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Abstract

This paper presents an approach towards intelligent route planning in public transport systems. The approach focuses on formal

modelling of the semi-dynamic intelligent route planning and optimisation. For these purposes, it is essential to have a well de-

veloped formal model covering real-time and space aspects. The proposed solution allows designers to extend a public transport

system with additional routes, which are created dynamically based on the requests from passengers. The model can be applied

within a sustainable Smart City both for (fully or partially) autonomous transport systems and for the decision support systems of

a smart transport system.
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1. Introduction

In this paper, we introduce our approach towards an intelligent route planning for a public transport system within a

sustainable Smart City. To make a transport system as a part of a Smart City1,2, we have to provide the corresponding

solutions and intelligent features of the system. In our model, we analyse transport system routes that are created dy-

namically based on the passengers request. We call the corresponding route planning and optimisation semi-dynamic,

because the set of possible stops is predefined and finite, which allows partial pre-calculation of possible extensions

and optimisations of the route and the corresponding timetables.

Our approach can be applied both to route planning for autonomous systems (AS), which perform complex tasks

without human intervention, and to the optimisation of the public transport systems (PTS), operated by humans. In

the case of AS, the route planning becomes one of the main behavioural functions of the system. In the second case,

our model becomes a decision support systems (DSS).

DSSs have been designed for industrial and organisational users, but as web-based technologies have progressed,

the applications area has become more broad, cf. the work of Bhargava et al. 3 Large parts of DSSs are now devel-

oped for casual users, e.g. for passengers interested in taking the fastest connection from some address to a desired
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destination point. Moreover, from the development of traditional desktop applications based DSSs, they have evolved

to the development of distributed, web-based applications, cf. e.g. approaches of Power 4 , Mitra and Valente 5 . In our

current work we propose a formal model of an intelligent system that can be applied as a DSS for the public transport

driver support, where the requests for the route are collected from the passengers dynamically in realtime.

In comparison to the DSSs, autonomous systems not only provide an assistance for the users of the system, but

need to determine their behaviour based only on the predefined behaviours patterns and the adaptivity algorithms.

DDSs, however, also can be viewed as a special way of partially designing humans out of the main system actions,

particularly if we assume that the human will follow the decision recommended by the support system (cf. e.g., the

approaches of Marakas 6 , Bonczek et al. 7 , Fick and Sprague 8). For a survey of modeling and engineering aspects of

self-adapting and self-optimizing systems, we would like to refer to the work of Bauer et al. 9

Driver assistance applications10 are a step forward in that direction. The first steps are just informing messages,

or warning messages in critical situations, like blind spot warning, line change detection and similar. The next step,

which is, also, already there, is giving full control to the vehicle, like in autonomous parking application, available

today with many modern vehicles.

In our previous work11, we presented a formal framework for modelling and analysis of autonomous systems and

their compositions, especially focusing on the adaptivity modelling aspects and reasoning about adaptive behaviour. In

our current work we are focusing on the semi-dynamic intelligent route planning for such systems. For this purposes, it

is essential to have a well developed formal model covering real-time and space aspects. The modelling language that

we use in our approach is based on FocusS T 12, which was inspired by Focus13, a framework for formal specification

and development of interactive systems.

The main focus of the existing related work on the formal modelling of transport systems, is on automatic op-

erating/control systems for the vehicles with fixed predefined routes (such as train systems, cf. e.g., approaches of

Scippacercola et al. 14 , James and Roggenbach 15 , Behm et al. 16), traffic simulation system (cf. e.g., approaches of Yu

et al. 17 , Chen et al. 18), and advanced parking management systems (cf. e.g. approach of Elbanhawai and Simic 19).

Our approach, in contrast, focuses on investigating dynamic aspects of the route planning also taking into account

readability and usability aspects of formal models20,21.

As per statistics presented by Dhillon 22 , the human is responsible for 30% to 60% of the total errors which directly

or indirectly lead to accidents, and in the case of aviation and traffic accidents, 80% to 90% of the errors were due

to human errors. Thus, an intelligent route planing for an autonomous vehicle can make the transport system more

reliable. By the integration of human factors engineering into the development process, we can improve the quality of

software and system in general as well as deal with human errors in a systematic way23. The use of structured error

information helps to understand the real problems in the requirements documents and eliminate faults in software

artefacts, cf. the approach of Walia and Carver 24 . However, to embed a methodology for human error analysis into

the software engineering process, we have to classify the errors. There are a number of approaches in this field.

