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Abstract—In order for Remotely Piloted Aircraft 

Systems (RPAS) to coexist seamlessly with manned aircraft 

in non-segregated airspace, enhanced navigational 

capabilities are essential to meet the Required Navigational 

Performance (RNP) levels in all flight phases. A Multi-

Sensor Data Fusion (MSDF) framework is adopted to 

improve the navigation capabilities of an integrated 

Navigation and Guidance System (NGS) designed for small-

sized RPAS. The MSDF architecture includes low-cost and 

low weight/volume navigation sensors suitable for various 

classes of RPAS. The selected sensors include Global 

Navigation Satellite Systems (GNSS), Micro-Electro-

Mechanical System (MEMS) based Inertial Measurement 

Unit (IMU) and Vision Based Sensors (VBS). A loosely 

integrated navigation architecture is presented where an 

Unscented Kalman Filter (UKF) is used to combine the 

navigation sensor measurements. The presented UKF based 

VBS-INS-GNSS-ADM (U-VIGA) architecture is an 

evolution of previous research performed on Extended 

Kalman Filter (EKF) based VBS-INS-GNSS (E-VIGA) 

systems. An Aircraft Dynamics Model (ADM) is adopted as 

a virtual sensor and acts as a knowledge-based module 

providing additional position and attitude information, 

which is pre-processed by an additional/local UKF. The E-

VIGA and U-VIGA performances are evaluated in a small 

RPAS integration scheme (i.e., AEROSONDE RPAS 

platform) by exploring a representative cross-section of this 

RPAS operational flight envelope. The position and attitude 

accuracy comparison shows that the E-VIGA and U-VIGA 

systems fulfill the relevant RNP criteria, including precision 

approach in CAT-II. A novel Human Machine Interface 

(HMI) architecture is also presented, whose design takes into 

consideration the coordination tasks of multiple human 

operators. In addition, the interface scheme incorporates the 

human operator as an integral part of the control loop 

providing a higher level of situational awareness. 

Keywords—Remotely Piloted Aircraft Systems; Aircraft 

Dynamics Model; Unscented Kalman Filter; Low-cost sensors; 

Navigation and Guidance System; Multi-sensor Data Fusion; 

Human Machine Interface. 

I.  INTRODUCTION 

The development and operation of Remotely Piloted 
Aircraft Systems (RPAS) has rapidly expanded in recent 
years. Small- to medium-size RPAS are being proposed as 
alternatives to manned aircraft in an increasing number of 
civil, military and research applications especially in Dull, 
Dirty and Dangerous (D3) roles [1]. In particular, small 

RPAS have the ability of performing tasks with higher 
maneuverability and longer endurance as well as posing 
less risk to human lives and nature [2]. A major 
developmental challenge for RPAS is their integration into 
non-segregated airspace. Currently operations are mostly 
segregated and the challenges involved with their 
integration into commercial airspace are currently being 
addressed through various operational and technological 
developments. These developments are focusing on 
enhanced Communication, Navigation, Surveillance, Air 
Traffic Management and Avionics (CNS+A) systems, 
Detect-and-Avoid (DAA) solutions and airworthiness 
block upgrades as depicted in Fig. 1 [3].  

ICAO 

Performance 

Based Navigation 

manual

Performance 

Based Navigation

Area navigation 

and RNP 

Requirements

Aircraft flight 

phases

Navigation 

performance 

evaluation 

Integration into 

non-segregated 

airspace

Enhanced 

Surveillance 

Solutions

Enhanced 

Communication 

Solutions

Enhanced 

Navigation 

Solutions

Detect-and-

Avoid Capability

Continuous 

Airworthiness

Air Traffic 

Management 

Modernisation

 

Fig. 1. RPAS Integration requirements. 

