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Abstract 

Multi-Sensor Data Fusion (MSDF) techniques involving satellite and 

inertial-based sensors are widely adopted to improve the navigation 

solution of a number of mission- and safety-critical tasks. Current 

Navigation and Guidance Systems (NGS) employing MSDF 

algorithms do not meet the required level of performance in all flight 

phases of small Remotely Piloted Aircraft Systems (RPAS). Hence in 

order to satisfy the Required Navigation Performance (RNP), an 

innovative Square Root-Unscented Kalman Filter (SR-UKF) based 

NGS is implemented and compared with a conventional UKF design. 

The presented NGS architectures employ a number of state-of-the-art 

low-cost sensors including; Global Navigation Satellite Systems 

(GNSS), Micro-Electro-Mechanical System (MEMS) based Inertial 

Measurement Unit (IMU) and Vision Based Navigation (VBN) 

sensors. Additionally, an Aircraft Dynamics Model (ADM), which is 

essentially a knowledge based module, is employed to compensate 

for the MEMS-IMU sensor shortcomings in high-dynamics attitude 

determination tasks. The ADM acts as a virtual sensor and its 

measurements are processed with non-linear estimation techniques in 

order to increase the operational validity time. An improvement in 

the ADM navigation state vector (i.e., position, velocity and attitude) 

measurements is obtained, thanks to the accurate modeling of aircraft 

dynamics and advanced processing techniques. A novel SR-UKF 

based VBN-IMU-GNSS-ADM (SR-U-VIGA) architecture design is 

implemented and compared with a conventional UKF based design 

(U-VIGA) in a small RPAS (AEROSONDE) integration scheme 

exploring a representative cross-section of the operational flight 

envelope. The comparison of the state vector demonstrates the 

capability of SR-U-VIGA and U-VIGA systems to fulfill the relevant 

RNP criteria, including precision approach tasks. Furthermore, the 

computation time of SR-U-VIGA system is lower when compared to                 

U-VIGA NGS allowing for an enhanced implementation in real-time 

applications. 

Introduction 

The scientific community of the aerospace industry is currently 

focusing on developing innovative systems to integrate Remotely 

Piloted Aircraft System (RPAS) into the current and future classes of 

airspace. The integration is dependent on advanced Communication, 

Navigation and Surveillance (CNS) technologies in order to meet the 

Required Navigation Performance (RNP) levels [1-3]. Current civil 

and military RPAS operations are mostly segregated and the 

challenges involved with their integration into commercial airspace 

are currently being addressed through various operational and 

technological developments. The focus areas of development are 

concentrated on enhanced CNS and Air Traffic Management (ATM) 

(CNS/ATM) and Avionics (CNS+A) solutions, Detect-and-Avoid 

(DAA) solutions and continuous airworthiness aspects. To realise 

global harmonization of RPAS, a roadmap is envisaged by the 

International Civil Aviation Organization (ICAO) as part of its 

Aviation System Block Upgrades (ASBU) plan [4]. Basic procedures 

and functions, which will initiate integration, include both 

cooperative and non-cooperative DAA functions. Secure and safe 

Line-of-Sight (LOS) and Beyond-Line-of-Sight (BLOS) 

communication links are essential for RPAS to maintain continuous 

contact with the Ground Control Station (GCS). Significant outcomes 

are also expected from findings of large-scale and regional ATM 

modernization programs including Single European Sky ATM 

Research (SESAR) and Next Generation Air Transportation System 

(NextGen). The key enabling technologies required for the evolution 

of CNS+A framework have been identified as part of these 

programmes [5-10]. The requirements for RPAS to be integrated into 

all classes of airspace are illustrated in Figure 1. 
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Figure 1. Requirements for RPAS integration into all classes of airspace. 

