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Summary 

The accurate and precise quantification of fat-soluble vitamins (FSVs), specifically vitamins 

A, D and E, has proved to be a challenge for clinical laboratories. This challenge is partially 

the result of the nature of FSV molecules and the limitations in techniques commonly used in 

their analysis. Consequently, there is a variation in the results obtained through different 

techniques or by different clinical laboratories. As a result, it has been difficult to reach 

agreement on the recommended levels or reference intervals of these vitamins. The current 

project encompassed the development of a state-of-the-art analytical method for the analysis 

of vitamins A (retinol), D (25-hydroxyvitamin D [25-OHD]) and E (α-tocopherol) in blood 

using liquid chromatography-tandem mass spectrometry (LC-MS/MS), which is a highly 

sensitive and specific quantification technique. Four studies were then performed to explore 

several scientific knowledge gaps related to vitamin measurement using the developed FSV 

quantification methods. 

In this project, three methods were developed and validated using an in-house calibrator set, 

commercial calibrators and controls across two Agilent LC-MS/MS systems. The Agilent 

LC-MS/MS-6410 and LC-MS/MS-6490, which are the earliest and the latest (advanced) 

models of Agilent LC-MS/MS series, respectively, and which have different levels of 

analytical sensitivity, were used in the development of the quantification methods. This is 

important for checking the robustness of the FSV analysis using either the early model or 

advanced model of LC-MS/MS, which is not available for all clinical laboratories.   

The first method (vitamin A/E method) was developed for the simultaneous quantification of 

only retinol and α-tocopherol using a C18 column, which does not have selectivity for 

adequate separation of epimers. The second method (FSV method-1) was for simultaneous 

quantification of five FSV analytes (25-OHD2, 25-OHD3, epimer of 25-OHD3, retinol and 
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α-tocopherol) using a pentafluorophenyl (PFP) column. Both methods were developed using 

the LC-MS/MS-6490 system. The third method (FSV method-2) was created based on 

transferring the second method to the LC-MS/MS-6410, which required further optimisation. 

This transference was conducted after full validation of the FSV method-1, and aimed to 

check the robustness of our FSV analysis, which involved not only the LC-MS/MS 

quantification method but also the sample-extraction protocol.  

In each method, the samples were liquid-liquid extracted and injected into LC-MS/MS with 

ESI (positive mode) and multiple-reaction monitoring (MRM). Separation and quantification 

of 25-OHD3 from its epimer, and of 25-OHD2, retinol and α-tocopherol was achieved by the 

FSV methods 1 and 2. The reportable ranges were 4–200 nmol/L for 25-OHD3, 4–160 

nmol/L for epi-25-OHD3 and 25-OHD2, 0.2–4.0 μmol/L for retinol and 6–72 μmol/L for α-

tocopherol. Method validation experiments demonstrated that intra-run imprecisions (CV%) 

were <4.7% (25-OHD3), <6.5% (epimer of 25-OHD3), <8% (25-OHD2), <5.9% (retinol) and 

<5.5% (α-tocopherol) while inter-run imprecisions (CV%) were <7.8% (25-OHD3), <14.3% 

(epimer of 25-OHD3), <9.5% (25-OHD2), <8.6% (retinol) and <7.4% (α-tocopherol). The 

recoveries were between 87% and 112% for the investigated analytes. Based on reports from 

the external quality assurance program (the RCPAQAP), our simultaneous FSV methods 

displayed excellent imprecision (3.0%, 5.0% and 4.7% for 25-OHD3, retinol and α-

tocopherol, respectively) and inaccuracy (average bias: 3.2 nmol/L, 0.04 μmol/L and 0.2 

μmol/L for 25-OHD3, retinol and α-tocopherol, respectively). Consequently, simple LC-

MS/MS methods were developed and validated for simultaneous quantification of the five 

FSV analytes, which were used to conduct four clinical studies.  

The first study examined the effects of fluorescent light, temperature (RT, 4ºC, −20ºC) and 

storage time (up to 1 month) on FSV stability in whole blood, serum and extracts throughout 
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the sample-processing stages. All samples were analysed via the FSV method-1. The 25-

OHD3 and α-tocopherol were stable under the investigated conditions (concentration changes 

<5.7%) in whole blood, serum and extracts. Retinol concentration changes in whole blood 

and serum (<7%) were within the total change limits (±11.8%) (the acceptable clinical  

limits) under the investigated conditions; conversely, degradation of extracted retinol was 

18.1% after one week of light exposure. All investigated analytes in the serum and extracts 

were stable for up to one month when stored at −20ºC. Our results confirm that 25-OHD3, 

retinol and α-tocopherol are firmly stable in whole blood for up to week at RT and serum for 

up to one month at 4ºC and -20ºC under the investigated conditions. The measurements of 

extracts of 25-OHD3 and α-tocopherol can also be conducted under regular light at RT, while 

light protection for retinol extract is recommended if the analysis is postponed for more than 

48 h.   

The second study performed in this project investigated the deviation between the available 

commercial calibrators for α-tocopherol as an example of the trueness and traceability of the 

commercial calibrators. Three commercial single-level calibrators (Bio-Rad Laboratories, 

Chromsystems and RECIPE) were prepared in quintuplicate in conjunction with a seven-

level in-house calibrator set for α-tocopherol. Samples were analysed by using both the 

vitamin A/E method and FSV method-1. The percentage observed difference for the 

commercial calibrators was calculated from the observed mean (±SE mean) against the given 

value of the calibrator: Bio-Rad (bias +1.3%, i.e. observed mean 43.6 µmol/L [±0.4] and 

expected 43.0 µmol/L), Chromsystems (bias +5.4%, i.e. observed mean 31.5 µmol/L [±0.3] 

and expected 29.9 µmol/L) and RECIPE (bias −8.9%, i.e. observed mean 51.4 µmol/L [±0.6] 

and expected 56.4 µmol/L). Our results demonstrated that the Bio-Rad calibrator closely 

agreed with the in-house calibrator set and that discordance between the commercial 
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calibrators was greater than the expected assay uncertainty. This lack of harmonisation means 

that results from different laboratories may not be comparable. 

The third study aimed to ascertain the validity of umbilical cord blood (UCB) plasma diluted 

with RPMI 1640 medium samples for 25-OHD3 and its epimer, retinol and α-tocopherol 

analysis compared to UCB serum samples. Twenty UCB-matched samples of diluted plasma 

and serum were collected. The samples were analysed by FSV method-2 on two separate 

occasions. Our method demonstrated close agreement for 25-OHD3 in UCB serum versus 

diluted UCB plasma; the mean difference was 2.2 nmol/L (95% confidence interval [CI], 

−9.5 to 13.9]. Retinol was quantified in UCB serum and diluted UCB plasma; the mean 

difference between the results was −0.07 µmol/L (95% CI, −0.41 to 0.28). The results for epi-

25-OHD3 and α-tocopherol in the diluted UCB plasma were below the limit of quantification 

and could not be compared with UCB serum. Accordingly, diluted UCB plasma can be used 

for the quantification of retinol and 25-OHD3 by LC-MS/MS. In contrast, measurement of 

25-OHD3 epimer and α-tocopherol in diluted UCB plasma is not supported by this study. 

The fourth study investigated the status and correlation of vitamins D, A and E in two 

Australian populations at different latitudes; Queensland and Victoria. De-identified serum 

samples were selected from routine samples delivered to Sullivan Nicolaides Pathology 

(Brisbane) from the Queensland (n=109) and Victoria (n=108) regions for a variety of 

clinical chemistry tests during the summer of 2013–2014. FSVs were analysed using our 

developed FSV method-2. There were no significant differences between genders in vitamins 

A (retinol) and E (α-Tocopherol) levels in Queensland and Victoria groups. Data of this study 

showed no significant effect of subjects’ ages on retinol levels in QLD and VIC groups. In 

contrast, there was significant effect of age on α-tocopherol levels in QLD but not in VIC 

group. Significant differences in 25-OHD3 and retinol levels between the Queensland and 
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Victoria groups were observed (p<0.003). In the Queensland samples, the median levels were 

73 nmol/L for 25-OHD3 and 3.2 nmol/L for its epimer, 2.1 μmol/L for retinol and 30 μmol/L 

for α-tocopherol. In contrast, the median levels in the Victorian samples were 63 nmol/L, 1.4 

nmol/L, 1.9 μmol/L and 27 μmol/L, respectively. The prevalence of vitamin D deficiency 

(25-OHD3: <50 nmol/L) was higher in Victoria (39.8%) than in Queensland (11%). The 

correlation coefficients (R) were 0.4–0.6, 0.2–0.3 and 0.05–0.2 for the relationship of levels 

of 25-OHD3 with its epimer, retinol and α-tocopherol, respectively, in both Queensland and 

Victoria. Correlation of retinol levels with α-tocopherol levels was also observed (R=0.3–0.4) 

in the Queensland and Victoria samples. The conclusion from this study is that the two 

Australian populations at different latitudes have significant differences in vitamin D and A 

levels. Vitamin D deficiency is common in Victoria even in the summer season. This study 

shows that there is no strong correlation between blood levels of the investigated analytes in 

the two Australian populations but this does not exclude a potential correlation between the 

active forms of FSVs. 

In summary, this translational clinical research introduced novel and precise simultaneous 

measurement methods for blood FSV analytes, which were applicability to clinical sampling 

trials. This thesis also provides the first study exploring the stability FSVs simultaneously in 

routine sample spectrum utilising a precise LC-MS/MS method. In addition, stability of each 

analytes is justified based on calculation of the acceptable clinical limits, which reflect 

biological variation as well as method imprecision. This project also highlighted problematic 

issue related to trueness and reliable traceability of commercial calibrators to high order 

references and that interrupts effort of method harmonisation and patient result comparability. 

Furthermore, the current thesis provides with first study validated the measurement of 25-

OHD3 and retinol in UCB diluted plasma. Lastly, this thesis reports the first study exploring 

status of five FSV analytes in two Australian populations at different latitudes using 
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simultaneous measurement LC-MS/MS method. Furthermore, this is the first work examined 

the correlation between the blood FSV levels in two Australian populations.   
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Chapter 1 Literature review 

1.1 Introduction 

Fat-soluble vitamins, including vitamins A, D and E, are required for a wide variety of 

physiological functions. Over the past two decades, deficiencies of these vitamins have been 

associated with increased risk of cancer, type II diabetes mellitus and a number of immune 

system disorders (1, 2). In addition, there is increasing evidence of interactions between these 

vitamins, especially between vitamins A and D. As a result of this enhanced clinical 

association with disease, translational clinical research and laboratory requests for the vitamin 

measurements have significantly increased. These laboratory requests include measurements 

of 25-OHD (vitamin D), retinol (vitamin A) and α-tocopherol (vitamin E), which are the most 

common acceptable blood indicators for the assessment of body fat-soluble vitamin (FSV
1
) 

status. There are significant obstacles to precise FSV measurement in the blood. These 

obstacles include the physical and chemical properties of these metabolites, incomplete 

standardisation pillars for vitamin measurements and limitations in the techniques that are 

currently used for vitamin quantification. This literature review briefly emphasises 

metabolism, interactions and blood quantification of the three FSVs. Later in this Chapter, I 

present my PhD project’s hypothesis and aims. 

 

                                                 

1
 The abbreviation ‘FSV’ is used to indicate vitamins A, D and E throughout this thesis 
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1.2 Fat-soluble vitamins  

Vitamins are small organic compounds that are essential in very small amounts for diverse 

functions throughout the body; they are generally obtained from the diet. The thirteen known 

vitamins are divided into two classes, based on their relative solubility in water and fat. The 

fat-soluble vitamins include A, D, E and K; these are absorbed in the intestine in the presence 

of fat. Classical deficiencies of these vitamins can manifest clinically as night blindness 

(vitamin A), osteomalacia (vitamin D), increased oxidative cell stress (vitamin E) and 

haemorrhage (vitamin K).  

Recent studies have identified significant non-classical actions for FSVs, particularly 

vitamins A and D (2, 3). Deficiencies of the FSVs have been associated with serious health 

problems such as cancer, type II diabetes mellitus and a number of immune system disorders 

(1, 2). Laboratory requests for FSV measurement have significantly increased in the last 

decade as a result (4).  

1.2.1 Vitamin A  

Vitamin A is essential for general physiological functions including vision, healthy epithelial 

tissue and infection resistance. The active forms of vitamin A are retinol, retinoic acid and 

retinal while the main liver storage form  is retinyl palmitate (5), (Figure  1-1). Vitamin A has 

a hormonal role through retinoic acid, which is an active form of vitamin A; it works as an 

endocrine hormone and paracrine hormone. Retinoic acid is essential in embryonic stem cell 

differentiation and development, and in maintaining healthy structure and function in 

epithelial cells (6). In addition, retinoic acid may have a role in vitamin A metabolism in the 

liver (7). Furthermore, it is speculated that vitamin A plays roles in the regulation of 

macronutrient metabolisms, including carbohydrates, lipids and proteins (8). This vitamin 
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inhibits the growth of tumour cells in vitro (9) and plays a role in controlling cell division and 

differentiation, as well as cell apoptosis (10). Manna et al. (2000) found that all-trans-retinoic 

acid is involved in human lung cancer cell apoptosis (11). 

The term ‘vitamin A’ is used to refer to retinol and related compounds that exhibit the 

biological activity of retinol (12). The major source of this vitamin is dietary: either as 

preformed vitamin A (mainly as retinyl ester) from animal sources, or as provitamin A 

compounds (carotenoids, especially β-carotene) from pigmented vegetables and fruits (12, 

13). Normally, 70–90% of vitamin A is absorbed in the gut in the presence of intestinal juice 

and bile salts; and the quantity of fat contributes to maximum absorption (14).  

 

All-trans-Retinol (15) 

 

Retinoic acid (16) 

 

 All-trans-retinal (17) 

 

11-cis-Retinal (18) 

 

Retinyl palmitate (19) 

Figure  1-1. Chemical structure of vitamin A and its derivatives.  
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In the intestine lumen, retinal esters are hydrolysed to retinol and free fatty acids by the 

brush-border retinyl ester hydrolase prior to taking up by enterocytes (small intestinal 

absorptive cells) (20). β-carotene is passively diffused into enterocytes;  and the efficiency of 

β-carotene absorption is associated with the quantity of dietary fat intake (21). In enterocytes, 

the majority of β-carotene is symmetrically cleaved into retinal by 15,15’-monooxygenase, 

then converted to retinol by retinal reductase (22). Most retinol in enterocytes obtained from 

retinoid and carotenoid is esterified into retinyl ester by lecithin:retinol acyltransferase or 

acyl-CoA:retinol acyltransferase (8). Later, retinyl ester is incorporated along with 

chylomicrons that are secreted into the lymphatic system (23), (Figure  1-2). Small quantities 

of dietary retinoids are converted to retinoic acid, which is absorbed directly into blood 

circulation because it doesn’t require a vehicle (12, 24). 

About 70% of dietary retinoid is taken up by the liver, especially parenchymal cells, and then 

can be stored as retinyl palmitate in hepatic stellate cells (14). In parenchymal cells, retinyl 

ester is re-hydolysed into retinol by a number of enzymes, including retinyl ester hydrolases. 

Retinyl ester can be transferred to hepatic stellate cells where it is re-esterified and stored 

(14). The released retinol from the liver can be mediated to a variety of cells, where it is 

metabolised to other metabolites (such as retinal and retinoic acid) for different physiological 

functions (25), (Figure  1-2). 

The hydrophobic nature of vitamin A means that it requires carriers for transportation. The 

extracellular transportation of vitamin A mainly occurs through binding with retinol-binding 

protein (RBP) and thyroxine binding-protein transthyretin (TTR). The retinol-RBP-TTR 

complex is not only essential for vitamin A solubility, but is also essential for vitamin A 

protection against oxidation and esterification (26, 27). Intracellular unesterified retinol is 

transported by binding with cellular RBP type I (CRBP-I) and cellular RBP type II (CRBP-



  

12 

 

II). Other intracellular proteins, e.g. cellular retinoic acid-binding proteins (CRABP-I and 

CRABP-II), involve the transport of retinoic acid, and cellular retinal-binding protein 

(CRALBP) for retinal transportation (27).  

The classic role of vitamin A in dim-light vision is well understood. Circulating retinol 

reaches the retinal pigments in the epithelial cells of the eye, where it is esterified to retinyl 

esters. By hydrolysis and isomerisation processes, retinyl esters are converted to 11-cis-

retinol, then oxidised to 11-cis-retinal that binds with the protein opsin in the rods (i.e. the 

sensitive light cells that allow for dim-light vision) to form a complex called rhodopsin. 

When rhodopsin is exposed to a photon of light, 11-cis-retinal is isomerised to all-trans-

retinal. All-trans-retinal is disassociated from the complex, and photochemical events are 

triggered; consequently, the brain deduces that a visual event has occurred (6).  

Vitamin A also has a critical role in maintaining immunity. Vitamin A deficiency causes 

dryness and keratinisation in epithelial cells of the skin, the respiratory, gastrointestinal and 

urogenital tracts, all of which are initial preventative systems against infection. Furthermore, 

this deficiency disrupts neutrophil development, increases inflammatory cytokines released 

by macrophages, and decreases the number of natural killer cells and their lytic activity. 

These disruptions and changes lead to a decrease in the body’s ability to eliminate infectious 

agents (2). As a result, communities that suffer from vitamin A deficiency may have a high 

infection prevalence (28). 

 



  

13 

 

 

Figure  1-2. Vitamin A metabolism. 

This is a general scheme for vitamin A metabolism. Dietary vitamin A (e.g., retinyl esters and β-carotene) is digested and absorbed through intestinal enterocytes by different 

mechanisms. In enterocytes, retinol is re-esterified to retinyl esters, which are packed with chylomicrons prior to secretion into the lymphatic system. Through blood 

circulation, retinyl esters are taken up by liver cells (parenchymal cells), in which retinyl esters are converted to retinol, which can be released to target organs or stored in the 

liver. Vitamin A is transported through binding with retinol-binding protein (RBP) and thyroxine binding-protein transthyretin (TTR) for extracellular transportation, while 

intracellular retinol is transported by binding with cellular RBPs (CRBPs). 
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Classically, vitamin A deficiency is associated with night blindness and xerophthalmia. More 

recently, this deficiency has been correlated with several health problems, including recurrent 

infections and cancer (6). The World Health Organization considers the high prevalence of 

vitamin A deficiency to be a serious public health problem in lower socioeconomic 

communities (29). About fifty per cent of preschool-aged children and pregnant mothers are 

at risk of vitamin A deficiency  worldwide (29). The estimations of global vitamin A 

deficiency (<0.7 μmol/L serum retinol concentration) among preschool-aged children and 

pregnant women were 190 million and 19.1 million, respectively, between 1995 and 2005 

(29). Most vitamin A–deficient patients suffer from chronically poor nutritional intakes that 

lead to the deficiency complications (29)  

Biochemical markers 

Blood retinol concentration is routinely used as a biochemical indicator for vitamin A status. 

The level of retinol in the blood is homeostatically regulated, and declines only when liver 

vitamin A storage is severely depleted. It is thus a valuable indicator of the depletion of liver 

vitamin A storage. In addition to retinol, other analytical tests, such as tests for β-carotene, 

accompanied with clinical symptoms,  may be used for the diagnosis of individual vitamin A 

deficiency (28). Serum retinol is a reliable indicator to estimate the status of vitamin A in 

populations (28, 30). 
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1.2.2 Vitamin D 

Vitamin D is a vitamin and a hormone that has been correlated with a number of significant 

health issues. While the most abundant form of the vitamin D is 25-hydroxyvitamin D (and 

its derivatives), the active form of vitamin D is 1,25-dihydroxyvitamin D3, (Figure  1-3). 

Historically, vitamin D was associated with the healing of rickets in children and with 

osteomalacia in adults (31). Low levels of vitamin D are linked with bone fractures (32) and 

other varieties of clinical manifestations (33). During the last two decades, a large numbers of 

studies have focussed on the biological roles of vitamin D. The optimum blood levels of 

vitamin D has been associated with the overall health of bone, skin  and the cardiovascular 

and immune systems (3). Vitamin D has been correlated with preventive activities of 

cardiovascular disease and stroke (34). In addition, low levels of vitamin D were observed in 

patients with respiratory infections and HIV, which may relate to the role of vitamin D in 

immunity (35). Low levels of vitamin D and its metabolites may affect the development of 

breast cancer. The active form of vitamin D, (1,25-(OH)2D), and the vitamin D receptors 

(VDRs) have a regulatory effect on normal and breast cell growth and differentiation (36, 

37). In addition, 1,25-(OH)2D has shown a role in TNF-α expression, which induces breast 

cancer cell apoptosis (38, 39). 

Vitamin D deficiency is a public health problem in many countries (40). While it was 

previously thought that this deficiency was common only in countries that lacked a sunny 

climate for most of the year, progressive research findings have revealed that this deficiency 

is worldwide, with more prevalence in some ethnicities and in some geographical locations. 

Although Saudis enjoy a sunny climate most of the year, one study found that more than 87  

of 834 healthy adult Saudi men (aged between 20–74 years) had vitamin D deficiency, 

especially older and obese men (41). Between 2005 and 2006, vitamin D deficiency was 
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estimated among 12,862 U.S. adults (over 20 years old), with a prevalence rate of more than 

41%, especially among African Americans and Hispanic Americans, with rates of 82.1% and 

62.9%, respectively (42). According to the AusDiab study samples collected in 1999 and 

2000 from 11,247 Australian adults (over 25 years old), vitamin D deficiency was estimated 

at 31 %, while vitamin D insufficiency was estimated at 73% (43). The ‘Challenges’ section 

below contains a discussion of the difficulty of determining what constitutes ‘insufficient’ 

versus ‘deficient’ vitamin levels.  

 

 

25-OHD3 (44) 

 

C3 epimer of 25-OHD3  

 

25-OHD2 (45) 

 

 

1,25-dihydroxyvitamin D3 (46) 

Figure  1-3. Chemical structure of some vitamin D metabolites. 
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Vitamin D metabolism 

There are two main forms of vitamin D: ergocalciferol (also called vitamin D2) and 

cholecalciferol (also known as vitamin D3). Vitamin D2 is provided by plants that are 

subjected to ultraviolet irritation or dietary supplements. While a small quantity of vitamin 

D3 is obtained from food derived from animals, the greatest natural source of this vitamin is 

endogenous synthesis during sunlight exposure (47). This endogenous synthesis is influenced 

by skin colour, the period of sunlight exposure and the season (1, 47, 48).  

The 7-dehydrocholesterol (pro-vitamin D3) is formed from the conversion of dietary 

cholesterol by mucosal dehydrogenase activity in the small intestine (49). The C9-C10 of 

pro-vitamin D3 is then broken down to form pre-vitamin D3 in the malpighian layer of the 

skin during exposure to ultraviolet radiation (UVR) between 280 nm and 315 nm 

wavelengths to synthesise endogenous vitamin D3. Unlike dietary sources, continuous 

exposure to UVR does not lead to vitamin D toxicity, because the excess amount of pre-

vitamin D3 converts to lumisterol and tachysterol (50). This process is reversed when pre-

vitamin D3 levels fall (49, 51). After that, pre-vitamin D3 is spontaneously isomerised to 

vitamin D3. Once synthesised, vitamin D circulates through the bloodstream by binding with 

vitamin D binding protein (DBP) to reach the liver (49, 51), (Figure  1-4). 

In the liver, vitamin D is metabolised to 25-hydroxyvitamin D (25-OHD), also known as  

calcidiol, by a number of hepatic cytochrome P450 enzymes, especially CYP27A and 

CYP2R1 (51). After being formed, 25-OHD mediates through the blood stream to the 

kidneys for further hydroxylation. In the kidneys, CYP27B1 (25-hydroxyvitamin D-1α-

hydroxylase) converts calcidiol to the biological active metabolite 1,25-dihydroxyvitamin D 

(1,25-(OH)2D), also known as calcitriol, (52). In addition, 24,25-dihydroxyvitamin (24,25-
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(OH)2D) can be formed in the kidneys through the activity of CYP24A1 (25-OHD-24-

hydroxylase )  (49, 53), (Figure  1-4).  

The 1,25-(OH)2D has roles in many biological processes through binding with a vitamin D 

receptor (VDR), which is expressed by many cell types (54). Although its concentration in 

the bloodstream is estimated in picomolars, compared to nanomolars for 25-OHD, it 

stimulates intestinal calcium absorption, cell differentiation and insulin secretion. The 

interaction between 1,25-(OH)2D and VDR is essential for calcium absorption in the 

intestinal cells and for osteoblastogenesis (55). 1,25-(OH)2D induces the maturation of 

preosteoclasts into osteoclasts, which have a role in maintaining calcium and phosphorus 

levels in the blood by removing them from the bone (52). Furthermore, by binding to VDR in 

some cells, 1,25-(OH)2D regulates the gene expression of upstream protein synthesis, such as 

osteocalcin and 24-hydroxylase, and downstream production effects, such as inflammatory 

markers (e.g., IL-2 and IL-12) (54). Although 1,25-(OH)2D is mainly synthesised in the 

kidneys under stimulation of parathyroid hormones (PTH), it causes the parathyroid gland to 

decrease its hormonal production and secretion (50).  

When 1,25-(OH)2D reaches a high level in the blood, it can trigger a negative feedback 

process to decrease its production and increase the synthesis of CYP24A1, which converts 

1,25-(OH)2D to an inactive form of calcitroic acid. Then calcitroic acid, which is water 

soluble, is eliminated into the bile (52). Many factors, such as serum phosphorus, calcium and 

fibroblast growth factor 23, have negative or positive effects on 1,25-(OH)2D synthesis in the 

kidneys (52).  

Biochemical markers 

25-OHD is considered to be the best biomarker to assess vitamin D status in the blood. This 

metabolite has several advantages as a biochemical indicator, including: 1) it reflects both 
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dietary and endogenous vitamin D; 2) it is an inactive metabolite, and is not tightly regulated; 

3) the 25-OHD concentration is relatively high compared with other metabolites; for 

example, its concentration is 1,000 times more highly concentrated than 1,25-(OH)2D; and 4) 

the half-life of 25-OHD is relatively long (about three weeks). Compared to 25-OHD2 levels 

in the blood, 25-OHD3 is usually more abundant metabolites based on the origin of the 

vitamin D used during liver hydroxylation (48, 56).  
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Figure  1-4. Vitamin D metabolism. 

In the skin, 7-dehydrocholesterol is converted to pre-vitamin D3 under the effects of solar ultraviolet B radiation following isomarisation to vitamin D3 (VD3). Excess 

amounts of pre-vitamin D3 are converted to lumisterol and tachysterol to circumvent hypervitaminosis D. The VD3 is hydroxylated in the liver by cytochrome P450 enzymes 

(e.g., CYP27A and CYP2R1) to form 25-hydroxyvitamin D3 (25-OHD3), which is an inactive and storage form of vitamin D3. The 25-OHD3 is further hyroxylated 

systematically in the kidney (or locally in some cells) to 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) , which is the active form of vitamin D3), by CYP27B1. Most of the 

biological effects of vitamin D3 are conducted through binding 1,25-(OH)2D3 with a vitamin D receptor (VDR). The 1,25-(OH)2D3 levels might be down-regulated through 

its conversion to other metabolites such as calcitroic acid and 1,23,25-(OH)3D3 (52, 57). Vitamin D2 is metabolised through similar pathways.  

*Although C3-epimers of 25-OHD3 and 1,25-(OH)2D3 were reported in human sera, the role of these metabolites is still not clear. 
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1.2.3 Vitamin E 

Vitamin E is a fat-soluble antioxidant metabolite and an essential dietary factor. Although the 

health importance of vitamin E is mostly related to its antioxidant properties, it has recently 

been correlated with non-antioxidant activities (58-61). Vitamin E is important for the normal 

morphology of erythrocytes and for slowing the aging process, since it is essential to 

eliminate reactive oxygen species (ROS), which are involved in cell destruction (62). 

Furthermore, this vitamin inhibits platelet aggregations, and therefore it may play a protective 

role against the atherosclerotic process and cardiovascular diseases (63-65). Proper vitamin E 

levels may also play a protective role against arthritis, cataracts and neurological and 

immunological disorders (62, 66).  

Vitamin E has been associated with cancer prevention, since it is involved in a variety of 

biological activities, including anti-oxidation, anti-proliferation and anti-inflammation. 

Vitamin E plays a critical antioxidant role in protecting membrane polyunsaturated fatty acids 

and plasma lipoproteins from free radical attack (67). In addition, vitamin E, especially ɣ-

tocopherol, plays a role in NO2 detoxification (68). This vitamin has been linked with 

suppressive activates of syntheses of TNF, IL-1, IL-6 and IL-8 (61). In human breast cancer 

cell lines, vitamin E has shown significant apoptotic and growth inhibitory effects on the 

cancer cells (69, 70). 

Vitamin E deficiency is rare in humans, since most food sources contain vitamin E; it is more 

likely to be due to genetic or malabsorption disorders, such as cystic fibrosis, chronic 

hepatitis and gastrointestinal disorders (58). Despite this, epidemiologically, vitamin E 

deficiency is more common in developing countries than in industrial countries due to 

inadequate vitamin intake and the high prevalence of infectious diseases that relate to 

oxidative stress processes, such as malaria and AIDS (66). This deficiency was estimated at 
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55.5% of Thai adults aged over 60 years (71). In other small-scale studies, the prevalence for 

vitamin E deficiency was estimated at 15.6% of Jordanian children and at 64% of urban 

Greeks aged over 65 years (72, 73).  

Vitamin E naturally occurs in two groups: tocopherols and tocotrienols. Each have four 

isomers (α, β, ɣ and δ) based on the position and number of the methyl groups on the 

chromanol ring. In most cases, the main source of vitamin E is diets that contain excessive 

amounts of ɣ-tocopherol; however, α-tocopherol is the dominant form in the bloodstream and 

linked with many biological activities in humans and animals (68, 74), (Figure  1-5). 

 

 

γ-Tocopherol (75) 

 

α-Tocopherol (76) 

Figure  1-5. Chemical structure of γ-tocopherol and α-tocopherol.  
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Vitamin E in humans is absorbed in the small intestine, which is enhanced in the presence of 

dietary fat and the food matrix (77). Intestinal absorption of vitamin E requires mixing the 

vitamin with micelles under the effects of biliary and pancreatic secretions for vitamin E 

solubility. Consequently, enterocytes passively absorb micelles, which integrate with 

chylomicrons, and secrete into the lymph system (63, 68, 74). Chylomicrons are enriched 

with cholesterol and different types of vitamin E, such as α-tocopherol and γ-tocopherol (78). 

In the circulatory system, chylomicrons are hydrolysed by lipoprotein lipase to mediate 

vitamin E to some target tissues, such as brain and muscle tissues. As a result of chylomicron 

hydrolysis, chylomicron remnants, which still contain vitamin E, are formed (63). 

Vitamin E is mediated to the liver where only α-tocopherol is re-secreted into blood 

circulation, which is facilitated by the hepatic α-tocopherol transfer protein (α-TTP). This 

protein maintains the concentration of α-tocopherol in the blood; therefore, α-TTP gene 

defects are associated with vitamin E deficiency (68, 74). Blood α-tocopherol is transferred 

by lipoproteins such as very low-density lipoprotein (VLDL) and low-density lipoproteins 

(LDLs) to target tissues (79), (Figure  1-6).  

Biochemical markers 

The blood level of α-tocopherol is commonly used as an indicator of vitamin E status. It is 

speculated that α-tocopherol varies according to gender, age and the blood level of lipids, 

especially cholesterol. Therefore, the ratio of α-tocopherol to total cholesterol has also been 

suggested as a biomarker (80). Alpha-tocopherol concentration in the plasma does not reflect 

vitamin E intake, since α-TTP selectively re-secretes α-tocopherol to the blood (68). 

Practically speaking, blood α-tocopherol is an acceptable indicator of vitamin E status (66, 

81). 
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Figure  1-6. Vitamin E metabolism. 

This is a general scheme for vitamin E metabolism. Dietary vitamin E (mainly γ-tocopherol and α-tocopherol) is 

absorbed through intestinal enterocytes. In enterocytes, γ-tocopherol and α-tocopherol and other vitamin E 

forms are packed with chylomicrons prior to secretion into the lymphatic system. Through blood circulation, 

chylomicrons are hydrolysed and chylomicrons remnants are formed. γ-Tocopherol and α-tocopherol are taken 

up by liver cells, although only α-tocopherol is re-secreted to the bloodstream because of the selective binding 

of α-tocopherol transfer protein α-tocopherol. Blood α-tocopherol is transferred to target tissues by lipoproteins 

such as very low-density lipoprotein (VLDL) and low-density lipoproteins (LDLs). 
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1.2.4 Fat-soluble vitamin interaction 

The interference of vitamin A in vitamin D functions has been observed in animals and 

humans (82, 83). In rats, high vitamin A intake attenuated the toxicity of hypervitaminosis D 

(82). Based on a nested case-control study, Jenab and colleagues found that the blood level of 

25-OHD3 was inversely associated with colorectal cancer among individuals who had lower 

retinol intake (84). Vitamin D deficiency (<50nmol/L) and high level of retinol (>2.8umol/L) 

have been associated with a high risk of osteoporotic fractures (85). 

There is evidence that a supplement of one FSV has an impact on other FSV levels in blood. 

Vitamin D3 supplementation (800 IU/D for 6 months) alone or with calcium (2 g/d for 6 

months) significantly increased 25-OHD3 levels by 48% and decreased α-tocopherol by 14%. 

Serum 25-OHD2 level decreased under the effects of vitamin D3 supplementation, however, 

by 48% (statistically insignificant results). Vitamin D3 supplementation, however, had no 

constant effects on retinol level among 85 study subjects (86). 

Although FSVs are absorbed in the small intestine through different mechanisms, the  

absorption efficiency of one of them could be interfered with by other FSV vitamins (87). 

Based on experiments conducted in an in vitro cell line culture (Caco-2 TC7
2
), Groncalves 

and colleagues found that vitamin E significantly improved the absorbance of vitamin A but 

it significantly decreased the absorbance of vitamin D. In contrast, both vitamins A and D 

have negative effects on the absorbance of vitamin E. Furthermore, it was reported that 

vitamin A reduced both vitamin D and E uptake significantly (87). It was hypothesised that 

during the absorption process in the intestine, vitamin E serves as an antioxidant and protects 

                                                 

2
 Caco-2 TC7 is a cell line derived from colon carcinoma, but under specific conditions this type of cell 

resembles the enterocytes that line the small intestine. Therefore, it is mostly used to study compound 

absorbance in humans. 
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vitamin A when there is concomitant consumption of vitamins A and E. As a result, vitamin 

A increases at the expense of vitamin E absorption (87).  

Whilst vitamins A and E have been routinely measured together, it is actually the interaction 

of vitamins A and D at molecular levels that is currently generating research interest in their 

regulatory roles in gene expression. The active form of vitamin D forms a complex with 

vitamin D receptor (VDR) to form heterodimer with retinoid X receptor (RXR), which 

triggers the gene expression process. Also, the regulation of gene expression by the active 

form of vitamin A requires forming heterodimer with RXR. It is worth mentioning that 

several nuclear receptors, including thyroid hormone receptors, can form heterodimer with 

RXR. High doses of vitamin A may attenuate the formation of heterodimer of vitamin D 

receptor and RXR. In an in vitro study, it was found that the heteromeric interaction of VDR 

and RXR was influenced by the presence of 1,25-(OH)2-D3 (the active form of vitamin D3) 

and inhibited by high concentrations of retinoid (88).  
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1.3 Quantification of blood fat-soluble vitamins  

Clinical laboratory requests for FSV measurement, especially for vitamin D (25-OHD), have 

risen dramatically during the last decade. For example, in Australia, the number of laboratory 

requests for vitamin D measurement increased from 23,000 in 2000 to 2.2 million in 2010 

(89). This increase is due to research findings that have found associations between FSV 

deficiencies and health problems. This demand for FSV analysis has highlighted the 

limitations of current FSV quantification methods, especially for vitamin D, and the limited 

success of standardisation with efforts of FSV measurement. 

1.3.1 Challenges 

The accurate and precise quantification of FSVs has proved to be a significant challenge for 

clinical laboratories. This challenge is the result of the nature of FSV molecules and their 

metabolites, the availability of acceptable reference materials, reference measurement 

procedures (reference method) and reference laboratories. Consequently, there is significant 

variation in the results obtained, either by different techniques or by different clinical 

laboratories using the same diagnostic techniques (89-91). As a result, it has been difficult to 

reach agreement on the recommended level of vitamins and their metabolites for healthy 

people. The definitions of vitamin insufficiency, deficiency and severe deficiency therefore 

remain unclear. There has been much debate as to whether these analytical techniques are 

accurate and precise enough to diagnose and monitor the pathologies associated with FSV 

deficiency. 

Properties of fat soluble vitamins 

The chemical and physical properties of FSV molecules and their metabolites are sources of 

analytical challenges in clinical laboratories. FSVs are small molecules (less than 500 Da), 
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and each vitamin has several active and inactive metabolites. The blood concentration of 

FSVs is relatively low and varied, ranged from nmol/L level for vitamin D to μmol/L level 

for vitamins A and E (92, 93). Adding to the challenge is the fact that the metabolite 

concentrations of one vitamin may also vary; for example, the 1,25-(OH)2D3 concentration is 

1,000 times less concentrated than 25-OHD3 concentration. Consequently, the specificity and 

sensitivity of techniques used in detection of these metabolites are critical for accurate and 

precise measurement. Another problem related to this issue is that the majority of these 

vitamin metabolites are hydrophobic compounds and are mediated in the blood by binding 

with relatively large proteins (for instance,  VDBP is around 50 kDa). The dissociation of a 

vitamin from its binding protein is therefore essential before vitamin measurement. This step 

may significantly contribute to the technique’s sensitivity and specificity (89, 94). 

Stability  

The stability of FSV in blood, especially vitamin A (retinol) and vitamin E (α-tocopherol), 

represents a gap in our knowledge. Although several factors, such as sample storage and 

transportation, are known to have an impact on vitamin stability, precisely how they do so 

remains inconclusive. Currently, FSVs in blood samples are treated as labile analytes, 

especially in the cases of retinol and α-tocopherol. As a result, a specific protocol for sample 

collection, transport and storage is used to control several crucial factors, such as light 

exposure, temperature, storage conditions and time (95-97).  

The data on FSV stability is limited, and some studies’ results contradict each other. For 

instance, one study indicated that changes in whole blood retinol and α-tocopherol at room 

temperature (RT) for 72h were -9.8% and -1.0%, respectively (98). Another study reported 

that changes in whole blood retinol and α-tocopherol at RT after 1 week were 1.8% and 

4.8%, respectively (97). Because of the limited availability of FSV stability data, every 
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clinical laboratory has its own procedure for dealing with blood samples, from patient sample 

collection to sample analysis. This contributes to the variation in results obtained by clinical 

laboratories. 

Standardisation 

The standardisation of metabolite analysis, including FSVs, in laboratory medicine has 

become critical for clinical decisions and for health care improvement. Analytical results 

from patient samples are essential for clinical decisions, which usually need to compare 

previous results with current analyses, either for diagnosis or for treatment. In practice, there 

are variations in the results obtained, even using the same measurement technique for the 

same patient sample (66, 91). This poor comparison between analytical results is in part due 

to the limited succeeded efforts of standardisation (99), which not only affects daily patient 

care but also affects population-based vitamin deficiency assessment and the determination of 

common reference intervals. In addition, the limited success of standardisation may cause 

misinterpretations or contradictions of research results performed in different geographical 

places and/or at different times. Standardisation thus would help significantly in considering 

analytical results regardless of time, location or the measurement system used to obtain the 

results (100).  

The standardisation of analyte measurement relies on five main mainstays: 1) reference 

measurement procedure (RMP) (reference method), 2) reference materials, 3) reference 

laboratories, 4) reference intervals and 5) external quality programs. The RMP is the 

procedure used to assign and certify value to a reference material as a primary calibrator 

(pure analyte) or as a secondary calibrator (analyte in human clinical samples). In industrial 

contexts, this certified reference material can be used to assign values to a commercial 

calibrator. Routine laboratory medicine later uses validated commercial calibrators to 
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measure analytes in human samples. Analytical results obtained from routine laboratory tests 

are therefore traceable to certified material (99, 101). Although standardisation efforts made, 

mainstays required for standardisation of FSV measurement are still in completed.  

At the beginning of this project, the majority of FSVs had neither RMPs nor reference 

materials based on the Joint Committee for Traceability in Laboratory Medicine (JCTLM) 

listings. The National Institute of Standards and Technology (NIST) has introduced standard 

reference materials (SRM 968) for FSV, and SRM 972 and SRM 2972 for 25-OHD2 and 25-

OHD3, since 1989 and 2009, respectively (94, 102). None of them, however, was recognised 

as a reference material by JCTLM at the beginning of this project. More recently, the isotope 

dilution liquid chromatography-mass spectrometry method has been recognised as an RMP 

for 25-OHD2 and 25-OHD3 by JCTLM (103). However, there are no RMPs for vitamins A 

and E that have been recognised as reaching the JCTLM requirements (103). The JCTLM 

database previously recognised NIST SRM 972 for vitamin D (104) and recently SRM 968e 

for vitamins A and E (105) as reference materials. 

Individual commercial calibrators for FSVs are currently available from a limited number of 

manufacturers. These commercial calibrators are traceable to available NIST reference 

materials for FSVs. Theoretically, the availability of commercial calibrators is crucial for 

minimising variation in patient results, as most clinical laboratories use commercial 

calibrators, which are traceable to high-order references. However, these manufacturers do 

not provide their customers with details of the method performance used in the traceability 

process and how the calibrator matrices are prepared. Both method performance and matrix 

treatment can affect the patient results obtained using these calibrators (106-112). Questions 

have therefore been raised regarding the trueness and traceability of commercial calibrators. 