Enhanced navigation systems must meet Performance 

Based Navigation (PBN) requirements in order to 

increase integration harmonization.  PBN represents a 

fundamental shift from sensor-based to performance-

based navigation [2]. The advantages of the PBN 

approach over the sensor-specific method of developing 

airspace and obstacle clearance criteria [2] include: a 

reduction in work required to maintain sensor-specific 

routed and procedures (and their associated costs); 

avoiding the need for developing sensor-specific 

operations with each new evolution of navigation systems 

(which would be cost prohibitive); a more efficient use of 

airspace (route placement, fuel efficiency and noise 
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abatement). These advantages facilitate the operational 

approval process by providing a limited set of navigation 

specifications intended for global use. In terms of RPAS 

airworthiness, operations will have to be equivalent to 

manned aircraft. In addition they will have to prove to be 

as safe as current manned operations and have to meet the 

Required Navigational Performance (RNP) levels through 

all flight phases [3, 10, 11]. To achieve global 

interoperability of RPAS and manned aircraft a guiding 

framework for technology upgrades is envisaged by the 

International Civil Aviation Organization (ICAO) as part 

of Aviation System Block Upgrades (ASBU) [3]. Basic 

procedures and functions which will initiate integration 

include DAA functions. Both Line-of-Sight (LOS) and 

Beyond-Line-of-Sight (BLOS) secure and safe 

communication links are essential for the RPAS to 

maintain continuous contact with the Ground Control 

Station (GCS). Significant outcomes are also expected 

from large-scale and regional ATM modernisation 

programmes including Single European Sky ATM 

Research (SESAR) and Next Generation Air 

Transportation System (NextGen).  In line with the 

identified CNS+A evolutions, a key goal for seamless 

global air traffic management is implementing 

advanced digital and satellite systems together with 

other technologies that increase the levels of 

automation in communications, navigation, and 

surveillance tasks. Automatic Dependent Surveillance-

Broadcast (ADS-B) and Traffic Collision Avoidance 

System (TCAS) can be used to provide cooperative DAA 

functions. High-integrity airborne and ground-based 

integrated Navigation and Guidance Systems (NGS) that 

include fail-safe architecture designs are required to meet 

the RNP requirements in all flight phases. Another 

important goal aspect is to develop novel forms of Human 

Machine Interface (HMI) suitable for RPAS operations in 

all classes of airspace. Fig. 2 illustrates the RPAS main 

components, including the Command and Control (C
2
) 

link between the Remote Pilot Aircraft (RPA) and the 

Ground Control Station (GCS). Fig. 3 depicts the 

information interchanges between the RPAS pilot and the 

RPA to accomplish a planned mission. 
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Fig. 2. RPAS requirements. 
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Fig. 3. Human supervisory RPAS cpntrol loop.  

II. MULTI–SENSOR DATA FUSION 

Our previous research activities [24-30] on NGS for 
small-medium size RPAS presented the various sensor 
options, data fusion methods and test activities performed 
to evaluate the performance of the overall system. The 
selection of suitable navigation sensors is based on the 
requirements for low-cost, low-weight/volume sensors 
capable of providing the required levels of performance 
for small-to-medium size RPAS in all flight phases. 
Sensor candidates include Global Navigation Satellite 
System (GNSS) and Micro-Electro-Mechanical System 
(MEMS) based Inertial Measuring Unit (IMU), which 
provide a highly synergistic combination and are capable 
of providing enhanced navigation and inertial reference 
performance and dissimilarity for fault tolerance and anti-
jamming [31]. The main objective is to design a compact, 
lightweight and relatively inexpensive system capable of 
providing the required navigation performance in all 
phases of flight of a small RPAS, with a special focus on 
precision approach and landing, where Vision Based 
Navigation (VBN) techniques can be fully exploited in a 
multisensory integrated architecture. sensors are also used 
for precision approach and landing (i.e., the most 
demanding and potentially safety-critical flight phase). An 
Aircraft Dynamics Model (ADM) can be used as a virtual 
sensor (essentially a knowledge-based module) and 
augments the navigation state vector [32, 33, 27]. When 
processed with suitable optimal estimation techniques, the 
ADM predicts the RPAS flight dynamics (aircraft 
trajectory and attitude motion). This approach allows a 
reduction of cost, weight/volume and support requirements 
and, with the appropriate combination of sensors and 
integration algorithms, gives increased accuracy, 
continuity, availability and integrity to the overall system    
[5, 6]. In this paper, we propose an integrated NGS 
approach employing three state-of-the-art physical 
sensors: MEMS-IMU, GNSS and VBN sensors, as well as 
augmentation from ADM [5-7]. In particular, the ADM is 
used to compensate for the MEMS-IMU sensor 
shortcomings experienced in high-dynamics attitude 
determination tasks. Position, velocity and attitude 
measurements are obtained from GNSS. MEMS-based 
INS provides position and velocity data while attitude 
measurements are also obtained both from INS and VBN 
sensors. Multi-Sensor Data Fusion (MSDF) techniques are 
adopted for an optimal integration of the various sources 
of information, resulting in deriving inferences that are not 
feasible from a single sensor or source [12]. Techniques 
for data fusion of low-cost sensors range from position 
estimation such as Kalman filtering to more advanced 
methods such as fuzzy expert systems [13] and neural 
networks, which implement Kalman Filtering methods 
including Extended Kalman Filter (EKF) [14] and particle 
filter [15].  The EKF has been at the forefront of applied 
optimal estimation for the past 30 years [16]. However, 
recent advancements in computation power have led to the 
rise of a number of additional techniques for data fusion 
such as the Cubature Kalman Filter (CKF) [17], Central 
Difference Kalman Filter (CDKF) [18, 19], Square Root-
Unscented Kalman Filter (SR-UKF) [16] and Particle 
Filter (PF) [20]. Recently, the adoption of UKF has 
overshadowed the EKF in many real-time applications, 