 

Enhanced surveillance solutions based on Automatic Dependent 

Surveillance-Broadcast (ADS-B) system and Traffic Collision 

Avoidance System (TCAS) are required for addressing cooperative 

DAA functions [11-18]. The Performance Based Navigation (PBN) 

concept specifies that aircraft RNP and area navigation (RNAV) 

requirements have to be met for all flight phases [11]. These 

navigation specifications are defined at a sufficient level of detail in 

order to facilitate global harmonization by providing specific 

implementation guidance for national aviation regulators and 



Page 2 of 10 

 

operators. The RNP is in turn translated to technical requirements, 

which aid in the determination of specific airborne sensors that can 

be employed onboard the RPAS [19, 20]. The sensor requirements 

dictate the following: physical characteristics of the sensors including 

size, weight and volume, support requirements such as electrical 

power, accuracy and precision [20].  

High-integrity based integrated Navigation and Guidance Systems 

(NGS) are required to meet the RNP criteria that are dictated by the 

International Civil Aviation Organization (ICAO) [19]. Current NGS 

are not capable of achieving the required level of performance in all 

flight phases of a small RPAS. In this research, the implementation of 

NGS is based on low-cost avionic sensors, which provide a number 

of benefits including reduction in weight and volume, as well as 

satisfying support requirements in an inexpensive approach [20]. The 

appropriate combination of sensors and integration algorithms enable 

the NGS to meet accuracy, continuity, availability and integrity 

requirements set by ICAO [4].  

Global Navigation Satellite System (GNSS) and Micro-Electro-

Mechanical System (MEMS) based Inertial Measuring Unit (IMU) 

are a highly synergistic combination of navigation sensors capable of 

providing an accurate navigation state vector better than any stand-

alone sensor. Vision Based Navigation (VBN) sensors are typically 

adopted for precision approach and landing (i.e., the most demanding 

and potentially safety-critical flight phase). Aircraft Dynamics 

Models (ADM) are not currently employed in any commercial 

systems as a virtual sensor, however previous research  [19, 20, 22, 

23] shows that it can act as a knowledge-based module augmenting 

the navigation state vector and thus increasing the accuracy of the 

navigation solution [19, 20, 22, 23]. The performance of the ADM is 

satisfactory only for a short time period and hence requires re-

initialisation. Therefore to increase the operational potential of the 

ADM, approximate Bayesian estimation techniques are adopted to 

process the aircraft dynamics (i.e., aircraft trajectory and attitude 

motion). The ADM is represented by non-linear ordinary differential 

equations, using which the aerodynamic forces and moments acting 

on the RPAS are estimated.   

 

Multi-Sensor Data Fusion 

Inertial based navigation using Kalman filtering has been the de facto 

methodology used in aeronautical navigation for more than thirty 

years [24]. Both absolute (Global Positioning System (GPS), radars, 

etc.) and relative (odometers, IMUs, etc.) position sensors provide 

noisy measurements and hence in most cases, filtering techniques are 

essential [24]. Data fusion by definition is the integration process that 

involves multiple knowledge, data or information sources 

representing the same real-world object to provide a consistent, 

accurate, and useful representation [25]. Multi-Sensor Data Fusion 

(MSDF) is the process of combining observations from a number of 

different sensors to provide a robust and complete description of an 

environment or process of interest where large volumes of data is 

implemented by combining information from multiple sensors to 

achieve results that are not possible from a single sensor or 

information source [26]. MSDF is different from single sensor 

estimation in the aspect that data fusion combines multiple sensor 

information to provide the best possible state estimation, while single 

sensor estimation utilizes sensor characteristics in order to improve 

the overall performance of that sensor. Data fusion was primarily 

used in statistics and estimation fields and then later featured more 

often in robotic applications to increase agent/platform autonomy. 

Robotic systems such as RPAS do not have an on-board pilot and 

therefore rely on sensors and systems to perform the planned 

missions. Therefore methods that improve the accuracy of obtained 

measurements are imperative to the increase in overall navigation 

performance. Physical agents such as RPAS are inherently unstable, 

due to factors including; 

 Environmental stochastic unpredictability 

 Sensor limited noise and  

 Model inaccuracies and errors 

To obtain an optimal solution (i.e., optimal state vector 

measurement), the traditional Kalman Filter (KF) is typically applied. 

