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ABSTRACT 
 

One of the most pervasive trends in the global airline industry over the past few three 

decades has been the rapid development of low cost carriers. Australia has not been 

immune to this trend. Following deregulation of Australia’s domestic air travel market in the 

1990s, a number of low cost carriers have entered the market, and these carriers have now 

captured around 31 per cent of the market. Australia’s low cost carriers require reliable and 

accurate passenger demand forecasts as part of their fleet, network, and commercial 

planning, product definition, and for scaling investments in fleet and their associated 

infrastructure. 

Historically, the multiple linear regression-based modelling approach has been the most 

popular and recommended method for forecasting airline passenger demand. In more recent 

times, however, new advanced artificial intelligence-based forecasting approaches – artificial 

neural networks (ANNs), genetic algorithm (GA), and adaptive neuro-fuzzy inference system 

(ANFIS) - have been applied in a broad range of disciplines. In light of the critical importance 

of passenger demand forecasts for airline management, as well as the recent developments 

in artificial intelligence-based forecasting methods, the key aim of this thesis was to specify 

and empirically examine three artificial intelligence-based approaches (ANNs, GA and 

ANFIS) as well as the multiple linear regression approach, in order to identify the optimum 

model for forecasting Australia’s domestic low cost carrier passenger demand. This is the 

first time that such models – enplaned passengers (PAX Model) and revenue passenger 

kilometres performed (RPKs Model) – have been proposed and tested for forecasting 

Australia’s domestic low cost carrier passenger demand.  

The results show that of the four modeling approaches used in this study that the new, and 

novel, adaptive neuro-fuzzy inference system (ANFIS) approach provides the most accurate, 

reliable, and highest predictive capability for forecasting Australia’s domestic low cost carrier 

passenger demand. The accuracy of the forecasting models (PAX/RPKs) was measured by 

four goodness-of-fit measures: mean absolute error (MAE), mean absolute percentage error 

(MAPE), mean square error (MSE), and root mean square error (RMSE). 

ANFIS PAX Model:     MAE = 213.0, MAPE = 4.36 per cent, MSE = 7.1x104,  

and RMSE = 267.52. 
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ANFIS RPKs Model:    MAE = 218.97, MAPE = 5.55 per cent, MSE = 8.2x104,  

and RMSE = 286.81. 

A second aim of the thesis was to explore the principal determinants of Australia’s domestic 

low cost carrier passenger demand in order to achieve a greater understanding of the factors 

which influence air travel demand. In light of the evolving low cost carrier business models 

around the world, and the trend towards a ‘hybrid’ business model, a further aim of this 

thesis was to explore whether this strategy has also been adopted by Australia’s low cost 

carriers.  

The results show that the primary determinants of Australia’s domestic low cost carrier 

demand  are Australia’s real best discount airfare, Australia’s population size, Australia’s real 

GDP, Australia’s real GDP per capita, Australia’s unemployment size, world jet fuel prices, 

Australia’s real interest rates, and tourism attractiveness. Interestingly three determinants, 

Australia’s unemployment size, tourism attractiveness, and real interest rates, which have 

not been empirically examined in any previously reported study of Australia’s domestic low 

cost carrier passenger demand, proved to be important predictor variables of Australia’s 

domestic low cost carrier passenger demand.  

The thesis also found that Australia’s low cost carriers have increasingly embraced a hybrid 

business model over the past decade. This strategy is similar to low cost carriers based in 

other parts of the world.  

The core outcome of this research, the fact that modelling based on artificial intelligence 

approaches is far more effective than the traditional linear models prescribed by the 

International Civil Aviation Organization (ICAO), means that future work is essential to 

validate this.  

From an academic perspective, the modelling presented in this study offers considerable 

promise for future air travel demand forecasting. The results of this thesis provide new 

insights into low cost carrier passenger demand forecasting methods and can assist low cost 

carrier executives, airports, aviation consultants, and government agencies with a variety of 

future planning considerations. 
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  Chapter 1 

  Introduction 

1 

 

CHAPTER ONE: INTRODUCTION   

 

1.1 Background 

 

The vast size of the Australian continent, the country’s varied and rugged topography, and 

scattered population present significant transport (and communication) challenges. Due to 

the vast distances across the country as well as between urban centres, Australia is heavily 

reliant upon its air transport industry (Nolan 1996). Australia's airline industry was found on 

connecting regional communities to the country’s major cities (Baker & Donnet 2012).  

 

Australia’s air transport industry has historically been tightly controlled by the government. In 

1990 the Australian government commenced deregulation of the country’s domestic airline 

market, permitting private competition, and privatising its interests in existing airlines (Nolan 

1996). The government terminated the “Two Airline Policy”, which had maintained a highly 

regulated domestic interstate air transport duopoly, and permitted other airlines to compete 

with established carriers in Australia’s domestic market (Forsyth 2003; Nolan 1996). Since 

deregulation, a number of low cost carriers (hereafter LCCs) have entered the Australian 

domestic air travel market - Jetstar Airways, Tiger Airways and Virgin Australia, though since 

2011 the latter has moved to a full service network carrier (FSNC) business model.  

 

The emergence of low cost carriers (LCCs) has become a global phenomenon, with today 

virtually all travel markets containing at least some LCCs (Vasigh et al. 2008). The original 

LCCs business model was pioneered by US-based Southwest Airlines in 1971 (Daraban 

2012; Doganis 2006) and it is still widely used around the world today (Alamdari & Fagan 

2005; de Wit & Zuidberg 2012). LCCs are regarded as one of the most successful 

contemporary travel business concepts (Kua & Baum 2004). 

 

In Australia, in the early 1990s, Compass introduced Australia’s first LCC service. The airline 

was only in business for a short period, and was subsequently acquired by Qantas (Nyathi et 

al. 1993a). Virgin Blue commenced low cost operations in 2000. The airline began by firstly 

offering services on the trunk route Sydney-Melbourne. Virgin Blue offered very cheap fares, 

which were around fifty per cent lower than their competitors (Doganis 2006). Qantas 

established its low cost subsidiary - Jetstar Airways – in 2004. In 2007, Tiger Airways 

Australia was launched by its parent company, Singapore-based Tiger Airways (Thomas 

2006a).   
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LCCs have played an important role in Australia’s domestic air travel market. Since their 

inception of operations, Australia’s LCCs’ market share has grown significantly. This can be 

seen in Figure 1.1, in 2001, the LCC’s market share accounted for 5.7 per cent of Australia’s 

domestic airline market. The LCC’s market share increased to 50 per cent by 2011 (Figure 

1.1) (Centre for Aviation 2012). However, following the evolution of the Virgin Australia 

business model from an LCC to a full service network carrier since 2011, the LCCs market 

share has now declined to around 31 per cent. Australia’s current major domestic incumbent 

LCCs are Jetstar Airways and Tiger Airways. 

 
 

 
 

Figure1.1.Australian LCC domestic market share: 2001 – 2011. 
Source:  Centre for Aviation (2012) 
 

 

Forecasting future passenger travel demand is regarded as one of the most critical areas for 

airline management. Airlines forecast demand in order to plan the supply of services that are 

necessary to satisfy that demand (Doganis, 2009). Forecasting passenger transport demand 

is therefore of critical importance for airlines as well as for investors since investment 

efficiency is greatly influenced by the accuracy and adequacy of the estimation performed 

(Blinova, 2007). Air traffic forecasts are one of the key inputs into an airline’s fleet planning, 

route network development, and are also used in the preparation of the airline’s annual 

operating plan (Ba-Fail et al., 2000; Doganis, 2009). Furthermore, analysing and forecasting 

air travel demand may also assist an airline in reducing its risk through an objective 
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evaluation of the demand side of the airline business (Abed et al., 2001; Ba-Fail et al., 2000). 

Consequently, the forecasting of passenger demand plays an important role in decision 

making and planning for airlines.  

 

1.2 The Research Gap 

 

Forecasting future passenger travel demand is regarded as one of the most critical areas for 

airline management. In the air transport industry, many services providers and government 

regulatory agencies follow the International Civil Aviation Organization Manual on Air Traffic 

Forecasting (International Civil Aviation Organization 2006). This forecasting manual was 

originally developed in 1985 using traditional modelling techniques (Alekseev & Seixas 

2009). This manual was updated in 2006 and recommends a number of quantitative 

passenger travel demand forecasting approaches: time series analysis (trend projection), 

and decomposition methods (exponential smoothing, Box-Jenkins, adaptive filtering, and 

spectral analysis). The ICAO notes that extensive use has been made of causal forecasting 

methods, which infer a cause-and-effect relationship. When utilized successfully, causal 

methods are able to predict the “ups and downs” in the air transport market. This 

mathematical process is, however, a testing procedure. The procedure is designed to 

evaluate whether the relationship of the dependent variable (as expressed in the causal 

model) to the explanatory (independent variables) is significantly related to these variables 

(International Civil Aviation Organization 2006).  

 

Regression analysis is regarded by many as being by far the most important method for 

forecasting civil aviation passenger demand. In regression analysis, the forecast is based 

not only on the historical values of the item, for instance, enplaned passengers or revenue 

passenger kilometres performed (RPKs), being forecast but also other variables that are 

considered to have a causal relationship. Multiple regression analysis takes into 

consideration more than just a single independent variable, in contrast to the one variable 

used in simple regression analysis. The use of multiple regression analysis with a price-

income structure is normally referred to as “econometric analysis” or “econometric 

modelling” (International Civil Aviation Organization 2006). A comprehensive survey1 of the 

literature relating to previous air travel demand forecasting approaches used over the period 

1950-2014 revealed that econometric modelling approaches, primarily using multiple linear 

regression, were used in eighty seven per cent of the reported studies. 

                                                
1
 See Appendix 5. 
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In more recent times, however, a number of artificial intelligence-based forecasting methods 

have been proposed in the literature – artificial neural networks (ANNs), genetic algorithm 

(GA), and the adaptive neuro-fuzzy inference system (ANFIS). According to Yetilmezsoy et 

al. (2011, p.51), artificial intelligence-based modelling techniques “have become more 

popular because of their robustness, high predictive capabilities and flexible behaviours to 

handle the multi-objective criteria in a straightforward manner”. The use of new advanced 

artificial intelligence-based forecasting approaches have been applied for forecasting in a 

wide range of disciplines including, banking (Venkatesh et al., 2014), economics (Choudhary 

and Haider, 2012; Fang 2012; Giovanis 2012), energy demand prediction (An et al., 2014; 

Ghanbari et al. 2013; Jarimillo-Morán et al., 2013; Tamizharasi et al., 2014), electricity 

demand forecasting (Zahedi et al. 2013),  tourism demand forecasting (Atsalakis et al. 2014; 

Claveria and Torra, 2014; Hadavandi et al. 2011; Hong et al. 2011), traffic accident 

prediction (Akgüngör and Doğan, 2009; Kunt et al., 2011), supply chain (Kochak and 

Sharma 2015; Latif et al. 2014), gold price forecasting (Makridou et al. 2013), oil 

consumption forecasting (Senvar et al. 2013), stock market forecasting (Chen et al. 2013; 

Cheng et al. 2013; Svalina et al. 2013; Wei 2013), transportation (Jiménez et al., 2014), and 

water demand prediction (Behboudian et al., 2014). However, there are only three previous 

studies that have proposed and tested artificial neural networks (ANNs) for forecasting a 

country’s domestic air travel demand (Alekseev & Seixas 2002, 2009) and (Blinova 2007). 

There are no published studies that have developed and empirically examined genetic 

algorithm and adaptive neuro-fuzzy inference system (ANFIS) approaches for forecasting 

airline passenger demand. 

 

This study addressed this research gap by developing and testing three artificial intelligence-

based models (ANNs, GA and ANFIS) for forecasting Australia’s domestic LCC passenger 

demand as well as a multiple linear regression model (MLR) – the first time that such a MLR 

model has been proposed and tested for forecasting Australia’s domestic LCC passenger 

demand. In order to identify the most accurate and reliable forecasting approach up to five 

goodness-of-fit statistics were used. The modelling results revealed that the adaptive neuro-

fuzzy inference system (ANFIS) model provides the most accurate and reliable ability for 

forecasting Australia’s domestic LCC passenger demand. The models developed in the 

thesis can be used by LCCs, airports, aviation consultants, and government agencies in their 

forecasting and planning processes. 
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1.3 Research Aims and Research Questions 

 

Multiple linear regression (MLR) analysis is regarded as being by far the most important and 

popular method for forecasting civil aviation passenger demand. In regression analysis, the 

forecast is based not only on the historical values of the item, for instance, enplaned 

passengers or revenue passenger kilometres performed (RPKs), being forecast but also 

other variables that are considered to have a causal relationship. This is the recommended 

passenger forecasting approach of the International Civil Aviation Organization (International 

Civil Aviation Organization 2006) and is therefore used extensively around the world.  

 

As has been noted earlier, in more recent times, however, a number of artificial intelligence-

based forecasting methods have been proposed in the literature – artificial neural networks 

(ANNs), genetic algorithm, and the adaptive neuro-fuzzy inference system (ANFIS). In light 

of the critical importance of forecasting passenger demand for airlines, and in the absence of 

any reported previous studies that have proposed and tested models for forecasting 

Australia’s domestic LCC passenger demand, the first aim of the thesis was to empirically 

examine the recommended approach of the International Civil Aviation Organization (ICAO), 

that is, an econometric or linear regression model, with the artificial intelligence-based 

forecasting methods. The objective of this modelling was to identify the optimum model, in    

terms of accuracy, reliability and predictive capability, for forecasting Australia’s domestic 

LCC passenger demand. In order to address this aim, the following research question was 

proposed:  

 

What forecasting methods are available for estimating Australia’s domestic low cost carrier 

passenger demand and how do they differ in applicability and capability? 

 

 

This thesis also addresses a number of secondary aims. As previously noted, artificial 

intelligence-based modelling techniques have become more popular in diverse disciplines 

over the past decade (Kar et al. 2014). The popularity of this new approach is due to these 

model’s robustness and high predictive capabilities. The flexible behaviour of these models 

is able to handle multi-objective criteria in a straightforward manner (Yetilmezsoy et al. 

2011).   

 

Artificial neural networks (ANNs) have been applied to a wide range of disciplines, including 

transportation (Jiménez et al. 2014); banking (Venkatesh et al. 2014); energy demand 
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prediction (An et al. 2013; Jarimillo-Morán et al. 2013); tourism demand forecasting (Claveria 

& Torra 2014; Palmer et al. 2006); traffic accident prediction (Akgüngör & Doğan 2009; Kunt 

et al. 2011); and economics (Choudhary & Haider 2012).  

 

The genetic algorithm (GA) approach has been applied to a wide range of disciplines in 

recent times, including electric energy estimation (Ozturk et al. 2005); energy demand 

prediction (Ghanbari et al. 2013); housing price forecasting (Gu et al. 2011); tourism demand 

forecasting (Hernández-López & Cáceres-Hernández 2007; Hong et al. 2011); tourism 

marketing (Hurley et al. 1998); traffic accident severity prediction (Akgüngör & Doğan 2009; 

Kunt et al. 2011); and transport energy demand prediction (Haldenbilen & Ceylan 2005). In 

addition, Sineglazov et al. (2013) have proposed a genetic algorithm approach for predicting 

the short term demand for aircraft. The authors have also noted that their GA may be 

applicable to forecasting regional aviation facilities and could be used by other industrial 

sectors that have demand patterns similar to those experienced by airlines.  

 

The adaptive neuro-fuzzy inference system (ANFIS) approach has been applied to a 

growing range of disciplines, including transport mode choice (Andrade et al. 2007); 

economics (Fang 2012; Giovanis 2012); electricity demand forecasting (Zahedi et al. 2013); 

financial markets forecasting (Bagheri et al. 2014;  Kablan 2009); gold price forecasting 

(Makridou et al. 2013); oil consumption forecasting (Senvar et al. 2013); stock market 

forecasting (Atsalakis & Valavanis 2009; Chen et al. 2013; Cheng et al. 2013; Svalina et al. 

2013; Wei 2013); tourism demand forecasting (Atsalakis et al. 2014; Chen et al. 2010; 

Hadavandi et al. 2011); and ordering policy in supply chains (Latif et al. 2014). There has 

only been one published study using an ANFIS-based approach to model air transport 

demand forecasting (Xiao et al. 2014). Xiao et al. (2014) proposed a time series data-based 

neuro-fuzzy combination model, which was based on singular spectrum analysis, for the 

short-term air traffic prediction at Hong Kong International Airport.  

 

In the absence of any reported studies that have examined and empirically tested genetic 

algorithm or adaptive neuro-fuzzy inference system (ANFIS) models together with the very 

limited use of artificial neural networks (ANNs) for forecasting airline passenger demand, 

and, specifically Australia’s domestic LCC passenger demand, the following research 

question was devised: 
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How do artificial intelligence-based forecasting models perform in terms of accuracy and 

reliability in low cost carrier passenger demand forecasting as compared to the traditional 

multiple linear regression approach? 

 

 

The factors that influence air travel demand are complex (Doganis 2009; Vasigh et al. 2008). 

Each factor is composed of elements that can stimulate or reduce air travel demand. For 

airline passenger traffic demand forecasting purposes, these factors are more conveniently 

categorised into two broad groups. The first group comprises those factors that are external 

to the airline industry. The second group are those factors within the airline industry itself 

(Ba-Fail et al. 2000). The comprehensive search of the literature on previous air travel 

demand forecasting studies reported in the leading journals and literature, and presented in 

Chapter 2 showed that there are a range of socio-economic factors that influence air travel 

demand. Real GDP, real GDP per capita and air fares were the most common explanatory 

variables included in these studies (Ba Fail 2000; Sivrikaya & Tunç 2013). Other important 

factors that influence air travel demand reported in the literature include unemployment 

(McKnight 2010), tourism demand (Davidson & Ryley 2010; Graham 2006; Koo et al. 2013), 

world jet fuel prices (Gesell 1993, Li 2010),  and real interest rates (Cook 2007; Wensveen 

2011). 

 

Despite the significance of Australia’s domestic air transport industry, there have been only 

three previous studies that have attempted to forecast Australia’s domestic air travel demand 

(Bureau of Transport Economics 1986, Hamal 2012; Saad 1983). Therefore, a second aim 

of the thesis was to explore the predictors of Australia’s domestic LCC passenger demand 

so as to achieve a greater understanding of the factors which may influence the growth in 

their air travel demand. This investigation also sought to identify whether Australia’s 

unemployment size, tourism attractiveness, and real interest rates are significant predictors 

of Australia’s domestic LCC passenger demand. This was because there has been no 

previously reported study that has examined the influence of these factors on Australia’s 

domestic LCC passenger demand. Thus, in order to obtain a greater understanding of the 

factors that may influence Australia’s domestic LCC passenger demand, the following 

research question was asked:  

 

What are the principal predictors of Australia’s domestic LCC passenger demand?  
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Furthermore, Koo (2009) has noted that there are numerous variations to the LCCs business 

model. Indeed, it has been argued that the business models of many LCCs around the world 

have been evolving into what has been termed a ‘hybrid’ model (Tomová & Ramajová 2014; 

Vidović et al. 2013). Lawton (2002) states that research has shown that LCCs low-margin, 

high volumes and low-fare foci are distinguishing features of the LCCs as compared to the 

traditional full service network carriers2 (FSNCs). In light of the evolving LCCs business 

models, and the trend towards a ‘hybrid model’, this thesis explored whether Australia’s 

LCCs have moved towards a hybrid business model in recent years. Specifically, the 

following research question has been developed:  

 

How have Australia’s domestic low cost carriers business model followed that of other low 

cost carriers from around the world? 

 

1.4 Significance and Impact of the Study 

 

Forecasting is the process whereby projections, based on existing historical data, are made 

in regards to future performance. An accurate forecast assists airlines in their decision-

making and planning for the future. Forecasts empower management to modify existing 

variables at the current time. Forecasts also assist a firm’s management in predicting the 

future, so as to achieve a favourable viability scenario (Hadavandi et al. 2011).  

 

Australia’s domestic air travel market has experienced strong growth over the past forty 

years or so. The market has recorded strong growth particularly following the post-

deregulation market period (post-1990). Due to the impact of air travel on transportation 

networks and the environment, forecasts of future demand for air travel, as well as the 

knowledge of the factors that positively or negatively influence air travel demand, are critical 

requirements in the formation of transportation policies (Darglay & Hanly 2001, cited in 

Wang & Song 2010). Reliable forecasts of air transport activity play a vital role in the 

planning processes of States, airports, airlines, aircraft maintenance organisations, engine 

and airframe manufacturers, suppliers, air navigation service providers and other relevant 

bodies. In addition these forecasts assist States, in facilitating the orderly development of 

civil aviation, and aiding all levels of government in the planning of air space and airport 

infrastructure. Examples are air traffic control (ATC) and airport airside and landside 

                                                
2
 A “full service network carrier” is an airline that focuses on the provision of a wide range of pre-flight and on-

board services, including different classes of service, and connecting flights (Ehmer et al. 2008).  
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facilities. Reliable forecasts also assist aircraft manufacturers in planning future aircraft types 

(in terms of size and range); and when to develop them (International Civil Aviation 

Organization 2006). 

 

Demand forecasting is also essential for airlines when planning and scaling capital 

investment and infrastructure, and when scaling air transport related firms (Fernandes & 

Pacheco 2010).  Forecasting is therefore considered the most important area of airline 

management. Airlines forecast demand, in order to plan the supply of services that are 

necessary to satisfy that demand (Doganis 2009). Forecasting passenger transport demand 

is, therefore, of critical importance for airlines as well as for investors since investment 

efficiency is substantially influenced by the accuracy and adequacy of the estimation 

performed (Blinova 2007). Air traffic forecasts are also one of the key inputs into airlines’ 

fleet planning, route network development. They are also used in the preparation of the 

annual operating plans (Ba-Fail et al. 2000; Doganis 2009). 

 

Furthermore, forecasting and analysing air travel demand may also assist airlines, in 

reducing their risks, through objective evaluations of the demand side of the airline business 

(Ba-Fail et al. 2000). Hence, the sustainable success of any firm is closely related to the 

ability of its management, and decision makers to foresee the future, and define and 

implement appropriate response strategies (Sivrikaya & Tunç 2013).  

 

In light of the critical importance of forecasting passenger demand for airlines, and in the 

absence of any reported previous studies that have proposed and tested models for 

forecasting Australia’s domestic LCC passenger demand, this thesis has empirically 

examined the recommended passenger forecasting approach of the International Civil 

Aviation Organization (ICAO), that is, an econometric or multiple linear regression model, 

with new and novel artificial intelligence-based forecasting methods. The major significance 

of this thesis is that it has found that the adaptive neuro-fuzzy inference system (ANFIS) 

approach provides the most accurate and reliable models for forecasting Australia’s 

domestic LCC passenger demand and, is therefore, superior to the MLR forecasting 

approach that is currently extensively used in the global airline industry.            
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1.5 Outline of the Thesis 

 

The thesis falls into nine chapters. The introductory chapter has laid the foundations for the 

study. It has discussed the research aims and questions and has presented a 

comprehensive literature review of the air travel demand forecasting and underlined the 

background to the research problem formulation. In Chapters 2 and 3 the contextual setting 

for the study are discussed, with the objective of highlighting their relevance as to what is the 

optimum modelling approach for forecasting Australia’s domestic LCC passenger demand. 

Chapters 4 to chapter 7 presents the four modelling approaches for forecasting Australia’s 

domestic LCC passenger demand. Chapter 8 builds on the empirical work presented in 

Chapters 4 to chapter 7. In this chapter the empirical findings from the study’s modelling of 

Australia’s domestic LCC passenger demand are discussed in detail. Chapter 8 also 

addresses the study’s research questions. Chapter 9 summarizes the results of the study 

and assesses the implications of the study results and offers some suggestions for future 

research. 
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CHAPTER TWO: ESTABLISHING THE CONTEXT: AUSTRALIA’S 

EVOLVING LOW COST CARRIER MARKET   

 

2.1 Introduction 

 

An overview of the Australia’s domestic airline market policy in the post-World War II period 

is discussed in section 2.2. It points out that Australia’s domestic air travel market has 

evolved from being a tightly regulated market to a liberalised market following deregulation in 

1990. Section 2.3 presents an overview of the evolution of Australia’s low costs carriers 

highlighting the three discrete phases of LCCs entry that have occurred since deregulation of 

the market. The annual LCCs enplaned passengers, revenue passenger kilometre (RPKs) 

and market shares are also highlighted. This chapter provides the background for the more 

detailed modelling and analysis that follows in the subsequent chapters. 

 

2.2 Evolution of Australia’s Domestic Airline Market Policy 

 

In 1949, the Australian federal government introduced a so-called “Two Airline Policy”, 

initially by agreement but later legislated (Starkie 2008). Australia’s “Two Airline Policy” 

became official in 1952 following the passage of the Civil Aviation Act (Mills 1989; Rhodes 

2008, p. 96). Under this policy only two airlines were granted access to Australia’s domestic 

trunk routes: Australian National Airways (later renamed Ansett Airlines) and the state-

owned airline Trans Australia Airlines (TAA). In accordance with this policy the Australian 

government guaranteed the loans of Australian National Airways up to a set limit and later 

relaxed the requirement that all government employees should travel on Trans Australia 

Airlines (Rhodes 2008). 

 

In 1957, the Australian government further declared that only two airlines would be 

authorized to operate on trunk routes and established a Rationalization Committee 

composed of a representative from each airline and a coordinator nominated by the Minister 

for Transport. The Airlines Equipment Act of 1958 also allowed the government to control the 

types of aircraft imported into the country, capacity and the entry of major operators to trunk 

routes (Grimm & Molloy 1993). Furthermore, during this time, competition, coordination of 

scheduling and domestic passenger fares was controlled by the government (Formby et al. 

1990). The airlines were not permitted to withdraw from services unless a regional airline 

would take their place. Restrictions such as, level and structure of air fares, capacity and 
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regulatory barriers to entry were designed to support services by the two airlines across the 

national trunk route network (May et al. 1986). In 1961, two additional acts of Parliament 

authorized the Rationalization Committee to establish timetables, flight frequencies, aircraft 

types, available capacity, air fares, air cargo rates, and overall load factors on groups of 

routes (Rhodes 2008).   