 

 

thanks to the quicker convergence rate and handling of 
nonlinearities in real-time. Previous research showed that 
the UKF is more accurate and robust than EKF in several 
applications due to its superior convergence characteristics 
[21]. The UKF is a recursive state estimator and is based 
on the Unscented Transform (UT) process, which is a 
method to approximate the mean and covariance of a 
random variable undergoing a nonlinear transformation 
[22]. The UKF uses sigma points to evaluate the statistics 
of a nonlinear transformed random variable. The UKF 
captures the posterior mean and covariance accurately to 
the 3

rd
 order (Taylor series expansion) for any nonlinearity 

[23].  The data provided by all sensors are blended using 
an UKF. A loosely coupled integration method is 
implemented, which approach supports integration of 
Commercial Off-The-Shelf (COTS) and low-cost 
navigation sensors. The advantages of adopting an UKF 
are: 

 Eliminates the need of Jacobeans or Hessians. 

 Ease of higher order approximations. 

 Better performance in non-linear problems. 

 More relevance to real-life problems and 
conditions. 

 Increased ADM vertical and horizontal 
validity/operational time. 

The UKF is generally classified into [13]: 

 Additive UKF that reduces the order and 
subsequently the number of mathematical 
calculations required in each iteration, without 
using the augmented states of the traditional 
UKF. This filter is computationally efficient and 
hence adopted in real-time systems. 

 Square-root UKF that is used to prevent 
numerical instabilities to which the algorithm is 
exposed, being necessary to conserve the 
covariance matrix of the state errors as semi-
defined positive.  

 Spherical complex UKF that utilizes an 
alternative criterion for selecting a minimum set 
of sigma points. This variant overcomes a key 
drawback of the UKF, which is the relative poor 
execution speed when compared to EKF. 

The UT process is based on a sequence of tasks: 

computation of a set of sigma points, assignment of 

weights to each sigma point, transformation of the sigma 

point through a nonlinear function and computation of the 

Gaussian weighted points. As shown in Fig. 4, sigma 

points are obtained based on mean and covariance values.   

 

 

 

 

 

 

Fig. 4. Calculated sigma points.  

The UT process then transforms the sigma points to a 

new set as depicted below in Fig. 5. 

 

 

 

 

 

 

 

 

Fig. 5. Transformed sigma points. 