A KF being an optimal estimator is recursive by nature and in order 

for new measurements to be processed in real time it infers 

parameters of interest from indirect and uncertain observations. The 

KF is derived on the assumption that the noises are normally 

distributed, therefore a likelihood function of the prediction error can 

be calculated, which results in estimation of the state vector. When 

presented with a non-linear function, linear filtering techniques are 

not capable to provide an accurate solution. In realistic scenarios 

involving maneuvering tasks, the motions are rarely linear and 

therefore approximation techniques are required. The Extended 

Kalman Filter (EKF) has been the most commonly used data fusion 

technique in numerous non-linear estimation applications. During 

these last thirty years, different architectures for navigation data 

integration were deployed and investigated, using a number of 

algorithms in filtering theory. Both linear and non-linear filters were 

applied to estimate different state navigation compounds as Position, 

Velocity and Attitude (PVA) of the vehicles [27]. Recent 

advancements in the application of Bayesian inference and non-linear 

approximation algorithms are largely attributed to the availability of 

processors with greater computational capabilities. Approximate 

estimation techniques are used to predict and correct the new state 

information based on previous measurements. Specifically, a 

proportional term is used and hence the prediction error is statistically 

minimized allowing for a more accurate estimation of the state vector 

[28]. Although the EKF is one of the most widely used filtering 

methods for non-linear system estimation, this filter has two key 

drawbacks that make it challenging for a practical implementation                

[28-35] including: 

 It does not take into account probabilistic uncertainty of the 

random variables of the system state and noise when the 

linearization of the system equations is performed and 

 The accuracy of the propagated mean and the covariance is 

limited to the first order since the filter employs a linearization 

method based on the first-order truncated Taylor series. 

The UKF was developed in order to overcome the limitations of the 

EKF due to first-order linearization of the non-linear systems and 

provides derivative-free higher-order approximations with Gaussian 

distribution rather than arbitrary non-linear functions [28-35]. In 

comparison to the UKF, the EKF is difficult to implement and tune, 

and is mostly suboptimal for non-linear systems [28]. The UKF is 

more accurate and robust when adopted for navigation applications 

and it provided much better convergence characteristics [29]. The 

UKF uses a process called Unscented Transformation (UT), which 

evaluates the statistics of a non-linear transformed random variable 

[28, 29]. A number of ‘Sigma Points’ are generated and propagated 

in order to gather information on the state vector. Different variations 

of the UKF were implemented, one of which is the Square Root-

Unscented Kalman Filter (SR-UKF) that was first proposed by J.E. 

Potter because the UKF performance was not reliable in 36-bit 

floating point arithmetic, for the Apollo flight computer, it required a 

KF with 15-bit fixed-point arithmetic.  
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The SR-UKF provides a robust solution with no degradation in 

performance compared to the UKF with the additional benefit of 

exhibiting reduced computational burden. The SR-UKF also prevents 

numerical instabilities that are inherently present in the UKF 

algorithm [24]. The SR-UKF also demonstrates increased numerical 

robustness and a reduction in computational cost [33]. A number of 

variants for the original KF have been developed and are illustrated 

in Figure 2. 
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- Extended Kalman Filter
- Iterated Kalman filter

- Unscented Kalman Filter
- Sigma-Point Filter
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Figure 2. Kalman filter classification. 

 

Our previous research activities [13-23] presented the various sensor 

choices for data fusion and the overall implementation of the 

VBN/IMU/GNSS/ADM (VIGA) NGS and UKF based VIGA                 

(U-VIGA) architecture. In this paper, we propose an integrated NGS 

approach using SR-UKF employing three state-of-the-art physical 

sensors: MEMS-IMU, GNSS and VBN sensors, as well as 

augmentation from ADM [4-8 and 20-22].  

Square Root-Unscented Kalman Filter  

In its original form, the KF acts as an optimal algorithm for 

information processing in systems with a linear model of dynamics 

and measurement [36]. The KF cannot be used for non-linear 

systems. Therefore, other methods of estimation have been 

formulated and implemented for non-linear systems. Variations to the 

original linear Gaussian KF include non-linear Gaussian 

approximation filters such as the EKF, UKF and Central Difference 

Kalman Filter (CDKF) and sequential Monte Carlo methods such as 

the Particle Filter (PF). The basic framework for discrete-time state 

estimation of non-linear dynamic systems is presented in the 

following form: 

      (  )                                        (1) 

    (  )                                          (2) 

where    is discrete state vector (i.e., the unobserved state of the 

system),    is discrete measurement vector (i.e., observed 

measurement signal), k represents time, and   and   are functions on 

the state vector. The process noise    drives the dynamic system, and 

the observation noise is given by   . The UKF involves the recursive 

application of this “sampling” approach to the state-space equations 

[33]. A flow diagram for the UKF process is illustrated in Figure 3.  
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Figure 3. High-level operation of the UKF process. 