For example, the approach of Mioch et al. 25 introduces a method for selection of error types and error production

mechanisms. A review on the strategies for the human factor taxonomies is presented by Baziuk et al. 26

The approach we present in this paper is based on the experiences from several projects of software and systems

engineering in mobility, modelling and testing, especially within existing transport systems and automotive fields in

Europe and Australia27,28,29. Various route planning algorithms were investigated and their applications analysed. We

also have analysed the scheduling algorithms used is the scenarios for hard disc addressing, as the scenario of r/w

head carriage traveling have many similarities to the route planning for an intelligent transport system, even when

the application areas are very diverse. A part of the route planning system presented in this paper can be seen as a

modified procedure for a disk scheduling algorithm. In the rest of the paper, we will emphasise the development of a

formal model for an intelligent route planning for autonomous systems.

Outline: The rest of the paper is organised as follows: In Section 2, our model for route planning and the corre-

sponding optimisation methods is introduced. Section 3 presents an example of a smart route based on our model.

Section overviews examples of real application of intelligent systems and DDS. Section 5 concludes the paper by

highlighting the main contributions and introduces the future work directions.
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2. Model of a smart route planner

In this section we introduce a model of an intelligent route planner for an autonomous vehicle. We assume that

the set S 0, . . . , S n of possible stops of the vehicle is predefined, so for each run the autonomous vehicle obtains and

optimised list of stops it needs to serve.

We specify a route from the stop S 0 to the destination S n as a set of runs R. A single run R(d,t) is defined for a

particular day d and starting time t. For each day the vehicle has a number of the route runs, where each of the runs

can be identified by its starting time.

Each stop S i (0 ≤ i ≤ n) is specified via the following attributes:

• locationi – spatial information about the stop. This attribute value is the same for all the runs, as a stop cannot

change its location;

• atMin(d,t)
i – the earliest time, when the bus could arrive at the stop during this run in the best case. At this time

the passenger should be already at the stop. This attribute value is static, i.e. the same for all the runs;

• atMax(d,t)
i – the latest time, when the bus should arrive at the stop during the run in the worst case. Initially,

its value is set to the value of atMin(d,t)
i . This attribute value is also static. Thus, we can say that the transport

system has predictable time behaviour, which allows us apply the ideas similar to the time-triggered paradigm

within automotive domain30,31,32;

• at(d,t)
i – the estimated time, when the bus should arrive at the stop during this run, based on the set of current

requests from the passengers. This attribute value is dynamic, as it depends on the current requests. It should

be taken into account (updated and made visible with the system) only if the vehicle should stop at S i during

this run;

• req(d,t)
i – Boolean marker whether the stop is requested to be served during a particular run R(d,t);

• reqT ime(d,t)
i – the requests to stop at S i within the run R(d,t) can be accepted only before this time. This attribute

value is static and calculated based on the spatio-temporal properties of the system. The upper limit for this

value is atMin(d,t)
i .

• option(d,t)
i – Boolean marker whether the stop should be served during a particular run R(d,t); optioni = true

means that the vehicle should stop at S i while the run R(d,t). In general, the vehicle comes trough more stops,

then it was requested, due to spatial constraints of the route.

The vehicle should arrive at the stop S i, 0 ≤ i ≤ n, during the time interval [atMin(d,t)
i , atMax(d,t)

i ].

Initially, for each run and for each stop S i, the values of option(d,t)
i and req(d,t)

i should be set to f alse. The values

of these attribute are changed, when a potential passenger requests the vehicle to the stop.

For each particular run of the route R (for a particular day d and starting time t), we define S topsR(d,t) to be the

sequence of stops, on which the vehicle should stop during this run, i.e. for all i, 0 ≤ i ≤ n,

S i ∈ S topsR(d,t) ⇔ optioni = true

The corresponding sequence of the requested stops is then defined by ReqS topsR(d,t):

S i ∈ ReqS topsR(d,t) ⇔ reqi = true

We can say that ReqS tops ⊆ S tops.

The passenger’s request Req should include the following information: route R, the pick-up stop S i, day d and time p,

as well as the desired drop-off stop S j (0 ≤ i, j ≤ n, i � j). This information is required for the update of the plan for

the route run. Thus, first of all the system analyses the runs on the day d to find the runs R(d, tx), which time attributes

values are the nearest to the requested pick-up time. The request should be sent before the time be sent before the time

reqT ime(d,t)
i . The following cases are possible:
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(1) There is a run R(d, tx) with atMin(d,tx)
i ≤ p ≤ atMax(d,tx)

i . No further action is required from the passenger, the

sets S topsR(d,tx) and ReqS topsR(d,tx) will be updated for this run according to the request automatically.