 

Despite the two major incumbent airlines (Ansett/Trans Australia Airlines) supposed 

competition with each other, in practice all areas where competition may have occurred were 

regulated, including air fares (Shaw 2011). In spite of some relaxation of the constraints 

within its policy, by the 1980s the policy was attracting criticism for stifling competition 

(Starkie 2008). Thus, in 1981, the government established the Holcroft Inquiry which 

recommended an air fare pricing policy based on cost to be nationally consistent and permit 

discounted air fares to be set by the airlines (Rhodes 2008). Also, in 1981, the government 

created an Independent Air Fares Committee to appraise air fares, approve discounts, and 

change fare formulas to take into account cost and efficiency. This enhanced the 

government’s ability to control capacity of regional and cargo airlines through licensing of 

imported aircraft (Sinha 2001). The first sign of liberalization occurred in 1981 with an 

amendment to the Airlines Agreement Act which enabled regional airlines to operate jet 

aircraft (Collins et al. 2010). 

 

Despite the adoption of an even tougher regulatory regime, disquiet increased about the 

Two-Airline policy. In 1985, the then Labor government appointed a committee to conduct an 

“Independent Review of Economic Regulation of Domestic Aviation”. The committee’s report 

was published at the end of 1986. Though the terms of reference enabled a wide-ranging 

review of the regulatory scheme to be conducted, the committee was not requested to 

recommend a new policy; instead it was to report on possible future policy options3 (Mills 

1989).    

 

In 1987 the Australian government announced its firm intention to remove any restrictions on 

entry to inter-state markets. In fact, it put the industry on three years notice. This change in 

policy was driven by several factors. Australia had an agenda of general deregulation during 

the 1980s. But, deregulation of the United States domestic air travel market in 1979 was a 

further potent factor and this was used as an example by those Commonwealth states 

pressing the federal government for a change to its domestic aviation policy (Starkie 2008).   

 

                                                
3
 See Mills (1989, pp. 210-211) for a summary of the committee’s key findings and suggested policy options. 
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On the 7th October 1987, the Commonwealth Government provided Ansett and Trans 

Australia Airlines (TAA) with the required three years notice that the government would 

terminate the Airlines Agreement Act and deregulate the domestic airline industry. The 

removal of restrictions on domestic airlines other than Ansett and TAA operating commercial 

domestic charter flights with larger aircraft were also enacted at this time (Bureau of 

Transport and Communications Economics 1993). The principal features of the Australian 

government’s new policy for interstate services were: 

 Repeal of legislation: With effect in October 1990, the Australian Government will 

repeal the 1981 legislation regulating capacity, route entry, and air fares. 

 Foreign ownership provisions: Any foreign international airline operating services to 

Australia will not be permitted to hold more than 15 per cent equity in any airline 

providing domestic services. Otherwise foreign firms may invest in Australian airline 

companies, subject to the normal guidelines of the Foreign Investment Review 

Board. 

 Consumer protection: Airlines will become subject to all provisions of the Trade 

Practices Act; and air fares will be subject to scrutiny by the Prices Surveillance 

Authority (PSA), though the requirement for continued involvement of the PSA will be 

reviewed following an interim period of three years; and 

 Domestic rights for Qantas: with effect from 1 July 1988, Qantas was granted the 

right to carry, on its domestic sectors, passengers of other international airlines (in 

addition to its right to carry its own international passengers) (Mills 1989).       

 

On 1 November 1990, the entire industry was deregulated, ending the “Two Airline Policy” at 

the federal level (Forsyth 2003). The Airlines Agreement Act (1981) (Cth) s3, as well as the 

1981 Airlines Agreement between the Commonwealth and the two major incumbent carriers 

was terminated. In 1990, the Commonwealth also withdrew from the application of 

passenger capacity provisions in the Airline Equipment Acts (1958-1981) (Cth). Also, in 

1990, the Commonwealth announced its decision to privatise Australian Airlines (formerly 

TAA). The control of air fares through the Independent Air Fares Committee was also 

abolished with the disbandment of the commission (Moens & Gillies 2000).   However, some 

state governments maintained economic regulation of intra-state routes, while at the national 

level, the Australian Competition and Consumer Commission (ACCC) monitored the state of 

competition in the industry in accordance with its generic competition responsibilities (Kain & 

Webb 2003). The regulation of competition, route entry and capacity were terminated. New 

domestic airlines were permitted on all domestic routes (Collins et al. 2010; Forsyth 2003). 
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Also constraints on domestic airlines were removed including: aircraft import control, 

capacity and supply control on trunk routes by each airline, entry and exit barriers to 

domestic trunk routes and abolition of the Independent Airfares Committee in setting fare 

levels (Bureau of Transport & Communication Economics 1991).     

 

In September 1992 Qantas Airways acquired Australian Airlines (Moens & Gillies 2000; 

Quinlin 1998). The merged Qantas-Australian Airlines were partly privatised in 1993, a 

process completed in 1995 (Kong 1999). In 2001, the major event that occurred in 

Australia’s domestic airline market was the collapse of Ansett Australia (Forsyth 2003; 

Prideaux 2003).  

 

Figure 2.1 shows the annual growth in Australia’s domestic enplaned passengers and 

revenue passenger kilometres performed (RPKs4) from 1944 to 2013.  
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Figure2.1.Development of Australia’s annual enplaned domestic passengers and revenue passenger 
kilometres performed (RPKs): 1944-2013. 
Source: Bureau of Infrastructure, Transport and Regional Economics (2014b).  

 

 

 

 

                                                
4
 Revenue passenger kilometres (RPKs) are obtained by multiplying the number of fare paying passengers on 

each flight stage by the flight stage distance (Doganis 2009, p. 327). 
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2.3 Emergence of Low Cost Carriers in Australia’s Domestic Airline Market 

 

Development of LCCs commenced in Australia in 1990 along with deregulation of Australia’s 

domestic air travel market (Homsombat et al. 2014). As noted earlier, the market was 

dominated by two incumbent airlines: Qantas and Ansett Australia (Forsyth 2003). 

Deregulation opened the market and enabled new entrants to compete on all domestic 

routes (Forsyth 1998). Following deregulation of Australia’s domestic air travel market on the 

30th October 1990, LCCs have entered the market. Australia’s LCCs market has had three 

discrete phases and these are presented in the following section. 

 

2.3.1 Initial wave of LCCs in Australia (1990-1993) 

 

In December 1990, soon after Australia’s domestic market was deregulated, Compass 

Airlines was the first new entrant to the market (Quiggin 1997). Compass Airlines strategy 

was to compete as an LCC in Australia’s domestic airline market. The airline operated a 

single aircraft type, the 266 seat Airbus A300-600 aircraft. The airline route network structure 

was quite simple, linking seven major airports (Collins et al. 2010). At one point in time, 

Compass had captured 10 per cent of the total domestic market and up to 21 per cent on 

routes that the airline served (Bureau of Transport and Communication Economics 1991). 

However, Compass experienced problems gaining access to airport slots and suffered from 

aircraft delivery delays (Grimm & Molloy 1993). Furthermore, Compass Airlines entry into the 

market was met with strong capacity increases by Ansett and Qantas, the two incumbent 

airlines, and this contributed to the airline’s mounting debt (Koo 2009).  Compass lasted for 

about a year, when its funds were exhausted following a strong price war with other 

incumbent airlines (Nyathi et al. 1993a, 1993b).  

 

In 1992, shortly after Compass Airlines had collapsed, a second airline, which was called 

Compass Mark II, entered the Australian domestic market (Forsyth 2003). This airline 

operated for about six months until it too failed (Hooper 1998). Forsyth (2003) observed that 

although there were several favourable factors facilitating LCCs services, for instance, a 

number of dense routes and some leisure markets within Australia’s domestic market, these 

were essentially offset by strong head-on competition with the incumbents, financial and 

marketing issues, and insufficient accessibility (Homsombat et al. 2014). In the event, no 

LCCs operated in Australia’s domestic market for the remainder of the decade (Collins et al. 

2010).   
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2.3.2 Duopoly period in Australia’s domestic air travel market (1994-1999) 

 

From 1994-1999 a duopoly comprising Ansett and Qantas emerged in Australia’s domestic 

airline market (Koo 2009). Although no new LCC entered the market, two distinct post-

deregulatory effects were observed during the period 1993 to 1996 in Australia. First, both 

enplaned passengers and revenue passenger kilometres performed (RPKs) continued to 

grow as illustrated in Figure 2.1 (above). The second effect related to air fares. As 

anticipated, average air fares declined following de-regulation of the market (Koo 2009). This 

trend was extensively documented in the air transport literature (for example, Doganis 2009; 

Holloway 2008). Figure 2.2 illustrates the significant increase in levels of air fare discounting 

in Australia that has occurred from October 1992 to November 2013. This figure also depicts 

the widening gap that has been occurring in Australia’s domestic airline market between high 

and low fares (Koo & Lohmann 2013). These fluctuations in air fares are similar with those 

experienced in the post-deregulation effects observed in the United States (see for example, 

Borenstein & Rose 1994). Figure 2.2 shows that there has been a disparity in Australia’s 

domestic air fares during the period 1992-2013. However, between 1996 and 1999, demand 

was flat, despite strong fluctuations in the levels of air fare discounting. This began to 

change from the late 1990s when two new LCCs entered the Australian domestic air travel 

market (Koo 2009).    

 

Figure2.2.Trends in Australia’s domestic airline air fares: October 1992-November 2013 
Source: Bureau of Infrastructure, Transport and Regional Economics (2014a). 



  Chapter 2 

  Establishing the Context 

17 

 

Note
5
: Real business class fares are based on Qantas (Business) and Virgin Australia (Business); 

real full economy (fully flexible, refundable) are based on Qantas (Fully Flexible), Skywest (SkyFlexi), 

and REX (Rex Flex) fares; and real best discount are Qantas (Red e-Deal or Super Saver), Virgin 

Australia (Saver), Jetstar (Starter), Tiger (Internet Discounted Fare), REX (Rex Saver or Rex Net) and 

Skywest (WEBBIT, SkyDeal). 

 

 

2.3.3 Second wave of LCCs in Australia’s domestic air travel market (2000-

2006) 

 

The second phase of LCC entry commenced in 2000 with the formation of Impulse Airlines 

and Virgin Blue (Homsombat et al. 2014; Koo 2009). Impulse was a successful Australian 

regional airline with a healthy financial status; it had no outstanding debts and a consistent 

record of profit margins. Impulse was based in New South Wales, operated a low price, 

single class service on major competitive trunk routes, Brisbane-Melbourne-Sydney with five 

Boeing 717-200 aircraft. Impulse aimed to provide a friendly, cheerful, hospitable, no-

nonsense country style service (Killian 2001). Moreover, it selected highly competitive routes 

when it confronted the major incumbent airlines, a strategy usually avoided by new start-up 

LCCs (Lawton 2002). Furthermore, its fares were no-conditions, fully flexible and fifty per 

cent lower than Ansett and Qantas (Forsyth 2003). By early 2001, Impulse was experiencing 

liquidity problems, and by April 2001 Impulse was leasing its aircraft to Qantas (Collins et al. 

2010). Under this agreement Impulse would operate services for Qantas under the Qantas 

brand and terminate its major trunk routes (Forsyth 2003). Qantas acquired Impulse in 

November 2001 (Collins et al. 2010).   

 

Shortly after Impulse had entered the market, Virgin Blue Airlines was established. Virgin 

Blue commenced operations in Australia in August 2000 with two Boeing B737 aircraft 

operating 7 flights per day between Brisbane and Sydney (Thomas 2006b). Virgin Blue was 

initially owned and founded by the British businessman, Sir Richard Branson (Thomas 

2000). Two important features in the second phase of LCCs entry into the market 

contributed to Virgin Blue’s success. First, Ansett Australia ceased operations in September 

2001 leaving a very significant capacity shortfall in Australia (Forsyth 2003; Koo 2009). The 

sudden drop in domestic seat capacity following Ansett’s collapse assisted Virgin Blue to 

expand rapidly with a competitive LCCs’ business model (Collins et al. 2010). Secondly, 

Virgin Blue was in a much more favourable position than its predecessors (Compass I and 

                                                
5
 See the following Bureau of Infrastructure, Transport and Regional Economics (BITRE) website for further 
details of BITRE’s air fare collection methodology:  
<https://www.bitre.gov.au/statistics/aviation/air_fares_method.aspx>.  
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Compass II) being part of the international conglomerate, the Virgin Group (Forsyth 2003). In 

addition, old airport terminal space previously occupied by Ansett was also easily acquired at 

most airports (Collins et al. 2010). However, the airline sought investors to inject capital in 

the new airline following the collapse of Ansett Australia in September 2001. Patrick 

Corporation purchased a 50 per cent stake in Virgin Blue in 2002 (Thomas 2006b). The 

airline was publicly listed on the Sydney Stock Exchange in 2003 (Thomas 2003; Thomas 

2006b). 

 

Toll Holdings bought control of Virgin Blue in 2006 (Knibb 2008a). However, in July 2008, 

Toll Holdings decided to transfer its 62.7 per cent stake in Virgin Blue to the company’s other 

shareholders. At this time the Virgin Group was the largest single shareholder with a 25.5 

per cent stake in the company (Knibb 2008b). In 2004, the airline launched its New Zealand 

leisure based airline, Pacific Blue, which operated internationally, between Australia, New 

Zealand, the Cook Islands, Fiji, Tonga and Vanuatu. In 2005, Virgin Blue launched a joint 

venture airline called Polynesian Blue (Knibb 2005). 

 

In March 2007, Virgin Blue confirmed that they would launch V-Australia, an international 

airline which would serve leisure travellers between Australia and the United States. To 

operate this network, V-Australia signed a deal with Boeing for six 777-300ER aircraft (Knibb 

2007e). The new airline commenced services on the 28th February 2009 when it 

commenced operations from Sydney to Los Angeles (Moores 2009). V-Australia was 

established as part of Virgin Blue’s strategy of expanding its range of services to include 

long-haul international markets, such as the USA (Ionides 2008).  

 

In 2005, Virgin Blue started to reposition itself as a “New World Carrier”, following the 

introduction of Jetstar by Qantas, and to enable it to better compete against both Qantas and 

Jetstar in the Australian domestic market (Centre for Aviation 2010). Under this strategy, the 

airline introduced various services LCCs normally avoid. In April 2003, the airline opened 

airport lounges and this was followed by the introduction of a frequent flyer programme in 

November 2005 (Collins et al. 2010). In 2008, Virgin Blue introduced a premium economy 

class in order to attract higher yield business traffic (Collins et al. 2010; Knibb 2007d).  

 

Virgin Blue has expanded its route network beyond linking Australia’s capital cities and 

beyond the traditional tourist routes that link larger coastal tourist destinations, for example, 

Cairns and Townsville, with the capital cities. The airline’s route network strategy has 

included the addition of routes that were previously only served by regional carriers, for 
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example, Melbourne to Mildura (Collins et al. 2010). In order to ensure that these thin routes 

would be economically viable, Virgin acquired a fleet of 24 Embraer E-170 and E-190 

regional jets, which carry 76 and 104 passengers, respectively (Collins et al. 2010). The 

airline also used the Embraer jets to boost flight frequencies on key business routes (Virgin 

Blue 2006b). In 2008, Virgin Blue introduced a premium economy class in order to attract 

higher yield business traffic (Collins et al. 2010; Knibb 2007d). In 2011, Virgin Blue 

announced that it was disposing its fleet of smaller, Embraer E-170 aircraft (Dorman 2011) 

and replacing them with a fleet of ATR 72 regional turboprop aircraft that will be operated 

under its strategic alliance with Skywest Airlines (Australian Aviation 2011).  

 

On the 7th December 2011, the Virgin Australia group of airlines officially launched its 

international airlines V Australia and Pacific Blue under the new brand, Virgin Australia 

(Virgin Australia 2011b). On the same day, the Virgin Australia group of airlines also 

unveiled a new brand and livery for its joint venture with the Government of Samoa, 

Polynesian Blue, announcing that the country’s national airline would operate as Virgin 

Samoa (Virgin Australia 2011b). 

 

Virgin Blue turned out to be the only “native” independent LCCs that survived in Australia’s 

domestic air travel market (Homsombat et al. 2014). The airline adopted a somewhat 

different business model compared to previous LCCs. For instance, it offered customers 

connecting services, engaged in code-sharing agreements with major airlines, and was able 

to sustain airfares significantly lower than those of Qantas (Francis et al. 2006). Most 

importantly, the collapse of Ansett Australia in 2001 greatly benefited Virgin Blue. The 

markets previously served by Ansett Australia, which accounted for in excess of 40 per cent 

of Australia’s domestic air travel market, were largely acquired by both Virgin Australia and 

Qantas (Homsombat et al. 2014). This enabled Virgin Blue to capture in excess of 30 per 

cent of Australia’s domestic air travel market as of early 2003 (Easdown & Wilms 2002).  

 

In response to Virgin Australia’s success and aggressive growth, Qantas established Jetstar 

Airways in 2003, a similar strategy to those implemented by full service network carriers in 

North America and Europe (Homsombat et al. 2014). Jetstar is a wholly owned subsidiary of 

the Qantas Group, with Jetstar Airways low fare operations commencing in May 2004 

(Collins et al. 2010; Jetstar Airways 2013a). Jetstar began operations with a fleet of 14 

Boeing 717 aircraft that Qantas inherited from its acquisition of Impulse Airlines (Knibb 

2004a), providing 800 flights a week to 14 destinations around Australia. The airline also 

decided to operate flights to and from Avalon Airport (an airport located around 55 kilometres 
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from Melbourne) (Thomas 2007), thus becoming the first Australian carrier to operate from a 

“secondary city” airport (Qantas 2004).  

 

During 2004, the Qantas Group decided to move Jetstar into a standardized fleet of 177 seat 

Airbus A320 aircraft (Knibb 2004b). These aircraft provided significant fuel and technology 

efficiencies and were therefore ideal for Jetstar’s short haul operations. The airline’s original 

fleet of Boeing 717 aircraft were transferred to QantasLink, a regional airline subsidiary of 

the Qantas Group (Qantas 2004). Jetstar International was due to receive the first of a fleet 

of at least 15 Boeing 787 aircraft in August 2008 (Francis & Knibb 2008). The airline’s now 

operates a fleet compromising 57 Airbus A320, 6 Airbus A321, 7 Airbus A330-200 and 3 

Boeing B787-8 aircraft (Jetstar Airways 2013a).   

 

Initially Jetstar’s strategic focus was Australia’s leisure travel market and its services 

therefore originally focused on linking Australia’s major cities with key holiday destinations 

(Thomas 2007). As the airline grew, its strategic focus has diverted to linking up Australia’s 

major population centres (Thomas 2007). The airline later expanded to include international 

services, commencing services from Brisbane, Gold Coast, Melbourne and Sydney to 

Christchurch, New Zealand, in December 2005 (Thomas 2007).  

 

In 2006, Qantas decided to launch a low-cost international division, Jetstar International6 

(Airline Business 2006). Providing a two class service, the Jetstar International services 

were targeted at the market between single-class low cost and the traditional two-or-three 

class international carrier services. Jetstar’s international services involved initial stage 

lengths of between 6 to 10 hours to key Asian and Pacific leisure destinations (Airline 

Business 2006; Knibb 2006). Following a year of preparatory work, Jetstar International 

launched long-haul international services in November 2006 with wide-body Airbus A330 

services to Bangkok and Phuket in Thailand, followed by services to Ho Chi Minh City in 

Vietnam and Denpasar, Bali (Ionides 2007a). Services to Honolulu and Osaka in Japan 

commenced in 2007 as well. Jetstar now operates services to 19 Australian domestic 

destinations and 17 short and long haul international destinations (Jetstar Airways 2013a). 

 

                                                
6
 Qantas launched Singapore-based Jetstar Asia in 2004, with management rights and with a 44.5 per cent 

equity stake (Knibb 2007c). Jetstar Asia commenced operations on the 13th December 2005 with services from 
Singapore to Hong Kong (Ionides 2005).  In 2007, Qantas acquired an 18 per cent stake in Vietnam’s Pacific 
Airlines. Pacific Airlines took the Jetstar name, and converted its fleet from Boeing B737s to Airbus A320s – the 
same aircraft used by Jetstar and Jetstar Asia (Knibb 2007c; Sobie 2009). 
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 Figure 2.3 shows the annual growth in Australian domestic passengers carried by Jetstar 

and the concomitant RPKs performed from 2004/05 to 2012/13. 

 

Figure2.3.Development of Jetstar Australia annual enplaned domestic passengers and revenue 
passenger kilometres (RPKs): 2004/2005-2012/2013 
Source: Qantas Airways (various). 

 

 

2.3.4 The ‘third’ wave of LCCs in Australia’s domestic air travel market (post-

2006) 

 

Singapore-based Tiger Airways launched Tiger Airways Australia in 2007 (Thomas 2006a). 

Tiger Airways Australian carrier had the same shareholders as the main Singapore-based 

airline, which meant that the carrier was entirely foreign owned – something that was 

permissible under Australia’s liberal domestic airline ownership regime which permits foreign 

ownership of a domestic airline (Ionides 2007b; Knibb 2007a). Tiger Airways which was 

based at Melbourne’s Tullamarine Airport, commenced operations with low-cost services to 

Perth and Darwin, operating a fleet of 5 Airbus A320 aircraft (Koo 2009). Despite their small 

fleet, Tiger Airways had an impact on Australia’s incumbent LCCs, Jetstar, by forcing it to 

operate services on the same routes as Tiger, as well as providing connecting services 

to/from Melbourne Airport, a strategy that Jetstar had previously avoided preferring to 

operate from Melbourne’s secondary airport, Avalon (Koo 2009). Tiger Airways arrival into 

Australia’s domestic market also prompted a change to the Qantas long-standing policy as 

to where Jetstar operated (Knibb 2007b). Prior to 2007, Jetstar avoided operating on route 

served by Qantas. In anticipation of Tiger’s entry into the market, Qantas made a significant 

change to this policy by allowing Jetstar to compete on the same Sydney-Brisbane route 
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served by Qantas. Prior to this change, the heavily travelled Sydney-Melbourne-Brisbane 

triangle was served exclusively by Qantas City Flyer service and by rival Virgin Blue. The 

bulk of Australia’s domestic business travel occurs in this triangle (Knibb 2007b).  Tiger 

Airways currently serves Adelaide, Alice Springs, Brisbane, Cairns, Coffs Harbour, Darwin, 

Gold Coast, Hobart, Mackay, Melbourne, Proserpine, Sunshine Coast and Sydney (Tiger 

Airways 2014d).   

 

In November 2011, a new budget airline was launched. Previously a charter business, 

Strategic Airlines rebranded itself as Air Australia (Nancarrow 2011) Air Australia flew 

passengers both domestically and to key regional tourist markets. However, in February 

2012, Air Australia ceased operations and was placed into voluntary administration (Ironside 

2012; Ryan 2012). 

 

Driven by the strong growth of Virgin Blue and Jetstar, Australia’s low cost air travel market 

sector has been growing rapidly in recent years. As Figure 2.4 illustrates, the LCCs market 

share grew sharply in 2002 following the entry of Virgin Blue. Such growth momentum was 

sustained following the entry of Jetstar in 2003 and more or less stabilized since 2005, when 

the LCCs collectively had captured more than 50 per cent of the total market (Homsombat et 

al. 2014). The LCCs share of Australia’s domestic airline (annual enplaned passengers) 

peaked in 2010, with a 64 per cent market share. However, over the past 3 years, the LCCs 

market share has declined to around 31 per cent, primarily due to the change in the Virgin 

Australia strategy to adopt a FSNC business model.   
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Figure.2.4.Australia’s full service network and low cost carrier annual enplaned passengers: 2002-
2012 
Source: data derived from Bureau of Infrastructure, Transport and Regional Economics (2014b); 
Qantas Airways (2009, 2013), Tiger Airways (various), Virgin Australia (various). 

 

 

Figure 2.5 shows the growth in the LCCs Australian domestic market share as measured by 

revenue passenger kilometres (RPKs), from 2002 to 2012 and highlights the strong growth 

in RPKs from 2005 to 2010, when the LCC’s share peaked at around 57 per cent. From 

2011 to 2012 the decline in the LCCs annual RPKs was principally due to the change in 

Virgin Australia’s strategy from moving from an LCC to FSNC business model.    
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Figure.2.5.Australia’s full service network and low cost carrier annual revenue passenger kilometres 
(RPKs): 2002-2012 
Source: data derived from Bureau of Infrastructure, Transport and Regional Economics (2014b); 
Qantas Airways (2009, 2013), Tiger Airways (various), Virgin Australia (various). 

 

Another significant change which occurred in the third phase of Australia’s domestic airline 

market has been the evolution of the two incumbent airlines: Jetstar and Virgin Australia 

(previously called Virgin Blue) (Koo 2009). In recent years, Virgin Australia has increasingly 

focused on becoming a FSNC similar to Qantas. Virgin Australia’s business model is 

focussing on expansion into smaller regional markets with lower levels of demand (markets 

being served by medium size Embraer aircraft); increasing use of a hub-and-spoke network 

strategy; introduction of business lounges and premium seating classes; code-sharing 

and/or interlining arrangements with domestic (for example, REX Express) and international 

airlines, such as Air New Zealand, Delta Airlines, Etihad and Hawaiian Airlines), and a mixed 

fleet, including long-haul Boeing 777 aircraft used to operate services to the USA) (Knibb 

2008b; Koo 2009). In December 2012, Virgin Australia announced plans to match the 

Qantas portfolio of domestic airlines by acquiring 60 per cent of Tiger Airways Australia and 

all of Perth, Western Australia-based Skywest Airlines. Under this strategy Tiger Airways 

would compete on Virgin’s behalf against Qantas LCCs unit Jetstar, whilst Skywest would 

compete against QantasLink on regional and mining-related routes. In order to fund these 

acquisitions, and the cost of enhancing these airlines operations, Virgin sold a ten per cent 

stake in itself to Singapore Airlines. This ambitious initiative formed part of Virgin Australia’s 

re-branding strategy, designed to distance itself from the low-cost carrier sector and 

compete more with mainline Qantas in the premium business market (Knibb 2012).  
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Virgin Australia’s strategic repositioning continues to attract shareholder interest with 

Singapore Airlines strengthening its cooperation and equity investment in the carrier. 

Together with the 10 per cent shareholding acquired in November 2012, Singapore Airlines 

now holds a 19.9 per cent stake in Virgin Australia (Taylor 2013).  On June 17, 2014, Air 

New Zealand increased its shareholding in Virgin Australia to 25.5 per cent. Etihad Airways 

and Singapore Airlines also held stakes of 21.24 per cent stake and 22.17 per cent at that 

time, respectively (Freed 2014). Figure 2.6 shows the annual growth in Australian domestic 

passengers carried and revenue passenger kilometres (RPKs) performed by Virgin Australia 

from 2002 to 2013. 

 

 
 

Figure2.6.Development of Virgin Australia enplaned passengers 
and revenue passenger kilometres (RPKs): 2002-2013. 
Note: 2002 data for 9 months.  
Source: Virgin Australia, Virgin Blue (various annual reports). 