 

The Unscented Transform (UT) process is a mathematical function 

that is used to estimate a given non-linear transformation using 

probability distribution that is characterized only in terms of a finite 

set of statistics. The most common use of the UT is in the non-linear 

projection of mean and covariance estimates in the context of non-

linear extensions of the KF [29]. The UT, especially as part of the 

UKF, has largely replaced the EKF in many non-linear filtering and 

control applications, including underwater [37], ground and air 

navigation [36], and spacecraft [35] applications. The figure below 

depicts the UT process of the UKF and SR-UKF. The UT process is 

illustrated in Figure 4. 
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Figure 4. Unscented Transformation (UT) process. 

 

The accuracy provided by the UKF algorithm can be improved by 

implementing the square root version. The UKF calculates new sigma 

points in every time update and hence it requires the computation of a 

matrix square-root of the state covariance. As in the original UKF, 

the filter is initialised by calculating the matrix square-root of the 

state covariance once via a Cholesky factorization [27]. However, the 
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propagated and updated Cholesky factor is then used in subsequent 

iterations directly from the sigma points. During time-update, 

Cholesky factor given by S is calculated using a QR decomposition 

of the compound matrix containing the weighted propagated sigma 

points and the square root of the additive process noise covariance. 

The subsequent Cholesky update (or downdate) updates the downdate 

process is required, because there is a possibility the weight   
( )

 

may be negative [24]. Additive initialization of the SR-UKF begins 

with the calculation of the state mean and covariance values: 

 ̂   [  ]                                          (3) 

       { [(    ̂ )(    ̂ )
 ]}                     (4) 

where  ̂  is the initial state vector estimate,   is the mean,    is the 

initial state vector which incorporates the initial state of the ADM, for 

this step a best estimate can be used if no initial state information is 

provided.    is the initial state covariance matrix and   is the 

transposition of the matrix, The sigma points are then calculated from 

the non-augmented states, so then they can be transformed through 

the non-linear dynamics of the process model [24]:  

     [ ̂       ̂           ̂       ]                  (5) 

where   computes the diagonal of state covariance matrix and results 

in the lower triangular matrix of the state covariance matrix    and   

is the control parameter of the dispersion distance from the mean 

estimate in the computation of the sigma point matrix. After the 

sigma points are calculated, a time update for each time step   is 

performed and is given by [24]:  

      [    ]                                      (6) 

 ̂ 
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Following the time update (i.e., prediction equations) where the new 

mean and covariance values are calculated for the process function, 

the measurement function (i.e., correction equations) mean and 

covariance are then calculated [24]. 

      {[√  
( )
  [         ̂ ]    ]}                 (13) 

              {          ̂ 
    

( )
}               (14) 

     ∑   
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[      ̂ 

 ][      ̂ 
 ]
   

                   (15) 

The last step in the SR-UKF algorithm employs the characteristic KF 

equations (i.e., Kalman gain and update equations). 

   [       
 ]    ⁄                                  (16) 

 ̂   ̂ 
    (    ̂ 

 )                             (17) 

                                               (18) 

             {   
      }                         (19) 

The Kalman gain    is used to quantify the influence of new 

information present in the innovation vector on the estimation of the 

state vector and can be considered as a weight factor. The posterior 

measurement update of the Cholesky factor of the state covariance is 

calculated in equation 19 by applying   (i.e., state size) sequential 

Cholesky downdates to   . The downdate vectors are the columns of 

    ̅ . This replaces the posterior update of    in with    in the last 

covariance update. 