The following algorithm is used for state estimation 

[16]. Initialisation of the UKF is performed based on the 

process model equations given by: 

 ̂   [  ]                             (1) 

    [(    ̂ )(    ̂ )
 ]              (2) 

where  ̂  is the initial state vector estimate,   is the mean 

or expected value,    is the initial state vector, which 

incorporates the initial state of the ADM,    is the initial 

state covariance matrix and   is the transposition of the 

matrix. The process model of the UKF is based upon a set 

of sigma points. The sigma points,    are selected based 

on the mean and covariance of   . The multi-sensor data 

fusion architecture is based on a federated architecture. 

The process model is based on a set of sigma points, 

which are selectively chosen for improving the 

performance of the data fusion process. The sample value 

equations are given below: 

                                          (3) 

       (√(   )   )                    (4) 

       (√(   )   )                   (5) 

where   is the initial mean of the sigma points (sample 

values),     is the initial covariance matrix,   is the mean 

value,           is the index,   is the integer scaling 

factor and   is the outer value.   is introduced as a tuning 

parameter for the calculation of the sigma points. The 

algorithm is designed to sample the mean and covariance 

of an arbitrary function that satisfies its state variable and 

follows a normal distribution. The nonlinear function is 

applied to each sigma point, which in turn yields a cloud 

of transformed points and the statistics of the transformed 

points. Since the problem of statistical convergence is not 

a substantial drawback, higher order information about 

the distribution can be captured using only a very small 

number of points [19].  The UT process is described by 

introducing a random variable x (dimension n) and is 

assumed to be propagated through a nonlinear function, 

   ( ) and   is represented by the mean and 

covariance values. At the end of this process, a valid 

selection of sigma points is obtained. The transformed 

points are given a weighting known as sample weight that 

are given by: 

   
 

   
                                   (6) 
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where   is the initial weight. The sample values attained 

from the measurements are fed into the UKF. In the 

equations above (√(   )   )  is equal to    which is a 

row vector. These values are obtained from the matrix 

    (   )  , where   is an arbitrary constant. The 

sigma points are obtained by [16]: 

     {    (    )}
                          (9) 

     [ ̂       ̂     √        ̂     √    ]   (10) 

where P computes the diagonal of state covariance matrix 

and results in the lower triangular matrix of the state 

covariance matrix   and   is the control parameter of the 

dispersion distance from the mean estimate in the 

computation of the sigma point matrix,    After the sigma 

points are calculated, a time update for each time step 

             is performed and is given by [16]:  
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where    represents the unobserved state of the system, 

   is a known exogenous input,    is a set of scalar 

weights that corresponds to each sigma point when it 

undergoes a nonlinear transformation at each iteration 

          .    is the process noise covariance 

matrix,   in   
( )

 is the covariance and   in   
( )

 is the 

mean and   is the dimension of the augmented state 

vector. The measurement update equations are given by 

[16]: 
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where    is the measurement noise covariance matrix 

[16]. The parameter   is the nonlinear function used for 

propagation of the sigma points,    is the     component 

of the vector  ,   ̂ is an estimate of the value of  ,  ̂ ( ) 
is a-priori estimate of   , conditioned on all priori 

measurements except the one at time   ,  ̂ ( ) is a-

posteriori estimate of   , conditioned on all priori 

measurements at time   . The UKF calculates the new 

sigma points every time in the time update and hence it 

requires the computation of a matrix square-root of the 

state covariance. The generic algorithm of the UKF is 

illustrated in Fig. 6. 
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Fig. 6. Generic algorithm of the UKF.  

A. Aircraft Dynamics Model 

With reference to the implementation of the ADM, six 

Degrees of Freedom (6-DOF) geodetic nonlinear 

equations force and moment equations are listed below, 

describing the motion of the aircraft in the body frame   

with: 

 A velocity   [     ]  with regards to the 
inertial frame, expressed in the body frame    

 An angular rates   [     ] 

where u is the axial velocity, v is the lateral velocity and 

w is the normal velocity,   is the roll rate, q is the pitch 

rate and r is the yaw rate.  

1) Forces Equations: 

The equations describing the forces applied on the 

aircraft are described below. Gravitational forces act on 

the gravity center of the aircraft are given by: 

(  )                                            (22) 

(  )                                     (23) 

(  )                                     (24) 

where   is pitch,   is roll,   is yaw angle, G is 

acceleration due to gravity and M is mass of the RPAS. 