 

 

Currently, two LCCs dominate Australia’s domestic air travel market: Jetstar Airways and 

Tiger Airways. Jetstar Airways now forms an integral part of the Qantas Group’s two-brand 

strategy. The airline primarily operates in leisure and value-based market segments (Jetstar 

Airways 2013a). The dual Qantas Group brand strategy has resulted in the group capturing 

a significant market share (Homsombat et al. 2014). 

 

0

5

10

15

20

25

0

2

4

6

8

10

12

14

16

18

2
0
0

2

2
0
0

3

2
0
0

4

2
0
0

5

2
0
0

6

2
0
0

7

2
0
0

8

2
0
0

9

2
0
1

0

2
0
1

1

2
0
1

2

2
0
1

3

T
o

ta
l 
a

n
n

u
a

l 
R

P
K

s
 (

b
il

li
o

n
s

) 

A
n

n
u

a
l 

e
n

p
la

n
e

d
 p

a
s

s
e

n
g

e
rs

  
  
  

  
(m

il
li

o
n

s
) 

Passengers RPKs



  Chapter 2 

  Establishing the Context 

26 

 

2.4 Summary 

This chapter has presented an overview of the development of Australia’s domestic low cost 

air travel market and has traced changes in Australian government domestic airline policy, 

as it evolved from a tightly regulated to a deregulated market policy setting which enabled 

LCCs to enter the market.  

 

This chapter also examined the evolution of LCCs in Australia’s domestic air travel market 

and showed that since the market was deregulated on the 30th October 1990, the LCCs 

market has passed through three discrete phases. The first wave of LCCs entered the 

market between 1990 and 1993.  During this phase, several LCCs – Compass and Compass 

Mark II – commenced business, but both subsequently failed within a year of starting 

operations. During the period from 1994-1999, a duopoly encompassing Ansett Airlines and 

Qantas emerged in Australia’s domestic air travel market (Koo 2009). 

 

The second wave of LCCs – Impulse Airlines and Virgin Blue – entering the market occurred 

between 2000 and 2006. The third phase in the evolution of Australia’s domestic LCCs air 

travel market occurred in the post-2006 period. In 2007, Singapore-based Tiger Airways 

established Tiger Airways Australia, with a small fleet of Airbus A320 aircraft. Since 2011, 

Virgin Australia’s has changed from an LCC to a FSNC business model, similar to that of 

Qantas. A further feature of the third phase of Australia’s LCCs evolution has been the focus 

of incumbents on establishing long-haul international operations. Jetstar International, was 

launched in 2007, with long-haul, low-cost services from Australia to Honolulu, Hawaii, 

Japan and Thailand.      

 

The LCCs market share grew sharply in 2002 following the entry of Virgin Blue. LCCs share 

of Australia’s domestic airline (annual enplaned passengers) peaked in 2010, with a 64 per 

cent market share. However, over the past 3 years, the LCCs market share has dropped to 

around 31 per cent, primarily due to the change in the Virgin Australia strategy to adopt a 

FSNC business model. Jetstar and Tiger Airways are currently the two major domestic 

incumbent Australian LCCs. 

 

Chapter 4 presents an overview of the LCC business model, and highlights the evolution of 

Australia’s domestic LCCs’ business model to a hybrid model, a practice that has become 

increasingly common with other LCCs around the world 
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CHAPTER THREE: ANALYSING LOW COST CARRIERS IN 

AUSTRALIA’S DOMESTIC AIRLINE MARKET  

 

3.1 Introduction 

 

There is an extensive body of literature that has focused on LCCs’ business models. It is 

therefore necessary to examine the relevant theories, as they provide an understanding of 

the LCCs’ business model, and are highly relevant to this study. 

 

In recent times, Australia’s LCCs’ business models have evolved in response to changing 

market requirements, and this has led to the development of a new hybrid LCCs’ business 

model (Section 3.4).   

 

This chapter is arranged as follows: Section 3.2, which provides a definition of a LCC, 

identifies the key differences between the LCCs’ and full service network carriers’ business 

models. Section 3.3 presents an overview of the LCCs’ business model, and its key 

characteristics. Section 3.4 examines the key characteristics of Australia’s LCCs.  

 

3.2 Low Cost Carriers: Key Definition  

 

Low cost carriers (LCCs) are an airline that offers low air fares but eliminates all 

unnecessary services or making some available at an extra optional cost, for passengers 

(Doganis 2006). 

 

 Table 3.1 highlights the differences between the low cost and full service network carriers.  

Table3.1.Comparison of low cost versus full service network carriers key attributes 

Low Cost Carriers Full Service Carriers 

 Simple brand  
 Complex brand  

 Online and direct booking 
 Mainly travel agents 

 Simple fare structure and ticketless check-in 
 Complex fare structures 

 Use of secondary airport 
 Focus on primary airports 

 High aircraft utilization - quick turnaround time 
 Lower utilization on short haul 
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 Do not interline/point to point service 
 Interlining important part of service 

 Simple product – all additional services and 

facilities charged for, e.g. credit card bookings, 

late check-in 

 Complex integrated service 

products, e.g. ticket flexibility, 

business lounges, frequent flyer 

programme 

 Focus on ancillary revenue generation 

advertising (‘the plane as a billboard’), on- 

board retailing 

 Focus on primary product 

 Mainly short-haul focus 
 Short and long-haul 

 Common fleet type acquired at very good 

rates 

 Mixed fleet 

Source: adapted from Lawton (2002, p.38). 

 

3.3 Low Cost Carrier Business Model and Key Characteristics 

 

Low cost carriers’ focus on cost reduction. This strong focus on cost mitigation enables them 

to implement a price leadership strategy in the markets in which they operate (Vidović et al. 

2013). The LCCs’ business model is very simple: operate at the lowest possible cost and sell 

seats at low rates, such that they stimulate demand, and achieve high load factors (Fernie 

2011).  

 

3.3.1 Provision of a ‘no-frills’ service 

 

Historically, one of the most self-evident examples to consumers of the difference between 

LCCs and FSNCs7 was a ‘no-frills’ service. In the United States, for example, passengers 

travelling on a FSNC service would often receive a hot meal with an extensive beverage 

service, whilst in contrast, passengers travelling on Southwest Airlines (an LCC carrier), 

would receive peanuts and a soft drink. However, in recent times in the U.S., following cost-

cutting initiatives by the FSNCs, all-economy class service has turned into a ‘no-frills’ service 

as well (Vasigh et al. 2013). In Australia, the LCCs – Jetstar and Tiger Airways – have gone 

one step further where everything, including food and beverages, is on a purchase-onboard 

basis. This is a similar strategy to that of the major European LCCs, such as Ryanair. 

                                                
7
 A “full service network carrier” is an airline that focuses on the provision of a wide range of pre-flight and on-

board services, including different classes of service, and connecting flights (Ehmer et al. 2008).  
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Consequently, the in-flight service food and beverage service that used to distinguish the 

difference between LCCs from ‘full service’ carriers is often no longer applicable (Vasigh et 

al. 2013). In addition, LCCs often eliminate the provision of in-flight entertainment (IFE) 

systems in order to minimise their costs (Doganis 2006; Homsombat et al. 2014). 

 

The underpinning premise behind the LCCs no-frills strategy is ‘ultimately a passenger pays 

as goes’ approach, where the ticket price (air fare) entitles the passenger to just a seat on 

the aircraft. Because of this strategy, LCCs are able to offer attractive air fares (Vasigh et al. 

2013).  

 

However, for the LCCs, no-frills service is not just restricted to in-flight service. Many LCCs 

do not offer frequent flyer programs or costly airport business lounges (Cento 2009); these 

amenities are not offered, in order to reduce airline costs. A further cost-cutting initiative 

recently implemented by the LCCs was the restriction on passenger luggage allowances. 

Especially in Europe, the LCCs have very stringent rules concerning passenger baggage 

allowance weights; this strategy is designed to conserve aircraft fuel and to generate 

additional marginal revenue (Vasigh et al. 2013). 

 

3.3.2 Point-to-point (P2P) airline route networks 

 

Following deregulation, many FSNCs have adopted a hub-and-spoke route network 

structure. Airline hub-and-spoke route networks are comprised essentially of routes (spokes) 

to and from one or more major airport selected by the airline to serve as hubs. The flight 

schedules are coordinated to operate in “banks”, or complexes, throughout the day, in order 

to optimize the number of possible passenger connections. Typically, connecting 

passengers constitute a sizeable proportion of hub-and-spoke network traffic (McKnight 

2010). Whilst the hub-and-spoke route network system has proved effective for the FSNCs 

in providing a wide range of origin-and-destination (O & Ds) connections, they are costly to 

operate (Vasigh et al. 2013). Hubs typically have peaks so as to minimize passenger 

connecting times, but also considerable down times where the carrier is not fully utilizing its 

assets and facilities (Vasigh et al. 2008).   

 

Despite the undoubted revenue benefits of offering extensive origin-and-destination (O & Ds) 

connections as well as the ability to increase load factors, one of the main cost benefits 

underpinning a hub is the airline’s ability to realize certain economies of scale. Consolidating 
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operations at a single airport reduces fixed overheads such as required staff pools, 

maintenance operations, and airport terminal-related costs. The problem for airlines 

operating hub airports is that the peaks scheduling required for passenger convenience also 

means that these economies of scale are not always realized. Furthermore, once the level of 

flights reaches a critical level, diseconomies of scale will occur, that is, any additional flight 

will in fact increase average costs rather than reduce them – because the added congestion 

at the airport increases costs (Vasigh et al. 2008).  For instance, as the airport becomes 

busier and busier, aircraft are required to wait for longer periods of time before they can land 

or take-off, which increases both fuel and staff costs (Vasigh et al. 2013). 

 

The prevalence of the diseconomies of scale previously mentioned is one of the principal 

reasons why LCCs operate a point-to-point (P2P) or origin-and-destination (O & D) route 

network structure (Vasigh et al. 2013). With a point-to-point (P2P) route network structure, 

passengers are normally able to travel directly between their desired city pairs (O & Ds) that 

are serviced by the airline’s P2P network (Wu 2010). A linear route point-to-point airline 

tends to focus its services on dense markets with sufficient origin and destination traffic to 

sustain non-stop operations (Dempsey & Gesell 1997). Also with a P2P network structure, 

airlines will still operate key bases where economies of scale can be achieved, but may not 

always have peak levels of flights. This enables the airline to continuously utilize its airport 

facilities and equipment and more evenly use it employee services. This enhanced utilization 

of airport assets enables a P2P airline to operate more flights with fewer facilities and 

employees, and this ultimately reduces their costs (Vasigh et al. 2013).        

 

The LCCs business model is therefore often based around very short distance, point-to-point 

sectors (Alamdari & Fagan 2005). The operation of short-haul, point-to-point services 

enables the LCCs to operate a high number of daily flight frequencies in each direction 

(Alamdari & Fagan 2005; Koch 2010). By significantly reducing costs and air fares, the LCCs 

have successfully opened up a much broader range of point-to-point services, many not 

served by the FSNCs, and in so doing have captured at least some of the price-conscious 

passengers from the higher-priced FSNCs (Hunter 2006).  The LCCs also do not typically 

operate complex aircraft rotations or itineraries. Rather the aircraft operate between their 

home base and their destinations (Koch 2010).  

 

In the United States, Southwest Airlines, for example, generally operates a P2P route 

network structure, and a good number of their passengers often connect on Southwest 

flights through some of Southwest’s larger bases (Vasigh et al. 2013). In Europe, 
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Dobruszkes (2006) observed that post-deregulation airline route network patterns have 

largely been induced by the LCCs. He noted that the European airline networks have 

evolved from a ‘radial’ to a ‘star-shaped’ pattern following the proliferation and success of 

Ryanair and Easyjet. Koo (2009) suggested that while not as spatially comprehensive as 

that of either Europe or the United States, the Australian LCC’s carrier’s route networks 

broadly resembles the P2P network structures of the U.S, and Europe. Sinha (2001) has 

also demonstrated that the Australian LCCs networks are mostly P2P in structure because 

they have a high level of demand concentration on a few large nodes, that is, the demand is 

largely concentrated between Australia’s state and territory capital cities (Koo 2009).      

 

3.3.3 Operating short-haul services and homogenous aircraft fleets 

 

An airline’s fleet size and fleet structure have a substantial impact on its operating costs 

(Klophaus et al. 2012). LCCs costs are therefore minimized by operating a single-type 

aircraft fleet (Koch 2010). The use of a young and homogenous fleet of medium-sized 

aircraft (usually Boeing 737-700/800 or Airbus 320  aircraft) normally results in a reduction of 

fuel, maintenance, staff costs and – if large orders at discounted prices are placed – capital 

costs (Ehmer et al. 2008; Vasigh et al. 2013). A fleet commonality strategy provides LCCs 

with a number of important advantages: 

 

 greater flexibility for an airline’s cockpit and cabin crews; 

 standardizes the requirement for ground servicing equipment;  

 leads to lower maintenance costs; and  

 reduces the airline’s training requirements and costs (Alamdari & Fagan 2005).  

 

However, it is the economies of scale that are the most important cost elements 

underpinning an airline’s common aircraft fleet-type strategy. That is, the airline incurs its 

fixed fleet costs only once. For example, the ground servicing equipment required to support 

a Boeing B737 aircraft is only acquired once (Vasigh et al. 2013). 

 

A further benefit of a common aircraft fleet strategy is greater operational flexibility. In the 

case of disrupted operations, a single aircraft type often makes it easier for the airline to 
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locate a replacement aircraft or usually, and critically, replacement crews8 (Vasigh et al. 

2013).  

 

A single aircraft fleet strategy does however have advantages and disadvantages. 

Depending upon the aircraft selected by the airline, the aircraft may not be the optimal 

aircraft for some markets. Hence, if the aircraft only has a short-range capability, inter-

continental or longer-haul services will not be feasible. In contrast, as we have previously 

noted, a single aircraft fleet have the same flight crew and maintenance requirements. For 

LCCs, the two most widely used aircraft types are the Airbus A32X and the Boeing B737NG. 

Both of these aircraft types enable LCCs to operate aircraft with as few as 120 seats and up 

to 200 seats. This seating flexibility enables the LCCs to be better able to change seating 

capacity to satisfy demand on any given day (Vasigh et al. 2013).          

 

Irrespective of the aircraft type operated, LCCs configure their aircraft with a high density, 

all-economy seating configuration. Some LCCs have also removed closets and toilets from 

the aircraft, whilst others such as Ryanair do not offer reclining seats in order to 

accommodate more passengers on their aircraft (Vasigh et al. 2013).  LCCs unit costs are 

therefore also reduced by implementing a high density seating configuration (Doganis 2006).  

 

3.3.4 Use of secondary airports 

 

The LCCs often operate services from secondary airports (Chang & Hung 2013; Francis et 

al. 2006). These airports are normally located farther from the main urban area than primary 

airports (Ehmer et al. 2008). Apart from the lack of congestion at smaller airports, secondary 

airports usually charge lower fees than the more established airports and, where permitted, 

are more willing to co-finance the promotion of new routes (Barbot 2006; de Wit & Zuidberg 

2012).  

 

The use of secondary airports, LCCs are able to not just reduce their costs, but also capture 

competitive advantage. Firstly, the use of secondary airports enables LCCs to overcome any 

slot availability problems. This enables LCCs to design flight schedules that optimize their 

aircraft utilization (Barbot 2006). Nevertheless, lower air fares are crucial, however, because 

the accessibility to and from these often quite remote, secondary airports can be quite time 

consuming for passengers, which may make the LCCs services quite unattractive to time-

                                                
8
 Since airlines typically have a reserve flight crew contingent for each aircraft type, restricting the number of 

aircraft types operated therefore limits the number of flight crew that the airline requires (Vasigh et al. 2013).  
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sensitive business passengers (de Wit & Zuidberg 2012). Accordingly, lower air fares need 

to be offered by the LCCs in order to attract sufficient price-sensitive passengers from larger 

traffic catchment areas (Pantazis & Liefner 2006).   

 

Aircraft ground handling9  turnaround times and flight delays are also reduced by serving 

smaller, uncongested airports and by focusing on point-to-point flights (Koch 2010; Pitt & 

Brown 2001). This strategy enables LCCs to optimise the number of daily aircraft block 

hours, and hence, aircraft utilization rates (Ehmer et al. 2008). Successful LCCs also avoid 

operating from airports with congested airspace, runways, and taxiways (de Neufville 2006). 

Less congested secondary airports help airlines to maintain their flight schedules and avoid 

delay costs (Fernie 2011). By utilizing less congested airports aircraft turnaround times can 

be optimized which helps the LCCs to keep their costs low, while also increasing the airline’s 

operational efficiency and productivity. This is important because quick turnaround times 

enable LCCs to maximize aircraft use and minimize the time they are on the ground (Barrett 

2004; Gillen & Lall 2004; Vasigh et al. 2013) and operating from airports with low levels of 

delays results in significant cost advantages for the LCCs (de Neufville 2008). Indeed, one of 

the key success factors of the LCCs business model is the high daily aircraft utilization rate10  

and rapid ground handling turnaround times (Goh 2005; Thanasupsin et al. 2010), which are 

very often less than 20 minutes in duration (Bieger & Agosti 2005). However, whilst airport 

slot times and aircraft turnaround facilities are important determinants of choice for LCCs, 

adequate demand in the market is the most important factor. As a result, LCCs tend to 

favour entry on routes with dense demand (Koo 2009).  

 

Furthermore, LCC’s often use a “free seating” policy, since it encourages passengers to 

board quickly and thus helps them to avoid flight delays (Ehmer et al. 2008; Vasigh et al. 

2013).  Notwithstanding, even if secondary airports have dominated the LCCs route network 

strategies, in recent years primary airports have slowly entered into their route systems. 

Thus, a number of LCCs have now tended to adopt a mixed airport strategy, with many 

LCC’s basing their operations at prime hub airports. The LCCs operate services from these 

hubs to secondary, spoke airports (Alamdari & Fagan 2005).  

 

                                                
9
 When aircraft are on the ground in between flights they require various ground handling services to be 

performed, for example, aircraft loading/unloading; air cargo handling; lavatory services, and aircraft towing or 
pushback (Kazda & Caves 2007). 
10

 The downside to increased aircraft utilisation rates is the increase in aircraft maintenance costs since the 
aircraft are flying more often. This is a trade-off that many LCCs are prepared to accept (Vasigh et al. 2013). 
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LCCs are also able to reduce costs by avoiding airports that have expensive ground facility 

rents. LCCs often use older, less expensive terminal facilities, and, most importantly, 

optimize their terminal space more intensively so that they require less. LCCs also pay 

attention to their customers’ car parking costs and other associated airport fees (de Neufville 

2006).  

 

3.3.5 Simplified pricing and low cost distribution optimization  

 

The LCCs pricing policy is very dynamic in nature (Doganis 2006). A key part of the LCCs 

pricing policy is that they offer substantial discounts for tickets that are booked by 

passengers well in advance. This strategy often generates new demand from passengers, 

usually low-yielding, which may not have flown otherwise (Ehmer et al. 2008; Vidović et al. 

2013). LCCs offer single, unrestricted, and point-to-point air fares (Homsombat et al. 2014).  

 

The LCCs also focus on low-cost distribution channels (Flenskov 2005; Koch 2010) with 

distribution and sales costs being kept at a minimum by the use of internet sales, proprietary 

boarding control, and limited marketing budgets (Katarelos & Koufodontis 2012). The use of 

internet technologies has enabled the LCCs to reduce their distribution costs11 by bypassing 

intermediaries, such as travel agents (Koo 2009). One important strategy employed by the 

LCCs is to initially align themselves with multiple global distribution service (GDS) providers 

and then, as their brand awareness becomes stronger, to slowly conclude their agreements 

with their GDS providers. This permits the LCCs to have a broad distribution system initially 

and then narrow its distribution system (and its costs) as it pushes ticket sales towards its 

website (Vasigh et al. 2013). Europe-based Ryanair was very successful with such a 

strategy (Field & Pilling 2005, cited in Vasigh et al 2013).      

 

3.3.6 Focus on ancillary revenues 

 

Ancillary revenues are an important revenue stream for the LCCs. These revenues come 

from the sale of other products and services both on board the aircraft and through their 

websites (Doganis 2009; Francis et al. 2007). According to de Wit and Zuidberg (2012, 

p.21), “the unbundling of the traditional all-inclusive airline product and the provision of 

unbundled low air fares can assist airlines in attracting price-sensitive passengers to their 

                                                
11

 LCCs typically do not rely on intermediaries such as travel agents and global distribution systems (GDS) to sell 
their tickets; rather they aim to sell their tickets via their website (Klophaus et al. 2012; Vidović et al. 2013).   
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secondary airports from even greater distances away, and they are also able to compete 

more effectively against the FSNC for higher yielding passengers at the major airports”.  

However, in recent times, certain features of the original LCCs’ business model have been 

discontinued or radically changed in response to the evolving market conditions (Alamdari & 

Fagan 2005). This model appears to be evolving due to the changing environment, and a 

new model is appearing, such as the new long-haul low cost model (Daft & Albers 2012; 

Morrell 2008; Wensveen & Leick 2009). AirAsiaX and Jetstar Airways are successful 

examples of this model. 

 

As noted earlier, the basic LCCs’ business model is based on low cost leadership and the 

core product of operating services from Point A to Point B (Koch 2010). LCCs concentrate 

on the provision of the core air transport service by omitting any costly service features and 

through the optimization of the entire process chain from the distribution to (ground and in-

flight) operations due to their low costs structure (Klaas & Klein 2005).  By having a low cost 

structure, LCCs are able to provide consumers with lower price services (Doganis 2006). By 

cutting costs to the absolute minimum, LCCs can make a profit at much lower prices than 

their competitors as long as pricing can stimulate demand. Lower fares create demand in 

two ways: by winning share of the existing travel market from customers motivated by price, 

and by stimulating new demand from customers who travel by bus or rail or who have never 

travelled before (Fernie 2011).  This has led many price sensitive consumers to switch from 

legacy carriers to the LCCs (Flouris & Oswald 2006; Mason 2001). Moreover, the lower 

prices offered by LCCs have stimulated traffic between city pairs where consumers would 

not otherwise have flown if there not been an offer of lower fares by the LCCs (Lall 2005). 

This has allowed LCCs to gain larger market shares. 

 

3.4 The Hybridization of Australia’s Domestic Low Cost Carriers Business 

Models 

 

The preceding section has presented a review of the extant literature on the key 

characteristics of the generic LCCs’ business model. However, in recent times the business 

models of many LCCs around the world have been evolving into what has been termed a 

‘hybrid’ model (Tomová & Ramajová 2014; Vidović et al. 2013). In the context of the present 

study, this raises two important questions: What are the key characteristics of Australia’s 

current LCCs’ business models? and Have Australia’s LCCs’ business models pursued a 
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hybridization strategy? In light of these important questions12 and the trend towards 

hybridization of LCCs’ business models around the world, an important aim of this thesis 

was to examine whether Australia’s domestic LCCs are following similar business model 

hybridization strategies. The following section therefore examines this issue in detail with the 

aim being to provide a greater understanding of how Australia’s domestic LCCs are 

strategically responding to the changing market’s requirements.  

 

3.4.1 Australia’s low cost carrier’s service and product offerings 

 

Historically, most LCCs did not offer a frequent flyer program (FFP) as they preferred to 

compete on the basis of low air fares. Nonetheless, as airline business models have evolved 

in recent times, both from the LCCs model to the FSNC approach and vice versa (Centre for 

Aviation 2013; Tomová & Ramajová 2014), it has now become quite common for LCCs to 

include loyalty schemes in their product offering. Indeed, there is a growing recognition that 

such loyalty schemes do not always result in higher costs and that they can drive additional 

ancillary revenues for LCCs. Furthermore, a number of LCCs have concluded partnership 

agreements with FSNCs and reciprocal FFP recognition can assist the development of such 

relationships (Centre for Aviation 2013).  

 

Jetstar Airways has reciprocal frequent flyer program arrangements with its parent company 

Qantas. These arrangements enable Jetstar’s passengers to enjoy the benefits of the 

Qantas Frequent Flyer program. Under these arrangements a Qantas Frequent Flyer 

member can earn Qantas Points and Status credits when travelling on Jetstar services. 

Similarly, Jetstar passengers are able to earn points and status credits when travelling on an 

“Economy Starter Plus” or “Max fare” with Jetstar (JQ), Jetstar Japan (GK), Jetstar Asia (3K) 

or Valuair (VF). Jetstar’s “Business Max” fares also earn Qantas Points and Status credits at 

the same rate as Economy fares (Jetstar Airways 2013c). 

 

On the 8th April 2014, Tigerair Australia officially launched its ‘Infrequent Flyer Club’, a new 

online club for Australians who do not fly as frequently as they would like but who still wish to 

participate in a frequent flyer scheme (Tiger Airways 2014c). The Tigerair ‘Infrequent Flyer 

Club’ offers a member regular updates on travel deals. The new club also rewards 

                                                
12

 To address these two critical questions, the following analysis follows the approach proposed by Bowen 
(2009). Document analysis is a systematic procedure for reviewing or evaluating documents—both printed and 
electronic (computer-based and Internet-transmitted) material. Further details of this approach can be found in 
Bowen (2009). A summary of the documents selected and the subsequent data analysis are presented in 
Appendix 1 Table A1). 
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passengers for flying with Tigerair. The Infrequent Flyer Club is fundamentally a customer 

relationship management (CRM) platform that enables Tigerair to keep its Infrequent Flyers 

up-to-date with the airline’s special deals and promotional opportunities. Unlike frequent flyer 

schemes where new members commence with a bronze status and then progress to higher 

levels based on patronage, Tigerair’s Infrequent Flyer Club permits members to select 

whatever level they want from 70’s brown through to triple emerald sapphire ivory (Tiger 

Airways 2014c).  

 

LCCs usually offer simple products. However, in order to capture revenue, LCCs charge 

extra fees for the additional services and facilities provided to their customers. In December 

2009, Jetstar introduced ‘Up Front Seating’ (which uses the first three rows of economy 

class), for passengers who prefer sitting close to the front of the aircraft so that they can 

board and deplane the aircraft more quickly. Passengers wishing to take advantage of this 

arrangement are charged for $5 per sector on Jetstar’s domestic services (Australian 

Aviation 2009). 

Jetstar have also introduced three types of air fares: Starter, Plus bundle and Max bundle. 

These bundle options provide passengers with greater choice and flexibility with the different 

airfare. For example, Starter fare includes just the seat and a 10kg carry-on baggage 

allowance. By adding ‘Plus’ option, passengers will be able to earn Qantas frequent flyer 

points and status credits, free standard seat selection, and a waiver of change fees. 