Fuzzy/PID Controller 

In order to design the control system, a hybrid approach was adopted 

allowing the controller to take advantage of the proposed integrated 

navigation sensors during all phases of flight including precision 

approach and landing. Therefore, fuzzy logic and 

Proportional/Integral/Derivative (PID) control strategies were 

adopted for controlling the RPAS. PID is the simplest type of linear 

controller and is used in most RPAS control systems. The PID 

control law consists of three basic feedback signals, namely 

proportional, integral and derivative with gains Kp, Ki and Kd 

respectively. The gains affect the system as follows: 

 P term: Increasing Kp speeds up the response of the system 

 I term: The integral controller eliminates steady state error and 

 D term: The derivative controller increases the stability of the 

system and has no effect on the steady state error.  

Fuzzy logic is a form of multi-value logic based on a representation 

of knowledge and reasoning of a human operator.  In contrast to 

conventional PID controllers, Fuzzy Logic Controllers (FLC) do not 

require a model of the system.  Therefore, it can be applied to non-

linear systems or various ill-defined processes for which it is difficult 

to model the dynamics. The process consists of four components: 

fuzzification, fuzzy rule base, inference engine and defuzzification.  

Fuzzification refers to transforming a crisp set into a fuzzy set using 

linguistic terms. A Membership Function (MF) is defined as a curve 

that classifies how each point in the input space is mapped to a 

membership value (or a degree of membership) between 0 and 1 [38]. 

An example is provided in Figure. 5.   

 

Figure 5.  Input fuzzy sets and their membership functions. 

The second component, that is the Fuzzy rule base, forms the main 

part of fuzzy logic.  It is based on if-then rules that tell the controller 

how to react to the inputs. Defuzzification is the method to obtain the 

output from the controller. It converts the output fuzzy set value to a 

crisp set using its membership functions. The RPAS controller design 

was approached by decoupled dynamic models of the aircraft 

resulting in two complimentary controllers, one for lateral motion and 

one for longitudinal motion.  The functional architecture of the 

controller is illustrated in Figure. 6. 
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Figure 6.  Functional architecture of the controller. 

 

Before initiating the controller design, the open-loop response of the 

system was first tested.  In open-loop flight, the control inputs were 

set to a fixed value without any feedback from the aircraft states. It is 

observed that the RPAS is unstable in this condition and settles in a 

constant bank turn and pitch angle. The pitch angle open-loop 

response is shown in Figure 7. This is due to the propulsion system, 

which causes an unbalanced roll moment and excites the spiral mode. 

 
Figure 7. Pitch angle open-loop response (spiral mode). 

The lateral controller was first designed to stabilise the lateral 

dynamics of the RPAS.  This was followed by the longitudinal 

controller to control the pitch angle. The overall design was then 

adapted to perform servoing using the information from the VBN 

sensors and integrated navigation systems. Triangular and trapezoidal 

membership functions were used for the membership functions due to 

their simplicity and ease of implementation. The membership 

functions which gave the best results for the roll and pitch responses 

were selected.  Linguistic variables were used to define the fuzzy sets 

of inputs and the outputs of the controller.  The fuzzy sets and the 

range of the inputs and outputs are shown in Tables 1 and 2, where 

VN = Very Negative, VP = Very Positive, VH = Very High, VL = 

Very Low, SN = Slightly Negative, SP = Slightly Positive, SH = 

Slightly High, SL = Slightly Low, Z = Zero. 

Table 1.  Fuzzy sets and range of inputs. 

 

Input Variable Fuzzy Set Range 

Roll error VN, SN, Z, SP, VP -180° to 180° 

Roll rate VN, SN, Z, SP, VP -40°/s to 40°/s 

Pitch error VL, SL, Z, SH, VH -90° to 90° 

Deviation VN, SN, Z, SP, VP -512 to 512 pixels 

Deviation rate VN, SN, Z, SP, VP -600 to 600 pixels/s 

 
 

 

Table 2.  Fuzzy sets and range of outputs. 