Similarly, propulsion forces are given by: 



 

 

(  )                                     (25) 

(  )                                     (26) 

(  )                                    (27) 

where   is thrust supplied by engines,   is angle between 

the         and the mounted axis of the engines. The 

aerodynamic forces acting on the x, y and z axis are 

denoted as X, Y and Z respectively. The set of forces 

equations are given by: 

 

 ( ̇       )     ̇                  (28) 
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 ( ̇       )     ̇   

                               (30) 

2) Moment equations: 

The kinematic moments are expressed as: 

                                       (31) 

                                      (32) 

                                       (33) 

where: 

   ∭        ;    ∭               (34)                         

   ∭        ;     ∭               (35) 

    ∭      ;     ∭                   (36) 

The moment applied on the aircraft in the x, y and z 

axis are denotes as L, M and N respectively. The set of 

moment equations are given by: 

   ̇      ̇  (     )                     (37) 

   ̇  (     )      ( 
    )              (38) 

   ̇      ̇  (     )                     (39) 
 

 

 
 

The overall assumptions associated with the ADM are 
a rigid body RPAS, rigidly mounted aircraft engine on the 

vehicle body, the aircraft mass located in the aircraft 
centre of gravity and hence the mass is varying only as a 
result of fuel consumption, neglecting the wind effects, no 
sideslip, uniform gravity and the geodetic coordinate 
system of reference is World Geodetic System of year 
1984 (WGS 84). The uncertainties in the aerodynamic 
parameters the primary source of errors in the model 
resulting from the use of the ADM. The accuracy of these 
parameters depends on the source of the data, which are 
theoretical computations, wind tunnel experiments and 
flight tests. The aerodynamic parameters can also be 
estimated using an adaptive UKF. To alleviate the effect of 
uncertainties, accurate data is used for modelling purposes. 
The covariance matrix describes the effect of uncertainties 
in the estimation of the states as a function of time.    

B. Manoeuvre Recognition Algorithm 

In several practical applications, the use of 3-DoF 

dynamics models is preferred. Indeed, to effectively use a 

Six Degree of Freedom (6-DoF) model a large amount of 

coefficients is needed and these are not always easy to 

determine or find. Therefore, a Manoeuvre Recognition 

Algorithm (MRA) is implemented that allows a reliable 

use of the aircraft 3-DoF dynamics model in all relevant 

flight phases.  The inputs needed to perform this analysis 

are mainly attitude angles, altitude, angular rates, data 

about flaps and landing-gear states. Attitude angles and 

angular rates can be provided by VBS measurements, 

altitude by radio-altimeter and data about flaps and 

landing-gear can be provided from their respective 

actuators. 

III. NAVIGATION AND GUIDANCE SYSTEM 

ARCHITECTURE 

The two multi-sensor integrated NGS architectures 
compared are the EKF based VBN-IMU-GNSS-ADM (E-
VIGA) and the UKF based system (U-VIGA). The U-
VIGA architecture is illustrated in Fig. 7.  
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Fig. 7. U-VIGA architecture.   



 

 

The E-VIGA architecture [6] uses VBN at 20 Hz and 
Global Positioning System (GPS) at 1 Hz to augment the 
MEMS-IMU running at 100 Hz. This architecture includes 
ADM (computations performed at 100 Hz) to provide 
attitude channel augmentation. The sensor measurements 
are handled by a sensor processing and data sorting block. 
The data sorting algorithm is based on Boolean decision 
logics, which allow automatic selection of the sensor data 
based on pre-defined priority criteria. The sorted data is 
then fed to an EKF to obtain the best estimate values. The 
INS position and velocity are compared with the GPS 
position and velocity to form the measurement input of the 
data fusion block containing the EKF. The attitude data 
provided by the ADM and the INS are compared to feed 
the EKF at 100 Hz, and the attitude data provided by the 
VBN sensors and INS are compared at 20 Hz and form the 
inputs to the EKF. The EKF provides estimates of 
Position, Velocity and Attitude (PVA) errors, which are 
then removed from the sensor measurements to obtain the 
corrected PVA states. An additional UKF is also used to 
pre-process the ADM navigation solution. The pre-
filtering of the ADM virtual sensor measurements aids in 

achieving reduction of the overall position and attitude 
error budget and allows a considerable reduction in the 
ADM re-initialisation time. PVA measurements are 
obtained as state vectors from both the centralised UKF 
and ADM/UKF.  