  

31 

 

1.3.2 Current platforms used in analysis 

Immunoassay and high performance liquid chromatography (HPLC) are the most common 

laboratory diagnostic tools used in blood FSV measurement. For vitamin D measurement, 

automated immunoassays from different manufactures are the dominant systems in clinical 

laboratories, despite the fact that HPLC and liquid chromatography-tandem mass 

spectrometry (LC-MS/MS) are more accurate (90). The automated systems have a higher 

throughput, faster turnaround time and easier operating and troubleshooting abilities. In 

contrast, unsatisfactory accuracy and precision have been reported in various automated 

immunoassays (56). In addition, most immunoassays are unable to determine concentrations 

of 25-OHD2 and 25-OHD3 individually (89). This problem may be related to the specificity 

and sensitivity of antibodies targeting a small molecule (a vitamin) binding with a large 

molecule (a vitamin-binding protein) in the presence of serum matrix interferences. While 

HPLC is widely used to detect other FSVs, it is unable to detect coeluted compounds, which 

escape from the chromatography at the same time. Liquid chromatography coupled with 

tandem mass spectrometry quantification can precisely quantify each of these vitamins, 

including the separation of epimer of 25-OHD3, which recent studies have highlighted.  

Liquid chromatography mass spectrometry was introduced to clinical chemistry as an 

emerging technique in the late 1990s. It has recently been considered to be a stronger 

competitive technique over other methods such as immunoassay (89). The LC-MS system is 

based on coupling liquid chromatography (LC), an eluting power used for physical analyte 

separation, with mass spectrometry (MS), which is a highly metabolite-selective detector. 

More recently, large- and medium-sized clinical laboratories have used the LC-MS system  

for drug monitoring, newborn screening and endocrinology and metabolism (113). 
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Liquid chromatography-tandem mass spectrometry (LC-MS/MS) uses multiple mass 

quadrupole spectrometers (114). In practice, LC separates analytes from the sample matrix, 

which will then be charged through the ionisation process before undergoing MS. In the MS, 

charged molecules (precursor ions, also called ‘parent ions’) will be detected according to 

their mass-to-charge ratio (m/z) in the first quadrupole (Q1). The precursor ions are 

fragmented in the collision cell (Q2) by the collision between these ions and pure gas (e.g., 

nitrogen gas). For further selection, fragmented molecules (product ions) can be detected by 

the second quadrupole (Q3). The effectiveness of the high sensitivity and selectivity of LC-

MS/MS is based on its ability to measure concentrations of the most sensitive transition ions 

(the transition from precursor ion to its product ion), which are proportional to the 

concentration of the target compound in the sample (113), (Figure  1-7). 

With these advances in technology, LC-MS/MS can now be used to create highly specific 

and sensitive methods to simultaneously measure the majority of FSVs in one patient sample. 

This should bring with it an improvement in patient management and outcomes, as well as 

providing more opportunity to understand the relationships between blood vitamin levels. 

Despite the advantages of the LC-MS/MS, several variables affect LC separation, such as 

mobile phase (composition, flow rate and gradient and isocratic time) and column (size, type, 

temperature and pressure). Other influences affect MS analysis, such as the voltages applied 

in quadrupoles and the collision cell. As a result, LC-MS/MS system parameters have to be 

optimised to detect the most sensitive transition for each analyte (115). Furthermore, many 

method validation processes and method performance criteria must be considered during the 

course of method development (81, 116-118).  
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Figure  1-7. Schematic of liquid chromatography-tandem mass spectrometry. 

LC separate analytes, from sample matrix, that will then be charged through the ionisation process before LC 

separate analytes, from sample matrix, that will then be charged through the ionisation process before 

undergoing MS. In the MS, charged molecules (parent ions) will be detected according to their mass-to-charge 

ratio (m/z) in the first quadrupole (Q1). The parent ions are fragmented in the collision cell (Q2) by the collision 

between these ions and high purity gas (e.g., nitrogen gas). For further selection, fragmented molecules (product 

ions) can be detected by the second quadrupole (Q3). 
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1.4 Current project  

The broad aim of this project is to contribute the efforts of standardisation of FSV 

measurement and exploring and cover some knowledge gaps related to FSV. The 

development and full validation of a highly sensitive and precise method for simultaneous 

FSV quantification using the advanced technology of LC-MS/MS is a key to FSV 

measurement standardisation. Such a precise simultaneous measurement method using one 

patient sample helps to minimise possible results variation in investigated analytes that could 

be observed when two methods / techniques and samples are utilised. In addition, the 

developed method helps to investigate some knowledge gaps surrounding FSV measurement, 

stability and interaction.  

Therefore, the hypothesis of the thesis is that blood fat-soluble vitamin levels and interactions 

can be effectively evaluated by a robust, simultaneous quantification method. Accordingly, 

the specific aims of this thesis are: 1) to develop and validate a simultaneous measurement 

method for FSV using LC-MS/MS and apply for clinical studies as part of standardisation 

efforts for FSV measurements; 2) to determine the influence of light, temperatures and time 

pre-analytically on blood FSV stability; 3) to investigate the trueness and traceability of 

commercial α-tocopherol calibrators as examples of commercial calibrators; 4) to examine 

the influence of diluent (RPMI-1640) on cord blood FSV measurement; and 5) to study the 

status and correlation of FSV in two Australian populations located at different latitudes 

(Queensland and Victoria).  
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Chapter 2  General Materials and Methods  

This chapter describes general equipment, tools and chemicals used in this project. This also 

includes the procedures utilised for preparing reagent stock and samples for the general 

studies conducted in the current project. An additional, methodology section is included in 

each chapter to detail specific material and procedures used for the study. 

2.1 Equipment and tools 

A variety of general equipment and tools were utilised for this work. These included; Agilent 

LC-MS/MS 6490 system (Agilent 1290 infinity LC and Agilent 6490 triple quadrupole mass 

spectrometer) and Agilent LC-MS/MS 6410 system (Agilent 1200 infinity LC and Agilent 

6410 triple quadrupole mass spectrometer)  from Agilent Technologies (VIC, Australia); 

Heraeus centrifuge Multifuge 1 S-R from Thermo Scientific (VIC, Australia); Dry block 

heater, 3x4 nozzle gas manifold,  roller mixer and vortex mixer from Ratek (VIC, Australia); 

temperature adjustable laboratory oven from Thermoline scientific (NSW, Australia); a set of 

pipettes  from Thermo Scientific Finnpipette (VIC, Australia); water purification system 

(Milli-Q Direct 8) from Merck Millipore (VIC, Australia); electronic balance (Mettler AT261 

Deltarange®) from Mettler (VIC, Australia); and glassware from Schott-Duran (NSW, 

Australia).  

The columns used are: Pursuit Pentafluorophenyl (PFP) column (150 mm × 2 mm× 3 µm, 

Cat no. A3051150X020), MetaGuard 2.0 mm Pursuit 3u PFP (Cat no. A3051MG2), Varian 

Pursuit XRS C18 column (20 mm × 2 mm× 3 µm, Cat no. A6001020X020), Varian 

MetaGuard 2.0 mm Pursuit XRs 3 µm C18 (Cat no. A6001-MG2), amber vials (screw cap) 

(Cat no. 5183-2081) and flat bottom glass inserts (400 μL, Cat no. 5181-3377) were 

purchased from Agilent Technologies (VIC, Australia). KIMAX glass tubes (13 × 100 mm, 
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Cat no. 45066A-13100) were supplied from Pacific laboratory products (Melbourne, 

Australia). Microcentrifuge propylene tubes (1.5mL, Cat no. 72.690.001) were supplied from 

Sarstedt (Adelaide, Australia). Glass Pasteur pipettes (Cat no. NAAU92501.01) were 

purchased from Merck (VIC, Australia).  

2.2 Reagents and chemicals  

The reagents and chemicals used in this project were purchased from different vendors and 

manufacturers. The following were purchased from Merck (VIC, Australia): ethanol gradient 

grade for liquid chromatography (Chemical Abstracts Service number [CAS No] 64-17-5, 

Cat no. 1.11727.1000), hexane for liquid chromatography (CAS No. 110-54-3, Cat no. 

1.04391.2500), 2-Propanol for liquid chromatography (CAS No. 67-63-0, Cat no. 

1.01040.2500), methanol for liquid chromatography (CAS No. 67-56-1, Cat no. 

1.06018.4000), nitric acid 65% suprapur (CAS No. 7697-37-2, Cat no. 1.00441.1000).  

Formic acid (purity ≈98%, CAS No. 64-18-6, Cat no. 94318), retinol (purity ≥95%, CAS No. 

68-26-8, Cat no. R7632) and α-tocopherol (purity ≥96%, CAS No. 1019-41-0, Cat no. 

T3251) were obtained from Sigma-Aldrich (VIC, Australia). 25-Hydroxyvitamin D2 (purity 

≥98%, CAS No. 21343-40-8, Cat no. S4176UNL), 25-hydroxyvitamin D3 (purity ≥98%, 

CAS No. 19356-17-3, Cat no. S4163UNL), 3-epi-25-hydroxyvitamin D3, (purity ≥98%, CAS 

No. 73809-05-9, Cat no. S7004), 25-hydroxyvitamin D3-[
2
H3], (purity ≥98%, CAS No. 

140710-94-7, Cat no. S4163), α-tocopherol-[
2
H6] (purity ≥98%, CAS No. 113892-08-3, Cat 

no. 10097) and retinol-[
2
H5] (purity ≥98%, Cat no. LN8-2011-256A1) were purchased from 

IsoSciences (PA, USA). Retinol acetate (CAS No. 127-47-9, Cat no. V676000) was sourced 

from TRC (Ontario, Canada). The nitrogen gas cylinder (N5.0 [Purity ≥ 99.999%], CAS No. 

7727-37-9) was supplied by Coregas (VIC, Australia). 
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Lyophilised calibrators and controls as well as frozen matrix material were utilised in the 

project. Lyophilised vitamins A and E calibrator (Cat no. 195-5878) used was obtained from 

Bio-Rad Laboratories, (Munich, Germany). Lyophilised serum calibrator set for 25-

hydroxyvitaminD2/D3 (Cat no. MS7013) and for vitamins A and E (Cat no. 22013) were 

purchased from RECIPE (Munich, Germany) supplied by PM separations, QLD, Australia. 

Furthermore, lyophilised serum calibrator for vitamins A and E (Cat no. 34.004) was sourced 

from Chromsystems Diagnostics (Munich, Germany). Serum quality control (lyophilised) 

sets for vitamin A and E (low-mid-high, Cat no. 8898-8900) and for  vitamin D (low-mid-

high, Cat no. 10060- 10062) were procured from UTAK Laboratories Inc (CA, USA). 

SeraCon II stripped delipidated serum (Cat no. 22011-100) and SeraCon Vitamin D depleted 

diluent (generated from human plasma, Cat no. 502079-100) were from SeraCare Life 

Sciences (MA, USA) and were generously donated from Abacus (ALS) (QLD, Australia). 
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2.3 Safety 

The biological specimens, chemicals and medical waste were handled based on the laboratory 

safety procedures. The specimens used included unknown human samples, calibrators, 

quality controls and external quality assurance material (from The Royal College of 

Pathologists of Australasia Quality Assurance Programs [RCPAQAP]). These biological 

samples were considered to be potentially infectious agents; therefore, they were handled 

according to the School of Medical Sciences (SMS) laboratory safety procedures that are 

available online and as hardcopies in the liquid chromatography-tandem mass spectrometry 

(LC-MS/MS) laboratory. Chemicals were handled safely according to material safety data 

sheet (MSDS) procedures and risk assessments, which were created at the commitment of the 

project, are available as hardcopies in the MSDS file in the LC-MS/MS laboratory. Medical 

wastes (including biological and chemical waste) were discarded according to the laboratory 

waste disposal management strategy procedure of the SMS (119).  
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2.4 Glassware cleaning 

Glassware was maintained clean and regularly washed according to the mass spectrometry 

and good laboratory practice requirements. All glassware was cupped and stored in the 

allocated cupboard after being cleaned. 

Bottles were washed with a sufficient amount of Milli-Q water prior to drying them in a lab 

oven at 50ºC to avoid diluting the nitric acid in the next step. Later, under a fume hood, a 

amount of 65% nitric acid was poured into the bottles using a funnel, and then the bottles 

were capped and rolled for at least 10 min to ensure the nitric acid covered the entire internal 

surface of each bottle. The nitric acid was then poured back into the nitric acid bottle for 

further use, and the bottles were rinsed with Milli-Q water five times, then filled with Milli-Q 

water and left overnight. They were then rinsed with Milli-Q water two times prior drying 

them in the oven at 50ºC. 

KIMAX screw cup culture glass tubes were extensively used in this project for sample 

preparation. Two glass tube sets were used in every sample preparation batch; a set for 

protein precipitation and liquid/liquid extraction and another set for organic layer 

evaporation. The first tube set was washed with Milli-Q water until all specimen residues 

were gone. A glassware brush was used when required, and the tubes were then dried in the 

lab oven at 50ºC. The second tube set was rinsed with a small volume of methanol then dried. 

Under the fume hood, both tube sets were treated with amount of 65% nitric acid, and the 

tubes were left to stand for 10 min. The nitric acid was then poured back into the nitric acid 

bottle for further use. The tubes were rinsed with Milli-Q water five times, then filled with 

Milli-Q water and left overnight. They were then rinsed with Milli-Q water two times and 

dried using the lab oven at 50ºC.  
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2.5 Chemical preparation  

2.5.1 Preparation of deoxygenating solvents  

Solvent deoxygenating is a process of substituting dissolved oxygen in the solvent with 

nitrogen gas to minimise the potential oxidisation of labile compounds when dissolving in the 

solvent. Deoxygenated ethanol and methanol were used to prepare vitamins A, D and E 

stocks as well as internal standard stock solutions. The solvents were deoxygenated as 

follows: 

A total of 250 mL of ethanol\methanol was poured into a glass bottle (500 mL) under a fume 

hood. A Pasteur pipette (250 mm) was connected to the nitrogen gas cylinder using a hose 

with a 0.25 µm filter; and then the nitrogen gas cylinder valve and gas regulator valve were 

carefully opened at a low flow rate. Later, the Pasteur pipette was immersed in the solvent for 

at least 10 min while gently moving the pipette. After that, the cylinder and regulator valves 

were closed; and the glass Pasteur pipette was taken off prior to tightly capping the solvent 

bottle. 
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2.5.2 Preparation of solutions for liquid chromatography  

Needle wash solution  

Needle wash solution was used to wash the auto-sampler needle prior to each sample 

injection to minimise the potential carryover. The needle wash solution consisted of 40% 

water, 10% 2-propanol and 50% methanol. The solution was prepared as follows: 

A total of 400 mL of Milli-Q water was mixed with 100 mL of 2-propanol in the graduated 

cylinder (1 L). Then 500 mL of methanol was gradually added followed by mixing. The 

prepared mixture was poured into a labelled clean brown glass bottle. This solution was made 

fortnightly. 

Mobile phases 

The principle of reversed-phase chromatography with two mobile phases was utilised for the 

target analyte separations. A half litre of mobile phase A (MpA) and one litre of mobile phase 

B (MpB) were prepared weekly. Based on our observation, analyte peak resolutions were 

negatively affected by mobile phase age and weekly preparation was a suitable time interval. 

Two labelled bottles were reserved for each mobile phase and washed weekly with Milli-Q 

water and monthly with 65% nitric acid, as detailed in section 2.4. 

The hydrophilic MpA consisted of 0.1% formic acid (to enhance molecule ionisation)  and 

2% methanol (to minimise the potential  of microbial contamination
 
) in Milli-Q water. This 

mobile phase was prepared by adding 250 mL of Milli-Q water into the graduated cylinder (1 

L) before adding 500 μL of formic acid and then 10 mL of methanol. After mixing this 

solution, the graduated cylinder was filled to 500 mL with Milli-Q water and then mixed 

again. Later, the mixture was transferred into a labelled glass bottle (500 mL). 
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MpB consisted of 0.1% formic acid in methanol. It was prepared by adding 500 mL of 

methanol into the graduated cylinder (2 L) prior to adding 1 mL of formic acid and mixing. 

Later, the graduated cylinder was filled to 1 L of methanol, followed by a mixing. The 

mixture was then transferred into the labelled glass bottle (1 L). 
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2.5.3 Reagent preparation 

All reagents were prepared in amber vials or in glass bottles wrapped with aluminium foils 

under the fume hood in subdued light. For more accuracy, all reagent stocks were 

gravimetrically prepared using calibrated electronic balance
3
 based on the below equation 

unless otherwise stated  

𝑴𝒂𝒔𝒔 (𝒈) = 𝑽𝒐𝒍𝒖𝒎𝒆 (𝑳)  × 𝑫𝒆𝒏𝒔𝒊𝒕𝒚 (
𝒈

𝑳
) 

These stocks were used to prepare the FSV mixture, the in-house calibrator sets and the 

spiked serum unless otherwise stated. 

25-Hydroxyvitamin D2, 25-hydroxyvitamin D3 and 3-epi-25-hydroxyvitamin D3 stock 

solutions  

The 25-hydroxyvitamin D2 (12.1 μmol/L), 25-hydroxyvitamin D3 (12.5 μmol/L) and 3-epi-

25-hydroxyvitamin D3 (253.3 μmol/L) were supplied in 1mL of ethanol in sealed glass 

ampoules (stock 1). The ampoule content was transferred into an amber vial which was 

tightly cupped and stored at -80ºC. 3-Epi-25-hydroxyvitamin D3 Stock 2 (10.0 μmol/L) was 

prepared by diluting stock 1 with deoxygenated methanol.  

25-Hydroxyvitamin D3-[
2
H3] stock solution 

The tri-deuterated 25-hydroxyvitamin D3 (25-hydroxyvitamin D3-d3) was supplied in sealed 

glass ampoule (1mL) with 247.8 μmol/L in ethanol (stock 1). This stock was transferred into 

a glass bottle containing 49 mL of deoxygenated methanol to prepare 50 mL of 25-

hydroxyvitamin D3-d3 at a concentration of 5.0 μmol/L (stock 2). Fifty mL of stock 3 was 

                                                 

3
 Electronic balance and pipettes, which were used in the project, were calibrated and periodically checked 

every six months. The balance was checked periodically using set of certified weights. 
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prepared by diluting stock 2 with the deoxygenated methanol at a concentration of 330 

nmol/L. This stock was used as the vitamins D and A internal standard working solution.  

Retinol stock solution 

A calculated mass of retinol crystals was dissolved into the deoxygenated ethanol at a 1.0 

mmol/L concentration to prepare stock 1. Stocks 2 and 3 (100.0 μmol/L and 10.0 μmol/L 

respectively) were prepared by diluting stock 1 with deoxygenated methanol. 

Retinol-[
2
H5] solution 

Deuterated retinol crystals were dissolved into deoxygenated ethanol at a 3.4 mmol/L 

concentration for stock 1 preparation. Aliquots from stock 1 were diluted with de-oxygenated 

methanol to generate stocks 2 and 3 with 20.0 μmol/L and 2.0 μmol/L concentrations 

respectively. Stock 3 was used as the potential isotopic retinol internal standard working 

solution; however, it was not stable as detailed in the Chapter 3. 

Retinol acetate 

Retinol acetate crystals were dissolved into the deoxygenated ethanol at a 60.9 mmol/L 

concentration for stock 1. Stocks 2 and 3 (600.0 μmol/L and 3.0 μmol/L, respectively) were 

prepared by diluting stock 1 with the deoxygenated methanol. Retinol acetate was commonly 

used as a retinol internal standard in HPLC methods. We tested it as a potential internal 

standard in the FSV quantification method using LC-MS/MS in place of the problematic 

“deuterated” retinol internal standard, but it was not suitable choice as predicated. This 

detailed in Chapter 3. 
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α-Tocopherol stock preparation 

The α-tocopherol (viscous liquid) was dissolved into the deoxygenated ethanol at 3.0 mmol/L 

for stock 1. The α-tocopherol stock 2 (100.0 μmol/L) was prepared by diluting stock 1 with 

deoxygenated methanol. 

α-Tocopherol-[
2
H6] stock preparation 

The initial content of α-tocopherol-[
2
H6] (α-tocopherol-d6) vial (2.0 mg) was dissolved in 

deoxygenated methanol and transferred into a glass bottle, which was then adjusted to 100 

mL of deoxygenated methanol for a concentration of 46.0 μmol/L. This stock was used as the 

α-tocopherol internal standard working solution. 

Fat-soluble vitamin mixture in methanol  

Deoxygenated methanol (15 mL) was spiked with entire FSVs to use as the initial quantity 

controls for the analyte peak and LC-MS/MS system performance prior to running a sample 

batch. This mixture was prepared by diluting each stock solution with deoxygenated 

methanol to obtain a mixture of FSV with concentrations of 150.0 nmol/L for 25-OHD2 and 

25-OHD3, 100.0 nmol/L for epi-25-OHD3, 60.0 nmol/L for 25-OHD3-d3, 1.5 μmol/L for 

retinol and 10.0 μmol/L for both α-tocopherol and α-tocopherol-d6. This mixture was stirred 

and aliquoted (150 μL) in labelled amber vials and stored at -80C.   
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2.5.4 Calibrators 

Calibrator set for the entire FSV analytes are not commercially available. However, separate 

commercial sets for vitamin D analytes and for vitamins A and E are accessible from at least 

three manufactures (Bio-Rad, Chromsystems and RECIPE). Consequently, generating an in-

house calibrator set for these vitamins (25-hydroxyvitamin D analytes, retinol and α-

tocopherol) had become worthy for cost and time efficiency. The two matrix materials, 

SeraCon II stripped delipidated serum (SeraCon-DL) and SeraCon vitamin D–depleted 

diluent (SeraCon-DD), were investigated. While the SeraCon-DD was free from all target 

FSV analytes, the SeraCon-DL contained endogenous 25-OHD3. Thus, the SeraCon-DL was 

used to prepare in-house calibrator for only vitamins A and E; and the SeraCon-DD was 

utilised for the entire FSV in-house calibrator set. The evaluation of these two sets is detailed 

in the Chapter 3.  

In-house vitamins A and E calibrator set preparation 

A seven calibrator level set containing of retinol and α-tocopherol was prepared using the 

SeraCon-DD, which had no retinol or α-tocopherol content based on our laboratory check. 

The SeraCon-DL was spiked with retinol stock 2 and α-tocopherol stock 1 to prepare pre-

calibrator level 7 for retinol at a concentration of 8.0 μmol/L and another pre-calibrator level 

7 for α-tocopherol at a concentration of 100.0 μmol/L.  

These pre-calibrator levels were then gently mixed for 1 h and then kept on crushed ice in the 

refrigerator overnight. The next day, the two pre-calibrator levels were left for 30 min at 

room temperature (RT) prior to mixing. The pre-calibrator levels were then diluted with 

SeraCon-DL to create the other six pre-calibrator levels for retinol (0.4, 1.6, 2.8, 4, 5.2, 6.4, 

8.0 μmol/L for levels 1 to 6, respectively) and for α-tocopherol (12.0, 24.0, 40.0, 56.0, 70.0, 
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86.0, 100.0 μmol/L for levels 1 to 6, respectively). All pre-calibrator levels were gently 

mixed using the roller mixer for 1 h prior to storing them at 4°C in the refrigerator on crushed 

ice overnight. The next day, the pre-calibrators were kept at RT and then mixed for 30 min 

using a roller mixer.  

Later, every pre-calibrator level of retinol was mixed with an equivalent pre-calibrator level 

of α-tocopherol to form a combined calibrator level. Each combined calibrator contained 

retinol and α-tocopherol analytes at different concentrations (retinol: 0.2, 0.8, 1.4, 2.0, 2.6, 

3.2 and 4.0 μmol/L; α-tocopherol: 6.0, 12.0, 20.0, 28.0, 35.0, 43.0 and 50.0 μmol/L). The 

seven calibrator levels were mixed gently for 1 h using the roller mixer. Every single 

calibrator level was then aliquoted (110 μL) into labelled polypropylene tubes (1.5 mL) and 

stored at -80°C. This was used for vitamin A/E method. 

In-house FSV calibrator set preparation 

A seven calibrator level set for the five FSV analytes, including 25-OHD2, 25-OHD3, epi-25-

OHD3, retinol and α-tocopherol, was prepared. The SeraCon-DD was spiked with the five 

FVS analytes to prepare calibrator 1 (cal-1; at a concentration of 4 nmol/L for 25-OHD3, epi-

25-OHD3 and 25-OHD2 and 0.1 μmol/L and 6 μmol/L for retinol and α-tocopherol 

respectively). The calibrator 7 (cal-7; a concentration of 200.0 nmol/L for 25-OHD3, 160.0 

nmol/L for epi-25-OHD3 and 25-OHD2, 4.0 μmol/L and 71.5 μmol/L for retinol and α-

tocopherol respectively) was made. The two calibrators were gently mixed using a roller 

mixer for 1 h prior to storing them at 4°C on crushed ice overnight. The next day, they were 

kept at RT and then mixed for 30 min.  

The other five calibrator levels were generated by mixing cal-1 and cal-7 in different 

proportions. The final level concentrations were 4.0, 9.9, 23.6, 62.8, 102.0, 160.8, and 200.0 

nmo/L for of 25-OHD3; 4.0, 8.7, 19.6, 50.8, 82.0, 128.8 and 160.0 nmol/L for the epi-25-
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OHD3 and 25-OHD2; 0.1, 0.2, 0.5, 1.3, 2.1, 3.2, and 4.0 μmol/L for the retinol; and 6.0, 8.0, 

12.5, 25.6, 38.7, 58.4 and 71.5 μmol/L for the α-tocopherol. Later, each calibrator level was 

mixed and aliquoted (110 μL) at labelled polypropylene tubes (1.5 mL) and stored at -80°C. 

Commercial calibrators  

The RECIPE calibrator set (four levels) for 25-OHD2 and 25-OHD3 was utilised in the 

current project. This set was multi-levels and traceable to the National Institute of Standards 

and Technology-standard reference material 972 (NIST-SRM972) (120). It was prepared 

according to the manufacturer’s instructions and then aliquoted (110 μL) at labelled 

polypropylene microcentrifuge tubes and stored at -80°C. 

Three commercial calibrators (single level) for retinol and α-tocopherol were used. These 

included Bio-Rad calibrator (traceable to the  NIST-SRM968e (121)), Chromsystems 

(traceable to the NIST-SRM968e (121)) and RECIPE (traceable to the NIST-SRM968d 

(122)). They were prepared according to the manufacturer’s instructions and then aliquoted 

(250 μL) at polypropylene microcentrifuge tubes and then stored at -80 C. During the 

sample preparation, the calibrator was diluted using Milli-Q water (0%, 30%, 60% and 80% 

for calibrator levels 4, 3, 2 and 1, respectively). 

2.5.5 Controls 

Two commercial quality control (QC) sets (for 25-OHD2 and 25-OHD3; and for retinol and 

α-tocopherol) from UTAK were used. In addition, an in-house QC set was prepared for epi-

25-OHD3 because of the unavailable of a commercial set. These QCs were simultaneously 

prepared with unknown samples in the beginning and in the end of the batch. Results of the 

controls were used to monitor intra-run and inter-run method performance.   



  

50 

 

UTAK lyophilised QC set (tri-levels: low, mid, high) for retinol and α-tocopherol [Vit A/E 

control] and for 25-OHD2 and 25-OHD3 [Vit-D control] were used in this project. The 

UTAK three level QCs were reconstituted according to the manufacturer’s instructions. 

Aliquots (110 μL) were prepared using  polypropylene microcentrifuge tubes and stored at -

80°C. 

The in-house tri-level QC set for epi-25-OHD3 [epi-Vit -D control] was generated as follows. 

Human serum, containing no endogenous 25-OHD3 epimer, was spiked with epi-25-OHD3 

(135 nmo/L) to prepare a high control level (QC high). This QC high level was gently mixed 

using the roller mixer for 1 h before storing at 4ºC on crushed ice overnight. The next day, it 

was restored to RT for equilibration and then mixed for 30 min. Mid and low control levels 

with concentrations of 45 and 9.5 nmol/L respectively, were prepared by diluting the QC high 

level using non-spiked serum, which were obtained from human research team volunteers. 

The three QC levels were mixed gently for 1 h. Later, each control level was aliquoted (110 

μL) into labelled polypropylene tubes (1.5 mL) and then frozen at -80ºC. 
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2.6 Sample preparation 

Sample preparation processes were investigated and optimised during the course of 

development and validation of the FSV quantification method. Details of this optimisation 

processes are provided in the Chapter 3. The following protocol is a final version of the 

sample preparation procedure which was used in the project’s studies unless otherwise stated. 

The biological samples used in the work were serum or plasma origin, including unknown 

human samples, calibrators, controls and external quality assurance material. All samples 

were left at RT until they were completely thawed and then inverted several times and mixed 

for five minutes before they were processed. The internal standards and aliquot of FSV 

solution were also left at RT and mixed before they were used. Fresh Milli-Q water was 

collected from the Milli-Q water system according to the manufacturer’s instructions. The 

QCs (9 levels overall) were each prepared and included at the beginning and end of each 

batch. All sample preparation processes except for specific stability study experiments were 

conducted under subdued light.  

Procedure: 100 μL of sample was placed in a Kimax glass tube, 100 μL of Milli-Q water was 

added, and then the mixture was vortexed for 10 sec. Later, 200 µL of methanol containing 

the tri-deuterated 25-OHD3 (330 nmol/L) and hexa-deuterated α-tocopherol (46 μmol/L) was 

added, followed by vortexing for 10 sec. It was then left at RT for 10 min under subdued 

light. After that, 1.5 mL of hexane was added and vortexed extensively prior to centrifugation 

at 3,000 rpm for 5 min. About 800 μL of the organic layer was transferred into a new glass 

tube and then dried under nitrogen gas at RT. Later, the sample was reconstituted in 250 µL 

methanol and vortexed for 20 sec. Finally, 1 μL (for vitamin A/E method) and 8 μL (for FSV 

method-1 and FSV method-2) of the sample was injected into LC-MS/MS system (for both 

Agilent LC-MS/MS-6490 and LC-MS/MS-6410). 
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2.7 Specification of the LC-MS/MS systems 

Performance specifications of the two LC-MS/MS systems used in the current project are 

summarised in the following Table  2-1, Table  2-2. 

Table  2-1. Performance specifications of Agilent LC-1200 and Agilent LC-1290. 

Specification* Agilent LC-1200 (123) Agilent LC-1290 (124-126) 

P
u

m
p

 

Hydraulic system Dual plunger in series pump with 

proprietary servo-controlled 

variable stroke drive, floating 

plungers and passive inlet valve 

Two dual pistons in series, pumps 

with proprietary servo-controlled 

variable stroke design and 

smooth motion control 

Settable flow range 0.001 – 10 mL/min, in 0.001 mL/ 

min increments 

0.001 – 5 mL/min, in 0.001 

mL/min increments  

Flow precision <0.07% RSD ≤0.07 % RSD  

Flow accuracy ± 1%  ±1%  

Pressure operating range 0– 60 MPa (0–600 bar) up to 5 

mL/min 

0–40 MPa (0–400 bar) up to 5 

mL/min 

0–20 MPa (0–200 bar) up to 10 

mL/min 

Binary Pump: up to 120 MPa 

(1200 bar) up to 2 mL/min,  

80 MPa (800 bar) at 5 mL/min 

Binary Pump VL: up to 105 MPa 

(1050 bar) up to 2 mL/min 

Pressure pulsation < 2 % amplitude  < 1 % amplitude  

Gradient formation Low pressure dual mixing  High pressure binary mixing 

Delay volume 600 – 900 μL JetWeaver V35: < 45 μL 

JetWeaver V100: < 75 μL 

Composition range 0 – 95 % or 5 – 100 % Settable range: 0 - 100 % 

Composition precision < 0.2 % RSD or < 0.04 min SD < 0.15 % RSD or 0.01 min SD 

A
u

to
sa

m
p

le
r 

Injection range 0.1–100 μL in 0.1 μL increments 0.1–20 μL in 0.1 μL increments 

Injection precision  < 0.25% from 5–100 μL, 

 < 1%  from 1–5 μL  

<0.25% from 5–40 μL 

<0.5% from 2–5 μL 

<0.7% from 0.5–2 μL 

Sample viscosity range 0.2–50 cp 0.2–5 cp 

Injection cycle time Typically 50 s depending on draw 

speed and injection volume 

Typically < 21 s depending on 

draw speed and injection volume 

Carryover Typically < 0.1% Typically < 0.004 %  

C
o

lu
m

n
 O

v
en

 Temperature range 5ºC above ambient to 80ºC 10ºC below ambient to 100ºC 

Temperature stability ± 0.15ºC ± 0.05ºC 

Temperature accuracy ± 0.8ºC  ± 0.8ºC 

Column capacity One 250 mm column 2 columns of 300 mm with 

individual solvent heating 

Internal volume 6 μL 3 μL left heat exchanger 

6 μL right heat exchanger 

*These performance specifications are based on data analysed by Agilent technologies.  
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Table  2-2 Performance specifications of Agilent MS/MS-6410 and Agilent MS/MS-6490. 

Specification* Agilent MS/MS- 6410 (127) Agilent MS/MS-6490 (128) 

Sensitivity: 1pg reserpine
# 
quantifying on m/z 

609→195 using ESI positive mode 
S/N > 6,000:1 S/N > 50,000:1 

Sensitivity: 1pg chloramphenicol
#
 quantifying 

on m/z 321→152 using ESI negative mode 
S/N > 2,000:1 S/N > 50,000:1 

Linear dynamic range  > 6.0 × 10
6
 > 6.0 × 10

6
 

Mass range 5–2,250 Da 5–1,400 Da 

Maximum scan rate 12,500 Da/sec 12,500 Da/sec 

Minimum MRM dwell time 1 ms 1 ms 

MRM transitions 

450 per time segment, 

> 40,000 ion 

transitions per method 

500 per time segment, 

>  40,000 ion 

transitions per method 

Polarity switching (from positive to negative) 30 ms 30 ms 

Collision cell ion clearance < 1 ms < 1 ms 

Agilent Jet stream technology
$
 no yes 

Agilent iFnnel technology
$
 no yes 

*These performance specifications are based on data analysed by Agilent technologies.  

# Agilent technologies use reserpine and chloramphenicol compounds to compare their MS/MS systems.  

$“Jet Stream sample introduction, providing high-efficiency ESI ion generation and focusing; a hexabore 

capillary; and a unique dual-stage ion funnel assembly. Together, these technologies reduce neutrals and 

increase ion sampling to dramatically improve overall signal within the system, delivering significant increases 

in sensitivity compared with conventional instruments.” (129)  

 

2.8 Operation of the LC-MS/MS system 

The LC-MS/MS system was operated using Agilent MassHunter data acquisition software 

(version B.4.01) according to the general operation manual (perpetrated by LC-MS/MS 

research group) for the Agilent LC-MS/MS 1200/6400 that was available as a hardcopy in the 

LC-MS/MS laboratory. 

2.9  Data analysis 

The data were analysed using the Agilent MassHunter quantitative analysis software (version 

B.05.00/B5.0.291.0) and qualitative analysis software (version B.04.00) according to the 

general operation manual for the Agilent LC-MS/MS 1200/6400 that was available as a 

hardcopy in the LC-MS/MS laboratory. All data were stored in the main computer of the LC-

MS/MS laboratory and backed up weekly on an external memory drive.  
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Chapter 3 

 

Development of the simultaneous fat-
soluble vitamin quantification method 
using liquid chromatography-tandem 
mass spectrometry 
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Chapter 3  Development of the simultaneous fat-soluble 

vitamin quantification method using liquid chromatography-

tandem mass spectrometry  

3.1 Introduction 

The accurate and precise quantification of fat-soluble vitamins (FSV) has proven to be a 

significant challenge for clinical laboratories (130). This challenge is the result of the nature 

of FSV molecules and their metabolites, the limitations of measurement assays and 

standardisation of vitamin analysis. Consequently, there is a significant variation in the 

results obtained both by different assays and different clinical laboratories even using the 

same diagnostic techniques (89-91). As a result, it has been difficult to reach an agreement on 

the recommended levels and reference intervals of these vitamins and their metabolites for 

healthy people (discussed in Chapter 7). Consequently, debate has ignited as to whether 

conventional analytical techniques are accurate and precise enough to diagnose and monitor 

the pathologies associated with FSV deficiencies. 

The chemical and physical properties of FSV molecules and their metabolites represent 

analytical challenges in clinical laboratories (Figure  1-3) (130). FSV metabolites, including 

25-OHD, retinol and α-tocopherol, are hydrophobic compounds that are mediated in the 

blood by binding with relatively large proteins (i.e., VDBP is 50 kDa) (130). The dissociation 

of a vitamin from its binding protein is essential before vitamin measurement, and variation 

in the process aiming to complete dissociation may significantly contribute to the sensitivity 

and specificity of an analytical assay (89, 94). In addition, the precise and simultaneous 

measurement of FSVs is an even more complicated task, as these vitamins and their 
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metabolites are present in the blood in different concentration levels, as well as bind to 

different binding proteins. 

 

 

25-Hydroxyvitamin D3 [25-OHD3]  

(C27H44O2, 400 .64 Da)(44) 

 

 

C3 25-Hydroxyvitamin D3 [Epi-25-OHD3] 

(C27H44O2, 400 .64 Da) 

 

25-Hydroxyvitamin D2 [25-OHD2]  

(C28H44O2, 412.64 Da) (45) 

 

Retinol 

(C20H30O, 286.45 Da) (15) 

 

α-Tocopherol  

(C29H50O2, 430.71 Da) (76) 

Figure  3-1. Chemical structure of investigated FSV. 

These molecules are highly hydrophobic molecules that are transported in the blood with bind strongly with 

proteins through hydrophobic interaction. Destruction of this binding is an essential step for accurate and precise 

FSV measurement. In addition, these compounds are small molecules (less than 500 Da) with only one or two 

hydroxyl groups, and therefore present greater difficulty in the ionisation process, which is a critical step for 

mass spectrometry detection. 
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Currently, the most routine analytical assays utilised for FSV measurement are the 

immunoassay technique (IA) for 25-OHD2 and 25-OHD3; and the high-performance liquid 

chromatography technique (HPLC) for retinol and α-tocopherol. In general, commercial 

immunoassays (automated platforms) are most commonly used for total 25-OHD  

quantification and are available from several manufacturers, such as DiaSorin, 

Immunodiagnostic Systems, Abbott, Roche and Siemens (90, 131).  

Several previous studies have observed significant variation in the performance of automated 

immunoassays, particularly in samples with low levels of 25-OHD (89, 132, 133). This may 

relate to the challenges involved in disassociating the FSV analytes from their binding 

proteins, as well as in generating specific antibodies to capture 25-hydroxylated vitamin D 

analytes during blood sample preparation (132). A further limitation of IAs is their 

incapability to detect the epimer of 25-OHD3 (epi-25-OHD3), which has been quantified in 

child and adult samples (134-141).  

In clinical practice, blood retinol and α-tocopherol are routinely measured concurrently based 

on HPLC chromatographic technique facility (81). However, inter-laboratory discrepancies in 

these vitamin results have been reported (91). The majority of HPLC instruments used for 

retinol and α-tocopherol measurements are coupled with UV/Vis or photodiode array (PDA) 

detectors (142), which are adequate for these analytes but less sensitive compared to mass 

spectrometers. Therefore, quantification of the epi-25-OHD3 using HPLC with traditional 

detectors is also a challenge because of the low concentration levels of  epi-25-OHD3 (143). 

Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) represents a 

highly specificity and sensitivity technique that is superior to IAs and HPLC (113, 114). This 

technology quantifies analytes based on the strengths of the chromatography technique for 

analyte separation and the tandem mass spectrometry technique for high sensitive and 
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selective analyte detection. The use of LC-MS/MS in clinical laboratories has increased over 

the last decade, especially for the measurement of low molecular weight analytes (114). 

Consequently, LC-MS/MS is the optimal analytical platform for the precise quantification of 

25-OHD3 and its epimer, as well as other vitamin D analytes (144). A few  LC-MS/MS 

methods quantifying blood 25-OHD2, 25-OHD3, epi-25-OHD3 (134, 141, 145, 146), retinol 

and α-tocopherol (147) have been published but none of these methods quantified all these 

analytes together.  

The development of a simultaneous measurement method for most FSV analytes in the blood 

is a challenge due to the discrepancies between their structures and concentrations. Few 

published methods have simultaneously measured FSV analytes (148, 149). Priego-Capote 

and colleagues (148) developed a method for quantifying FSVs using LC-MS/MS, however, 

they did not use isotopic internal standards, which are crucial for highly precise methods. In 

addition, this method required a large serum sample volume (1000 μL), which is not suitable 

for routine laboratory work. In contrast, Midttun and colleagues (149) developed a LC-

MS/MS method for FSV measurement using isotopic internal standards and small sample 

sizes (50 μL). However, neither of these studies quantified epi-25-OHD3 (which is a 

recognised interferent for the accurate determination of 25-OHD3), and each offered limited 

details as to their method validation and independent quality assessment through on external 

quality assurance (EQA) program.  

Therefore, the present work aimed to establish a precise and simultaneous sample preparation 

and quantification for the five FSV analytes (25-OHD3, epi-25-OHD3, 25-OHD2, retinol and 

α-tocopherol) utilising LC-MS/MS technology. This procedure included development of a 

simple and cost-effective sample preparation protocol, and a simultaneous FSV quantification 

method using two Agilent LC-MS/MS systems. The Agilent LC-MS/MS-6410 and LC-
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MS/MS-6490, which are the earliest and latest models of Agilent LC-MS/MS systems 

respectively and have different levels of analytical sensitivity, were used in the development 

of these  methods. This issue is important to check robustness of the FSV analysis either 

using early model of LC-MS/MS or advanced LC-MS/MS which are not available for all 

clinical laboratories.  The developed methods were then used to explore several clinical 

issues related to simultaneous blood FSV analysis in four clinical studies, which are 

discussed to prove clinical activity in the next chapters. 
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3.2 Methodology and results 

Developments of simultaneous FSV extraction and quantification encountered several 

challenges in terms of calibration materials, internal standards and interference. This section 

will discuss the development of the simultaneous FSV measurement procedures, including 

sample extraction protocol and chromatographic-tandem mass spectrometry quantification. 