Passengers opting for the Max bundle in addition to the Plus fare features receive extra leg 

room and/or seating at the front of the cabin, plus air fare refund ability. These also help 

Jetstar to increase its revenue (Australian Aviation 2011c).  

In May 2011, Jetstar introduced airport self-service kiosks and web check-in for passengers. 

These enable passengers to “pre-enrol” for check-in. Passengers may receive either an 

SMS boarding pass or boarding pass via their email account 24-hours before their 

departure. This product feature enables passengers to reduce their time spent at airports, 

and also reduces Jetstar’s costs (Australian Aviation 2011d).  

 

In March 2014, Tigerair Australia began offering a web check feature which allows 

passengers to check-in online for their flight(s) up to 72 hours prior to their flight departure. 

Passengers are also able to print their own bar-coded boarding pass, which enables them to 

bypass the traditional check-in queue and speeds up the baggage drop process for those 

passengers with checked luggage (Australian Aviation 2014b). 
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3.4.2 Australia’s low cost carrier’s route network structures 

 

As we have previously noted, Sinha (2001) has also reported that the Australian LCCs 

networks are mostly point-to- point service (P2P) in structure because they have a high level 

of demand concentration on a few large nodes, that is, the demand is largely concentrated 

between Australia’s state and territory capital cities (Koo 2009).      

 

Figure 3.1 presents Tigerair Australia’s domestic airline route network and shows that the 

airline serves both key business markets, for example, between Melbourne and Sydney, and 

Australia’s major tourist or leisure markets. 

 

 

Figure3.1.Tigerair Australian domestic airline network 

 Source: Tiger Airways (2014d). 

 

Jetstar commenced services in 2004 operating short haul Australian domestic point-to-point 

services. Jetstar commenced long-haul international services in 2006 (Qantas Airways 

2013). On 23 December 2006, Jetstar first international long-haul services to Bangkok was 

introduced while Phuket, Ho Chi Minh city, Osaka, Bali and Honolulu have subsequently 

been added to the airline’s international route (Qantas Airways 2013; Thomas 2007). In the 

2012/2013 financial year, Jetstar Airways 57 per cent of its business was derived from its 

domestic Australian operations, with the remaining 43 per cent being earned from its 
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international operations (Qantas Airways 2013). Jetstar further aims to increase its Asian 

network as part of the airline’s so called “Pan Asian Strategy”. 

 

A principal feature of the traditional LCCs’ business model is the use of secondary airports 

(Section 3.3.4 above). When Jetstar commenced operations in 2004, the airline decided to 

operate services from Avalon Airport, a secondary airport, located around 55 kilometres from 

Melbourne. The profitability of operating services from Avalon Airport has proved difficult. 

Consequently, Jetstar have reduced services at Avalon Airport in order to focus their 

services on Australia’s major airports (Australian Aviation 2013). In December 2013, Jetstar 

confirmed it was reviewing its Avalon services as they were considered to be under-

performing. However, contributions of $AUD 5.5 million from the Victorian Government and 

$AUD 2.75 million from both Linfox, the company that operates the airport, helped avert its 

departure from the airport (Lannen 2014).    

 

LCCs do not generally join strategic airline alliances. Recently, Jetstar and Emirates Airline 

announced an agreement to codeshare13 on a number of different services. This will 

increase an opportunity for Jetstar to drive domestic tourism destinations, such as, Hamilton 

Island, Byron Bay and Uluru. Jetstar have also ratified code-sharing agreements with several 

airlines such as American Airlines, Jet Airways, Japan Airlines, Finnair and Air France – 

KLM.  In addition, Jetstar has air fare agreements with the oneworld global airline alliance. 

Consequently, Jetstar services are saleable by oneworld alliance member airlines and travel 

agents. These arrangements provide Jetstar with a global presence (Australian aviation 

2010; Australian aviation 2011a; Australian aviation 2012; Australian aviation 2014a) 

 

3.4.3 Australia’s low cost carrier’s aircraft fleet structure  

 

In terms of aircraft fleet type, Australia’s current two LCCs are basically adhering to the 

generic LCCs’ business model by operating a homogenous fleet of the Airbus A32X family 

aircraft on their Australian domestic services (Table 3.2).    

 

 

  

                                                
13

 A code-share is a partnership agreement between two airlines: the operating airline and the marketing airline 

(Abdelghany & Abdelghany 2009, p. 221), under which the flights of the two participating airlines occur on a 
single airline. The flights are displayed in such a way that airlines are responding to consumers’ preferences for 
booking flights on the same airline (Diederiks-Verschoor 2006).     
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Table3.2.Comparison of Jetstar and Tigerair Australia Airbus A320 key characteristics 

 Jetstar Tigerair 

Number in fleet 57 (JQ) 13
1
 

Seating configuration 180 
All leather seats 17.88 inches 
wide and with an average seat 
pitch of 29 inches 

180 

Maximum Take-off Weight 77,000 kg Not available 

Range With Full Payload 4,800 km Not available 

Engines 2 x V2527-A5 International Aero 
Engines (IAE) 

Not available 

Source: Jetstar Airways (2013b); Tiger Airways (2014b). 

Note: 

1. Fleet as 31st May 2014. 

 

In addition to its extensive fleet of Airbus A320-200 aircraft, Jetstar also operates a small 

fleet of six Airbus A321 aircraft. These aircraft are seat configured to accommodate 220 

passengers. In addition to the larger seating capacity, these aircraft also have a longer range 

capability (5,600 km) than the airline’s Airbus A320 aircraft (Jetstar Airways 2013b).  

 

Jetstar commenced operations in 2004 with a fleet of Boeing B717s (Thomas 2004). From 

2004 to 2006, Jetstar gradually changed to a single Airbus A320 fleet type. In June 2006, 

the airline operated 23 A320s aircraft (Creedy 2005; Ionides 2007; Thomas 2004). The 

bigger Airbus A320 aircraft, which were powered by International Aero Engines V2500 

engines, allowed Jetstar to reduce frequencies on some leisure routes and redeploy the 

aircraft to new destinations (The Saigon Times Daily 2003).  

 

As Table 3.2 shows, Jetstar has adopted a strategy of principally operating Airbus A320 

aircraft in its domestic Australian route network. The carrier also operates several Airbus 

A321 aircraft in Australia. Jetstar also has its own line and heavy maintenance operations for 

A320 at Jetstar’s Newcastle maintenance base (Qantas Airways 2012).  

 

Tiger Airways has followed the ‘traditional’ LCCs’ business model by operating a single, 

homogenous aircraft fleet type – the Airbus A320 aircraft. As at the end of August 2014, 

Tiger Airways operates a fleet of 13 Airbus A320 aircraft throughout Australia (Table 3.2). 

 

3.4.4 Australia’s low cost carrier’s pricing and distribution strategies 

 

As noted above LCCs’ pricing policy is to offer heavily discount fares for air travel booked 

long in advance in order to stimulate demand (Doganis 2006).  
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When Jetstar first commenced operations in 2004, the airline offered an introductory seat 

sale of $29 for 200,000 seats. In January 2005, Jetstar offered substantially discounted air 

fare of $9 plus taxes on 15 routes such as Sydney - Sunshine Coast and Sydney - Gold 

Coast for 300,000 seats (Creedy 2004).  

In 1 October 2004, announced conditional internet $49 one-way fares on some routes such 

as Sydney-Launceston, Melbourne- Hobart and Newcastle-Melbourne or Brisbane and $79 

one-way fares for Sydney- Rockhampton, $89 Sydney-Whitsunday Coast and $119 Sydney-

Hamilton Island under the condition that fares were available for travelling between 23 

October and 16 December 2004 and January to 28 February 2005 (Thomas 2004).   

Jetstar has aimed to be the lowest fare operator in the domestic market (Owen-Browne 2003 

cited in Whyte & Prideaux 2007). In February 2008, Jetstar offered discount airfares to 

passengers travelling with no check-in luggage. This initiative was designed to enable 

Jetstar to obtain a price advantage over competitors (Flight international 2008).  

 

From its inception of operations in Australia in 2005 Tigerair Australia, has also focused on 

providing very low air fares in the Australian market, in order to stimulate demand (Lindsay 

2007). In June 2012, Tigerair Australia offered domestic half price air fares, for example, 

Melbourne –Sydney route from $29.95. A similar initiative was offered in October 2012, 

when the airline offered 30 per cent off the regular Tiger “Raw” domestic airfares on three 

popular route; Melbourne – Sydney, Melbourne – Hobart and Sydney – Gold Coast for 

30,000 seats (Singapore Government News 2012). .      

 

LCCs’ business models encourage direct booking via their own website in order to reduce 

travel agent cost. Tigerair, however, in January 2014, collaborated with Amadeus travel 

agencies, a leading technology partner for the global travel industry, to utilise the Amadeus 

distribution channel via travel agencies. This system provides a simple and seamless way 

for Tigerair to distribute its full range of attractive fares and content via an extensive network 

of travel agencies located throughout the Asia Pacific region. These travel agencies can 

make bookings easily using a web-like interface. Tigerair ancillary sales such as advance 

boarding, seat selection, luggage and other passenger amenities are able to be booked 

through this system. It was expected that this strategy will strengthen their distribution 

channel (Tiger Airways 2014a). 
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Jetstar also encourage passengers to book directly with the carrier. Interestingly, Jetstar also 

works closely with travel agents throughout Australia and Asia. Jetstar offer travel agents the 

following benefits: 

 

 “The ability to earn fixed sector remuneration via Gross Fares  

 Access to a secure Travel Site that enables travel agents to easily create new 

bookings, modify existing bookings, manage their account and agency details  

 Keep travel agents up to date with Jetstar news via TradeMail  

 Settle via bank settlement plan (BSP) where Jetstar is BSP enabled  

 The choice of various payment methods including: Major Credit Card, BSP, UATP  

 The ability to book mixed itineraries with third party carries (via code-sharing and 

Interline agreements)  

 The choice to book and make changes via the GDS, Trade Site, API and Call Centre  

 Dedicated Sales Support Team including phone and email support  

 GSA support in selected markets” (Jetstar Airways 2013d).    

 

3.4.5 Australia’s low cost carrier’s focus on ancillary revenues 

 

As previously mentioned, LCCs maintain low airfares to stimulate new demand from 

customers who travel by bus or rail or who have never travelled before (Fernie 2011; Flouris 

& Oswald 2006; Mason 2001). 

 

Therefore, Jetstar offers options for passengers using the concept of the “customer only 

pays for what they need”. Passengers have the option of selecting between two types of 

fares – Economy or Business (on selected international flights). Once a fare has been 

selected by the passenger, then the passenger has the option to add on checked baggage 

and/or a bundle of extras. These extra product offerings include seat selection, in‐flight 

products, fare flexibility, lounge access, as well as Qantas Frequent Flyer points (Qantas 

Airways 2013).  

 

In 2005, Jetstar introduced a new in-flight entertainment service (the portable digEplayer 

video-on-demand), on Airbus A320 flights longer than 75 minutes. Passengers were charged 

$5 for a journey lasting up to two hours and $10 for a longer trip for the use of this service 

(Creedy 2005). In 2010, Jetstar offered iPads as part of their in-flight entertainment to 
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passengers. Passengers wishing to use this service are charged $10-$15 on flights over two 

hours (Horton 2010; Bachman 2012).  

Since May 2011, Jetstar has introduced product bundles. These include flight catering and 

bar sales, baggage charges, as well as in-flight duty free sales (on international services) 

(Qantas Airways 2013).  

Tiger Airways also earns revenue from a diverse range of sources, including fees for 

bookings made by the internet and by travel agents, excess baggage charges, sporting 

baggage charges, booking amendment charges, and preferred selected seat charges (Tiger 

Airways Holdings 2014b).   

 

3.4.6 The hybridization of Australia’s domestic low cost carriers business 

models: a summary 

 

To sum up, Australian LCCs originally focused on reducing costs in order to maintain a 

leading price strategy in the markets they serve. The base model of low-cost carriers by 

which they achieve significantly lower operational costs is based on the following 

characteristics: the focus on minimizing costs and maximizing efficiency, the use of younger 

aircraft fleet composed mostly of one aircraft type, the use of secondary and uncongested 

regional airports, point-to-point network of flights, only one-way fare per flight available at 

each point in time, direct online ticket sales, one passenger class inside the aircraft cabin, 

and no in-flight service (Vidovic 2013; Klophaus 2012;  Doganis 2009) 

 

However, due to the global economic crisis, higher fuel costs, and increasing market 

competition, the pure LCCs’ business model is proving difficult to sustain. Many LCCs have 

had to change their business strategies in order to respond to the dynamic changes in air 

transportation (Vidovic 2013). Consequently, LCCs are increasingly embracing a hybrid 

business model. The above analysis in this section has shown that Australian LCCs have 

also been required to adjust their business models in order to counter this market change. 

Figure 3.2 presents development of key attributes of Australia’s domestic LCCs business 

models. As noted earlier, basically Australian domestic LCCs offer simple products and 

charge extra fees for additional services and facilities. However, since the market has 

changed Jetstar has introduced the FFP program for its customers while Tiger offered the 

“Infrequent Flyer Club”. This shows that Australia’s domestic LCCs products have tended to 
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move from a simple product to a more complex service offering in response to any changing 

passenger or market requirements.  

 

Secondly, Tiger Airways has operated with single feet aircraft. In contrast, Jetstar has 

introduced a heterogenous fleet – Airbus A320 and Airbus A321 for Australian domestic 

services, and Airbus A330 and Boeing B787 aircraft for long-haul services from/to Australia 

(Thomas 2004). Therefore, only Tiger Airways is still following the fleet structure strategy of 

the original LCCs’ business model (Doganis 2006)  
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Figure3.2.Development of key attributes of Australia’s domestic LCCs’ business models 
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Third, Australian domestic LCCs generally operate short-haul, point-to-point services, with 

high flight frequencies, particularly in major markets, such as Melbourne to Sydney. Jetstar 

uses Avalon Airport (a secondary airport), located nearby to Melbourne in addition to 

Melbourne Tullamarine Airport – the largest airport in Victoria.  

 

However, Jetstar has gradually expanded its network to long-haul international markets. 

Jetstar further aims to increase its Asian network, with its so called “Pan Asian Strategy”. As 

noted earlier, Jetstar has been increasing its participation in strategic alliance, for example, 

the airline now has code share agreements with Emirates airline (Australian Aviation 2014a). 

Hence, it can be observed that the Australia’s domestic LCCs route network structure has 

tended to divert from original LCCs’ business model in response to changing market 

requirements. 

 

Fourth, Australia’s domestic LCCs basically offer competitive airfares and keep their fare 

structures simple. Jetstar mainly utilizes online and direct bookings, while Tigerair Australia 

has introduced bookings via Amadeus travel agencies to strengthen its distribution channel 

(Tiger Airways 2014a). Therefore, it can be argued that the Australia’s LCCs distribution 

channel has slightly diverted from the LCCs’ business model.  

Finally, as noted in Section 3.4.5 above, Australia’s domestic LCCs have been focusing on 

ancillary revenues. Examples of these ancillary revenue sources are the charges paid by 

passengers for in-flight catering and in-flight entertainment services. It can be stated that 

Australian domestic LCCs still use original LCCs’ business model in terms of focusing on 

ancillary revenues.  

Overall, it can be observed that the Australian domestic LCCs’ business model have 

developed into a “hybrid” model. This is because they have gradually introduced FSNCs 

features in response to the dynamic change in airline industry. 

 

3.5 Summary 

 

This chapter has presented an overview of the key characteristics and attributes of the 

LCCs’ business model. The objective of this discussion was to examine the relevant 

theories, as they provide an understanding of the LCCs’ business model, and are highly 

relevant to this study. 
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The following four chapters propose and empirically test models based on multiple linear 

regression analysis (MLR), artificial neural network (ANN), genetic algorithm, and adaptive 

neuro-fuzzy inference system (ANFIS) forecasting approaches. The detailed modelling that 

is undertaken in these chapters seeks to identify the optimum modelling approach, in terms 

of accuracy, reliability, and predictive capability, for forecasting Australia’s domestic LCC 

passenger demand – a key aim of this thesis.  
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CHAPTER FOUR: FORECASTING DEMAND FOR LOW COST 

CARRIERS IN AUSTRALIA USING A CLASSICAL LINEAR 

REGRESSION APPROACH 

 

4.1 Introduction 

 

The previous chapters discussed the LCCs’ business model and Australia’s domestic 

aviation policy together with its influence on the LCC domestic market segment. The focus of 

the thesis now turns to detailing modelling of Australia’s domestic LCC passenger demand.  

This chapter proposes and empirically examines a classical or traditional linear regression 

approach for forecasting Australia’s domestic LCC passenger demand. Whilst it has been 

noted that recent advances in artificial intelligence-based techniques, such as artificial neural 

networks (ANNs), genetic algorithm (GA), and adaptive neuro-fuzzy inference system 

(ANFIS), have been regarded as superior forecasting approaches (see, for example, 

Alekseev & Seixas 2002, 2009; Tso & Yau 2007; Yetilmezsoy et al. 2011) , this study did not 

wish to ignore the use of a classical linear regression approach, and therefore, proposes and 

tests two classical multiple linear regression models (one based on Australia’s domestic 

LCCs enplaned passengers (PAX Model) and the second on revenue passenger kilometres 

performed (RPKs Model) for completeness.  

The chapter is organised as follows: in Section 4.2 factors influencing airline passenger 

demand is discussed; in Section 4.3 the data sources used in the thesis modelling is 

presented. Section 4.4 examined the specific models formulation and estimation procedures. 

The results from the models estimated are discussed in Section 4.5.        

 

4.2. Factors influencing Australia’s Domestic Low Cost Carrier Passenger 

Demand  

 

Factors influencing air travel demand are complex (Doganis 2009; Vasigh et al. 2008). Each 

factor is composed of elements which can either stimulate or reduce air travel demand. For 

airline passenger demand forecasting purposes, these factors are more conveniently 

categorised into two broad groups (Ba-Fail et al. 2000). The first group consists of those 

factors that are external to the airline industry. The second group includes those factors 

within the industry itself (Ba-Fail et al. 2000). The commencement point for an econometric 
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analysis is, in effect, a regression equation model postulating a causal relationship between 

a dependent or explained variable and one or more independent or explanatory variables 

(Gujarati 2003). The dependent variable in the analysis of airline passenger demand, 

generally, is the historical airline traffic data measured in terms of enplaned passengers or 

revenue passenger kilometres performed (RPKs) as these are recognised as the measures 

of airline demand which has been met (Belobaba 2009; Holloway 2008). The independent 

variables included in the model are those variables which would have an influence on 

demand for air travel. The econometric models therefore endeavour to explain demand for 

air travel as being caused by the changes in the model’s independent or explanatory 

variables (International Civil Aviation Organization 2006).  

 

Leisure travelers, the primary market for LCCs, aim to optimise the utility – or satisfaction – 

derived from air travel and from associated consumption of vacation experiences, subject to 

a given income or budget constraint (Brons et al. 2002). Characteristics of leisure travel 

demand include air travel costs, relative price of other goods, income, together with socio-

economic characteristics (Brons et al. 2002).   

  

The primary driver of air travel demand is economic growth (Belobaba & Odoni 2009; 

Wensveen 2011). The most important socio-economic variable affecting demand for leisure 

travel14 is personal or household income. This is because leisure trips are normally paid for 

by the passenger, who may also be paying for a spouse and one or more children to travel 

together on a holiday or for some other leisure-related travel purpose (Doganis 2009). 

Furthermore, higher levels of economic activity will lead to greater demand for air transport 

services, because of increased business requirements and generally higher spending of 

consumers. In addition to the strong relationship between the overall level of economic 

development to air transport activity, the annual rate of growth in air traffic is closely related 

to the annual rate of world economic growth (Bureau of Transport and Communication 

Economics 1994, p. 45). Historically, the annual growth in air travel has been around twice 

the annual growth in gross domestic product (GDP) (Belobaba & Odoni 2009, p. 2). 

During periods of economic growth (and when consumer confidence is strong), air travel 

demand grows. Conversely, when economies fall into recession or experience downturns, 

unemployment grows, consumer confidence declines, and individuals often postpone 

discretionary travel and other luxury purchases (Dempsey & Gesell 1997). To illustrate the 

                                                
14

 The leisure traveller segment consists of several distinct segments: visiting friends and relatives (VFR), 
vacation travellers, and special event travellers (Shaw 2011). 
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relationship between airline passenger demand and economic growth, the annual growth 

rates in world passenger air traffic, as measured by RPKs, are shown in Figure 4.1, for the 

period 1980-2012. As can be seen in Figure 5.1, the annual growth rates in world RPKs 

tracked the world real GDP closely, except in 1991 and 2001, which shown the drops in 

RPKs due to the first Gulf War and the effects of 9/11 terror attacks in the USA.       

 

      Figure4.1.The cyclical nature of world airline traffic growth: 1980-2012 
Source:  Ad1apted from Air Transport Association of America (2013); International 
Civil Aviation Organization (2008-2013), International Monetary Fund (2014).  

 

Real GDP and real GDP per capita were used to measure the effect of income on Australia’s 

domestic LCC passenger demand (Doganis 2009; International Air Transport Association 

2008).  

One of the key factors influencing a consumer’s decision to travel by air is the price of air 

travel. Individuals travelling for leisure purposes normally tend to be more sensitive to price 

and income than those travelling for business purposes. As a general rule, leisure travelers 

typically tend to book their travel well in advance, are prepared to travel at less popular times 

and are less likely to change their travel plans (Bureau of Transport and Communication 

Economics 1994). A decrease in the real cost of air travel positively influences air traffic 

growth (Hanlon 2007; Holloway 2008). However, measurement of the price of air travel is 

normally complicated by the presence of different fare classes offered by airlines 

(International Civil Aviation Organization 2006). Hence, airline passenger yields are often 

used as a proxy for air fares, which can be difficult to obtain given the wide use of a variety 

of, and fluctuating number of, discount fares. In the absence of changes in other factors 
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influencing air travel demand falling yields, tend to increase traffic. Conversely, rising yields 

tend to reduce traffic volumes, subject to demand elasticities (Doganis 2009).  

In addition, as many LCCs have developed into sizeable operations, there is evidence 

suggesting that leisure travellers are taking more frequent, shorter-duration vacations 

(Graham 2006). However, the increase in multiple holidays is limited by the amount of 

annual vacation day’s people can take (Mason 2007). Leisure travel also competes with 

other ways people may spend their disposable income. In recent years home computers, 

high definition televisions and ipods have also increased in popularity and vie for leisure 

travellers’ disposable consumption (Graham 2000). Hence, even though the number of 

perfect substitutes for air travel may not be overwhelming, leisure travel, compared to 

business travel, has some additional substitutes inside as well as external of the transport 

sector and therefore tends to be more sensitive to changes in air fares, implying higher 

absolute price elasticity (Brons et al. 2002). 

The impact of Australia’s demographic changes was considered through the annual 

population (Tsekeris 2009; Young & Wells 2011) and unemployment rates. Population has a 

direct effect on the size of an air travel market and may cause a bias in the estimates if 

omitted. For instance, a large increase in air traffic may reflect a sudden increase in 

population rather than other effects (International Air Transport Association 2008). In 

addition, employment also influences air travel demand (Doganis 2009). Ceterus paribus, 

rising levels of employment tend to positively influence air travel demand, while increasing 

levels of unemployment tend to dampen or depress air travel demand (McKnight 2010). This 

occurs because there are significant economic effects associated with employment. The 

standard of living of certain demographic groups and individuals will be affected by changes 

in the incidence of a country’s employment and unemployment rate (Martin 1991). Job 

losses result in significant declines in income and hence consumption for individuals and 

their families. Job losses also have a “snow-ball” effect as the reduction in expenditure by 

families experiencing loss of jobs means further loss of demand for businesses, resulting in 

further unemployment (Goolsbee 2010).  

Air transport and tourism15 are inter-related. Consequently, there is a strong association 

between levels of air travel demand and tourism demand. Air transport can influence tourism 

demand via a number of channels, with price being one of the key factors (Koo et al. 2013). 

Thus growing demand for air travel, associated with the rapid growth of LCCs, has assisted 

                                                
15

 In this thesis, a tourist is defined as a temporary visitor staying at least 24 hours in a region for the purpose of 
leisure (holidays, recreation, sport), business, family (visiting friends or relatives) , or attending conferences or 
meetings (Reisinger 2009, p. xviii).   
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tourism growth (Davidson & Ryley 2010). The majority of the demand for LCCs services is 

from leisure travellers (Graham 2006), although Mason (2005) has observed that there is an 

increasing number of business travellers who view LCCs flights as providing good value, 

flexible ticket options, particularly on specific routes where frequency is tailored to satisfy 

business demand. LCCs are significant influences in development of weekend, city or short-

break tourism and are influencing expansion of potential destinations (Graham & Shaw 

2008). Visiting friends and relatives (VFR) traffic have also fed the LCCs (Bieger & Wittmer 

2006). LCCs are also extending the range of motivations and frequency of travel for private 

leisure reasons through their highly efficient websites, where customers can purchase not 

only an air ticket, but also reserve a hotel, rent a car, and purchase travel insurance (Olipra 

2012).  

The tourism industry makes a substantial and important contribution to the overall level of 

economic activity and employment in Australia. As is the case with most developed 

economies, Australia’s tourism industry is heavily oriented towards domestic expenditure by 

Australian residents (Hooper & van Zyl 2011). Domestic tourism accounts for three-quarters 

of tourism expenditure in Australia, with the balance accounted for by international tourists 

spending (Hooper & van Zyl 2011; OECD 2014). The Australian Bureau of Statistics (ABS) 

collects a range of Australian tourism-related statistics. Unfortunately, the number of tourists 

carried by Australia’s domestic LCCs are not recorded, nor reported. The Bureau of 

Infrastructure, Transport, and Regional Economics (BITRE), another Australian Government 

tasked with collecting transport mode data, also do not publish data on the number of 

tourists carried by Australia’s domestic LCCs.  A further search for this data was made by 

examining the statistics published by Tourism Australia and Tourism Research Australia, the 

two Australian Government peak tourism organisations. Once again, neither of these 

agencies provided the number of tourists carried by Australia’s domestic LCCs. 