 

Output Variable Fuzzy Set Range 

Aileron deflection VN, SN, Z, SP, VP -60° to 60° 

Elevator deflection VN, SN, Z, SP, VP -60° to 60° 

Required roll to 

correct deviation 
VN, SN, Z, SP, VP -60° to 60° 

The lateral controller design was designed with the aim of stabilising 

the roll of the aircraft during the landing phase.  This was required to 

maintain zero roll during touchdown at the centre of the runway so as 

to avoid wing-strike on the runway.  It also controlled the position of 

the aircraft with respect to the centreline of the runway. The design 

process of the longitudinal controller followed the same methodology 

as that of the lateral controller. A derivative gain was used instead of 

pitch rates. The fuzzy rules used for the longitudinal controller are 

given below: 

 If (Pitch is Z) then (Elevator_Deflection is Z) 

 If (Pitch is SH) then (Elevator_Deflection is SP) 

 If (Pitch is SL) then (Elevator_Deflection is SN) 

 If (Pitch is VH) then (Elevator_Deflection is VN) 

 If (Pitch is VL) then (Elevator_Deflection is VP) 

 

The pitch angle close-loop response of the controller is shown in 

Figure 8.  

  
Figure 8.  Pitch angle close-loop response with controller. 

The results show that the pitch and roll converge rapidly towards the 

required value of zero after a short initial instability.  The simulation 

showed that the controller is able to correct the attitude disturbances 

caused by moderate to high wind speeds.  However, it was observed 

that the aircraft became unstable with lateral wind speeds exceeding 

20 m/s. The implementation of UKF based NGS architecture 

provided better results when the disturbances existed. 

Aircraft Dynamics Model 

With reference to the implementation of the ADM, six Degrees-of-

Freedom (6-DOF) geodetic non-linear equations force and moment 

equations are listed below, describing the motion of the aircraft in the 

body frame   with: 

 A velocity   [     ]  with regards to the inertial frame, 
expressed in the body frame   

 An angular rates   [     ] 

where u is the axial velocity, v is the lateral velocity and w is the 

normal velocity,   is the roll rate, q is the pitch rate and r is the yaw 

rate. The equations describing the forces applied on the aircraft are 
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described below. Gravitational forces act on the gravity center of the 

aircraft and are given by: 

(  )                                                 (20) 

(  )       
                                      (21) 

(  )                                             (22) 

where   is pitch,   is roll,   is yaw angle, G is acceleration due to 

gravity and M is mass of the RPAS. Similarly, propulsion forces are 

given by: 

(  )                                              (23) 

(  )      
                                       (24) 

(  )                                             (25) 

where   is thrust supplied by engines,   is angle between the 

        and the mounted axis of the engines. The aerodynamic 

forces acting on the x, y and z axis are denoted as X, Y and Z 

respectively. The set of forces equations are given by: 

 ( ̇       )     ̇                        (26) 

 ( ̇       )     ̇                         (27) 

 ( ̇       )     ̇                      (28) 

The kinematic moments are expressed as: 

                                              (29) 

                                             (30) 

                                             (31) 

where: 

   ∭        ;    ∭                      (32)    

                         ∭        ;     ∭                       (33) 

    ∭      ;     ∭                          (34) 

The moment applied on the aircraft in the x, y and z axis are denotes 

as L, M and N respectively. The set of moment equations are given 

by: 

   ̇      ̇  (     )                            (35) 

   ̇  (     )      ( 
    )                     (36) 

   ̇      ̇  (     )                            (37) 

The ADM used for simulation purposes is modeled according to the 

following assumptions: 

 The Earth model chosen is the WGS-84 model, which 

approximates the Earth as an ellipsoid 

 The atmosphere is considered at rest relatively to the Earth, and 

the atmospheric model is the Standard Atmosphere (SA), 

defining temperature, pressure and density as a function of 

altitude 

 Aircraft engine is rigidly mounted on the vehicle body and the 

aircraft mass is located in the aircraft centre of gravity and hence 

the mass is varying only as a result of fuel consumption 

 All wind effects and sideslip are neglecting 

 Uniform gravity and the geodetic coordinate system of reference 

is World Geodetic System of year 1984 (WGS 84) 

The uncertainties in the aerodynamic parameters are the primary 

source of errors in the model resulting from the use of the ADM. The 

accuracy of these parameters depends on the source of the data, 

which are theoretical computations, wind tunnel experiments and 

flight tests. 

