK and JNK signalling (356-

358), which are known to modulate MITF activation, which in turn regulates 

melanogenesis (356). The activation of p38 MAPK also contributes to melanin 

synthesis by activating the cAMP response element-binding protein (CREB), which 

in turn activates MITF expression (357). 

In this study, the activation of the B-RAF, ERK-1/2, p38 MAPK and JNK pathways 

in UV-irradiated melanocyte-derived cells was also examined. As seen in Chapter 6, 

exposure to the different UV types elicited different responses in these cellular 

signalling pathways in the different cell lines. In these cells, neither B-RAF (MAPK 

upstream) nor its downstream (ERK-1/2) signalling molecules were significantly 

activated (phosphorylated) following exposure to UVA and/or UVB radiation. The 
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lack of effect elicited by UVR on p-B-RAF levels was expected, as it is not a UV 

signature mutation (153). While environmental stressors such as UVR can activate 

p38 MAPK and JNK signalling pathways in melanocytes (177, 196, 356), UVB and 

UVAB were both shown to significantly increase p-p38 levels 30 min post-exposure 

in all three cell lines, with the highest increase seen in MM418-C5 cells. These 

results suggest that the higher melanin levels in MM418-C5 cells may correlate to 

the increased level of p38 activation in the UV-irradiated melanoma cells. JNK was 

also activated in response to UVR (177, 196). JNK-1 was the main JNK isoform 

activated following exposure to UVR, which was similar to that seen in other 

irradiated melanoma cells (177, 343). In this study, UVB and UVAB increased  

JNK-1 activation in the three cells, with the highest activation observed in HEM 

cells 30 min post-UVAB exposure.  

As mentioned earlier, the oxidative stress/damage induced by UVR can contribute to 

the pathogenesis of melanoma (55, 261) and that antioxidants may be used as preventive 

therapy. Antioxidants may reduce the levels of ROS that are induced by UVR in the skin 

(248). The effect of vitamin C and the analog of vitamin E (trolox) were investigated 

in UV-irradiated pigmented melanoma cells and melanocytes. The results in this 

study showed that only vitamin C conferred protection to MM418-C1 cells exposed 

to UVB irradiation, however this was not due to quenching peroxide levels. This 

protection was most likely due to a different ROS and further investigation on the 

roles played by vitamin C in conferring cell protection is warranted.  

In both pigmented melanoma cells and melanocytes, neither vitamin C nor trolox 

conferred any significant effect on cell viability, ROS levels, melanin content and 

signalling pathways activity post-UVA and/or UVB exposure. In the conditions of 

this project, the results suggested that these antioxidants do not exert strong 
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protective effects on these melanocyte-derived cells from UV-induced stress. Thus, 

various non-enzymatic antioxidants – including GSH and ubiquinol – should be 

examined to see whether they confer protection to these cells from UV-induced 

damage. Also, other components including carotenoids, sulfhydryls and uric acid 

have been suggested as potent antioxidants in the skin (364).  

TNF-α plays an important role in many different biological processes, such as 

inflammation, cellular proliferation, apoptosis, differentiation and  tumorigenesis 

(187). Werth et al. (1999) found that the synergistic effect of UVB and IL-1α 

upregulated TNF-α levels secreted by fibroblasts. However, the combination of 

UVA and IL-1α did not increase TNF-α levels in these cells (202). 

Muthusamy et al. (2013) observed that while UVB and UVAB induced the 

production of TNF-α in melanocytes and MM96L melanoma cells, the addition of 

IL-1α significantly increased these levels (196). In this study, UVB and UVAB were 

shown to not significantly increase TNF-α levels in MM418-C1 cells treated with 

IL-1α. On the other hand, the addition of IL-1α to MM418-C5 did not induce TNF-α 

formation in either the sham- or UV-irradiated cells (Figure 5.2). Interestingly, the 

TNF-α levels released from the UV-irradiated MM418-C1 were about 8-10 times 

higher than that released from the MM418-C5 cells, and suggests that high melanin 

levels may negatively regulate TNF-α formation/release from these irradiated cells. 

Further studies on the role that melanin plays in modulating TNF-α release from UV-

irradiated melanocyte-derived cells are warranted. 

Englaro et al. (1999) showed that in mouse B16 melanoma cells, TNF-α inhibited 

both the activity and expression of tyrosinase (192). Subsequently, this led to a 

down-regulation of the activity of the tyrosinase promoter in both basal and    
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cAMP-induced melanogenesis. Moreover, they found that the activation of NF B 

led to the inhibitory effect of TNF-α on melanogenesis (192). Thus, a link can be 

suggested between the presence of melanin or melanogenesis and TNF-α secretion in 

melanoma cells; however further studies will be needed to elucidate this relationship. 

Neither vitamin C nor trolox reduced TNF-α release from either cell line exposed to 

UVB or UVAB radiation. These results suggest that these antioxidants may not 

regulate TNF-α release from MM418-C1 post-UVR. Prolonging the pre-treatment of 

the cells with antioxidants prior UV-exposure may suppress the TNF-α released from 

the cells, though further studies will be needed to confirm this suggestion. 

Through the action of the metalloprotease tumour necrosis factor-α converting 

enzyme (TACE), sTNF-α is cleaved from its membrane bound precursor mTNF-α 

(189, 321). Furin plays an important role not only in the activation of TACE, but 

also that of matrix metalloproteases (MMP) from their respective preproforms (146, 

187, 209, 325, 326). As the effect of UVR on TACE and furin expression in 

melanocytes and melanoma cells is poorly understood, the effect of different types of 

UVR on both pigmented melanoma cells were examined in this study. However, due 

to time and materials constraints, the effects of antioxidants on the secretion of  

TNF-α and that of TACE and furin expression in UV-irradiated melanocytes were 

not examined. Muthusamy et al. (2011) observed that antioxidants reduced TNF-α 

secretion from UV-irradiated melanocytes, but they did not examine the effect UVR 

had on the expression of TACE and furin in these cells (196).  

TACE can exist in two forms, pTACE and mTACE, where the former is cleaved by 

furin to become activated (187). In both melanoma cells, mTACE was the main 

isoform present. In these cells, UVR did not change the expression of TACE in the 
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presence or absence of IL-1α. IL-1α only enhanced TACE expression in UVA-

irradiated MM418-C1 cells, however in general, UVR did not increase the 

expression of TACE in either melanoma cell lines. These results suggest that in these 

cells UVR and IL-1α do not have a synergistic effect on TACE expression. Future 

studies should investigate if this also occurs in melanocytes.  

In both melanoma cell lines, furin expression was not changed in the presence or 

absence of IL-1α post-UVR. This finding was similar to that observed by Ravi 

(2010) who found that neither UV and/or IL-1α had a stimulatory effect on furin 

expression in primary keratinocytes, HaCaT or Colo 16 cell lines (146).  

The effect of vitamin C and trolox on TACE and furin expression post-UVR in the 

presence or absence of IL-1α was also investigated. As UVR did not alter TACE and 

furin expression in both cell lines, treatment with the antioxidants did not show any 

significant effects on the levels of these proteins. 

 

7.2 Conclusions 

In conclusion, UVR elicited different cellular effects depending on the type of 

radiation and the different melanocytic cell that was examined. Normal and 

malignant cell types revealed different cellular responses post-UVR. UVB radiation 

was more cytotoxic with respect to cell viability in all three cell lines, when 

compared to UVA radiation. HEM was also less susceptible to UVR at the same 

dose, when compared to the two melanoma cell lines.  

Treatment with antioxidants showed that only vitamin C conferred protection to 

MM418-C1 cells post-UVB, while trolox had no significant effects post-UVR. Pre-
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treatment with vitamin C for 1 h conferred no protective effects, however 24 h pre-

treatment did confer protection to MM418-C1 cells against UVB. On the other hand, 

trolox did not confer protection to the cells at either time point. These results suggest 

that prolonged pre-treatment with antioxidants may confer better protection to the 

cells from UVR.  

UVB and UVAB significantly increased peroxide levels in all three cell lines, with 

the increase observed in MM418-C5 cells being the lowest. No changes in 

superoxide levels were observed in all cell post-UV exposure.  Overall, these results 

suggest that peroxide is one of the main ROS involved in UV-induced stress in these 

cells. Also, it can be seen that melanin may play a role in reducing peroxide levels in 

the irradiated cells. However, none of the tested antioxidants quenched the ROS 

levels in these UV-irradiated cells. 

The expression of tyrosinase (the main enzyme involved in melanin synthesis), did 

not increase in all cells following exposure to either an acute or chronic dose of 

UVR. While only acute UVB and UVAB exposure significantly increased melanin 

levels in MM418-C1 cells, but not in MM418-C5 cells, this suggested that higher 

cellular melanin levels minimised the effect of UVR on its production. Treatment 

with antioxidants had no effect on melanin levels in the irradiated cells. 

Neither B-RAF, nor its downstream signalling molecule ERK, was affected by UVR 

in all three cell lines, which agrees with earlier studies showing that the former is not 

upregulated by UVR. Both melanoma cell lines possess the B-RAF
V600E

 mutation, 

while the melanocytes contained B-RAF
WT

. As neither isoform was affected by 

UVR, it confirms previous observations that UVR does not signal via this molecule. 



238 | P a g e  

 

 

Other MAPK signalling pathway intermediaries, such as JNK 1/2 and p-38 MAPK, 

were shown to be responsive to UVR radiation in all three cell lines. 

JNK-1, but not JNK-2, was the main isoform activated by UVR in these cells. 

Moreover, UVAB caused the highest increase in p-JNK-1 in these cells compared to 

either UVA or UVB. The greatest activation of p-JNK occurred in UV-irradiated 

MM418-C5 cells compared to the other cell lines. As MM418-C5 cells had high 

melanin levels, it suggests that it may play a role in enhancing JNK activation post-

UVR. Treatment with the antioxidants was unable to reduce the activation of p-JNK 

in these irradiated cells.  

Exposure to UVB and UVAB activated p-p38 levels in all three cell lines. Like that 

seen with JNK, the highest activity of p-p38 was seen post-UVAB exposure in 

MM418-C5 cells. However when the cells were treated with antioxidants, there was 

no significant reduction in p-p38 levels in all three cell lines.  

TNF-α levels were non-significantly increased in MM418-C1 cells. No increase was 

observed in MM418-C5 cells following IL-1α treatment. Exposure to UVB and 

UVAB non-significantly increased TNF-α levels in both cell lines, however the 

levels released from MM418-C1 cells were higher than that seen in MM418-C5 

cells. This suggests that high melanin levels may reduce the stimulatory effect of 

UVR on the release of TNF-α from these cells. Antioxidant treatment did not 

moderate the release of TNF-α from these irradiated cells. 

Furin is responsible for the activation of TACE that, when activated, cleaves sTNF-α 

from its membrane precursor mTNF-α. The expression of both of these enzymes in 

the melanoma cells were unaffected by UVR, which suggests that their expression is 
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not moderated by this stimulus. Treatment with the antioxidants had no effect on the 

expression of these proteins in the irradiated cells.  

Therefore in summary, the antioxidants (vitamin C and vitamin E) did not confer a 

significant protective effect to UV-irradiated melanocytes and melanoma cells with 

respect to cell viability, melanin and ROS levels, intracellular signalling pathway 

activities, cytokine release and of the enzymes involved in this process. These results 

suggest that the UV doses used in this study may have been too high (causing 50% 

loss of cell viability) and this may have prevented the protective effects of these 

antioxidants from being observed. While the findings of these studies do not directly 

support the use of antioxidants in sunscreens or pre-/after-sun skin care lotions, there 

are several further studies that are warranted. Future studies should investigate the 

protective effect of the antioxidants on the cells exposed to lower doses of UVR, as 

well as that on their ability to enhance the repair of DNA damage (e.g. using the 

comet assay), which may help elucidate the protective role that these molecules may 

play in those epidermal cells exposed to high doses of sunlight. 
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7.3 Future Directions 

7.3.1 UVR doses 

As mentioned earlier in this thesis, the selected UV doses used in these experiments 

were ones which caused 50% cell death. This dose may have been one which 

overwhelmed the cell’s ability to overcome such damage, and thereby we may not 

have seen any protective effects that the antioxidants may confer. If a lower UV dose 

(e.g. ~25-30% cell death) was used, the effects elicited by the antioxidants may be 

more pronounced than that seen when the cells were exposed to a much higher UV 

dose. 

 

7.3.2 Antioxidants 

It was found in numerous biological systems, that vitamins C and E elicit a 

synergistic effect. This occurs when vitamin E is regenerated in the membrane by 

vitamin C, when the former becomes oxidized by free radicals (240). Lin et al. 

(2003) found that combination of 15% (w/v) ascorbic acid (vitamin C) and 1% (w/v) 

α-tocopherol (Vitamin E) conferred significant protection against erythema and 

sunburn cell formation in UV-irradiated pig skin (240).  In our study, we examined 

the effect of vitamin C and trolox separately on UV-irradiated melanocytes derived 

cells. Thus, as further experiments, it would be appropriate to look at the synergistic 

effects of vitamin C and E on MAPK cell signalling pathways, TNF-α, melanin and 

ROS levels in the UV-irradiated cells. 
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7.3.3 Different cells lines 

In this study I used two different pigmented melanoma cell lines. However, these 

two cell lines were grown from the same primary tumour. Thus, further studies using 

cell lines obtained from primary and secondary melanomas are required to see 

whether the levels of furin, TACE and TNF-α released in these cells are related to 

the metastatic potential of these cells, as well as the effect UVR may have on these 

levels. 

 

7.3.4  Enhancement of melanin levels in the cells 

In this study, we were unable to detect melanin levels in the primary melanocytes. 