(2) There is no run R(d, tx) with atMin(d,tx)
i ≤ p ≤ atMax(d,tx)

i . There is a run R(d, tx1) with p < atMin(d,tx1)
i , which is

the first available run (i.e. there is no run R(d, tx0) with atMax(d,tx0)
i < p). The passenger is requested to confirm

whether the pick-up time between atMin(d,tx1)
i and atMax(d,tx1)

i would be also acceptable. If the passenger agrees

to this time correction, sets S topsR(d,tx1) and ReqS topsR(d,tx1) will be updated for the run R(d, tx1). Otherwise,

the request will be cancelled.

(3) There is no run R(d, tx) with atMin(d,tx)
i ≤ p ≤ atMax(d,tx)

i . There is also no run R(d, tx1) with p < atMin(d,tx1)
i ,

but there is a run R(d, tx2) with atMax(d,tx2)
i , i.e. the last available run. The passenger is requested to confirm

whether the pick-up time between atMin(d,tx2)
i and atMax(d,tx2)

i would be also acceptable. If the passenger agrees

to this time correction, sets S topsR(d,tx2) and ReqS topsR(d,tx2) will be updated for the run R(d, tx2). Otherwise,

the request will be cancelled.

(4) There is no run R(d, tx) with atMin(d,tx)
i ≤ p ≤ atMin(d,tx)

i , but there are two runs R(d, tx1) and R(d, tx2) with

atMax(d,tx1)
i < p < atMin(d,tx2)

i . The system allows the passenger to choose between these two runs or to cancel

the request. The sets S topsR(d,tx1) and ReqS topsR(d,tx1) will be updated for the chosen run.

After that, the system advises the passenger to be at the stop at the corresponding time atMini and notifies that the

vehicle should arrive no later than at the corresponding time atMaxi.

A simplified view on the execution of a concrete run R(d, t) is presented on Figure 1.

R(d,t)

StopsR(d,t)

R(d,t)

StopsR(d,t)

StopsR(d,t)

Fig. 1. Execution of a concrete run R(d, t)

The core of our approach is the analysis of the spatio-temporal relations between the attributes of the stops with the

run. Thus, the most interesting and the most complicated part of the algorithm is the dynamic update of the plan for

the route. The update does not simply means “add the requested pick-up stop to the plan” but also the corresponding

optimisation of the plan, according to the spatio-temporal information about the route. As we will discuss on an

example later, a request for a single pick-up might mean that a number of stops get their option-parameter to be

updated to be true.
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Transport System

...
Passenger View:
Application for 
Passengers

Driver View:
Application for 
Drivers

System View:
System Management

requests
Req(R, S, d, p)

Intelligent
Route Plan  

view 
update

route 
update

up to date 
route plan

Fig. 2. General system architecture

To have a sustainable and human-oriented solution, we need three main architectural components of the transport

system (cf. Figure 2 for the architecture of the system):

• System Management: The component is responsible for presentation of the complete information about the

route and its runs, and also includes the statistics of the requests;

• Application for Drivers: For the autonomous vehicles, this component becomes a simple middleware for the

route plan update. For the case the planing system is a DDS, this component is responsible for presenting to the

driver the up to date route plan for this route run;

• Application for Passengers: The component is focused on the collection of the passengers’ requesting to travel

from/to a certain stop. It also provides to the passengers the information which stops are already marked as

“requested” for the particular time. It would make no sense for a user to send a request for a vehicle to service

a particular stop at the time t, if there were another earlier request for a vehicle to serve this same stop at this

same time.

3. Example: Intelligent route planning

Assuming we have a route presented in Figure 3. The stops where the vehicle can turn back, are marked with

darker colour. If the vehicle cannot turn back on its last stop to serve, it should proceed to the next stop which allows

the shortest path back.

The set of stops is defined as S 0, S 1, . . . , S 15, and we assume that at the end of the journey the vehicle should return

to its initial location on the stop S 0.

Initially for a particular run R(dx, tx) starting at the time tx on the day dx, optioni = f alse for all i, 0 ≤ i ≤ 15.

Thus, S topsR(dx,tx) = 〈〉.
We denote by p0, . . . , p15 the pick-up times that corresponds to the run, starting at tx, where the following constraint

holds for any i, 0 ≤ i ≤ 15:

atMin(dx,tx)
i ≤ pi ≤ atMax(dx,tx)

i .