Multi-Sensor Navigation and Guidance System 

Architectures 

The two MSDF based NGS architectures compared are the UKF 

based (U-VIGA) and SR-U-VIGA based system. The U-VIGA 

architecture illustrated in Figure 9 uses VBN at 20 Hz and Global 

Positioning System (GPS) at 1 Hz to augment the MEMS-IMU 

running at 100 Hz. This architecture includes ADM (computations 

performed at 100 Hz) to provide attitude channel augmentation. The 

sensor measurements are handled by a sensor processing and data 

sorting block. The data sorting algorithm is based on Boolean 

Decision Logics (BDL), which allow automatic selection of the 

sensor data based on pre-defined priority criteria. The sorted data is 

then fed to an UKF to obtain the best estimate values. The INS 

position and velocity are compared with the GPS position and 

velocity to form the measurement input of the data fusion block 

containing the UKF. The attitude data provided by the ADM and the 

INS are compared to feed the UKF at 100 Hz, and the attitude data 

provided by the VBN sensors and INS are compared at 20 Hz and 

form the inputs to the UKF and SR-UKF.  

 

Both UKF and SR-UKF provides estimates of Position, Velocity and 

Attitude (PVA) errors, which are then removed from the sensor 

measurements to obtain the corrected PVA states. An additional UKF 

is used to process the ADM navigation solution. IN contrast to the 

previously implemented EKF based E-VIGA system, the ADM 

operates in parallel to the centralized UKF and acts as a separate 

subsystem. The processing of the ADM virtual sensor measurements 

leads to reduction of the overall position and attitude error budget and 

importantly considerable reduction in the ADM re-initialization time. 

PVA measurements are obtained as state vectors from both the 

centralised UKF and the Aircraft Dynamics Filter (ADF) (i.e., 

processed ADM). These measurements are then fed into an error 

analysis module in which the measurement values of the two UKF 

are compared. The error analysis block includes the primary sensors 

(GNSS, INS and VBN) and it is used to compare the VIG error 

values with the virtual sensor (ADM) error values to obtain the 

corrected PVA states. The SR-U-VIGA architecture is illustrated in 

Figure 10. 
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Figure 9. U-VIGA architecture. 
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Figure 10. SR-U-VIGA architecture. 

 

Simulation Case Study 

A detailed case study was performed in a high dynamics RPAS 

environment, employing a 6-DoF model of the AEROSONDE RPAS 

as the reference ADM. The corresponding E-VIGA and U-VIGA 

integrated navigation modes were simulated using MATLABTM in an 

appropriate sequence of flight manoeuvres representative of the 

AEROSONDE RPAS operational flight envelope. The duration of 

the simulation is 950 seconds covering twelve flight legs from 

starting point to destination. The 3D trajectory plot of the flight 

profiles of the AEROSONDE RPAS is illustrated in Figure 11.  

 

 



Page 8 of 10 

 

 

Figure 11. 3D trajectory plot of RPAS flight profile. 

 

The best estimates of PVA for the two NGS architectures are 

obtained and the associated error statistics (mean, μ and standard 

deviation, σ) are calculated. Tables 3 and 4 list the position and 

attitude error statistics of the two NGS architectures respectively. The 

E-VIGA NGS system is prone to rapid divergence and its optimal 

time for re-initialisation is in the order of 20 seconds. The U-VIGA 

NGS and SR-U-VIGA systems show considerable improvement in 

the horizontal and vertical positions. By applying an UKF to process 

the ADM measurements, the navigational solution is corrected and 

becomes suitable for an extended time of operation. Compared with 

the E-VIGA solution, a significant improvement of the solution 

validity time is obtained with the U-VIGA and SR-U-VIGA systems. 

In particular, the lateral position validity time before the solution 

exceeds the RNP 1 threshold in the climb phase is 215 sec and, in the 

final approach phase, the ADM solution exceeds the CAT I, CAT II 

and CAT III limits at 149 sec, 130 sec and 44 sec respectively (the E-

VIGA was compliant with RNP 1 threshold up to 98 sec, CAT I up to 

79 sec, CAT II up to 50 sec and CAT III up to 36 sec). The vertical 

position validity time before the solution exceeds the RNP 1 

threshold in the climb phase is 194 sec in the case of SR-U-VIGA. 