Consequently, it was not possible to investigate the effect that antioxidants had on 

melanin levels when these cells were exposed to UV-radiation. Thus, enhancements 

of melanin levels are needed in order to be able to observe the effect that 

antioxidants and/or UVR have on their cellular levels in the melanocytes. Kvam et 

al. (2003) found that the tyrosine enhancer modulates melanin synthesis in 

melanocytes post-UVA. In their experiments, they used three immortalized mouse 

melanocyte cell lines that possessed different levels of pigmentation. A tissue culture 

medium containing low tyrosine concentrations was used to grow these melanocytes. 

Melanin synthesis was shown to be enhanced when the media concentration of 

tyrosine was increased (267).  

In addition to tyrosine, α-MSH and IBMX were also shown to regulate the 

expression of enzymes involved in melanin synthesis, such as tyrosinase, TRP-1 and 

TRP-2 (365). This regulation occurs via by controlling the transcription activation 

transcription factors, such as MITF and CREB and also the protein kinase A 
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signalling pathways (365). Park et al. (2011) showed that α-MSH and IBMX 

induced tyrosinase, TRP-1 and TRP-2 expression, as well as melanin synthesis in 

mouse B16F10 melanoma cells. They also found that, treating the cells with 

Aromatic (ar)-turmerone (naturally occurring turmeric oil), inhibited α-MSH and 

IBMX-induced melanin synthesis, as well as tyrosinase, TRP-1 and TRP-2 activity 

(297). Therefore, from studies by Kyam et al. (2003) and Park et al. (2011), the 

addition of a melanin precursor such as tyrosine and IBMX might be needed to 

induce melanin synthesis in melanocytes; thereby allowing for the effect of 

antioxidants on UV-irradiated melanocytes to be investigated (297, 365). 

 

7.3.5 Tumour suppressor genes  

Two tumour suppressor genes, p53 and p16 (Section 1.5.2), play an important role in 

regulating the cell cycle. p53 acts as a regulator of the genotoxic response controlling 

several signalling pathways that respond to stimuli, such as oxidative stress and 

DNA damage (46, 81), whereas p16 responds to oxidative stress in UV-irradiated 

melanocytes (82). In melanoma patients, these tumour suppressor genes were often 

found to be either mutated or deleted, and therefore inactive (82).  

Although it has been shown that p16 is activated by UVB radiation (83), there are 

altering opinions as to whether p53 is also activated by UVR (366, 367). The effect 

of different doses of different types of UVR (UVA and/or UVB) on the expression of 

p16 and p53 post-UV exposure could be examined in a range of melanocyte-derived 

cells. Furthermore, if an effect is observed, treatment with antioxidants (vitamin C 

and trolox) may be investigated to see whether they confer a protective effect in cells 

exposed to UVR.  
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7.3.6 N-RAS signalling pathway 

As discussed previously (Section 1.5.5.1), oncogenic RAS alone does not appear 

able to induce melanoma transformation unless combined with other genetic 

alterations (93). Almost 80% of melanomas have either B-RAF or NRAS mutations, 

with 15–30% involving NRAS mutation (93). 

Recently, it was found that B-RAF/NRAS
WT

 melanomas may contain a high 

mutation load as a result of extensive UV induced damage (368). This strong 

association with UV damage has been evidenced clinically by the higher degree of 

solar elastosis observed in vivo (368). The effect of different doses and types of UVR 

on the activation of NRAS may be investigated in the melanocyte-derived cell lines, 

as well as the effect that antioxidant treatments may have on this process. 

 

7.3.7 DNA damage  

UVR has been shown to play a role in causing DNA mutations. Mainly because 

UVB can cause direct damage when absorbed by DNA, resulting in the formation of 

cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs). UVB can 

also cause indirect damage to proteins and lipids, resulting in cellular damage. UVA 

can indirectly initiate DNA damage by increasing ROS levels in the cell. In addition, 

ROS can cause 8-oxoGua, which is a type of oxidative DNA damage (74). Thus, it is 

important to investigate the protective effect that antioxidants have on UV-irradiated 

melanocytes to see if they can confer protection to DNA in UV-irradiated cells.  

The comet assay is a simple method for measuring damage to DNA as strand breaks 

in eukaryotic cells (369). By measuring the comet tail, DNA repair can be measured 

and compared to that of unrepaired DNA (369). This will allow us to observe the 
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protective effect that antioxidants may confer to the cell’s DNA following exposure 

to UVR. 

 

7.3.8 Co-culture model and skin tissue samples 

As melanocytes and keratinocytes are found together in the epidermis (370), the 

former transfers melanin to the later to confer protection against UVR (370), it 

would be physiologically relevant to grow these cells in co-culture to study the effect 

that antioxidants would have following UV exposure. Melanocyte–keratinocyte co-

cultured models have been previously used to test compounds for potential effects on 

pigmentation (370). This model was reported to be sensitive, reproducible, and 

reliable for testing melanogenic regulators standardised with known melanogenic 

inhibitors (370). 

In a different study, a co-culture model of melanocytes-keratinocytes was 

successfully used as an alternative system for research and testing in place of 

laboratory animals, to examine the biology and pathophysiology of pigmentation and 

vitiligo (371). Melanocytes-keratinocytes were cultured from control and vitiligo 

patients and co-culture models were prepared. The levels of tyrosinase activity, 

melanin content and cell proliferation were increased in co-cultured cells when 

compared to that seen in mono-cultured cell lines. After treating the co-culture with 

melanogenic inhibitor, they found that tyrosinase activity, melanin content and cell 

proliferation was reduced (371). 

In addition, a biopsy of skin tissue samples may be used to study the effect of UVR 

on UV-induced damage in melanocytes as seen in situ. Due to time constraints, the 

effect of antioxidants on the expression of p16 in UV-irradiated skin tissue was not 
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investigated. Thus, this experiment should be performed to see if antioxidants confer 

a protective effect to the epidermal cells when applied directly to irradiated skin 

tissue under in situ conditions.  

 

 

  



246 | P a g e  

 

 

Chapter 8. References 

1. World Health Organization. Ultraviolet radiation and human health 2009 

[02.02.2015]. Available from: http://www.who.int/mediacentre/factsheets/fs305/en/. 

2. Katiyar SK. UV-induced immune suppression and photocarcinogenesis: 

chemoprevention by dietary botanical agents. Cancer Letters. 2007;255(1):1-11. 

3. Housman TS, Feldman SR, Williford PM, Fleischer AB, Jr., Goldman ND, 

Acostamadiedo JM, et al. Skin cancer is among the most costly of all cancers to treat 

for the Medicare population. Journal of the American Academy of Dermatology. 

2003;48(3):425-9. 

4. World Health Organization. Skin cancer incidence on the rise 2007 

[01.02.2015]. Available from: 

(http://www.who.int/mediacentre/factsheets/fs261/en/). . 

5. Cancer Council Australia. Skin cancer  [01.02.2015]. Available from: 

http://www.cancer.org.au/about-cancer/types-of-cancer/skin-cancer.html. 

6. Fransen M, Karahalios A, Sharma N, English DR, Giles GG, Sinclair RD. 

Non-melanoma skin cancer in Australia. The Medical Journal of Australia. 

2012;197(10):565-8. 

7. Svobodova A, Walterova D, Vostalova J. Ultraviolet light induced alteration 

to the skin. Biomedical papers of the Medical Faculty of the University Palacky. 

2006;150(1):25-38. 

8. Pinnell SR. Cutaneous photodamage, oxidative stress, and topical antioxidant 

protection. Journal of the American Academy of Dermatology. 2003;48(1):1-19. 

9. Zeman G. Ultraviolet Radiation. Health Physics Society  [16.02.2015]. 

Available from: http://www.hps.org/hpspublications/articles/uv.html. 

10. Svobodova A, Zdarilova A, Maliskova J, Mikulkova H, Walterova D, 

Vostalova J. Attenuation of UVA-induced damage to human keratinocytes by 

silymarin. Journal of Dermatological Science. 2007;46(1):21-30. 

11. Jin GH, Liu Y, Jin SZ, Liu XD, Liu SZ. UVB induced oxidative stress in 

human keratinocytes and protective effect of antioxidant agents. Radiation and 

Environmental Biophysics. 2007;46(1):61-8. 

12. Nghiem DX, Kazimi N, Clydesdale G, Ananthaswamy HN, Kripke ML, 

Ullrich SE. Ultraviolet a radiation suppresses an established immune response: 

implications for sunscreen design. Journal of Investigative Dermatology. 

2001;117(5):1193-9. 

http://www.who.int/mediacentre/factsheets/fs305/en/
http://www.who.int/mediacentre/factsheets/fs261/en/)
http://www.cancer.org.au/about-cancer/types-of-cancer/skin-cancer.html
http://www.hps.org/hpspublications/articles/uv.html


247 | P a g e  

 

 

13. Fahlman BM, Krol ES. Inhibition of UVA and UVB radiation-induced lipid 

oxidation by quercetin. Journal of Agricultural and Food Chemistry. 

2009;57(12):5301-5. 

14. Soehnge H, Ouhtit A, Ananthaswamy ON. Mechanisms of induction of skin 

cancer by UV radiation. Frontiers in Bioscience. 1997;2:d538-51. 

15. Liu S, Mizu H, Yamauchi H. Photoinflammatory responses to UV-irradiated 

ketoprofen mediated by the induction of ROS generation, enhancement of 

cyclooxygenase-2 expression, and regulation of multiple signaling pathways. Free 

Radical Biology & Medicine. 2010;48(6):772-80. 

16. Halliday GM. Inflammation, gene mutation and photoimmunosuppression in 

response to UVR-induced oxidative damage contributes to photocarcinogenesis. 

Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 

2005;571(1):107-20. 

17. Touitou E, Godin B. Skin nonpenetrating sunscreens for cosmetic and 

pharmaceutical formulations. Clinics In Dermatology. 2008;26(4):375-9. 

18. Pillai S, Oresajo C, Hayward J. Ultraviolet radiation and skin aging: roles of 

reactive oxygen species, inflammation and protease activation, and strategies for 

prevention of inflammation-induced matrix degradation - a review. International 

Journal of Cosmetic Science. 2005;27(1):17-34. 

19. Kanitakis J. Anatomy, histology and immunohistochemistry of normal 

human skin. European Journal of Dermatology. 2002;12(4):390-9; quiz 400-1. 

20. Haake A, Holbrook K. The structure and development of skin. Fitzpatrick’s 

Dermatology in General Medicine. 1999;1:70-114. 

21. Costin GE, Hearing VJ. Human skin pigmentation: melanocytes modulate 

skin color in response to stress. The Journal of the Federation of American Societies 

for Experimental Biology. 2007;21(4):976-94. 

22. Skin Cancer Foundation. Understanding UVA and UVB  [01.02.2015]. 

Available from: http://www.skincancer.org/prevention/uva-and-uvb/understanding-

uva-and-uvb. 

23. Yung A. The structure of normal skin  [16.03.2015]. Available from: 

http://www.dermnetnz.org/pathology/skin-structure.html. 

24. Krause WJ. The Art of Examining and Interpreting Histologic Preparations: 

A Student Handbook. New York: CRC Press; 2001. 

http://www.skincancer.org/prevention/uva-and-uvb/understanding-uva-and-uvb
http://www.skincancer.org/prevention/uva-and-uvb/understanding-uva-and-uvb
http://www.dermnetnz.org/pathology/skin-structure.html


248 | P a g e  

 

 

25. Matsumura Y, Ananthaswamy HN. Short-term and long-term cellular and 

molecular events following UV irradiation of skin: implications for molecular 

medicine. Expert Reviews in Molecular Medicine. 2002;4(26):1-22. 

26. Wolpowitz D, Gilchrest BA. The vitamin D questions: how much do you 

need and how should you get it? Journal of the American Academy of Dermatology. 

2006;54(2):301-17. 

27. Nowson CA, McGrath JJ, Ebeling PR, Haikerwal A, Daly RM, Sanders KM, 

et al. Vitamin D and health in adults in Australia and New Zealand: a position 

statement. The Medical Journal of Australia. 2012;196(11):686-7. 

28. Deluca HF, Prahl JM, Plum LA. 1,25-Dihydroxyvitamin D is not responsible 

for toxicity caused by vitamin D or 25-hydroxyvitamin D. Archives of Biochemistry 

and Biophysics. 2011;505(2):226-30. 

29. Holick MF. Resurrection of vitamin D deficiency and rickets. The Journal of 

Clinical Investigation. 2006;116(8):2062-72. 

30. Bulat V, Situm M, Dediol I, Ljubicic I, Bradic L. The mechanisms of action 

of phototherapy in the treatment of the most common dermatoses. Journal of the 

Croatian Anthropological Society. 2011;35 Suppl 2:147-51. 

31. Krutmann J. Therapeutic photoimmunology: photoimmunological 

mechanisms in photo(chemo)therapy. Journal of Photochemistry and Photobiology 

B: Biology. 1998;44(2):159-64. 

32. Mudigonda T, Dabade TS, Feldman SR. A review of targeted ultraviolet B 

phototherapy for psoriasis. Journal of the American Academy of Dermatology. 

2012;66(4):664-72. 

33. Sage RJ, Lim HW. UV-based therapy and vitamin D. Dermatologic Therapy. 

2010;23(1):72-81. 

34. Osmancevic A, Nilsen LT, Landin-Wilhelmsen K, Soyland E, Abusdal 

Torjesen P, Hagve TA, et al. Effect of climate therapy at Gran Canaria on vitamin D 

production, blood glucose and lipids in patients with psoriasis. Journal of the 

European Academy of Dermatology and Venereology. 2009;23(10):1133-40. 

35. Osmancevic A, Landin-Wilhelmsen K, Larko O, Krogstad AL. Vitamin D 

status in psoriasis patients during different treatments with phototherapy. Journal of 

Photochemistry and Photobiology B: Biology. 2010;101(2):117-23. 