Methodology and results of the current work are detailed together here for greater clarity and 

coherency.  

The FSV extraction protocol and analysis were developed in the following three stages using 

two LC-MS/MS systems. These stages included: 1) optimising the LC-MS/MS system for 

chromatographic separation and mass spectrometric detection using pure FSV in a 

methanolic solution, 2) developing a protocol for serum FSV extraction and progressively 

checking optimal analyte recoveries based on the first stage, and 3) improving both LC-

MS/MS optimisation and serum FSV extraction protocol in parallel.  

In this work, three methods were developed and validated as follows. The first method was 

developed for the simultaneous quantification of vitamins A (retinol) and E (α-tocopherol) 

[vitamin A/E method] using the Agilent LC-MS/MS 6490 system equipped with a C18 

column. It was initially proposed to extend this analytical assay to include vitamin D 

analytes, however, this did not happen due to unsatisfactory chromatographic resolution. The 

second method developed was a simultaneous FSV quantification method (FSV method-1) 

for the quantification of five FSV analytes, including 25-OHD3, epi-25-OHD3, 25-OHD2, 

retinol and α-tocopherol. This method was developed using the Agilent LC-MS/MS 6490 

system equipped with a pentafluorophenyl (PFP) column. The third method (FSV method-2) 

was created based on transferring the FSV method-1 to Agilent LC-MS/MS 6410 which 

required further optimisation. The Agilent LC-MS/MS 6410 is an earlier model of the Agilent 
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LC-MS/MS series and less sensitive compared to the LC-MS/MS 6490. This transference of 

method was conducted after full validation of the FSV method-1; and aimed to check the 

robustness of our FSV analysis which involved the LC-MS/MS quantification method and the 

sample extraction protocol.  

The following sub-sections detail the optimisation of the LC-MS/MS systems and the sample 

preparation protocol. In addition, they detail the challenges faced in terms of internal 

standards and calibrators over the course of method development. Later in this chapter, the 

method validation and analytical performance will be presented.   

3.2.1 LC-MS/MS system optimisation 

This phase of the study aimed to explore the optimal conditions for the liquid 

chromatography (LC) and tandem mass spectrometer (MS/MS), which together represent the 

main integrated instruments of LC-MS/MS, using a mixture of FSV in methanol. For 

chromatographic analyte separation, several LC parameters were optimised, including 

column temperature, flow rate, injection volume, mobile phase gradient profile, and total 

method running time, using the C18 and PFP columns.  

Two liquid chromatography instruments (LC-1290 and LC-1200), coupled to the MS/MS-

6490 and MS/MS-6410 respectively, were optimised. In both instruments, different gradient 

mobile phase compositions, flow rates and column oven temperatures were investigated for 

the best target peak resolution. LC-1290 was optimised for the vitamin A/E method using the 

C18 column, which successfully separated retinol and α-tocopherol in the serum samples 

(Figure  3-2, Table  3-1). The C18 column could not separate the epi-25-OHD3 under the 

trialled conditions. Hence, for the extended methods (FSV methods 1 and 2), the LC-1290 

and LC-1200 were adjusted using a PFP column whereby the three 25-hydroxylated vitamin 
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D analytes (25-OHD2, 25-OHD3 and epi-25-OHD3), retinol and α-tocopherol in the serum 

sample were separated (Figure  3-3, Figure  3-4, Table  3-1).  

Optimisation of the LC systems was accompanied by an exploration of the optimal conditions 

for both the MS/MS-6490 and MS/MS-6410 as integrated parts of equipment on the LC-

MS/MS 6490 and 6410 systems respectively. Both instruments were operated in positive 

electrospray ionisation mode with multiple reaction monitoring (MRM) to quantify the five 

proposed analytes. For greater specificity, two transition ions were utilised for each analyte: a 

quantifier transition ion (the most abundant ions) and a qualifier transition ion (the second 

most abundant ion). While the quantifier ion was used to calculate analyte concentration, 

both the quantifier and qualifier transition ions and their ratios were progressively monitored 

for each sample as part of quality control for specific target analyte detection. Other MS/MS 

parameters were also adjusted, including gas temperature, gas flow rate, nebuliser pressure 

and capillary voltage. Additional parameters on the MS/MS 6490, such as sheath gas 

temperature, sheath gas flow rate and nozzle voltage, were also adjusted. Each of these LC-

MS/MS parameters were optimised using a mixture of FSV in methanolic solution and serum 

samples (Table  3-2).  

In conjunction with the optimisation of the LC-MS/MS, the serum sample preparation 

protocol was developed for optimal simultaneous FSV extraction (discussed in section 3.2.2). 
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Figure  3-2. Retinol and α-tocopherol chromatogram using the vitamin A/E method. 

The chromatogram demonstrates the separation of retinol, α-tocopherol and hexa-deuterated α-tocopherol in 

human serum using the vitamin A/E method (column C18 equipped to the Agilent LC-MS/MS 6490 system). 

 

 

Figure  3-3. Fat-soluble vitamin chromatogram using the FSV method-1. 

The chromatogram demonstrates the identification of 25-OHD2, 25-OHD3, epi-25-OHD3, 25-OHD3-d3, retinol 

and α-tocopherol in a human serum sample spiked with epi-25-OHD3 and 25-OHD2. These metabolites were 

identified using FVS method 1 (PFP column utilised with the Agilent LC-MS/MS 6490 system).  
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Figure  3-4. Fat-soluble vitamin chromatogram using the FSV method-2. 

The chromatogram demonstrates the identification of 25-OHD3, epi-25-OHD3, 25-OHD3-d3, retinol and α-

tocopherol in a human serum sample with no 25-OHD2 analytes. FSV anlaytes were identified using a column 

PFP equipped to the Agilent LC-MS/MS 6410 system.  
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Table  3-1. Final liquid chromatography conditions . 

This table demonstrates the condition of the Agilent LC-1290 (integrated to the MS/MS-6490) and LC-1200 

(integrated to the MS/MS-6410) for the vitamin A/E method and FSV methods 1 and 2. These three methods 

included the same mobile phases, yet with different columns, gradient elution profiles, injection volumes and 

running times. Column flushing and equilibrating from one sample analysis to the next were taken into 

consideration in terms of mobile gradient elution profiles and running times.  

Method Vitamin A/E FSV method-1 FSV method-2 

Liquid chromatography LC-1290 LC-1200 

Analytical column 
Pursuit C18 column 

(20 × 2 mm) 

Pursuit  PFP 

(150 × 2 mm) 

Guard column Pursuit XRs 3 µm C18 Pursuit 3u PFP 

Column temperature 45ºC 45ºC 

Mobile phases  A (MpA) 0.1% formic acid and 2% methanol in milli-Q water 

Mobile phases  B (MpB) 0.1% Formic acid in methanol 

Flow rate 0.2 mL/min 

Injection volume 1 μL 8 μL 

Total running time 12.5 mins 42 mins 45 mins 

Mobile phase gradient 

profile 

 

 

 

Time 

 (min) 

MpA 

 (%) 

MpB 

 (%) 

0.0 20 80 

3.5 20 80 

4.0 0 100 

9.0 0 100 

9.5 20 80 

12.5 20 80 

Time 

 (min) 

MpA 

 (%) 

MpB 

 (%) 

0.0 65 35 

5.5 30 70 

16 22 78 

18 4 96 

19.5 0 100 

34 0 100 

36 45 55 

37 65 35 

42 65 35 
 

Time 

 (min) 

MpA 

 (%) 

MpB 

 (%) 

0.0 60 40 

7.5 30 70 

18.0 22 78 

23.0 4 96 

24.5 0 100 

36.0 0 100 

36.1 45 55 

38 60 40 

45 60 40 
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Table  3-2. Final tandem mass spectrometry conditions. 

This table demonstrates the conditions of the Agilent MS/MS-6490 and MS/MS-6410 for detection using three 

methods. The vitamin A/E method successfully separated vitamins A and E, but not vitamin D analytes. The 

extended methods (methods 1 and 2) were capable of quantifying the three 25-hydroxlated vitamin D analytes, 

plus retinol and α-tocopherol. Deuterated 25-OHD3 was used as the ISTD to quantify target vitamin D 

metabolites, and deuterated α-tocopherol was used as the ISTD to quantify α-tocopherol. Due to the challenge of 

finding a typical retinol ISTD (to be discussed later in the chapter), the deuterated 25-OHD3 was taken as the 

best available option for retinol quantification, as it eluted in close retention time to retinol (81). 

Method Vitamin A/E method  and FSV method-1 FSV method-2 

MS/MS 6490 6410 

Ionisation Electrospray ionisation / Positive 

Analytical mode Multiple reaction monitoring 

Gas temperature 300ºC 250°C 

Gas flow rate 11 L/min 6 L/min 

Nebuliser pressure 40 psi 50 psi 

Sheath gas temperature  275ºC NA 

Sheath gas flow 7 L/min NA 

Capillary voltage 3500 positive 5500 positive 

Nozzle voltage 2000 v NA 

Multiple reaction 

monitoring  (MRM) 

Analyte Prec 

Ion 

Prod 

Ion 
Dwell CE CAV 

  25-OHD3
* 

  Epi-25-OHD3
*
 

401 383 50 4 8 

  25-OHD3
# 

  Epi-25-OHD3
#
 

401 365 50 12 8 

  25-OHD3-d3 404 386 50 4 8 

  25-OHD2
*
 413 395 50 4 7 

  25-OHD2
#
 413 159 50 28 7 

  Retinol 
*
 269 93 50 25 8 

  Retinol 
#
 269 213 50 15 8 

  α-Tocopherol
*
 431 165 50 28 5 

  α-Tocopherol
#
  431 137 50 36 5 

  α-Tocopherol-d6 437 171 50 20 5 

  Phospholipids 104 104 50 0 0 

  Phospholipids 184 184 50 0 0 
 

Prec 

Ion 

Prod 

Ion 
Dwell CE 

Frag. 

volt 

401 383 50 4 135 

401 365 50 12 135 

404 386 50 4 135 

413 395 50 4 135 

413 159 50 28 135 

269 93 50 25 135 

269 213 50 15 135 

431 165 50 28 135 

431 137 50 36 135 

437 171 50 20 135 

104 104 50 0 0 

184 184 50 0 0 
 

*
Quantifier ion, 

#
qualifier ion, Prec: precursor ion, Prod: product ion, Dwell: time (s) spent to scan for each m/z 

value (mass-to-charge ratio of target molecule), CE: collision energy (voltage), CAV: cell accelerator voltage, 

NA: not applicable. Phospholipid transition ions (104→104 and 184→184) were examined based on Honour’s 

recommendations (116) 

  



  

67 

 

3.2.2 Sample preparation protocol development 

The development of the sample preparation protocol aimed to explore simultaneous serum 

FSV extraction and optimal analyte recovery. Two extraction techniques including protein 

precipitation extraction (PPE) and liquid-liquid extraction (LLE) are commonly used in FSV 

extraction. PPE is used to destruct and precipitate serum proteins using an organic solvent 

(e.g., methanol, ethanol or acetonitrile), which liberates the FSVs from their binding proteins. 

However, this technique may cause matrix interference due to co-extracting molecules such 

as phospholipids. Hence, further sample clean-up may be required. By using LLE, 

compounds are separated based on their solubility in various solvents. The liberated FSVs 

(hydrophobic compounds) during PPE are isolated from the aqueous phase by adding an 

organic solvent (e.g. hexane), which dissolves the FSVs but is immiscible with water. The 

organic layer formed post the LLE process is then transferred into a new tube and evaporated 

commonly using nitrogen gas (Purity ≥ 99.999%). The FSVs are then reconstituted using 

solvent appropriate for chromatographic mass spectrometry assays (130).  

 To develop the final sample preparation protocol, we used a simple extraction protocol 

consisting of both PPE and LLE and was utilised in the experiments discussed in this chapter 

(unless otherwise stated). In this simple protocol, the pooled human serum sample (100 μL), 

followed by Milli-Q water (100 μL or as stated in the experiment), was placed in a glass tube 

(or as stated in the experiment). The mixture was then vortexed for 10 s. Next, 200 µL of 

methanol containing the tri-deuterated 25-OHD3 (330 nmol/L), hexa-deuterated α-tocopherol 

(46 μmol/L) and other ISTD (if required in the experiment) were added, followed by 

vortexing for 10 s. The mixture was left at RT for 10 min under subdued light. Next, the 

hexane (1.5 mL or as stated in the experiment) was added and vortexed for 3 min prior to 

centrifugation for 5 min. The organic layer was transferred into a new tube and then dried 
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under nitrogen gas at RT. Later, the sample was reconstituted in 250 µL of methanol and 

vortexed for 20 s. Finally, the samples were loaded into the LC-MS/MS system. This simple 

protocol was later updated to the final sample preparation protocol based on several 

experiments detailed in the following sections. 

These experiments were designed to explore several factors affecting the efficiency of analyte 

extraction. These factors included, but were not limited to, the effects of adding Milli-Q 

water prior to sample extraction, increasing the organic solvent volume, using different 

proportions of hexane-to-2-propanol volume and the number of LLEs used (single versus 

double extractions). Furthermore, the suitability of using polypropylene tubes versus glass 

tubes in the sample preparation was also investigated. These experiments were designed and 

conducted on different occasions using two sets of pool human serum  as discussed in the 

following sub-sections. 

Liquid-liquid extraction (LLE) 

Hexane is widely used in the LLE of retinol and α-tocopherol whilst a mixture of hexane with 

a small proportion of 2-propanol for 25-OHD analyte extraction has reported (130). In this 

work, the ratios of hexane volume (H) to 2-propanol volume (P) were explored to determine 

the optimal ratio for serum FSV extraction. These included H:P (1 mL): 75:25, 80:20, 85:15, 

90:10, 95:05, 99:01 and 100:00. Pooled human serum in triplicate samples were extracted for 

each proportion and each analyte peak area was then calculated and compared. 

It was found that 100% hexane was best suited for 25-OHD analytes and retinol extraction, 

while a mixture of hexane (75%) and 2-propanol (25%) was best for α-tocopherol recovery 

(Figure  3-5). Due to the low concentrations of 25-OHD analytes compared to other target 

vitamins in blood, absolute hexane was considered best to use in the LLE of the final sample 

preparation protocol. 
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After considering absolute hexane in LLE, it was important to determine the optimal hexane 

volume and number of LLEs required for maximum FSV extraction efficiency. Therefore, 

hexane volumes (1.0, 1.5 and 2.0 mL) and the question of single versus double LLEs were 

examined. For these purposes, pooled human serum in triplicate samples were prepared to 

investigate each hexane volume in single LLEs, and another triplicate samples were prepared 

for double LLEs. Later, the mean analyte peak areas were calculated and compared. 

It was observed that using 1.5 mL of hexane improved the recoveries of 25-OHD analytes 

and retinol, while 2 ml of hexane was a better fit for α-tocopherol recovery. In addition, it 

was found that double LLEs did not improve recoveries of 25-OHD analytes and retinol, and 

had a negative effect on α-tocopherol recovery (Figure  3-6). Thus, single LLEs with 1.5 mL 

of hexane were considered for the final sample preparation protocol.  
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Figure  3-5. Fat-soluble vitamins extracted with different hexane and 2-propanol ratios. 

The bar graph demonstrates FSV recoveries (peak areas) in pooled human serum in triplicate samples using a 

range of hexane (H) to 2-propanol (P) ratios. Absolute hexane is shown as better suited for 25-OHD analytes 

and retinol extraction, whereas a mixture of hexane and 2-propanol (H:P 75:25) is best for α-tocopherol 

recovery. For the final sample preparation procedure, 100% hexane was used due to low concentrations of 25-

OHD analytes compared to other target vitamins. Error bars represent result standard deviations. This 

experiment was done using LC-MSMS-6490 
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Figure  3-6. Fat-soluble vitamin extraction using different hexane volumes. 

The bar graph demonstrates the efficiency of FSV extraction from triple serum samples using different hexane 

volumes (1.0, 1.5, 2.0 mL) and either single or double liquid-liquid extraction (LLE). Using 1.5 mL of hexane 

improved the recoveries of 25-OHD analytes and retinol, while 2 ml of hexane was found to be better for α-

tocopherol recovery. Double LLEs did not improve the recoveries of 25-OHD analytes and retinol, and had a 

negative effect on α-tocopherol recovery. Therefore, single LLEs with 1.5 mL of hexane were considered for the 

final sample preparation procedure. Error bars represent result standard deviations. This experiment was done 

using LC-MSMS-6490 
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Effect of aqueous phase volume on fat-soluble vitamin recoveries 

The effect of adding water to serum immediately prior to sample preparation represents part 

of the current knowledge gap concerning FSV extraction (81). The ratio of total aqueous 

phase volume to alcoholic phase volume has also been controversial. Therefore, we 

investigated the effect of adding different Milli-Q water volumes (0, 25 and 100 µL) to 

pooled human serum in triplicate as part of the FSV extraction process. Five serum samples 

were prepared to test each water volume. The mean analyte peak area obtained from the 

sample analyses were calculated and compared. It was observed that recoveries of FSV 

improved by adding 100 µL of Milli-Q water to the serum samples prior to sample 

preparation (Figure  3-7). 
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Figure  3-7. Effect of aqueous phase on fat-soluble vitamin recoveries. 

Graph shows effect of adding Milli-Q water to triple serum samples of different volumes (0, 25 and 100 µL) 

prior to sample preparation. Recoveries of FSV were found to improve by adding 100 µL of Milli-Q water to 

serum samples prior to sample preparation. Error bars represent result standard deviations. This experiment was 

done using LC-MSMS-6490. 
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Effect of tube type on fat-soluble vitamin recoveries 

While polypropylene tubes are widely used in laboratories, it has been reported that certain 

polypropylene tube brands may cause ion suppression and enhancement in mass spectrometry 

methods (150). Furthermore, the extent of the effect of organic solvents used during sample 

preparation on FSV extraction, especially with a high sensitive technology such as LC-

MS/MS, is unclear. Hence, as part of the sample preparation procedure development, two 

commercial brands of polypropylene tubes (Biocentrix and Sarstedt) were compared with 

glass tubes (KIMAX) in terms of FSV recovery. It was found that using glass tubes improved 

the recoveries of retinol and α-tocopherol and decreased the ion enhancement of 25-OHD3 

(Figure  3-8). Therefore, glass tubes were used in the final sample protocol. 
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Figure  3-8. Effect of tube types on fat-soluble vitamin recoveries. 

Graph shows FSV peak areas of triple serum samples using different polypropylene tubes versus glass tubes, 

demonstrating, in support of previous findings (150), that glass tubes improved the recoveries of retinol and α-

tocopherol and decreased the ion enhancement of 25-OHD3. Error bars represent result standard deviations. 

This experiment was done using LC-MSMS-6490.  
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3.2.3 Internal standards 

The isotopic internal standard (ISTD) approach in chromatography-mass spectrometry 

methods is strongly recommended (81). The ISTD is usually added to a specimen in the 

earliest stage of sample preparation to correct for the amount of analyte lost during analysis. 

The ISTD should have similar reactivity behaviour to the target analyte, and should not be in 

authentic samples. Isotopic deuterium or carbon-13-labelled compounds are recommended as 

ISTDs (116), however, it is difficult to find isotopic compounds commercially at a reasonable 

cost and stable within a satisfactory time. In this project, several potential ISTDs were 

examined, with successful ISTDs later used in the validation of the developed methods. 

Retinol internal standard 

Finding an optimal retinol internal standard proved to be a significant challenge for this 

project. Deuterated retinol is suggested as an ISTD for retinol measurement, as it has a 

similar chemical structure to retinol and reactivity during sample preparation and analysis. 

The main challenge of deuterated retinol, however, is its instability and supply at a reasonable 

price (81). In this study, three potential ISTDs for retinol were investigated, including 

deuterated retinol, retinol acetate and tri-deuterated 25-OHD3 (25-OHD3-d3). 

The penta-deuterated retinol (retinol-d5), from Isoscience
4
, was tested as a retinol ISTD 

(transition ion 274→98 was chosen as the best response obtained for the retinol-d5). The 

retinol-d5 (2 μmol/L) was prepared in methanol containing an equivalent concentration of 

retinol and then injected into the LC-MS/MS 6490 using the vitamin A/E method. The 

responses (analyte peak areas) of the two compounds were then compared, revealing the 

                                                 

4
 Isoscience no longer produces deuterated retinol  
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analyte peak response of retinol-d5 to be much lower than the response obtained from the 

equivalent retinol concentration (Figure  3-9). This indicated the instability of retinol-d5, and 

hence, it could not be used for retinol quantification. During method development started in 

2011, seeking out deuterated retinol from other sources was found to be highly difficult in 

terms of cost and availability. As a result, other potential retinol ISTDs were investigated. 

 

 

Figure  3-9. Responses of retinol and deuterated retinol. 

Chromatogram shows equivalent retinol and deuterated retinol concentration (2 μmol/L) in a methanol sample. 

The peak response (area) of deuterated retinol (retinol-d5, transition 274→98 for the best response) was 

significantly lower than the retinol peak response (area), indicating the instability of retinol-d5. Therefore, the 

investigated deuterated retinol could not be used as the retinol internal standard. This experiment was done 

using LC-MSMS-6490. 

  

Transition ion: 269→93  

Transition ion: 274→98  
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Retinol acetate and 25-OHD3-d3 were prepared and investigated as potential retinol ISTDs. 

Retinol acetate is a classic ISTD utilised for retinol quantification as both are monitored at 

the same wavelength in HPLC methods, therefore, it was expected that retinol acetate could 

be inappropriate ISTD for mass-spectrometry methods. The 25-OHD-d3 has a closer 

retention time to retinol than retinol acetate. The LC-MS/MS system was optimised to 

separate retinol, retinol acetate and 25-OHD3-d3 (Figure  3-10).  

Two retinol standard curves using the in-house vitamin A and E calibrator set
5
 were created 

using retinol acetate and 25-OHD3-d3 as ISTDs. The linearity of the standard curve and 

results of the vitamin A/E controls were found to be affected by the ISTD used. The linearity 

of standard curve was better when 25-OHD3-d3 used as retinol ISTD (r
2
=0.999) compared 

with retinol acetate (r
2
=0.991) (Figure  3-11). We also observed that retinol concentrations in 

the commercial controls were higher than the expected manufacturer’s assign values 

(low=0.5, mid=1.5 and high=4.0 µmol/L). When the retinol acetate applied as ISTD, the 

retinol results of the controls were 1.2, 5.9, 13.8 µmol/L, respectively, compared to 0.47, 1.7 

and 4.1 µmol/L using 25-OHD3-d3 as ISTD. This experiment was repeated several times and 

the same findings were observed. We inferred that retinol acetate was not an appropriate 

ISTD to the difference in RT and resulted ion alteration variations.  This is due to the possible 

difference of reactivity between retinol and retinol acetate during sample analysis using LC-

MS/MS methods (151). 

  

                                                 

5
 The in-house vitamin A and E calibrator set preparation and validation will be discussed later in this chapter. 
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Figure  3-10. Chromatographic separation of retinol, retinol acetate and deuterated 25-hydroxyvitamin 

D3. 

Retinol acetate, retinol and 25-OHD-d3 were successfully separated using the LC-MS/MS-6490 for the 

comparison of retinol acetate and 25-OHD3-d3 as potential retinol ISTDs. This experiment was done using LC-

MSMS-6490. 
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a) Standard curve for retinol using retinol acetate as the internal standard  

  

b) Standard curve for retinol using 25-OHD3-d3 as internal standard  

Figure  3-11. Standard curves for retinol using different internals standards. 

Retinal acetate and 25-OHD3-d3 were investigated as potential retinol ISTDs. Two standard curves were 

created using a set of in-house vitamin A and E calibrators. Standard curves were generated using a) retinol 

acetate and b) 25-OHD3-d3 as ISTDs. The linearity of standard curve was observed to be affected by the ISTD 

used. In addition, the retinol concentrations in commercial control levels were found to have higher values than 

accepted ones when retinol acetate was used as the ISTD compared to 25-OHD3-d3, which could be an 

indicator of the different reactive behaviours of retinol and retinol acetate. This experiment was done using LC-

MSMS-6490.  
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Vitamin D analyte internal standard 

The 25-OHD3-d3 was also investigated as a potential internal standard for the quantification 

of the three target vitamin analytes (25-OHD3, epi-25-OHD3 and 25-OHD2). The 25-OHD3-

d3 was successfully used as an ISTD for the quantification of the three target vitamin D 

analytes (25-OHD3, epi-25-OHD3 and 25-OHD2) based on analysis of these analytes in the 

quality controls, linearity of standard curves and method validation (to be discussed later in 

the chapter).  

α-Tocopherol internal standard 

Hexa-deuterated α-tocopherol (α-tocopherol-d6) was investigated as a potential internal 

standard for α-tocopherol quantification. α-Tocopherol-d6 was successfully used as an ISTD 

for the quantification of α-tocopherol based on analyte quantification in the quality controls, 

linearity of standard curves, and method validation (to be discussed later in the chapter). 
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Final sample preparation protocol 

The final sample preparation protocol was developed based on the development course 

detailed in this chapter. Concisely put, the samples were prepared as follows: 

1) First, 100 μL of the sample was placed in a glass tube, 100 μL of Milli-Q water was 

added, and then the mixture was vortexed. 

2) Following this, 200 µL of methanol, which contained tri-deuterated 25-OHD3 and hexa-

deuterated α-tocopherol, was added, followed by vortexing.  

3) This was then left at RT for 10 min under subdued light.  

4) Thereafter, 1.5 mL of hexane was added and vortexed extensively prior to centrifugation. 

5) The organic layer was transferred into a new glass tube and then dried under nitrogen gas 

at RT. 

6) Later, the sample was reconstituted in 250 µL of methanol and then vortexed.  

7) Finally, the samples were loaded into the LC-MS/MS system.  
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3.2.4 Calibrators 

Calibrators are crucial elements in sample analysis for trueness and usually prepared in each 

batch to generate standard curves. Sample results are calculated based on these standard 

curves; therefore, calibrators should be traceable to the appropriate reference material. There 

is currently no commercial calibrator for entire FSV analytes, although separate commercial 

calibrators for vitamin D (25-OHD2 and 25-OHD3) and for vitamins A and E (retinol and α-

tocopherol) are available from different manufacturers.  

The calibrator choices in the current project were either to use separate commercial 

calibrators or to generate an in-house calibrator set for the entire FSV set in a cost effective 

and timely manner. A good calibrator choice was determined based on the linearity of the 

calibrator levels, the inaccuracy and imprecision of quality control results and external 

quality assurance monitoring. The following two sub-sections discuss the investigation of the 

two in-house calibrators, as well as two commercial calibrators for vitamin D analytes 

(RECIPE) and for vitamins A and E (Bio-Rad). 

3.2.4.1 In-house calibrators 

The key challenge in generation of an in-house calibrator set was finding a matrix that 

originated from human serum/plasma, free from endogenous FSVs and commutable to 

authentic human serum samples.  In this project, two matrixes were investigated, SeraCon II 

stripped delipidated serum (SeraCon-DL) and SeraCon vitamin D depleted diluent (Sercon-

DD). The SeraCon-DL matrix was free from endogenous retinol and α-tocopherol, but 

contained endogenous 25-OHD3, while the Sercone-DD matrix was free from endogenous 

target FSVs, based on the manufacturer check. 
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Therefore, SeraCon-DL matrix was used to prepare a set of seven calibrator levels for retinol 

(ranged 0.2-4.0 μmol/L) and α-tocopherol (ranged 6-50 μmol/L), as follows. The SeraCon-

DL matrix was spiked with retinol stock 2 and α-tocopherol stock 1 to prepare pre-calibrator 

level 7 for retinol at a concentration of 8 μmol/L and another pre-calibrator level 7 for α-

tocopherol at a concentration of 100 μmol/L.  

These pre-calibrator levels were then gently mixed for 1 h and then kept on crushed ice in the 

refrigerator overnight. The next day, the two pre-calibrator levels were left for 30 min at 

room temperature (RT) prior to mixing. They were then diluted with SeraCon-DL to create 

the other six pre-calibrator levels for retinol (0.4, 1.6, 2.8, 4, 5.2, 6.4, 8 μmol/L for levels 1 to 

6, respectively) and for α-tocopherol (12, 24, 40, 56, 70, 86, 100 μmol/L for levels 1 to 6, 

respectively). All pre-calibrator levels were gently mixed using the roller mixer for 1 h, prior 

to storing them at 4ºC in the refrigerator on crushed ice overnight. The next day, the pre-

calibrators were kept at RT and then mixed for 30 min using a roller mixer.  

Later, every pre-calibrator level of retinol was mixed with an equivalent pre-calibrator level 

of α-tocopherol to form a combined calibrator level. Each combined calibrator contained 

retinol and α-tocopherol analytes at different concentrations (retinol: 0.2, 0.8, 1.4, 2, 2.6, 3.2 

and 4 μmol/L; α-tocopherol: 6, 12, 20, 28, 35, 43 and 50 μmol/L). The seven calibrator levels 

were mixed gently for 1 h using the roller mixer. Every single calibrator level was then 

aliquoted (110 μL) into a labelled polypropylene tube (1.5 mL) and stored at -80°C. 

Standard curves for both analytes were generated and showed consistent linearity (r
2
>0.999) 

(Figure  3-12). Quality control results were successfully monitored using a Levey–Jennings 

chart with respect to manufacturer-assigned values and Westgard rules through the project. In 

addition, this calibrator set was used to report vitamin A and E results of the external quality 

assurance samples to the Royal College of Pathologists of Australasia Quality Assurance 
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Programs (RCPAQAP). Based on RCPAQAP reports (cycle 27, 2013), our method 

imprecision was 9.3% and 5.9% for vitamin A and E, respectively (Figure  3-13). It is 

worthwhile to mention that the imprecisions were later improved at the end of method 

development and validation, as detailed later in this chapter. 

Another set of seven calibrator levels was also prepared for the three 25-OHD analytes (25-

OHD3, epi-25-OHD3 and 25-OHD2), retinol and α-tocopherol using SeraCon-DD matrix. 

This matrix was spiked with the five FVS analytes to prepare calibrator 1 (cal-1: a 

concentration of 4.0 nmol/L for 25-OHD3, epi-25-OHD3 and 25-OHD2; and 0.10 μmol/L 

and 6.0 μmol/L for retinol and α-tocopherol, respectively). The calibrator 7 (cal-7: a 

concentration of 200.0 nmol/L for 25-OHD3, 160.0 nmol/L for epi-25-OHD3 and 25-OHD2, 

4.0 μmol/L and 71.5 μmol/L for retinol and α-tocopherol respectively) was made. The two 

calibrators were gently mixed using a roller mixer for 1 h prior storing them at 4ºC on 

crushed ice overnight. The next day, they were kept at RT and then mixed for 30 min.  

The other five calibrator levels were generated by mixing cal-1 and cal-7 in different 

proportions. The final level concentrations were 4.0, 9.9, 23.6, 62.8, 102.0, 160.8, and 200.0 

nmo/L for 25-OHD3; 4.0, 8.7, 19.6, 50.8, 82.0, 128.8 and 160.0 nmo/L for the epi-25-OHD3 

and 25-OHD2; 0.1, 0.2, 0.5, 1.3, 2.1, 3.2, 4.0 μmol/L for the retinol; and 6.0, 8.0, 12.5, 25.6, 

38.7, 58.4 and 71.5 μmol/L for the α-tocopherol. Later, each calibrator level was mixed and 

aliquoted (110 μL) into labelled polypropylene tubes (1.5 mL) and stored at -80ºC. 

The in-house FSV calibrator set was investigated in eight batches on non-consecutive days. 

Standard curves were linear (r
2
 >0.992) for all analytes. However, the commercial control 

results for retinol were not consistent with the manufacturer-assigned values for retinol 

(Table  3-3). This was an indication of unsuitability of the SeraCon-DD matrix for the entire 
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FSV in-house calibrator preparation. In other words, this in-house calibrator was not 

commutable with routine samples for retinol, and it did not fit our purpose.  

To summarise, we initially aimed to generate a single in-house calibrator set for all the FSVs. 

However, our trials were not successful because of matrices inappropriate for this purpose. 

Consequently, the separate commercial calibrator sets for vitamin D analytes (from RECIPE) 

and for vitamins A and E (from Bio-Rad) were examined as the alternative.       

  



  

85 

 

 

a) Retinol standard curve using in-house vitamin A and E calibrators 

 

b) α-tocopherol standard curve using the in-house vitamin A and E calibrator set 

Figure  3-12. Standard curves for retinol and α-tocopherol using in-house vitamin A and E calibrator set. 

In-house vitamin A and E calibrator set was prepared from sercon-DL matrix that was free from endogenous 

vitamins A and E. Standard curves were created using the in-house calibrator set for a) retinol and b) 

α.tocopherol. Seven concentration points were plotted in the standard curves with linearity (r
2
 >0. 999) using 

LC-MS/MS-6490. 
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 a) Retinol      b) α-Tocopherol 

Figure  3-13. External quality assurance for vitamin A and E. 

These graphs were obtained from RCPAQAP end of cycle 27 reports for vitamins A (retinol) and E (α-

tocopherol) based on analysis of RCPA samples using the in-house calibrator for vitamin A and E. These graphs 

depict the regression line of our LC–MS/MS method as a red line compared to the all participant regression 

lines (n = 24) for a) vitamin A and b) vitamin E. Our method imprecision was 9.3% and 5.9% for vitamin A and 

E  respectively. 

 

Table  3-3. Monitoring of FSV controls results using in-house FSV calibrator set. 

The in-house FSV calibrator set was prepared using SeraCon-DD matrix, which was free of endogenous FSVs, 

and examined by monitoring the FSV results of commercial controls as part of our calibrator set evaluation. 

This table demonstrates manufacturer-assigned values versus mean results of 25-OHD3, 25-OHD2, retinol and 

α-tocopherol obtained from analysis of eight control batches on non-consecutive days. The control results for 

retinol were not consistent with manufacturer-assigned values. In addition, the analyte imprecision results, 

especially for retinol, were high. This indicates the inappropriateness of a SeraCon-DD matrix for all vitamins.  

  25-OHD3 25-OHD2 Retinol α-Tocopherol 

  nmol/L nmol/L µmol/L µmol/L 

Control QC1 QC2 QC3 QC1 QC2 QC3 QC1 QC2 QC3 QC1 QC2 QC3 

Assign value 29 78 175 30 75 180 0.5 1.6 4.0 7 24 55 

Mean 29 84 175 27 84 178 0.8 2.2 4.6 8 25 55 

SD 2.3 2.9 6.6 2.8 2.5 13.8 0.1 0.2 0.6 1.1 1.5 2.8 

CV% 7.9 3.5 3.8 10.5 3 7.8 11.9 11.4 12.9 13.6 6.1 5.1 
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3.2.4.2 Commercial calibrators 

Two commercial calibrators were investigated. A multilevel calibrator set for 25-OHD2 and 

25-OHD3 (traceable to SRM 972, from RECIPE) was explored. Also, a uni-level calibrator 

for vitamins A and E (traceable to SRM 968e, from Bio-Rad) was tested.  

Standard curves, which showed excellent linearity (r
2
>0.999), were generated for analysis of 

25-OHD analytes (Figure  3-14) and for retinol and α-tocopherol (Figure  3-15). Quality 

control results were successfully monitored using a Levey–Jennings chart with respect to the 

manufacturer-assigned values and Westgard rules (152). In addition, EQA reports showed 

excellent method performance was achieved using these calibrators. More details are 

discussed in the method validation section of this chapter. Therefore, these calibrators were 

used to conduct the studies detailed in the next chapters.  
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a) Standard curve used for 25-OHD3 and its epimer 

 

b) Standard curve used for 25-OHD2 

Figure  3-14. Typical standard curves for 25-hydroxyvitamin D analytes. 

Typical standard curves were generated for a) 25-OHD2 and b) 25-OHD3 using a commercial calibrator from 

Recipe, which was traceable to NIST SRM-972. The standard curves showed excellent linearity (r
2
 >0. 999) 

using four concentration points.  
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Vitamin A and E calibrator (Bio-Rad) 

 

a) Retinol standard curve  

 

b) α-tocopherol standard curve  

Figure  3-15. Typical standard curves for retinol and α-tocopherol. 

Typical standard curves were generated for a) retinol and b) α-tocopherol using dilutions of commercial 

calibrator from Bio-Rad, which was traceable to NIST SRM-968e. The standard curves showed excellent 

linearity (r
2
 >0. 999) using the four concentration points. 
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3.2.5 Method validation studies 

Method validation is an essential process aimed of providing objective evidence of method 

suitability for its intended use. In the current study, the FSV quantification methods were 

validated by using two Agilent LC-MS/MS systems. Method linearity, imprecisions, 

sensitivity, recovery, ion suppression and carryover were examined. All experiments of the 

validation process were conducted based on the final sample protocol and analysis as detailed 

in Chapter 2, sections 2.6 –2.8. 

3.2.5.1 Standard curves 

Method standard curve were generated for each run batch to quantify target analytes in blank 

(without ISTDs), blank-ISTDs (with ISTDs), quality controls and unknown samples. 

Standard curves for 25-OHD2 and 25-OHD3 were created using the RECIPE calibrator for 

25-OHD2 and 25-OHD3, as mentioned earlier. Due to the unavailability of a commercial 

calibrator for epi-25-OHD3, the standard curve of the 25-OHD3 was also used for 

quantification of epi-25-OHD3, as both have similar physical and chemical properties. The 

standard curves for retinol and α-tocopherol were made using a Bio-Rad calibrator. The 

correlation coefficient (r
2
) was > 0.999 for each calibration curve used in FSV quantification. 

The curve plots were not forced to origin and calculated using 1/x weighting (Figure  3-14, 

Figure  3-15) (116). 

3.2.5.2 Reportable range 

Reportable range is the ability of a measurement assay within a specific analyte concentration 

range to generate results that are directly proportional to the analyte concentration in specific 

samples (153).  For this study, seven concentration levels of each analyte, which covered 

more than the common clinical FSV concentration ranges, using samples prepared for in-
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house calibrators against the Recipe and Bio-Rad calibrators were used to determine the 

reportable range. The analytical linear ranges (at least) were 4–200 nmol/L for 25-OHD3, 4–

160 nmol/L for epi-25-OHD3 and 25-OHD2, 0.2–4.0 μmol/L for retinol and 6–72 μmol/L for 

α-tocopherol (Figure  3-16, Figure  3-17). 
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Figure  3-16. Reportable range of 25-OHD analytes in FSV methods. 

These graphs show Reportable range of the 25-OHD3 (4-200 nmo/L, r
2
=0.999) and its epimer (4-160 nmo/L, 

r
2
=0.999) and 25-OHD2(4-160 nmo/L, r

2
=0.992).   
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Figure  3-17. Reportable range of retinol and α-tocopherol in FSV methods. 

These graphs show Reportable range of the retinol (0.1-4.0 μmo/L, r
2
=0.997) and α-tocopherol (6-72 μmo/L, 

r
2
=0.998). 

  



  

94 

 

3.2.5.3 Imprecision 

Imprecision is an essential element of the method validation and indicates closeness of 

agreement among the analyte results when samples are repeatedly analysed using a specific 

analytical method. The following study aimed to determine the method intra-run imprecision 

(repeatability within-run) and inter-run imprecisions (repeatability between-runs) for each 

investigated analyte using the developed methods. 

For the vitamin A/E method, the intra-imprecision study was conducted using RCPAQAP 

material (n=15; vitamin program, cycle 26, samples 26.06 and 26.09). These samples were 

prepared based on the final sample preparation protocol and sample analysis (see Chapter 2, 

sections 2.7, 2.8 and 2.9). It was found that the intra-run imprecision for α-tocopherol was 

4.8% at 34 μmol/L and 3.0% at 51 μmol/L, while the inter-run imprecision was 8.1% at 22 

μmol/L and 5.8% at 53 μmol/L. In contrast, because of using retinol acetate as ISTD, the 

retinol imprecision was not satisfied (<17.5%). However, this was improved after using 25-

OHD3-d3, as revealed by the RCPAQAP end-of-cycle report (over all imprecision: 9.3% for 

vitamin A and 5.9% for vitamin E) (Figure  3-13).  

The intra-run imprecisions for FSV method-1 and 2 were determined using serum samples 

spiked with FSVs and the three control, respectively. The inter-run imprecision of the FSV 

methods 1 and 2 was determined based on the cumulative data generated from running three 

control sets with every batch for at least 20 days, unless otherwise mentioned. All the 

samples were prepared and analysed according to the final sample preparation protocol and 

sample analysis (see Chapter 2, sections 2.7, 2.8 and 2.9). The imprecision results for the two 

methods were detailed in Table  3-4 and Table  3-5.  
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Table  3-4. Analyte imprecision for FSV method-1. 

This table shows intra-run and inter-run imprecision of the five FSV analytes using FSV method-1 utilising 

Agilent LC-MS/MS 6490. 

Compound 

Intra-run imprecision Inter-run imprecision 

n=15 n¶=15 

Low Mid High Low Mid High 

25-OHD3  

CV% ( mean nmol/L)  
4.3 (48)  2.5 (98)  2.2 (187) 7.8 (27) 7.2 (77) 4.5 (167) 

3-epi-25-OHD3 

 CV% ( mean nmol/L) 
5.4 (40) 2.5 (78) 2.0 (152) 14.3 (16)  8.0 (50) 7.8 (148) 

25-OHD2  

CV% ( mean nmol/L) 
4.2 (50) 4.2 (80) 2.2 (160) 8.1 (26) 6.8 (71) 5.5 (148) 

Retinol 

 CV% ( mean nmol/L) 
5.9 (0.2) 3.7 (0.5) 3.5 (3.50) 8.6 (0.5) 6.7 (1.7) 6.9 (3.7) 

α-Tocopherol 

 CV% ( mean nmol/L) 
 4.5 (9) 5.5 (34) 3.0 (66) 7.1 (6) 5.8 (23) 5.2 (54) 

¶ Samples were analysed in one replicate a day over 15 non-consecutive days for all metabolites. 

 

Table  3-5. Analyte imprecision for FSV method-2. 

This table shows intra-run and inter-run imprecision of the five FSV analytes using FSV method-1 utilising 

Agilent LC-MS/MS 6410. 