IV. SIMULATION CASE STUDY 

A detailed case study was performed in a high 

dynamics PAS environment, employing a 6-DoF model of 

the AEROSONDE RPAS as the reference ADM. The 

corresponding E-VIGA and U-VIGA integrated 

navigation modes were simulated using MATLAB
TM

 in 

an appropriate sequence of flight manoeuvres 

representative of the AEROSONDE RPAS operational 

flight envelope. The duration of the simulation is 950 

seconds covering eight flight legs (i.e., take off, straight 

climb, right climb helix, straight and level cruise, loiter, 

straight and level cruise, left descent helix, final straight 

approach) from starting point to destination. The 3D 

trajectory plot of the flight profiles of the AEROSONDE 

RPAS is illustrated in Fig. 8.   

 
Fig. 8. 3D trajectory plot of RPAS flight profile. 

The best estimates of position, velocity and attitude 

for the two NGS architectures are obtained and the 

associated error statistics are calculated. Tables 1 and 2 

list the position and attitude error statistics of the two 

NGS architectures respectively. The E-VIGA NGS 

system is prone to rapid divergence and its optimal time 

for re-initialisation is in the order of 20 seconds. The U-

VIGA NGS system shows considerable improvement in 

the horizontal and vertical positions. By applying an UKF 

to pre-filter the ADM measurements, the navigational 

solution is corrected and becomes suitable for an extended 

time of operation. Comparing with the E-VIGA solution, 

a significant improvement of the solution validity time is 

obtained with the U-VIGA system as shown in Table 3. In 

particular, the lateral position validity time before the 

solution exceeds the RNP 1 threshold in the climb phase 

is 227 sec and, in the final approach phase, the ADM 

solution exceeds the CAT I, CAT II and CAT III limits at 

151 sec, 144 sec and 46 sec respectively. 

TABLE 1: POSITION ERROR STATISTICS 

NGS 
Architecture 

North 
Position [m] 

East Position 
[m] 

Down 
Position [m] 

 μ σ μ σ μ σ 

E-VIGA 0.33 1.79 -0.48 1.81 -0.03 3.10 

U-VIGA 0.37 1.78 -0.49 1.80 -1.40 3.10 

TABLE 2: ATTITUDE ERROR STATISTICS 

NGS 
Architecture 

Pitch ( )  
[degrees] 

Roll ( )  
[degrees] 

Heading ( ) 
[degrees] 

 μ σ μ σ μ σ 

E-VIGA 
x10^-2 

-0.52 2.67 -0.65 2.30 -0.56 0.29 

U-VIGA 

x10^-2 
-0.09 2.64 0.19 3.10 0.36 -0.16 
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TABLE 3: E-VIGA AND U-VIGA ADM LATERAL AND VERTICAL 

GUIDANCE VALIDITY TIMES 

Accuracy 

threshold 

ADM validity time [sec] 

Lateral Position Vertical Position 

E-VIGA U-VIGA E-VIGA U-VIGA 

RNP 1 110 227 95 200 

CAT I 107 151 62 116 

CAT II 64 144 
19 58 

CAT III 41 46 

The vertical position validity time before the solution 

exceeds the RNP 1 threshold in the climb phase is 200 

sec. Furthermore, CAT II and CAT III requirements were 

satisfied up to 58 sec and CAT I requirements up to 116 

sec. 