36. Cancer Council Australia. How much sun is enough? 2014 [23.03.2015]. 

Available from: http://www.cancer.org.au/preventing-cancer/sun-protection/vitamin-

d/how-much-sun-is-enough.html. 

http://www.cancer.org.au/preventing-cancer/sun-protection/vitamin-d/how-much-sun-is-enough.html
http://www.cancer.org.au/preventing-cancer/sun-protection/vitamin-d/how-much-sun-is-enough.html


249 | P a g e  

 

 

37. Muthusamy V. The role cell signalling pathways play in TNFα release from 

UV-irradiated the human skin cell. Melbourne: RMIT University; 2010. 

38. Hennessy A, Oh C, Rees J, Diffey B. The photoadaptive response to 

ultraviolet exposure in human skin using ultraviolet spectrophotometry. 

Photodermatology, Photoimmunology & Photomedicine. 2005;21(5):229-33. 

39. Clydesdale GJ, Dandie GW, Muller HK. Ultraviolet light induced injury: 

immunological and inflammatory effects. Immunology & Cell Biology. 

2001;79(6):547-68. 

40. Cosmeticsurgery. Ethnic Considerations in Plastic Surgery 2015 

[23.03.2015]. Available from: 

http://www.cosmeticsurgery.com/articles/archive/an~134/. 

41. Sunmart. Risk factors :Skin types and skin colour [23.03.2015]. Available 

from: http://www.sunsmart.com.au/skin-cancer/risk-factors#skin-types. 

42. Matsumura Y, Ananthaswamy HN. Toxic effects of ultraviolet radiation on 

the skin. Toxicology and Applied Pharmacology. 2004;195(3):298-308. 

43. de Gruijl FR, van Kranen HJ, Mullenders LH. UV-induced DNA damage, 

repair, mutations and oncogenic pathways in skin cancer. Journal of Photochemistry 

and Photobiology B: Biology. 2001;63(1-3):19-27. 

44. Madan V, Lear JT, Szeimies R-M. Non-melanoma skin cancer. The Lancet. 

2010;375(9715):673-85. 

45. Kricker A, Armstrong BK, English DR, Heenan PJ. A dose-response curve 

for sun exposure and basal cell carcinoma. International Journal of Cancer. 

1995;60(4):482-8. 

46. Chen H, Weng QY, Fisher DE. UV signaling pathways within the skin. The 

Journal of Investigative Dermatology. 2014;134(8):2080-5. 

47. Levine JA, Sorace M, Spencer J, Siegel DM. The indoor UV tanning 

industry: a review of skin cancer risk, health benefit claims, and regulation. Journal 

of the American Academy of Dermatology. 2005;53(6):1038-44. 

48. Kricker A, Armstrong BK, English DR, Heenan PJ. Does intermittent sun 

exposure cause basal cell carcinoma? a case-control study in Western Australia. 

International Journal of Cancer. 1995;60(4):489-94. 

49. Rosso S, Zanetti R, Martinez C, Tormo MJ, Schraub S, Sancho-Garnier H, et 

al. The multicentre south European study 'Helios'. II: Different sun exposure patterns 

in the aetiology of basal cell and squamous cell carcinomas of the skin. British 

Journal of Cancer. 1996;73(11):1447-54. 

http://www.cosmeticsurgery.com/articles/archive/an~134/
http://www.sunsmart.com.au/skin-cancer/risk-factors#skin-types


250 | P a g e  

 

 

50. Armstrong BK, Kricker A. The epidemiology of UV induced skin cancer. 

Journal of Photochemistry and Photobiology B: Biology. 2001;63(1-3):8-18. 

51. Moan J, Grigalavicius M, Baturaite Z, Juzeniene A, Dahlback A. North-

South gradients of melanomas and non-melanomas: A role of vitamin D? Dermato-

endocrinology. 2013;5(1):186-91. 

52. Lo JA, Fisher DE. The melanoma revolution: from UV carcinogenesis to a 

new era in therapeutics. Science. 2014;346(6212):945-9. 

53. Cancer Council Australia. Melanoma 2014 [02.02.2015]. Australian Institute 

of Health and Welfare 2014. ACIM (Australian Cancer Incidence and Mortality) 

Books. Canberra: AIHW. Available from: http://www.cancer.org.au/about-

cancer/types-of-cancer/skin-cancer/melanoma.html. 

54. Pavey S, Gabrielli B. Alpha-melanocyte stimulating hormone potentiates 

p16/CDKN2A expression in human skin after ultraviolet irradiation. Cancer 

Research. 2002;62(3):875-80. 

55. Meyskens FL, Jr., Farmer PJ, Anton-Culver H. Etiologic pathogenesis of 

melanoma: a unifying hypothesis for the missing attributable risk. Clinical Cancer 

Research. 2004;10(8):2581-3. 

56. Whiteman DC, Whiteman CA, Green AC. Childhood sun exposure as a risk 

factor for melanoma: a systematic review of epidemiologic studies. Cancer Causes & 

Control. 2001;12(1):69-82. 

57. Boniol M, Autier P, Boyle P, Gandini S. Cutaneous melanoma attributable to 

sunbed use: systematic review and meta-analysis. The British Medical Journal. 

2012;345:e4757. 

58. Garibyan L, Fisher DE. How sunlight causes melanoma. Current Oncology 

Reports. 2010;12(5):319-26. 

59. Bald T, Quast T, Landsberg J, Rogava M, Glodde N, Lopez-Ramos D, et al. 

Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in 

melanoma. Nature. 2014;507(7490):109-13. 

60. Rees JL. Genetics of hair and skin color. Annual Review of Genetics. 

2003;37:67-90. 

61. Mitra D, Luo X, Morgan A, Wang J, Hoang MP, Lo J, et al. An ultraviolet-

radiation-independent pathway to melanoma carcinogenesis in the red hair/fair skin 

background. Nature. 2012;491(7424):449-53. 

http://www.cancer.org.au/about-cancer/types-of-cancer/skin-cancer/melanoma.html
http://www.cancer.org.au/about-cancer/types-of-cancer/skin-cancer/melanoma.html


251 | P a g e  

 

 

62. Haluska FG, Tsao H, Wu H, Haluska FS, Lazar A, Goel V. Genetic 

alterations in signaling pathways in melanoma. Clinical Cancer Research. 2006;12(7 

Pt 2):2301s-7s. 

63. Piepkorn M. Melanoma genetics: an update with focus on the 

CDKN2A(p16)/ARF tumor suppressors. Journal of the American Academy of 

Dermatology. 2000;42(5 Pt 1):705-22. 

64. Agarwal P, Sandey M, DeInnocentes P, Bird RC. Tumor suppressor gene 

p16/INK4A/CDKN2A-dependent regulation into and out of the cell cycle in a 

spontaneous canine model of breast cancer. Journal of Cellular Biochemistry. 

2013;114(6):1355-63. 

65. Sullivan R, Flaherty K. MAP kinase signaling and inhibition in melanoma. 

Oncogene. 2013;32(19):2373-9. 

66. Omholt K, Platz A, Kanter L, Ringborg U, Hansson J. NRAS and BRAF 

mutations arise early during melanoma pathogenesis and are preserved throughout 

tumor progression. Clinical Cancer Research. 2003;9(17):6483-8. 

67. Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM, et al. 

High frequency of BRAF mutations in nevi. Nature Genetics. 2003;33(1):19-20. 

68. Thomas NE, Alexander A, Edmiston SN, Parrish E, Millikan RC, Berwick 

M, et al. Tandem BRAF mutations in primary invasive melanomas. The Journal of 

Investigative Dermatology. 2004;122(5):1245-50. 

69. Mercer KE, Pritchard CA. Raf proteins and cancer: B-Raf is identified as a 

mutational target. Biochimica et Biophysica Acta. 2003;1653(1):25-40. 

70. Smalley KS. A pivotal role for ERK in the oncogenic behaviour of malignant 

melanoma? International Journal of Cancer. 2003;104(5):527-32. 

71. Ouhtit A, Ananthaswamy HN. A Model for UV-Induction of Skin Cancer. 

Journal of Biomedicine and Biotechnology. 2001;1(1):5-6. 

72. Rastogi RP, Richa, Kumar A, Tyagi MB, Sinha RP. Molecular mechanisms 

of ultraviolet radiation-induced DNA damage and repair. Journal of Nucleic Acids. 

2010;2010:592980. 

73. de Gruijl FR. Skin cancer and solar UV radiation. European Journal of 

Cancer. 1999;35(14):2003-9. 

74. Schuch AP, Garcia CC, Makita K, Menck CF. DNA damage as a biological 

sensor for environmental sunlight. Photochemical & Photobiological Sciences. 

2013;12(8):1259-72. 



252 | P a g e  

 

 

75. Cadet J, Douki T, Ravanat JL, Di Mascio P. Sensitized formation of 

oxidatively generated damage to cellular DNA by UVA radiation. Photochemical & 

Photobiological Sciences. 2009;8(7):903-11. 

76. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free 

radicals and antioxidants in normal physiological functions and human disease. The 

International Journal of Biochemistry & Cell Biology. 2007;39(1):44-84. 

77. Gehrke N, Mertens C, Zillinger T, Wenzel J, Bald T, Zahn S, et al. Oxidative 

damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and 

potentiates STING-dependent immune sensing. Immunity. 2013;39(3):482-95. 

78. Wiseman H, Halliwell B. Damage to DNA by reactive oxygen and nitrogen 

species: role in inflammatory disease and progression to cancer. The Biochemical 

Journal. 1996;313 (Pt 1):17-29. 

79. Al-Mohanna MA, Al-Khalaf HH, Al-Yousef N, Aboussekhra A. The 

p16INK4a tumor suppressor controls p21WAF1 induction in response to ultraviolet 

light. Nucleic Acids Research. 2007;35(1):223-33. 

80. Hartwell LH, Weinert TA. Checkpoints: controls that ensure the order of cell 

cycle events. Science. 1989;246(4930):629-34. 

81. Cui R, Widlund HR, Feige E, Lin JY, Wilensky DL, Igras VE, et al. Central 

role of p53 in the suntan response and pathologic hyperpigmentation. Cell. 

2007;128(5):853-64. 

82. Jenkins NC, Liu T, Cassidy P, Leachman SA, Boucher KM, Goodson AG, et 

al. The p16INK4A tumor suppressor regulates cellular oxidative stress. Oncogene. 

2011;30(3):265-74. 

83. Ahmed NU, Ueda M, Ichihashi M. Induced expression of p16 and p21 

proteins in UVB-irradiated human epidermis and cultured keratinocytes. Journal of 

Dermatological Science. 1999;19(3):175-81. 

84. Berking C. The role of ultraviolet irradiation in malignant melanoma. Der 

Hautarzt. 2005;56(7):687-96. 

85. Wang SQ, Setlow R, Berwick M, Polsky D, Marghoob AA, Kopf AW, et al. 

Ultraviolet A and melanoma: a review. Journal of the American Academy of 

Dermatology. 2001;44(5):837-46. 

86. De Fabo EC, Noonan FP, Fears T, Merlino G. Ultraviolet B but not 

ultraviolet A radiation initiates melanoma. Cancer Research. 2004;64(18):6372-6. 



253 | P a g e  

 

 

87. Atillasoy ES, Seykora JT, Soballe PW, Elenitsas R, Nesbit M, Elder DE, et 

al. UVB induces atypical melanocytic lesions and melanoma in human skin. The 

American Journal of Pathology. 1998;152(5):1179-86. 

88. Agar NS, Halliday GM, Barnetson RS, Ananthaswamy HN, Wheeler M, 

Jones AM. The basal layer in human squamous tumors harbors more UVA than 

UVB fingerprint mutations: a role for UVA in human skin carcinogenesis. 

Proceedings of the National Academy of Sciences of the United States of America. 

2004;101(14):4954-9. 

89. Westerhof W. The discovery of the human melanocyte. Pigment Cell 

Research. 2006;19(3):183-93. 

90. Panich U. Antioxidant Defense and UV-Induced Melanogenesis: 

Implications for Melanoma Prevention. In: Cao MY, editor. Current Management of 

Malignant Melanoma. Rijeka: Intech; 2011. p. 227-52. 

91. Costin G-E, Hearing VJ. Human skin pigmentation: melanocytes modulate 

skin color in response to stress. The FASEB Journal. 2007;21(4):976-94. 

92. Fitzpatrick TB, Breathnach AS. The epidermal melanin unit system. 

Dermatologische Wochenschrift. 1963;147:481-9. 

93. Bertolotto C. Melanoma: from melanocyte to genetic alterations and clinical 

options. Scientifica. 2013;2013:635203. 

94. Yamaguchi Y, Hearing VJ, Maeda A, Morita A. NADPH:quinone 

oxidoreductase-1 as a new regulatory enzyme that increases melanin synthesis. The 

Journal of Investigative Dermatology. 2010;130(3):645-7. 

95. Ando H, Kondoh H, Ichihashi M, Hearing VJ. Approaches to identify 

inhibitors of melanin biosynthesis via the quality control of tyrosinase. Journal of 

Investigative Dermatology. 2007;127(4):751-61. 

96. Halder RM, Nootheti PK. Ethnic skin disorders overview. Journal of the 

American Academy of Dermatology. 2003;48(6 Suppl):S143-8. 

97. Abdel-Malek Z, Swope VB, Suzuki I, Akcali C, Harriger MD, Boyce ST, et 

al. Mitogenic and melanogenic stimulation of normal human melanocytes by 

melanotropic peptides. Proceedings of the National Academy of Sciences of the 

United States of America. 1995;92(5):1789-93. 

98. Park HY, Kosmadaki M, Yaar M, Gilchrest BA. Cellular mechanisms 

regulating human melanogenesis. Cellular and Molecular Life Sciences. 

2009;66(9):1493-506. 



254 | P a g e  

 

 

99. Pavel S, van Nieuwpoort F, van der Meulen H, Out C, Pizinger K, Cetkovska 

P, et al. Disturbed melanin synthesis and chronic oxidative stress in dysplastic naevi. 