Compound 

Intra-run imprecision Inter-run imprecision 

n=15 n=30 

Low Mid High Low Mid High 

25-OHD3  

CV% ( mean nmol/L)  
4.7 (25) 3.14 (68) 2.64 (150) 3.3 (26) 3.1 (73) 3.1 (162) 

3-epi-25-OHD3 

 CV% ( mean nmol/L) 
6.5 (11) 4.4 (46) 3.2 (142) 5.2 (11.6) 4.8 (46) 3.9 (141) 

25-OHD2  

CV% ( mean nmol/L) 
8.0 (20) 4.9 (57) 3.9 (128) 9.5 (22.6) 7.6 (65) 5.4 (141) 

Retinol 

 CV% ( mean nmol/L) 
4.7 (.51) 3.8 (1.67) 2.9 (3.39) 5.4 (0.51) 5.3 (1.54) 4.7 (3.41) 

α-Tocopherol 

 CV% ( mean nmol/L) 
5.5 (5) 4 (21) 4.4 (54) 7.4 (6) 6.2 (22) 5.8 (52) 
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3.2.5.4 Recovery  

The recovery study purposed to evaluate the amount of analyte recovered post-sample 

preparation. Spiked and non-spiked human serums were used this study. The serum samples 

used were prepared as follows. The serum was completely thawed, equilibrated to RT, and 

then mixed for 30 min. The serum was then spiked with FSV at concentrations of 140 nmol/L 

for both 25-OHD2 and epi-25-OHD3, 130 nmol/L for 25-OHD3, 0.5 μmol/L for retinol and 

10 μmol/L for α-tocopherol. The spiked and non-spiked serums were gently mixed using a 

roller mixer for 1 h. They were then stored in the refrigerator overnight at 4°C on crushed ice. 

The next day, the samples were equilibrated to RT and mixed for 30 min prior to preparation 

and loading into the LC-MS/MS. The recovery results were 87% for 25-OHD3, 94.1% for 

epi-25-OHD3, 112.9% for 25-OHD2, 91% and 100.9% for α-tocopherol.  

The analyte recovery percentage (R%) was determined by calculating the concentration 

difference between the analytes measured in the spiked and non-spiked serums divided by the 

concentration added to the spiked serum: 

Equation  3-1. Calculation of analyte recovery 

Recovery (R%) =
𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 − endogenous concentration 

Concentration added
× 100 

3.2.5.5 Sensitivity 

The sensitivity of the analyte measurement by LC-MS/MS was evaluated by calculating the 

limit of detection (LoD) and limit of quantification (LoQ). According to the Clinical and 

Laboratory Standards Institute (CLSI), LoD is defined as the "lowest amount of analyte in a 

sample that can be detected with (stated) probability, although perhaps not quantified as an 

exact value" (118). LoQ is defined as the "lowest amount of analyte in a sample that can be 

quantitatively determined with stated acceptable precision and trueness, under stated 
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experimental conditions" (118). In the current work, LoD was considered at the lowest 

analyte concentration at which the analyte peak was detected at a signal-to-noise ratio (S/N) ≥ 

3. That concentration was more than 3SD of analyte concentration in blank. The LoQ was 

considered at the lowest analyte concentration at which the analyte peak was detected at S/N 

≥10, and method imprecision and accuracy were at < 20% and 80–120%, respectively (116). 

To determine the LoD and LoQ, three sets of samples with different FSV analyte 

concentrations were prepared according to Honour's recommendations with minor 

modifications (116). The first sample set was prepared to determine the LoD and LoQ of 25-

OHD2 and 25-OHD3 using the low level of vit D control, which was diluted with Milli-Q 

water at different diluting factors (1/2, 1/4, 1/8 and 1/16) and then mixed. The second sample 

set was used to test the method sensitivity of the epi-25-OHD3 analysis. This sample set was 

prepared by diluting the low level of vit epi-D with Milli-Q water in two diluting factors (1/3 

and 1/5) and then mixing. The third sample set was prepared to determine the method's 

sensitivity to retinol and α-tocopherol analysis using low level of the vitamin A/E controls, 

which was diluted with Milli-Q water in different diluting factors (1/2, 1/4 and 1/8) and then 

mixed.  

All controls and diluting samples were mixed using a roller mixer for 30 min prior to 

conducting the sensitivity studies. Each low control level sample, diluted sample and blank 

were prepared in triplicate according to the final sample preparation protocol and sample 

analysis (see Chapter 2, sections 2.7, 2.8 and 2.9). The determined LoD and LoQ for each 

analyte are illustrated in detail in Table  3-6. 
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Table  3-6. Method sensitivity using Agilent 6490 and Agilent 6410. 

Compound Agilent 6490 Agilent 6410 

 LoD† LoQ†† LoD† LoQ†† 

25-OHD3 (nmol/L) 1.7 3.4 2 3.5 

3-epi-25-OHD3 (nmol/L) 1.9 3.8 2 3.5 

25-OHD2 (nmol/L) 1.6 3.3 2.5 5 

Retinol (µmol/L) 0.1 0.1 0.1 0.16 

α-Tocopherol (µmol/L) 1 2 1 3 

† LoD: Limit of Detection, †† LoQ: Limit of Quantitation  

 

3.2.5.6 Ion suppression 

Phospholipids are encountered as one of the causes of ion suppression in chromatographic-

mass spectrometry methods, because of their obstruction of the efficiency of ionisation. 

Phospholipids are endogenous biological matrices, and they should be minimised through 

sample clean-up.  Therefore, potential ion suppression from phospholipids was progressively 

monitored through two transition ions (104→104 and 184→184) (116). It was found there 

was no chromatographic effect on FSV peaks (Figure  3-18). 

 

Figure  3-18. Effect of phospholipids on FSV separation. 

Phospholipids are considered a potential cause of ion suppression, whereby they impede the efficiency of 

ionisation. Therefore, ion suppression from phospholipids was progressively monitored through two 

transition ions (104→104 and 184→184). This chromatogram shows that there was no chromatographic 

effect on FSV peaks.  
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3.2.5.7 Carryover 

This study aimed to investigate the potential impact of a previous sample analysis on 

subsequent sample results, because carryover influences method imprecision and inaccuracy. 

Based on the Honour recommendations (116),  carryover was assessed using samples with 

low and high FSV concentration levels. The SeraCon-DD and human serum spiked with 25-

OHD2, 25-OHD3 and epi-25-OHD3 were used as the samples with low and high FSV 

content, respectively.  

These samples were prepared according to the final sample preparation protocol. The low-

level sample was injected 10 times sequentially; then the high and low samples were 

alternately injected 10 times. The carryover was evaluated based on the mean difference 

between concentration obtained from the sequential and alternate injections. The mean 

analyte concentration of the sequential and alternate injections and the percentage difference 

the two injection groups were calculated. It was observed that carryover was less than 0.55% 

over all investigated analytes (25-OHD2 and epi-25-OHD3 (0.1%), 25-OHD3 (0.55%), 

retinol (0.01%) and α-tocopherol (0.13%)).  
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3.2.6 External quality assurance 

The performance of simultaneous FSV quantification methods was progressively evaluated. 

Our laboratory participated in two external quality assurance (EQA) programs since 

beginning of method development. The two programs (Endocrine and Vitamins programs) 

were offered by RCPAQAP. 

Our laboratory joined the Endocrine program (for 25-OHD3 and other 17 analytes) and 

Vitamin program (for retinol, α-tocopherol and 3 other analytes) from RCPAQAP. The last 

RCPAQAP reports showed good method performance, which reflects the final sample 

preparation protocol and FSV methods 1 and 2 performances. The simultaneous FSV method 

imprecision (coefficient of variation, CV%) and inaccuracy (average bias) were 3.0% and 3.2 

nmol/L, respectively, for 25-OHD3 based on the end-of-cycle report (cycle 41, 2014); 5.0% 

and 0.04 μmol/L, respectively, for retinol; and 4.7% and 0.2 μmol/L, respectively, for α-

tocopherol according to the end-of-cycle report (cycle 29, 2013) (Figure  3-19, Figure  3-20, 

Figure  3-21). 

  



  

101 

 

 

 a)       b) 

Figure  3-19. Typical external quality assurance report for 25-OHD. 

a) 41 RCPAQAP end-of-cycle report for 25-OHD3 (Vitamin D3) shows results obtained by our laboratory 

compared with target values. Results within the white area are within allowable limit of performance; b) 41 

RCPAQAP end-of- cycle report for 25-OHD3 demonstrates the regression line of our LC–MS/MS method, the 

red line, compared to all participant regression lines (n = 97). The other 96 laboratories measured vitamin D3 by 

immunoassay and LC-MS/MS platforms.  
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 a)       b) 

Figure  3-20. Typical external quality assurance report for retinol. 

a) 29 RCPAQAP end-of- cycle report for vitamin A (retinol) shows results obtained by our laboratory compared 

with all participants’ median. Results within the white area are within allowable limit of performance; b) 29 

RCPAQAP end-of- cycle report for vitamin A demonstrates the regression line of our LC–MS/MS method, the 

red line, compared to all participants’ regression lines (n = 24). The other 23 laboratories’ reports measured 

vitamin A by HPLC with UV/Vis or PDA detection.  
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 a)     b) 

Figure  3-21. Typical external quality assurance report for α-tocopherol. 

a) 29 RCPAQAP end-of- cycle report for α-tocopherol (vitamin E) show results obtained by our laboratory 

compared with all participant median. Results within the white area are within allowable limit of performance; 

b: 29 RCPAQAP end-of- cycle report for vitamin E demonstrate the regression line of our LC–MS/MS method, 

the red line, compared to all participants’ regression lines (n = 24). The other 23 laboratories’ reports measured 

vitamin E by HPLC with UV/Vis or PDA detection.  
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3.3 Discussion 

In this study, we introduced the precise simultaneous fat-soluble vitamin (FSV) measurement 

procedure for quantification of the five FSV analytes. This procedure entailed development 

of the sample preparation protocol for FSV extraction from serum and the establishment of 

the simultaneous FSV quantification methods using two LC-MS/MS systems. Several 

technical issues in the simultaneous FSV measurement procedure were explored during 

development. Furthermore, this procedure was independently evaluated by participation in 

two RCPAQAP programs, including the Endocrine and Vitamin programs. The current 

section discusses challenges and results of the overall procedure in the development process.  

3.3.1 Sample preparation 

Serum sample preparation for LC-MS/MS analysis is not done just to extract the FSV from 

blood but also to reduce the matrix effect. For example, endogenous protein and 

phospholipids affect the quality of analyte chromatographic separation, ionisation and mass 

spectrometry quantification (113). Hence, the performance of the LC-MS/MS method is 

strongly influenced by the extent of sample clean-up. In this work, PPE and LLE were used 

in the sample preparation. The PPE is useful for eliminating sample proteins and to liberate 

the hydrophobic vitamins from their binding proteins. The LLE is required for further sample 

cleaning-up by separating the compounds based on their solubility in a specific organic 

solvent (154). Both techniques are commonly used for human serum FSV extraction prior to 

chromatographic analysis (142, 155) (Table  3-7, Table  3-8, Table  3-9).  

Several organic solvents are classically used for PPE and LLE in HPLC methods; 

nonetheless, not all organic solvents are compatible with the LC-MS/MS systems. 

Acetonitrile, ethanol and methanol are water-miscible with close polarity to each other and 
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are routinely utilised for serum protein precipitation (130, 155). During the development 

stage, we chose the organic solvents that are compatible with LC-MS/MS analysis. Methanol 

was used in the PPE process because it is the same solvent that was used in preparation of  

FSV stocks including deuterated ISTDs, and miscible with hexane (for LLE) as well as it is 

compatible with mobile phases. For LLE of interesting vitamins, hexane is a common 

extraction solvent (130, 142) because it is water-immiscible and lighter than both water and 

methanol. The mixture of hexane with another organic solvent, such as 2-propanol, has been 

used for vitamin D extraction (138, 145, 146). This 2-propanol is miscible with water, 

methanol and hexane, and it is lighter than water. These physical properties of these solvents 

may improve FSV extraction from serum. However, our experiment showed better extraction 

for 25-OHD analytes and retinol (but not for α-tocopherol) with the absolute hexane 

compared to the mixture with 2-propanol. Accordingly, hexane was used as an extraction 

solvent because of its better recovery in retinol and low levels of 25-hyroxylated vitamin D 

analytes.  

The current study also investigated the effect of adding water to the serum prior to sample 

preparation to explore some knowledge gaps (81). We found that the FSV extraction was 

improved with water added to the serum sample. Potentially, the addition of equivalent 

volumes of the aqueous phase and organic phase during the early sample preparation stage 

may offer a better opportunity to extract liberated hydrophilic analytes into the hexane layer 

during the vortexing of the sample.  

Internal standard 

Internal standards (ISTDs) are utilised for the accuracy and precision of analytical methods. 

One of advantages of mass spectrometry technology is that compounds and their isotopes 

(ISTDs) are distinguished based on their mass to charge ratio differences (81, 116, 155). This 
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allows elution of interested compound and its isotope to be at the same the retention time, 

which is benefit for analyte quantification using mass spectrometry.  However, one practical 

challenge of the ISTD choice is the availability of matched stable isotopes at a reasonable 

price (81, 116, 155).  

In the current work, stable isotopic-labelled ISTDs were successfully utilised, including the 

25-OHD3-d3 (for quantification of the three 25-hydroxylated vitamin D analytes) and α-

tocopherol-d6 (for quantification of α-tocopherol). For retinol quantification, retinol-d5 and 

retinol acetate were investigated as potential retinol ISTD but they did not work well because 

of their instability and different reaction behaviour respectively. The 25-OHD3-d3 was found 

that it is an optimal alternative ISTD because it had the closest retention time to retinol (81). 

This work introduced 25-OHD3-d3 as a reasonable and effective solution for retinol 

quantification with precise results.  

The number of deuterated sites is important for method specificity. Triplet to hexa-deuterated 

ISTD is recommended but not di-deuterated ISTD, which may be naturally present in 

samples and that leads to false increasing in deuterated ISTD detection (156). In the present 

study, the tri-deuterated 25-OHD3 (transition ions: 404→386) was chosen instead of hexa-

deuterated 25-OHD3 to avoid potential interferences. Transition ions 407→389 and 407→159 

used for hexa-deuterated 25-OHD3 might be interfered with isobars that could be formed 

during the fragmentation process (138, 150). Since the inception of this study some LC-

MS/MS advocates have critiqued the use of the higher isotopic ISTDs as their 

chromatographic behaviour may be slightly different to the analyte of interest. We did not 

find this to be an issue in α-tocopherol-d6 for vitamin E quantification based on the method 

performance evaluation including the external quality assurance reports.   
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Traditional ISTDs used in HPLC methods are usually chosen partially based on the criterion 

that ISTDs and target analytes are detected at the same emission wavelength, therefore, they 

are not necessarily recommended ISTDs for LC-MS/MS methods. Non-isotope ISTDs for 

quantification of hydroxylated vitamin D analytes were utilised by few methods (138, 157, 

158). These ISTD types are not recommended for chromatographic-mass spectrometry 

methods, as they are co-eluted at significantly different retention times (155). Major 

discrepancies in the retention time and chemical structure of analyte and its matched non-

isotope ISTD reflect their different physicochemical behaviours during sample analysis. This 

problem was observed when we explored retinol acetate (classic retinol ISTD in HPLC 

methods) as ISTD for retinol as expected.  

Calibration 

Choosing an appropriate matrix matched calibrator is a crucial part of method development 

(discussed in Chapter 5). In the current work, we initially aimed to generate an in-house 

calibrator set for the five target FSV analytes and then tracing them to available reference 

material from the National Institute of Standards and Technology (NIST). This process 

allows generating calibrator set for the target five FSV analytes with wide range of analyte 

concentration levels that are not commercially available. Also, it significantly reduces 

calibration costs by dispensing with two separate commercial calibrators (a set for vitamin D 

analytes not including epi-25-OHD3 and another set for retinol and α-tocopherol). However, 

the main issue was to find a suitable matrix that was free from endogenous FSV. 

For this purpose, we gravimetrically prepared in-house calibrator sets using pure chemical of 

FSV with two matrices: SeraCon-DL and SeraCon-DD, however, neither were suitable for 

the entire FSVs. SeraCon-DL contained endogenous 25-OHD3 but almost free from retinol 

and α-tocopherol. Hence, SeraCon-DL was suitable matrix to generate in-house calibrator set 
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for retinol and α-tocopherol but not for 25-OHD3. It seems that stripped delipidation process 

of the SeraCon-DL was not enough to eliminate endogenous 25-OHD3 of serum as it is 

proved to be difficult task (159).  

While the Sercone-DD matrix was free from endogenous target FSVs, the in-house calibrator 

set prepared using the Sercone-DD matrix did succeed in validation processes. By using this 

in-house calibrator set, retinol results of the commercial controls were not consistent with the 

manufacturer-assigned values for retinol. This was an indication of unsuitability of the 

SeraCon-DD matrix for the entire FSV in-house calibrator preparation. In other words, this 

in-house calibrator was not commutable with routine samples for retinol, and it did not fit our 

purpose. The extensive process of vitamin D depletion conducted in Sercone-DD matrix may 

have affected retinol-binding proteins, which is required for the stability of spiked retinol. 

Since the combined prepared in-house calibrator set for FSVs was unsuccessful, we used two 

commercial calibrators from RECIPE (for 25-OHD2, 25-OHD3 and epi-25-OHD3) and from 

Bio-Rad (for retinol and α-tocopherol).  

3.3.2 Liquid chromatography-mass spectrometry  

The LC-MS/MS separation technology is considered to be highly sensitive because of its 

integrated powers of liquid chromatography and mass spectrometry. However, simultaneous 

FSV quantification using LC-MS/MS encounters several challenges, including the selection 

of suitable column and ionisation type, especially with non-polar or weak polarity molecules 

and interferences (e.g. isobars). 

Columns 

The C18 columns are classically used for the chromatographic separation of FSV, especially 

for vitamins A and E (142, 148, 149, 160, 161). However, this column does not have 
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selectivity for adequate separation of epimers. The epimer of 25-OHD3,which is present in 

the majority of human serum samples (134-141), has become important to be quantified to 

avoid misleading of vitamin D results. Alternative column types, such as Chiral, cyanopropyl 

(CN) and  particularly pentafluorophenyl (PFP) have been used in several recently published 

methods  demonstrating ability to resolve epi-25-OHD3 from 25-OHD3 (134, 138, 141, 145, 

146, 162, 163).  By using PFP column, analyte separation takes longer compared with the 

C18 column (164). Generally, a longer run time improves analyte signal intensity and 

increases S/N although both sample clean-up and chromatographic optimisation are crucial to 

improve method sensitivity (114).  

In this study, we investigated C18 and PFP columns; the latter demonstrated better 

chromatographic resolution for the entire FSVs. Although retinol and α-tocopherol were 

successfully resolved with a low injection volume (1 μL) using the C18 column, 25-OHD2 

and 25-OHD3 were not sufficiently resolved even with higher injection volume, which 

compromised the resolution of the retinol and α-tocopherol peaks. This may be due to 

selection of a short C18 column (20 mm) that had insufficient power to eliminate ion 

suppression (as discussed later). We did not test a longer C18 column, as it was unlikely to 

separate the isomer of 25-OHD3 (164). Though 25-OHD2 and 25-OHD3 are co-eluted earlier 

compared to the PFP and CN columns (164), the C18 column is readily contaminated, and 

this increases baseline noise (165). We found that the C18 column used in our vitamin A/E 

method had a shorter life (≈ 1000 injections) compared with the PFP column used in our FSV 

methods 1 and 2 (>3000 injections).  

The flow rate of mobile phases impacts on peak resolution and ionisation, and both influence 

method sensitivity. A low flow rate (≤ 0.2 mL/min ) improves molecule ionisation and 

columns with 1.0 to 2.1 mm diameter are suitable for this purpose (113). Using capillary 
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tubes in the LC system has been suggested for improving chromatographic resolution and 

sensitivity (113). In this study, we found that 0.2 mL/min was the optimal flow rate for 

symmetrical peaks resolution of analytes using the PFP column (2.1 mm diameter). In 

addition, we minimised the dead volume by using short capillary tubes with a small internal 

diameter (in the LC system as much as practicable. 

Ionisation 

The ionisation process is critical for the specificity and sensitivity of mass spectrometry 

analysis. This process converts molecules [M] to charged ions, and the molecule [M] usually 

accepts a proton [M+H]
+ 

or loses a proton [M-H]
-
. The ionisation process can be influenced 

by ion suppression or ion enhancement. The mobile phase buffer or any other additives, 

which are used to improve chromatography, may interfere with the ionisation process and 

cause ion suppression or ion enhancement (166).  

Two types of ionisation, which are commonly used in ion sources for biological samples 

(167), include electrospray ionisation (ESI) and atmospheric pressure chemical ionisation 

(APCI) (151). Both are considered as a soft ionisation as low electrical energy is applied to 

molecules during the ionisation process to avert excessive molecule fragmentation (113). We 

developed our LC-MS/MS methods using positive ESI, which is more commonly used for 

vitamin D analyte quantification (155), especially in recently published studies (Table  3-9). 

The APCI may contribute conversion of some vitamin D metabolites, such as 25-

hydroxyvitamin D3 sulphate
6
 to 25-OHD3 (169). This conversion was overcome by using 

ESI (138). 

                                                 

6
 25-hydroxyvitamin D3 sulphate

 
is a blood circulating metabolite (168) 
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Interferences 

Quantification of FSVs using LC-MS/MS methods encounter potential interferences, such as 

isobars and epimers (155). Isobars and epimers are compounds that form the same m/z of the 

target compound during the ionisation and fragmentation process. For 25-OHD3, 1-OHD3 

and 7α-hydroxy-4-cholesten-3-one (endogenous and therapeutic agent isobars, respectively) 

as well as the epimer of 25-OHD3 were reported as possible interferences (138). These 

Isobars and isomers could cause chromatographic overlap, especially in short 

chromatographic run times (170). In our FSV methods, we utilised the PFP column, which is 

capable of separating 25-OHD3 and its epimer as well as 25-OHD2, retinol and α-tocopherol. 

Furthermore, the potential isobars (1-OHD3 and 7α-hydroxy-4-cholesten-3-one) for 25-

OHD3, were chromatographically excluded, as they are co-eluted of different retention times 

(138).   

Another potential source of interference in the mass spectrometry method was the tubes used 

in the sample preparation. We observed that one brand of polypropylene tube (Biocentrix) 

showed higher responses of 25-OHD3 (ion enhancement) compared to the other investigated 

brand of polypropylene tubes (Sarstedt) and glass tubes by 12% and 25% respectively. In 

contrast, the first polypropylene brand showed lower responses (ion suppression) of retinol 

by 15% and 7% compared with other polypropylene brand and glass tubes respectively. 

Furthermore, α-tocopherol responses were lower when Biocentrix tubes (-44%) and Sarstedt 

tubes (-40%) were used compared to glass tubes. Chen and colleagues examined two brands 

of polypropylene tubes and two types of glass tubes. They found that one polypropylene tube 

brand caused ion enhancement when using transition ions 401→383, while the other 

polypropylene tube brand and the investigated glass tubes showed no interference (150). The 

ion suppression and enhancement affect the linearity of the standard curves. Clare and 
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colleagues reported that quantification of 25-OHD3 and 25-OHD2 using transition ions 

401→383 and 413→395 respectively, showed unsatisfactory analyte chromatography and 

imprecision (145), but they did not state the type of tubes used in their method. Furthermore, 

it was recently reported that there was no significant difference between mean 25-OHD3 

results obtained utilising water loss transition ions versus  alternative transition ions used for 

25-OHD3 quantification across 65 laboratories (171). 

Phospholipids 

Phospholipids could be a source of interference (ion suppression) due to their effect on 

ionisation efficiency. An accumulation of phospholipids on the chromatographic columns 

reduces column lifespans and may cause changes in retention time. Optimal sample clean-up 

should minimise the phospholipid content in the analysed specimen. Furthermore, sample 

clean-up and chromatographic optimisation are crucial for improving detection and 

sensitivity (114). Therefore, it is strongly recommended to check the transition ions of 

phospholipids (104→104 and 184→184) in prepared samples for analysis (116). In the 

current method, these transition ions were monitored in prepared serum samples (cleaned-up 

samples), and there were no coeluted phospholipids with our interested analytes. This is an 

indication of optimal sample extraction..   

3.3.3 Method performance  

Our FSV methods showed good performance, including sensitivity, imprecision and 

reportable ranges for the five analytes. These were compared with peer method groups by 

participating in quality assessment programs (RCPAQAP) for 25-OHD3, retinol and α-

tocopherol. Based on the RCPAQAP reports, our simultaneous FSV methods displayed 

excellent imprecision (3.0%, 5.0% and 4.7% for 25-OHD3, retinol and α-tocopherol, 
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respectively) and inaccuracy (average bias, 3.2 nmol/L, 0.04 μmol/L and 0.2 μmol/L for 25-

OHD3, retinol and α-tocopherol, respectively).  

There are previously published methods simultaneous quantified vitamins D, A and E (148, 

149). Comparing performance of our method with these published methods is demanding 

because of limited data provided of these published methods. Priego-Capote and colleagues 

(2007) created a detection method for 25-OHD3, 25-OHD2, retinol and α-tocopherol as well 

as six other metabolites (148). However, Priego-Capote and colleagues did not utilise 

isotope-labelled ISTD and qualitative transition ions in their method. This raised doubts 

about their method’s reported performance. Furthermore, they used a serum sample volume 

of 1000 µL, which is a large sample volume, especially for compromised patients. They 

provided a limited amount of data for validating the method. Conversely, Midttun and 

colleagues (2011) developed a method that utilised isotope-labelled ISTD and qualitative 

transition ions with a relatively small sample volume (50 µL) to quantify 25-OHD3, 25-

OHD2, retinol and α-tocopherol (149). However, none of these methods resolved the epimer 

of 25-OHD3, which has become a more important issue in clinical laboratories; both method 

were not independently evaluated EQA programs (Table  3-7). 

In the literature, several published methods that measured retinol and α-tocopherol 

simultaneously are available, though they are relatively older methods (Table  3-8). Andreoli 

and colleagues (2004) developed a method quantifying retinol, α-tocopherol and β-carotene 

utilising LC-MS/MS (147) but isotope-labelled ISTD was not used in this method. Other 

methods that quantified retinol and α-tocopherol using liquid chromatography techniques 

were published in 2009 (160, 161). However, full validation and performance data of these 

three methods were not provided, which makes it difficult to reliably compare the methods. 

Our methods generally showed better performance than their methods (Table  3-8). 
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Throughout the last decade, LC-MS/MS methods for the quantification of 25-OHD2 and 25-

OHD3 in blood used in clinical laboratories have been growing. However, only 5% of the 65 

laboratories, whose staff members participated in questionnaires, could distinguish epimer 

25-OHD3 from 25-OHD3 (171). Unlike published methods for retinol and α-tocopherol, 

additional LC-MS/MS methods for 25-OHD2 and 25-OHD3 measurements were recently 

available with sufficient data of method validation and performance. Even though our method 

quantified five FSV analytes simultaneously, the these methods showed good performance 

compared with most recent published methods for 25-OHD analyte quantification, as shown 

in Table  3-9.   
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Table  3-7. Specification and performance of published blood FSV measurement methods.  

 Published methods 

Reference no. , year 
FSV method-1, 

(2015) 

FSV method-2 , 

(2015) 
(149), 2011 (148), 2007 

Platform 
LC-MS/MS 

Agilent 6490 

LC-MS/MS 

Agilent 6410 
LC-MS/MS LC-MS/MS 

Analyte 

25-OHD2 

25-OHD3 

Epi-25-OHD3 

Retinol 

α-Tocopherol 

25-OHD2 

25-OHD3 

Epi-25-OHD3 

Retinol 

α-Tocopherol 

25-OHD2 

25-OHD3 

Retinol 

α-Tocopherol 

25-OHD2, 

25-OHD3, Retinol, 

α-Tocopherol & 

other 6 metabolites 

Sample volume (μL) 100 100 50 1000 

Sample  preparation PPE, LLE PPE, LLE LLE LLE 

Calibrators (matrix) 

Recipe (Vit D) 

Bio-Rad (vit A 

and E 

Recipe (Vit D) 

Bio-Rad (vit A 

and E 

IH (spiked sera) IH (spiked sera) 

Column (size, mm) PFP (2.0×150) PFP (2.0×150) C18 (4.6×50) C18 (4.6×150) 

Ionisation ESI + ESI + ESI + ESI + 

2
5

-O
H

D
2
 

Quant ions 413→395 413→395 413→395 413→395 

LoQ (nmol/L) 3.3 5 6.6 1 

Intra-CV 

(mean nmol/L, n) 
4.2 (50, n=15) 4.9 (57, n=15) 4.3 (113, n=24) 3.17 (ns, n=ns) 

Inter-CV 

(mean nmol/L, n) 
6.8 (71, n=15) 7.6 (65, n=30) 4.6 (113, n=19) 4.5 (ns, n=ns) 

2
5

-O
H

D
3
 

Quant ions 401→383 401→383 401→383 383→159 

LoQ (nmol/L) 3.4 3.5 6.6
 

1.5 

Intra-CV 

(mean nmol/L, n) 

2.5 

 (98, n=15) 

3.1 

 (68, n=15) 

4.6 

 (57, n=24) 

6.4 

 (ns, n=ns) 

Inter-CV 

(mean nmol/L, n) 

7.2 

 (77,15) 

3.1 

 (73, n=30) 

8.2 

 (57, n=19) 

11.5 

 (ns, n=7) 

E
p

i-
2

5
-O

H
D

3
 Quant ions 401→383 401→383 NQ NQ 

LoQ (nmol/L) 3.8 3.5 - - 

Intra-CV 

(mean nmol/L, n) 
5.4 (40, n=15) 4.4 (46, n=15) - - 

Inter-CV 

(mean nmol/L, n) 
8.0 (50, n=15) 4.8 (46, n=30) - - 

R
et

in
o

l 

Quant ions 269→93 269→93 269→93 269→93 

LoQ (µmol/L) 0.10 0.16 0.2 0.17 

Intra-CV 

(mean µmol/L, n) 

3.7 

(0.5, n=15) 

4.7 

 (0.51, n=15) 

3.8 

 (2.19, n=24) 

3.17 

 (ns, n=ns) 

Inter-CV 

(mean µmol/L, n) 
8.6 (0.5, n=15) 5.4 (0.51, n=30) 6.2 (2.19, n=19) 5.1 (ns, n=7) 

α
-T

o
co

p
h

er
o

l Quant ions 433→167 433→167 433→167 431→165 

LoQ (µmol/L)  2 3 NS 1 

Intra-CV 

 (mean µmol/L, n) 

5.5 

 (34, n=15) 

4.0  

(21, n=15) 

2.4  

(38, n=24) 

4.3  

(ns, n=ns) 

Inter-CV 

(mean µmol/L, n) 

5.8 

 (23, n=15) 

6.2  

(22, n=30) 

5.3  

(38, n=19) 

6.1  

(ns, n=7) 

Comment   

- LoQ was 

considered as two 

times of LOD 

- No deuterated ISTD  

- LOQs was 

calculated based on a 

minimal value of  S/N 

ratio of 10 
IH: In-house calibrators, NS: not stated, NQ: not quantified by method, ND: not determined  
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Table  3-8. Specification and performance of published blood 

retinol and α-tocopherol measurement methods. 

 Published methods 

Reference no,, year (147), 2004 (161), 2009 (160), 2009 

Platform LC-MS/MS HPLC UHPLC 

Analyte 

Retinol, 

α-Tocopherol 

ß-Carotene 

Retinol 

α-Tocopherol 

Retinol, 

α-tocopherol 

ß-Carotene 

and CoQ10 

Sample volume (μL) 60 200 500 

Sample  preparation PPE LLE PT, LLE 

Calibrators (matrix) 
IH (spiked 

sera) 

IH (Organic 

solvent) 

IH (Organic 

solvent) 

Column (size, mm) C8 (4.6×150) C18 (4×200) 
C18 (2.1 × 

50) 

Ionisation APCI+ NA NA 

R
et

in
o

l 

Quant ions 269→93 NA NA 

LoQ 

µmol/L 
NS 0.17 0.08 

Intra-CV 

(mean µmol/L, n) 
3.9 

2.7 

 (1.9, n=10) 

2.1 

 (2.4, n=10) 

Inter-CV 

(mean µmol/L, n) 
5.7 

4.6 

 (1.9, n=24) 

6.1  

(2.5, n=20) 

α
-T

o
co

p
h

er
o

l 

Quant ions 430→165 NA NA 

LoQ  

µmol/L 
NS 2.2 1 

Intra-CV  

(mean µmol/L, n) 
2.1 

2.9  

(9, n=10) 

2.3  

(31, n=10) 

Inter-CV 

(mean µmol/L, n) 
4.5 

3.2  

(10,n=25) 

6.7 

 (31, n=20) 

Comment 

-No deuterated 

ISTD used 

 

 

- LOQ= 

10×(standard 

error for the y 

estimate)/ 

slope) 

IH: In-house calibrators, NS: not stated, NA: Not applicable, NQ: not quantified by 

method, ND: not determined 
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Table  3-9. Specification and performance of a number of published vitamin D measurement methods. 

 Published methods 

Reference no. , year (172), 2014 (145), 2013 (173), 2013 (173), 2013 (146), 2012 

Platform LC-MS/MS LC-MS/MS LC-MS/MS LC-HR/MS LC-MS/MS 

Analyte 

25-OHD2 

25-OHD3 

25-OHD2 

25-OHD3 

Epi-25OHD3 

25-OHD2 

25-OHD3 

25-OHD2 

25-OHD3 

25-OHD2 

25-OHD3 

Epi-25-OHD3 

other 5 

metabolites 

Sample vol (μL) 140 50 150 150 1000 

Sample  prep LLE LLE PP,SPE PP,SPE LLE 

Calibrators (matrix) 
IH (plasma) Chromsystems Chromsystems Chromsystems 

IH (saline with 

human albumin) 

Column (size, mm) 
Phenyl (2.1×50) 

PFP (3×50) & 

PFP (3×150) 
CN (2.1×100) CN (2.1×100) 

Chiral (2×150) & 

C18 (2.1× 100) 

Ionisation ESI ESI 
+
 ESI 

+
 ESI 

+
 ESI 

+
 

2
5

-O
H

D
2
 

Quant ions 413→355 413→83 413→395 413→395 413→395 

LoQ 

nmol/L 
NS ND 15.5 5 NS 

Intra-CV % 

(nmol/L, n) 

8.5 

(65-90
*
, ns) 

2.1 

 (36.3,10) 
ND ND 

2.7 

 (40, NS) 

Inter-CV % 

(nmol/L, n) 

1.7 

(65-90
*
, n=5) 

7.0 

(75, 28) 

3.5 

(44,10) 

3.4 

 (45, 10) 

3.9 

 (40, NS) 

2
5

-O
H

D
3
 

Quant ions 401→159 401→159 401→383 401→383 401→383 

LoQ nmol/L 6 2 8.5 4 NS 

Intra-CV % 

(nmol/L, n) 

4.6 

(70-95
*
, NS) 

1.1 

(45,10) 

2.0 

(43, 6) 

2.0 

(42, 6) 

2.7 

(40, NS) 

Inter-CV 

(nmol/L, n) 

9.1 

(70-95
*
, 5) 

4.9 

(73, 28) 

4.6 

(41, 10) 

4.7 

(42, 10) 

3.7 

(40, NS) 

E
p

i-
2

5
-O

H
D

3
 Quant ions  401→159 NA NA 401→383 

LoQ nmol/L  2 NA NA NS 

Intra-CV % 

(nmol/L, n) 
 

5.3 

(6.8, 10) 
NA NA 

3.1 

(40, NS) 

Inter-CV % 

(nmol/L, n) 
 NS NA NA 

10.9 

(40, NS) 

Comment 

*
 Manufacture 

ranges of 

controls 

    

IH: In-house calibrators, NS: not stated, NQ: not quantified by method, ND: not determined, ESI: Electrospray 

ionisation, APCI: Atmospheric Pressure Chemical Ionization. 

a:LoQ calculated as double of LoD, b:manufacture ranges. 
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Continue Table 3-9. 

 Published methods 

Reference no. , year (134), 2012 (141), 2011 (162), 2011 (138), 2011 

Platform LC-MS/MS LC-MS/MS LC-MS/MS LC-MS/MS 

Analyte 

25-OHD2 

25-OHD3 

Epi-25OHD3 

24,25-(OH)2-D3) 

25-OHD2 

25-OHD3 

Epi-25OHD3 

25-OHD3 

Epi-OHD3 

25-OHD2, 

25-OHD3, 

Epi-25-OHD3, 

2 isobars 

Sample volume (μL) 200 250 250 NS 

Sample  preparation PP PP & SPE LLE LLE 

Calibrators (matrix) IH (organic solvent) Chromsystems 
IH traceable to 

SRM2972 
Chromsystems 

Column (size, mm) PFP (150×4.6) PFP (2.1×100) 
C4 (2.1×50) 

CN (2.1×250) 

C18 ((2.1×100) 

Chiral (2×150) 

Ionisation APCI ESI
+
 ESI

+
 ESI

+
 

2
5

-O
H

D
2
 

Quant ions 413→159 413→159 413→159 413→377 

LoQ 

nmol/L 
3.9 in ethanol 2 1.5 NS 

Intra-CV 

(nmol/L, n) 
<5, (NS, 10) NS 

2 

(64, 10) 

9.1 

(63, NS) 

Inter-CV 

,(nmol/L, n) 

<4 

(NS, 10) 
NS 

1.1 

(64, 10) 

8.6 

(63, NS) 

2
5

-O
H

D
3
 

Quant ions 401→159 401→159 401→159 401→383 

LoQ 

nmol/L 
4  in ethanol 3.5 1.7 NS 

Intra-CV 

(nmol/L, n) 

<5 

(NS, 10) in solvent 

4.2 

(39, 4) 

2.2 

(46, 10) 

4.6 

(63, NS) 

Inter-CV 

(nmol/L, n) 

<4 

(NS, 10) in solvent 
 

0 

(46,10) 

6.7 

(63, NS) 

E
p

i-
2

5
-O

H
D

3
 Quant ions 401→159 401→159 401→159 401→365 

LoQ 

nmol/L 
2 in ethanol NS NS NS 

Intra-CV 

(nmol/L, n) 

<5 

(NS,10)  in solvent 
NS NS NS 

Inter-CV 

(nmol/L, n) 

<4 

(NS, 10) in solvent 
NS NS NS 

Comment     

IH: In-house calibrators, NS: not stated, NQ: not quantified by method, ND: not determined, ESI: 

Electrospray ionisation, APCI: Atmospheric Pressure Chemical Ionization. 

a:LoQ calculated as double of LoD, b:  manufacture ranges. 
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3.4 Conclusions 

In the current work, an efficient, precise method for the simultaneous quantification of five 

analytes (25-OHD3 and its epimer, 25-OHD2, retinol and α-tocopherol) was developed and 

validated. This quantification included robust, simple, inexpensive sample preparation as well 

as quantification methods using two modes of LC-MS/MS systems with different capacities 

for analytical sensitivity. These methods showed excellent performance, including sensitivity, 

imprecision and peer reviewed methods, as displayed by the RCPAQAP reports for 25-

OHD3, retinol and α-tocopherol. In addition, commercial calibrators and controls that are 

commonly used in routine clinical laboratories for FSV measurement were utilised. The 

robust simple sample preparation and LC-MS/MS quantification methods utilised 

commercial calibrators and controls help routine clinical biochemistry laboratories to 

reproduce sample preparation and LC-MS/MS methods for reference or routine FSV analysis. 
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Chapter 4 

 

Stability of fat-soluble vitamins  
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Chapter 4 Stability of fat-soluble vitamins  

4.1 Introduction 

The stability of fat-soluble vitamins (FSVs) in blood, especially vitamin A (retinol) and 

vitamin E (α-tocopherol), represents a gap in our knowledge. Although several factors are 

known to impact vitamin stability, such as sample storage and transportation, precisely how 

they do so remains inconclusive. The sample analysis journey starts with collecting a 

patient’s blood sample, which usually occurs in a primary healthcare facility or an inpatient 

ward. Then, the sample is transported to a centralised laboratory. Transportation and storage 

conditions (e.g. temperature, light and time) might enhance redundancies in the in vitro 

reactions or cause red blood cell damage, called “haemolysis”. Haemolysed blood samples 

influence analyte measurement results, especially for analytes like enzymes (174) and 

electrolytes (175). In primary healthcare, pre-transportation centrifugation is an improper 

practice because it increases the probability of a mismatch between the whole blood sample 

and the serum/plasma samples as well as increases the risk of infection and pre-analytical 

timeframes (176). The stability of analytes in blood and serum/plasma provides valuable 

information. It is required to prepare suitable protocols for blood collection, transportation 

and storage. In turn, these samples are used in clinical studies, laboratory diagnostics and 

long-term sample storage, such as bio-bank samples.  

Currently, FSVs in blood samples are treated as labile analytes, especially in the cases of 

retinol and α-tocopherol. Therefore, a specific protocol for sample collection, transport and 

storage is used to control several crucial factors, such as light exposure, temperature, storage 

conditions and time (95-97). For example, blood samples are usually collected in amber tubes 

or tubes wrapped with aluminium foil, kept in subdued light conditions and transported on ice 
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and in insulated containers to centralised laboratories. The serum/plasma is obtained as soon 

as possible to avoid any potential negative impacts from delayed separation prior to being 

stored at -20ºC or -80ºC until the time of analysis.  

Data of FSV stability is limited, and some studies’ results contradict each other. For instance, 

a study indicated that changes in whole blood retinol and α-tocopherol at room temperature 

(RT) for 72h were -9.8% and -1.0%, respectively (98). Another study reported that changes in 

whole blood retinol and α-tocopherol at RT after for 1 week were 1.8% and 4.8%, 

respectively (97).  