 Therefore, in the absence of the actual data relating to the number of tourists (both 

domestic and international origin) carried by Australia’s domestic LCCs, careful attention 

was paid to identifying a suitable proxy variable that could be included in the models to 

examine the influence that tourism may have on Australia’s domestic LCC passenger 

demand. This study therefore followed the approach of Tsekeris (2009), which has been 

cited in at least fourteen other studies, who has argued that tourism attractiveness, which is 

expressed in terms of the tourist accommodation infrastructure, that is, the reported bed 

capacity, can be included as a variable in air travel demand modelling (Tsekeris 2009). 
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Short-term conditions such as official interest rates can also have a strong influence on the 

growth potential of both individual airlines and the total industry (Abed et al. 2001). Interest 

rates influence the balance between expenditure and saving (Cook 2007). So if interest rates 

drop, this may influence demand for goods and services. This is because many homeowners 

have a mortgage and a falling interest rate will increase their discretionary income. This is 

the income they have available to purchase non-necessities. Hence, they will purchase more 

of most normal goods and services (Wilkinson 2005). Furthermore, high interest rates will 

also inhibit economic activity, which can have a dampening effect on airline traffic 

(Wensveen 2011). 

Jet fuel prices are another influential factor for air travel demand (Gesell 1993). Sharp 

increases in world oil prices have important (though temporary) impacts on world air travel 

demand. In addition to the adverse impact on the global economy, airlines are often forced 

to increase air fares to cover higher fuel costs, which often have a detrimental impact on air 

travel demand (Li 2010).  

4.3 Data Sources 

 

The availability of a consistent data set allows use of quarterly data for the period 2002 to 

2014. The data used in the models developed and empirically examined in this thesis were 

sourced from a variety of sources. Data on Australia’s real GDP and real GDP per capita, 

Australia’s unemployment numbers, population size and recorded bed capacities at 

Australia’s tourist accommodation establishments16 are from the Australia Bureau of 

Statistics (ABS). Australia’s real interest rates are from the Reserve Bank of Australia (RBA). 

The airfare data are from the Bureau of Infrastructure, Transport and Regional Economics 

(BITRE) (airline yields are used as a proxy of average airline fares and are based on 

Australia’s real best discount air fares). The data on Australia’s domestic LCCs enplaned 

passengers and revenue passenger kilometres performed (RPKs) are from the Bureau of 

Infrastructure, Transport and Regional Economics (BITRE), Qantas Group, Tiger Airways 

and Virgin Australia reports and websites. World jet fuel prices (expressed in Australian 

dollars) were sourced from the US Energy Information Administration (EIA). To change data 

from current prices to real or constant prices, this study used the consumer price index (CPI) 

at 2011 constant prices (Ba-Fail et al. 2000).  

 

Table 4.1 presents a summary of the dependent and independent variables included in the 

study, their unit of measurement, and their data source. 

                                                
16

 Based on Australian tourist accommodation establishments with 15 rooms or more. 
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Table4.1.Summary of the study dependent and independent variables, units of 

measurement, and data sources17 

Variables Data measurement Source 

Australia’s LCCs enplaned passengers Thousands BITRE, QF,VA,TT 

Australia’s LCCs revenue passenger kilometres Millions BITRE, QF,VA,TT 

Australia’s real air fare levels (Yield) Index BITRE 

Australia’s population size Thousands ABS 

Australia’s real GDP AUD$ Millions ABS 

Australia’s real GDP per capita AUD$  ABS 

Australia’s unemployment size Thousands ABS 

World jet fuel price AUD$ per gallon EIA 

Australia’s real interest rates Per cent RBA 

Australia’s tourism accommodation bed capacity Number of bed spaces ABS 

Legend: QF = Qantas Group; VA = Virgin Australia; TT = Tiger Airways 

 

4.4 Model Specifications and Estimation Procedures  

 

Most econometric forecasts18 of air traffic tend to be based on multiple regression models, 

where traffic is a function of one or more independent variables. The two variables most 

frequently used are the air fare and some measure of per capita income (Doganis 2009). 

The standard approach used in air transport modelling and forecasting is to define it as a 

procedure in which two vectors from different domains (a vector constructed from socio-

economic factors and a further vector constructed from air transport system factors) can be 

combined through mapping, so that the target demand forecasting can be accomplished 

(Alekseev & Seixas 2009; Rengaraju & Arasan 1992). 

Multiple linear regression (MLR) is a linear statistical technique which is very useful for 

predicting the best relationship between an explained variable or dependent variable and 

several explanatory variables or independent variables (Tiryaki & Aydın 2014). MLR is based 

on least squares: the model is fit such that the sum of squares of variances of actual and 

forecast values is minimized (Tiryaki & Aydın 2014).  

A general MLR model can be formulated as per the following equation: 

                                 (4.1) 

                                                
17

 Data of all variables are plotted and presented in Appendix 6.  
18

 According to Stock and Watson (2003, p.527), ‘Forecasting pertains to out of sample observations whereas 
prediction pertains to in sample observations’. 
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where Y is the explained variable, Xi represents explanatory variables,     represents 

forecast coefficients , and   is the error term (Tiryaki & Aydın 2014). 

 

The most critical step in attempting to examine the relationship between variables is to form 

the relationship in a mathematical function, that is, to specify the model(s) with which the 

economic phenomenon may be explored empirically (Ba-Fail et al. 2000). In the remainder 

of this chapter, two econometric models are specified and tested based on Australia’s 

quarterly LCCs enplaned passengers (PAX Model) and revenue passenger kilometres 

(RPKs Model). 

 

The first step of this study was to define the independent variables of the MLR models for 

forecasting Australia’s domestic LCC passenger demand models. After reviewing and 

collecting data related to the characteristics of the relationships between causative factors 

and air travel demand as well as reviewing the extant literature on factors influencing air 

travel demand, the following list of economic and socio-demographic factors were selected 

for inclusion in the study’s modelling: 

• Australia’s real gross domestic product (GDP), 

• Australia’s real gross domestic product per capita (GDP per capita), 

• Australia’s population size 

• Australia’s unemployment size 

• Australia’s real interest rates 

• Australia’s tourism accommodation bed capacity 

• World jet fuel prices 

• Australia’s real air fare levels (Yield)  

 

Three dummy variables were included in the models. The first dummy variable explained the 

impact of the evolving Virgin Australia business model from a LCCs model to a FSNC 

(Whyte et al. 2012) on Australia’s LCC traffic (enplaned passengers and RPKs). Australia’s 

domestic LCCs’ traffic has decreased significantly since 2011 primarily due to this transition 
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in Virgin Australia’s business model. Thus, the dummy variable reflecting the Virgin Australia 

changing business model (DUMMY 1) is zero for the period from Quarter 1 2002 to Quarter 

4 2010 and one for otherwise. 

The second dummy variable (DUMMY 2) accounted for the loss of capacity following the 

collapse of Ansett Australia in 200119. At the time of its collapse in 2001, Ansett Australia’s 

domestic Australian market share was 35 per cent (Virgin Blue held around 10 per cent and 

Qantas had a 55 per cent market share) (Prideaux 2003). The collapse of Ansett Australia 

had a major impact on the tourism industry, especially in regional areas where Ansett’s 

subsidiaries provided substantial capacity. Whilst other incumbent airlines increased seating 

capacity, the demand for seats exceeded supply for several months (Prideaux 2003). The 

dummy variable accounted for the loss of capacity following the collapse of Ansett Australia 

(DUMMY 2) is one for the period from Quarter 1 2002 to Quarter 2 2002 and zero for 

otherwise. 

The third dummy variable accounted for the impact of the Commonwealth Games held in 

Melbourne from 15 to 26 March, 2006. The 2006 Melbourne Commonwealth Games was the 

largest sporting and community event held in Victoria’s history. The Commonwealth Games 

provided substantial economic benefits for the State of Victoria, and for the travel industry as 

well, as the total expenditure associated with the Commonwealth Games was around $AUD 

2.9 billion. The Commonwealth Games also generated 166,513 visitors. These visitors 

comprised 57,010 overseas visitors, 60,125 interstate visitors, 37,035 regional Victoria 

visitors and 12,343 other visitors (KPMG 2006). Thus, the dummy variable accounted for the 

impact of the Commonwealth Games (DUMMY 3) is one for Quarter 1 2006 and zero for 

otherwise. 

The ICAO (2006) suggests that dummy variables can be included in econometric models to 

account for such trends.  

Figure 4.2 presents a schematic description of the steps taken in the econometric analysis of 

the factors affecting Australia’s domestic LCC passenger demand, as measured by 

enplaned passengers and revenue passenger kilometres performed (RPKs). 

 

                                                
19

 Ansett Australia experienced financial problems and was placed into receivership on September 14, 2001 
(Easdown & Wilms 2002). 
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Figure4.2.Schematic description of the steps taken in the econometric analysis of Australia’s 
domestic LCC passenger demand 
Source: based on Maddala (2001).  
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Table 4.2A presents the correlation matrix, from which the variables were analysed for 

inclusion in the model development. 

Table4.2A.Correlation matrix for all independent variables  

   FARE   POP   GDP   GDPPC   UEMP   ACCOM   FUEL   INT  

 FARE  1.00 
        POP    -0.88 1.00 

       GDP  -0.76 0.93 1.00 
     GDPPC  -0.55 0.74 0.94 1.00 

     UEMP  -0.18 0.20 0.03 -0.15 1.00 
   ACCOM  -0.84 0.92 0.90 0.76 -0.05 1.00 

   FUEL  -0.65 0.78 0.79 0.70 -0.31 0.82 1.00 
  INT  0.31 -0.27 -0.12 0.05 -0.69 -0.14 -0.00 1.00 

 

The correlation matrix shows high correlation between population and GDP at 0.93 and 

between GDP and GDP per capita at 0.94 respectively which indicates the covariance 

amongst the variables 20(Ba-Fail et al. 2000). Since GDP per capita is the GDP divided by 

total population number, this study therefore used Australia’s real GDP per capita21 as an 

income measure in the PAX and RPKs multiple linear regression models (Ba-Fail et al. 

2000). It can be seen from table 4.2B that using the GDP per capita instead of GDP and 

population, the correlation value amongst selected independent variables is lower than 0.9 

which indicates that there is no covariance amongst selected variables” 

Table4.2.B. Correlation matrix of selected independent variables  

   FARE   GDPPC   UEMP   ACCOM   FUEL   INT  

 FARE  1.00 
     GDPPC  -0.55 1.00 

     UEMP  -0.18 -0.15 1.00 
   ACCOM  -0.84 0.76 -0.05 1.00 

   FUEL  -0.65 0.70 -0.31 0.82 1.00 
  INT  0.31 0.05 -0.69 -0.14 -0.00 1.00 

 

Therefore, the demand model for Australia’s domestic LCCs air travel may comprise the 

following list of economic and socio-demographic factors: 

 Australia’s real gross domestic product per capita (GDP per capita), 

                                                
20

 It is suggested that the correlation value greater than 0.9 indicates an existing of covariance amongst variables 
(Ba-Fail et al. 2000).  
21

 Australia’s real GDP per capita is an inflation-adjusted by using consumer price index (CPI) of 2011 as a base 
year. 



  Chapter 4 

  Classical Modelling Approach 

59 

 

 Australia’s unemployment size 

 Australia’s real interest rates 

 Australia’s tourism accommodation bed capacity 

 World jet fuel prices 

 Australia’s real air fare levels (Yield)  

 

Three dummy variables were also tested in the modelling. The first dummy variable 

(DUMMY 1) reflected the Virgin Australia changing business model from an LCC model to a 

FSNC. The second dummy variable (DUMMY 2) accounted for the loss of capacity following 

the collapse of Ansett Australia (Prideaux 2003). The third dummy variable (DUMMY 3) 

accounted for the impact of the Commonwealth Games held in Melbourne from in March, 

2006.  

 

4.5 Classical Linear Regression Modelling Results  

 

Multiple regression analysis was performed using the SPSS software (Statistical Package for 

the Social Science) Version 22 and Eviews Version 7.2.  

The two multiple linear regression models, PAX and RPKs, offering the best fit in terms of 

goodness-of-fit measures and model accuracy for Australia’s domestic LCC passenger 

demand are:  

(1):                                                         

(Adj.R2 = 0.955, S.E. = 339.00), and  

 

(2):                                                           

(Adj.R2 = 0.960, S.E. = 384.97).  

 

Here PAX is Australia’s domestic LCC enplaned passengers, RPKs is Australia’s domestic 

LCC revenue passenger kilometres performed, X1 is airfare (Australia’s real best discount air 

fare), X 2 is Australia’s real GDP per capita, X3 is Australia’s real interest rates, X4 is World jet 

fuel price, and X5 is dummy variable (DUMMY 1) reflecting Virgin Australia’s changing 

business model.  
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The modelling results are summarised in Table 4.3 and shows the high R2 for both models. 

The high R2 values indicate the variations between the variables are explained well by the 

models both of which have very small standard errors. The high “t” values for the coefficients 

indicate these variables are stable. Attempts to use additional variables failed to improve the 

models fit, (Alekseev & Seixas 2009).  

 

It was found that Australia’s real GDP and population were not used as independent 

variables in the same model, due to the statistical insignificance. As we have noted above, 

the study used two income measures in the modelling: Australia’s real GDP and real GDP 

per capita (GDP per capita is the gross domestic product divided by size of the population). 

Due to their direct relationship, gross domestic product (GDP) and GDP per capita were not 

used as explanatory variables in the same model (Ba-Fail et al. 2000).  

 

Also, the endogeneity issue which is likely to be appeared in econometric model when a 

choice variable placed on the right-hand side of an equation is indirectly affected by the left- 

hand side’s variable and will lead to biased and inconsistent estimation in econometric 

model was taken into account (Chenhall & Moers, 2007). In this study, the Australia’ tourism 

accommodation bed capacity which used as a proxy of tourism variable might cause an 

endogeneity issue since it is a function of tourism demand. However, the result was found 

that bed capacity was not included into the MLR models, both PAX and RPKs models, due 

to its statistically insignificance. Therefore the endogeneity is not an issue of this study. 

Table4.3.The predictors of Australia’s domestic LCC passenger demand 

Independent Variables PAX RPKs 

X1 Air fare -16.49 -18.79 

     SE22 

     t 

(7.26) 

(-2.27) 

(8.20) 

(-2.29) 

P - value (0.03) (0.03) 

     VIF (6.15) (6.20) 

X2 GDP per capita  1.94 2.39 

     SE 

     t 

(0.19) 

(10.17) 

(0.18) 

(13.09) 

                                                
22

 This study used HAC (heteroscedasticity and autocorrelation consistent) procedure to correcet the bias of 
standard errors and t-statistics, if present (Gujarati 2003). (See Appendix 4)   
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P - value (0.000) (0.000) 

     VIF (8.91) (9.41) 

X3 interest rates  -212.58 -198.26 

     SE (76.85) (81.27) 

     t (-2.77) (-2.44) 

P - value (0.009) (0.02) 

     VIF (3.24) (3.18) 

X4 Fuel  620.68 632.05 

     SE (197.78) (202.31) 

     t (3.14) (3.12) 

P - value (0.004) (0.010) 

     VIF (13.16) (12.52) 

X5 Dummy  1  -4758.36 -4981.65 

     SE (160.01) (175.70) 

     t (-29.74) (-28.35) 

P - value (0.000) (0.000) 

     VIF (2.71) (2.60) 

Constant -22977.26 -29708.15 

     SE (2986.38) (2832.19) 

     t (-7.69) (-10.49) 

P - value (0.000) (0.000) 

R-squared 0.961 0.960 

Adj. R-squared 0.955 0.953 

F 152.64 147.718 

P-value (F-statistic) 0.000 0.000 

Durbin Watson (DW) 1.86 1.81 
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Hypotheses Testing: Each regression coefficient to be tested for significance, the null 

hypothesis is that the true population value of each regression coefficient individually is zero 

(Gujarati 2006). The two tailed t statistics23 is therefore applied to test this hypothesis and 

displayed in Table 4.3. If the absolute value of the t value is greater than the critical t value 

the null hypothesis will be reject and can be concluded that the population value of the 

coefficient is probably not zero. From the results in table 4.3, since the absolute value of t 

value of the intercept coefficient is larger than the critical t value, and the absolute value of t 

value of the slope coefficient is also larger than the critical t value, the null hypothesis in both 

cases were rejected and can be concluded that both the intercept and slope coefficients are 

significantly different from zero.     

 

The R-squared Coefficient (R2): The coefficient of determination24, R2 and adjusted R2, of 

PAX and RPKs models are 0.961, 0.955 and 0.960 and 0.953, respectively. These values 

indicate a good fit of model that over 90 per cent of variance in the dependent variable was 

explained by independent variables (Ba-Fail et al. 2000). When adjusted for degrees of 

freedom the model maintained good explanatory power for both the PAX and RPKs models 

at 95.5 per cent and 95.3 per cent respectively.    

 

The F-test for Overall Significance: The F-test helps evaluate a regression’s overall 

significance. While the t-test can be used only on the null hypothesis involving one slope 

coefficient, the F-test can test hypotheses with more than one slope coefficient. The null 

hypothesis is that all slope coefficients in a regression are zero. The alternative hypothesis is 

that at least one of all slope coefficients in a regression is not zero. Hence, where the F-

statistic is greater than its critical value, the null hypothesis will be rejected. If this is not the 

case, this means none of the independent variables explain the dependent variable (Ba-Fail 

et al. 2000). Table 4.3 shows F values are high for both the PAX and RPKs models and the 

observed significance level is less than 0.0005.The findings therefore indicate there is a 

significant relationship between the dependent variable and the independent variables. 

 

                                                
23

The two-tailed t-test is used to test whether such a null hypothesis stands up against the (two-sided) alternative 
hypothesis that true population coefficient is different from zero,

 
If α is set at 0.05 or 5 per cent level, the two-

tailed critical t value is about 2.021 for 34 degrees of freedom (d.f.) (Ba-fail et al. 2000, p.81). 
 
24

 The coefficient of determination, R
2
, explains the proportion of variance in the dependent variable that can be 

explained by the independent variables (Ba-Fail et al. 2000 p.82).   
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Measures of Autocorrelation25: The Durbin Watson (DW) statistic is used to measure 

autocorrelation (Lee et al. 2013), that is, to detect whether there is any correlation between 

members of observations ordered in time. If the computed d value is closer to 0, there is 

evidence of positive autocorrelation, but if it is closer to 4, there is evidence of negative 

autocorrelation. The closer the d value is to 2, the more the evidence is in favour of no 

autocorrelation (Ba-Fail et al. 2000). This is only an initial detection, however to precisely 

determine if autocorrelation is present in the model, the Durbin Watson statistic test is 

needed. The actual procedure of the Durbin Watson test is illustrated in Figure 4.3.   

Table 4.3 shows that the computed Durbin Watson statistic values for Australia’s domestic 

LCC PAX and RPKs air travel demand models are 1.86 and 1.81, respectively. The 

computed Durbin Watson statistic values were then compared to the Durbin Watson critical 

value which can be obtain from the Durbin Watson statistical table. From the Durbin Watson 

statistical table (Gujarati 2003, p.970) where n (number of observations) =37, k (number of 

independent variable) = 5 and level of significance = 0.05, the lower limit of Durbin Watson 

statistic (dL) is 1.190, and the upper limit of Durbin Watson statistic  (du) is 1.795. These 

Durbin Watson statistics were plotted in the Figure 4.3.  

It can be seen that the Durbin Watson test of the PAX model (1.86) and the RPKs model 

(1.81) fell in the range of dU < DW < 4-dU which can be concluded that there is no statistically 

significant autocorrelation. 

 

 

 

 

 

 

 

 

                                                
25

 The possibility of autocorrelation and multicollinearity are two key problems for the forecaster when using 
regression models. The autocorrelation problem occurs when the error terms produced by the regression 
equation fall into a pattern. The multicollinearity problem occurs if the independent variables are not statistically 
independent of each other. For example, GDP and population may move more or less in unison. Therefore, 
including both as independent variables would result in multicollinearity and would pose difficulties in interpreting 
the regression coefficients (Doganis 2009). 
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Figure4.3.Durbin – Watson statistics  
Source: Gujarati (2003, p. 469) 

 

Measure of Collinearity15: One assumption of the multiple linear regression (MLR) model is 

that there is no exact linear relationship or multi-collinearity among explanatory variables. 

Collinearity refers to the situation in which there is a high multiple correlation when one of 

the independent variables is regressed on the others, that is, there is a high correlation 

between independent variables (Ba-Fail et al. 2000). The variance inflation factor (VIF) was 

used as an indicator of multi-collinearity. The larger the value of VIF, the more collinear the 

variable would be considered (Gujarati 2006). Although there is no theoretical basis for how 

the size of VIF is related to the degree of multi-collinearity, the normal practice being that if 

the VIF of a variable exceeds 10, that variable would be considered to be highly collinear 

(Gujarati 2003). The output in Table 4.3 shows that the VIF value of all variables are less 

than 10, except the VIF value of the world jet fuel price (13.16 for PAX model and 12.52 for 

RPKS model). However, according to Shmueli (2010, p.12) “Multicollinearity is not a problem 

unless either the individual regression coefficients are of interest, or attempts are made to 

isolate the contribution of one explanatory variable to Y, without the influence of the other 

explanatory variables. Multicollinearity will not affect the ability of the model to predict.”   

 

Measures of Heteroschedasticity: Both the graphic test and White’s General 

Heteroscedasticity Tests26, were used to detect the presence of heteroscedasticity. The 

model’s residuals were examined to see (Figure 4.4) if they were affected by any of the 

independent variables by performing a regression of the residual from the original regression 

and independent variables. 

In Figure 4.4, the PAX and RPKs models residuals are plotted against the forecast PAX and 

RPKs (fitted) regression lines, respectively. The objective being to visually determine, 

whether the forecast mean values of the PAX and RPKs are systematically related to the 

residuals. Figure 4.4 shows that there is no systematic pattern between the variables, 

suggesting that no heteroscedasticity is present in the data (Gujarati 2003).  

  
                                                
26

 A general test to detect heteroschedasticity, was introduced by White (1980), and is performed using an 
auxiliary regression of the squared residuals on all the squares and cross products of the explanatory variables 
(Alexander 2008, p. 177).     

PAX model RPKs model 
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Figure4.4.Plots of the Australia’s domestic LCC PAX and RPKs multiple linear regression models 
residuals and fitted values. 

 

To further test for heteroscedasticity in the models, a White test was performed. The White 

test statistic is given by the sample size (n) times the R-square obtained from the auxiliary 

regression which asymptotically follows the chi-square distribution (Gujarati 2003). If the 

obtained chi-square value exceeded the critical chi-square value at the selected level of 

significance, the conclusion would be that there was heteroscedasticity (Seddighi 2011). The 

White general heteroscedasticity tests results for Australia’s domestic LCC PAX and RPKs 

air travel demand models are shown in Table 4.4. 

 

Table4.4.Whites General Heteroscedasticity Test results for Australia’s domestic LCC  PAX 
and RPKs passenger demand models 

PAX model n*R-squared 6.89     Probability 0.2451 

RPKs model n*R-squared 7.33     Probability 0.2090 

 

Since the White general heteroscedasticity test statistic of Australia’s domestic LCC PAX 

model and RPKs model are 6.89 and 7.33, respectively, which has, asymptotically, a chi-

square distribution of 5 df. The 5 per cent critical chi-square value for 5 df is 11.07. Thus, a 

heteroscedasticity problem was not detected in the Australia’s domestic LCC PAX and RPKs 

models on the basis of the White test (Gujarati 2003).  

 

The assumption of normality of errors: The multiple linear regression model requires an 

assumption that residuals of model are normally distributed (Rachev et al. 2010). To detect 

this, residuals and frequency is plotted as shown in Figure 4.5. It can be observed from 

Figure 4.5 that both the PAX and RPKs models have a bell shape pattern. This indicates 

both the Australia’s domestic LCC PAX and RPKs models residuals are distributed 

approximately normally (Gujarati 2006). Accordingly, it can be concluded that both 
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Australia’s domestic LCC PAX and RPKs models satisfied the assumption that the residuals 

were normal.  

 

  

 
          

Figure4.5.Distribution of the residuals for Australia’s domestic LCC PAX and RPKs models  

 
 

To further verify the accuracy and reliability of the models, four goodness-of-fit measures 

were calculated for both the PAX and RPKs models: mean absolute error (MAE), mean 

absolute percentage error (MAPE), means square error (MSE), and root mean square error 

(RMSE) Equations (5.2) to (5.5) (Kunt et al. 2011).   
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Where    is the actual values,     is the predicted values, N is the total number of data points, 

and   ̅ is the average of the predicted values (Tiryaki and Aydın, 2014, p. 104).   
 

In this study, the first group of 37 data was used as the estimating set (about 75 per cent of 

the data), and the remaining 12 out of sample data (about 25 per cent of the data) which had 

not been previously used in the models estimation, was used for verifying and testing the 

robustness of the models. The performance index of the estimating data set, testing and 

overall data set of Australia’s domestic LCC PAX and RPKs models, as measured by MAE, 

MAPE, MSE and RMSE values, are presented in Table 4.527.  

 

Both PAX and RPKs models show MAPE value in out of sample testing data set of 8.63 and 

11.11 per cent, respectively. Martin & Witt (1989) in their study which focussed on the 

accuracy of econometric forecasts of tourism (a paper which has also been cited in at least 

84 other reported studies), stated that the forecasting performance of a model is considered 

to be   ‘highly  accurate  forecasting’ when the mean absolute percentage error (MAPE) is 

smaller than 10 per cent (MAPE<10%). According to the two authors, forecasting accuracy 

can be considered as  “good forecasting” if the model’s MAPE falls between 10-20 per cent 

(10% ≤ MAPE ≤ 20%), and it can be classified as ‘reasonable forecasting’ where the MAPE 

is in the range of  20-50 per cent (20% ≤ MAPE ≤ 50%). Furthermore, if the model’s MAPE is 

larger than 50 per cent then Martin and Witt (1989), argued that the model’s results must be 

regarded as ‘inaccurate forecasting’ (Martin & Witt 1989, p 417). The classification for MAPE 

is presented in table 4.5 

 

Table4.5.Classification for Mean Absolute Percentage Error (MAPE) 

MAPE Value Forecasting Accuracy 

MAPE < 10% Highly  accurate  forecasting 

10% ≤ MAPE ≤ 20% Good forecasting 

20% ≤ MAPE ≤ 50% Reasonable forecasting 

MAPE > 50% Inaccurate forecasting 

Source : Adapted from Martin & Witt (1989, p 417). 

 

                                                
27

 It is observed that the performance index such as MAE, MAPE, MSE and RMSE, show better results for the 
estimating data than for the testing data set. This is because the testing data set or out of sample data set is the 
“new data” which has not participated in the building model and it is used to test the “true” performance of 
forecasting model. While the training data set is used for constructing a forecasting model and it has been seen 
by the model. Hence, a model’s performance on the training data set will generally be better than the model’s 
performance on non-training data set (Michalewicz et al 2006). 
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Therefore, based on the widely cited Martin and Witt (1989) MAPE values classifications, 

Australia’s domestic LCC PAX model can be considered as “highly accurate forecasting’” 

and RPKs models can be considered as “good forecasting”.        