European Journal of Cancer. 2004;40(9):1423-30. 

100. Rass K, Reichrath J. UV damage and DNA repair in malignant melanoma 

and nonmelanoma skin cancer. Advances in Experimental Medicine and Biology. 

2008;624:162-78. 

101. Tran TN, Schulman J, Fisher DE. UV and pigmentation: molecular 

mechanisms and social controversies. Pigment Cell & Melanoma Research. 

2008;21(5):509-16. 

102. Maeda K, Hatao M. Involvement of photooxidation of melanogenic 

precursors in prolonged pigmentation induced by ultraviolet A. The Journal of 

Investigative Dermatology. 2004;122(2):503-9. 

103. Kadekaro AL, Kavanagh RJ, Wakamatsu K, Ito S, Pipitone MA, Abdel-

Malek ZA. Cutaneous photobiology. The melanocyte vs. the sun: who will win the 

final round? Pigment Cell Research. 2003;16(5):434-47. 

104. Meredith P, Sarna T. The physical and chemical properties of eumelanin. 

Pigment Cell Research. 2006;19(6):572-94. 

105. Eller MS, Ostrom K, Gilchrest BA. DNA damage enhances melanogenesis. 

Proceedings of the National Academy of Sciences of the United States of America. 

1996;93(3):1087-92. 

106. Miyamura Y, Coelho SG, Schlenz K, Batzer J, Smuda C, Choi W, et al. The 

deceptive nature of UVA tanning versus the modest protective effects of UVB 

tanning on human skin. Pigment Cell & Melanoma Research. 2011;24(1):136-47. 

107. Ou-Yang H, Stamatas G, Kollias N. Spectral responses of melanin to 

ultraviolet A irradiation. The Journal of Investigative Dermatology. 

2004;122(2):492-6. 

108. Miller AJ, Tsao H. New insights into pigmentary pathways and skin cancer. 

The British Journal of Dermatology. 2010;162(1):22-8. 

109. Pfeifer GP, You YH, Besaratinia A. Mutations induced by ultraviolet light. 

Mutation Research. 2005;571(1-2):19-31. 

110. Takeuchi S, Zhang W, Wakamatsu K, Ito S, Hearing VJ, Kraemer KH, et al. 

Melanin acts as a potent UVB photosensitizer to cause an atypical mode of cell death 

in murine skin. Proceedings of the National Academy of Sciences of the United 

States of America. 2004;101(42):15076-81. 



255 | P a g e  

 

 

111. Gloster HM, Neal K. Skin cancer in skin of color. Journal of the American 

Academy of Dermatology. 2006;55(5):741-60. 

112. Liu-Smith F, Poe C, Farmer PJ, Meyskens FL, Jr. Amyloids, melanins and 

oxidative stress in melanomagenesis. Experimental Dermatology. 2015;24(3):171-4. 

113. Nelson M, Foxwell AR, Tyrer P, Dean RT. Protein-bound 3,4-dihydroxy-

phenylanine (DOPA), a redox-active product of protein oxidation, as a trigger for 

antioxidant defences. The International Journal of Biochemistry & Cell Biology. 

2007;39(5):879-89. 

114. Borovansky J, Mirejovsky P, Riley PA. Possible relationship between 

abnormal melanosome structure and cytotoxic phenomena in malignant melanoma. 

Neoplasma. 1991;38(4):393-400. 

115. Meyskens FL, Jr., McNulty SE, Buckmeier JA, Tohidian NB, Spillane TJ, 

Kahlon RS, et al. Aberrant redox regulation in human metastatic melanoma cells 

compared to normal melanocytes. Free Radical Biology & Medicine. 

2001;31(6):799-808. 

116. Jenkins NC, Grossman D. Role of melanin in melanocyte dysregulation of 

reactive oxygen species. BioMed Research International. 2013;2013:908797. 

117. Meyskens FL, Jr., Farmer PJ, Yang S, Anton-Culver H. New perspectives on 

melanoma pathogenesis and chemoprevention. Recent Results in Cancer Research. 

2007;174:191-5. 

118. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals 

and antioxidants in oxidative stress-induced cancer. Chemico-Biological 

Interactions. 2006;160(1):1-40. 

119. Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen 

radicals in DNA damage and cancer incidence. Molecular and Cellular 

Biochemistry. 2004;266(1-2):37-56. 

120. Poli G, Leonarduzzi G, Biasi F, Chiarpotto E. Oxidative stress and cell 

signalling. Current Medicinal Chemistry. 2004;11(9):1163-82. 

121. Halliwell B. Antioxidants in human health and disease. Annual Review of 

Nutrition. 1996;16:33-50. 

122. Ibañez IL, Notcovich C, Durán H, Policastro LL. Reactive oxygen species in 

the biology of melanoma. In: Tanaka Y, editor. Breakthroughs in Melanoma 

Research. Rijeka: Intech; 2011. p. 3-32. 

123. Cadenas E. Biochemistry of oxygen toxicity. Annual Review of 

Biochemistry. 1989;58:79-110. 



256 | P a g e  

 

 

124. Larsson P, Ollinger K, Rosdahl I. Ultraviolet (UV)A- and UVB-induced 

redox alterations and activation of nuclear factor-kappaB in human melanocytes-

protective effects of alpha-tocopherol. The British Journal of Dermatology. 

2006;155(2):292-300. 

125. Heck DE, Gerecke DR, Vetrano AM, Laskin JD. Solar ultraviolet radiation 

as a trigger of cell signal transduction. Toxicology and Applied Pharmacology. 

2004;195(3):288-97. 

126. Peus D, Vasa RA, Meves A, Pott M, Beyerle A, Squillace K, et al. H2O2 is 

an important mediator of UVB-induced EGF-receptor phosphorylation in cultured 

keratinocytes. The Journal of Investigative Dermatology. 1998;110(6):966-71. 

127. Darr D, Fridovich I. Free radicals in cutaneous biology. The Journal of 

Investigative Dermatology. 1994;102(5):671-5. 

128. Peus D, Meves A, Pott M, Beyerle A, Pittelkow MR. Vitamin E analog 

modulates UVB-induced signaling pathway activation and enhances cell survival. 

Free Radical Biology & Medicine. 2001;30(4):425-32. 

129. Van Laethem A, Nys K, Van Kelst S, Claerhout S, Ichijo H, Vandenheede 

JR, et al. Apoptosis signal regulating kinase-1 connects reactive oxygen species to 

p38 MAPK-induced mitochondrial apoptosis in UVB-irradiated human 

keratinocytes. Free Radical Biology & Medicine. 2006;41(9):1361-71. 

130. Muthusamy V, Piva TJ. The UV response of the skin: a review of the MAPK, 

NFkappaB and TNFalpha signal transduction pathways. Archives of Dermatological 

Research. 2010;302(1):5-17. 

131. van der Kemp PA, Blais JC, Bazin M, Boiteux S, Santus R. Ultraviolet-B-

induced inactivation of human OGG1, the repair enzyme for removal of 8-

oxoguanine in DNA. Journal of Photochemistry and Photobiology. 2002;76(6):640-

8. 

132. Denat L, Kadekaro AL, Marrot L, Leachman SA, Abdel-Malek ZA. 

Melanocytes as instigators and victims of oxidative stress. Journal of Investigative 

Dermatology. 2014;134(6):1512-8. 

133. Kadekaro AL, Kavanagh R, Kanto H, Terzieva S, Hauser J, Kobayashi N, et 

al. alpha-Melanocortin and endothelin-1 activate antiapoptotic pathways and reduce 

DNA damage in human melanocytes. Cancer Research. 2005;65(10):4292-9. 

134. Kokot A, Metze D, Mouchet N, Galibert MD, Schiller M, Luger TA, et al. 

Alpha-melanocyte-stimulating hormone counteracts the suppressive effect of UVB 

on Nrf2 and Nrf-dependent gene expression in human skin. Endocrinology. 

2009;150(7):3197-206. 



257 | P a g e  

 

 

135. Policastro LL, Ibanez IL, Duran HA, Soria G, Gottifredi V, Podhajcer OL. 

Suppression of cancer growth by nonviral gene therapy based on a novel reactive 

oxygen species-responsive promoter. Molecular Therapy. 2009;17(8):1355-64. 

136. Gidanian S, Mentelle M, Meyskens FL, Jr., Farmer PJ. Melanosomal damage 

in normal human melanocytes induced by UVB and metal uptake--a basis for the 

pro-oxidant state of melanoma. Journal of Photochemistry and Photobiology. 

2008;84(3):556-64. 

137. Ibanez IL, Bracalente C, Molinari BL, Palmieri MA, Policastro L, Kreiner 

AJ, et al. Induction and rejoining of DNA double strand breaks assessed by H2AX 

phosphorylation in melanoma cells irradiated with proton and lithium beams. 

International Journal of Radiation Oncology, Biology, Physics. 2009;74(4):1226-35. 

138. Warters RL, Adamson PJ, Pond CD, Leachman SA. Melanoma cells express 

elevated levels of phosphorylated histone H2AX foci. The Journal of Investigative 

Dermatology. 2005;124(4):807-17. 

139. Meyskens FL, Jr., Farmer P, Fruehauf JP. Redox regulation in human 

melanocytes and melanoma. Pigment Cell Research. 2001;14(3):148-54. 

140. Huang RP, Wu JX, Fan Y, Adamson ED. UV activates growth factor 

receptors via reactive oxygen intermediates. The Journal of Cell Biology. 

1996;133(1):211-20. 

141. Bickers DR, Athar M. Oxidative stress in the pathogenesis of skin disease. 

Journal of Investigative Dermatology. 2006;126(12):2565-75. 

142. Pastuhov SI, Hisamoto N, Matsumoto K. MAP kinase cascades regulating 

axon regeneration in C. elegans. Proceedings of the Japan Academy Series B, 

Physical and Biological Sciences. 2015;91(3):63-75. 

143. English J, Pearson G, Wilsbacher J, Swantek J, Karandikar M, Xu S, et al. 

New insights into the control of MAP kinase pathways. Experimental Cell Research. 

1999;253(1):255-70. 

144. Morrison DK. MAP kinase pathways. Cold Spring Harbor Perspectives in 

Biology. 2012;4(11):a011254. 

145. Irie K, Gotoh Y, Yashar BM, Errede B, Nishida E, Matsumoto K. 

Stimulatory effects of yeast and mammalian 14-3-3 proteins on the Raf protein 

kinase. Science. 1994;265(5179):1716-9. 

146. Ravi R. The effect of UV radiation on furin activity in human keratinocyte 

cell lines. Melbourne: RMIT University; 2010. 



258 | P a g e  

 

 

147. Lin K, Baritaki S, Militello L, Malaponte G, Bevelacqua Y, Bonavida B. The 

Role of B-RAF Mutations in Melanoma and the Induction of EMT via Dysregulation 

of the NF-kappaB/Snail/RKIP/PTEN Circuit. Genes Cancer. 2010;1(5):409-20. 

148. Garnett MJ, Marais R. Guilty as charged: B-RAF is a human oncogene. 

Cancer Cell. 2004;6(4):313-9. 

149. Fisher R, Larkin J. Vemurafenib: a new treatment for BRAF-V600 mutated 

advanced melanoma. Cancer Management and Research. 2012;4:243-52. 

150. Vin H, Ojeda SS, Ching G, Leung ML, Chitsazzadeh V, Dwyer DW, et al. 

BRAF inhibitors suppress apoptosis through off-target inhibition of JNK signaling. 

eLife. 2013;2:e00969. 

151. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. 

Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949-54. 

152. Smalley KS, Herlyn M. Loitering with intent: new evidence for the role of 

BRAF mutations in the proliferation of melanocytic lesions. The Journal of 

Investigative Dermatology. 2004;123(4):xvi-xvii. 

153. Edwards RH, Ward MR, Wu H, Medina CA, Brose MS, Volpe P, et al. 

Absence of BRAF mutations in UV-protected mucosal melanomas. Journal of 

Medical Genetics. 2004;41(4):270-2. 

154. Ikehata H, Ono T. The mechanisms of UV mutagenesis. Journal of Radiation 

Research. 2011;52(2):115-25. 

155. Demunter A, Stas M, Degreef H, De Wolf-Peeters C, van den Oord JJ. 

Analysis of N- and K-ras mutations in the distinctive tumor progression phases of 

melanoma. The Journal of Investigative Dermatology. 2001;117(6):1483-9. 

156. Berger MF, Garraway LA. Applications of genomics in melanoma oncogene 

discovery. Hematology/Oncology Clinics of North America. 2009;23(3):397-414. 

157. Lopez-Bergami P, Huang C, Goydos JS, Yip D, Bar-Eli M, Herlyn M, et al. 

Rewired ERK-JNK signaling pathways in melanoma. Cancer Cell. 2007;11(5):447-

60. 

158. Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in 

cancer. Oncogene. 2007;26(22):3279-90. 

159. Wellbrock C, Ogilvie L, Hedley D, Karasarides M, Martin J, Niculescu-

Duvaz D, et al. V599EB-RAF is an oncogene in melanocytes. Cancer Research. 

2004;64(7):2338-42. 



259 | P a g e  

 

 

160. Satyamoorthy K, Li G, Gerrero MR, Brose MS, Volpe P, Weber BL, et al. 

Constitutive mitogen-activated protein kinase activation in melanoma is mediated by 

both BRAF mutations and autocrine growth factor stimulation. Cancer Research. 

2003;63(4):756-9. 

161. Mattei S, Colombo MP, Melani C, Silvani A, Parmiani G, Herlyn M. 

Expression of cytokine/growth factors and their receptors in human melanoma and 

melanocytes. International Journal of Cancer. 1994;56(6):853-7. 

162. Satyamoorthy K, Li G, Vaidya B, Patel D, Herlyn M. Insulin-like growth 

factor-1 induces survival and growth of biologically early melanoma cells through 

both the mitogen-activated protein kinase and beta-catenin pathways. Cancer 

Research. 2001;61(19):7318-24. 