4.1.1 Systematic literature review for FSV stability 

Consequently, a systematic review was conducted using published studies that focus on the 

stability of vitamins A, D and E to explore this knowledge gap and to design an experimental 

study. For this systematic review, PubMed and Scopus databases were used to identify the 

English language studies published between January 1980 and January 2015. The keyword 

search included the terms “vitamin A”, “retinol”, “vitamin D”, “calcifediol”, “calcidiol”, 

“cholecalciferol”, “25-hydroxyvitamin D”, “vitamin E” and “tocopherol”.  Articles relevant 

to FSV stability were retrieved by reviewing article titles and then abstracts/full articles 

(Figure  4-1). In addition, reference lists of relevant articles were investigated for any missing 

studies.  

The relevant articles were examined and their results were summarised (Table  4-1, 

Table  4-2). According to the systematic review, FSV stability in whole blood and serum has 

been intermittently studied over the past three decades. However, the available data does not 

cover all factors that influence sample stability, especially during FSV extraction and post-

extraction. Furthermore, some results are contradictory. In addition, most of the results were 
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based on methods that were not fully validated and not subject to peer reviewed comparisons 

through external quality assurance program (EQA) participation. This may partially explain 

some of the contradictory results concerning FSV stability. Although light, temperature and 

time are potentially impact the stability of FSV analytes, no studies have simultaneously 

examined those factors in different matrices: in the form of whole blood, serum and extracts. 

In addition, no studies have compared FSV levels in samples processed in ambient light at 

RT with FSV levels in samples processed in subdued light at RT.  

Based on the available data in the literature, 25-OHD, frozen serum/plasma (at -70°C to -

20°C) for retinol and α-tocopherol analysis remains stable for 1 to 5 years (177, 178). This 

study examined frozen conditions for 1 month to obtain reliable comparisons between storage 

conditions at different temperatures.  

In previous studies, the stability of retinol in the whole blood and serum sample remains 

inconclusive. Two studies reported that changes in whole blood retinol samples at RT were 

between -15% and -10% for 3 days of storage (98, 179), while another study reported that the 

change was 3% for 7 days of storage (97). In addition, changes in whole blood retinol 

samples at chilled temperatures were 3% (98) and -2% (97) after the samples had been stored 

for 3 days and 7 days, respectively. For serum/plasma samples, retinol concentration changes 

at RT were 0% for 1 week of storage (180), -7% for 2 weeks of storage and -17% for 4 weeks 

of storage (177). Other studies monitored the stability of retinol in chilled temperatures for up 

to two days and found minor changes in retinol concentrations (181, 182). The stability of the 

extracted retinol was reported in only a single study, which found that concentration changes 

were -4% at RT and 0% at a chilled temperature after 2 days of storage (183).  

The effects of fluorescent light on retinol concentration in whole blood samples were -2% 

(95) at RT after 2 days. Another study reported that the changes were -7% and -2% (97) at 
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RT and chilled temperatures after 1 week, respectively. In contrast, changes in plasma retinol 

under the same conditions were reportedly 1% at RT after 2 days (183).  

Consequently, the stability of retinol in different matrices remains uncertain, and there are 

contradictory results concerning retinol stability in whole blood at different temperatures and 

times. Furthermore, retinol stability in the serum/plasma was not monitored for longer 

periods of time. No studies have investigated potential factors (matrix, temperatures, light 

and storage times) simultaneously to minimise impacts on the final results of retinol stability. 

It seems that α-tocopherol is more stable than retinol. Concentration changes in whole blood 

α-tocopherol were about ±5% at RT and chilled temperatures for up to 1 week of storage (97, 

98, 184). Serum α-tocopherol was observed to be stable for at least 1 week at RT (177, 180) 

and for at least 2 days at chilled temperatures (181, 182) with less than 1% concentration 

change. Furthermore, the change was 5% in extracted α-tocopherol samples stored at RT or 

chilled temperatures for 2 days (183). Under the effect of light, concentration changes of 

whole blood α-tocopherol was less than 3% at RT and chilled temperature for up to 1 week of 

storage (97). Alternately, the change in plasma α-tocopherol was -6% at RT for 2 days of 

monitoring. Although available data concerning α-tocopherol stability is more consistent than 

for retinol stability, the potential factors affecting α-tocopherol stability in whole blood, 

serum/plasma and extract were not investigated concurrently for long periods of time using 

the same analytical method.  

Only 4 studies examined the stability of 25-OHD in whole blood samples stored at RT for a 

short time (up to 3 days); the concentration changes were around -4% (98, 185-187). No 

studies have explored the stability of whole blood 25-OHD in chilled temperatures. Three 

studies monitored the stability of serum/plasma 25-OHD at RT and chilled temperatures for 

24 hours or less (with concentration changes of ±5% at RT and ±9% at chilled temperatures) 
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(154, 188, 189). Two other studies verified the sample’s stability for 1 week (with 

concentration changes of -8% at RT and also -2% to -6% at chilled temperatures) (98, 159) 

and 2 weeks (with concentration changes of -8% at RT and 3.1% at chilled temperatures) 

(98). Extracted 25-OHD was stable for 1 day with concentration changes of 4% (154). Based 

on the published data available, 25-OHD was stable under the effects of artificial light at RT 

for up to 2 days with a -2% concentration change (159) in the whole blood samples. Under 

the same conditions, serum/plasma 25-OHD was reportedly stable from 1 day (159) to 1 

week of storage (190). Although most of the 25-OHD stability studies were conducted over 

the past 10 years, none of them examined 25-OHD stability in whole blood samples at RT or 

chilled temperatures for longer periods of time, such as a week, which is the worst case 

scenario for storage conditions prior to centrifugation for technical or logistic reasons. 

Furthermore, like retinol and α-tocopherol, no studies have simultaneously explored the 

effects of different matrices on 25-OHD stability. 

Given the knowledge gaps identified through the systematic review, this study aimed to 

simultaneously investigate the stability of 25-OHD3, retinol and α-tocopherol in whole blood 

samples prior to centrifugation under the effects of light, time (up to 1 week prior to 

centrifugation) and temperature (RT, 4ºC). The current study aimed to explore the stability of 

the 3 vitamins in the serum and extract samples under the influence of light at RT (for 1 

week) and subdued light at RT (for 1 week) at 4ºC, -20ºC and -80ºC for up to 1 month. 

Monitoring the effect of light and RT for one week was chosen because it is the worst 

situation in which to keep samples, either for diagnostic purposes or for intervention studies, 

specifically at RT in ambient artificial light or subdued light during sample collection. 
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In the stability study experiments, the analyses of the 3 vitamins (25-OHD3, retinol and α-

tocopherol) were conducted using our precise simultaneous quantification method, which 

utilised LC-MS/MS. 
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Figure  4-1. Literature search scheme for FSV stability. 

This scheme shows the literature strategy used to identify published studies focused on FSV stability between 1980 and early 2015 in English language (adapted from (81)). 

  

Literature search scheme 

Databases Manual search 

Scopus PubMed 

Advanced Search Builder 

 MeSH major topic: vitamin a  OR 

vitamin d OR vitamin e  

  And 

 All fields: blood OR serum OR 

plasma 

  And 

 All fields: stability OR storage OR 

transportation 

 

Document search 

 article title, abstract, keywords: vitamin 

a OR retinol  

  OR 

 article title, abstract, keywords: vitamin 

d OR calcifediol OR calcidiol OR 

cholecalciferol OR 25-hydroxyvitamin  d 

  OR 

 article title, abstract, keywords: vitamin 

e OR tocopherol 

  And 

 article title, abstract, keywords: blood 

OR serum OR plasma 

  And 

 article title, abstract, keywords: stability 

OR storage OR transportation 

Number of articles 603 677 

Number of articles after 

reviewing article titles 

57 62 

Number of articles 134 

Number of articles after excluding duplication 93 

Total number of articles analysed 

 

41 

Document search 

 Hand searching: reviewing  

reference  lists of the articles 

 Search engines: searching using  

generic keyword through Google 

search engines  

15 
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Table  4-1. Previous studies descripting the stability of 25-OHD in whole blood, plasma and serum. 

This table chronologically summarise published studies that investigated the stability of 25-OHD under different conditions between 1980 and 2014. It is noted that most 

studies focused on the stability of these analytes either in whole blood or in serum.  

Analyte Matrix Subject Technique Monitoring conditions Changes from typical analyte analysis Year Ref 

25-OHD3 
Serum, 

extract 
25 LC-M/SMS 

Time: up to 265 d 

T: RT, -20ºC 

Freeze/thaw: 4 cycles 

 

Analyte Condition 
24 h 

(%) 

72 h 

(%) 

265 d 

(%) 

Serum 25-OHD3 RT -1.9 - - 

 -20ºC - - -6.4 

25-OHD3 extract RT - 4.0 - 

     

 25-OHD3 changes between heparin plasma compared to serum was 3.4 

 25-OHD3 changes between EDTA plasma compared to serum was -3.8 

 25-OHD3 level changes for  4 cycles of serum freezing and thawing was 9.9% 

 

2014 (154) 

25-OHD3 Serum 19   IA 

Time: mean 73 d  

Tubes:  SST vs. plain  

T: -20°C 

 Good correlation was observed between levels of 25-OHD3 measured in gel 

tubes (SST) and gel-free tubes (r>0.990, bias -1.5 nmol/L). 
2014 (191) 

25-OHD 
Whole 

blood 
30 RIA 

Time: up to 24 h 

T: 15°C, 25°C, 35°C 

 It was stable under investigated conditions and changes (%) were from -4.1% to 

1.1%. 
2014 (185) 

25-OHD 
Serum, 

plasma 
15 IA 

Time: up to 3 m 

T: RT, 4°C, -20°C,-80°C 

 

Analyte Condition 
4 h 

(%) 

24 h 

(%) 

7 d 

(%) 

3 m 

(%) 

Serum 25-OHD3 RT 4.4 - - - 

 4ºC - -9.1 - - 

 -20ºC - 4.3 0.0 - 

 -80ºC - - - 8.0 

Plasma 25-OHD3  RT 4.5 - - - 

 4ºC - 8.4 - - 

 -20ºC - 0.5 9.6 - 

 -80ºC - - - -1.4 
 

2013 (188) 
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Continue table. 4-1. 

Analyte Matrix Subject Technique Monitoring conditions Changes from typical analyte analysis Year Ref 

25-OHD 
Serum, 

plasma 
10-22 IA 

Time: up to 4 m 

T: -20ºC 

Light: sunlight 

Freeze/thaw: 2-5 cycles 

Matrix: serum vs. 

heparinised plasma 

Analyte Condition 
3 d 

(%) 

1 w 

(%) 

2 w 

(%) 

3 w 

(%) 

1 m 

(%) 

4 m 

(%) 

Serum 25-OHD3 -20ºC 1.5 -2.2 -4.2 -3.3 -7 -15.3 

 No significant effect of sunlight exposure for 4 h was observed.  

 No significant differences were observed in samples collected in tubes with gel 

compared with those without gel. 

 No significant effect of freezing and thawing cycles (2-5) was observed. 

 A significant differences were found in 25-OHD levels in heparinised plasma 

compared with  serum samples. 

2012 (192) 

25-OHD3 Plasma 16  LC-MS/MS 

Time: up to 4 w 

T: RT, 4ºC, -20ºC 

Freeze/thaw: 5 cycles 

 Plasma 25-OHD3 showed good stability up to 4 weeks at RT, 4◦C and -20◦C 

(data not showed in the article).  

 No significant difference was found between concentrations of analyte measured 

in plasma and serum samples. 

 No degradation was observed in this analyte after 5 cycles of plasma freezing 

and thawing. 

2010 (193) 

25-OHD Serum 402 RIA 
Time: 6-24 y  

T: -25ºC 
 Long-term storage had no effect on serum 25-OHD levels 2010 (194) 

25-OHD3 

Whole 

blood, 

serum 

8  IA 

Time: up to 1  m 

T: RT, CT (4ºC -11ºC), -

20ºC 

Light: light/dark 

Freeze/thaw: 4 cycles 

 

Analyte Condition 
24 h 

(%) 

72 h 

(%) 

1 w 

(%) 

2 m 

(%) 

Blood 25-OHD3 Light at RT  - -2.3 - - 

Serum 25-OHD3 Light at RT -3.4 - -8.5 - 

 Dark at RT - -4.5 -8.1 - 

 Dark at chill  - - -1.8 - 

 Dark at -20ºC - - - -4.0 

 25-OHD3 level changes for 4 cycles of serum freezing and thawing was 2.6%. 

2009 (159)  

25-OHD3 
Whole 

blood 
11 IA 

Time: 24 h 

T: RT 
Analyte Condition 

24 h 

(%) 

Blood 25-OHD3 RT  -3.9 
 

2009 (187) 

25-OHD3 Serum 6 IA 

Time: 12 m 

T: -80ºC 

Tubes: without gel vs. 

gel (SST) 

Analyte Condition 
12 m 

(%) 

Serum 25-OHD3 SST tube at     

-80ºC 

-7.0 

 

2009 (195) 
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Continue table. 4-1. 

Analyte Matrix Subject Technique Monitoring conditions Changes from typical analyte analysis Year Ref 

25-OHD3 Plasma 40 HPLC 
Time: up to 12 h 

T: 4ºC 
Analyte Condition 

12 h 

(%) 

Serum 25-OHD3 4ºC -4.0 
 

2009 (189) 

25-OHD 

Whole 

blood, 

Serum 

35 RIA 
Time: up to 2 w 

T:11ºC, 32ºC 

Analyte Condition 
24 h 

(%) 

48 h 

(%) 

72 h 

(%) 

1 w 

(%) 

2 w 

(%) 

Blood 25-OHD 32ºC  -2.8 -0.8 -2.0 - - 

Serum 25-OHD 11ºC - -0.9 - 6.5 3.1 
 

2008 (98) 

25-OHD3 
Spiked 

serum 
1  LC-MS 

Time: 8 d 

Light: artificial light, 

sunlight, UV 

Place: outdoor, indoor 

Freeze/thaw: 5 cycles 

 Only samples exposed to direct sunlight had significantly lower 25-OHD 

levels compared with samples exposed to artificial light at RT for up to 8d. 

 No significant concentration differences were observed in 25-OHD levels 

after 5 cycles of serum freezing and thawing. 

2008 (190) 

25-OHD3 

Spiked 

serum, 

extract 

pooled 

serum 
LC-MS 

Light: sunlight 

Freeze/thaw: 4 cycles 

 

 Serum 25-OHD3 was stable in sunlight at RT for at least 6 h. 

 Extracted analyte from serum remained stable for at least 1 w at 4ºC 

  No significant concentration differences were observed in samples after 4 

cycles of serum freezing and thawing cycles. 

2008 (150) 

25-OHD Serum 20   RIA Freeze/thaw: 4 cycles  
 No significant effect on serum 25-OHD concentrations was observed after 

3 cycles of serum freezing and thawing. 
2005 (196) 

25-OHD Plasma 55 IA 
Time: up to 4 y 

T: -20ºC 
 Plasma 25-OHD results showed no decline during 4 y of storage 1995 (197) 

25-OHD 

Whole 

blood, 

serum, 

plasma  

1 NS 
Time: up to72 h 

T: RT 

Analyte Condition 
24 h 

(%) 

72 h 

(%) 

Blood 25-OHD RT 4.8 0.0 

 No significant differences in 25-OHD levels were reported in plasma 

(heparin, EDTA) samples compared with serum samples. 

1981 (186) 

d: day, G-LC: Gas-liquid Chromatography, h: hour,  HPLC: High performance liquid chromatography, IA: immunoassay, LC-MS: liquid chromatography-single mass 

spectrometry, LC-MS/MS: liquid chromatography-tandem mass spectrometry, m: month, NS: not stated, RIA: radioimmunoassay, RT: room temperature, SST: serum 

separator tubes, T: temperature, TFA method: Trifluoroacetic acid colorimetric method, α-Toco: α-Tocopherol, w: week, y: year.  
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Table  4-2. Previous studies descripting the stability of retinol and α-tocopherol in whole blood and plasma/serum. 

This table summarise chronologically published studies that investigated the stability of retinol and α-tocopherol under different conditions between 1980 and 2014. It is 

noted that most studies focused on the stability of these analytes either in whole blood or in serum.  

Analyte Matrix Subject Technique Monitoring conditions Changes from typical analyte analysis Year Ref 

Retinol 

α-Toco 

Whole 

blood 

 

18    
HPLC 

 

Time: up to 48 h 

T: RT 

Light 

Analyte Condition 
24h 

(%) 

48 h 

(%) 

Blood Retinol Light at RT -1.2 -1.5 

Blood α-toco  Light at RT 1.3 1.3 
 

2014 (95) 

Retinol 

α-Toco 
Plasma 12 LC-MS/MS 

Time: up to 48 h 

T:  stored with ice  
  Both anlaytes were stables and level changes were <1% per hour during 

investigated storage times.   
2014 (181) 

Retinol 

α-Toco 

Spiked 

serum  
NS HPLC 

Time: 24 h 

T: 30ºC, 4ºC, -20ºC 

 

Analyte Condition 
24h 

(%) 

Serum retinol 30ºC -2.2 

4ºC -0.1 

-20ºC -0.1 

Serum α-toco  30ºC -1.6 

4ºC 0.0 

-20ºC 0.0 
 

2010 (182) 

Retinol 

α-Toco 

Whole 

blood, 

serum 

35 HPLC 

Time: up to 72 h 

T:11ºC, 32ºC 

 

Analyte Condition 
24h 

(%) 

48 h 

(%) 

72 h 

(%) 

Blood retinol 32ºC -0.5 -2.3 -9.8 

Serum retinol 11ºC 0.0 1.4 2.8 

Blood α-toco 32ºC 3 2.8 -1.0 

Serum α-toco  11ºC 0.7 1.4 3.2 
 

2008 (98) 

Retinol 
Whole 

blood 
41 HPLC 

Time: up to 96 h 

T: RT 
Analyte Condition 

24h 

(%) 

96 h 

(%) 

Blood retinol RT 1.7 1.1 
 

2005 (198) 

α-Toco 
Whole 

blood 
40 HPLC 

Time: up to 144 h 

T: chill (4ºC-10ºC) 
Analyte Condition 

32h 

(%) 

72 h 

(%) 

144 h 

(%) 

Blood α-toco CT 0.2 1.0 -0.3 
 

2005 (199) 

Retinol 

α-Toco 
Lyophilized 

serum 

Frozen 

pool  

serum  

HPLC 
Time: up to 12 m 

T: -20ºC 

Analyte Condition 
12 m 

(%) 

Lyophilized serum retinol -20ºC -0.7 

Lyophilized serum α-toco -20ºC -2.8 
 

2004 (200) 
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Continue table 4-2.  

Analyte Matrix Subject Technique Monitoring conditions Changes from typical analyte analysis Year Ref 

Retinol 

α-Toco 

Whole 

blood 
10    HPLC 

Times: up to 7 d 

T.: RT, 4ºC  

Light 

Analyte Condition 
24h 

(%) 

48 h 

(%) 

72 h 

(%) 

96 h 

(%) 

1 w 

(%) 

Blood retinol Dark at RT 0.5 1.6 1.8 4.6 3.3 

Light at RT -0.2 0.3 -1.4 1.3 -6.6 

Dark at 4ºC 0.8 0.8 1.1 0.4 -0.3 

Light at 4ºC 1.7 0.2 -0.7 -2.1 -1.7 

Blood α-toco Dark at RT 2.8 4.1 4.3 6.7 4.8 

Light at RT 3.7 4.6 3.4 7.4 3.3 

Dark at 4ºC 0.9 0.3 2.4 1.0 1.2 

Light at 4ºC 2.2 1.8 0.9 0.5 0.4 
 

2004 (97) 

Retinol 

α-Toco 

Pooled 

plasma, 

extract 

NS HPLC 

Time: up to 48 h 

T: RT, 4ºC, -20ºC 

Light 

Analyte Condition 
24h 

(%) 

48 h 

(%) 

72 h 

(%) 

Plasma retinol Light at RT 0.0 1.4 -1.1 

Retinol extract RT 1.6 3.9 - 

 4ºC -1.6 0.0 - 

 -20ºC -0.4 -0.8 - 

Plasma α-toco Light at RT -3.6 2.1 -6.0 

α-Toco extract RT -0.1 4.9 - 

 4ºC 1.9 5.3 - 

 -20ºC 0.4 0.5 - 
 

1999 (183) 

Retinol 

α-Toco 

Pooled 

serum  
NS HPLC 

Time: over 10 y 

T: RT,  -25ºC, -80ºC 

Freeze/thaw: 5 cycles 

Analyte Condition 
1 w 

(%) 

2 w 

(%) 

4 w 

(%) 

Serum retinol RT -5 -7 -17 

Serum α-toco RT <1 <1 <1 

 Serum retinol was stable for 3 years and 5 years at -25ºC and -80ºC, 

respectively, and α-tocopherol was stable for 5 years at -25ºC and -80ºC. 

 Both were stable for  at least 5 cycles of serum freezing and thawing  

1998 (177) 

Retinol 

α-Toco 

Plasma, 

extracts 
7 HPLC 

Time: up to 1 y 

T: -70ºC 

 Plasma retinol and α-tocopherol were stable for at least 12 m at -70ºC.  

  Retinol and α-toco extracts were stable for 16 h at RT and 24 h at 10ºC. 
1998 (178) 

Retinol 

α-Toco 
Plasma  28   HPLC 

Time: 24 h 

T: RT 

Analyte Condition 
24h 

(%) 

Plasma retinol RT -3.0 

Plasma α-toco RT -2.1 
 

1996 (201) 
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Continue table 4-2.  

Analyte Matrix Subject Technique Monitoring conditions Changes from typical analyte analysis Year Ref 

Retinol 

α-Toco 
Plasma 55 HPLC 

Time: up to 1 y 

T: -20ºC 

 Plasma retinol concentration showed  significant decreases after 1 y of 

storage 

 Plasma α-toco concentration showed  significant decreases after 6 m of 

storage 

1995 (197) 

Retinol 

α-Toco 

Pooled 

plasma 
NS HPLC 

Time: up to 4 y 

T: -70ºC 

 Results showed no significant losses in the plasma retinol concentrations in 

storage at -70ºC up to 4 y. 

 Results showed no significant losses in the plasma α-toco concentrations in 

storage at -70ºC up to 4 y. 

1995 (202) 

α-Toco Plasma 17 HPLC 

Sample processing in 

ambient dark/light, 

air/flushing with nitrogen  

Analyte Condition (%) 

Plasma α-toco air/light 0% 

Plasma α-toco air/dark 0% 

Plasma α-toco nitrogen/dark 0% 
 

1995 (203) 

Retinol 

α-Toco 

Pooled 

plasma 
NS HPLC 

Time: up to 1 w 

T: RT 

Freeze/thaw: 4 cycles 

Analyte Condition 
24 h 

(%) 

1 w 

(%) 

Plasma retinol
 

RT -0.6 -0.3 

Plasma α-toco RT 1.2 -0.7 

 No significant changes were reported in concentrations after 4 cycles of 

plasma freezing and thawing. 

1993 (180) 

Retinol 

α-Toco 
Serum 23 HPLC 

Time: 5 y 

T: -70ºC 

 No significant differences were observed in serum retinol levels during 5 y 

of storage (r
2
= 0.895). 

 No significant differences were observed in serum α-toco levels during 5 y 

of storage (r
2
= 0. 978). 

1993 (204) 

α-Toco Plasma 24 HPLC 
Time: 12 m 

T: -70ºC 
 Plasma α-toco was stable for at least 6 w at -20ºC  1991 (184) 

Retinol 

α-Toco 

Whole 

blood, 

plasma  

17  HPLC 

Time: up to 72 h 

T: RT, 9ºC 

 

Analyte Condition 
24h 

(%) 

48 h 

(%) 

72 h 

(%) 

Blood retinol RT -7.1 -11.1 -15.5 

 9ºC -6.9 -8.7 - 

Plasma retinol 9ºC -1.0 - - 

Blood α-toco RT 2.0 -2.0 -5.0 

 9ºC -3.0 -2.0 - 

Plasma α-toco 9ºC -8.0 - - 
 

1989 (179) 
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Continue table 4-2.  

Analyte Matrix Subject Technique Monitoring conditions Changes from typical analyte analysis Year Ref 

Retinol 

α-Toco 
Plasma  NS HPLC 

Time: 24 h 

T: RT 

Analyte Condition 
24h 

(%) 

Plasma retinol RT 0.0 

Plasma  α-toco RT -6.1 
 

1988 (205) 

Retinol 

α-Toco 

Pooled 

plasma  
NS HPLC 

Time: 12 m 

T:-20ºC 

 No significant differences were found in plasma retinol levels during up to 

12 m of storage at -20ºC based on 102 measurements. 

 No significant differences were found in plasma α-toco levels during up to 

12 m of storage at -20ºC based on 102 measurements. 

1988 (206) 

Retinol 

α-Toco 
Serum 238 HPLC 

Time: up to 1 year 

T: -20ºC 

 No degradation was observed in serum retinol levels after 6-13 m of 

storage (r
2
= 0.912). 

 No degradation was observed in serum α-toco levels after 6-13 m of 

storage (r
2
= 0.621).  

1988 (207) 

Retinol 

Whole 

blood  

 

2   HPLC 
Time: up to 24 h 

T: ice (0-2ºC) 

Analyte Condition 
24h 

(%) 

Blood retinol Dark/ ice: subject 1 0.5 

 Dark/ ice: subject 2 -4.8 
 

1987 (208) 

Retinol 

 
Serum 10-42 

 TFA 

method: for 

fresh 

samples  

HPLC: for 

stored 

samples  

Time: up to 8 y 

T: -20ºC 

Analyte Condition 
5y 

(%) 

6y 

(%) 

7 y 

(%) 

8 y 

(%) 

Serum retinol -20ºC -6.8 11.1 0.0 -2.9 

  The r
2
 were 0.518 (5y), 0.592 (6y), 0.372 (7y) and 0.490 (8y). 

1985 (209) 

Retinol 
Whole 

blood 
6  

UV 

inactivation 

method 

Time: up to 24 h 

T: RT, 4ºC 

Analyte Condition 
24h 

(%) 

Blood retinol RT -0.5 

 4ºC 0.2 
 

1983 (210) 

d: day, G-LC: Gas-liquid Chromatography, h: hour,  HPLC: High performance liquid chromatography, IA: immunoassay, LC-MS: liquid chromatography-single mass 

spectrometry, LC-MS/MS: liquid chromatography-tandem mass spectrometry, m: month, NS: not stated, RIA: radioimmunoassay, RT: room temperature, SST: serum 

separator tubes, T: temperature, TFA method: Trifluoroacetic acid colorimetric method, α-Toco: α-Tocopherol, w: week, y: year. 
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4.2 Methodology 

This section describes the subjects, experiments and statistical analysis used in FSV stability 

study. During sample transportation and process, several factors may impact the FSV 

stability, such as light, temperature and extended time prior to sample analysis; and these 

could influence the interpretation of results. To explore the effects of these factors on the 

stability of three FSV analytes (25-OHD3, retinol and α-tocopherol), four experiments were 

designed and conducted, as detailed in the next sub-sections (Table  4-3).  

4.2.1 Subjects 

Three volunteers (2 males and 1 female) aged (35-55 years) from our research group were 

recruited for this study. Each volunteer provided four separate blood samples (10-40 mL) at 

different occasions in the School of Medical Sciences’ phlebotomy facility. The whole blood 

samples were collected in 10 mL vacutainer (BD) plain tubes (no anticoagulant) wrapped in 

aluminium foil to protected them from the light. All samples were processed according to the 

FSV extraction protocol detailed in Chapter 2 (sections 2.6–2.8) and quantified on Agilent 

LC-MS/MS 6490 using the FSV method 1 as detailed in Chapter 3. 

4.2.2 Investigated conditions 

Samples (whole blood, serum, extracts) were exposed to different conditions of light, 

temperature and time. To examine the effect of light, a group of samples was exposed to a 

light flux from fluorescent lamp from one meter distance while another sample group was 

protected from the light through storing in dark cupboards. Other storage conditions of 

different temperatures: room temperature (RT) 23ºC ±2ºC, 4ºC ±2ºC, -20ºC ±3 and -80ºC ±3 



  

136 

 

over different time points:  3h, 6h, 12h, 24h, 48h, 1 week and 1 month were also examined 

throughout the experiments.  

Experiment 1: 

This experiment aimed to investigate the stability of 25-OHD3, retinol and α-tocopherol in 

whole blood. For this purpose, blood (≈ 20 mL) was collected from each volunteer into three 

10 mL plain tubes. Immediately, the blood was aliquoted (300 μL) into labelled 

polypropylene tubes (1.5 mL) wrapped in aluminium foil unless otherwise stated. All aliquots 

were kept standing for 90 min at ambient dark RT condition for clotting. Later, the aliquots 

were categorised into four groups.  

Group 1: aliquots (n=12) were centrifuged for 20 min at 3500 rpm, and the serum was then 

transferred into new labelled polypropylene tubes (1.5 mL) prior to storing at -80ºC. This 

sample group was considered the control and was used to determine the baseline analyte 

concentration. Group 2: aliquots (n=18, not wrapped in aluminium foil) were exposed to 

florescent light at RT to examine the effects of the light for several time points: 3h, 6h, 12h, 

24h, 48h and 1 week. The group 3 aliquots (n=18) and group 4 aliquots (n=18) were 

protected from light and kept at RT and 4ºC, respectively, to investigate the effects of 

temperature across times 3h, 6h , 12h,  24h, 48h and 1 week. Triplicate aliquots from each 

volunteer sample were used at each investigated condition. After the aliquots were exposed to 

the target conditions, they were centrifuged for 20 min at 3500 rpm, and the serum was 

immediately transferred into new labelled polypropylene tubes (1.5 mL) prior to storing at -

80ºC until they underwent analysis. 
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Experiment 2: 

This experiment aimed to examine the stability of the three FSV analytes in serum. Thus, the 

whole blood samples (≈ 40 mL) were collected from each volunteer into four 10 mL plain 

tubes wrapped in aluminium foil. These tubes were kept to stand for 90 min at ambient dark 

RT for clotting prior to centrifugation at 3500 rpm for 20 min. The entire serum sample from 

each volunteer was collected in 1 glass bottle and then aliquoted (150 μL) into labelled 

polypropylene tubes (1.5 mL) wrapped in aluminium foil unless otherwise stated. These 

serum aliquots were divided into the five sample groups (n=18 for groups 1–3, n=24 for 

groups 4–5). Groups 1–3 were exposed to the conditions detailed in experiment 1. The 

sample groups 4 and 5  were protected from light and kept at 4ºC and -20ºC, respectively at 

different storage times (3h, 6h , 12h,  24 h, 48h 1 week, 2 weeks and 1 month) prior storage at 

-80ºC until they were analysed. 

Experiment 3: 

This experiment was designed to investigate the influence of light during the sample-

processing (FSV extraction) on the analytes of interest. A blood sample (≈ 10 mL) was 

collected from each volunteer into 10 mL plain tube wrapped in aluminium foil. Later, this 

tube was kept for 90 min at ambient dark RT for clotting prior centrifugation at 3500 rpm for 

20 min to separate serum. The two groups consist of the triple serum aliquots from each 

volunteer. The samples from the first group were processed under light exposure while the 

second group samples were prepared under subdued light. Later, entire samples from both 

groups were loaded into the LC-MS/MS in the same analytical batch. 
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Experiment 4: 

This experiment explored the stability of the three analytes of interest post-extraction process 

(extracts). Thus, whole blood (≈ 25 mL) from each volunteer was collected into four 10 mL 

plain tubes wrapped in aluminium foil and kept for 90 min at ambient dark RT conditions for 

clotting. Later, they were centrifuged at 3500 rpm for 20 min. All the serum samples from 

each volunteer were collected in 1 glass bottle and aliquoted (100 μL) into 70 labelled glass 

tubes. These samples were processed based on extraction protocol, and the entire extracts 

from all sample tubes were collected in 1 glass bottle prior aliquot into 18 HPLC transparent 

glass vials and 87 HPLC amber glass vials containing 150 μL. These aliquots were 

categorised into five groups: group 1 (n=18 transparent vials); group 2 (n=18 amber vials) 

and group 3 and 4 (n=24 amber vials). These sample groups were exposed to the same 

conditions detailed in experiment 2. The samples exposed to target conditions were 

immediately stored at -80ºC until they were analysed. 
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Table  4-3. Experimental flowchart to investigate FSV stability. 

This table shows overall view of four experiments that were conducted to examine the stability of three FSV analytes (25-OHD3, retinol and α-

tocopherol) in the pre-analytical stage. Experiments 1, 2 and 4 examined the stability of FSVs in whole blood, serum and analyte extracts, respectively, 

under the effect of light (off vs. on) and temperatures (RT, 4°C and -20°C vs -80°C) across several time points. The stability of FSV during the 

extraction process under the effect of light (subdued light vs light RT) was explored in experiment 3.  

Experiment Sample processing 
Investigated factors 

Light Temperature Time

1  

 

 

   

2  

 

 

   

3 
 

 

 

  

NA 

4 

 

   

RT: room temperature, NA: not applicable. 

Off On RT 4°C 3h 6h 12h 24h 48h 1w 

Off On RT 4°C -20°C 3h 6h 12h 24h 48h 1w 2w 1m 

Off On RT 

Off On RT 4°C -20°C 3h 6h 12h 24h 48h 1w 2w 1m 

Whole blood 

Serum 

Extraction 
process 

FSV extract 
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4.2.3 Statistical analysis 

For each subject, mean and standard deviation (SD) of analyte concentration at each time 

point was calculated. Then, the percentage concentration changes of analye  in tested samples 

compared to control samples were determined. The average of mean, SD and percentage 

change at each time point was calculated for over all subjects. 

Allowable clinical percentage changes of analyte during sample analysis was determined 

based on the total change limits (TCL) (175). The TCL account within-subject biological 

variations and method desirable imprecision. For each analyte TCL were calculated 

according to the following equation: 

Equation  4-1. Calculation of total change limits 

 

 The CVa is method imprecision and CVb is within-subject biological variations. “The factor 

2.77 is derived from Z√2, where Z=1.96, determined by the 95% of confidence interval value 

for bi-directional changes, and √2 as we are comparing two results with the same CVa. We 

concluded that a mean percentage deviation greater than 2.77 CVa represents a probable 

difference in analyte concentration” (175). ”The imprecision of a method, for individual 

single and multipoint testing, should be equal or less than one-half of the average within-

subject variation (CVb), and this should be the goal for short-term laboratory imprecision 

(≤0.5 CVb)” (175). 

In the current work, we used the minimum method imprecision, 25-OHD3 (2.2%), retinol 

(3.5%) and α-tocopherol (3.0%) in the TCL calculation for each analyte. The within-subject 

biological variations were taken from the Ricos Biological Variation database (211)  for 

serum retinol (13.6%)  and α-tocopherol (13.8%); and from Stockl and colleagues’ work 

TCL=√((2.77𝐶𝑉𝑎)2 + (0.5𝐶𝑉𝑏)2) 
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(212) for 25-OHD3 (8%). Consequently, the calculated TCL was 7.3% for 25-OHD3, 11.8% 

for retinol and 10.8% for α-tocopherol. The statistically significant differences in analyte 

levels between tested samples and control samples were calculated using the two-way 

ANOVA (repeated measures) to check the effects of light, temperature and time in 

experiments 1, 2 and 4. The independent t-test was used to compare the target analyte 

concentrations in samples processed under light versus samples processed in subdued light 

conditions. The p < 0.05 was considered as a statistically significant difference according to 

peer results. The GraphPad Prism version 6 (GraphPad Prism Software Inc., CA, USA) was 

used for statistical analysis (213). 
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4.3 Results 

4.3.1 Stability of 25-OHD3 

The stability of the 25-OHD3 was investigated in three matrices (whole blood, serum and 

analyte extract) under the effects of light, temperature and storing time. The concentration 

changes from baseline concentration under investigated conditions were within ±7.3% of 

TCL for 25-OHD3. They were ±2.9% in the whole blood, ±3.9% serum and ±3.8% extracts 

and 2.5% in processing sample in light compared to samples processed in subdued light. We 

observed insignificant differences in concentrations of 25-OHD3 in factors of light, 

temperature and time (Table  4-4, Table  4-5, Table  4-6, Table  4-7, Figure  4-2, Figure  4-3). 
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Table  4-4. Stability of 25-OHD3 in whole blood. 

This table shows the percentage changes in whole blood 25-OHD3 levels under the effects of light, 

temperature and time. The examined whole blood samples were exposed to different conditions 

prior to serum obtained and stored at -80ºC while the serum from whole blood control samples 

was immediately obtained and stored at -80ºC until analysis. Results show that 25-OHD3 was 

stable in whole blood under the effect of investigated conditions, and percentage changes (±2.9%) 

were within ±7.3% of TCL for 25-OHD3. There was no significant difference in the 25-OHD3 

levels under the effect of the investigated conditions. 

 RT (Light) RT (Dark/) 4ºC (Dark/) 

Time 

Mean 

(SD) 

nmol/L 

Mean 

change 

% 

Mean 

(SD) 

nmol/L 

Mean 

change 

% 

Mean 

(SD) 

nmol/L 

Mean 

change 

% 

Baseline concentration 
69 

(0.5) 
0.0 

69 

(0.5) 
0.0 

69 

(0.5) 
0.0 

3h 
69 

(1.0) 
0.0 

71 

(0.7) 
2.9 

68 

(0.9) 
-1.4 

6h 
70 

(0.8) 
1.4 

71 

(0.6) 
2.9 

68 

(1.0) 
-1.4 

12h 
69 

(1.4) 
0.0 

70 

(1.1) 
1.4 

68 

(3.0) 
-1.4 

24h 
67 

(1.0) 
-2.9 

68 

(0.4) 
-1.4 

70 

(1.3) 
1.4 

48h 
69 

(1.3) 
0.0 

68 

(0.7) 
-1.4 

68 

(1.5) 
-1.4 

1w 
69 

(0.5) 
0.0 

70 

(2.4) 
1.4 

68 

(0.4) 
-1.4 

Effect of storage  time p=0.789 

Effect of  temperature NA NA p=0.428 

Effect of  light p=0.221 NA NA 

h: hour/s, w: week, RT: room temperature, NA: not applicable  
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Table  4-5. Stability of 25-OHD3 in serum. 

This table shows the percentage changes in concentrations of serum 25-OHD3 samples under the effect of light 

and temperature across several time points compared to the baseline concentration of the serum control samples. 

The examined serum samples were exposed to different conditions prior to storing at -80ºC, while the serum 

control samples were immediately stored at -80ºC until analysis. The results show that 25-OHD3 was stable in 

serum under the effects of the investigated conditions, and percentage changes (±3.90%) were within ±7.3% of 

TCL for 25-OHD3. There was no significant difference in the 25-OHD3 levels under the effects of the 

investigated conditions. 

 RT (Light) RT (Dark/) 4ºC (Dark/) -20ºC (Dark) 

Time 

Mean 

(SD) 

nmol/L 

Mean 

change 

% 

Mean 

(SD) 

nmol/L 

Mean 

change 

% 

Mean 

(SD) 

nmol/L 

Mean 

change 

% 

Mean 

(SD) 

nmol/L 

Mean 

change 

% 

Baseline concentration 
72 

(0.8) 
0.0 

72 

(0.8) 
0.0 

77 

(0.6) 
0.0 

77 

(0.6) 
0.0 

3h 
73 

(1.0) 
1.4 

72 

(1.4) 
0.0 

79 

(1.3) 
2.6 

78 

(0.8) 
1.3 

6h 
74 

(1.4) 
2.8 

72 

(1.7) 
0.0 

80 

(1.7) 
3.9 

77 

(2.0) 
0.0 

12h 
72 

(0.9) 
0.0 

71 

(0.8) 
-1.4 

78 

(1.8) 
1.3 

74 

(1.7) 
-3.9 

24h 
73 

(1.6) 
1.4 

71 

(1.7) 
-1.4 

79 

(2.6) 
2.6 

76 

(2.0) 
-1.3 

48h 
73 

(2.1) 
1.4 

73 

(1.8) 
1.4 

77 

(2.7) 
0.0 

74 

(1.9) 
-3.9 

1w 
71 

(0.7) 
-1.4 

71 

(0.8) 
-1.4 

80 

(1.2) 
3.9 

78 

(1.7) 
1.3 

2w NA NA NA NA 
79 

(1.2) 
2.6 

76 

(2.8) 
-1.3 

1m NA NA NA NA 
76 

(1.9) 
-1.3 

78 

(2.3) 
1.3 

Effect of storage  time p= 0.118 

Effect of  temperature NA p= 0.199 

Effect of  light p= 0.167 NA 

h: hour/s, w: week/s, m:mounth, NA: not applicable  

 

 

Table  4-6. Stability of 25-OHD3 during sample processing. 

This table shows 25-OHD3 concentration changes in samples processed under subdued light compared to 

samples processed in regular light at RT. 

 

Subdued light at RT 

nmol/L 

Light at RT 

nmol/L 

Mean (SD) 80 (1.5) 79 (2.3) 

Mean change (%) -2.5 

p value 0.967 
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Table  4-7. Stability of extracted 25-OHD3. 

This table shows the percentage changes in concentrations of extracted 25-OHD3 from serum samples under the 

effects of light and temperature across several time points compared to baseline concentration of control 

samples. The extracted 25-OHD3 samples were exposed to different conditions prior to storing  in -80ºC while 

the extracted 25-OHD3 control samples were immediately stored at -80ºC. Results show that extracted 25-

OHD3 was stable under the effect of the investigated conditions, and percentage changes (±3.8%) were within 

±7.3% of TCL for 25-OHD3. There was no significant difference in the 25-OHD3 levels under the effect of the 

investigated conditions. 