Furthermore, CAT II and CAT III requirements were satisfied up to 

60 sec and CAT I requirements up to 108 sec. The E-VIGA was 

compliant with RNP 1 threshold up to 89 sec, CAT I up to 56 sec, 

CAT II and CAT III up to 21 sec in the case of vertical position. 

Based on the requirmeents set by ICAO, the obtained results are in 

line with CAT II precision approach requirements. The comparison 

of lateral and vertical guidance validity times of the EKF, UKF and 

SR-UKF filters is provided in Table 5. 

 

Table 3. Position error statistics. 

NGS 

Architecture 

North     

Position [m] 

East     

Position [m] 

Down 

Position [m] 

μ σ μ σ μ σ 

U-VIGA 0.34 2.00 -0.49 1.94 0.17 2.45 

SR-VIGA 0.35 2.00 -0.40 1.97 0.21 2.25 

 
Table  4. Attitude error statistics. 

 

NGS 

Architecture 

Pitch ( ) 

[degrees] 

Roll ( ) 
[degrees] 

Heading ( ) 
[degrees] 

μ σ μ σ μ σ 

U-VIGA 

x10^-3 
5.5 40.7 -6.9 314.0 -1.7 44.9 

SR-VIGA 

x10^-3 
5.4 40.0 -6.5 311.7 2.0 47.7 
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Table 5. E-VIGA, U-VIGA and SR-U-VIGA ADM lateral and vertical 

guidance validity times. 
 

Accuracy 

threshold 

ADM validity time [sec] 

Lateral Position Vertical Position 

E-VIGA 
U-VIGA /    

SR-U-VIGA 
E-VIGA 

U-VIGA /                  

SR-U-VIGA 

RNP 1 98 215 89 194 

CAT I 79 149 56 108 

CAT II 50 130 
21 60 

CAT III 36 44 

The computational time of the filters are obtained from a single 

integration step. The results show the EKF takes 0.1122 sec, the UKF 

0.0013 sec and the SR-UKF 0.00068 sec for computation and it is 

observed that the SR-UKF provides the most efficient performance 

with significantly reduced computation cost. The simulations were 

executed on the Windows 7 Enterprise platform (64-bit operating 

system) supported by the Intel(R) Core2 Duo E8500 CPU with clock 

speed 3.17 GHz and 4.0 GB RAM. The obatained computation times 

are tabulated in Table 6. 

Table 6. Comparison of computation times. 

 

NGS 

Architecture 
E-VIGA U-VIGA SR-U-VIGA 

Computation 

Time [sec] 
0.1122 0.0013 0.00068 

Conclusions and Future Work 

A low-cost and low-weight/volume integrated state-of-the-art NGS 
exploring an innovative MSDF architecture was developed and the 
system is processed with estimation techniques adopted for non-linear 
systems. This paper presents the results obtained from implementing a 
SR-UKF based NGS in an innovative low-cost MSDF architecture. 
Various sensors were considered for the NGS design including GNSS 
and MEMS-IMU, with augmentation from ADM and VBN sensors. 
The SR-U-VIGA was developed based on a traditional UKF based U-
VIGA system. The SR-U-VIGA system shows superior performance 
to the U-VIGA architecture for real time applications, where 
computational efficiency is the key factor for the NGS 
performance.The SR-U-VIGA system employed an additional UKF 
for processing the ADM navigation solution (i.e., attitude channel 
data) and thus also increased the ADM solution validity time. When 
compared with the E-VIGA system used in previous research 
activities, the U-VIGA and SR-U-VIGA systems showed an 
improvement of accuracy in the position and attitude measurements in 
addition to an increased ADM validity time. Additionally, the 
integration schemes achieved horizontal/vertical position accuracies in 
line with precision approach requirements. The novel Fuzzy/PID 
controller implemented for the NGS design was also described. Future 
research will address uncertainty analysis and possible synergies of 
the U-VIGA and SR-U-VIGA architectures with GNSS Avionics -
Based Integrity Augmentation (ABIA) systems [39]. 
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