163. Englaro W, Rezzonico R, Durand-Clement M, Lallemand D, Ortonne JP, 

Ballotti R. Mitogen-activated protein kinase pathway and AP-1 are activated during 

cAMP-induced melanogenesis in B-16 melanoma cells. The Journal of Biological 

Chemistry. 1995;270(41):24315-20. 

164. Erhardt P, Troppmair J, Rapp UR, Cooper GM. Differential regulation of 

Raf-1 and B-Raf and Ras-dependent activation of mitogen-activated protein kinase 

by cyclic AMP in PC12 cells. Molecular and Cellular Biology. 1995;15(10):5524-

30. 

165. Busca R, Abbe P, Mantoux F, Aberdam E, Peyssonnaux C, Eychene A, et al. 

Ras mediates the cAMP-dependent activation of extracellular signal-regulated 

kinases (ERKs) in melanocytes. The EMBO Journal. 2000;19(12):2900-10. 

166. Yanase H, Ando H, Horikawa M, Watanabe M, Mori T, Matsuda N. Possible 

involvement of ERK 1/2 in UVA-induced melanogenesis in cultured normal human 

epidermal melanocytes. Pigment Cell Research. 2001;14(2):103-9. 

167. He YY, Council SE, Feng L, Chignell CF. UVA-induced cell cycle 

progression is mediated by a disintegrin and metalloprotease/epidermal growth 

factor receptor/AKT/Cyclin D1 pathways in keratinocytes. Cancer Research. 

2008;68(10):3752-8. 

168. Lee KM, Lee KW, Jung SK, Lee EJ, Heo YS, Bode AM, et al. Kaempferol 

inhibits UVB-induced COX-2 expression by suppressing Src kinase activity. 

Biochemical Pharmacology. 2010;80(12):2042-9. 

169. Kim DS, Kim SY, Lee JE, Kwon SB, Joo YH, Youn SW, et al. Sphingosine-

1-phosphate-induced ERK activation protects human melanocytes from UVB-

induced apoptosis. Archives of Pharmacal Research. 2003;26(9):739-46. 



260 | P a g e  

 

 

170. Tada A, Pereira E, Beitner-Johnson D, Kavanagh R, Abdel-Malek ZA. 

Mitogen- and ultraviolet-B-induced signaling pathways in normal human 

melanocytes. Journal of Investigative Dermatology. 2002;118(2):316-22. 

171. Kim AL, Labasi JM, Zhu Y, Tang X, McClure K, Gabel CA, et al. Role of 

p38 MAPK in UVB-induced inflammatory responses in the skin of SKH-1 hairless 

mice. Journal of Investigative Dermatology. 2005;124(6):1318-25. 

172. Liao Y, Hung MC. Regulation of the activity of p38 mitogen-activated 

protein kinase by Akt in cancer and adenoviral protein E1A-mediated sensitization to 

apoptosis. Molecular and Cellular Biology. 2003;23(19):6836-48. 

173. Hildesheim J, Awwad RT, Fornace AJ, Jr. p38 Mitogen-activated protein 

kinase inhibitor protects the epidermis against the acute damaging effects of 

ultraviolet irradiation by blocking apoptosis and inflammatory responses. Journal of 

Investigative Dermatology. 2004;122(2):497-502. 

174. Hildesheim J, Bulavin DV, Anver MR, Alvord WG, Hollander MC, 

Vardanian L, et al. Gadd45a protects against UV irradiation-induced skin tumors, 

and promotes apoptosis and stress signaling via MAPK and p53. Cancer Research. 

2002;62(24):7305-15. 

175. Chouinard N, Valerie K, Rouabhia M, Huot J. UVB-mediated activation of 

p38 mitogen-activated protein kinase enhances resistance of normal human 

keratinocytes to apoptosis by stabilizing cytoplasmic p53. The Biochemical Journal. 

2002;365(Pt 1):133-45. 

176. Bachelor MA, Bowden GT. Ultraviolet A-induced modulation of Bcl-XL by 

p38 MAPK in human keratinocytes: post-transcriptional regulation through the 3'-

untranslated region. The Journal of Biological Chemistry. 2004;279(41):42658-68. 

177. Muthusamy V, Piva TJ. UVB-Stimulated TNFα Release from Human 

Melanocyte and Melanoma Cells Is Mediated by p38 MAPK. International Journal 

of Molecular Sciences. 2013;14(8):17029-54. 

178. Liu K, Yu D, Cho YY, Bode AM, Ma W, Yao K, et al. Sunlight UV-induced 

skin cancer relies upon activation of the p38α signaling pathway. Cancer Research. 

2013;73(7):2181-8. 

179. Liu J, Lin A. Role of JNK activation in apoptosis: a double-edged sword. 

Cell Research. 2005;15(1):36-42. 

180. Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell. 

2000;103(2):239-52. 



261 | P a g e  

 

 

181. Johnson GL, Nakamura K. The c-jun kinase/stress-activated pathway: 

regulation, function and role in human disease. Biochimica et Biophysica Acta. 

2007;1773(8):1341-8. 

182. Gupta S, Barrett T, Whitmarsh AJ, Cavanagh J, Sluss HK, Derijard B, et al. 

Selective interaction of JNK protein kinase isoforms with transcription factors. The 

EMBO Journal. 1996;15(11):2760-70. 

183. Choi HS, Bode AM, Shim JH, Lee SY, Dong Z. c-Jun N-Terminal Kinase 1 

Phosphorylates Myt1 To Prevent UVA-Induced Skin Cancer. Molecular and Cellular 

Biology. 2009;29(8):2168-80. 

184. Weston CR, Davis RJ. The JNK signal transduction pathway. Current 

Opinion in Genetics & Development. 2002;12(1):14-21. 

185. Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, et al. 

Requirement of JNK for stress-induced activation of the cytochrome c-mediated 

death pathway. Science. 2000;288(5467):870-4. 

186. Karin M, Gallagher E. From JNK to pay dirt: jun kinases, their biochemistry, 

physiology and clinical importance. International Union of Biochemistry and 

Molecular Biology. 2005;57(4-5):283-95. 

187. Ravi R, Piva TJ. The role of furin in the development of skin cancer. In: 

Vereecken P, editor. Highlights in Skin Cancer. Rijeka: Intech; 2013. p. 271-99. 

188. Saftig P, Reiss K. The "A Disintegrin And Metalloproteases" ADAM10 and 

ADAM17: novel drug targets with therapeutic potential? European Journal of Cell 

Biology. 2011;90(6-7):527-35. 

189. Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, et al. 

A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. 

Nature. 1997;385(6618):729-33. 

190. Leverkus M, Yaar M, Eller MS, Tang EH, Gilchrest BA. Post-transcriptional 

regulation of UV induced TNF-alpha expression. Journal of Investigative 

Dermatology. 1998;110(4):353-7. 

191. Zheng L, Fisher G, Miller RE, Peschon J, Lynch DH, Lenardo MJ. Induction 

of apoptosis in mature T cells by tumour necrosis factor. Nature. 

1995;377(6547):348-51. 

192. Englaro W, Bahadoran P, Bertolotto C, Busca R, Derijard B, Livolsi A, et al. 

Tumor necrosis factor alpha-mediated inhibition of melanogenesis is dependent on 

nuclear factor kappa B activation. Oncogene. 1999;18(8):1553-9. 



262 | P a g e  

 

 

193. Tracey KJ, Cerami A. Tumor necrosis factor, other cytokines and disease. 

Annual Review of Cell Biology. 1993;9:317-43. 

194. Kock A, Schwarz T, Kirnbauer R, Urbanski A, Perry P, Ansel JC, et al. 

Human keratinocytes are a source for tumor necrosis factor alpha: evidence for 

synthesis and release upon stimulation with endotoxin or ultraviolet light. The 

Journal of Experimental Medicine. 1990;172(6):1609-14. 

195. Vandenabeele P, Declercq W, Beyaert R, Fiers W. Two tumour necrosis 

factor receptors: structure and function. Trends in Cell Biology. 1995;5(10):392-9. 

196. Muthusamy V, Hodges LD, Macrides TA, Boyle GM, Piva TJ. Effect of 

novel marine nutraceuticals on IL-1alpha-mediated TNF-alpha release from UVB-

irradiated human melanocyte-derived cells. Oxidative Medicine and Cellular 

Longevity. 2011;2011:728645. 

197. Rasmussen C, Gratz K, Liebel F, Southall M, Garay M, Bhattacharyya S, et 

al. The StrataTest® human skin model, a consistent in vitro alternative for 

toxicological testing. Toxicology In Vitro. 2010;24(7):2021-9. 

198. Marionnet AV, Chardonnet Y, Viac J, Schmitt D. Differences in responses of 

interleukin-1 and tumor necrosis factor alpha production and secretion to 

cyclosporin-A and ultraviolet B-irradiation by normal and transformed keratinocyte 

cultures. Experimental Dermatology. 1997;6(1):22-8. 

199. Lee P, Lee D-J, Chan C, Chen S-W, Ch’en I, Jamora C. Dynamic expression 

of epidermal caspase 8 simulates a wound healing response. Nature. 

2009;458(7237):519-23. 

200. Kholmanskikh O, van Baren N, Brasseur F, Ottaviani S, Vanacker J, Arts N, 

et al. Interleukins 1α and 1β secreted by some melanoma cell lines strongly reduce 

expression of MITF‐M and melanocyte differentiation antigens. International Journal 

of Cancer. 2010;127(7):1625-36. 

201. Fujisawa H, Wang B, Kondo S, Shivji GM, Sauder DN. Costimulation with 

ultraviolet B and interleukin-1 alpha dramatically increase tumor necrosis factor-

alpha production in human dermal fibroblasts. Journal of Interferon & Cytokine 

Research. 1997;17(5):307-13. 

202. Werth VP, Zhang W. Wavelength-specific synergy between ultraviolet 

radiation and interleukin-1 alpha in the regulation of matrix-related genes: 

mechanistic role for tumor necrosis factor-alpha. The Journal of Investigative 

Dermatology. 1999;113(2):196-201. 

203. Bashir MM, Sharma MR, Werth VP. TNF-alpha production in the skin. 

Archives of Dermatological Research. 2009;301(1):87-91. 



263 | P a g e  

 

 

204. Black RA. Tumor necrosis factor-alpha converting enzyme. The International 

Journal of Biochemistry & Cell Biology. 2002;34(1):1-5. 

205. Schlondorff J, Becherer JD, Blobel CP. Intracellular maturation and 

localization of the tumour necrosis factor alpha convertase (TACE). The 

Biochemical Journal. 2000;347 Pt 1:131-8. 

206. Moss ML, White JM, Lambert MH, Andrews RC. TACE and other ADAM 

proteases as targets for drug discovery. Drug Discovery Today. 2001;6(8):417-26. 

207. Peiretti F, Canault M, Deprez-Beauclair P, Berthet V, Bonardo B, Juhan-

Vague I, et al. Intracellular maturation and transport of tumor necrosis factor alpha 

converting enzyme. Experimental Cell Research. 2003;285(2):278-85. 

208. Fisher G, Choi H, Bata-Csorgo Z, Shao Y, Datta S, Wang Z, et al. Ultraviolet 

irradiation increases matrix metalloproteinase-8 protein in human skin in vivo. 

Journal of Investigative Dermatology. 2001;117(2):219-26. 

209. Skiba B, Neill B, Piva TJ. Gene expression profiles of TNF-alpha, TACE, 

furin, IL-1beta and matrilysin in UVA- and UVB-irradiated HaCat cells. 

Photodermatology, Photoimmunology & Photomedicine. 2005;21(4):173-82. 

210. Sharma M, Mohapatra J, Argade A, Deshpande SS, Shah GB, Chatterjee A, 

et al. Chemopreventive effect of a novel, selective TACE inhibitor on DMBA- and 

TPA-induced skin carcinogenesis. Immunopharmacology and Immunotoxicology. 

2014;36(4):282-9. 

211. Endres K, Anders A, Kojro E, Gilbert S, Fahrenholz F, Postina R. Tumor 

necrosis factor-alpha converting enzyme is processed by proprotein-convertases to 

its mature form which is degraded upon phorbol ester stimulation. European Journal 

of Biochemistry. 2003;270(11):2386-93. 

212. Adrain C, Zettl M, Christova Y, Taylor N, Freeman M. Tumor necrosis 

factor signaling requires iRhom2 to promote trafficking and activation of TACE. 

Science. 2012;335(6065):225-8. 

213. Denault J-B, Bissonnette L, Longpré J-M, Charest G, Lavigne P, Leduc R. 

Ectodomain shedding of furin: kinetics and role of the cysteine-rich region. FEBS 

letters. 2002;527(1):309-14. 

214. Pearton DJ, Nirunsuksiri W, Rehemtulla A, Lewis SP, Presland RB, Dale 

BA. Proprotein convertase expression and localization in epidermis: evidence for 

multiple roles and substrates. Experimental Dermatology. 2001;10(3):193-203. 

215. McMahon S, Laprise MH, Dubois CM. Alternative pathway for the role of 

furin in tumor cell invasion process. Enhanced MMP-2 levels through bioactive 

TGFbeta. Experimental Cell Research. 2003;291(2):326-39. 



264 | P a g e  

 

 

216. Seidah NG, Chretien M. Eukaryotic protein processing: endoproteolysis of 

precursor proteins. Current Opinion in Biotechnology. 1997;8(5):602-7. 

217. Steiner DF. The proprotein convertases. Current Opinion in Chemical 

Biology. 1998;2(1):31-9. 

218. Zhu J, Declercq J, Roucourt B, Ghassabeh GH, Meulemans S, Kinne J, et al. 

Generation and characterization of non-competitive furin-inhibiting nanobodies. The 

Biochemical Journal. 2012;448(1):73-82. 