 RT (Light) RT (Dark/) 4ºC (Dark/) -20ºC (Dark) 

Time 

Mean 

(SD) 

nmol/L 

Mean 

change 

% 

Mean 

(SD) 

nmol/L 

Mean 

change 

% 

Mean 

(SD) 

nmol/L 

Mean 

change 

% 

Mean 

(SD) 

nmol/L 

Mean 

change 

% 

Baseline concentration 
79 

(3.0) 
0.0 

79 

(3.0) 
0.0 

79 

(3.0) 
0.0 

79 

(3.0) 
0.0 

3h 
80 

(2.3) 
1.3 

80 

(3.7) 
1.3 

79 

(4.7) 
0.0 

78 

(2.2) 
-1.3 

6h 
80 

(3.1) 
1.3 

79 

(4.3) 
0.0 

80 

(3.9) 
1.3 

81 

(3.7) 
2.5 

12h 
79 

(2.5) 
0.0 

80 

(4.8) 
1.3 

79 

(3.1) 
0.0 

82 

(3.4) 
3.8 

24h 
82 

(3.1) 
3.8 

77 

(2.4) 
-2.5 

78 

(2.3) 
-1.3 

81 

(3.9) 
2.5 

48h 
81 

(2.1) 
2.5 

82 

(4.2) 
3.8 

79 

(4.5) 
0.0 

80 

(3.2) 
1.3 

1w 
82 

(2.9) 
3.8 

82 

(4.4) 
3.8 

79 

(3.7) 
0.0 

80 

(3.6) 
1.3 

2w NA NA NA NA 
80 

(3.9) 
1.3 

79 

(3.2) 
0.0 

1m NA NA NA NA 
80 

(2.8) 
1.3 

80 

(3.0) 
1.3 

Effect of  storage time p=0.056 

Effect of  temperature NA p=0.066 

Effect of  light p=0.183 NA 

h: hour/s, w: week/s, m:mounth, NA: not applicable 
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Figure  4-2. Stability of 25-OHD3 in unprocessed samples. 

These graphs show the stability of 25-OHD3 in a) whole blood and b) serum under different conditions. Bar 

graphs show average of concentration changes (%) of  25-OHD3 in samples, which were exposed to different 

conditions of light, temperature and time, from a baseline concentration in control samples processed using 

optimal conditions. The red bars represent samples exposed to light at RT while green, blue and brown bars 

represent samples protected from the light at RT, 4ºC and -20ºC, respectively. Solid lines represent ± total 

change limits (TCL) which are used to determine the acceptable clinical limits of analyte changes. Effects of 

light and RT on FSV stability were monitored only for 1 week, which is more than expected time for sample 

storage at these conditions.  
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Figure  4-3. Stability of 25-OHD3 samples during processing. 

These graphs show the stability of 25-OHD3 during sample processing under different conditions. Bar graph (a) 

displays average of 25-OHD3 concentration changes (%) in samples processed in subdued light versus to 

samples processed in light RT.  Bar graphs (b) show average of concentration changes (%) of  extracted 25-

OHD3, which were exposed to different conditions of light, temperature and time, from baseline concentration 

in control samples processed using optimal conditions. The red bars represent samples exposed to light at RT 

while green, blue and brown bars represent samples protected from the light at RT, 4ºC and -20ºC, respectively. 

Solid lines represent ± total change limits (TCL) which are used to determine the acceptable clinical limits of 

analyte changes. Effects of light and RT on FSV stability were monitored only for 1 week, which is more than 

expected time for sample storage at these conditions.  
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4.3.2 Stability of retinol 

Data of retinol stability under investigated conditions show that percentage changes of retinol 

levels in whole blood, serum and retinol extract as well as in samples processed in lighted 

condition were within TCL (±11.8%) except the changes of extracted retinol exposed to light 

at RT for more than 48h (Table  4-7, Figure  4-5). Under investigated conditions, whole blood 

and serum retinol level changes were between -6.5 and 4.11% (Table  4-8, Table  4-9, 

Table  4-10, Figure  4-4, Figure  4-5). Furthermore, retinol concentration changes in the 

extracted retinol samples were ±3.3% except changes of those exposed to light at RT for one 

week that significantly decreased by 18.4%. 
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Table  4-8. Stability of retinol in whole blood. 

This table shows percentage changes in whole blood retinol levels under effect of light, 

temperature and time. The tested whole blood samples were exposed to different conditions prior 

to serum obtained and stored at -80ºC while serum of control samples was immediately obtained 

and stored at -80ºC until analysis. Data show that retinol was stable in whole blood under effect of 

investigated conditions and percentage changes (-6.4 to 4.1%) were within ±11.8% of retinol TCL. 

There was no significant difference in the retinol levels in the investigated conditions. 

 RT (Light) RT (Dark/) 4ºC (Dark/) 

Time 

Mean 

(SD) 

nmol/L 

Mean 

change 

% 

Mean 

(SD) 

nmol/L 

Mean 

change 

% 

Mean 

(SD) 

nmol/L 

Mean 

change 

% 

Baseline concentration 
2.18 

(0.06) 
0.0 

2.18 

(0.06) 
0.0 

2.18 

(0.06) 
0.0 

3h 
2.21 

(0.05) 
1.4 

2.25 

(0.02) 
3.2 

2.19 

(0.04) 
0.5 

6h 
2.25 

(0.02) 
3.2 

2.24 

(0.02) 
2.8 

2.21 

(0.02) 
1.4 

12h 
2.19 

(0.03) 
0.5 

2.27 

(0.02) 
4.1 

2.19 

(0.02) 
0.5 

24h 
2.18 

(0.04) 
0.0 

2.24 

(0.03) 
2.8 

2.23 

(0.03) 
2.3 

48h 
2.21 

(0.03) 
1.4 

2.26 

(0.05) 
3.7 

2.20 

(0.05) 
0.9 

1w 
2.04 

(0.19) 
-6.4 

2.08 

(0.19) 
-4.6 

2.10 

(0.19) 
-3.7 

Effect of storage time p=0.124 

Effect of  temperature NA p=0.437 

Effect of  light p=0.359 NA 

h: hour/s, w: week/s, m:mounth, NA: not applicable  
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Table  4-9. Stability of retinol in serum. 

This table shows percentage changes in concentrations of serum retinol under effect of light and temperature 

across several time points compared to baseline concentration of serum control. The examined serum samples 

were exposed to different conditions prior to storing in -80ºC while serum control samples were immediately 

stored at -80ºC until analysis. Results show that retinol was stable in serum under the effects of the investigated 

conditions, and percentage changes (-6.5 to 2.8%) were within ±11.8% of retinol TCL. There was no significant 

difference in the retinol levels under effect of the investigated conditions. 

 RT (Light) RT (Dark/) 4ºC (Dark/) -20ºC (Dark) 

Time 

Mean 

(SD) 

nmol/L 

Mean 

change 

% 

Mean 

(SD) 

nmol/L 

Mean 

change 

% 

Mean 

(SD) 

nmol/L 

Mean 

change 

% 

Mean 

(SD) 

nmol/L 

Mean 

change 

% 

Baseline concentration 
2.61 

(0.07) 
0.0 

2.61 

(0.07) 
0.0 

2.53 

(0.03) 
0.0 

2.52 

(0.03) 
0.0 

3h 
2.63 

(0.02) 
0.8 

2.65 

(0.09) 
1.5 

2.54 

(0.01) 
0.4 

2.55 

(0.02) 
1.2 

6h 
2.61 

(0.04) 
0.0 

2.67 

(0.03) 
2.3 

2.58 

(0.05) 
2.0 

2.54 

(0.04) 
0.8 

12h 
2.62 

(0.04) 
0.4 

2.63 

(0.04) 
0.8 

2.56 

(0.03) 
1.2 

2.55 

(0.01) 
1.2 

24h 
2.57 

(0.05) 
-1.5 

2.59 

(0.06) 
-0.8 

2.57 

(0.05) 
1.6 

2.56 

(0.01) 
1.6 

48h 
2.57 

(0.05) 
-1.5 

2.62 

(0.07) 
0.4 

2.57 

(0.02) 
1.6 

2.53 

(0.03) 
0.4 

1w 
2.44 

(0.03) 
-6.5 

2.61 

(0.05) 
0.0 

2.6  

(0.09) 
2.8 

2.54 

(0.06) 
0.8 

2w NA NA NA NA 
2.61 

(0.05) 
3.2 

2.53 

(0.06) 
0.4 

1m NA NA NA NA 
2.6 

(0.05) 
2.8 

2.58 

(0.03) 
2.4 

Effect of  storage time p= 0.230 

Effect of  temperature NA p=0.198 

Effect of  light p=0.602 NA 

h: hour/s, w: week/s, m:mounth, NA: not applicable 

 

 

Table  4-10. Stability of retinol during sample processing. 

This table shows retinol concentration changes in samples processed under subdued light compared to samples 

processed in regular light at RT. 

 

Subdued light at RT 

nmol/L 

Light at RT 

nmol/L 

Mean (SD) 2.23 (0.06) 2.22 (0.07) 

Change (%) -0.4 

p value 0.938 
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Table  4-11. Stability of extracted retinol.  

This table shows percentage changes in concentrations of extracted retinol from serum samples under effect of 

light and temperature across several time points compared to baseline concentration. The extracted retinol 

samples were exposed to different conditions prior to storing  in -80ºC while the extracted retinol control 

samples were immediately stored at -80ºC. Results show that extracted retinol in the samples protected from the 

light was stable in investigated conditions, and percentage changes (-2.5 to 3.3) were within ±11.8% of retinol 

TCL. In contrast, extracted retinol exposed to light was stable at least for 48h at RT. 

 RT (Light) RT (Dark/) 4ºC (Dark/) -20ºC (Dark) 

Time 

Mean 

(SD) 

nmol/L 

Mean 

change 

% 

Mean 

(SD) 

nmol/L 

Mean 

change 

% 

Mean 

(SD) 

nmol/L 

Mean 

change 

% 

Mean 

(SD) 

nmol/L 

Mean 

change 

% 

Baseline concentration 
2.44 

(0.07) 
0.0 

2.44 

(0.07) 
0.0 

2.44 

(0.07) 
0.0 

2.44 

(0.07) 
0.0 

3h 
2.40 

(0.07) 
-1.6 

2.45 

(0.08) 
0.4 

2.46 

(0.08) 
0.8 

2.41 

(0.13) 
-1.2 

6h 
2.41 

(0.08) 
-1.2 

2.46 

(0.13) 
0.8 

2.44 

(0.08) 
0.0 

2.40 

(0.12) 
-1.6 

12h 
2.39 

(0.08) 
-2.0 

2.5 

(0.16) 
2.5 

2.44 

(0.13) 
0.0 

2.48 

(0.08) 
1.6 

24h 
2.39 

(0.08) 
-2.0 

2.47 

(0.14) 
1.2 

2.43 

(0.07) 
-0.4 

2.41 

(0.09) 
-1.2 

48h 
2.37 

(0.12) 
-2.9 

2.52 

(0.12) 
3.3 

2.38 

(0.11) 
-2.5 

2.44 

(0.11) 
0.0 

1w 
1.99 

(0.09) 
-18.4 

2.48 

(0.10) 
1.6 

2.46 

(0.08) 
0.8 

2.40 

(0.09) 
-1.6 

2w NA NA NA NA 
2.44 

(0.08) 
0.0 

2.39 

(0.11) 
-2.0 

1m NA NA NA NA 
2.46 

(0.08) 
0.8 

2.44 

(0.13) 
0.0 

Effect of storage time p=0.907 

Effect of  temperature NA p=0.048 

Effect of  light p=0.008 NA 

h: hour/s, w: week/s, m:mounth, NA: not applicable 
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b) 

Figure  4-4. Stability of retinol in unprocessed samples. 

These graphs show the stability of retinol in a) whole blood and b) serum under different conditions. Bar graphs 

show average of concentration changes (%) of retinol in samples, which were exposed to different conditions of 

light, temperature and time, from a baseline concentration in control sample processed using optimal conditions. 

The red bars represent samples exposed to light at RT while green, blue and brown bars represent samples 

protected from the light at RT, 4ºC and -20ºC, respectively. Solid lines represent ± total change limits which are 

used to determine the acceptable clinical limits of analyte changes. Effects of light and RT on FSV stability 

were monitored only for 1 week, which is more than expected time for sample storage at these conditions.  
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Figure  4-5. Stability of retinol samples during processing.  

These graphs show the stability of retinol during sample processing under different conditions. Bar graph (a) 

displays average of 25-OHD3 concentration changes (%) in samples processed in subdued light versus to 

samples processed in light RT.  Bar graphs (b) show average of concentration changes (%) of extracted retinol, 

which were exposed to different conditions of light, temperature and time, from a baseline concentration in 

control sample processed using optimal conditions. The red bars represent samples exposed to light at RT while 

green, blue and brown bars represent samples protected from the light at RT, 4ºC and -20ºC, respectively. Solid 

lines represent ± total change limits which are used to determine the acceptable clinical limits of analyte 

changes. Effects of light and RT on FSV stability were monitored only for 1 week, which is more than expected 

time for sample storage at these conditions.  
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4.3.3 Stability of α-tocopherol 

The stability of α-tocopherol was investigated at different matrixes under different 

conditions. The concentration changes of α-tocopherol were ±3.2% in whole blood, serum 

and extracts as well as in sample processed under investigated conditions. These changes 

were within ±10.8% of TCL for α-tocopherol. We observed insignificant difference in 

concentrations of α-tocopherol in factors of light, temperature and time Table  4-12, 

Table  4-13, Table  4-14, Table  4-15, Figure  4-6, Figure  4-7). 

 

Table  4-12. Stability of α-tocopherol in whole blood. 

This table shows percentage changes in whole blood α-tocopherol levels under effect of light, 

temperature and time. The examined whole blood samples were exposed to different conditions 

prior to serum obtained and stored at -80ºC while serum from whole blood control samples was 

immediately obtained and stored at -80ºC until analysis. Results show that α-tocopherol was stable 

in whole blood under effect of investigated conditions and percentage changes (±3.2%) were 

within ±10.8% of TCL forα-tocopherol. There was no significant difference in the α-tocopherol 

levels under effect of the investigated conditions. 

 RT (Light) RT (Dark/) 4ºC (Dark/) 

Time 

Mean 

(SD) 

nmol/L 

Mean 

change 

% 

Mean 

(SD) 

nmol/L 

Mean 

change 

% 

Mean 

(SD) 

nmol/L 

Mean 

change 

% 

Baseline concentration 
31 

(1.3) 
0.0 

31 

(1.3) 
0.0 

31 

(1.3) 
0.0 

3h 
31 

(1.1) 
0.0 

31 

(0.9) 
0.0 

31 

(0.8) 
0.0 

6h 
32 

(0.9) 
3.2 

32 

(1.2) 
3.2 

31 

(0.6) 
0.0 

12h 
32 

(0.4) 
3.2 

31 

(1.2) 
0.0 

31 

(0.4) 
0.0 

24h 
32 

(0.5) 
3.2 

30 

(0.5) 
-3.2 

32 

(0.7) 
3.2 

48h 
31 

(0.3) 
0.0 

30 

(1.4) 
-3.2 

31 

(0.8) 
0.0 

1w 
30 

(0.3) 
-3.2 

31 

(0.7) 
0.0 

31 

(1.2) 
0.0 

Effect of  time p=0.567 

Effect of  temperature NA p=0.133 

Effect of  light p=0.242 NA 

h: hour/s, w: week/s, m:mounth, NA: not applicable   
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Table  4-13. Stability of α-tocopherol in serum. 

This table shows percentage changes in concentrations of serum α-tocopherol samples under effect of light and 

temperature across several time points compared to baseline concentration of serum control samples. The 

examined serum samples were exposed to different conditions prior to storing in -80ºC while serum control 

samples were immediately stored at -80ºC until analysis. Results show that α-tocopherol was stable in serum 

under effect of investigated conditions and percentage changes (±3.2%) were within ±10.8% of α-tocopherol. 

There was no significant difference in the α-tocopherol levels under effect of the investigated conditions. 

 RT (Light) RT (Dark/) 4ºC (Dark/) -20ºC (Dark) 

Time 

Mean 

(SD) 

nmol/L 

Mean 

change 

% 

Mean 

(SD) 

nmol/L 

Mean 

change 

% 

Mean 

(SD) 

nmol/L 

Mean 

change 

% 

Mean 

(SD) 

nmol/L 

Mean 

change 

% 

Baseline concentration 
32 

(0.6) 
0.0 

32 

(0.6) 
0.0 

31 

(0.9) 
0.0 

31 

(0.9) 
0.0 

3h 
32 

(1.5) 
0.0 

32.5 

(1.2) 
0.0 

31 

(0.7) 
0.0 

32 

(2.8) 
3.2 

6h 
32 

(2.0) 
0.0 

32.5 

(0.7) 
0.0 

32 

(1.2) 
3.2 

31 

(1.0) 
0.0 

12h 
33 

(1.7) 
3.1 

31.6 

(1.1) 
0.0 

32 

(0.5) 
3.2 

32 

(1.0) 
3.2 

24h 
32 

(1.2) 
0.0 

31.4 

(0.8) 
-3.1 

32 

(0.5) 
3.2 

32 

(1.7) 
3.2 

48h 
32 

(1.6) 
0.0 

32.5 

(0.8) 
0.0 

32 

(0.6) 
3.2 

30 

(1.1) 
-3.2 

1w 
32 

(0.6) 
0.0 

33 

(1.3) 
3.1 

32 

(1.0) 
3.2 

31.4 

(0.6) 
0.0 

2w NA NA NA NA 
32 

(1.5) 
3.2 

31 

(0.8) 
0.0 

1m NA NA NA NA 
32 

(1.9) 
3.2 

32 

(0.7) 
3.2 

Effect of  time p=0.509 

Effect of  temperature NA p=0.745 

Effect of  light p=0.827 NA 

h: hour/s, w: week/s, m:mounth, NA: not applicable 

 

Table  4-14. Stability of α-tocopherol during sample processing. 

This table shows α-tocopherol concentration changes in samples processed under subdued light compared to 

samples processed in regular light at RT.    

 

Subdued light at RT 

nmol/L 

Light at RT 

nmol/L 

Mean (SD) 40 (0.9) 40 (1.5) 

Change (%) 0.0 

p value 0.956 
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Table  4-15. Stability of extracted α-tocopherol.  

This table shows percentage changes in concentrations of extracted α-tocopherol from serum samples under 

effect of light and temperature across several time points compared to baseline concentration of control samples. 

The extracted α-tocopherol samples were exposed to different conditions prior to storing  in -80ºC while the 

extracted α-tocopherol control samples were immediately stored at -80ºC. Results show that extracted α-

tocopherol was stable in investigated conditions and percentage changes (±3.1%) were within ±10.8% of TCL 

for α-tocopherol. There was no significant difference in the α-tocopherol levels under effect of the investigated 

conditions. 

 RT (Light) RT (Dark/) 4ºC (Dark/) -20ºC (Dark) 

Time 

Mean 

(SD) 

nmol/L 

Mean 

change 

% 

Mean 

(SD) 

nmol/L 

Mean 

change 

% 

Mean 

(SD) 

nmol/L 

Mean 

change 

% 

Mean 

(SD) 

nmol/L 

Mean 

change 

% 

Baseline concentration 
32 

(1.2) 
0.0 

32 

(1.2) 
0.0 

32 

(1.2) 
0.0 

32 

(1.2) 
0.0 

3h 
32 

(1.1) 
0.0 

31 

(1.8) 
-3.1 

32 

(2.4) 
0.0 

31 

(2.9) 
-3.1 

6h 
31 

(2.2) 
-3.1 

32 

(2.8) 
0.0 

32 

(3.1) 
0.0 

31 

(1.9) 
-3.1 

12h 
33 

(1.7) 
3.1 

31 

(1.0) 
-3.1 

31 

(2.8) 
-3.1 

32 

(1.8) 
0.0 

24h 
32 

(2.2) 
0.0 

31 

(2.6) 
-3.1 

31 

(2.0) 
-3.1 

32 

(3.0) 
0.0 

48h 
32 

(1.0) 
0.0 

33 

(1.9) 
3.1 

31 

(2.0) 
-3.1 

32 

(2.9) 
0.0 

1w 
33 

(2.5) 
3.1 

33 

(3.3) 
3.1 

33 

(1.6) 
3.1 

31 

(2.2) 
-3.1 

2w NA NA NA NA 
31 

(01.8) 
-3.1 

31 

(1.7) 
-3.1 

1m NA NA NA NA 
31 

(2.8) 
-3.1 

31 

(2.3) 
-3.1 

Effect of  time p=0.775 

Effect of  temperature NA p=0.776 

Effect of  light p=0.335 NA 

h: hour/s, w: week/s, m:mounth, NA: not applicable 
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b) 

Figure  4-6. Stability of α-tocopherol in unprocessed samples. 

These graphs show the stability α-tocopherol in a) whole blood and b) serum under different conditions. Bar 

graphs show average of concentration changes (%) of α-tocopherol in samples, which were exposed to different 

conditions of light, temperature and time, from a baseline concentration in control sample processed using 

optimal conditions. The red bars represent samples exposed to light at RT while green, blue and brown bars 

represent samples protected from the light at RT, 4ºC and -20ºC, respectively. Solid lines represent ± total 

change limits which are used to determine the acceptable clinical limits of analyte changes. Effects of light and 

RT on FSV stability were monitored only for 1 week, which is more than expected time for sample storage at 

these conditions.  
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Figure  4-7. Stability of α-tocopherol samples during processing. 

These graphs show the stability of α-tocopherol during sample processing under different conditions. Bar graph 

(a) displays average of α-tocopherol concentration changes (%) in samples processed in subdued light versus to 

samples processed in light RT.  Bar graphs (b) show average of concentration changes (%) of α-tocopherol, 

which were exposed to different conditions of light, temperature and time, from a baseline concentration in 

control sample processed using optimal conditions. The red bars represent samples exposed to light at RT while 

green, blue and brown bars represent samples protected from the light at RT, 4ºC and -20ºC, respectively. Solid 

lines represent ± total change limits which are used to determine the acceptable clinical limits of analyte 

changes. Effects of light and RT on FSV stability were monitored only for 1 week, which is more than expected 

time for sample storage at these conditions.  
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4.4 Discussion 

Evidence of FSV stability across the pre-analytical and analytical stages is valuable 

information for fill some knowledge gaps as part of standardisation efforts for FSV analysis. 

Furthermore, it is important to avoid clinical result misinterpretation and for development of 

suitable protocols for sample collection, transportation and storage for routine patient 

diagnostic study and for large-scale studies. This work examined the stability of FSVs in 

whole blood and serum as well as during and post-extraction process (extract) under the 

influence of light and temperature over longer periods of storage time than most previous 

studies investigated. This valuable information helps to fill some knowledge gaps in vitamin 

analysis (81). To the best of our knowledge, this work is the first study exploring the stability 

FSVs simultaneously utilising a precise LC-MS/MS method. In addition, stability of each 

analytes is justified based on calculation of the acceptable clinical limits “TCL”, which 

reflect biological variation as well as method imprecision (175). 

The photosensitivity of the FSV analytes (25-OHD3, retinol and α-tocopherol) was 

investigated by a number of studies (95, 97, 150, 159, 190). Our results show that 25-OHD3 

in whole blood and serum was stable in ambient light at RT at least for 1 week. These results 

confirmed the some previous studies, which reported that whole blood and serum 25-OHD 

was stable in ambient fluorescent light at RT (159) and even in extreme exposure to sunlight 

for 4 h (150, 190). Furthermore, we observed that light had no effect on 25-OHD3 levels 

during the extraction process as well as 25-OHD3 extracts stored at RT for at least 1 week. 

This indicates that extracted 25-OHD3 from human serum is stable under the investigated 

conditions, despite the fact that extracted 25-OHD3 liberates from vitamin D-binding proteins 

which protect the 25-OHD3, unlike 25-OHD3 in whole blood and serum.  
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According to the current work, retinol can be reliably quantified in whole blood and serum 

samples exposed to light at RT for at least 1 week. Overall, retinol level changes were less 

than TCL (11.8%). A limited number of studies investigated light impact on retinol levels in 

whole blood (95, 97) and serum/plasma (183, 201). Our study results agreed with some 

previous observations that whole blood and serum/plasma retinol is stable in ambient light at 

RT for 48h (95, 97, 183) and for 1 week (97).  

It appears that retinol degradation by light is proportional to exposure time of the samples to 

light.  Our results show that retinol levels in serum and extract exposed to light for 1 week 

decreased more than in those exposed to light for shorter times. However, a sharp degradation 

of retinol extracts (-18.4%) was observed after 1 week of light exposure compared to -6.5% 

in retinol whole blood and serum at the same condition. These retinol variations in different 

matrices may due to the liberty of extracted retinol from its carriers.  Retinol (286 Da) is 

transported in blood stream through a bound with retinol binding protein (≈ 21 kDa) that 

forms a larger complex with another protein called Transthyretin (TTR, 56 kDa). This 

complex (≈75 kDa) is crucial for retinol protection and functions (5, 214), and extracted 

retinol might become more sensitive to light than retinol bound with its transporters. 

Furthermore, our findings show no significant difference in retinol concentrations in the 

sample processed in ambient light RT compared to those processed in subdued light. This is 

because complete sample processing usually takes less than three hours; thus, light may have 

a limited effect on retinol concentrations during short time of exposure such a time required 

for sample processing.  

The α-tocopherol in whole blood, serum and extract is stable for at least 1 week in ambient 

light at RT based on the current study outcomes.  This is in accordance with some previous 

findings regarding the stability of α-tocopherol in whole blood for at least 1 week (97) and in 
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serum  for at least 48h (183) under light at RT. Based on our results and previous study 

results, α-tocopherol is not a photosensitive analyte for at least 1 week at RT.  

The thermostability of 25-OHD3, retinol and α-tocopherol in whole blood, serum and extract 

was debatable because of limited or contradicted evidence (Table  4-1, Table  4-2). Data from 

our study show that 25-OHD3 was stable in whole blood, serum and extract for at least 1 

week at RT and for at least 1 month at 4ºC and -20ºC with acceptable concentration changes. 

Previous studies explored the stability of 25-OHD in whole blood for short times (up to 72h) 

at RT, and they reported that 25-OHD was firmly stable (98, 159, 186, 187). Other studies 

showed 25-OHD in serum/plasma was stable at RT for 1–2 weeks (159, 190, 193) and for 

couple of months to a few years at -20ºC (154, 159, 193, 194).  Further studies found that 

extracted 25-OHD was stable at RT for 3–7 days (150, 154).   

In the current study, we also observed that retinol can be reliably measured in whole blood 

samples stored at least for 1 week in RT or 4ºC, and that supports some previous results of 

retinol changes 3.3% at RT and -0.3% at 4ºC (97). In contrast, other studies found whole 

blood retinol levels decreased by -9.8% (98) and -15.5% (179) when whole blood samples 

stored at RT for 72h. Furthermore, this analyte in whole blood samples stored at chilled 

conditions for 48h  degraded by 8.7% (179). High degradation rate for retinol reported in 

these two studies may be due to method inter-run imprecisions used in the analysis rather 

than retinol storage conditions.  Regarding serum retinol, our data shows that serum retinol 

was also stable at least for 1 week at RT and for 1 month at 4ºC and -20ºC. Previously, it was 

reported that serum retinol was stable for 1–3 days at chilled conditions (98, 179, 182). 

Furthermore, Other studies found that serum retinol changes were -5% (1 week), -7% (2 

weeks) and -17% (4 weeks) (177). These results highlight whether RT has linear effect over 

long period of time, such of the question that our study could not answer.  
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Although changes in the trends of retinol in whole blood and serum were slightly decreasing 

(within retinol TCL ±11.8%), it seems that whole blood retinol is more affected by the time 

of pre-centrifugation rather than the effects of light and temperature (RT and 4ºC). We 

observed a higher decreasing percentage in 1 week of time in both lighted RT and dark 4ºC 

conditions.  This may be related to the presence of blood cells contacted with the serum, 

which impact some analytes (174, 175). The current work also investigated the impact of 

storage extracted retinol for a longer time period: up to 1 week at dark RT, and up to 1 month 

at dark 4ºC and -20ºC. Our results show reliable stability of extracted retinol and that confirm 

previous findings related stability extracted retinol at RT, 4ºC and -20ºC for up to 48h (183).   

The current data demonstrates that α-tocopherol was stable for at least 1 week at RT (in 

whole blood, serum and extract) and 1 month at 4ºC and -20ºC (in serum and extract).  

According to previous studies, whole blood α-tocopherol was stable for at least 48h (98, 179) 

and for 1 week  (97) at RT and chilled conditions. It was reported that serum α-tocopherol 

was for at least 24h (182, 205) while other study found changes in serum stored at RT for 4 

weeks was less than 1% (177). Previous studies (183) reported that extracted α-tocopherol 

was stable for at least 48h at RT, 4ºC and -20ºC. The current work examined its stability for 

longer time periods. Our results show that extracted α-tocopherol was also stable for at least 1 

week at RT and for 1 month at 4ºC and -20ºC. 

Other issues have been accounted as potential factors influencing FSVs, including repeating 

freezing-thawing cycle, nature of matrix (serum vs plasma) and type blood collection tubes 

(plain tubes vs serum separator tube). It was reported that repeating freezing-thawing cycle 

for 3–5 times had no effect on serum levels of retinol and α-tocopherol (177) as well as serum 

25-OHD levels (150, 154, 159, 190, 193).  
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Serum and plasma samples are commonly used in clinical chemistry, however, the question is 

whether the stability of target FSVs analytes are varied based on serum compared to plasma. 

Previous studies observed no significant difference in 25-OHD3 in plasma compared to 

serum (154, 186, 193). Furthermore, they found no difference in serum 25-OHD3 

concentration between serum separator tubes and plain tubes even in long-term storage (191, 

195). These results could be true regarding their effect on retinol and α-tocopherol 

concentrations in serum and plasma.  

4.5 Conclusions 

Our results confirm that 25-OHD3, retinol and α-tocopherol are firmly stable in whole blood 

and serum samples under the investigated conditions. Whole blood and serum samples 

destined for FSVs interrogation can be reliably processed in normal laboratory conditions of 

light and temperature during the pre-analytical stage. The measurements of extracted 25-

OHD3 and α-tocopherol can also be conducted under light at RT, while light protection for 

extracted retinol is recommended if the analysis requires more than 48 h. 
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Chapter 5  Traceability of commercial calibrators to 

reference material: α-tocopherol calibrators’ example  

5.1 Introduction 

Blood vitamin E refers to fat-soluble antioxidant metabolites, including α-tocopherol and γ- 

tocopherol, where α-tocopherol is a predominant form in the blood and commonly used as an 

indicator of vitamin E status. Most clinical laboratories use commercial calibrators for blood 

α-tocopherol measurement in patient samples (215).  For a reliable patient results comparison 

regardless of time, location or method applied, these results should be traceable to high-order 

references. These references consist of three pillars, including reference measurement 

procedures, standard reference materials and reference laboratories, which are essential for 

measurement traceability implementation and method harmonisation (100, 117). 

Both reference measurement procedures and reference materials contribute to the 

measurement traceability of an analyte. Reference measurement procedures are used to assign 

and certify a value to a reference material as a primary calibrator (pure analyte) or as a 

secondary calibrator (analyte in human samples) (99). Industrially, this certified reference 

material can be used to assign values to a commercial calibrator. Later, routine laboratory 

medicine uses validated commercial calibrators in measuring analytes in human samples. 

Hence, analytical results obtained from routine laboratory tests are traceable to certified 

materials. 

The National Institute of Standards and Technology (NIST) introduced a number of standard 

materials for several analytes as part of efforts for traceability and standardisation in 

laboratory medicine. Since 1989, the NIST has released standard reference materials (SRM) 

for fat-soluble vitamins (SRM 968), including α-tocopherol, in human serum (102). The 
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available commercial calibrators for vitamins A and E are produced and theoretically 

traceable to a specific SRM 968 version. However, the accurate traceability chain (from the 

standard reference material to the commercial calibrators) could be affected by a number of 

factors, such as the matrix, manufacturing procedures and method employed to assign their 

values (216-218). Furthermore, patient results are influenced by calibrators used in the 

sample analysis (219-221). As such, an unacceptable agreement between calibrators is 

potentially a significant obstacle to method harmonisation (106, 117).   

The current study aimed to explore the extent of the variation among three commercial 

calibrators for vitamin E (α-tocopherol) usually used in a clinical chemistry laboratory for a 

serum/plasma α-tocopherol analysis using two LC-MS/MS methods.  This exploring 

introduced an example of how different commercial calibrators could impact on patient result 

interpretation. 
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5.2 Methodology 

Three commercial single-level calibrators were sourced simultaneously from the current 

available stock. These calibrators include: Bio-Rad (traceable to NIST SRM 968e), 

Chromsystems (traceable to NIST SRM 968e) and RECIPE (traceable to NIST SRM968d). 

They were prepared in quintuplicate in conjunction with a seven-level in-house vitamins A 

and E calibrator set for an analysis of α-tocopherol. Hexa-deuterated α-tocopherol was used 

as the internal standard, and the in-house calibrators were used to create a standard curve to 

which the three commercial calibrators were compared. Preparation of the in-house calibrator 

set and commercial calibrators as well as internal standard was detailed in Chapter 2, sections 

2.5.3 and 2.5.4. 

All samples were prepared based on the sample preparation protocol detailed in Chapter 2, 

section 2.6. Samples were prepared briefly as follows: sample and Milli-Q water were added 

to a glass tube and vortexed. Next, methanol containing the deuterated internal standard was 

added to this mixture, vortexed and equilibrated room temperature. Analytes were extracted 

by adding hexane to the mixture and then vortexed extensively prior to centrifugation at room 

temperature.The organic layer was transferred to a new glass tube and dried under a stream of 

nitrogen gas at room temperature and subsequently reconstituted in methanol. This sample 

preparation procedure was conducted under subdued light. The reconstituted sample (1 μL) 

was injected onto the Agilent LC–MS/MS-6490 system. 

In this study, two methods—the vitamin A/E method (first method) and the FSV method 1 

(second method)—were employed. Both methods were detailed in Chapter 3. The following 

is a brief description of the two methods.  
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The first method 

The chromatographic separation of analytes was performed using a Pursuit (R) XRs C18 

column with matched guard column. The mobile phases were 0.1% formic acid in Milli-Q 

water containing 2% methanol (mobile phase A) and 0.1% formic acid in methanol (mobile 

phase B). A constant flow rate of 0.2 mL/min and a gradient profile from 80% to 100% of 

mobile phase B were employed. This method was used to quantify α-tocopherol and its hexa-

deuterated internal standard plus retinol, as detailed in Chapter 3 (method A/E). 

The second method 

Analytes were separated using a Pursuit pentafluorophenyl (PFP) column, which provides a 

highly efficient separation of stereometric isomers, along with matched guard column. The 

flow rate and mobile phases were the same as used in the first method. A gradient profile 

from 35% to 100% of mobile phase B was employed. This method was developed to quantify 

α-tocopherol in addition to 25-OHD2, 25-OHD3 and its epimer and retinol, as described in 

Chapter 3 (FSV method-1).  

The electrospray ionization technique (positive mode) was used in both methods. Multiple 

reaction monitoring (MRM) was utilized to quantify α-tocopherol (quantifier, 431 → 165 and 

qualifier, 431 → 137) and hexa-deuterated α-tocopherol (quantifier, 437 → 171). 
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Statistical analysis 

The percentage bias of the results of each commercial calibrator was calculated according to 

Equation  5-1.  

Equation  5-1. Percentage bias calculation. 

𝐵𝑖𝑎𝑠 (%) =
𝑀𝑒𝑎𝑛 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 −  𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑒𝑟  𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛

𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑒𝑟  𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛
× 100  

 Bland–Altman difference plots were created to demonstrate the results graphically using 

GraphPad Prism version 6 (GraphPad Prism Software Inc., CA, USA). The standard error of 

the mean (SEM) of each commercial calibrator result was calculated based on Equation  5-2 

using Microsoft Excel. The expanded imprecision (uncertainty), calculated as two times the 

within run coefficient of variation, was ±6% at the 95% confidence interval across the assay 

range (222). 

Equation  5-2. Standard error of the mean calculation. 

𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝒆𝒓𝒓𝒐𝒓 𝒐𝒇 𝒕𝒉𝒆 𝒎𝒆𝒂𝒏 =
𝑺𝑫

√𝒏
 

SD: the standard deviation of the calibrator replicates, n: the number of sample replicates (n=5) 
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5.3 Results 

The current study results show that biases of the three commercial calibrators ranged from -

9.8% to +5.4% across the two methods, with a consideration of employing the in-house 

calibration curve as the point of nominal zero bias (Table  5-1, Figure  5-1, Figure  5-2). The 

Bio-Rad calibrator bias across the two methods was +1.4, whereas the analytical biases of the 

Chromsystems calibrator at +5.4% and +5.0%, as based on the first and second methods, 

respectively. The biases of the RECIPE calibrator were greater, observed as -8.9% and -9.8% 

with the first and second methods, respectively. The overall discrepancy among the 

commercial calibrators was greater than the expected measurement uncertainty. 

 

Table  5-1. Commercial calibrator bias comparison. 

Expected and observed concentrations of α-tocopherol in the three commercial calibrators based 

on an in-house calibrator set. 

Calibrator 

Expected 

Concentration 

μmol/L 

First Method Second Method 

Mean observed 

concentration 

(+/- SE mean) 

μmol/L 

Bias 

% 

Mean observed 

concentration 

(+/- SE mean) 

μmol/L 

Bias 

% 

Bio-Rad
a 

43.0 43.6 (±0.4) +1.4 43.7 (±0.3) +1.4 

Chromsystems
a 

29.9 31.5 (±0.3) +5.4 31.4 (±0.3) +5.0 

RECIPE
b 

56.4 51.4 (±0.6) -8.9 50.9 (±0.5) -9.8 

a Secondary calibrator traceable to NIST SRM 968e. 

b Secondary calibrator traceable to NIST SRM 968d. 
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Figure  5-1. Bland-Altman plot of results obtained by the first method. 

Bland–Altman difference plot showing the extent of agreement between expected and observed 

concentrations of α-tocopherol in three commercial calibrators using the first method. The difference 

between the expected and the observed concentration (y-axis) is plotted against the average concentration 

for each calibrator (x-axis).  
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Figure  5-2. Bland-Altman plot of results obtained by the second method. 

Bland–Altman difference plot showing the extent of agreement between expected and observed 

concentrations of α-tocopherol in three commercial calibrators using the second method. The difference 

between the expected and the observed concentration (y-axis) is plotted against the average concentration 

for each calibrator (x-axis).  
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5.4 Discussion 

In the current study, the investigated three commercial calibrators for serum/plasma α-

tocopherol showed discrepancies between observed concentrations versions manufacturer 

expected concentrations, although they were traceable to the same reference standard material 

version. The manufacturers of the reference standard materials and commercial calibrators, as 

well as routine clinical laboratories, employ a liquid chromatography platform (142, 223). To 

our knowledge, this report is the first comparing commercial calibrators for α-tocopherol 

utilising LC–MS/MS as the reference point. 

It is well recognised that correct and consistent calibrator assignment is important for accurate 

result interpretations and medical decisions (224). Calibrator discrepancies used in the 

analytical stage contribute to systematic errors, in terms of traceability to a reference material 

and their lot-to-lot variation (225). It has been reported that traceability to common 

calibrators has improved inter-method variations (imprecision) (219, 220, 226). The method 

agreement of vitamin E assay by laboratories participating in an external quality assurance 

program has been monitored by RCPAQAP as part of efforts towards the harmonisation and 

standardisation of analyses (142, 215). This is important to ensure reliable patient results 

comparisons. 

Commercial manufacturers validated the three commercial calibrators using HPLC platform. 

HPLC systems are routinely used for vitamin E analysis along with UV/Vis detection (142). 

Although tandem mass spectrometry was utilised in the current study, which is higher in 

sensitivity compared to traditional detectors used in the HPLC, this is not a solid explanation 

for the observed deviations in the three calibrators. Owens and colleagues recently concluded, 

based on their effort in testosterone standardisation, using different methodologies was a 
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source of inter-laboratory variations (216). Potentially the same could be true for differences 

in methodologies among manufacturers of commercial calibrators. 

Commutability of the reference materials or commercial calibrators is essential for method 

harmonisation. Commutability is expressed as a mathematical relationship between the results 

of the reference materials and authentic clinical samples using different measurement 

procedures (108). Hence, commutability reflects the extent of similar behaviours between 

clinical samples and reference materials (or commercial calibrators) during analyses. Such a 

“matrix effect” can occur due to changes in the matrix condition due to a supplement added 

or the production process during calibrator manufacturing (106, 108). Different matrices in 

calibrators could decrease assay imprecision and inaccuracy (150). For example, two levels of 

NIST SRM-972 for vitamin D analytes were non-commutable for all routine analytical 

methodologies because these levels contain non-human serum and exogenous analytes (227). 

Furthermore, Cattozzo and colleagues reported that patient results obtained using commutable 

calibrators were contradicted by results generated using non-commutable calibrators (107). 

The extent of commutability cannot be excluded here as a potential source of the discrepancy 

observed among the three commercial vitamin E calibrators. 

The present study investigated the three commercial calibrators, which are traceable to NIST 

SRM 968. Both the Bio-Rad calibrator and the Chromsystems calibrator were traceable to 

SRM 968e, while the RECIPE calibrator was traceable to SRM 968d. In fact, NIST SRM 

968d is a single concentration level (13.77 μmol/L), whereas the newer SRM 968e has been 

released in three concentration levels (15.2 μmol/L, 23.98 μmol/L and 45.0 μmol/L) of 

vitamin E (102, 121, 122). Compared to the other two calibrators, the RECIPE calibrator had 

the highest concentration of α-tocopherol (56.4 μmol/L), which interestingly was traceable to 

the single-level SRM with the lowest assigned value (NIST SRM 968d: 13.77 μmol/L). 
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Potentially, this could be a source of the discrepancy observed in the RECIPE calibrator. This 

may be coincidental and this point could not be confirmed or refuted, as there was no stock of 

the NIST SRM 968d available to purchase for comparison studies at the time the experiments 

were performed. 