 

Table4.6.Performance index of MLR PAX and RPKs models for estimating, out of sample 
testing and overall data sets 

  
PAX 

Model 
  

RPKs 
Model 

 

Performance 
index 

Estimating 
data 

Testing 
data  

Overall 
data 

Estimating 
data 

Testing 
data  

Overall 
data 

MAE 258.58 405.34 294.53 299.48 428.02 330.96 

MAPE 5.00% 8.63% 5.89% 5.48% 11.11% 6.86% 

MSE 9.6x104 3.0 x105 1.4 x105 1.2x105 2.4 x105 1.5 x105 

RMSE  310.43   544.28   381.20   352.35   495.31   392.21  

 

The overall forecast and actual values of Australia’s domestic LCC enplaned passengers 

(PAX Model) and RPKs (RPKs Model), during Quarter 1 2002 to Quarter 1 2014, are plotted 

and presented in Figure 4.6 and Figure 4.7, respectively.  

 
 

 

Figure4.6.A comparison of Australia’s domestic LCC actual and forecast enplaned passengers (MLR 
Model) 
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Figure4.7.A comparison of Australia’s domestic LCC actual and forecast RPKs (MLR Model) 
 

4.6 Summary 

 

This chapter has presented the first of the modelling approaches for forecasting Australia’s 

domestic LCC passenger demand, as measured by enplaned passengers and revenue 

passenger kilometres performed. As noted in Chapter 1 traditional or classical linear 

regression models have been the most popular forecasting method used in previous studies 

forecasting airline passenger demand. In this chapter, for the first time, two classical multiple 

linear regression (MLR) econometric models (PAX/RPKs) were developed and empirically 

tested the statistical relationship between key airline passenger demand-influencing factors 

and the corresponding level of Australia’s domestic LCC passenger traffic, as measured by 

enplaned passengers and RPKs performed.  

 

In this study, an extensive literature review has been undertaken to identify and justify the 

potential variables that influence air transport demand as can be seen in section 4.2. To 

determine which variables should be included into the MLR models, t-statistics and standard 

errors (SE) have been performed to ensure that all models have the most accurate, reliable, 

and highest predictive capability for forecasting Australia’s domestic low cost carrier 

passenger demand. 
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Statistical measures for evaluating the models shows that the PAX and RPKs models found 

to be the most appropriate classical multiple linear regression models to forecast Australia’s 

domestic LCC passenger demand are: 

 

Domestic air travel demand (PAX)               

                                                          

 

Domestic air travel demand (RPKs)   

                                                            

where 

X1 is Australia’s real best discount airfare 

X2 is Australia’s real GDP per capita 

X3 is Australia’s real interest rates 

X4 is World jet fuel price  

X5 is dummy variable (Dummy 1) reflecting Virgin Australia changing business model  

 

Both PAX and RPKs models are very good in terms of goodness-of-fit measures and model 

accuracy. The following chapter presents the first of three artificial intelligence-based 

forecasting methods, and specifies and tests two artificial neural networks models (ANNs) 

for forecasting Australia’s domestic LCC passenger demand.  
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CHAPTER FIVE: FORECASTING DEMAND FOR AUSTRALIA’S LOW 

COST CARRIERS USING AN ARTIFICIAL NEURAL NETWORK 

APPROACH 
 

5.1 Introduction  

 

The previous chapter presented the first of Australia’s domestic LCC demand forecasting 

models based on use of the classical or traditional linear regression approach. In the past, 

regression models have been generally used to forecast airline passenger traffic (see, for 

example, Abed et al. 2001; Aderamo 2010; Ba-Fail et al. 2000; Bhadra 2003; Kopsch 2012; 

Sivrikaya & Tunç 2013). This chapter takes an alternative approach and, for the first time, 

specifies and tests two artificial neural networks models (ANNs) for forecasting Australia’s 

domestic LCC passenger demand. As noted in Chapter 1, ANNs have attracted 

considerable attention in the literature due to their predictive capabilities and quick learning. 

However, despite these advantages there have been few reported studies which have 

developed and tested ANNs for forecasting a country’s domestic airline passenger demand. 

The notable exceptions being Alekseev and Seixas (2002, 2009) who developed ANNs for 

forecasting Brazil’s domestic passenger demand. Blinova (2007) has also proposed an ANN 

to forecast the expansion of Russia’s air transport network.  

 

The chapter is organised as follows: in Section 5.2 is an overview of artificial neural networks 

(ANNs). This is followed by explanation of the architecture of artificial neural networks 

(Section 5.3), and the ANNs model evaluation measures in Section 5.4. Section 5.5 

discusses the ANNs training and testing, whilst Section 5.6 presents an overview of the 

transfer function used in the study’s ANNs. In Section 5.7 the ANNs modelling and the 

results are presented.  

 

5.2 Artificial Neural Network Modelling: A Brief Overview  

 

To briefly recap, artificial neural networks (ANNs) comprise simple elements operating in 

parallel and which are inspired by biological nervous systems. As in nature, the connections 

between elements largely determine the network function (Kunt et al. 2011, p.355). Artificial 

neural networks (ANNs) are biologically inspired computer programs designed to simulate 

the way in which the human brain processes information. According to Agatonovic-Kustrin & 
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Beresford (2000, p. 717) “ANNs are digitized models of a human brain, computer programs 

designed to simulate the way in which human brain processes information. ANNs learn (or 

are trained) through experience with appropriate learning exemplars just as people do, not 

from programming”.  An artificial neuron28 incorporates weights, a summing function, bias 

and an activation function (Akgüngör & Doğan 2009; Kunt et al. 2011).  

 

An ANN is formed from many single units, artificial neurons or processing elements (PE), 

connected with coefficients (weights), which comprise the neural structure and are organised 

in layers. The power of neural computations comes from connecting neurons in a network. 

Each PE has weighted inputs, transfer function and one output. An artificial neuron is a basic 

operating unit to constitute the ANN. The ANN consists of three layers, that is, input, hidden, 

and output layers (Kunt et al. 2011; Tiryaki & Aydın 2014). The input layer consists of all 

input factors. Information from the input layer is then processed by the ANN with one or 

more hidden layers acting as intermediate layers between the input and output layers 

(Akgüngör & Doğan 2009). 

 

An artificial neural network can be trained to perform a particular function through adjustment 

of the values of connections (weights) between elements (Kunt et al. 2011). In the late 

1940s, Donald Hebb introduced the Hebbian learning rule which is one of the fundamental 

learning rules for ANNs. A number of other researchers, for example, Hopfield (1982), 

Kohonen (1988) and Rumelhart et al. (1986) developed various learning rules and artificial 

neural network architectures (Akgüngör & Doğan 2009). The ANN consists of an 

interconnected group of artificial neurons and processes information utilizing the 

connectionist approach to computation. When the received signals are sufficiently strong, 

the neuron is activated and emits a signal through the axon. This signal may be sent to 

another synapse and may activate other neurons. The complex structure of biological 

neurons is simplified through the use of artificial neurons (Akgüngör & Doğan 2009). 

 

The behaviour of an artificial neural network is determined by the transfer functions of its 

neurons, by the learning rule or algorithm, and by the ANN architecture itself. The weights 

are the adjustable parameters and, in that sense, a neural network is therefore a 

parameterized system. The weighed sum of the inputs constitutes the activation of the 

neuron. The activation signal is passed through transfer function to produce a single output 

of the neuron. The transfer function introduces a degree of non-linearity to the ANN (Ghosch 

                                                
28

 An artificial neuron is a computational model inspired by the natural neurons receiving signals through 
synapses located on dendrites (Akgüngör & Doğan 2009). 
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et al. 2005; Panizzo & Petaccia 2009; Wilson et al. 2002). During training, inter-unit 

connections are optimized until the error in predictions is minimized and the network reaches 

the specified level of accuracy. Once the network is trained and tested it can be provided 

with new input information to predict the output (Agatonovic-Kustrin & Beresford 2000, p. 

717). 

 

5.3 Artificial Neural Network Architecture 

 

The ANN forecasting technique consists of training a computer to learn from substantial data 

based on the structure of human brain, using many simple processing elements (Haykin, 

1999). Thus, artificial neural networks (ANNs) are a method of using computer software to 

classify and recognise patterns in given data (Momoh, 2012). ANNs capture the inherent 

information from a considered set of variables and learn from the existing data, even when 

noise is present (Garrido et al., 2014). Hence, no formulation or a priori model is required 

(Watts et al., 2008; Curcio and Jorio, 2013).  A neural network can be trained to perform a 

particular function by adjusting the values of connections (weights) between elements (Kunt 

et al., 2011). During the training process, the ANN is able to detect complex relationships 

between the input and output data and perform the subsequent synthesis (Sineglazov et al., 

2013, p. 10). Once the ANN has been trained on the sample of the given data-set, it can 

make estimations through the detection of similar patterns in future data (BaFail, 2004).  

 

Furthermore, ANNs have the ability to detect similarities in inputs, despite a particular input 

not ever being seen previously. This property provides ANNs with excellent interpolation 

capabilities, particularly when the input data may not be exact, that is, noisy (BaFail, 2004).   

 

The most general form of an artificial neural network used in forecasting is shown in the 

following equation: 

 

Y = F [H1 (X), H2 (X) …., Hn(X)] + u    (5.1) 

 
where, Y is a dependent variable, X is a set of explanatory variables, F and H’s are network 

functions, and u is a model error term (Ba-Fail 2004, p. 103).   

 

As mentioned previously, the artificial neural network (ANN) model is characterized by a 

network of three layers: input, output and hidden layers which resemble the human body’s 
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neural network (Lahmiri 2011; Mehrotra et al. 2000). Neural networks consist of large 

numbers of simple processing elements called neurons organized into several layers and 

interconnected with each other through synaptic weights. Synaptic weights represent the 

intensity of the interaction between every pair of neurons, and the activation functions 

calculate the potential of every neuron (Garrido et al. 2014; Martin del Bío & Sanz Molina 

2006; Tiryaki & Aydın 2014). 

 

The most widely used ANN type for forecasting is the Multi-Layer Perceptron (MLP) model 

(Claveria & Torra 2014; Garrido et al. 2014; Tiryaki & Aydın 2014). The MLP is a supervised 

neural network based on the original simple perceptron model. Figure 5.1 presents the 

study’s 3-layer back propagation network (Lahmiri 2011; Mourani et al. 2006). The first layer 

is the input layer and corresponds to the problem input variables with one node for each 

input variable. The second layer is the hidden layer used to capture non-linear relationships 

among variables. The third layer is the output layer used to provide predicted values (Lahmiri 

2011). The number of neurons in the input layer is equal to the number of input variables or 

independent variables, and the number of output neurons is equal to the number of output 

variable(s) or dependent variable(s). The input layer receives the initial values of the 

variables, the output layer shows the results of the network for the input, and the hidden 

layer carries out the operations designed to achieve the output (Tiryaki & Aydın 2014). 
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Figure5.1.The artificial neural network (ANN) structure for forecasting Australia’s domestic LCC 
passenger demand 

 

 

The output of the MLP can be expressed in mathematical form as per the following equation: 

   

      ∑   
 
     [ ∑   

   (        )]     (5.2) 

In Equation (5.2), Y is the forecast value of dependent variable; Xi is the input value of ith 

independent variable; Wij is the weight of connection between the ith input neuron and jth 

hidden neuron;    is the bias value of the jth hidden neuron; vj is the weight of connection 

between the jth hidden neuron and output neuron;   is the bias value of output neuron;       

and      are the activation functions of output and hidden neurons respectively (Tiryaki & 

Aydın 2014) . 
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5.3.1 Artificial neural network Input variables and data sources 

 

As noted in Figure 5.1 above, during the ANN models development process, eleven 

variables were tested as the inputs in the two ANN models (PAX and RPKs). These inputs 

comprised Australia’s real GDP, Australia’s real GDP per capita, Australia’s real best 

discount air fares, Australia’s population size, Australia’s unemployment (size), Australia’s 

tourist accommodation establishments recorded bed capacities (proxy for tourism 

attractiveness), world jet fuel prices, Australia’s real interest rates and three dummy 

variables. The data sources are presented in Section 4.3 above. 

 

5.4 Artificial Neural Network Model Evaluation 

 

Similar to the multiple linear regression modelling, the ANN modelling also used goodness-

of-fit statistics in order to measure the model’s accuracy and reliability. According to Kunt et 

al (2011, p.356), “Goodness-of-fit (GOF) statistics are useful when comparing results across 

multiple studies, for examining competing models in a single study, and also for providing 

feedback on the level of knowledge about the uncertainty involved in the phenomenon of 

interest.” Five measures were used in the present study: mean absolute error (MAE), mean 

absolute percentage error (MAPE), mean square error (MSE), the root mean square error 

(RMSE), and correlation coefficient (R) (Kunt et al. 2011; Ruiz-Aguilar et al. 2014; Tiryaki & 

Aydın 2014).  

 

The mean absolute error (MAE) is a quantity used to measure how close forecasts are to the 

eventual outcomes (Waters 2014). The mean absolute error (MAE) is given Equation (5.3): 

 

 

    
 

 
 ∑ [|       |]

 
           (5.3) 

 

 

Where    is the actual value, N is the total number of data and     is the forecast value 

obtained by the neural network (Tiryaki & Aydın 2014, p.104). 

 

The mean absolute percentage error (MAPE) is the average of the absolute per cent errors 

for each period (Autry et al. 2013). 
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Where    is the actual value, N is the total number of data and     is the forecast value 

obtained by the neural network (Tiryaki & Aydın 2014, p.104). 

 

 

A standard error measure used to assess the forecasting accuracy of the ANN and MLR 

model is the mean square error (MSE). The definition of MSE is that the difference between 

the actual value and the forecast is determined, squared and then summed across all 

samples. The sum is then divided by the number of total data to get the MSE. The lower 

MSE values represent the more accurate prediction results. The MSE is defined as follows:  

 

 

     
 

 
∑         

  
        (5.5) 

 

 

Where    is the actual value, N is the total number of data and     is the forecast value 

obtained by the neural network (Tiryaki & Aydın 2014, p.104). 

 

 

The root mean square error (RMSE) is an estimate of a standard deviation from the random 

component in data and is defined as Equation (5.6). The RMSE is a frequently-used 

measure of differences between values predicted by a model or an estimator and values 

actually observed (Kunt et al. 2011, p. 356). 

 

     √
 

 
∑         

  
           (5.6) 

 

 

Where    is the actual value, N is the total number of data and     is the forecast value 

obtained by the neural network (Tiryaki & Aydın 2014, p.104). 

 

 

The correlation coefficient (R) matrix represents the normalized measure of the strength of 

the linear relationship between variables in a model. The correlation coefficients range from 

–1 to 1, where values close to 1 suggest there is a positive linear relationship between data 

columns (Kunt et al. 2011, p. 356). The values close to –1 suggest one column of data has a 
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negative linear relationship to another column of data (anticorrelation), and the values close 

to or equal to 0 suggest no linear relationship exists between data columns (Bevington & 

Robinson 2002). 

 

R= 
∑      ̅        ̅̅ ̅  

   

√∑      ̅   
    ∑        ̅̅ ̅   

   

       (5.7) 

 

Where    are the actual values,     is the forecast values, N is the total number of data, and 

  ̅̅̅ is the average of the forecast values (Tiryaki & Aydın 2014, p. 104).   

 

5.5 Training and Testing of the Artificial Neural Networks 

 

Training is the algorithmic process in the hidden neuron where parameter weights can be 

adjusted appropriately to forecast accurately. Among various training algorithms, back-

propagation is the most popular algorithm used in artificial neural networks (ANNs) (Ba-Fail 

2004; Claveria & Torra 2014; Faraway & Chatfield 1998; Zhang 2004). The basic idea being 

to propagate a gradient of the transfer function back and compare actual output from output 

units with a target output, then re-adjust weights backward in the network. Weights are 

adjusted and repeated until the mean squared error (MSE) between network prediction and 

actual data is close to the target (Jung & Wang 2007; Tiryaki & Aydın 2014; Zhang 2004). 

 

For the purpose of the training process, artificial neural networks are separated into three 

data sets: training is used for model fitting and selection, testing is used for evaluating the 

model’s forecasting ability and validation data sets determine the end point for the training 

process to avoid model over fitting (Alekseev & Seixas 2009; Garrido et al. 2014; Tiryaki & 

Aydın 2014; Zhang et al. 1998). Indeed, over-fitting is a major concern with neural network 

model building (Remus & O’Connor 2001; Smith & Ragsdale 2010) as it can lead to 

predictions beyond the range of the training data (Jeon 2007). In order to avoid over-fitting 

models, the study’s artificial neural network (ANN) design was carried out using three data 

sets: training, validation, and testing, which were randomly divided into a 70:15:15 ratio 

(Garrido et al. 2014; Kunt et al. 2011; Tiryaki & Aydın 2014). Importantly, a cross validation 

process was carried out during the training phase to avoid over-fitting the ANN models 

(Efendigil et al. 2009). 
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The objective of training is to minimize the global error such as root mean square error 

(RMSE), mean absolute error (MAE), mean square error (MSE), and mean absolute 

percentage error (MAPE). ANNs usually commence with randomized weights for all their 

neurons. This means that they do not know everything and therefore require training to solve 

a particular problem for which they are intended. When a satisfactory level of performance is 

reached, training is concluded and the network uses these weights to decide (Akgüngör & 

Doğan 2009).      

 

The training set was used to adapt the synaptic weights of the multilayer network, utilising 

the back propagation of estimation errors (Haykin 1999). All inputs were inserted into the 

model and the networks trained. During the supervised learning process, an error function is 

defined. The synaptic weights values are iteratively updated until the provided output tends 

to be the desired, and the error function descends along the surface towards a local 

minimum. In this study the training process stopped when it reached 1,000 epochs or 0.01 

error tolerance (Efendigil et al. 2009).  

 

To conclude the training phase, a validation data set was used. The stopping criterion was 

the mean square error (MSE) of the estimated demand with respect to the samples 

belonging to the validation set. The validation set was not used in adapting the weight 

vectors of the neural estimator, and was therefore able to detect over-fitting in the training 

phase (Alekseev & Seixas 2009). 

 

For estimating the generalization capacity of the ANN forecasting model, a testing set was 

also used (Alekseev & Seixas 2009). Thus, after the training process was completed, a 

testing process was applied to ensure the model accuracy was sufficiently reliable. Once the 

values of the training set were determined, a data testing set was fed into the model and the 

output compared to the target value. The model was accepted if the difference was low 

enough (Garrido et al. 2014). The testing set simulated forecasting of the samples (Alekseev 

& Seixas 2009).  

 

Prior to training data in the ANN modelling, it is essential to transform all input into patterns. 

Training and testing vectors are also formed into patterns. Baseri (2011 p. 760) noted that 

“each pattern is formed with an input condition vector as well as the corresponding target 

vector”. Input and output data scaling is also an essential issue for consideration, particularly 

when process parameters’ operating ranges are diverse (Baseri 2011). Data normalization of 
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data determines that the system will be trained efficiently, and ensures that results are not 

skewed by particular variables (Baseri 2011). 

  

 In this study all data were therefore normalized prior to use in the training phase using 

Equation (5.8). Data normalization was applied to transform the data to a symmetric 

distribution which improves model performance since the data appear to more closely satisfy 

the assumptions of a statistical inference procedure also following the transformations of 

variables (Ghassemzadeh et al. 2013). Data is normalized using the following equation: 

 

        
             

         
     (5.8)   

 

Where       is the normalized value,   is the actual value,      is the maximum value, 

and      is the minimum value, a and b are pre-specified range (Kalkhaheh et al. 2012).  

 

There are several advantages of normalizing data prior to processing in the training stage. 

One advantage is to avoid attributes in greater numeric ranges dominating those of smaller 

data ranges. The second advantage is to avoid numerical difficulties experienced during the 

calculation (Mittal et al. 2012). With data normalization, the data are scaled so they fall within 

a pre-specified range, such as [-1, 1] (Mitsa 2010). In this study’s modelling process, all data 

values were scaled in the range between -1 and 1 using Equation (5.8). A further advantage 

of normalizing the data is that normalization also removes any arbitrary effects of similarity 

between objects whilst also increasing the answer rate data to the input signal (Mittal et al. 

2012).  

 

The neural network process is summarized in Figure 5.2. 
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Figure5.2.The artificial neural network (ANN) modelling process 

Source: adapted from Jiang et al. (2004).  
 

 

5.6 Artificial Neural Networks Transfer Function 

 

The transfer function plays an important role in ANNs as it produces the output of the 

network. The transfer function or the activation in the hidden layer combines the inputs and 
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weights values to deliver a signal to the output (Terzic et al. 2012). This is usually a 

nonlinear function determining neuron output (Garrido et al. 2014; Tiryaki & Aydın 2014; 

Zhang 2003). The transfer or activation function typically falls into one of three categories: 

 

 Linear (or ramp) 

 Threshold 

 Sigmoid (Terzic et al. 2012). 

 

The most frequently used transfer function is the sigmoid or logistic function as it possesses 

favourable mathematics properties such as montonicity, continuity, and differentiability, 

which are all important when training a neural network with gradient descent (Priddy & Keller 

2005). An activation function is used as a boundary of output. These boundaries normally 

change from zero to one [0, 1] or from minus one to plus one [-1, +1] according to the type of 

activation function used in the ANN (Akgüngör & Doğan 2009).  

 

This study used the sigmoid function in the hidden layer and the linear transfer function in 

the output layer. The Levenberg–Marquardt back propagation algorithm was used as the 

training algorithm since its convergence is stable and fast (Ruiz-Aguilar et al. 2014). The 

Neural Network tool box 8.0 within the framework of MATLAB R2012b (The MathWorks, 

Inc., USA.) software was used for modelling and simulation purposes. 

 

5.7 Artificial Neural Networks Modelling Empirical Results  
 

5.7.1   Structure of Final Models 

Two different ANN models were developed to forecast Australia’s domestic LCC passenger 

demand (enplaned passengers (PAX) and revenue kilometres performed (RPKs)). The MLP 

model consisted of three layers having weight matrix W, bias vector b and output vector pi 

where i >1. Figure 5.3 presents the optimum MLP model for predicting Australia’s domestic 

LCC enplaned passenger traffic and RPKs. The number of each layer is shown as a 

superscript to the variable of interest. Following Kunt et al. (2011), superscripts were used to 

identify the source (second index) and destination (first index) for various weights and other 

elements of the network.  
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Figure5.3.The structure of the final Australia’s domestic LCC passenger demand multi-layer 
perceptron artificial neural network model 
Source: adapted from Kunt et al. (2011, p. 358). 

 

The weight matrix connected to input vector p1 was labelled as input weight matrix (IW1,1). 

The elements of layer 1, such as its bias, net input and output have superscript 1 to indicate 

they were associated with the first layer (Kunt et al. 2011). 

 

The matrices of layer weight (LW) and input weight (IW) were utilised in the MLP model. 

Data were randomly divided into three parts: training, testing, and validation (Alekseev & 

Seixas 2009; Kunt et al. 2011). The MLP model had 8 inputs, 8 neurons in the hidden layers 

and 1 neuron in the output layer. The output layer of the MLP model consisted of one neuron 

representing Australia’s domestic LCC enplaned passengers (PAX) or RPKs values, 

respectively. As noted earlier, 70 per cent of the data were used in the training phase. 

Validation and testing data sets each contained 15 per cent of the original data.   

 

Constant input 1 was fed to the bias of each neuron. The outputs of each intermediate layer 

were the inputs to the subsequent layer. Hence, layer 2 can be analysed as one-layer having 

8 inputs, 1 neuron and 1 X 8 weight matrix W2. The layer can be treated as a single-layer 

network in its own right. The layers of a MLP play different roles in the prediction process 

(Kunt et al. 2011). The back propagation algorithm was applied to determine errors and 

modification for the weight of the hidden layer neurons (Akgüngör & Doğan 2009). In this 
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study, p3 was the network output of interest and has been labelled as y (Rumelhart et al. 

1986).   

The objective of this network is to reduce error e, which is the difference between t and pi in 

which i >1 and t is the target vector. The perceptron learning rule calculates desired changes 

(target output) in the weights and biases of the perceptron, given input vector p1 and the 

associated error e. Accordingly, the Least Mean Square Error (LMS) algorithm adjusts the 

weights and biases of the linear network so as to minimize this mean square error (Kunt et 

al. 2011). 

 

The error at output neuron j at iteration t can be calculated by the difference between the 

desired output (target output) and the corresponding real output,                    So, 

Equation (5.9) is the total error energy of all output neurons. 

 

     
 

 
∑   

 
            (5.9) 

 

Referring to Figure 5.3, the output of the k-th neuron in the l-th layer can be calculated by 

Equation (5.10) in which f2 = log sig and f3 = purelin: 

 

  
    (∑    

     

      
   )     (5.10) 

 

where      , nl refers to the number of neurons in layer l. For the input layer thus holds l 

=1,   
    , for the output layer l = 3 ,    

    .  

 

The mean square error (MSE) of the output can be computed by: 
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   (5.11) 

 

 

The steepest descent of MSE can be used to update weights by Equation (5.12) (Yeung et 

al. 2010): 

 

   
          

      
  

    
    (5.12) 
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The MSE performance index for an ANN is a quadratic function as shown in Equation 5.11. 

Hence, the performance index will either have one global minimum, a weak minimum or no 

minimum, depending upon the characteristics of input vectors (Kunt et al. 2011). Specifically, 

characteristics of input vectors determine whether or not a unique solution exists (Hagan et 

al. 1996).  

 

The performance of the ANN can be increased if relevant information is extracted to feed the 

network. Here, the ANN can evaluate correlations of such intelligent variables in the original 

input data space. Considering all available information and following the extensive literature 

review on the predictors of air transport demand, additional input variables, previously 

identified but not used in the econometric analysis due to statistical insignificance, were 

considered for feeding the input nodes of the neural estimator in conjunction with existing 

variables (Alekseev & Seixas 2009). Additional vector components included: Australia’s 

unemployment size, Australia’s tourist accommodation establishments recorded bed 

capacities (proxy for tourism attractiveness), plus 2 dummy variables, accounted for the loss 

of capacity following the collapse of Ansett Australia in 2001 (DUMMY 2) and accounted for 

the impact of the Commonwealth Games held in Melbourne in March 2006 (DUMMY 3).  