219. Angliker H, Wikstrom P, Shaw E, Brenner C, Fuller RS. The synthesis of 

inhibitors for processing proteinases and their action on the Kex2 proteinase of yeast. 

The Biochemical Journal. 1993;293 ( Pt 1):75-81. 

220. Komiyama T, Coppola JM, Larsen MJ, van Dort ME, Ross BD, Day R, et al. 

Inhibition of furin/proprotein convertase-catalyzed surface and intracellular 

processing by small molecules. The Journal of Biological Chemistry. 

2009;284(23):15729-38. 

221. Hofmann UB, Houben R, Bröcker E-B, Becker JC. Role of matrix 

metalloproteinases in melanoma cell invasion. Biochimie. 2005;87(3-4):307-14. 

222. Tellier E, Negre-Salvayre A, Bocquet B, Itohara S, Hannun YA, Salvayre R, 

et al. Role for furin in tumor necrosis factor alpha-induced activation of the matrix 

metalloproteinase/sphingolipid mitogenic pathway. Molecular and Cellular Biology. 

2007;27(8):2997-3007. 

223. Shindo Y, Witt E, Han D, Packer L. Dose-response effects of acute 

ultraviolet irradiation on antioxidants and molecular markers of oxidation in murine 

epidermis and dermis. The Journal of Investigative Dermatology. 1994;102(4):470-

5. 

224. Cadenas E. Basic mechanisms of antioxidant activity. Biofactors. 

1997;6(4):391-7. 

225. Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: 

mechanisms, mutation, and disease. The Journal of the Federation of American 

Societies for Experimental Biology. 2003;17(10):1195-214. 

226. Marnett LJ. Oxyradicals and DNA damage. Carcinogenesis. 2000;21(3):361-

70. 

227. Sinha RP, Hader DP. UV-induced DNA damage and repair: a review. 

Photochemical & Photobiological Sciences. 2002;1(4):225-36. 

228. Mates JM, Perez-Gomez C, Nunez de Castro I. Antioxidant enzymes and 

human diseases. Clinical Biochemistry 1999;32(8):595-603. 



265 | P a g e  

 

 

229. Sies H, Stahl W. Vitamins E and C, beta-carotene, and other carotenoids as 

antioxidants. The American Journal of Clinical Nutrition. 1995;62(6 Suppl):1315S-

21S. 

230. Padayatty SJ, Katz A, Wang Y, Eck P, Kwon O, Lee JH, et al. Vitamin C as 

an antioxidant: evaluation of its role in disease prevention. The Journal of the 

American College of Nutrition. 2003;22(1):18-35. 

231. National Center For Biotechnology Information. Ascorbic Acid: PubChem 

Compound Database; 2011 [19.05.2015]. Available from: 

http://pubchem.ncbi.nlm.nih.gov/compound/54670067. 

232. Farris PK. Cosmetical Vitamins: Vitamin C. In: Draelos ZD. DJ, Alam M., 

editor. Cosmeceuticals Procedures in Cosmetic Dermatology. 2nd ed. New York: 

Saunders Elsevier; 2009. p. 51-6. 

233. Telang PS. Vitamin C in dermatology. Indian Dermatology Online Journal. 

2013;4(2):143-6. 

234. Podmore ID, Griffiths HR, Herbert KE, Mistry N, Mistry P, Lunec J. 

Vitamin C exhibits pro-oxidant properties. Nature. 1998;392(6676):559. 

235. Rossig L, Hoffmann J, Hugel B, Mallat Z, Haase A, Freyssinet JM, et al. 

Vitamin C inhibits endothelial cell apoptosis in congestive heart failure. Circulation. 

2001;104(18):2182-7. 

236. Lopez-Torres M, Thiele JJ, Shindo Y, Han D, Packer L. Topical application 

of alpha-tocopherol modulates the antioxidant network and diminishes ultraviolet-

induced oxidative damage in murine skin. The British Journal of Dermatology. 

1998;138(2):207-15. 

237. Burton GW, Ingold KU. Vitamin E as an in vitro and in vivo antioxidant. 

Annals of the New York Academy of Sciences. 1989;570:7-22. 

238. Pryor WA. Vitamin E and heart disease: basic science to clinical intervention 

trials. Free Radical Biology & Medicine. 2000;28(1):141-64. 

239. Thiele J. Oxidative targets in the stratum corneum. A new basis for 

antioxidative strategies. Skin Pharmacology and Applied Skin Physiology. 

2000;14:87-91. 

240. Lin JY, Selim MA, Shea CR, Grichnik JM, Omar MM, Monteiro-Riviere 

NA, et al. UV photoprotection by combination topical antioxidants vitamin C and 

vitamin E. Journal of the American Academy of Dermatology. 2003;48(6):866-74. 

http://pubchem.ncbi.nlm.nih.gov/compound/54670067


266 | P a g e  

 

 

241. Thiele JJ, Traber MG, Packer L. Depletion of human stratum corneum 

vitamin E: an early and sensitive in vivo marker of UV induced photo-oxidation. 

Journal of Investigative Dermatology. 1998;110(5):756-61. 

242. Krol ES, Kramer-Stickland KA, Liebler DC. Photoprotective actions of 

topically applied vitamin E. Drug Metabolism Reviews. 2000;32(3-4):413-20. 

243. Kuchide M, Tokuda H, Takayasu J, Enjo F, Ishikawa T, Ichiishi E, et al. 

Cancer chemopreventive effects of oral feeding alpha-tocopherol on ultraviolet light 

B induced photocarcinogenesis of hairless mouse. Cancer Letters. 2003;196(2):169-

77. 

244. Chen W, Barthelman M, Martinez J, Alberts D, Gensler HL. Inhibition of 

cyclobutane pyrimidine dimer formation in epidermal p53 gene of UV-irradiated 

mice by alpha-tocopherol. Nutrition and Cancer 1997;29(3):205-11. 

245. Roshchupkin DI, Pistsov MY, Potapenko AY. Inhibition of ultraviolet light-

induced erythema by antioxidants. Archives of Dermatological Research. 

1979;266(1):91-4. 

246. Ichihashi M, Funasaka Y, Ohashi A, Chacraborty A, Ahmed NU, Ueda M, et 

al. The inhibitory effect of DL-alpha-tocopheryl ferulate in lecithin on 

melanogenesis. Anticancer Research. 1999;19(5a):3769-74. 

247. National Center For Biotechnology Information. Trolox: PubChem 

Compound Database; 2005 [cited 19.05.2015]. Available from: 

http://pubchem.ncbi.nlm.nih.gov/compound/trolox#section=Top. 

248. Masnec IS, Kotrulja L, Situm M, Poduje S. New option in photoprotection. 

Journal of the Croatian Anthropological Society. 2010;34 Suppl 2:257-62. 

249. Eberlein-Konig B, Ring J. Relevance of vitamins C and E in cutaneous 

photoprotection. Journal of Cosmetic Dermatology. 2005;4(1):4-9. 

250. Stark M, Hayward N. Genome-wide loss of heterozygosity and copy number 

analysis in melanoma using high-density single-nucleotide polymorphism arrays. 

Cancer Res. 2007;67(6):2632-42. 

251. Halliday GM. Activation of molecular adaptation to sunlight—a new 

approach to photoprotection. Journal of Investigative Dermatology. 

2005;125(5):xviii-xix. 

252. Samanek AJ, Croager EJ, Gies P, Milne E, Prince R, McMichael AJ, et al. 

Estimates of beneficial and harmful sun exposure times during the year for major 

Australian population centres. The Medical Journal of Australia. 2006;184(7):338-

41. 

http://pubchem.ncbi.nlm.nih.gov/compound/trolox#section=Top


267 | P a g e  

 

 

253. Pelle E, Mammone T, Maes D, Frenkel K. Keratinocytes act as a source of 

reactive oxygen species by transferring hydrogen peroxide to melanocytes. The 

Journal of Investigative Dermatology. 2005;124(4):793-7. 

254. Tang L, Li J, Lin X, Wu W, Kang K, Fu W. Oxidation levels differentially 

impact melanocytes: low versus high concentration of hydrogen peroxide promotes 

melanin synthesis and melanosome transfer. Dermatology. 2012;224(2):145-53. 

255. Robinson KM, Janes MS, Pehar M, Monette JS, Ross MF, Hagen TM, et al. 

Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. 

Proceedings of the National Academy of Sciences of the United States of America. 

2006;103(41):15038-43. 

256. Laemmli UK. Cleavage of structural proteins during the assembly of the head 

of bacteriophage T4. Nature. 1970;227(5259):680-5. 

257. AlGhamdi K, Kumar A, Moussa N. The role of vitamin D in melanogenesis 

with an emphasis on vitiligo. Indian Journal of Dermatology, Venereology and 

Leprology. 2013;79(6):750-8. 

258. Muthusamy V, Piva TJ. Melanoma Cell Signalling: Looking Beyond RAS-

RAF-MEK. In: La Porta CM, editor. Skin Cancers-Risk Factors, Prevention and 

Therapy. Rijeka: Intech; 2011. p. 87-108. 

259. Besaratinia A, Pfeifer GP. Sunlight ultraviolet irradiation and BRAF V600 

mutagenesis in human melanoma. Human Mutation. 2008;29(8):983-91. 

260. Franco-Lie I, Iversen T, Robsahm TE, Abdelnoor M. Incidence trends of 

melanoma of the skin compared with other localisations, in the Norwegian 

population, 1956-2005. Annals of Oncology 2011;22(6):1443-50. 

261. Cotter MA, Thomas J, Cassidy P, Robinette K, Jenkins N, Florell SR, et al. 

N-acetylcysteine protects melanocytes against oxidative stress/damage and delays 

onset of ultraviolet-induced melanoma in mice. Clinical Cancer Research. 

2007;13(19):5952-8. 

262. Masaki H. Role of antioxidants in the skin: anti-aging effects. Journal of 

Dermatological Science. 2010;58(2):85-90. 

263. Wu S, Gao J, Dinh QT, Chen C, Fimmel S. IL-8 production and AP-1 

transactivation induced by UVA in human keratinocytes: roles of D-alpha-

tocopherol. Molecular Immunology. 2008;45(8):2288-96. 

264. Ebihara M, Akiyama M, Ohnishi Y, Tajima S, Komata K, Mitsui Y. 

Iontophoresis promotes percutaneous absorption of L-ascorbic acid in rat skin. 

Journal of Dermatological Science. 2003;32(3):217-22. 



268 | P a g e  

 

 

265. Panich U, Tangsupa-a-nan V, Onkoksoong T, Kongtaphan K, 

Kasetsinsombat K, Akarasereenont P, et al. Inhibition of UVA-mediated 

melanogenesis by ascorbic acid through modulation of antioxidant defense and nitric 

oxide system. Archives of Pharmacal Research. 2011;34(5):811-20. 

266. Sander CS, Chang H, Hamm F, Elsner P, Thiele JJ. Role of oxidative stress 

and the antioxidant network in cutaneous carcinogenesis. International Journal of 

Dermatology. 2004;43(5):326-35. 

267. Kvam E, Dahle J. Pigmented melanocytes are protected against ultraviolet-A-

induced membrane damage. Journal of Investigative Dermatology. 2003;121(3):564-

9. 

268. De Leeuw SM, Smit NP, Van Veldhoven M, Pennings EM, Pavel S, Simons 

JW, et al. Melanin content of cultured human melanocytes and UV-induced 

cytotoxicity. Journal of Photochemistry and Photobiology B: Biology. 

2001;61(3):106-13. 

269. Anna B, Blazej Z, Jacqueline G, Andrew CJ, Jeffrey R, Andrzej S. 

Mechanism of UV-related carcinogenesis and its contribution to nevi/melanoma. 

Expert Review of Dermatology. 2007;2(4):451-69. 

270. Azzi A, Breyer I, Feher M, Pastori M, Ricciarelli R, Spycher S, et al. Specific 

cellular responses to α-tocopherol. The Journal of Nutrition. 2000;130(7):1649-52. 

271. Scharffetter-Kochanek K, Wlaschek M, Brenneisen P, Schauen M, 

Blaudschun R, Wenk J. UV-induced reactive oxygen species in photocarcinogenesis 

and photoaging. The Journal of Biological Chemistry. 1997;378(11):1247-58. 

272. Redmond RW, Rajadurai A, Udayakumar D, Sviderskaya EV, Tsao H. 

Melanocytes are selectively vulnerable to UVA-mediated bystander oxidative 

signaling. Journal of Investigative Dermatology. 2014;134(4):1083-90. 

273. Korytowski W, Hintz P, Sealy RC, Kalyanaraman B. Mechanism of 

dismutation of superoxide produced during autoxidation of melanin pigments. 

Biochemical and Biophysical Research Communications. 1985;131(2):659-65. 

274. Cadet J, Sage E, Douki T. Ultraviolet radiation-mediated damage to cellular 

DNA. Mutation Research. 2005;571(1-2):3-17. 

275. Tada M, Kohno M, Niwano Y. Scavenging or quenching effect of melanin on 

superoxide anion and singlet oxygen. Journal of Clinical Biochemistry and Nutrition. 

2010;46(3):224-8. 

276. Sarna T, Pilas B, Land EJ, Truscott TG. Interaction of radicals from water 

radiolysis with melanin. Biochimica et Biophysica Acta. 1986;883(1):162-7. 



269 | P a g e  

 

 

277. Korytowski W, Kalyanaraman B, Menon IA, Sarna T, Sealy RC. Reaction of 

superoxide anions with melanins: electron spin resonance and spin trapping studies. 

Biochimica et Biophysica Acta. 1986;882(2):145-53. 

278. Solano F. Melanins: skin pigments and much more—types, structural 

models, biological functions, and formation routes. New Journal of Science. 

2014;2014:1-28. 