The Joint Committee for Traceability in Laboratory Medicine (JCTLM) provides a database 

of certified reference material (CRM). There was no listing on this database for a CRM for α-

tocopherol when this study was conducted (228). However, the JCTLM database recently 

recognised NIST SRM 968e as CRM for vitamin E (105). The current study supports 

importance of concerted efforts by analytical parties, including the manufacturers of 

commercial calibrators, to evaluate rigorously traceability chain from CRM to commercial 

calibrators to ensure patient results are precisely comparable regardless of laboratories 

analysed patient samples.  
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5.5 Conclusions 

Calibrators are potentially a significant obstacle to reliable comparison of patient results and 

epidemiologic study results. The traceability of measurements and the method harmonisation 

process can be interrupted due to the unacceptable agreement among commercial calibrators. 

The limited success efforts of harmonisation encumber the comparability of results obtained 

from different laboratories. Hence, efforts are required by all parties to address this issue in 

terms of value assignment, allowable error of calibrator assignment and inclusion of mass 

selective detection-based reference methods. 

This study, which was published in the Clinical Biochemistry journal in 2013 (229), 

highlighted the issue related to calibrators in terms of the chain of the traceability from CRM 

to the commercial calibrators. Although the commercial calibrator manufacturers mentioned 

that their calibrators were traceable to CRM version, the manufacturers did not provide 

evidence of how traceability process was achieved. In addition, they did not mention about 

the other factors affecting the traceability chain and the commutability of commercial 

calibrators, such as matrix and production processes and method of determination. Until all of 

these problems related to the traceability chain are resolved, there is no guarantee of trueness 

of measurement results. 
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Chapter 6  Influence of cell culture media dilution of cord 

blood on vitamins A, D and E measurements 

6.1 Introduction 

Vitamins A, D and E are associated with a wide range of physiological roles in the body. 

Vitamin A has roles in various health outcomes including vision, healthy epithelial tissue and 

infection resistance  (14). Vitamin D is both a vitamin and a hormone and has been correlated 

with a number of significant health issues including the overall bone health, the 

cardiovascular system, skin and the immune system  (3). Vitamin E has powerful antioxidant 

activities which are essential for the protection of cellular structures and functions (58). These 

three vitamins are associated with both gene regulation and preventive roles in a wide range 

of health issues, such as cardiovascular disease and cancer (14, 58, 230, 231). 

A growing number of studies have examined the potential importance of vitamin D levels, 

and to a lesser extent vitamins A and E levels, during the early stages of life. Vitamin D 

status in early life is correlated with numerous health outcomes, such as bone mineralisation, 

central nervous system disorders and autoimmune disorders (232). Adequate levels of 

vitamin A are correlated with preventive roles in childhood blindness, morbidity, and 

mortality, especially in populations at high risk for vitamin A deficiencies (29, 233).  Both 

vitamins A and D have been correlated with food allergies in children  (234). Furthermore, 

neonates, especially those with very low birth weights, are at high risk of vitamin A, D and E 

deficiencies, particularly in developing countries (235).  

Umbilical cord blood (UCB) is an appropriate sample choice to assess vitamin status in 

neonates because limited venous blood samples can safely be obtained. UCB has been 

utilised to investigate the correlation of vitamin D with neonatal health problems (236). 
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Sufficient 25-hydroxyvitamin D (25-OHD) levels in the UCB may play a role in the 

enhancement of the neonatal innate immune response that minimises microbial infections 

(237).  Camargo and colleagues (2011) examined 922 UCB samples and reported a 

significant inverse association between the UCB 25-OHD3 levels and the risk of respiratory 

infection and wheezing in early childhood (238).  A vitamin D deficiency (25-OHD3 < 50 

nmol/L) in UCB has been linked to an increased risk of respiratory syncytial viral infections 

and an increased occurrence of eczema in neonates during the first year of life (239, 240).  

The risk of food allergies in the first two years of life has also been linked with the maternal 

and UCB vitamin D status (241). 

The avoidance of vitamin A deficiency is vital in preventing critical health problems in 

infants. Based on animal and human studies, a maternal vitamin A deficiency has been linked 

to a decreased kidney size and a reduced number of nephrons in neonates (242, 243).  Low 

retinol cord blood (< 0.7 µmol/L) was correlated with low infant birth weights (2.5–3.0 kg) 

among 313 investigated babies (244). 

The feasibility of vitamin measurements in UCB prepared for various research studies is 

worthwhile investigating. UCB is used as a source of stem cells, which can be used in a wide 

range of regenerative medical disciplines (245). Additionally, plasma UCB can be diluted 

with a cell culture media (RPMI-1640) to maintain and isolate UCB mononuclear cells for 

immunological studies. Because of the limited UCB available for a variety of studies that 

include diagnostic and therapy issues, concerns are raised whether it is feasible to measure 

vitamin D, as well as vitamins A and E, in the diluted plasma. This information introduces 

valuable data for using a limited UCB volume in large-scale epidemiological projects.  

Measurements of vitamin D (25-OHD3) in serum/plasma is most commonly conducted by an 

immunoassay. However, this technique cannot identify the epimer of 25-OHD3, which is 

found in high levels in children. Liquid chromatography coupled with a tandem mass 
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spectrometry (LC-MS/MS) platform provides a highly selective quantification technique; 

therefore, it is the optimal analytical approach for 25-OHD3 as the epi-25-OHD3 (143). 

Additionally, the quantification of serum retinol and α-tocopherol using the LC-MS/MS 

platform has been reported in other studies (142, 234). 

The aim of this study was to validate the measurement of 25-OHD3 and its epimer 

(epi-25-OHD3), retinol, and α-tocopherol by using our simultaneous quantification LC-

MS/MS method for FSVs. Another aim was to compare the vitamin D results obtained by our 

laboratory (Laboratory A) versus another laboratory (Laboratory B) which also used the LC-

MS/MS method for quantification of only vitamin D.  
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6.2 Methodology 

Subjects: 

Serum UCB samples (n = 20) and matched diluted UCB plasma samples (n = 20) were 

randomly selected from participants recruited as part of the Barwon Infant Study (BIS). The 

BIS study is a birth cohort study conducted in population of south-eastern Australia, and it 

was designed to investigate the early life origins of immune dysregulation in the modern 

environment. The project was approved by the Barwon Health Human Research Ethics 

Committee (10/24) and written informed consent was obtained prior to UCB collection and 

storage. 

Sample collection: 

The primary aim in the UCB collection was to isolate a large number of viable mononuclear 

cells (MNCs) that could be cryopreserved for future immune studies. For this purpose, UCB 

was collected using a 50 mL syringe inserted into the umbilical cord vein. An adequate 

volume of UCB was then added to a sterile tube containing exactly 20 mL of sterile transport 

medium (RPMI-1640 with 10 IU/mL preservative-free heparin [DBL Heparin Injection BP; 

porcine mucous; 5,000 IU/5 mL]), and the remaining blood was added to serum collection 

tubes. Serum was collected and aliquoted following centrifugation at 2700xg for 10 min at 

20ºC. For diluted UCB plasma samples, a proportional UCB volume to diluent volume (anti-

coagulant and RPMI-1600 volume) was accurately measured prior to centrifugation at 

2700xg for 10 min at 20ºC. Once the blood cells were pelleted and isolated, the diluted 

plasma volume was estimated (Equation  6-1) and dilution factor was calculated 

(Equation  6-2). Depending on the volume of the UCB collected, samples dilution percentage 
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ranged from 0.26% to 0.43% (mean ± SEM: 0.32 ± 0.01) of neat plasma. The diluted plasma 

samples were then aliquoted and stored with the matched serum samples in a -80ºC freezer.  

 Equation  6-1. Estimation of diluted UCB plasma. 

Diluted plasma = total volume of anticoagulated diluted UCB – volume of pelleted blood cells 

 

Equation  6-2. Calculation of dilution factor. 

𝑫𝒊𝒍𝒖𝒕𝒊𝒐𝒏 𝒇𝒂𝒄𝒕𝒐𝒓 =
𝑫𝒊𝒍𝒖𝒕𝒆𝒅 𝒑𝒍𝒂𝒔𝒎𝒂 𝒗𝒐𝒍𝒖𝒎𝒆 − 𝟐𝟎

𝑫𝒊𝒍𝒖𝒕𝒆𝒅 𝒑𝒍𝒂𝒔𝒎𝒂 𝒗𝒐𝒍𝒖𝒎𝒆
 

 

Experimental: 

Twenty UCB serum and 20 diluted plasma de-identified samples were thawed and 150 uL 

aliquots were delivered in a Styrofoam container to both Laboratory A (lab A) [LC-MS/MS 

laboratory, Clinical Biochemistry Mass Spectrometry Laboratory, RMIT University, VIC, 

Australia] and to laboratory B (lab B) [UWA Centre for Metabolomics, Metabolomics 

Australia, University of Western Australia, WA, Australia].  They were analysed in two non-

consecutive runs (R1 and R2) in random order to consider the between-run effects in the two 

laboratory results comparison. They were also analysed to ascertain if the diluted plasma 

samples provided an accurate measure of 25-OHD3 compared to serum. 

The samples were analysed by two LC-MS/MS methods on two separate occasions. Samples 

were analysed in lab A using the FSV method 2, which is detailed in Chapter 3, and the 

sample preparation is described in Chapter 2, Section 2.6–2.8. The samples in lab B were 

analysed using the LC-MS/MS method that utilised Agilent-6460 coupled to a 2-dimensional 

1290 UPLC system to quantify 25-OHD3 and it epimer. The analyses were performed using 
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50 µL of serum with a run time of 8 mins. Standard curves were created based on a 

Chromsystems Calibrator set (Chromsystems, Munich, Germany), which has been reported to 

be traceable to NIST-SRM972. The imprecision of the method for 25-OHD3 at 75 nmol/L 

and 18 nmol/L was 0.5% and 2.2%, respectively. The limit of quantification (LOQ) for 25-

OHD3 and its epimer was 2 nmol/L (145).  

Statistical analysis 

Passing-Bablok regression and Bland-Altman plots were used to compare the results of 

vitamin measurements in UCB serum and diluted UCB plasma. The non-parametric 

Spearman correlation coefficient (r) was used to examine the correlation of the group of 

results. A p-value was calculated using the non-parametric comparison Mann-Whitney test 

(two-tailed test), and p < 0.05 was considered a statistically significant difference between 

peer results. Percentages of mean differences were calculated based on the average 

percentage differences of the overall peer results. All statistical calculations and comparison 

plots were conducted using XLSTAT software (246). 

Allowable total error (TEa) for vitamin D was calculated based on Equation 1. The TEa% for 

vitamins A and E was taken from the Ricos Biological Variation database (211). 
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Equation  6-3. Calculation of allowable total error. 

TEa % = Z × X × CVw + B 

 

Bias can be calculated from:  

 

B = 0.25 × [CVw2 + CVg2 ]1/2 

 

From reference (212)  

 

CVw = 8% and CVg = 20% 

 

Then  

 

B = 0.25 x [8^2 + 20^2]^1/2 = 5.4% 

 

Hence the allowable total error for 25-OHD3 is  

 

 TEa% = 1.65 x 0.5 x 8 + 5.4 = 12% 

 

TEa - Allowable total error, CVw - Within subject biological variation, CVg - Between subject biological 

variations 
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6.3 Results 

Two groups of UCB samples (serum and diluted plasma samples) were analysed for 

simultaneous quantification of 25-OHD3 and its epimer, retinol and α-tocopherol on two 

consecutive occasions using our LC-MS/MS method (Figure  6-1, Figure  6-2, Figure  6-3). 

These samples were also analysed for 25-OHD3 and its epimer using the lab B LC-MS/MS 

method. Statistical description of the vitamin results are shown in Table  6-1, Table  6-2.  

a) b) 

Figure  6-1. Chromatogram for 25-OHD3 in UCB. 

These chromatograms show separation of 25-OHD3 and epi-25-OHD3 in a) UCB serum and b) diluted UCB 

plasma samples, from the same subject. 

 

 

25-OHD3 Epi-25-OHD3 

25-OHD in serum 

25-OHD3 Epi-25-OHD3 

25-OHD in plasma (diluted) 
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a) b) 

Figure  6-2. Chromatogram for retinol in UCB. 

These chromatograms show separation of retinol in a) UCB serum and b) diluted UCB plasma samples, from 

the same subject. 

 

 

a) 
b) 

Figure  6-3. Chromatogram for α-tocopherol in UCB. 

These chromatograms show separation of α-tocopherol in a) UCB serum and b) diluted UCB plasma samples, 

from the same subject. 

 

  

Retinol  

Retinol in serum 

Retinol  

Retinol in plasma (diluted) 

α-Tocopherol in serum 

α-Tocopherol  α-Tocopherol  

α-Tocopherol in plasma (diluted) 
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Table  6-1. Statistical description of vitamin results in UCB serum and plasma samples obtained by lab A. 

This table shows a summary of vitamin results in UCB serum and diluted plasma samples obtained by lab A. 

Statistical description was calculated based on results of matched UCB serum and diluted plasma samples, 

which were greater than the method LoQ (3.5 nmol/L for both 25-OHD3 and its epimer, and 0.16 μmol/L and 3 

μmol/L for retinol and α-tocopherol, respectively).  

Laboratory Analyte n 
Serum Plasma

 

P value 
Median Min Max Median Min Max 

lab A 

25-OHD3 (nmol/L) 20 48 26 96 48 28 96 0.531 

Epi-25-OHD3 (nmol/L) 12 6.0 4.1 12.9 NQ NA 

Retinol (μmol/L) 13 0.84 0.63 1.16 0.82 0.48 1.21 0.223 

α-Tocopherol (μmol/L 20 7 4 14 NQ NA 

NQ: not quantified because low results (less than LoQ). NA: not applicable 

 

Table  6-2. Statistical description of vitamin results in UCB serum and plasma samples obtained by lab B. 

This table shows a summary of vitamin results in UCB serum and diluted samples obtained by lab B. Statistical 

description was calculated based on results of matched UCB serum and diluted plasma samples, which were 

greater than method LoQ (2.0 nmol/L for both 25-OHD3 and its epimer).  

Analyte n 
Serum Plasma

 

P value 
Median Min Max Median Min Max 

25-OHD3 (nmol/L) 20 48 27 108 43 21 97 0.205 

Epi-25-OHD3 (nmol/L) 14 4.3 2.9 13.4 NQ NA 
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Vitamin D (25-OHD3) 

The study method (lab A) shows a close relationship between 25-OHD3 results in serum 

when compared with diluted plasma (r = 0.914, p = 0.532 for lab A; r = 0.904, p = 0.205 for 

lab B) with a mean difference of 2.2 nmol/L (6.6%) [95% CI, -9.5 to13.9] (Figure  6-4).  In 

addition, the lab B method demonstrates a close correlation of 25-OHD3 results obtained 

from the same samples (r = 0.904, p = 0.205) with a mean differences of 4.1 nmol/L (-8.5%) 

[95% CI, -14.5 to 6.1] (Figure  6-5). 

The results of 25-OHD3 obtained by the two laboratories were compared (Figure  6-6). There 

is close agreement as shown by the Passing-Bablok regression and Bland-Altman plots 

(Figure  6-7).  Results obtained by lab A compared with lab B (r = 0.983, p = 0.703) with a 

mean differences of 0.14 nmol/L (-4.42%) [95% confidence interval (95% CI), -6.8 to 7.1] 

(Figure  6-6, Figure  6-7). 

 

a) 

 

b) 

Figure  6-4. Results of 25-OHD3 in UCB serum and diluted UCB plasma obtained by lab A. 

Passing-Bablok regression plot a) and Bland-Altman plot b) demonstrate the agreement in 25-OHD3 results 

obtained from UCB serum and diluted UCB plasma. 
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a) b)

Figure  6-5. Results of 25-OHD3 in UCB serum and diluted UCB plasma obtained by lab B. 

Passing-Bablok regression plot a) and Bland-Altman plot b) demonstrate the agreement in 25-OHD3 results 

obtained from UCB serum and diluted UCB plasma. 
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Figure  6-6. Overall 25-OHD3 results obtained by lab A and lab B. 

Box plot demonstrates the minimum, first quartile, median, third quartile, and maximum of 25-OHD3 results of 

UCB serum versus diluted UCB plasma obtained by laboratories A and B.  The method LoQ is 3.5 nmol/L (lab 

A) and 2.0 nmol/L (lab B) for both 25-OHD3. 
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a) b) 

Figure  6-7 .Results of 25-OHD3 in UCB serum and diluted UCB plasma obtained by lab A versus lab B. 

Passing-Bablok regression plots a) and Bland-Altman plot b) demonstrate the agreement in 25-OHD3 results 

obtained from lab A compared with lab B for all the samples analysed i.e. both serum and diluted plasma. 
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Epi-Vitamin D (Epi-25-OHD3) 

Epi-25-OHD3 was analysed in UCB serum and diluted plasma samples by the two 

laboratories.  Epi-25-OHD3 was detected in all serum samples, however, 40% (lab A) and 

30% (lab B) of serum results and all diluted plasma results were below the limit of 

quantification (LoQ); lab  A LoQ is 3.5 nmol/L and lab B LoQ is 2.0 nmol/L.  Serum epi-25-

OHD3 results above the LoQ obtained by the two laboratories were well correlated (r = 

0.869) with a mean difference -0.76 nmol/L (-16.5%) [95% CI, -2.3 to 0.77] (Figure  6-8). 
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Figure  6-8. Overall epi-25-OHD3 results in serum obtained by lab A and lab B. 

Box plot demonstrates the minimum, first quartile, median, third quartile, and maximum of epi-25-OHD3 

results of UCB serum obtained by laboratories A and B.  Only results above LoQ methods (3.5 nmol/L for lab A 

and 2.0 nmol/L for lab B) were plotted. 
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Retinol 

Retinol was measured in UCB serum and diluted plasma samples using the lab A method.  

Retinol was quantifiable in all serum samples and 65% of diluted plasma samples, with 35% 

of diluted plasma results below the method LoQ. Quantified results of retinol in serum and 

diluted plasma samples demonstrated a mean difference of  -0.07 µmol/L [95% CI, -0.41 to 

0.28) representing a mean change of -9.9% across the analytical runs.  Results of UCB serum 

compared with diluted UCB plasma showed a moderate correlation (r=0.45, p = 0.224) 

(Figure  6-9, Figure  6-10). 

 

a) b) 

Figure  6-9. Retinol results in UCB serum and diluted UCB plasma obtained by lab A. 

Passing-Bablok regression plots a) and Bland-Altman plot b) demonstrate the agreement in retinol results 

obtained from UCB serum and diluted UCB plasma.  Results above method LoQ (0.16 μmol/L) were only 

plotted in the graphs. 
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Figure  6-10. Overall results of retinol in UCB serum and diluted UCB plasma. 

Box plot demonstrates the minimum, first quartile, median, third quartile, and maximum of retinol results of 

UCB serum versus diluted UCB plasma obtained by laboratory A. The box plot was created based the results, 

which were greater than method LoQ (0.16 µmol/L). 
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α-Tocopherol  

α-Tocopherol levels were quantified in both serum and diluted plasma samples; however, 

only the serum results were above the LoQ (3 μmol/L) and hence a reliable comparison could 

not be made (Figure  6-11). 

 

 

Figure  6-11.  Overall results of α-tocopherol in UCB serum. 

Box plot demonstrates the minimum, first quartile, median, third quartile, and maximum of α-tocopherol results 

of UCB serum obtained by laboratory A. The box plot was created based the results, which were greater than 

method LoQ (3µmol/L). 
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6.4 Discussion 

This study examined the influence of cell culture media dilution of UCB plasma compared 

with undiluted UCB serum on 25-OHD3 and its epimer, retinol and α-tocopherol 

measurements by LC-MS/MS. This study is the first to report on the utility of UCB diluted 

plasma for the quantification of 25-OHD3 and retinol. In addition, this study demonstrates 

the sensitivity challenges of measuring very low levels of epi-25-OHD3 and α-tocopherol as 

a consequence of UCB plasma dilution.  

Accurate results of a number of blood analytes is sample matrix dependent. For example, 

serum and plasma are commonly utilised to quantify a wide range of analytes, however, they 

are not completely equivalent biological matrices because of the blood clotting process (247). 

Based on recent evidence-based recommendations, both serum and plasma can be used for 

retinol and α-tocopherol quantification (81). Although similar recommendations are not 

currently in place for 25-OHD, previous studies reported no significant difference in 25-OHD 

results in plasma compared with serum (154, 186, 193). Our results support reliable 

quantification of 25-OHD3 and retinol in plasma matrix diluted with cell culture media 

RPMI-1640. 

The current work demonstrates reliability of 25-OHD3 measurement in diluted UCB plasma 

and UCB serum. Both laboratories reported a close agreement between 25-OHD3 results 

obtained from diluted UCB plasma (with dilution range up to 43%) and those from UCB 

serum, even though they used different commercial calibrators, with a mean difference of 

4.4%. Laboratories A and B reported 6.6% and 8.5% mean difference in results of serum 

UCB versus diluted UCB plasma, respectively, and these percentage differences are within 

the limit for TEa% for 25-OHD3 (12.0%).   
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Over-estimation of 25-OHD3 levels has been recently highlighted due to the presence of the 

epimer of 25-OHD3 in both paediatric and adult samples. Chromatographic separation and 

high mass selective detection were used to detect epi-25-OHD3 in 90% of adults (n=156) and 

93% of children (n=58) (136). In the present study, the epi-25-OHD3 was detected in all 

serum UCB samples, of which 60% and 70% of samples had levels higher than the LoQ of 

the Labs A and B methods, respectively. 

Measurement of epi-25-OHD3 is still a challenge even using the LC-MS/MS platform 

regardless of sample matrix. In addition to the incomplete elucidation of its physiological 

roles, biological variation data for epi-25-OHD3 is not currently in place because of a recent 

quantification attention in blood samples. Therefore, the allowable TEa% could not be 

calculated. Furthermore, a commercial calibrator for epi-25-OHD3 is currently not available 

and, accordingly, commercial calibrators from Recipe (lab A) and Chromsystems (lab B) 

were used to generate 25-OHD3 standard curves that were then applied for the quantification 

of epi-25-OHD3. Further confounding the quantitation is that most of the UCB serum 

samples had epi-25-OHD3 levels close to the method LoQ levels (3.5 nmol/L and 2 nmol/L 

for Labs A and B respectively). All these factors could be sources of variation in the two 

laboratory results. 

Low levels (<0.7 umol/L) of retinol in UCB serum have been linked to low birth weight 

(244). This study introduced the first comparison of retinol UCB results in serum versus 

diluted plasma results using the LC-MS/MS methodology. The mean difference between 

retinol results in UCB serum and diluted UCB plasma was about 10%, which is less than 

TEa% (17.1%) for serum retinol measurement (211). However, retinol UCB results in the 

two groups showed a moderate correlation (correlation coefficient (r) =0.451). This 
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observation may be linked to reported unexplained biological variation differences in serum 

(13.6%) versus plasma (6.2%) for retinol analysis (81, 248, 249). 

In the current study, α-tocopherol (vitamin E) levels in the UCB serum group were between 4 

and 14 μmol/L, while its levels in all diluted UCB plasma were below the method LoQ (3 

µmol/L). Consequently, reliable comparison between the two groups could not be achieved. 

Our observation of the low levels of vitamin E in UCB is consistent with previous study 

findings. For example, Didenco and colleagues found that UCB α-tocopherol levels were 

significantly lower than the maternal blood level by 80%, on average, and this is potentially 

related to the selective transfer of α-tocopherol to the placenta (250).     
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6.5 Conclusions 

This study, which was published in the Clinical Biochemistry journal in 2015 (251), 

introduced an evidence of reliability of using dilution of UCB plasma with cell culture media 

(RPMI 1600) for quantification of 25-OHD3 and retinol using the LC-MS/MS method. The 

25-OHD3, epi-25-OHD3, retinol and α-tocopherol levels were successfully measured in the 

UCB serum. In contrast, analysis of the epimer of 25-OHD3 and α-tocopherol in diluted UCB 

plasma is not supported by this study due to limitations in analytical sensitivity for 

quantification. This limitation could potentially be addressed in the future through the use of 

increased sample volume.  
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Chapter 7 

 

Fat-soluble vitamins: status and 
correlation in two Australian 
populations  
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Chapter 7  Fat-soluble vitamins: status and correlation in 

two Australian populations  

7.1 Introduction 

The roles of fat-soluble vitamins (FSVs) D, A and E, particularly vitamins D and A (2, 3), 

have been identified in several non-classical physiological functions. Deficiencies of FSV 

have been associated with increased risk of cancer, type 2 diabetes mellitus and a number of 

immune system disorders (1, 2). As a result of this enhanced clinical association with 

diseases, population-based studies and translational clinical research activities, especially 

regarding vitamin D, have significantly increased in the last decade.  

Several national population-based studies around the world have reported a prevalence of 

vitamin D deficiency (VDD), however, the estimations vary across different countries. For 

example, VDD was estimated at 41% of the population in the USA (42), 20% in Canada 

(252), 47% in the UK (in winter) (253), 48% in New Zealand (254) and 31% in Australia 

(255). Deficiencies of vitamin A and E are present in developing countries due to 

malnutrition, and in developed countries due to absorption defects in the intestine (29, 66, 

256). Generally, there have been studied vitamin A and E deficiencies in children with 

limited data available on adults (29, 66), and no agreements on the status of vitamins A and E 

among children or adults in developed and developing countries (160, 257). 

Other problematic issues related to FSV are the limited agreement on reference intervals 

(RIs) and the extent of interaction between blood vitamin levels. Although it is well known 

that various environmental, genetic and lifestyle factors have essential impacts on FSV 

statuses, inappropriate standardisation of the assays may affect results obtained by different 

laboratories (as discussed in the Chapter 3). These may impact the overall estimation of 
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vitamin statuses and RIs for various populations. This is further confounded by current debate 

regarding the selection of population-based RIs versus recommended levels for health. 

The current work aimed to create a snapshot of the current status and correlation of vitamin D 

(25-OHD2, 25-OHD3 and epi-25-OHD3), vitamin A (retinol) and vitamin E (α-tocopherol) 

in the blood across two Australian populations at different latitudes; Queensland (QLD, 

latitudes between 10º S and 28ºS) and Victoria (VIC, latitudes between 34º S and 38º S). In 

addition, RIs were estimated for vitamins A and E using the precise simultaneous LC-MS/MS 

quantification method. 

The novelty of this work is that it examines the status and correlation of five blood vitamin 

metabolites in two populations living at different latitudes. Simultaneous analysis of these 

vitamins eliminated any variations that might be observed when using different quantification 

techniques or methods. Further, this work introduces data about the status of 25-OHD3 

epimer in two Australian populations, which was not previously available. 
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7.2 Methodology 

7.2.1 Subjects  

De-identified serum samples were selected from samples delivered daily for a variety of 

clinical chemistry tests to Sonic Healthcare Australia (Sullivan Nicolaides Pathology, 

Brisbane (Queensland) and Melbourne Pathology, Melbourne (Victoria), Australia) from 

several regions of Queensland and Victoria states. These samples were selected from 

individual outpatients with no diagnosed diseases, referred by general practice facilities either 

from Queensland (QLD) or Victoria (VIC). Further selection criteria were made based on the 

age and gender of the subjects (Table  7-1). Chosen serum samples were stored at -20ºC until 

they were analysed in the clinical LC-MS/MS Laboratory, Clinical Chemistry department, at 

RMIT University.  

The serum samples were collected during the summer season (December, 2013 - February, 

2014) from two Australian states (QLD n=109, VIC n=108) as detailed in Table  7-1. Samples 

were prepared and analysed with the simultaneous FSV quantification method (FSV method-

2) using the Agilent 6410 LC-MS/MS system as described in Chapters 2 and 3.   

Table  7-1. Subject age distribution. 

This table shows age of the subjects in QLD and VIC groups. 

State Gender 
Age group 1 

(18 - 39 years) 

Age group 2 

(40 - 60 years) 

Age group 3 

( Over 60 years) 
Total 

QLD 

Men 19 20 17 56 

Women 18 19 16 53 

Total 37 39 33 109 

VIC 

Men 18 19 18 55 

Women 20 17 16 53 

Total 38 36 34 108 
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7.3 Statistical analysis 

Normality of data distribution for groups and subgroups was investigated using the Shapiro-

Wilk test, where normal data distribution is considered when p value is greater than 0.05. 

Normality was also visually examined using box plots, where normal data distribution is 

considered when two sides of box plot are approximately symmetric around the median level. 

Based on data distribution, parametric tests (for normal distribution) or non-parametric tests 

(for non-normal distribution) were used in statistical calculation. However, when the normal 

distribution of data was not firmly observed across groups or subgroups, both parametric tests 

and non-parametric tests were used to increase the reliability of statistical analysis. 

Prevalence (%) of a vitamin deficiency was calculated by dividing the number of vitamin- 

deficient cases by the total number of cases, multiplied by 100. Vitamin D status was 

described using two thresholds: 25-OHD3 <50 nmol/L for vitamin D deficiency and 25-

OHD3 <75 nmol/L for vitamin D insufficiency (255, 258). As there are no agreement in 

recommendations for adequate levels of vitamin A and E, in this study retinol less than 0.7 

μmol/L (29) and α-tocopherol less than 12 μmol/L (259) were used as thresholds for vitamin 

A and E deficiencies, respectively. 

Effects of gender, age and geographical position on blood vitamin results were also 

statistically examined using parametric tests or non-parametric tests according to normality of 

data distribution. If partial inconsistency was found between results of the Shapiro-Wilk test 

and box plots used in investigating the normality of data distribution, both parametric and 

non-parametric statistical tests were utilised to increase confidence of statistical analysis. An 

independent t-test, one-way ANOVA and multiple comparisons tests (Bonferroni test and 

Dunnett’s T3 test) were used as parametric tests. Mann-Whitney and Kruskal-Wallis tests 
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were used as non-parametric tests. Statistical data description and normality, parametric tests 

and non-parametric tests were conducted using IBM SPSS Version 22 (260). 

The RIs for vitamins A and E were estimated. Outlying values (outliers) were statistically 

determined using the Tukey test for each group and subgroup according to the Clinical and 

Laboratory Standards Institute (CLSI, USA) Guidelines C28-A3 (CLSI 2008). “Robust 

method” was used to calculate the 95
th

 percentile reference based on CLSI Guidelines C28-

A3 (CLSI 2008). This calculation method is recommended by CLSI for a sample size of less 

than 120 (261). The RIs were calculated using MedCalc Statistical Software version 13.1.0 

(262). 

Correlations between vitamins D, A and E were investigated. Due to irregular observation in 

normality of data distribution among groups and subgroups, as shown later, both Pearson’s 

test (parametric correlation test) and Spearman’s test (non-parametric correlation test) were 

used to investigate correlations of vitamin D levels with vitamin A and E levels. Correlations 

were explored based on: correlation trend (+/-); correlation strength (correlation coefficient 

(r): small, ±0.1 to ±0.29; medium, ±0.3 to ±0.49; large, ±0.5 to ±1.0) (263); and correlation 

statistical significance (significant: p<0.05). Statistical correlation tests were conducted using 

IBM SPSS Version 22 (260).  
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7.4 Results 

7.4.1 Statistical description of data 

The subjects’ ages and FSV levels in groups and subgroups are statistically described in 

Table  7-2, Table  7-3.   

Table  7-2. Statistical description of subjects’ ages. 

State Description 
Mean Median SD Minimum Maximum 

(years) 

QLD 

Total (n=109) 51 49 21.1 18 99 

Gender 
Men (n=56 ) 50 49 20.1 18 99 

Women (n=53 ) 52 49 22.2 18 97 

Age (years) 

18-39 (n= 37) 28.3 28 6.4 18 39 

40-60 (n= 39) 50 50 6.1 40 60 

> 60 (n= 33) 77.4 76 9.9 61 99 

VIC 

Total (n=108) 48 47 18.9 18 93 

Gender 
Men (n=55) 47.9 50 19.1 18 82 

Women (n=53) 48.1 44 18.8 20 93 

Age (years) 

18-39 (n= 38) 27.6 29 6.3 18 39 

40-60 (n= 36) 48 48 5.8 40 59 

> 60 (n= 34) 70.8 71 7.7 61 93 

SD: Standard deviation 
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Table  7-3. Statistical description of serum FSV levels. 

State Description 
25-OHD3 

nmol/L 

Epi-25-OHD3 

nmol/L 

Epi- 25-OHD3 

(%)* 

Retinol 

µmol/L 

α-Tocopherol 

µmol/L 

QLD 

 

Total (n=109) 

Mean 73.5 3.1 3.9 2.14 30.2 

Median 73 3.2 4.2 2.12 30 

SD
 

20.9 2.6 2.8 0.54 7.5 

Minimum 27 0 0 0.69 15 

Maximum 126 11.9 10.7 3.66 51 

Men (n=56) 

Mean 73.3 3.8 4.7 2.2 29.2 

Median 73 3.7 4.5 2.17 29 

SD 22.2 2.5 2.6 0.52 7.3 

Minimum 27 0 0 1.01 15 

Maximum 126 11.9 9.9 3.29 51 

Women (n=53) 

Mean 73.7 2.4 3.0 2.1 31.3 

Median 73 2.6 3.5 2.0 31 

SD 19.5 2.4 2.8 0.56 7.7 

Minimum 27 0 0 0.69 17 

Maximum 121 10.4 10.7 3.66 46 

VIC 

 

Total (n=108) 

Mean 64.5 1.8 2.5 1.91 28.9 

Median 63 1.4 2.4 1.85 27 

SD 23.4 2.0 2.6 0.62 9.1 

Minimum 17 0 0 0.62 10 

Maximum 127 9.0 11.7 3.63 62 

Men (n=55) 

Mean 64.4 2.0 3.0 2.01 28 

Median 64 1.8 3.1 1.94 26 

SD 18.8 1.8 2.4 0.69 8.9 

Minimum 30 0 0 0.62 15 

Maximum 102 6.8 9.3 3.63 62 

Women (n=53) 

Mean 64.6 1.5 1.96 1.81 29.8 

Median 58 0 0 1.75 29 

SD 27.6 2.3 2.8 0.53 9.4 

Minimum 17 0 0 0.88 10 

Maximum 127 9.0 11.7 3.05 59 

SD: Standard deviation, * Percentage of epimer of 25-OHD3 to total 25-OHD3 concentration. 
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7.4.2 Data distribution 

Two hundred and seventeen de-identified samples from two Australian states, QLD (n=109) 

and VIC (n=108), were analysed. Distributions of age and FSV levels among the two groups 

and their subgroups were analysed. We found inconsistent normal distributions in the groups 

and subgroups based on Shapiro-Wilk test and box-plots (Table  7-4, Figure  7-1, Figure  7-2, 

Figure  7-3, Figure  7-4, Figure  7-5). 

 

Table  7-4. Normality testing for data distribution. 

Normality of data distribution of subjects’ age, gender and FSV levels was tested using a Shapiro-Wilk test (p 

>0.05 indicates normal data distribution).  

State Description 
Age 25-OHD3 Epi-25-OHD3 Retinol α-Tocopherol 

p value 

QLD 

Subjects 0.003 0.655 <0.001 0.564 0.103 

Gender 
Men 0.173 0.666 0.012 0.915 0.243 

Women 0.019 0.954 <0.001 0.145 0.156 

Age 

(years) 

18 – 39 0.087 0.625 0.024 0.671 0.214 

40 – 60  0.104 0.881 0.002 0.179 0.143 

Over 60 0.642 0.195 0.004 0.718 0.544 

VIC 

Subjects 0.005 0.335 <0.001 0.241 <0.001 

Gender 
Men 0.019 0.43 0.001 0.839 <0.001 

Women 0.013 0.12 <0.001 0.05 0.061 

Age 

(years) 

18 – 39 0.027 0.718 <0.001 0.457 0.012 

40 – 60  0.074 0.146 <0.001 0.574 0.044 

Over 60 0.064 0.038 0.001 0.73 0.002 
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a)  

 

b) 

Figure  7-1. Distribution of subjects’ ages. 

These box plots demonstrate the minimum, first quartile, median, third quartile, and maximum subjects’ ages in 

the QLD and VIC samples: a) this box plot shows overall age distribution among QLD and VIC groups, b) this 

box plot demonstrates age distribution across age groups of the two states. These plots show inconsistency in 

normality between groups and subgroups. 
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a) 

 

b) 

Figure  7-2. Distribution of 25OHD3 levels. 

These box plots demonstrate the minimum, first quartile, median, third quartile, and maximum 25-OHD3 levels: 

a) overall levels, and b) levels based on gender. These plots show inconsistent normal distribution of 25-OHD3 

levels across QLD and VIC groups and subgroups. 
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a) 

 

b) 

Figure  7-3. Distribution of epi-25-OHD3 levels. 

These box plots demonstrate the minimum, first quartile, median, third quartile, and maximum epi-25-OHD3 

levels: a) overall levels, and b) levels based on gender. These plots show inconsistent normal distribution of epi-

25-OHD3 levels across QLD and VIC groups and subgroups. Circles indicate outliers and stars indicate extreme 

outliers. 
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a) 

 

b) 

Figure  7-4. Distribution of retinol levels. 

These box plots demonstrate the minimum, first quartile, median, third quartile, and maximum retinol levels: a) 

overall retinol levels and b) retinol levels based on gender. These plots show inconsistent normal distribution of 

retinol levels across QLD and VIC groups and subgroups. Circles indicate outliers. 
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a) 

 

b) 

Figure  7-5. Distribution of α-tocopherol levels. 

These box plots demonstrate the minimum, first quartile, median, third quartile, and maximum of α-tocopherol 

levels for a) overall results and b) results based on gender among QLD and VIC samples. These plots show an 

inconsistency in normality between groups and subgroups. Circles indicate outliers.  
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7.4.3 Effect of gender on blood FSV levels 

The effect of gender on blood FSV levels was statistically analysed. I used an independent t-

test (parametric test) and Mann-Whitney test (non-parametric test) for this analysis after 

inconsistent normal data distribution was observed, as shown earlier. Based on statistical 

analysis there was no significant gender effect on FSV levels among QLD and VIC groups 

(Table  7-5). Consequently, gender subgroups were not required for RIs calculation of vitamin 

A and E in QLD and VIC groups (current chapter, section 7.4.7). 

 

Table  7-5. Effect of gender on blood FSV levels. 

Table shows no significant gender effect on levels of blood 25-OHD3, retinol and α-Tocopherol in QLD and 

VIC groups.  

Statistical test 

QLD VIC 

25-OHD3 Retinol α-Tocopherol 25-OHD3 Retinol α-Tocopherol 

p value 

Independent t-test 0.907 0.296 0.072 0.961 0.208 0.356 

Mann-Whitney test 0.894 0.225 0.122 0.796 0.133 0.261 
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7.4.4  Effect of age on blood FSV levels 

The effect of age on blood FSV levels was statistically investigated using parametric (one 

way ANOVA and multiple comparisons) and non-parametric (Kruskal-Wallis) tests due to 

inconstant normal distribution among age groups. There was no significant effect of age on 

retinol levels of QLD and VIC groups. No statistically significant impact of age on blood 

levels of 25-OHD3 was observed in the QLD group, but was found in the VIC group. In 

contrast, there was a significant effect of age on levels of α-tocopherol in the QLD group but 

not in the VIC group (Table  7-6). Consequently, age groups were not required for RIs 

calculation of retinol (vitamin A) in the QLD and VIC groups, while they were required for 

α-tocopherol (vitamin E) RIs estimation in the QLD group (shown later in section 7.4.7). 

 

Table  7-6. Effect of age on FSV levels. 

Data show no significant differences in retinol (vitamin A) levels across age groups in QLD and VIC samples. 

In contrast, there are significant differences in 25-OHD3 (vitamin D) and α-tocopherol (vitamin E) among age 

groups in the VIC and QLD samples, respectively.  

Statistical test 

 QLD VIC 

Age group 

comparison 
25-OHD3 Retinol α-Tocopherol 25-OHD3 Retinol α-Tocopherol 

p value 

One way ANOVA 

(Parametric test) 
1-3 0.457 0.452 <0.001 0.001 0.153 0.284 

Multiple 

comparisons 

(Parametric 

test) 

Bonferrroni 

1 and 2 

1and 3 

2 and 3 

1.000 

0.636 

1.000 

0.666 

1.000 

1.000 

0.113 

<0.001 

0.060 

1.000 

0.006 

0.003 

1.00 

0.451 

0.187 

0.895 

0.365 

1.000 

Dunnett T3 

1 and 2 

1and 3 

2 and 3 

0.900 

0.555 

0.872 

0.527 

0.784 

0.983 

0.093 

<0.001 

0.076 

0.989 

0.008 

0.008 

0.931 

0.441 

0.255 

0.667 

0.309 

0.926 

Kruskal Wallis test 

(non-parametric test) 
1-3 0.336 0.420 <0.001 0.02 0.218 0.314 
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7.4.5 Effect of latitude on blood FSV levels 

The effect of latitude on blood FSV levels among QLD and VIC groups was statistically 

investigated using parametric (independent t-test) and non-parametric (Mann-Whitney) tests 

due to inconsistent normal data distribution observed across investigated groups and sub-

groups. Significant differences were found in vitamins D and A levels across the QLD and 

VIC groups. In contrast, no statistically significant differences in vitamin E levels between 

QLD group and VIC groups were found based on an independent t-test (p=0.069), which 

contradicted with the Mann-Whitney test result (p=0.043) (Table  7-7). Therefore, 

geographical regions (QLD and VIC) were considered when RIs of vitamin A and E were 

estimated later in the current chapter, section 7.4.7. 

 

Table  7-7. Effect of latitude on FSV levels. 

Table shows highly significant differences in levels of 25-OHD3 (vitamins D) and retinol (vitamin A) among 

QLD and VIC groups. Parametric and non-parametric tests revealed differences of inconsistent significance in 

α-tocopherol levels between the QLD and VIC groups. 