 

As previously mentioned, Australia’s unemployment size and Australia’s tourist 

accommodation establishments recorded bed capacities (proxy for tourism attractiveness) 

were not included in the PAX and RPKs multiple linear regression models estimated in 

Chapter 4 due to statistical insignificance. However, Abed et al. (2001), Cook (2007) and 

Wensveen 2011 have observed that interest rates are a potential economic factor 

influencing air travel demand. Therefore, this variable was tested as an input in the ANN 

models. Consequently, there were two forms of the artificial neural networks (ANNs) 

architecture examined in the study. The first ANN network did not include Australia’s real 

interest rates. In contrast, the ANNs network that included Australia’s real interest rates in 

the network proved to be more accurate and reliable forecasting models. The number of 

neurons in the hidden layer ranged from 5 to 9, and 1 output neuron (in both the PAX or 

RPKs models).  

 

The MLP architecture which presented the best forecasting accuracy was therefore 

comprised of 8 inputs, 8 neurons in the hidden layer  and 1 output neurons (in abbreviated 

form, 8-8-1 architecture for both PAX and RPK models) 
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5.7.2  Results of Final Models 

The final ANN PAX and RPKs models in this study comprised 8 inputs, 8 neurons in the 

hidden layers and 1 neuron in the output layer. The estimated weights for various sections of 

the PAX and RPKs models are presented in Figures 5.4 to 5.9, respectively. Panel A 

presents the connections estimated weights from the inputs (X1 to X8) and BiasH1 to the 

hidden unit H1. Similar to Panel A, Panel B to Panel H presents a similar diagram for the 

connections estimated weights from the inputs (X1 to X8) and BiasHn to the hidden unit Hn. 

Panel I presents the estimated weights between the 8 hidden units and the output units 

(Gonzalez, 2000).  

 

 

 

http://www.sciencedirect.com/science/article/pii/S0165176504003088#bib5
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Figure5.4.Estimated weights of PAX model (Panel A to Panel D) 
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Figure5.5.Estimated weights of PAX model (Panel E to Panel H) 
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Figure5.6.Estimated weights of PAX model between the hidden units and the output unit 



  Chapter 5 

  Artificial Neural Network Approach 

90 

 

  

Figure5.7.Estimated weights of RPKs model (Panel A to Panel D) 
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Figure5.8.Estimated weights of RPKs model (Panel E to Panel H) 
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Figure5.9.Estimated weights of RPKs model between the hidden units and the output unit 

 

The forecasting PAX and RPKs ANN models are presented in the following equations:  

 

PAX = -0.36 - 0.28 H1 +0.39 H2 + 0.61 H3 - 0.44 H4 -0.68 H5 + 0.29 H6+ 1.16 H7 + 0.55 H8  

 

RPKs = -0.05 - 0.42 H1+0.39 H2 - 0.12 H3 + 0.46 H4 -0.59 H5  + 0.74 H6 -0.05 H7 + 0.42H8 

 

Where: X1 = Airfare; X2 = Australia’s population size; X3 = Australia’s real GDP; X4 = 

Australia’s unemployment size; X5 = Australia’s real interest rates; X6 = World jet fuel prices; 

X7 = Australia’s tourist accommodation establishments; X8 = Dummy variable for Virgin 

Australia changing business model; Hn = network hyperbolic tangent sigmoid activation 

function: 
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Hn = TANH (Zn) =    
          

          
         (5.13) 

 

Where Zn  is calculated by multiplying the value of each input by the corresponding weight 

(wi) (Eq.5.14) (Gonzalez, 2000). 

 

Zn = BiasHn +w1 X1 +w2 X2+ w3 X3+ w4 X4 +w5 X5 +w6 X6 +w7 X7 +w8 X8  (5.14) 

 

The results of the ANN PAX and RPKs MLP models are presented in Table 5.1 in the form 

of a forecasting table, and show the forecast level of Australia’s domestic LCC passenger 

demand (as measured by RPKs and enplaned passengers, respectively) during training, 

testing, and validation phases.  

 

Table5.1.Forecasting accuracy of Australia’s domestic LCC passenger demand artificial 
neural networks (ANN) MLP models 

 

R    Model 1   Model 2 

    (PAX)    (RPKs)  

 

Training   0.9952    0.9999 

Validation   0.9922    0.9956 

Test     0.9889    0.9944 

All    0.9914    0.9954  

 

 

Figure 5.10 shows regression plots of the ANN PAX model output with respect to training, 

validation and testing data. The value of the correlation coefficient (R) for each phase was 

also calculated (Kunt et al. 2011). The R value was around 0.9914 for the total response in 

the MLP model. The solid lines in Figure 5.10 shows the perfect linear fit between actual 

values and forecast values of Australia’s domestic LCC enplaned passengers (PAX) model. 

The correlation coefficient (R) between actual values and forecast values is another 

important indicator to check the validity of the model. Importantly, when the R value is close 

to 1, forecasting accuracy increases (Tiryaki & Aydın 2014).  

 

 

http://www.sciencedirect.com/science/article/pii/S0165176504003088#bib5
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Figure5.10.Regression plots for training, testing and validation phases and the total response in 
Australia’s domestic LCC passenger demand ANN PAX MLP model 

 

 

The relationship between actual values and forecast values obtained in the ANN RPKs 

model is shown in Figure 5.11. The R value was around 0.9954 for the total response in the 

RPKs ANN MLP model. 
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Figure5.11.Regression plots for training, testing and validation phases and the  
total response in Australia’s domestic LCC passenger demand ANN RPKs MLP model.  

 

Training errors, validation errors and testing errors were plotted to determine validation 

errors in the training phase for both the PAX and RPKs models. The best validation 

performance in the PAX model occurred at epoch 9 with MSE at 1.3x105 (Figure 5.12). The 

plot in Figure 5.12 shows the MSE commencing at a larger value and decreasing to a 

smaller value, which indicates network learning is improving. The plot in Figure 5.12 has 

three lines, because 37 input and target vectors were randomly divided into three sets 

(Garrido et al. 2014; Kunt et al. 2011). 70 per cent of the vectors were used for training the 

network. 15 per cent of the vectors were used for validating how well the network model was 

generalised. Training vectors continue for as long as it takes for training to reduce the 

network error on validation vectors. After the network has memorized the training set, 

training concludes. This technique automatically avoids the problem of over-fitting the model, 
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which plagues many optimization and learning algorithms (Kunt et al. 2011). As previously 

noted, the training process stopped when it reached 1,000 epochs or 0.01 error tolerance 

(Efendigil et al. 2009).  

 

To forecast the generalization capacity of the study’s PAX and RPKs ANN forecasting 

models, a testing set compromising the remaining 15 per cent of the vectors was used. This 

set was only presented to the neural estimator following conclusion of the training, and 

hence it did not participate in the training phase (Alekseev & Seixas 2009).       

 
 

 

Figure5.12.The validation error in Australia’s domestic LCC passenger demand ANN PAX model 

 

The ANN RPKs model’s training errors, validation errors and testing errors were also plotted 

to find the validation error in the training phase. The best validation performance in the 

model occurred at epoch 14 with MSE at 4.9x104 (Figure 5.13). Similar to Figure 5.12 (PAX 

model), the plot shows a decrease in the MSE of the network which indicates network 

learning is improving. 
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Figure5.13.The validation error in Australia’s domestic LCC passenger demand ANN RPKs model 

 

The performance index of training, testing and overall data of the ANN PAX and RPKs 

models were calculated with the results being shown in Table 5.2. Both the PAX and RPKs 

models show that MAE, MAPE, MSE, RMSE values are very low for training, testing and 

overall data sets29. 

 

  

                                                
29

 It is observed that the performance index such as MAE, MAPE, MSE and RMSE, show better results for the 
estimating data than for the testing data set. This is because the testing data set or out of sample data set is the 
“new data” which has not participated in the building model and it is used to test the “true” performance of 
forecasting model. While the training data set is used for constructing a forecasting model and it has been seen 
by the model. Hence, a model’s performance on the training data set will generally be better than the model’s 
performance on non-training data set (Michalewicz et al 2006). 
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Table5.2.Performance index of ANN PAX and RPKs models for training, testing and overall 
data sets 

  
PAX 

Model 
  

RPKs 
Model 

 

Performance 
index 

Train 
data 

Test data  
Overall 

data 
Train 
data 

Test data  
Overall 

data 

MAE 182.66  232.00  194.74  200.99  219.08  205.42  

MAPE 3.61% 4.91% 3.93% 3.95% 5.73% 4.39% 

MSE 6.3x104 1.1x105 7.4x104 7.3x104 8.5x105 7.6x104 

RMSE 251.19  327.74  271.93  269.83  292.11  275.45  

 

Australia’s actual domestic LCC and forecast enplaned passengers during Quarter 1 2002 to 

Quarter 1 2014 are plotted and shown in Figure 5.14.   

    

 
 

 

Figure5.14.A comparison of Australia’s domestic LCC actual and forecast enplaned  
passengers (ANN Model) 

 

 

Australia’s domestic LCC actual domestic revenue passenger kilometres (RPKs) and 

forecast RPKs from Quarter 1 2002 to Quarter 1 2014 are plotted and shown in Figure 5.15, 

indicating the accuracy of the model’s estimations.  
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Figure5.15.A comparison of Australia’s domestic LCC actual and forecast RPKs (ANN Model) 

 

5.7.3  Discussion of Contributing Factors that influence Australia’s domestic 

LCC passenger demand     

This study used a contribution table (Gately, 1996) to analyse the major contributing factors 

that influence Australia’s domestic LCC passenger demand and revenue passenger 

kilometres performed (RPKs). The contribution of factor (Ci) in the input layer is the sum of 

absolute values of the weight of connection between the input neuron and the hidden 

neuron. 

 

Ci =   ∑ |   | 
 
          (5.15) 

where  

Ci is the contribution value of factor i  

Wij is the weight of connection between the ith input neuron and jth hidden neuron.  

 

The scale of contributing factor developed by Gately (1996) was used to evaluate the 

influences of input variables. Base on this scale, any input variable with a contribution value 

less than 2 is considered a weak contributing factor while any input variable with a 

contribution value greater than 5 is considered a high contributing factor (Chen et al., 2012).  
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Table 5.3 shows the contribution value of input variables for the PAX and RPKs models. It 

can be seen that all input variables in both PAX and RPKs models have a contribution value 

higher than 2 which means that no input variables are considered a weak contributing factor. 

Also, the three most important input variables for forecasting PAX are X2 Australia’s 

population size, X8 Dummy variable for Virgin Australia change business model, and X7 

Australia’s tourist accommodation bed spaces (proxy for tourism attractiveness), while X7 

tourist accommodation bed spaces, X2 Australia’s population size, and X1 Australia’s real 

best discount air fares are the three most important factors for forecasting RPKs. As can be 

observed in Table 5.3, Australia’s real interest rates also have a contribution value of 3.75 

and 4.48 in PAX and RPKs models, respectively.      

 

Table5.3.The contributions of input variables 

Input variables PAX 

model 

RPKs 

model 

X1  Airfare 4.64 5.92 

X2  Population 6.84 6.66 

X3  GDP 4.42 4.59 

X4  Unemployment size 4.07 5.42 

X5  Interest rates 3.75 4.48 

X6  Jet fuel price 4.97 3.73 

X7  Tourist30 accommodation bed spaces 5.82 8.16 

X8  Dummy variable for Virgin Australia changing business model 6.15 4.89 

 

 

As previously noted, the final two ANN models have 8 inputs: Australia’s real GDP, 

Australia’s real best discount air fares, Australia’s population size, Australia’s unemployment 

numbers, Australia’s tourism attractiveness, Australia’s real interest rates, world jet fuel 

prices and one dummy variable for Virgin Australia changing business model. Several 

different models were developed and tested using Australia’s real GDP per capita as the 

measure of the effect of income on Australia’s domestic LCC passenger demand or 

                                                
30

 In this thesis, a tourist is defined as a temporary visitor staying at least 24 hours in a region 
for the purpose of leisure (holidays, recreation, sport), business, family (visiting friends or 
relatives) , or attending conferences or meetings (Reisinger 2009, p. xviii).   
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alternatively Australia’s real GDP and population size. The ANN modelling results showed 

that the inclusion of Australia’s real GDP and population size provided higher forecasting 

accuracy than the models using Australia’s real GDP per capita. The importance of 

Australia’s real interest rates as a driver of domestic LCC passenger demand was also 

tested in the modelling. This was to the best of the author’s knowledge the first time that this 

relationship had been tested. The modelling results showed that the inclusion of Australia’s 

real interest rates was a factor that influenced Australia’s domestic LCC passenger demand. 

The findings therefore support Cook (2007) and Wensveen (2011) who have noted that 

interest rates can influence air travel demand.  

 

In order to test the relationship between Australia’s domestic LCC passenger demand and 

tourism, the models were tested with and without the Australia’s tourism attractiveness 

variable. The results clearly showed that the inclusion of Australia’s tourism attractiveness 

variable in the models resulted in greater predictive capability and robustness. In order to 

test the impact of jet fuel prices on Australia’s domestic LCC passenger demand, real world 

jet fuel prices (expressed in Australian dollars) were included in the modelling. World jet fuel 

prices were used as a proxy due to the absence of Australia’s jet fuel prices data set for the 

study period. The modelling results showed that world jet fuel prices do influence Australia’s 

domestic LCC passenger demand and their inclusion in the models also resulted in the 

models greater predictive capability and robustness. 

 

5.7.4 Comparison of results with previous ANN-based domestic air passenger 

demand forecasting studies 

 

As noted earlier, there have been two reported studies that have used an artificial neural 

network approach to forecast airline passenger demand (Alekeseev and Seixus 2002, 2009; 

Blinova 2007). The following table shows a comparison between these two previous studies 

and the current study. It is clearly shown that the current study has utilised a large number of 

data points than previous studies. It is generally advised that a large sample size should be 

used to obtain sufficient learning in training stage. While only one performance index was 

applied in the previous studies, the current study utilized five performance indexes which are 

R-value, MAE, MSE, MAPE, RMSE to ensure the predictive capability, and robustness of the 

models.    
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Table5.4.A comparison between the two previous studies and present study  

 Alekeseev and 

Seixus 2002, 2009 

Blinova  2007 Present study 

Region of study Brazil 

(Domestic) 

Russia 

(Domestic) 

Australia 

(Domestic LCC) 

Output Passenger 

kilometres 

Passenger 

numbers 

Passenger numbers 

and Revenue 

passenger 

kilometres (RPKs) 

Number of Input 

variables 

5 28 8 

Data Frequency Annual  

(1978-1997) 

Annual  

(1992-2005) 

Quarterly  

(Quarter 1 2002 to 

Quarter 2 2014) 

Data points 20 14 49 

Performance index Mean relative error Relative forecasting 

error 

R-value/MAE/MSE/ 

MAPE/RMSE 

 

5.8 Summary 

 

In light of the reported advantages of artificial neural networks (ANNs) as a forecasting tool, 

and in the absence of any previous reported studies that have proposed and tested artificial 

neural networks (ANNs) to predict Australia’s domestic LCC passenger demand, this study 

used an artificial neural network with multi-layer perceptron architecture (MLP) to predict 

Australia’s domestic LCC passenger demand using input parameters. The ANN models 

output were measured by enplaned passengers (PAX Model) and revenue passenger 

kilometres performed (RPKs Model).  

 

The ANN was applied for training, testing and validation and contained eight inputs and eight 

neurons in the hidden layer and one neuron in the output layer. 70% of the data was used in 

the training phase with the remaining data divided into validation (15%) and testing (15%). 

The R-value of Model 1 (PAX) was around 0.9914 and Model 2 (RPKs) was 0.9954, 

respectively.  
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The main contribution of this study was to forecast Australia’s domestic LCC passenger 

demand at a national level using an ANN approach. The results show that the artificial neural 

network’s performance provided high prediction accuracy in forecasting both Australia’s 

domestic LCC passenger demand and revenue passenger kilometres performed (RPKs). 

Whilst the factors that influence air travel demand are complex, the results of the present 

study showed that the significant factors influencing Australia’s domestic LCC passenger 

demand are Australia’s real GDP, Australia’s population and unemployment size, Australia’s 

real best discount air fares, Australia’s real interest rates, world jet fuel prices, and 

Australia’s tourism attractiveness.  

 

The three most important input variables for forecasting Australia’s domestic LCC passenger 

demand are Australia’s population size, Dummy variable for Virgin Australia change 

business model and Australia’s tourist accommodation bed spaces (proxy for tourism 

attractiveness), while the three most important factors for forecasting RPKs are tourist 

accommodation bed spaces, Australia’s population size, and Australia’s real best discount 

air fares. Australia’s population size and tourist accommodation bed spaces are found to be 

the input variables in both PAX and RPKs models with the contribution value of 6.84 and 

5.82 in the PAX model and 6.66 and 8.16 in the RPKs model, respectively.  

 

A further contribution of the study was the greater understanding of the influence of tourism 

attractiveness and real interest rates on air travel demand as these two socio-economic 

factors were shown to be an important predictor variable in the ANN models. The 

contribution value of these variables were 5.82 and 3.75 in the PAX model and 8.16 and 

4.48 in the RPKs model, respectively.      

 

The following chapter explores another artificial intelligence-based modelling approach then 

proposes and tests a new genetic algorithm (GA) model for Australia’s domestic LCC 

passenger demand. Chapter 7 develops and empirically examines a new adaptive neuro-

fuzzy inference network model (ANFIS) for forecasting Australia’s domestic LCC passenger 

demand. 
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CHAPTER SIX: FORECASTING AUSTRALIA’S LOW COST CARRIER 

PASSENGER DEMAND USING A GENETIC ALGORITHM   

 

6.1 Introduction 

 

The genetic algorithm is a further approach applicable to forecasting and optimization 

problems (Kunt et al. 2011). Despite their growing use as a forecasting method in a growing 

range of disciplines, no reported study has proposed a genetic algorithm approach for 

forecasting airline passenger demand. Accordingly, this chapter proposes and empirically 

tests a new genetic algorithm approach for forecasting Australia’s domestic LCC passenger 

demand.   

 

The chapter is structured as follows: Section 6.2 presents a brief overview of genetic 

algorithm. Section 6.3 examines the genetic algorithm process. The proposed genetic 

algorithm is presented in Section 6.4. The genetic algorithm modelling results are presented 

in section 6.5. 

 

6.2 Genetic Algorithm: A Brief Overview 

 

According to Akgüngör and Doğan (2009, p.137), “genetic algorithms (GAs) are based on 

the genetic process of biological organisms that are explained by the principles of natural 

selection and survival of the fittest ones”. GAs therefore resemble the  natural evolutionary 

processes wherein a population of a species adapts to its natural environment, leading to a 

population of designs developing and then continuing to evolve so as to adapt gradually to 

the design environment being considered (Azadeh et al. 2011, p.2226). Ozturk el al. (2005, 

p.1005) further stated that “GAs encode a possible solution to a specific problem on simple 

chromosome string like data structure and apply specific operators to these structures so as 

to preserve important information”. 

 

The principal strength of GAs is their adaptive and self-organizing capabilities. These 

abilities enable GAs to quickly solve difficult problems through three evolutionary 

mechanisms: (1) selection, (2) crossover, and (3) mutation (Hu 2002). 



  Chapter 6 

  Genetic Algorithm 

105 

 

 

The basic operations of GAs include selection, a crossover of genetic information between 

reproducing parents and a mutation of genetic information which affect the binary strings 

characteristic in natural evolution (Ozturk et al. 2005). If GAs are suitably encoded, then they 

can be used to solve real world problems by mimicking this process (Akgüngör, Doğan 

2009).    

 

6.3 Genetic Algorithm Process  

 

The GA commences with a population of solutions (chromosomes), which is termed 

population, represented by coded strings (typically 0 and 1 binary bits) as the underlying 

parameter set of the optimization problem (Kunt et al. 2011). Each individual in the 

population is called a chromosome and these represent the candidate solution to the 

problem at hand (Gen, Cheng 1997). GAs generates successively improved populations of 

solutions (better generations) by applying three main genetic operators: selection, crossover 

and mutation (Amjadi et al. 2010; Coelho et al. 2014; Kunt et al. 2011).   

 

With a GA it is a requirement to create an initial population to serve as the starting point. 

This population can be created randomly or by using specialized, problem specific, 

information on the specific problem being investigated (Godinho, Silva 2014, p. 395; Hurley 

et al. 1998). Over a wide range of applications, an initial population size of between 30 and 

100 has often been used (Goldberg 1989). Chromosomes evolve through successive 

iterations, which are termed generations (Gen, Cheng 1997). During each generation the 

chromosomes are evaluated, using some measures of fitness (Ozturk et al. 2005). To create 

the following generation, new chromosomes, called offspring, are formed by (1) merging two 

chromosomes from a current generation using a cross-over operator, or (2) by modifying a 

chromosome using a mutation operator (Gen, Cheng 1997, p. 2). A new generation is 

formed by (1) selecting, according to fitness values, some of the parents and the offspring 

whilst (2) rejecting others so to keep the population size constant. Fitter chromosomes have 

a higher probability of being selected. Following several generations, the algorithms 

converge to a good population, which should contain the optimal or sub-optimal (close to 

optimal) solution to the problem at hand (Gen, Cheng 1997, p. 2).  

 

The GA works with operations that are performed based on fitness evaluation. The fitness 

indicates the goodness of design, and, accordingly, the objective function is a logical choice 
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for the fitness measure (Ozturk et al. 2005). Fitness evaluation involves defining an objective 

or fitness function against which each chromosome is tested for suitability for the 

environment that is being considered in the study (Hurley et al. 1998). The GA selects the 

fittest members of the population based upon the best fitness value. 

 

The fitness function, (that is, minimum sum of squared errors (SSE) F(x), is presented as 

following  

 

          ∑   
 
         

    (6.1) 

 

where    and      are the actual and estimated value, respectively, m is the number of 

observations, and s={Sj} is the vector of weighting factors (Ozturk et al. 2005, p. 1007). The 

GA process is illustrated in Figure 6.1. 

 

 

 
 

Figure6.1.Genetic algorithm process 
Source: adapted from (Amjadi et al. 2010, p.494). 

 
Generate initial population 

Evaluate fitness of each 

individual 

Selection 

Crossover 

Mutation 

Meet the     

optimum solution? 

Return best solution 
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No 
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GAs work according to selection rules as defined by the laws of evolutionary genetics 

(Ozturk et al. 2005). The selection function chooses parents for the next generation based 

on their scaled values from the fitness scaling function in which the stochastic uniform 

selection function was used (Kunt et al. 2011). The selection mechanism consists of 

algorithms that mimic natural selection and select the best combination from a set of 

competing solutions. These selection algorithms (for example, rankings) yield preferences 

for the best performers (Hu 2002).  

 

When using a GA, it is a requirement to select chromosomes from the current population for 

reproduction. The selection procedure picks out two parent chromosomes based on their 

fitness values, where the better the fitness value, the higher the probability that a 

chromosome is selected by the GA. The parent chromosomes are subsequently used by the 

crossover and mutation operators to produce two offspring for the new population. This 

selection/crossover/mutation cycle is repeated until the new population contains 2n 

chromosomes. This means the process stops after n cycles (Hurley et al. 1998, p. 502).  

Crossover is achieved by exchanging coding bits between two mated strings in the GA (Kunt 

et al. 2011). Once a pair of chromosomes has been selected, crossover can then occur in 

order to produce offspring (Hurley et al. 1998). This operation is executed by selecting two 

mating parents, randomly selecting two sites on each of the chromosomal strings, and 

subsequently swapping the strings between the sites among the pair (Ozturk et al. 2005). 

Thus, parents produce offsprings having different genetic structures that include some mix of 

their chromosomes set (Akgüngör, Doğan 2009). An illustration of the crossover operation is 

as follows (Ozturk et al. 2005): 

 

Parent 1 = 1010101011 

Parent 2 = 1001000111 

Child 1 = 1010000111 

Child 2 = 1001 1010 11 
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The crossover process is repeated from one generation to another until one individual 

dominates the population or until the predetermined numbers of generations are reached. 

Conversely, crossover is not normally applied to all pairs of individuals selected for mating 

(Akgüngör, Doğan 2009). The crossover operation is carried out with a probability pc. Typical 

probability values range from 0.2 to 0.8 (Ozturk et al. 2005, p. 1006). 

 

The mutation operation serves a critical role in GAs either through the replacement of genes 

lost from the population during the selection process or by providing genes that were not 

included in the initial population (Akgüngör, Doğan 2009). In GAs, the mutation operator is 

invoked with a low probability (pm) at a randomly selected site on chromosomal string of the 

randomly chosen design. The operation consists of a switching of a 0–1 or vice versa 

(Ozturk et al. 2005, p. 1006). Mutation is therefore randomly applied with a small probability, 

which is typically in the range between 0.001 and 0.01 and modifies genes in the 

chromosomes. The effect of mutation on a binary string is illustrated as follows (Akgüngör, 

Doğan 2009): 

 

Offspring   10101110 1101010 

Mutated Offspring  10101110 0101010    

 

 

6.4 The Genetic Algorithm Models for Forecasting Australia’s Domestic LCC 

Passenger Demand  

 

6.4.1 The GAPAXDE and GARPKSDE data and variables selection 
 

In this chapter, Australia’s domestic LCC enplaned passenger (GAPAXDE) and Australia’s 

domestic LCC revenue passenger kilometres performed (RPKs) (GARPKSDE) genetic 

algorithm models have been proposed and empirically tested. During the models 

development process and based on an extensive literature review of the factors that 

influence air travel demand, eight variables were considered for inclusion and testing as 

independent variables in the two GA models: Australia’s real GDP, Australia’s real GDP per 

capita, Australia’s real best discount air fares, Australia’s population size, Australia’s 

unemployment size, Australia’s tourism attractiveness (tourist accommodation 
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establishments recorded bed capacities), world jet fuel prices, and Australia’s real interest 

rates.  

 

Three dummy variables were also included for consideration in the GA models. The first 

dummy variable (DUMMY 1) explained the impact of the evolving Virgin Australia business 

model from an LCC to a FSNC business model on Australia’s domestic LCC traffic 

(enplaned passengers and RPKs). As noted previously, Australia’s LCC traffic in Australia 

has decreased significantly since 2011 primarily due to this transition in Virgin Australia’s 

business model. Thus, the dummy variable reflecting the Virgin Australia changing business 

model (DUMMY 1) is zero for the period from Quarter 1 2002 to Quarter 4 2010 and one for 

otherwise. 

 

The second dummy variable (DUMMY 2) accounted for the loss of capacity following the 

collapse of Ansett Australia (Prideaux 2003). The third dummy variable (DUMMY 3) 

accounted for the impact of the Commonwealth Games held in Melbourne from 15 to 26 

March, 2006. 