279. Huang H-C, Hsieh W-Y, Niu Y-L, Chang T-M. Inhibitory Effects of Adlay 

Extract on Melanin Production and Cellular Oxygen Stress in B16F10 Melanoma 

Cells. International Journal of Molecular Sciences. 2014;15(9):16665-79. 

280. Liu W-S, Kuan Y-D, Chiu K-H, Wang W-K, Chang F-H, Liu C-H, et al. The 

extract of Rhodobacter sphaeroides inhibits melanogenesis through the MEK/ERK 

signaling pathway. Marine Drugs. 2013;11(6):1899-908. 

281. Brenner M, Hearing VJ. The Protective Role of Melanin Against UV 

Damage in Human Skin†. Journal of Photochemistry and Photobiology. 

2008;84(3):539-49. 

282. Epstein FH, Gilchrest BA, Eller MS, Geller AC, Yaar M. The pathogenesis 

of melanoma induced by ultraviolet radiation. New England Journal of Medicine. 

1999;340(17):1341-8. 

283. Halder RM, Bang KM. Skin cancer in blacks in the United States. 

Dermatologic Clinics. 1988;6(3):397-405. 

284. Halder RM, Bridgeman‐Shah S. Skin cancer in African Americans. Cancer. 

1995;75(S2):667-73. 

285. Kvam E, Tyrrell RM. The role of melanin in the induction of oxidative DNA 

base damage by ultraviolet A irradiation of DNA or melanoma cells. Journal of 

Investigative Dermatology. 1999;113(2):209-13. 

286. Korytowski W, Pilas B, Sarna T, Kalyanaraman B. Photoinduced generation 

of hydrogen peroxide and hydroxyl radicals in melanins. Journal of Photochemistry 

and Photobiology. 1987;45(2):185-90. 

287. Marrot L, Belaidi JP, Meunier JR, Perez P, Agapakis-Causse C. The human 

melanocyte as a particular target for UVA radiation and an endpoint for 

photoprotection assessment. Journal of Photochemistry and Photobiology. 

1999;69(6):686-93. 

288. Hill HZ, Hill GJ. UVA, pheomelanin and the carcinogenesis of melanoma. 

Pigment Cell Research. 2000;13(s8):140-4. 



270 | P a g e  

 

 

289. Cesarini JP. Photo-induced events in the human melanocytic system: 

photoaggression and photoprotection. Pigment Cell Research. 1988;1(4):223-33. 

290. Noonan FP, Zaidi MR, Wolnicka-Glubisz A, Anver MR, Bahn J, Wielgus A, 

et al. Melanoma induction by ultraviolet A but not ultraviolet B radiation requires 

melanin pigment. Nature Communications. 2012;3:884. 

291. Wood SR, Berwick M, Ley RD, Walter RB, Setlow RB, Timmins GS. UV 

causation of melanoma in Xiphophorus is dominated by melanin photosensitized 

oxidant production. Proceedings of the National Academy of Sciences of the United 

States of America. 2006;103(11):4111-5. 

292. Meyskens FL, Chau H, Tohidian N, Buckmeier J. Luminol‐enhanced 

chemiluminescent response of human melanocytes and melanoma cells to hydrogen 

peroxide stress. Pigment Cell Research. 1997;10(3):184-9. 

293. Funasaka Y, Komoto M, Ichihashi M. Depigmenting effect of alpha-

tocopheryl ferulate on normal human melanocytes. Pigment Cell Research. 2000;13 

Suppl 8:170-4. 

294. Chakraborty AK, Funasaka Y, Slominski A, Ermak G, Hwang J, Pawelek 

JM, et al. Production and release of proopiomelanocortin (POMC) derived peptides 

by human melanocytes and keratinocytes in culture: regulation by ultraviolet B. 

Biochimica et Biophysica Acta. 1996;1313(2):130-8. 

295. Sasaki M, Kizawa K, Igarashi S, Horikoshi T, Uchiwa H, Miyachi Y. 

Suppression of melanogenesis by induction of endogenous intracellular 

metallothionein in human melanocytes. Experimental Dermatology. 2004;13(8):465-

71. 

296. Sies H, Stahl W. Nutritional protection against skin damage from sunlight. 

Annual Review of Nutrition. 2004;24:173-200. 

297. Park SY, Jin ML, Kim YH, Kim Y, Lee SJ. Aromatic-turmerone inhibits 

alpha-MSH and IBMX-induced melanogenesis by inactivating CREB and MITF 

signaling pathways. Archives of Dermatological Research. 2011;303(10):737-44. 

298. Gu W-J, Ma H-J, Zhao G, Yuan X-Y, Zhang P, Liu W, et al. Additive effect 

of heat on the UVB-induced tyrosinase activation and melanogenesis via 

ERK/p38/MITF pathway in human epidermal melanocytes. Archives of 

Dermatological Research. 2014;306(6):583-90. 

299. Rendon MI, Gaviria JI. Review of Skin‐Lightening Agents. Dermatologic 

Surgery. 2005;31(s1):886-90. 

300. Park H-Y, Yaar M. Biology of melanocytes. Science. 2001;292(5522):1718-

22. 



271 | P a g e  

 

 

301. Nishioka E, Funasaka Y, Kondoh H, Chakraborty AK, Mishima Y, Ichihashi 

M. Expression of tyrosinase, TRP-1 and TRP-2 in ultraviolet-irradiated human 

melanomas and melanocytes: TRP-2 protects melanoma cells from ultraviolet B 

induced apoptosis. Melanoma Research. 1999;9(5):433-43. 

302. Swalwell H, Latimer J, Haywood RM, Birch-Machin MA. Investigating the 

role of melanin in UVA/UVB-and hydrogen peroxide-induced cellular and 

mitochondrial ROS production and mitochondrial DNA damage in human melanoma 

cells. Free Radical Biology & Medicine. 2012;52(3):626-34. 

303. Panich U, Pluemsamran T, Tangsupa-a-nan V, Wattanarangsan J, 

Phadungrakwittaya R, Akarasereenont P, et al. Protective effect of AVS073, a 

polyherbal formula, against UVA-induced melanogenesis through a redox 

mechanism involving glutathione-related antioxidant defense. BMC Complementary 

and Alternative Medicine. 2013;13:159. 

304. Fujiwara Y, Sahashi Y, Aritro M, Hasegawa S, Akimoto K, Ninomiya S, et 

al. Effect of simultaneous administration of vitamin C, L‐cysteine and vitamin E on 

the melanogenesis. Biofactors. 2004;21(1‐4):415-8. 

305. Lin YS, Wu WC, Lin SY, Hou WC. Glycine hydroxamate inhibits tyrosinase 

activity and melanin contents through downregulating cAMP/PKA signaling 

pathways. Amino Acids. 2015;47(3):617-25. 

306. Sharma M, Mohapatra J, Argade A, Deshpande SS, Shah GB, Chatterjee A, 

et al. Chemopreventive effect of a novel, selective TACE inhibitor on DMBA-and 

TPA-induced skin carcinogenesis. Immunopharmacology and Immunotoxicology. 

2014;36(4):282-9. 

307. Criscione LG, Clair EWS. Tumor necrosis factor-α antagonists for the 

treatment of rheumatic diseases. Current Opinion in Rheumatology. 2002;14(3):204-

11. 

308. Tracey D, Klareskog L, Sasso EH, Salfeld JG, Tak PP. Tumor necrosis factor 

antagonist mechanisms of action: a comprehensive review. Pharmacology & 

Therapeutics. 2008;117(2):244-79. 

309. Lejeune FJ, Ruegg C, Lienard D. Clinical applications of TNF-alpha in 

cancer. Current Opinion in Immunology. 1998;10(5):573-80. 

310. Briscoe D, Cotran R, Pober J. Effects of tumor necrosis factor, 

lipopolysaccharide, and IL-4 on the expression of vascular cell adhesion molecule-1 

in vivo. Correlation with CD3+ T cell infiltration. The Journal of Immunology. 

1992;149(9):2954-60. 

311. Krutmann J, Köck A, Schauer E, Parlow F, Möller A, Kapp A, et al. Tumor 

necrosis factor β and ultraviolet radiation are potent regulators of human 



272 | P a g e  

 

 

keratinocyte ICAM-1 expression. Journal of Investigative Dermatology. 

1990;95(2):127-31. 

312. Swerlick RA, Lee KH, Li L, Sepp NT, Caughman SW, Lawley T. Regulation 

of vascular cell adhesion molecule 1 on human dermal microvascular endothelial 

cells. The Journal of Immunology. 1992;149(2):698-705. 

313. Schwarz A, Bhardwaj R, Aragane Y, Mahnke K, Riemann H, Metze D, et al. 

Ultraviolet-B-Induced Apoptosis of Keratinocytes: Evidence for Partial Involvement 

of Tumor Necrosis Factor-alpha; in the Formation of Sunburn Cells. Journal of 

Investigative Dermatology. 1995;104(6):922-7. 

314. Suschek CV, Mahotka C, Schnorr O, Kolb-Bachofen V. UVB radiation-

mediated expression of inducible nitric oxide synthase activity and the augmenting 

role of Co-induced TNF-α in human skin endothelial cells. Journal of Investigative 

Dermatology. 2004;123(5):950-7. 

315. Zhuang L, Wang B, Shinder GA, Shivji GM, Mak TW, Sauder DN. TNF 

receptor p55 plays a pivotal role in murine keratinocyte apoptosis induced by 

ultraviolet B irradiation. The Journal of Immunology. 1999;162(3):1440-7. 

316. Kulms D, Schwarz T. Molecular mechanisms of UV-induced apoptosis. 

Photodermatology, Photoimmunology & Photomedicine. 2000;16(5):195-201. 

317. Clingen P, Berneburg M, Petit‐Frère C, Woollons A, Lowe J, Arlett C, et al. 

Contrasting effects of an ultraviolet B and an ultraviolet A tanning lamp on 

interleukin‐6, tumour necrosis factor‐α and intercellular adhesion molecule‐1 

expression. The British Journal of Dermatology. 2001;145(1):54-62. 

318. Ivanov VN, Fodstad O, Ronai Z. Expression of ring finger-deleted TRAF2 

sensitizes metastatic melanoma cells to apoptosis via up-regulation of p38, 

TNFalpha and suppression of NF-kappaB activities. Oncogene. 2001;20(18):2243-

53. 

319. McNulty SE, Rosario Rd, Cen D, Meyskens FL, Yang S. Comparative 

expression of NFκB proteins in melanocytes of normal skin vs. benign intradermal 

naevus and human metastatic melanoma biopsies. Pigment Cell Research. 

2004;17(2):173-80. 

320. Gray-Schopfer VC, Karasarides M, Hayward R, Marais R. Tumor necrosis 

factor-α blocks apoptosis in melanoma cells when BRAF signaling is inhibited. 

Cancer Research. 2007;67(1):122-9. 

321. Quan T, Qin Z, Xia W, Shao Y, Voorhees JJ, Fisher GJ, editors. Matrix-

degrading metalloproteinases in photoaging. Journal of Investigative Dermatology 

Symposium Proceedings; 2009: Nature Publishing Group. 



273 | P a g e  

 

 

322. Huynh TT, Chan KS, Piva TJ. Effect of ultraviolet radiation on the 

expression of pp38MAPK and furin in human keratinocyte-derived cell lines. 

Photodermatology, Photoimmunology & Photomedicine. 2009;25(1):20-9. 

323. Denault JB, Leduc R. Furin/PACE/SPC1: a convertase involved in exocytic 

and endocytic processing of precursor proteins. FEBS Letter. 1996;379(2):113-6. 

324. Lissitzky JC, Luis J, Munzer JS, Benjannet S, Parat F, Chretien M, et al. 

Endoproteolytic processing of integrin pro-alpha subunits involves the redundant 

function of furin and proprotein convertase (PC) 5A, but not paired basic amino acid 

converting enzyme (PACE) 4, PC5B or PC7. The Biochemical Journal. 2000;346 Pt 

1:133-8. 

325. Bassi DE, Fu J, Lopez de Cicco R, Klein‐Szanto AJ. Proprotein 

convertases:“master switches” in the regulation of tumor growth and progression. 

Molecular Carcinogenesis. 2005;44(3):151-61. 

326. Sun CL, Chao CCK. Potential attenuation of p38 signaling by DDB2 as a 

factor in acquired TNF resistance. International Journal of Cancer. 2005;115(3):383-

7. 

327. Scamuffa N, Calvo F, Chrétien M, Seidah NG, Khatib A-M. Proprotein 

convertases: lessons from knockouts. The Journal  of the Federation of American 

Societies for Experimental Biology. 2006;20(12):1954-63. 

328. de Cicco RL, Bassi DE, Benavides F, Conti CJ, Klein‐Szanto AJ. Inhibition 

of proprotein convertases: approaches to block squamous carcinoma development 

and progression. Molecular Carcinogenesis. 2007;46(8):654-9. 

329. Khatib A-M, Siegfried G, Chrétien M, Metrakos P, Seidah NG. Proprotein 

convertases in tumor progression and malignancy: novel targets in cancer therapy. 

The American Journal of Pathology. 2002;160(6):1921-35. 

330. Taylor NA, Van De Ven WJ, Creemers JW. Curbing activation: proprotein 

convertases in homeostasis and pathology. The Journal  of the Federation of 

American Societies for Experimental Biology. 2003;17(10):1215-27. 

331. Kupper TS, Chua AO, Flood P, McGuire J, Gubler U. Interleukin 1 gene 

expression in cultured human keratinocytes is augmented by ultraviolet irradiation. 

Journal of Clinical Investigation. 1987;80(2):430. 

332. Pupe A, Degreef H, Garmyn M. Induction of Tumor Necrosis Factor–α by 

UVB: A Role for Reactive Oxygen Intermediates and Eicosanoids. Journal of 

Photochemistry and Photobiology. 2003;78(1):68-74. 

333. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? The 

Lancet. 2001;357(9255):539-45. 