V. Human Machine Interface 

In order to fulfill the requirements of RPAS 
coexistence with manned aircraft, a series of 
improvements are required specifically to increase 
reliability and situational awareness. In addition to 
requirements including DAA and enhanced navigation 
functions, one of the key improvements required is an 
adaptive HMI. The HMI among different RPAS designers 
and manufacturers varies a great deal in terms of the 
information presentation, and formats and functions. HMI 
consists of three main parts which are (1) operating 
elements, (2) displays, and (3) an inner structure. The 
inner structure encompasses hardware and software (i.e., 
electronic circuits and computer programmes). Displays 
show and transfer information about the machine to the 
user (for instance by means of graphical displays) and 
operating elements transfer information from the operator 
to the machine via for instance push buttons, switches, 
adjusting knobs, etc. The elements that contribute to an 
optimal HMI system design include the operational 
environment, human Perception, Cognition and Action 
(PCA) elements are illustrated in Fig. 9.  
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Physiopsychology feedback 

Level of Automation Adjustment

 

Fig. 9. HMI system design elements. 

The core tasks of the RPAS pilot are listed below: 

Mission Planning: 

 Check all information related to a specific 

mission (i.e. take-off and landing data, 

operational area data, etc.). 

 Create and validation the mission plan taking 

into account the fuel consumption optimization, 

targets/payloads characteristics, data link 

coverage, weather conditions and navigation 

aids. 

 Perform a replanning as appropriate. 

 
Surveillance: 

 Monitor RPAS flight status. 

 Monitor the system state (ensuring all systems 

are working properly). 

 Monitor traffic status in the proximity of RPAS. 

 Monitor weather status in the proximity of 

RPAS. 

 Monitor compliance with the applicable 

Required Surveillance Performance (RSP). 

 Make response to cautions and alerts. 

 
Navigation: 

 Monitor the RPAS navigation state. 

 Select and tune applicable navigation modes. 

 Monitor compliance with the applicable RNP 

requirements. 

 Monitor and detect the obstacles/intruders. 

 Track both low level and high level 

obstacles/intruders. 

 Identify the potential risk of collision through 

predicting and evaluating the trajectory of 

intruders. 

 Conduct criticality analysis for prioritizing, 

declaration and action determination. 

 Create and execute the avoidance trajectory. 

 
Communication and coordination: 

 Contact with the remotely piloted aircraft by 

using LOS or BLOS datalink. 

 Perform communications compliance with the 

applicable Required Communication 

Performance (RCP). 

 Communicate with the relevant air traffic 

controllers. 

 Communicate with the other airspace users. 

 Communicate with civil authorities / local 

community. 

 
Management: 

 Process declaration of emergencies. 

 Process a handover. 

 



 

 

The ergonomics of the system has to cater for higher 

reliability and reduced workload of the remote pilot. 

Additionally, human factor elements are critical in RPAS 

due to the physical separation between the platform and 

GCS. Hence novel HMI solutions are developed in order 

to keep adequately the human operator inside the RPAS 

pilot control loop, providing a higher degree of 

automation, enhanced situational awareness and an 

affordable workload [35-37]. 

VI. CONCLUSION 

The research activities performed to design a low-cost 
and low-weight/volume integrated NGS suitable for small-
to-medium size RPAS applications were described. 
Various sensors were considered for the NGS design 
including GNSS and MEMS-IMU, with augmentation 
from ADM and VBN sensors. A low-cost and low-
weight/volume integrated NGS architectures was 
introduced. The UKF based U-VIGA system. The U-
VIGA system employs an UKF for pre-filtering the ADM 
attitude solution and thus increases the ADM solution 
validity time. Compared to the E-VIGA system used in 
previouse research, the U-VIGA system showed an 
improvement of accuracy in the position and attitude 
measurements in addition to an increased ADM validity 
time. Furthermore, the performance of the UKF processing 
attitude channel data from the ADM was validated with a 
Monte Carlo simulation. Additionally, the integration 
schemes achieved horizontal/vertical position accuracies in 
line with ICAO requirements. Future research will address 
uncertainty analysis and possible synergies of the U-VIGA 
architecture with GNSS avionics based integrity 
augmentation systems. The Mission Management System 
integration in Unmanned Aircraft System (UAS) improves 
operational capabilities in terms of navigation, planning, 
communication management and 4D trajectory control, 
taking into account the problems of current manned Flight 
Management System (FMS) HMI. 
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