Statistical test 25-OHD3 Retinol α-Tocopherol 

 p value 

Independent t-test 

(Parametric test) 
0.003 <0.001 0.069 

Mann-Whitney test 

(non-parametric test) 
0.003 <0.001 0.043 
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7.4.6 Fat soluble vitamin status 

Vitamin D status was estimated across men and women in the QLD and VIC groups. It was 

found that the prevalence of vitamin D deficiency (VDD) (25-OHD3 <50 nmol/L) in the VIC 

group was higher than the prevalence observed in the QLD group. About one third (27.8%, 

n=30) of the VIC group had VDD, compared to 11% (n=12) of the QLD group. When 

prevalence of VDD was estimated based on total 25-OHD levels (25-OHD2, 25-OHD3 and 

epi-25-OHD3), VDD % did not change in the QLD group but increased to 28.7% in the VIC 

group. Only one vitamin D deficient case (female, VIC) from the total samples analysed 

could still be deemed vitamin D insufficient when total 25-OHD levels were considered (0 

nmol/L 25-OHD2 + 47 nmol/L 25-OHD3 + 3 nmol/L epi-25-OHD3 = 50 nmol/L). 

Furthermore, 2.8% (n=3) of subjects in the VIC group had 25-OHD3 level less than 25 

nmol/L, while no subject had less than 25 nmol of 25-OHD3 in the QLD group. Women had 

more VDD (34.5%, n=19) than men (20.8%, n=11) in the VIC group; in contrast, there were 

slightly more men with VDD (12.5%, n=7) than women with VDD (9.4%, n=5) in the QLD 

group (Table  7-8, Figure  7-6).  

Epi-25-OHD3 was detected in 75.3% (n=82) of samples (ranged 1.0-11.9 nmol/L) in the 

QLD group compared to 57.4% (n=62) of VIC samples (ranged 1-10.2 nmol/L), (Table  7-9, 

Figure  7-7). Percentages of epi-25-OHD3 median levels and total 25-OHD3 median levels 

were 4.2% (ranged 0-10.7%) and 2.4% (ranged 0-11.7%) among QLD and VIC groups, 

respectively. 25-OHD2 was quantified in some QLD samples, but only 10% of samples 

(n=11) contained 25-OHD2 above the method limit of quantification (LoQ ≥5 nmol/L), and it 

was not quantified in the VIC samples.  

The majority of subjects in the QLD and VIC groups had no vitamin A deficiency (VAD) 

(retinol <0.7 µmol/L). Only one subject (0.9%) had VAD in each investigated group 
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(Table  7-10, Figure  7-8). Vitamin E deficiency (VED) (α-tocopherol <12 µmol/L) was found 

in one subject (0.9%) in the VIC group (Table  7-11, Figure  7-9).  

Table  7-8. Status of vitamin D3 (25-OHD3). 

Three thresholds were used to define vitamin D status including: vitamin D deficiency (25-OHD3 <50 nmol/L); 

vitamin D insufficiency (25-OHD3 ≥50 <75 nmol/L); and vitamin D sufficiency (25-OHD3 >75 nmol/L). 

  
25-OHD3/QLD 25-OHD3/VIC 

  

< 50 

nmol/L 

≥ 50 < 75 

nmol/L 

≥ 75 

nmol/L 

< 50 

nmol/L 

≥50 < 75 

nmol/L 

≥ 75 

nmol/L 

Men 
n 7 22 27 11 29 15 

% 12.5 39.3 48.2 20.0 52.7 27.3 

Women 
n 5 23 25 19 14 20 

% 9.4 43.4 47.2 35.8 26.4 37.7 

Total 
n 12 45 52 30 43 35 

% 11.0 41.3 47.7 27.8 39.8 32.4 

 

 

 Figure  7-6. Status of vitamin D3 (25-OHD3). 

Three thresholds were used to define vitamin D status including: vitamin D deficiency (25-OHD3 <50 nmol/L); 

vitamin D insufficient (25-OHD3 ≥50 <75 nmol/L); and vitamin D sufficient (25-OHD3 >75 nmol/L).  
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Table  7-9. Status of vitamin D3 epimer (epi-25-OHD3). 

This table demonstrates vitamin D3 epimer (epi-25-OHD3) status in the QLD group compared to the VIC 

group. The method limit of quantification is ≥3.5 nmol/L.  

    Epi-25-OHD3 /QLD Epi-25-OHD3 /VIC 

    
Not  

detected 

≥1 < 3.5  

nmol/L 

≥ 3.5  

nmol/L 

Not 

 detected 

≥1 < 3.5  

nmol/L 

≥ 3.5 

 nmol/L 

Men 
n 6 20 30 14 29 12 

% 10.7 35.7 53.6 25.5 52.7 21.8 

Women 
n 21 15 17 32 11 10 

% 39.6 28.3 32.1 60.4 20.8 18.9 

Men and 

Women 

n 27 35 47 46 40 22 

% 24.8 32.1 43.1 42.6 37.0 20.4 

 

 

Figure  7-7. Status of vitamin D3 epimer (epi-25-OHD3). 

This chart demonstrates vitamin D3 epimer (epi-25-OHD3) status in the QLD group compared with the VIC 

group. The method limit of quantification is ≥3.5 nmol/L.  
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Table  7-10. Status of vitamin A (retinol). 

This table shows vitamin A (retinol) status. A threshold of less than 0.7 μmol/L of retinol was used to indicate 

vitamin A deficiency. 

    Retinol /QLD Retinol /VIC 

    < 0.70 μmol/L ≥ 0.70 μmol/L < 0.70 μmol/L ≥ 0.70 μmol/L 

Men 
n 0 56 1 54 

% 0 100 1.8 98.2 

Women 
n 1 52 0 53 

% 1.9 98.1 0 100 

Total 
n 1 108 1 107 

% 0.9 99.1 0.9 99.1 

 

  

Figure  7-8. Status of vitamin A (retinol).  

Chart demonstrates vitamin A (retinol) status. A threshold of less than 0.7 μmol/L of retinol was used to indicate 

vitamin A deficiency. 
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Table  7-11. Status of vitamin E (α-tocopherol). 

Table demonstrates α-tocopherol status. A threshold of less than 12 μmol/L of α-tocopherol was used to indicate 

vitamin E deficiency.  

    α-Tocopherol /QLD α-Tocopherol /VIC 

    < 12 μmol/L ≥ 12 μmol/L < 12 μmol/L ≥ 12 μmol/L 

Men 
n 0 56 0 55 

% 0 100 0 100 

Women 
n 0 53 1 52 

% 0 100 1.9 98.1 

Total 
n 0 109 1 107 

% 0 100 0.9 99.1 

 

  

Figure  7-9. Status of α-tocopherol. 

Chart demonstrates α-tocopherol status. A threshold of less than 12 μmol/L of α-tocopherol was used to indicate 

vitamin E deficiency.  
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7.4.7 Reference intervals for vitamins A and E 

RIs were estimated for vitamin A (retinol) and vitamin E (α-tocopherol) in two Australian 

populations at different latitudes: Queensland (QLD) and Victoria (VIC). For this purpose, 

outlying results of vitamins A and E were statistically determined using the Tukey test based 

on the recommendations from the CLSI Guidelines C28-A3 (CLSI 2008) (261).  

According to statistical analysis investigating the effect of gender and age groups on vitamin 

A and E levels conducted earlier in this chapter (sections 7.4.3-7.4.5), RIs for vitamin A were 

estimated irrespective of gender and age for the QLD and VIC groups. In contrast, RIs for 

vitamin E in the QLD group were evaluated with consideration of age but not gender. For the 

VIC group, RIs of vitamin E were calculated regardless of gender and age (Table  7-12).   

 

Table  7-12. Estimation of reference intervals for blood vitamins A and E.  

Reference intervals for vitamins A (retinol) and E (α-tocopherol) in blood were assessed based on the “robust 

method”, which is recommended by the Clinical and Laboratory Standards Institute Guidelines C28-A3. 

Vitamin State 
Age group 

(years) 
n Lower 2.5% Upper 97.5% 

Retinol 

QLD 18 – over 60 107 
1.12 

(0.98 –1.25) 

3.14 

(2.98 – 3.29) 

VIC 18 – over 60 106 
0.68 

(0.54 – 0.83) 

3.03 

(2.85 – 3.21) 

α-Tocopherol 

QLD 

18 – 39 37 
13 

(10 – 16) 

39 

(36 – 42) 

40 – 60 38 
16 

(13 – 19) 

44 

(41 – 47) 

over 60 33 
19 

(15 – 23) 

49 

(45 – 52) 

VIC 18 – over 60 105 
12 

(10 – 14) 

43 

(40 – 46) 
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7.4.8 Correlations of fat-soluble vitamin levels  

Correlations between FSV levels in the QLD and VIC groups were statistically investigated. 

Due to inconsistent data distribution across groups and subgroups as showed in earlier 

sections of this chapter, Pearson (parametric) and Spearman (non-parametric) tests were used 

in the analysis to provide more confidence in the statistical analysis. Both tests show close 

results over all investigated correlations, showing a significant positive medium correlation 

between levels of 25-OHD3 and its epimer in both QLD and VIC groups (Table  7-13, 

Figure  7-10).  

A small correlation between levels of 25-OHD3 and retinol was observed in both QLD and 

VIC groups (Table  7-13, Figure  7-11). Furthermore, correlations of retinol levels with lower 

(<50 nmol/L, vitamin D deficiency threshold) and higher (>50 nmol/L, vitamin D 

insufficiency threshold) levels of 25-OHD3 were also investigated to identify the potential 

effect of retinol level on vitamin D. However, results did not support the potential effect of 

retinol on 25-OHD3 levels in QLD and VIC groups (Table  7-13, Figure  7-11).  

Possible correlation was examined between levels of 25-OHD3 and α-tocopherol. There was 

no correlation was found in the QLD group, while a small correlation was observed in the 

VIC group. Addition statistical investigation was conducted on correlations between α-

tocopherol and vitamin D levels of deficiency and insufficiency. A small correlation was 

found between vitamins E and D levels in both QLD and VIC groups (Table  7-13, 

Figure  7-12). 

Possible correlation between retinol and α-tocopherol was also investigated in the QLD and 

VIC groups. Small to medium correlations were found between these two blood metabolites 

in both QLD and VIC samples (Table  7-13, Figure  7-13).  
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Table  7-13. Correlation between blood FSV levels in QLD and VIC populations. 

Correlation between blood FSV levels was statistically examined using Pearson and Spearman 

tests. Extent of correlation was justified based on trend of correlation (+/-); strength of 

correlation (correlation coefficient (r): small correlation (±0.1 - ±0.29), medium correlation (±0.3 

- ±0.49) and large correlation (±0.5 -  ±1.0)); and statistical significance (p <0.05 was considered 

as significant) (263).   

 QLD VIC 

Correlation 

Correlation 

coefficient 

(r) 

p 

value 

Correlation 

coefficient 

(r) 

p 

value 

25-OHD3 and Epi-25-OHD3  

Pearson test 

Spearman test 

 

0.401 

0.359 

 

<0.001 

<0.001 

 

0.388 

0.344 

 

<0.001 

<0.001 

25-OHD3 and Epi-25-OHD3* 

Pearson test 

Spearman test 

 

0.467 

0.449 

 

<0.001 

<0.001 

 

0.586 

0.571 

 

<0.001 

<0.001 

25-OHD3 and Retinol 

Pearson test 

Spearman test 

 

0.175 

0.206 

 

0.069 

0.032 

 

0.299 

0.324 

 

0.002 

0.001 

25-OHD3 (<50nmol/L)
 ≠

 and Retinol 

Pearson test 

Spearman test 

 

-0.052 

-0.018 

 

0.871 

0.957 

 

0.134 

0.120 

 

0.481 

0.526 

25-OHD3 (≥50nmol/L)
 $ 

and Retinol  

Pearson test 

Spearman test 

 

0.160 

0.193 

 

0.117 

0.058 

 

0.137 

0.134 

 

0.232 

0.243 

25-OHD3 and α-Tocopherol 

Pearson test 

Spearman test 

 

0.011 

0.044 

 

0.908 

0.648 

 

0.237 

0.279 

 

0.013 

0.003 

25-OHD3 (<50nmol/L)
 ≠

 and α-Tocopherol 

Pearson test 

Spearman test 

 

-0.111 

-0.039 

 

0.732 

0.905 

 

0.075 

0.022 

 

0.693 

0.907 

25-OHD3 (≥50nmol/L)
 $  

and α-Tocopherol 

Pearson test 

Spearman test 

 

-0.030 

0.018 

 

0.768 

0.864 

 

0.276 

0.242 

 

0.015 

0.033 

Retinol and α-Tocopherol 

Pearson test 

Spearman test 

 

0.266 

0.297 

 

0.005 

0.002 

 

0.371 

0.418 

 

<0.001 

<0.001 

* Correlation between the 25-OHD3 and its epimer based on samples in which epi-25-OHD3 

detected.  
≠ 

In individuals with vitamin D deficiency (25-OHD3 <50nmol/L) 
$ 
In individuals with non-vitamin D deficiency (25-OHD3 ≥50nmol/L) 
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Figure  7-10. Scatter plot of 25-OHD3 versus epimer of 25-OHD3 levels. 

This plot demonstrates the correlation between results of 25-OHD3 and epi-25-OHD3 in both QLD (r =0.359, p 

<0.001) and VIC (r=0.344, p <0.001) groups. The linear regression line plotted shows the relationship between 

the investigated vitamin results.    
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Figure  7-11. Scatter plot of 25-OHD3 versus retinol levels.  

This plot demonstrates the correlation between results of 25-OHD3 and retinol in both QLD (r=0.206, p= 0.032) 

and VIC (r=0.324, p= 0.001) groups. The linear regression line plotted shows the relationship between the 

investigated vitamin results.      
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Figure  7-12. Scatter plot of 25-OHD3 versus α-tocopherol levels. 

This plot demonstrates the correlation between levels of 25-OHD3 and α-tocopherol in both QLD (r=0.044, p= 

0.648) and VIC (r=0.279, p= 0.003) groups. The linear regression line plotted shows the relationship between 

the investigated vitamin results.       
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Figure  7-13. Scatter plot of retinol versus α-tocopherol levels.  

This plot demonstrates the correlation between levels of retinol and α-tocopherol in both QLD (r=0.297, p= 

0.002) and VIC (r=0.418, p <0.001) groups. The linear regression line plotted shows the relationship between 

the investigated vitamin results.     
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7.5 Discussion 

This study investigated status and correlation of five FSV metabolites in two Australian 

populations at different latitudes using precise simultaneous LC-MS/MS quantification 

methods. While the effect of latitude on vitamin D status has been previously established (40, 

264), it is doubtful whether latitude has impact on levels of vitamins A and E (265). The 

current study investigated the status of three vitamin D metabolites in addition to vitamins A 

and E in two Australian states, QLD (latitude between 10º S and 28º S) and VIC (latitude 

between 34º S and 38º S). This study investigated correlations between vitamins in the two 

populations.  

Vitamin D deficiency  

Accurate estimation of VDD prevalence has become more complicated due to several factors, 

including the controversy surrounding the cut-off level of vitamin D deficiency and 

sufficiency (258, 266). The Institute of Medicine (IOM) proposed 50 nmol/L (20 ng/mL) as 

the optimal level of serum 25-OHD3 for skeletal health (266). In contrast, the Endocrine 

Society Clinical Practice Guidelines suggested 75 nmol/L of 25-OHD as the optimal level for 

vitamin D, and less than 50 nmol/L as the threshold of VDD (258). A nationally based 

Australian study of the prevalence of VDD used thresholds of less than 50 nmol/L and less 

than 75 nmol/L of blood 25-OHD3 for vitamin D deficiency and insufficiency, respectively 

(255). 

Our study found that the prevalence of VDD (25-OHD3 <50 nmol/L) in the VIC group was 

around three times higher than in the QLD group. The vitamin D status variation among VIC 

and QLD populations is consistent with the fact that people in VIC generally have less 

sunlight exposure for the most of the year, which is essential for endogenous vitamin D 
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synthesis, compared with people residing in QLD (255, 267, 268). The Australian national 

population-based study reported that prevalence of VDD in southern Australian regions 

(latitude > 35º S) was more than three times higher than the prevalence in central to northern 

Australian regions (latitude <30º S) during the summer-autumn period (255). VDD was also 

more common in southern Australian regions in winter-spring (255).  In contrast, another 

study showed that VDD prevalence in Geelong (a city in south VIC, latitude 38º S) was lower 

than in southeast QLD (latitude 27º S) in the summer and winter seasons (268). This 

observation is not expected and is inconsistent with the latitude difference between Geelong 

and southeast QLD.  

Significantly low vitamin D levels (25-OHD <25 nom/L) are associated with  symptoms of 

osteomalacia and osteoporosis (266). Therefore, it is important to identify the percentage of 

cases with less than 25 nmol/L of 25-OHD3 in both QLD and VIC groups. Our results 

showed that 5.8% of the VIC group had less than 25 nmol/L of 25-OHD3, compared to 0.8% 

found in the QLD group. As a matter of note, the national study found that 4% of the overall 

Australian population had less than 25 nmol/L of 25-OHD3 (255). 

VDD is generally more common in women than men. In this study, women in the VIC groups 

had a higher prevalence of VDD (34.5%) than men (20.8%), while in the QLD group, the 

prevalence of VDD in men (12.5%) was slightly higher than in women (9.4%). Previously, it 

was documented that the prevalence of VDD in southern Australia populations was higher in 

women than in men (255). These results are consistent with our result findings in the VIC 

group. Average of vitamin D level in men and women were very close in QLD group and that 

is consistent with findings of several population-based studies (42, 253, 254, 269). 

Epimer of 25-OHD3 has recently been highlighted by a number of studies that used LC-

MS/MS methods, which made possible to measure the epi-25-OHD3 in blood samples (270). 
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The epi-25-OHD3 has been identified in children and adults (134-141). In this work, epi-25-

OHD3 was detected in 75.2% and 57.4% of the investigated QLD and VIC samples, 

respectively. The proportion of epi-25-OHD3 median level to the total 25-OHD3 median 

level (% epi-25-OHD3) was 4.2% (QLD group) and 2.4% (VIC group). Based on previous 

studies, 25-OHD3 epimer was detected in 43–100% of children and adults (136, 270), and it 

formed 0–16% of total serum 25-OHD level (136, 138, 271). A higher percentage of epi-25-

OHD3 was significantly associated with the summer season and with vitamin D supplements, 

but not with food intake (271). Although the clinical role of epi-25-OHD3 is still not clear, 

one study recently reported that percentage of epi-25-OHD3 levels in patient groups 

(diabetes, rheumatoid arthritis and Alzheimer disease groups) were higher than those in 

healthy people (47.4% and 27.2 %, respectively) (272). Interestingly, we found that epimer of 

25-OHD3 was detected in the men more than women in both QLD and VIC populations. This 

invites the question whether this observation relates to only healthy people or extends to 

patients as well. This accentuates the importance of exploring the roles of epi-25-OHD3 in 

pathophysiological functions. 

Vitamin D2 forms a minor proportion of total vitamin D in the body. Our results are 

consistent with the expected low levels of 25-OHD2. Only 10% (n=12) of the QLD samples 

contained 25-OHD2 (ranged 5-8 nmol/L), while it was not quantified in the VIC sample 

group. Vitamin D2 is sourced from a limited number of natural foods, such as sun-dried 

mushrooms, and from fortified foods, which are not commonly available in Australia (273). 

Furthermore, serum 25-OHD2 level is negatively affected by the increase of vitamin D3 

intake (86).  
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Vitamin A and E deficiencies 

Vitamin A deficiency (VAD) is a problematic public health issue, especially due to 

malnutrition in developing counties (29). VAD occurs in developed countries as secondary 

malnutrition resulting from gastrointestinal disorders such as celiac disease (256). 

Furthermore, chronic diseases that affect vitamin A absorption or liver storage could be a 

cause of VAD (274-276). As a result,  about 50% of preschool-aged children and pregnant 

mothers are at risk of VAD worldwide (29). Between 1995 and 2005, the estimates for global 

VAD (serum retinol <0.7 μmol/L, based on World Health Organisation (WHO) 

recommendations) among preschool-aged children and pregnant women were 190 million 

and 19.1 million, respectively (29).  

Vitamin E deficiency (VED) is rare in humans, as most food sources contain vitamin E. VED 

is commonly caused by malabsorption disorders such as cystic fibrosis, chronic hepatitis and 

gastrointestinal disorders (256). However, this deficiency is more common in developing 

countries than in industrial countries, due to inadequate vitamin intake and high prevalence of 

infectious diseases that relate to oxidative stress processes, such as malaria and AIDS (66). 

To evaluate vitamin E status, MOI suggests plasma α-tocopherol levels of 12 μmol/L as the 

threshold of vitamin E adequacy (259). This α-tocopherol level is used to determine sufficient 

vitamin E intake, and is also linked to a normal in vitro hydrogen peroxide induced 

haemolysis (259).   

The status of vitamins A and E is affected by dietary intake and possibly other controversial 

factors, including gender, age and season. Our results showed no significant gender effect on 

vitamin A and E levels, which is consistent with several previous studies (257, 277-279). In 

contrast, however, other studies reported that vitamin A and E levels were influenced by 

gender (248, 280). Overall, the median levels of vitamins A and E in both QLD and VIC 
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groups were observed at adequate levels. These results were not unexpected, as vitamin A 

and E deficiencies are not common in well-nourished populations (278).  

The current study showed that median levels of vitamins A and E in the VIC group were 

slightly lower than those in the QLD group. The slight discrepancies in the median results 

between the two investigated groups may relate to variances in dietary patterns rather than 

latitudes or seasons. Olmedilla and colleagues indicated that seasons had no significant effect 

on vitamin A and E levels (248). In fact, food purchasing behaviours across seasons, which 

are influenced by socioeconomic status and the food basket market, might have more impact 

on vitamin consumption (281-285). Furthermore, people’s educational and socioeconomic 

levels are associated with their food choices and consumption (286). These indicate how 

dietary lifestyle patterns are affected by food availability at certain times and socioeconomic 

levels rather than the season or latitude themselves. 

Queensland and Victoria are multicultural communities that have a variety of dietary and 

lifestyle behaviours, and the population structure in QLD and VIC is likewise varied. Based 

on the 2011 census, the four main ancestries (English, Australian, Irish and Scottish) formed 

95.2% and 78.2% of total people ancestries in QLD and VIC, respectively (287, 288). The 

percentage of people who speak languages other than English at home was higher in VIC 

(23.1%) than in QLD (9.8%) (288, 289). Furthermore, people who were born in overseas 

formed 26.2% of the total VIC population compared with 20.5% of total QLD residents (288, 

289). In addition, between 2007 and 2013, 28.6% and 12.8% of total refugees and 

humanitarian entrants to Australia were welcomed by VIC and QLD, respectively (290). 

Therefore, a potentially greater variety of dietary patterns and lifestyles in Victorian people 

compared with Queensland residents might relate to the diversity in population structures in 
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VIC versus QLD. However, this could not be confirmed in our study as dietary and lifestyle 

data were unavailable; this is a limitation to the current study.   

Reference intervals 

The establishment of RIs for FSVs is challenged by several difficulties, including 

disagreement on defining optimal levels for FSVs. Three main factors affect the 

establishment of appropriate RIs for vitamin D. Firstly, there is debate as to whether the basis 

of skeletal health is enough to define optimal levels for vitamin D, or if other health demands, 

such as parathyroid gland functions, should be considered in defining the optimal vitamin D 

level (21). Secondly, endogenous synthesis of vitamin D is influenced by several factors such 

as race, lifestyle, seasons and latitudes (10), and VDD is a global health problem (22). 

Thirdly, although standardisation efforts in measurement of FSVs have been made, there are 

still significant knowledge gaps as discussed in Chapter 3. As a result, it is difficult to 

establish appropriate RIs for vitamin D.   

Vitamin A and E deficiencies in adults are uncommon, especially in developed countries or 

well-nourished communities, and they are more related to serious health problems such as 

cystic fibrosis. Several studies demonstrated average levels of vitamins A and E in certain 

populations (23-25), however, there is a limited number of studies establishing 95th 

percentile RIs for vitamins A and E in adults (26, 27) (Table  7-14). The serious issue here 

that these published RIs were established based on different methods and calibrators, which 

affected the final results (28, 29). Hence, finding reliable comparisons between published RIs 

is challenging. 

Consequently, there is disagreement between laboratories regarding RIs of vitamins A and E 

(81, 142). In the current study, 95
th

 percentile RIs were calculated for vitamins A and E in the 

QLD and VIC groups. It showed that the calculated upper limits of RIs of vitamins A and E 
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in QLD and VIC groups were close; in contrast, the calculated lower limits of vitamins A and 

E were lower in the VIC group than those in the QLD group. These lower limits were close to 

the suggested borders of vitamin A and vitamin E deficiencies (<0.70 µmol/L and 12 µmol/L, 

respectively). These lower limits might reflect the diversity of Queensland and Victorian 

populations in dietary patterns and lifestyles. The calculated RIs for vitamin A based on 

investigated VIC population may not be appropriate RIs.  

A limited number of studies established 95
th

 percentile RIs for vitamins A and E in adults 

(92, 160, 256, 257, 277, 291, 292). Some of these studies reported lower limits of RIs close to 

the suggested deficiency borders of vitamin A (256, 277, 292) and vitamin E (160, 257, 277, 

291). Comparing our calculated ranges with those in previous studies is difficult, however, as 

these studies determined RIs using different methods and calibrators that had an impact on 

their results (219, 220, 229). Recommended ranges for health should be used until 

appropriate RIs are established. This, however, cannot be completely adequate until 

traceability of chain is validated as discussed in Chapter 5. 
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Table  7-14. Summary of published reference intervals for blood vitamins A and E in adolescents and adults. 

Table demonstrates published 95
th

 percentile reference intervals for vitamins A and E. These reference intervals were 

established using the HPLC platform with commercial and in-house calibrators of different matrix types. 

Analyte 

Country, 

year, 

references 

n, 

specimen 
Gender 

Age 

range Calibrator 
Imprecision CV %  

( at µmol/L) 

Lower 

limit 

Upper  

limit 

year µmol/L µmol/L 

 

V
it

am
in

 A
 (

R
et

in
o

l)
 

Europe 

2011 

 (292) 

444 

serum 
M 13–18 NS 

2.9%  

(NS)
#
 

0.69
$ 

2.20 

USA  

2009 

 (257) 

517 

Serum 
M + F 13–17 

In-house 

calibrator in 

ethanol 

9%  

(at 1.05)
*
 

1.12 2.62 

Canada 

1988 

 (277) 

24 

Serum 
M + F 13–19 NS NS 0.90 2.50 

Canada  

2014 

(256) 

71 

Serum 
M + F 11–<16 Chromsystems 

(traceable to 

NIST 968e) 

3.8% 

(at 2.11)
*
 

0.9 1.9 

50 

Serum 
M + F 16–<19 1.0 2.6 

Spain 

1997 

 (92) 

210 

Serum 
M 

5–79 NS NS 

1.13 2.63 

240 

Serum 
F 1.01 2.44 

USA 

2009 

(160) 

160 

serum 
M + F >13 

In-house 

calibrator in 

ethanol 

6.1% 

 (NS)
*
 

1.05 5.03 

V
it

am
in

 E
 (

α
-T

o
co

p
h

er
o

l)
 

Europe 

2011 

 (292) 

444 

Serum 
M 13–18 NS 

2.9% 

 (NS)
#
 

14 32 

USA 

2009 

 (257) 

517 

Serum 
M + F 7–17 

In-house 

calibrator in 

ethanol 

9% 

 (at 1.05)
*
 

11 30 

Canada 

1988 

 (277) 

24 

Serum 
M + F 13–19 NS NS 13 24 

Canada 

2014 

 (256) 

245 

Serum 
M + F 1–<19 

Chromsystems 

(traceable to 

NIST 968e) 

2.99%  

(at 26.9)
*
 

14.5 33 

Spain 

1997 

 (92) 

210 

Serum 
M 

5–79 NS NS 

18 46 

210 

Serum 
M 18 46 

UK 

1997 

 (291) 

4943 

Plasma 
M 

35–55 

In-house 

calibrator in 

hexane 

10.5% 

  (NS)
*
 

11 52 

2234 

Plasma 
F 11 51 

USA 

2009 

(160) 

160 

serum 
M +F > 13 

In-house 

calibrator in 

ethanol 

6.7  

(NS)
*
 

 

10 70 

NS: not stated, 
#
 no details,

*
 Inter-assay imprecision, 

$ 
0.7 μmol/L is considered as vitamin A deficiency.  
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Vitamin Interaction 

Interaction between vitamins, especially between vitamins A and D (82, 83, 293), has been 

reported. Interference of vitamin A with vitamin D function has been observed in animals and 

humans (82, 83). In rats, high vitamin A intake attenuated toxicity of hypervitaminosis D 

(82). VDD (<50 nmol/L) and a high level of retinol (>2.8 μmol/L) have been associated with 

high risk of osteoporotic fractures (85). Association between vitamins A and E has also been 

suggested (294, 295), and correlation between levels of serum retinol and α-tocopherol in 

humans was also reported (277). Dietary vitamin A was linked with blood α-tocopherol 

levels, while vitamin E intake had no significant effect on blood retinol level  (294, 295). The 

current work is the first study investigated interactions of these vitamins using simultaneous 

analysis method which is important to minimise misdirection of vitamin interactions resulting 

from the use of several quantification methods. 

Correlations between levels of 25-OHD3 and its epimer have been reported in several studies 

(135, 136, 296). In the current study, a medium correlation between 25-OHD3 and its epimer 

was observed in the QLD and VIC groups, and epi-25-OHD3 levels were not associated with 

age in adults. In addition, our study investigated correlations between blood levels of 25-

OHD3 and retinol, which both are non-active form analytes. We found a small correlation 

between the levels of these two inactive analytes in both the VIC and QLD groups. However, 

this does not rule out a possible association between the active forms of vitamin D (1α,25-

dihydroxyvitamin D (1α,25-(OH)2D3)) and vitamin A (retinoic acid).   

At the molecular level, retinoic acid might interfere with function of 1α,25-(OH)2D3, where 

both have regulatory roles in gene expression. 1α,25-(OH)2D3 forms a complex with vitamin 

D receptors (VDR) to create heterodimers with the retinoid X receptor (RXR). The 

heterodimer of the 1α,25-(OH)2D3-VDR complex and RXR triggers the gene expression 
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process. On the other hand, retinoic acid binds with retinoic acid receptors (RAR) to form the 

retinoic acid-RAR complex. This complex also requires forming heterodimers with RXR to 

facilitate gene expression. It is worth mentioning that several nuclear receptors, including 

thyroid hormone receptors, can form heterodimers with RXR. Therefore, intracellular vitamin 

D function could be affected by competitive metabolites forming heterodimers with RXR. 

High doses of vitamin A may attenuate the formation of the heterodimer 1α,25-(OH)2D3-

VDR complex with RXR. In in vitro studies, it has been found that the heteromeric 

interaction of the 1α,25-(OH)2D3-VDR complex with RXR was influenced by the presence 

of 1α,25-(OH)2-D3 and inhibited by high concentrations of retinoic acid (88).  

In the current work, possible correlation between 25-OHD3 levels and α-tocopherol levels 

among the QLD and VIC groups was investigated. Our findings showed a small correlation 

between the two vitamin levels, which agrees with previous research (297). It was 

documented that vitamin D3 supplements (800 IU/D for 6 months) alone or with calcium (2 

g/d for 6 months) significantly decreased α-tocopherol by 14% (86). However, there is little 

in the literature to support or deny this finding.  

Associations between vitamin A and vitamin E have been reported (294, 295). In this study, 

there was a significant positive medium correlation between the levels of retinol and α-

tocopherol in the QLD and VIC groups. These findings are consistent with those of a 

previous study, which reported a positive correlation between serum retinol and α-tocopherol 

in humans (277). However, in animal studies, high dietary vitamin A has been linked to a 

decrease in plasma α-tocopherol levels (294, 295). In contrast, varying levels of vitamin E 

intake had no significant effect on plasma retinol (295), whereas high levels of vitamin E 

intake interfere with the utilisation of beta-carotene (a vitamin A precursor) to retinol (298). 

Further studies are needed to explore association between vitamins A and E.  
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7.6 Conclusions 

In conclusion, this study has determined that there is no solid correlation between the levels 

of the investigated biomarkers of FSVs in serum. The measurement of the non-active forms 

of vitamin D (25-OHD3) and vitamin A (retinol) may not reflect the hypothesised correlation 

between the active forms of these vitamins (1,25-(OH)2D3 and retinoic acid ) at the level of 

the gene regulation. The difference in levels of vitamins did not vary across the adult 

populations based on gender. As anticipated, VDD is common even in the summer season in 

QLD and VIC groups, while deficiencies of vitamins A and E are not common in either state. 

There were, however, a proportion of participants in each cohort that were deficient as 

determined by the current list of recommended levels.  

Based on the current study using population, which was expected to be representative, we 

provide the following recommendations:  

1. No age stratification for vitamin A in adults, but age stratification may be considered 

further for vitamins D and E. 

2. No gender stratification for vitamins A, E and D in adults. 

3. We suggest using recommended vitamin ranges for health rather than RIs.  

These recommendations fill some important knowledge gaps related to these vitamins. The 

appropriate recommended levels, however, cannot be completely established until chain of 

traceability is fully validated (discussed in Chapter 5). 
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Chapter 8 

 

General discussion and conclusions   
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Chapter 8 General discussion and conclusions 

8.1 General discussion 

Standardisation initiatives for the measurement of FSVs were first successfully introduced in 

the late 1980s. The National Institute of Standards and Technology (NIST) produced the 

standard reference material SRM 968 in 1989, and in 2009 added SRM 972 to support the 

standardisation of FSV measurement (94, 102). Further important efforts for the 

standardisation of clinical analyte measurement came through establishing The Joint 

Committee for Traceability in Laboratory Medicine (JCTLM) in 2002. The JCTLM was 

formed as a result of collaboration between the International Committee for Weights and 

Measures (CIPM), the International Federation for Clinical Chemistry and Laboratory 

Medicine (IFCC) and the International Laboratory Accreditation Cooperation (ILAC). The 

JCTLM plays a significant role in promoting the standardisation of analyte measurements 

through identifying appropriate reference materials, measurement procedures and laboratories 

(299). Recently, the isotope dilution liquid chromatography-mass spectrometry method has 

been recognised by JCTLM as a reference measurement procedure (RMP) for 25-OHD2 and 

25-OHD3, although not for the epimer of 25-OHD3 (103). There are no RMPs for vitamins A 

and E recognised as meeting the JCTLM requirements (103). 

Despite the fact that efforts have been made to standardise FSV measurements, many 

knowledge gaps remain. Until now, there have been no RMPs for simultaneous measurement 

of FSVs in blood as discussed in Chapter 3. In addition, there was limited data regarding the 

stability of FSVs in routine samples, including whole blood and serum (Chapter 4), 

traceability from reference material to commercial calibrators (Chapter 5) and commutability 

of using different biological matrices, such as diluted cord blood with cell culture media, for 
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FSV measurements (Chapter 6). Furthermore, the current status, appropriate RIs and 

correlation of blood FSV levels were part of the knowledge gaps (Chapter 7). The main aim 

of the current project is to be a part of standardisation efforts for FSV measurement through 

the introduction of a candidate reference quantification method applicable to a variety of 

clinical studies. 

 In this project, an efficient and precise method for the simultaneous quantification of five 

analytes (25-OHD3 and its epimer, 25-OHD2, retinol and α-tocopherol) was developed and 

validated using LC-MS/MS technology (Chapter 3). This method uses a robust, simple 

sample preparation with commercial calibrators and controls, and can be easily reproduced 

by clinical laboratories. Simultaneous measurement of the analytes using one patient sample 

reduces the potential result variations that could be observed, compared with using different 

techniques under different analytical conditions. This method was utilised in four clinical 

studies to explore existing knowledge gaps (Chapters 4-7). 

The knowledge gaps in FSV stability were identified through performing a systematic review 

of published data (Chapter 4). Accordingly, the stability of the three FSVs in whole blood, 

serum and analyte extracts under the influence of light and temperatures across different 

storage times was explored. The importance of this study is in simultaneously investigating 

the stability of FSVs in routine samples, utilising a precise LC-MS/MS method. In addition, 

the stability of each analyte was justified based on the calculation of acceptable clinical limits 

(i.e. TCL), which reflect biological variation and method imprecision (175). This work 

confirms that blood and serum samples designated for FSV measurement can be reliably 

processed without further precautions in normal laboratory conditions, including lighting and 

ambient temperature, during the pre-analytical stage. This data is useful to decrease the cost 

of sample transportation and storage, especially for large-scale studies. 
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The traceability of commercial calibrators to reference materials was explored using three 

commercial calibrators for vitamin E (α-tocopherol), as an example of extent of traceability 

of commercial calibrators to reference material (Chapter 5). It is well recognised that a 

correct and consistent calibrator assignment is important for accurate interpretation of results 

and medical decisions (224). Although the three commercial calibrators used in the current 

study were traceable to the same reference material (SRM 968), we found discrepancies 

between the observed concentrations and manufacturers’ expected concentrations. This 

exploration raises a problematic issue related to the trueness and traceability of commercial 

calibrators, and how different commercial calibrators could affect interpretation of patient 

results. This study also highlights the importance of standardising all parts of a traceability 

chain. 

This project examined the validity of measurement of 25-OHD3 and its epimer 

(epi-25-OHD3), retinol and α-tocopherol in umbilical cord blood (UCB) plasma with cell 

culture media (RPMI 1640) (Chapter 6). UCB has been utilised to investigate the correlation 

of vitamins with neonatal health problems (236). The emphasis of this study is that UCB is an 

appropriate sample choice to assess vitamin status in neonates as the number of venous blood 

samples that can safely be obtained is limited. Our results indicate that dilution of UCB 

diluted plasma is a reliable matrix for the quantification of 25-OHD3 and retinol using the 

LC-MS/MS method.  

The last study in this project focused on the status and correlation of FSVs in two Australian 

populations at different latitudes (Chapter 7). Vitamins A, D and E are routinely measured in 

the clinical laboratory; however, controversy exists in relation to the appropriate 

standardisation of the assays, which affects the interpretation of results. This is further 

confounded by current debate regarding the selection of population-based RIs versus 
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recommended levels for health. As a starting point to address this gap in knowledge, we 

created a snapshot of the current status and correlation of vitamin D (25-OHD2, 25-OHD3 

and epi-25-OHD3), vitamin A (retinol) and vitamin E (α-tocopherol) in blood across two 

Australian populations at different latitudes: Queensland (QLD) and Victoria (VIC), using 

simultaneous measurement LC-MS/MS method.  

A significant difference in 25-OHD3 and retinol levels, but not α-tocopherol, was observed 

between latitudes. While the effect of latitude location on vitamin D status is well known, our 

finding of a low vitamin A level in the VIC population may be related to a greater variety of 

dietary patterns and lifestyles in VIC people compared with QLD residents (287, 288). Our 

results also show low epi-25-OHD3 levels in the VIC group compared to the QLD group. 

The epimer of 25-OHD3 was detected in men more than in women in both the QLD and VIC 

populations. This raises the question of whether this observation is more likely seen in 

healthy people or in both healthy people and patients, which accentuates the importance of 

exploring the roles of epi-25-OHD3 in pathophysiological functions. The current study also 

found no gender difference in the studied vitamins. The effect of age stratification was not 

constant across the two latitudes, and consistent RIs could not be applied to the VIC and 

QLD populations. Finally, while the interaction of vitamins A and D has been observed in 

animals and humans (82, 83), only a small correlation between levels of the investigated 

biomarkers of FSV was observed. 

8.2 Conclusions 

This thesis contributes to standardisation efforts for FSV measurement by providing a novel 

and precise simultaneous method of quantifying FSVs using LC-MS/MS technology, and 

using it to fill existing knowledge gaps. This method is fully validated and easily 

reproducible by clinical laboratories. We confirm that FSVs are stable enough to be analysed 
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under normal laboratory conditions for at least 48 h, and serum FSVs can be kept at -20°C for 

at least one month and 25-OHD3 and retinol can be successfully measured by LC-MS/MS in 

UCB diluted plasma with RPMI-1640. In addition we recommend no gender stratification for 

vitamins A, D and E in adults, and appropriate levels for vitamins A and E are still need to be 

determined. We also suggest that vitamin A levels be reviewed when moderate to severe 

vitamin D deficiency is suspected. Finally, this thesis highlights that further collaboration 

efforts are required by all parties to improve the metrological traceability chain, which is 

essential for reliable comparison of results. 

8.3 Future directions 

Standardisation of measurement relies on main five pillars, including availability of reference 

material, reference measurement procedures, reference measurement laboratories, reference 

intervals and external quality assurance programs. Three of these pillars of standardisation of 

FSV measurements have not yet been completed. This thesis demonstrates the necessity for 

continued standardisation efforts of FSV measurement by all parties, including clinical 

institutes, for measurement standardisation, and manufacturers of in vitro diagnostic medical 

devices, for implementation of traceability requirements. The simultaneous FSV 

quantification method developed in the current project will be published as an essential step 

prior to submission for recognition as a reference measurement procedure by JCTLM and this 

may cover pillar of reference measurement procedure for FSV measurement. 

Studies undertaken in this thesis demonstrate that the correlation of FSVs, including active 

forms (e.g. 1α,25-dihydroxyvitamin D3 and retinoic acid), in healthy and patient samples 

should be investigated further. Correlations of other FSV analyte levels, such as 24,25- 

dihydroxyvitamin D3, ß-carotene and γ-tocopherol, are also worthy of study. Therefore, it is 

recommended to extend the current simultaneous quantification method to include 1α,25-
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dihydroxyvitamin D3, 24,25-dihydroxyvitamin D3, retinoic acid, ß-carotene and γ-

tocopherol. Such a method would be helpful for a better understanding of patterns of vitamin 

interaction in healthy people and patients.  

In this thesis, epi-25-OHD3 was identified in men more than in women in both QLD and VIC 

samples, though the median level of the epimer in the QLD samples was higher than in the 

VIC samples. Epi-25-OHD3 levels have been associated with certain diseases (143) using a 

small sample size, although its role is not well understood. Further studies exploring epi-25-

OHD3 status in men versus women in healthy and patient samples are recommended. 

Finally, this research reveals a problematic issue related to the trueness and traceability of 

commercial calibrators. It is recommended to explore the effects of using different 

commercial calibrators for FSVs on patient results, which will support efforts in the 

harmonisation of measurement methods. This will further support quality of measurement 

which in turn will aid clinical diagnostic and research initiatives in the future. 
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