274 | P a g e  

 

 

334. Gearing A, Beckett P, Christodoulou M, Churchill M, Clements J, Crimmin 

M, et al. Matrix metalloproteinases and processing of pro-TNF-alpha. Journal of 

Leukocyte Biology. 1995;57(5):774-7. 

335. Ge L, Baskic D, Basse P, Vujanovic L, Unlu S, Yoneyama T, et al. Sheddase 

activity of tumor necrosis factor-α converting enzyme is increased and 

prognostically valuable in head and neck cancer. Cancer Epidemiology Biomarkers 

& Prevention. 2009;18(11):2913-22. 

336. Coppola JM, Bhojani MS, Ross BD, Rehemtulla A. A small-molecule furin 

inhibitor inhibits cancer cell motility and invasiveness. Neoplasia. 2008;10(4):363-

70. 

337. Cheng M, Watson P, Paterson J, Seidah N, Chrétien M, Shiu RP. Pro‐protein 

convertase gene expression in human breast cancer. International Journal of Cancer. 

1997;71(6):966-71. 

338. Bassi DE, De Cicco RL, Mahloogi H, Zucker S, Thomas G, Klein-Szanto AJ. 

Furin inhibition results in absent or decreased invasiveness and tumorigenicity of 

human cancer cells. Proceedings of the National Academy of Sciences of the United 

States of America. 2001;98(18):10326-31. 

339. Yajima I, Kumasaka MY, Thang ND, Goto Y, Takeda K, Yamanoshita O, et 

al. RAS/RAF/MEK/ERK and PI3K/PTEN/AKT Signaling in Malignant Melanoma 

Progression and Therapy. Dermatology Research and Practice. 2012;2012:354191. 

340. Liu F, Singh A, Yang Z, Garcia A, Kong Y, Meyskens FL. MiTF links 

Erk1/2 kinase and p21CIP1/WAF1 activation after UVC radiation in normal human 

melanocytes and melanoma cells. Molecular Cancer. 2010;9(1):214. 

341. Enzler T, Sano Y, Choo MK, Cottam HB, Karin M, Tsao H, et al. Cell-

selective inhibition of NF-kappaB signaling improves therapeutic index in a 

melanoma chemotherapy model. Cancer Discovery. 2011;1(6):496-507. 

342. Shieh JM, Huang TF, Hung CF, Chou KH, Tsai YJ, Wu WB. Activation of 

c‐Jun N‐terminal kinase is essential for mitochondrial membrane potential change 

and apoptosis induced by doxycycline in melanoma cells. British Journal of 

Pharmacology. 2010;160(5):1171-84. 

343. Alexaki VI, Javelaud D, Mauviel A. JNK supports survival in melanoma 

cells by controlling cell cycle arrest and apoptosis. Pigment Cell & Melanoma 

Research. 2008;21(4):429-38. 

344. Kannaiyan R, Manu KA, Chen L, Li F, Rajendran P, Subramaniam A, et al. 

Celastrol inhibits tumor cell proliferation and promotes apoptosis through the 

activation of c-Jun N-terminal kinase and suppression of PI3 K/Akt signaling 

pathways. Apoptosis. 2011;16(10):1028-41. 



275 | P a g e  

 

 

345. Aguirre R, May JM. Inflammation in the vascular bed: importance of vitamin 

C. Pharmacology & Therapeutics. 2008;119(1):96-103. 

346. May JM. Is ascorbic acid an antioxidant for the plasma membrane? The 

Journal of the Federation of American Societies for Experimental Biology. 

1999;13(9):995-1006. 

347. Lee S-A, Son Y-O, Kook S-H, Choi K-C, Lee J-C. Ascorbic acid increases 

the activity and synthesis of tyrosinase in B16F10 cells through activation of p38 

mitogen-activated protein kinase. Archives of Dermatological Research. 

2011;303(9):669-78. 

348. Goel V, Ibrahim N, Jiang G, Singhal M, Fee S, Flotte T, et al. Melanocytic 

nevus-like hyperplasia and melanoma in transgenic BRAFV600E mice. Oncogene. 

2009;28(23):2289-98. 

349. Patton EE, Widlund HR, Kutok JL, Kopani KR, Amatruda JF, Murphey RD, 

et al. BRAF mutations are sufficient to promote nevi formation and cooperate with 

p53 in the genesis of melanoma. Current Biology. 2005;15(3):249-54. 

350. Luo C, Sheng J, Hu MG, Haluska FG, Cui R, Xu Z, et al. Loss of ARF 

sensitizes transgenic BRAFV600E mice to UV-induced melanoma via suppression 

of XPC. Cancer Research. 2013;73(14):4337-48. 

351. Whiteman DC, Watt P, Purdie DM, Hughes MC, Hayward NK, Green AC. 

Melanocytic nevi, solar keratoses, and divergent pathways to cutaneous melanoma. 

Journal of the National Cancer Institute. 2003;95(11):806-12. 

352. Viros A, Sanchez-Laorden B, Pedersen M, Furney SJ, Rae J, Hogan K, et al. 

Ultraviolet radiation accelerates BRAF-driven melanomagenesis by targeting TP53. 

Nature. 2014;511(7510):478-82. 

353. Alsina J, Gorsk DH, Germino FJ, Shih W, Lu S-E, Zhang Z-G, et al. 

Detection of mutations in the mitogen-activated protein kinase pathway in human 

melanoma. Clinical Cancer Research. 2003;9(17):6419-25. 

354. Collisson EA, De A, Suzuki H, Gambhir SS, Kolodney MS. Treatment of 

metastatic melanoma with an orally available inhibitor of the Ras-Raf-MAPK 

cascade. Cancer Research. 2003;63(18):5669-73. 

355. Uribe P, Andrade L, Gonzalez S. Lack of association between BRAF 

mutation and MAPK ERK activation in melanocytic nevi. Journal of Investigative 

Dermatology. 2006;126(1):161-6. 

356. Peng HY, Lin CC, Wang HY, Shih Y, Chou ST. The melanogenesis 

alteration effects of Achillea millefolium L. essential oil and linalyl acetate: 



276 | P a g e  

 

 

involvement of oxidative stress and the JNK and ERK signaling pathways in 

melanoma cells. PLoS ONE. 2014;9(4):e95186. 

357. Huang HC, Huang WY, Tsai TC, Hsieh WY, Ko WP, Chang KJ, et al. 

Supercritical fluid extract of Lycium chinense Miller root inhibition of melanin 

production and its potential mechanisms of action. BMC Complementary and 

Alternative Medicine. 2014;14:208. 

358. Hirata N, Naruto S, Ohguchi K, Akao Y, Nozawa Y, Iinuma M, et al. 

Mechanism of the melanogenesis stimulation activity of (-)-cubebin in murine B16 

melanoma cells. Bioorganic & Medicinal Chemistry. 2007;15(14):4897-902. 

359. Qiu L, Zhang M, Sturm RA, Gardiner B, Tonks I, Kay G, et al. Inhibition of 

melanin synthesis by cystamine in human melanoma cells. The Journal of 

Investigative Dermatology. 2000;114(1):21-7. 

360. Svingen T, Tonissen KF. Altered HOX gene expression in human skin and 

breast cancer cells. Cancer Biology & Therapy. 2003;2(5):518-23. 

361. Pak BJ, Lee J, Thai BL, Fuchs SY, Shaked Y, Ronai Z, et al. Radiation 

resistance of human melanoma analysed by retroviral insertional mutagenesis reveals 

a possible role for dopachrome tautomerase. Oncogene. 2004;23(1):30-8. 

362. D'Angelo S, Ingrosso D, Migliardi V, Sorrentino A, Donnarumma G, Baroni 

A, et al. Hydroxytyrosol, a natural antioxidant from olive oil, prevents protein 

damage induced by long-wave ultraviolet radiation in melanoma cells. Free Radical 

Biology & Medicine. 2005;38(7):908-19. 

363. Allen RG, Balin AK. Effects of oxygen on the antioxidant responses of 

normal and transformed cells. Experimental Cell Research. 2003;289(2):307-16. 

364. Godic A, Poljsak B, Adamic M, Dahmane R. The role of antioxidants in skin 

cancer prevention and treatment. Oxidative Medicine and Cellular Longevity. 

2014;2014:860479. 

365. Jung E, Lee J, Huh S, Lee J, Kim YS, Kim G, et al. Phloridzin-induced 

melanogenesis is mediated by the cAMP signaling pathway. Food and Chemical 

Toxicology. 2009;47(10):2436-40. 

366. Jhappan C, Noonan FP, Merlino G. Ultraviolet radiation and cutaneous 

malignant melanoma. Oncogene. 2003;22(20):3099-112. 

367. Tronnier M, Alexander M, Lontz W, Brinckmann J. UV light does not induce 

p53 mutation in melanocytes in vitro. Dermatology. 2001;202(4):339-40. 

368. Mar VJ, Wong SQ, Li J, Scolyer RA, McLean C, Papenfuss AT, et al. 

BRAF/NRAS wild-type melanomas have a high mutation load correlating with 



277 | P a g e  

 

 

histologic and molecular signatures of UV damage. Clinical Cancer Research. 

2013;19(17):4589-98. 

369. Collins AR. The comet assay for DNA damage and repair: principles, 

applications, and limitations. Molecular Biotechnology. 2004;26(3):249-61. 

370. Lei TC, Virador VM, Vieira WD, Hearing VJ. A melanocyte-keratinocyte 

coculture model to assess regulators of pigmentation in vitro. Analytical 

Biochemistry. 2002;305(2):260-8. 

371. Kumar R, Parsad D, Kanwar A, Kaul D. Development of melanocye-

keratinocyte co-culture model for controls and vitiligo to assess regulators of 

pigmentation and melanocytes. Indian Journal of Dermatology, Venereology and 

Leprology. 2012;78(5):599-604. 

 

  



278 | P a g e  

 

 

Chapter 9.  Appendices 

9.1 Appendix 1 – Conference Presentations from this Thesis 

Conference abstracts 

Oral Presentations  

• A. Banjar, B.N. Feltis, P.FA. Wright, G.M. Boyle & T.J. Piva (2013) The 

effect of antioxidants on UV-irradiated pigmented melanoma cells. The 6
th

 Asia and 

Oceania Conference on Photobiology (AOCP), Sydney. 10-13 November 2013. 

• A. Banjar, B.N. Feltis, P.FA. Wright, T.J. Piva (2014) The effect of 

antioxidants on UV-irradiated melanocyte-derived cells. The Australian Health & 

Medical Research Congress, Melbourne. 16-19 November 2014. 

 

Poster Presentations  

• A. Banjar, B.N. Feltis, P.FA. Wright, G.M. Boyle & T.J. Piva (2014) The 

effect of antioxidants on UV-irradiated melanocyte-derived cells. XXII International 

Pigment Cell Conference (IPCC), Singapore. 4-7 September 2014. 

• Banjar A, Feltis BN, Wright PFA, Boyle GM & Piva TJ (2014) The effect of 

antioxidants on UV-irradiated melanocyte-derived cells.  ComBio, Canberra. 28 

September -2 October 2014.. 

• X.Y. Chan, N.F. Abdul Rashid, A. Banjar, N. Hayward, T. Piva (2014) 

Growth factor signalling in melanoma cells. The Australian Health & Medical 

Research Congress, Melbourne. 16-19 November 2014. 
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9.2 Appendix 2 – Cell protein lysate preparation solutions 

9.2.1 Cell Lysis Buffer 

100 mM NaCl, 20 mM Tris (pH8), 1 mM EDTA, 0.5% (v/v) BRIJ35, 4% (v/v) 

protease inhibitor, 1% (v/v) phosphatase inhibitor (Roche – prepared as per the 

manufacturer’s instructions)  

9.2.2 Laemmli’s sample buffer 

250 mM Tris (pH6.8), 40% (v/v) Glycerol, 10% (v/v) β-Mercaptoethanol, 5% 

(w/v) SDS (Sodium Dodecyl Sulfate) and 0.1% (w/v) Bromophenol Blue 

 

9.3 Appendix 3 – Western blotting gels 

9.3.1 Running gel (10%) 

1.875 ml of 40% (w/v) Polyacrylamide Bis solution, 1.875 ml 1.5 M Tris (pH8.8), 

3.59 ml H2O, 0.075 ml 10% (w/v) SDS, 0.075 ml 10% (w/v) Ammonium Persulfate 

and 0.003 ml TEMED  

 

9.3.2 Stacking gel 

0.3125 ml 40% (v/v) Acrylamide Bis solution, 0.3125 ml 1 M Tris solution (pH6.8), 

1.825 ml H2O, 0.025 ml 10% (w/v) SDS, 0.025 ml 10% (w/v) Ammonium Persulfate 

and 0.0025 ml of TEMED 
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9.4 Appendix 4 – Calculating changes in protein expression 

 

The protein bands in the Western blots were analysed for densitometry using 

Quantity One Digital Imaging Software Version 4.5.1 (BioRad).  In the case of JNK 

or ERK expression where more than one isoform has been detected, calculating the 

change in the expression of each isoform was as follows: 

Assume that we obtained the following readings for p-JNK1 and p-JNK2 from a 

scanned blot. 

 

                                Density (INT/mm
2
) 

      Lanes 

 

p-JNK1 p-JNK2 

Lane 1 : 0 min (sham-irradiated control) 120 95 

Lane 2 : 5 min post UVB-irradiation 480 160 

 

Percentage of p-JNK1 in Lane 1 : [ 120 / (120 + 95) ] * 100% = 56%  

Percentage of p-JNK2 in Lane 1 : [ 95 / (120 + 95) ] * 100% = 44% 

Therefore, percentage of total p-JNK1/2 in sham-irradiated control is 100%.  

Percentage of p-JNK1 in Lane 2 : [ 480 / (120 + 95) ] * 100% = 223% 

Percentage of p-JNK2 in Lane 2 : [ 160 / (120 + 95) ] * 100% = 74% 