Let us discuss examples of requests and their influences on the route plan, presented in Table 1. It is easy to see the

difference between the sets ReqS tops and S tops from this table.
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For the case S topsR(dx,tx) = 〈〉 (which also means ReqS topsR(dx,tx) = 〈〉), this set can become 〈S 0, S 1, S 2, S 15, S 0〉
after one of the following five requests:

Req(R, S 0, dx, p0, S 1),

Req(R, S 0, dx, p0, S 2),

Req(R, S 1, dx, p1, S 2),

Req(R, S 1, dx, p1, S 15),

Req(R, S 2, dx, p2, S 15).

However, ReqS topsR(dx,tx) will be different for each of the above cases: 〈S 0, S 1〉, 〈S 0, S 2〉, 〈S 1, S 2〉, 〈S 1, S 15〉,
〈S 2, S 15〉, respectively.

S0S1

S2

S3

S4

S5

S6

S7

S8

S9

S12

S11
S10

S13

S14

S15

Fig. 3. Example of a smart route

In the case both pick-up and the destination stops are already in the S tops sequence, the request will have no

influence on the route plan, but the passengers will receive a confirmation, that these stops should be served for the

chosen run. However, this might update the set ReqS tops.

For example, if S topsR(dx,tx) = 〈S 0, S 1, S 2, S 15, S 0〉, the following requests do not update the plan:

Req(R, S 0, dx, p0, S 1),

Req(R, S 0, dx, p0, S 2),

Req(R, S 0, dx, p0, S 15),

Req(R, S 1, dx, p1, S 2),

Req(R, S 1, dx, p1, S 15).



1305 Maria Spichkova et al.  /  Procedia Computer Science   60  ( 2015 )  1299 – 1308 

Table 1. Examples of the route plan updates for the case S topsR(dx,tx) = 〈〉 before any request

Request Options S tops after the request

Req(R, S 0, dx, p0, S 1) Req(R, S 0, dx, p0, S 2) 〈S 0, S 1, S 2, S 15, S 0〉
Req(R, S 1, dx, p1, S 2) Req(R, S 1, dx, p1, S 15)

Req(R, S 2, dx, p2, S 15)

Req(R, S 0, dx, p0, S 3) Req(R, S 0, dx, p0, S 4) 〈S 0, S 1, S 2, S 3, S 4, S 14, S 15, S 0〉
Req(R, S 1, dx, p1, S 3) Req(R, S 1, dx, p1, S 4)

Req(R, S 1, dx, p1, S 14) Req(R, S 2, dx, p2, S 3)

Req(R, S 2, dx, p2, S 4) Req(R, S 2, dx, p2, S 14)

Req(R, S 2, dx, p2, S 15) Req(R, S 3, dx, p3, S 4)

Req(R, S 3, dx, p3, S 14) Req(R, S 3, dx, p3, S 15)

Req(R, S 4, dx, p4, S 14) Req(R, S 4, dx, p4, S 15)

Req(R, S 0, dx, p0, S 5) Req(R, S 0, dx, p0, S 6) 〈S 0, S 4, S 5, S 6, S 10, S 13, S 14, S 15, S 0〉
Req(R, S 4, dx, p4, S 5) Req(R, S 4, dx, p4, S 6)

Req(R, S 4, dx, p4, S 10) Req(R, S 4, dx, p2, S 13)

Req(R, S 0, dx, p0, S 7) Req(R, S 0, dx, p0, S 8) 〈S 0, S 6, S 7, S 8, S 9, S 10, S 13, S 14, S 15, S 0〉
Req(R, S 6, dx, p6, S 7) Req(R, S 6, dx, p6, S 8)

Req(R, S 6, dx, p6, S 9) Req(R, S 6, dx, p6, S 10)

Req(R, S 6, dx, p6, S 13) Req(R, S 6, dx, p6, S 14)

Req(R, S 6, dx, p6, S 15)

Req(R, S 0, dx, p0, S 9) Req(R, S 9, dx, p9, S 10) 〈S 0, S 9, S 10, S 13, S 14, S 15, S 0〉
Req(R, S 9, dx, p9, S 13) Req(R, S 9, dx, p9, S 14)

Req(R, S 9, dx, p9, S 15)

Req(R, S 0, dx, p0, S 10) Req(R, S 10, dx, p10, S 13) 〈S 0, S 10, S 13, S 14, S 15, S 0〉
Req(R, S 10, dx, p10, S 14) Req(R, S 10, dx, p10, S 15)

Req(R, S 0, dx, p0, S 11) Req(R, S 0, dx, p0, S 12) 〈S 0, S 10, S 11, S 12, S 13, S 14, S 15, S 0〉
Req(R, S 10, dx, p10, S 11) Req(R, S 10, dx, p10, S 12)

Req(R, S 11, dx, p11, S 12) Req(R, S 11, dx, p11, S 13)

Req(R, S 11, dx, p11, S 14) Req(R, S 11, dx, p11, S 15)

Req(R, S 12, dx, p12, S 13) Req(R, S 12, dx, p12, S 14)

Req(R, S 12, dx, p12, S 15)

Req(R, S 0, dx, p0, S 13) Req(R, S 13, dx, p13, S 14) 〈S 0, S 13, S 14, S 15, S 0〉
Req(R, S 13, dx, p13, S 15)

Req(R, S 0, dx, p0, S 14) Req(R, S 14, dx, p14, S 15) 〈S 0, S 14, S 15, S 0〉
Req(R, S 0, dx, p0, S 15) 〈S 0, S 15, S 0〉

4. Applications of intelligent systems and DDS

In this section we give a short overview of a real application of intelligent systems and decision support systems.

Intelligent route planning is already applied in various systems with less or more complexity. If we look at the train,

shown on Figure 4(a), as one of the most popular and economical public transportation systems, we already have a

rudimentary decision support system with the memory of one stage only. The basic flowchart capturing the system

decision process is shown in Figure 4(b).

More advanced algorithms are used in operating systems, particularly by the disk management systems (cf.33 for a

deep introduction to this research area). The main objective here is to achieve the highest response time while serving

large number of processes that request hard disk access. There are a number of disc scheduling algorithms. The first

obvious and simple approach would be to use First Come First Serve (FCFS) algorithm. This algorithm has many

application areas, e.g., in operating systems, in transaction management for databases, etc. This is not the best choice
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(a) (b)

Fig. 4. Example of a public transport systems using a rudimental DSS. (a) Trams in Melbourne, Australia. (b) A simplified representation of the

DSS algorithm used in trams

since it leads to long paths when the successive requests are far apart. The criteria used to make decisions about the

algorithms optimality are based on the shortest total travel while serving n requests, or the maximum throughput.

Analysing other various ideas, like Short Seek Time First (SSTF), SCAN, C-SCAN (Circular SCAN), LOOK and

C-LOOK we end up with C-LOOK (Circular LOOK) approach (cf. 34 for a review on these techniques). The actor

(e.g., in the case of disc scheduling this would be R/W head carriage system, in the case of an intelligent route this

would be a vehicle) is moving in one direction, from the initial stage, that could be any, to the final stage, servicing all

requests on the way. Since the requests could be placed any time, if they are placed for the address that was just left,

or towards the any of the recently visited destinations, behind the direction of travel they will be serviced on the way

back. Carriage system is going back to the request with the minimum address number, but not to the initial position

if there are no requests. The same is with the maximum addresses. This method is used a lot in the disk scheduling,

known as C-LOOK, but also in everyday life as lift management algorithm.

Algorithm presented in the Table 1 is modified C-LOOK procedure. It is also advanced since it involves time

component, i.e. the memory of the management systems stretches along the time dimension as well.

5. Conclusion

In this paper, we introduced a formal model for an intelligent route planning and a scenario of its application within

a public transport system.

The goal of this investigation is to make a transport system as a part of a Smart City, by providing smart planning

of transport routes, both for autonomous and human driven systems. In the case of a human driven system our model

becomes a decision support systems that can be applied within many existing transport routes over the world. In the

case of an autonomous system, the route planning becomes one of the main behavioural functions of the system. This

solution can allow for having more flexible/dense timetables and also possible longer routes. Moreover, the flexibility

of the system would be especially beneficial for passengers with restricted physical abilities.



1307 Maria Spichkova et al.  /  Procedia Computer Science   60  ( 2015 )  1299 – 1308 

Fig. 5. Fully autonomous system with the control designed at the RMIT University

Future work: In the future we plan to apply the ideas presented in Sections 2 and 3 to the management of

autonomous systems, as shown for instance in Figure 5. This particular system is designed for the golf courses, and

suits an implementation of the formal model presented in this paper. After that, similar autonomous vehicles could be

designed and put on the streets as part of the Intelligent Public Transport Systems.

Another possible direction of the future work is extension of our approach by model-based hazard and impact

analysis35. Transport systems are safety critical, and for this kind of systems the hazard and impact analysis plays a

crucial role.
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