 

6.4.2 The GAPAXDE and GARPKSDE genetic algorithm process 
 

The goal is to determine an optimal (or close to optimal) subset of K  independent variables 

(chosen from a set of n  independent variables nixi ,,2,1:  ) which collectively provide 

the best predictive model of a dependent variable y . Two models will be considered: 

 





n

i

iii xawy
1

model)(linear ˆ   (6.2) 
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i
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i

i

j
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model) (quadraticˆ         (6.3) 

 

The coefficient component iw  indicates whether the variable ix  is included in the model, 

where 1iw   if ix  is included, and 0iw   if ix  is not included. Similarly, ijw  indicates 

whether the variable product ji xx  is included in the quadratic model. In what follows we will 
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denote the vector of weight values as w , and define the set of feasible weight vectors 

 KWK  1ww :  . 

 

Once w  is specified, the values of  niai ,2,1:   (also  ijniaij  ,2,1,,2,1:   for the 

quadratic model) are chosen to minimise the squared difference between observed values of 

the dependent variable over m  observations miyi ,,2,1:   , and corresponding forecast 

values  miyi ,,2,1:ˆ   (i.e. least squares). That is, denoting the vector of model 

coefficients as a , we  minimise 

 

   



m

i

ii yyLS
1

2
ˆ| wa .   (6.4) 

 

Objective function 

 

The goal is to determine the weight vector 
w such that 

 

  waw
aw

|minminarg LS
KW

      (6.5) 

 

Genetic Algorithm  

 

If the number of independent variables, n , is large, then the number of variable 

combinations of size K  will also be large. Specifically, the number of combinations will be 










K

n
 for the linear and quadratic models, and 













 

K

nn

2

32

 for the quadratic model. This may 

make it prohibitive to exhaustively evaluate all linear models with K  independent variables. 

One possible approach to determining a close to optimal set of independent variables is to 

utilise a meta-heuristic algorithm such as a genetic algorithm. 
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The stages of the genetic algorithm are outlined as follows: 

 

1. Generate an initial population 

An initial population 0P  is generated by randomly selecting a set of M solutions from the 

feasible solution set KW . For each member 0Pw  of the initial population we define the 

measure of fitness  wF  to be  

 

   waw
a

|min LSF  .  (6.6) 

 

2. Breed new population members for next generation 

A pre-specified number B of new population members are bred at each generation. To 

breed each new population member we first choose two distinct parents from the existing 

population 1iP  with probabilities weighted by the inverse of the fitness measure F  (i.e. 

lower values of F  are associated with better solutions). That is, the probability of choosing 

solution 1 iPw  for breeding each new solution is given by 

 

 
 

 




1

1

1

Pr

ij P jF

F

w
w

w
w . (6.7) 

 

Once the parents 1w   and 2w  are chosen, the child solution cw  is bred using the following 

rules: 

1. If 1)()( 21  ii ww , then 1)( icw  (i.e. any variable/variable product existing in both 

parent solutions is passed on to the child solution). 

2. The remaining variables/variable products in the child solution (i.e. to make up a total 

of K ) are randomly chosen from those where 0)(,1)( 21  ii ww  or 

1)(,0)( 21  ii ww . 

3. With probability mutp   (user specified), a breeding mutation occurs in which a 

randomly chosen variable/variable product which does not exist in either parent will 

exist in the child.  
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3. Introduce new migrating population members 

At each new generation a set of G  new population members migrate into the population. 

These new population members are generated randomly in the same way as members of 

the initial population. 

 

4. Eliminate existing population members 

To maintain a constant population size, a total of GB   members of the existing population 

must then be discarded.  Members are chosen with probabilities weighted by the fitness 

measure F  (that is, higher values of F  are associated with worse solutions), although the 

best solution is protected from elimination. The probability of choosing solution 1 iPw  for 

elimination is given by 

 

 
 

 




1

Pr

ij P

jF

F

w

w

w
w . (6.8) 

 

5. Form new population 

The next population iP  is formed by combining the remaining (non-eliminated) population 

members from 1iP   with the new solution we bred and migrated into the population. Steps 2 

to 5 are repeated for a predefined number of cycles, or until a pre-specified number of 

generations pass without improvement. 

 

6.4.3 Model Evaluation Goodness of Fit Measures  

 

Goodness-of-fit (GOF) statistics are useful when comparing results across multiple studies, 

for examining competing models in a single study, and also for providing feedback on the 

level of knowledge about the uncertainty involved in the phenomenon of interest (Kunt et al., 

2011). Four measures were used in the present study, mean absolute error (MAE), the root 
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mean square error (RMSE), mean square error (MSE) (Yetilmezsoy et al., 2011) and mean 

absolute percentage error (MAPE) (Azadeh et al., 2010; Chen et al., 2010).  

  

For evaluating the GA models, the Root Mean Squared Error (RMSE), mean absolute error 

(MAE),  the mean absolute percentage error (MAPE), ), AND mean square error (MSE), 

were calculated using Equation (6.9) – Equation (6.12): 

     √
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where    is the actual values     is the predicted values, N is the total number of data points 

(Tiryaki and Aydın, 2014, p. 104).  

6.5 The GAPAXDE and GARPKSDE modelling results 

 

To estimate model parameters data was divided into training and testing datasets. The 

training data set is used to estimate the weighting factors (Wi) of the GA models and the 

testing data set is saved for testing purposes. The testing procedure is applied to obtain a 

minimum relative error between forecast and actual values (Azadeh et al. 2007). In this 

study, the first group of 37 data was used as the training set (about 75 per cent of the data), 

and the remaining 12 out of sample data (about 25 per cent of the data), was used for 

verifying and testing the robustness of the GA models.  

 

To identify the best fitness, required parameters on the GA algorithm are as follows: 

 

• Population size (n): 1000 

• Iterations (the generation number): 200 
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• Mutation rate: 0.01 

 

Prior to reviewing the modelling results, it is important to note that the GA modelling tested 

both the predictive capability of real GDP per capita and real GDP and Australia’s population 

growth on Australia’s domestic LCC air travel demand in separate models. The modelling 

results showed that the inclusion of both real GDP and Australia’s population size provided 

more robust and accurate model forecasting capability; that is, the models utilising real GDP 

and population size gave superior forecasting accuracy over the use of real GDP per capita 

as the income measure. After applying the GAPAXDE and GARPKSDE model procedures, 

the equations for forecasting Australia’s domestic LCC enplaned passengers (PAX) and 

revenue passenger kilometres (RPKs) were obtained based on the minimum sum of squares 

error between the observed and estimated data; these are (6.13) and (6.14) respectively.  

The            and             present the linear models for forecasting Australia’s 

domestic LCC enplaned passengers and revenue passenger kilometres (RPKs), 

respectively. The final linear            and             models comprise nine inputs.  

 

                                                                      

                                 (6.13) 

 

                                                                        

                                  (6.14) 

 

Where: X1 Australia’s real best discount economy airfare, X2 Australia’s population size, X3 

Australia’s real GDP,  X4 Australia’s unemployment size, X5 Australia’s real interest rates, X6 

World jet fuel prices, X7 recorded bed capacities at Australia’s tourist accommodation 

establishments, X8 dummy variable (Dummy 1) reflecting Virgin Australia changing business 

model, and X9 dummy variable (Dummy 3) reflecting the Commonwealth Games held in 

Melbourne. 

The GA selected the optimum variables for both the GAPAXDEquad and GARPKSDEquad 

quadratic models, and these are presented in the following equations. 
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                                       (6.15) 

 

                                                  
            

                                                           
            

                       (6.16) 

 

Following the training procedure, which produced the weighting factors (Wi) of the GA 

models, the testing procedure was performed  

Using the 12 out of sample data set to verify and test the accuracy, reliability, and the 

robustness of the GA models. The absolute relative errors between the observed and 

estimated data for the two forms of GAPAXDE and GARPKSDE models, linear and 

quadratic function forms are presented in Table 6.1 and Table 6.2, respectively. Table 6.1 

compares the absolute relative error between the actual and forecasted values in the testing 

phase of the GAPAXDE linear and quadratic models. The obtained average relative error for 

the GAPAXDE linear and quadratic models is 8.13 per cent and 5.37 per cent, respectively. 

Table6.1.A comparison of the results of the linear and quadratic forms of GAPAXDE model 
with observed data for the testing period 

Testing data Actual PAX  Linear model Relative Error (%) Quadratic model Relative Error (%) 

1  2,505.12   2,503.21  0.08%  2,474.84  1.21% 

2  2,213.16   2,410.97  8.94%  2,569.30  16.09% 

3  2,528.78   2,503.43  1.00%  2,595.97  2.66% 

4  3,640.47   3,538.14  2.81%  3,514.93  3.45% 

5  4,885.53   5,048.16  3.33%  4,996.99  2.28% 

6  5,747.42   6,460.70  12.41%  6,272.19  9.13% 

7  6,659.99   7,133.36  7.11%  7,045.74  5.79% 

8  7,345.82   7,546.38  2.73%  7,355.36  0.13% 

9  3,464.50   3,134.83  9.52%  3,437.24  0.79% 

10  3,697.94   4,306.30  16.45%  3,897.68  5.40% 

11  6,253.02   4,908.13  21.51%  5,410.31  13.48% 

12  5,855.81   5,172.74  11.66%  5,620.82  4.01% 

MAPE (%)       8.13  5.37 
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Similar to Table 6.1, Table 6.2 compares the absolute relative error between actual and 

forecast values in the testing phase of the GARPKSDE linear and quadratic models. The 

obtained mean absolute percentage error for the GARPKSDE linear and quadratic models is 

9.35 per cent and 5.75 per cent, respectively.  

 

Table6.2.A comparison of the results of the linear and quadratic forms of GARPKSDE model 
with the observed data for the testing period 

Testing 

data 

Actual 

RPKs 

Linear 

model 

Relative Error 

(%) 

Quadratic 

model 

Relative Error 

(%) 

1 2,091.62 2,132.90 1.97% 1,875.63 10.33% 

2 1,562.80 2,057.02 31.62% 1,731.80 10.81% 

3 2,070.26 2,168.92 4.77% 2,027.19 2.08% 

4 3,483.04 3,393.62 2.57% 3,201.18 8.09% 

5 4,907.19 5,080.94 3.54% 5,166.49 5.28% 

6 6,002.52 6,811.07 13.47% 6,682.51 11.33% 

7 7,091.19 7,642.88 7.78% 7,417.85 4.61% 

8 7,657.86 8,032.51 4.89% 7,960.77 3.96% 

9 4,156.10 3,576.08 13.96% 4,183.79 0.67% 

10 4,105.10 4,756.20 15.86% 4,296.18 4.65% 

11 5,996.95 5,398.85 9.97% 5,723.87 4.55% 

12 5,574.36 5,675.76 1.82% 5,718.51 2.59% 

MAPE (%)       9.35  5.75 

 

Table 6.3 presents the mean absolute error (MAE), mean absolute percentage error 

(MAPE), mean square error (MSE), and root mean square error (RMSE) in training, out of 

sample testing, and overall data set of the GAPAXDE linear and quadratic models for 

forecasting Australia’s domestic LCC enplaned passengers. These results show that, the 

GAPAXDE quadratic models performed better than the linear models during both training 

and testing phase as measured by MAE, MAPE, MSE and RMSE. In the testing phase 

where out of sample data set was used to forecast Australia’s domestic LCC enplaned 

passenger demand, the MAPE value of the GAPAXDE linear and quadratic models was 8.13 

per cent and 5.37 per cent respectively.  
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Table6.3.Performance index of GAPAXDE linear and quadratic models for training, testing 
(out of sample), and overall data set  

 GAPAXDE linear model GAPAXDE quadratic model 

Performance 

index 
Train Test Overall Train Test Overall 

MAE 201.33  403.60  250.87  139.42  242.95  164.77  

MAPE 3.88% 8.13% 4.92% 2.76% 5.37% 3.40% 

MSE 6.2x10
4
 3.0x10

5
 1.2x10

5
 3.1x10

4
 1.2x10

5
 5.1x10

4
 

RMSE 248.64  548.02  346.74  175.12  340.43  227.02  

 

Table 6.4 presents the mean absolute error (MAE), mean absolute percentage error 

(MAPE), mean square error (MSE), and root mean square error (RMSE in training, out of 

sample testing, and overall data set of the GARPKSDE linear and quadratic models for 

forecasting Australia’s domestic LCC revenue passenger kilometres (RPKs). The 

GARPKSDE quadratic models performed better than the linear models during both training 

and testing phases. In the testing phase, the MAPE value of the GARPKSDE linear and 

quadratic models 9.35 per cent and 5.75 per cent respectively.  

 

Table6.4.Performance index of GARPKSDE linear and quadratic models for training, testing 
(out of sample), and overall data set  

 GARPKSDE linear model GARPKSDE quadratic model 

Performance 

index 
Train Test Overall Train Test Overall 

MAE 218.32  436.52  258.40  159.01  276.30  180.55  

MAPE 4.64% 9.35% 5.30% 3.37% 5.75% 3.68% 

MSE 7.5x10
4
 2.5x10

5
 1.1x10

5
 4.3x10

4
 1.0x10

5
 5.5x10

4
 

RMSE 274.78  501.67  328.42  208.38  323.21  233.74  

 

This study further employed a hypothesis test to give an indication if the difference between 

the models utilised was in fact statistically significant. Since the same 12 data testing set 

were used for forecasting in all models, the paired t-test was used to assess the forecasting 

accuracy of the respective models and also to test the hypothesis (H0) that there is not a 

significant difference in the forecasting accuracy of the GA linear and quadratic models (Razi 

and Athappily, 2005; Zaefizadeh et al. 2011). That is, 

 H0: µlinear ≤ µquadratic 

 H1: µlinear > µquadratic 
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The results of t-tests are presented in Table 6.5.         

Table6.5.Results of paired t-test 

Test t-stat P-value Conclusion 

GAPAXDE  H01 : linear vs quadratic 

GARPKSDE  H02 : linear vs quadratic 

2.58 

1.95 

.01 

.04 

µlinear > µquadratic 

µlinear > µquadratic 

Where µlinear and µquadratic are mean forecasting error of GA linear and quadratic models, respectively 

Table 6.5 shows that the p-values (one-tail) for H01 is .01 and H02 is .04, therefore H01 and 

H02 are rejected. This implies that the average forecasting error of the GA linear models are 

statistically significantly different from the average forecasting error of GA quadratic models 

(both GAPAXDE and GARPKSDE) at the 95 per cent confidence interval of the difference. 

The results also indicated that the forecasting error of GA linear models are higher than the 

GA quadratic models. These results also confirm that the GA quadratic models are superior 

to the linear models when used to forecast Australia’s domestic airline enplaned passengers 

(PAX) and revenue passenger kilometres (RPKs), respectively. 

Australia’s actual domestic LCC and forecast enplaned passengers, during the period from 

Quarter 1 2002 to Quarter 1 2014, are plotted and shown in Figure 6.2.  

 

 

 

Figure6.2.A comparison of Australia’s domestic LCC actual and forecast enplaned  
passengers (GAPAXDE Model).  
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Finally, Australia’s actual domestic LCC and forecast revenue passenger kilometres (RPKs), 

during the period from Quarter 1 2002 to Quarter 1 2014, are plotted and shown in Figure 

6.3.  

 

 

Figure6.3.A comparison of Australia’s domestic LCC actual and forecast RPKs  
(GARPKSDE Model) 

 

 

6.6 Summary 

 

This chapter has developed and empirically examined two genetic algorithm models for 

forecasting Australia’s domestic LCC demand (GAPAXDE and GARPKSDE models). Two 

mathematical forms, linear, and quadratic were tested.  

 

Data was divided into training and testing data sets, training data set of 37 is used to 

estimate the weighting factors (Wi) of the GA models and the out of sample data set of 12 

was used test the robustness of the GA models. The genetic algorithm parameters which 

provided the best model fitness comprised population size (n): 1000, the generation number: 

200, and Mutation rate: 0.01. Modelling results showed both the quadratic GAPAXDE and 

GARPKS models to be more accurate, reliable and have greater predictive capability in 

comparison to the linear models. The MAPE of GAPAXDEquad and GARPKSDEquad models in 

testing phase are 5.37% and 5.75%, respectively.  
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The following chapter presents the last modelling approach and empirically examines a new 

adaptive neuro-fuzzy inference network model (ANFIS) approach for forecasting Australia’s 

domestic LCC passenger demand.  Chapter 8 presents the study’s empirical findings.  
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CHAPTER SEVEN: AN ADAPTIVE NEURO-FUZZY INFERENCE 

SYSTEM FOR FORECASTING AUSTRALIA’S DOMESTIC LOW 

COST CARRIER PASSENGER DEMAND 
 

7.1 Introduction 

 

The three previous chapters have proposed multiple linear regression, artificial neural 

network (ANN), and genetic algorithm (GA) models which can be used for forecasting 

Australia’s domestic LCC passenger demand. This chapter presents the final modelling 

approach using the adaptive neuro-fuzzy inference system (ANFIS) technique. As noted in 

Chapter 1, ANFIS models are increasingly being used for forecasting purposes in a wide 

range of disciplines. Despite their growing popularity and greater accuracy and reliability 

together with their greater predictive capabilities, there has been no reported study which 

proposed and empirically examined such an approach in the airline industry. This chapter 

therefore aims to address this apparent gap in the literature.      

 

The chapter is structured as follows: Section 7.2 presents the adaptive neuro-fuzzy inference 

system (ANFIS) architecture. ANFIS models for forecasting Australia’s domestic LCC 

passenger demand is presented in Section 7.3. The proposed ANFIS model setup is 

presented in Section 7.4. This is followed by an overview of the ANFIS data training (Section 

7.5) and goodness of fit measures used in the ANFIS modelling process in Section 7.6. The 

ANFIS modelling results are presented in Section 7.7.  

 

7.2 Adaptive Neuro-Fuzzy Inference System (ANFIS) Architecture 

 

Adaptive neuro-fuzzy inference system (ANFIS) is an adaptive network made up of several 

nodes and directional links through which learning rules are connected (Kablan 2009). 

According to Kablan (2009, p.450) “It is … adaptive because some, or all, of the nodes have 

parameters which influence the output of the node”. Yetilmezsoy et al. (2011, p.53) noted 

that the ANFIS process resembles “the feed forward back propagated (FFBP) artificial neural 

network in which consequent parameters are calculated forward, while premise parameters 
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are calculated backward” (Yetilmezsoy et al. 2011, p.53). ANFIS consists of “antecedent and 

conclusion parameters” which are connected together by a fuzzy rules set (Yetilmezsoy et 

al. 2011, p.53). Arkhipov et al. (2008, p. 496) noted the development of “two types of fuzzy 

inference systems: Mamdani-type and Sugeno-type”. The principal difference between the 

two systems (FIS31) is output determination’s method. While the Mamdani FIS produces 

linear membership functions (MFs) output, the Sugeno FIS produces either constant or 

linear ones (Arkhipov et al. 2008, p. 496).  

 

This study used the Sugeno-type FIS system. According to Yetilmezsoy et al. (2011, p.53), 

generally, two learning algorithm types are available in the ANFIS’s neural network system 

unit which are “hybrid learning algorithms and back propagation (BP) learning algorithms” 

(Yetilmezsoy et al. 2011, p.53). To determine the output variables of ANFIS, fuzzy rule sets 

of input variables are executed (Cakmakci et al. 2010; Jang 1993; Takagi & Sugeno 1985). 

A typical ANFIS employs a Takagi-Sugeno model-based fuzzy inference approach to form 

the related hybrid system (Köse & Arslan 2013). The ANFIS architecture is illustrated by use 

of two fuzzy If-then rules of a first order Sugeno FIS (Bagheri et al. 2014; Übeyli et al. 2010). 

 

                                                  

                                                

 

where x and y represent input variables of FIS, Ai and Bi denote the fuzzy sets, fi denote the 

output within a fuzzy rule, and pi, qi, and ri the design parameters which are estimated in the 

training phase (Übeyli et al. 2010).  

 

 

 

                                                
31

 According to Laplante (2005, p.287), “Fuzzy inference systems (FIS) are a computing framework based on 
fuzzy set theory, fuzzy IF-THEN rules, and approximate reasoning” 
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Figure7.1.Fussy reasoning mechanism     
Source: adapted from Efendigil et al. (2009, p.6701).  

 

The architecture of ANFIS as applied the two fuzzy If-then rules above is depicted in Figure 

7.2. The ANFIS architecture comprises 5 layers that is, “a fuzzy layer, a product layer, a 

normalised layer, a defuzzy layer and a total output layer” (Yetilmezsoy et al. 2011, p.53). 

ANFIS’ nodes are defined by two types of node parameter including fixed or adaptive 

parameters, as indicated in Figure 7.2, a circle symbol is used for a fixed node, while a 

square symbol is used for an adaptive node (Ch & Mathur 2010). To obtain the ANFIS 

parameter values, the learning or training process in neural network section is performed. 

Model accuracy in training and testing phases is measured by an error performance index 

such as root mean square error (RMSE) which is minimised by selected learning algorithms, 

either hybrid or back propagation (BP).(Yetilmezsoy et al. 2011).     

 

   

 



  Chapter 7 

  ANFIS Modelling 

124 

 

 
 

 

Figure7.2.Architecture of the ANFIS model with two inputs and two rules 
 

Each layer of ANFIS has its own task, and the following section describes the relationship 

between output and input layer in the ANFIS.  

 

Layer 1 is the fuzzification layer that passes crisp external signals to the following layer 

directly (Xiao et al. 2014). In the fuzzy layer, x and y are the input of nodes A1, A2, B1, and 

B2, respectively. A1, A2, B1, and B2 are the linguistic labels used in fuzzy theory for dividing 

membership functions (Yetilmezsoy et al. 2011). It is noted that each node i in layer 1 is an 

“adaptive node”, identified by a “specific function” (Übeyli et al. 2010; Yetilmezsoy et al. 

2011). In layer 1, fuzzy membership functions are implemented by nodes as well as input 

variables which are mapped to the values of associated fuzzy memberships (Yetilmezsoy et 

al. 2011). In this layer, the parameters identified as “premise parameters” (Yilmaz & Kaynar 

2011). The output of layer 1 indicates the degree/grade of fuzzy membership function of 

given inputs which are determined by the fuzzy membership function (Xiao et al. 2014). The 

output of layer 1 is: 

 

  
                    

                  (7.1) 

 

where x and y are the input to the ith node and Ai and Bi-2 are linguistic labels associated 

with this node (Xiao et al. 2014). 
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Thus,   
  is a fuzzy set A (=A1, A2, B1, or B2) membership grade identifying the degree to 

which the quantifier A is satisfied by the given input x/y, where any fuzzy membership 

function types can be adopted by         and           (Übeyli et al. 2010). For example, if 

the bell shaped membership function is used it is given by (Übeyli et al. 2010).  

 

         
 

  [(
    
  

)
 

]

    

 

  (7.2) 

 

where {ai, bi, ci} are parameters of the function (Xiao et al. 2014). The back propagation 

algorithms obtain their values, during the learning stage. When these parameters value 

change, the bell-shape function will also change, thus various forms of membership 

functions are demonstrated on linguistic label Ai (Xiao et al. 2014; Yetilmezsoy et al. 2011). 

 

Layer 2 is a rule layer, each node is a representation of a rule and the inputs are the degrees 

of membership functions which are multiplied through a T-norm operator so as to determine 

the level of fulfilment of    the rule (Ch & Mathur 2010). The nodes are fixed nodes and are 

labelled “∏”, which indicates they perform as a single multiplier (Übeyli et al. 2010). Each 

node represents the firing strength of the reasoning rule (Patil et al. 2011; Yilmaz & Kaynar 

2011). The outputs of this layer can be represented as:   

 

  
                            (7.3) 

 

Layer 3 is the normalization layer, whose nodes are labelled “N”, which mean they play a 

normalization role for firing strengths from the previous layer (Übeyli et al. 2010; Yetilmezsoy 

et al. 2011). This layer normalizes each rule’s output with respect to the rest of the rule set, 

and normalization scales the rule’s output to a value between zero and one by dividing its 

output by the number of inputs (Schott & Kalita 2011).  

    

  
   ̅   

  

     
        (7.4) 

 

Where “   is the firing strength of the ith rule … computed in layer 2 Node i computes the 

ratio of the ith rule’s firing strength to the sum of all rules’ firing strengths” (Xiao et al. 2014, 

p.4). 
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Layer 4 is the defuzzification layer in which the nodes are adaptive nodes (Übeyli et al. 2010; 

Yetilmezsoy et al. 2011). A linear function is computed by every node in the defuzzification 

layer where the error function of the multi-layer feed forward neural network is used to adapt 

the function coefficients (Xiao et al. 2014). Yilmaz & Kaynar (2011, p.5964), explain that “the 

parameters in this layer are called consequent parameters” 

 

 

  
   ̅      ̅                             (7.5) 

 

           is the parameter set.  

 

The fifth ANFIS layer, whose node is labelled “∑”, is the output layer, in which a single node 

calculates the overall output as a summation of all incoming signals (Ch & Mathur 2010; 

Giovanis 2012; Xiao et al. 2014). Hence, the overall output of the model can be written as 

(Fang 2012; Yetilmezsoy et al. 2011): 

 

  
  ∑  ̅      

∑      

∑    
   (7.6) 

 

where  ̅    denotes the consequent part of rule i. The overall output of the neuro-fuzzy 

system is the summation of the rule consequences (Xiao et al. 2014).  

 

As previously noted, in the ANFIS structure, the premise and consequent parameters are 

important factors for the learning algorithm in which each parameter is used to calculate the 

output data of the training data (Efendigil et al. 2009). The premise part of a rule defines a 

subspace, whereas the consequent part specifies the output within this fuzzy subspace 

(Jang 1993).    

 

ANFIS allows for the use of two learning algorithms, back propagation and hybrid methods, 

which seek to minimize the error measures, such as, MSE or RMSE between observed and 

forecast data (Yetilmezsoy et al. 2011). There are two methods in the hybrid learning rule 

providing optimal parameters which are “the gradient method and least squares method” 

(Jang 1993, p. 671). Further, it can be observed that when premise parameters’ values of 

the hybrid learning algorithm are fixed, consequent parameters are formed as a linear 

function expressing overall output (Yetilmezsoy et al. 2011).  
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Although both neural network and fuzzy logic models are classified as artificial intelligence 

based (Yetilmezsoy et al. 2011), the ANFIS combines both of these, capturing the 

advantages of both (Ch & Mathur 2010; Liu et al. 2008; Tiwari et al. 2012). As the ANFIS is a 

hybrid adaptive system which permits use of neural network topology with a fuzzy inference 

system, the advantages of both models are included while the disadvantages of the two 

models, used individually, are avoided (Yetilmezsoy et al. 2011). Accordingly, ANFIS is able 

to deal with complex and non-linear problems (Giovanis 2012). Yetilmezsoy et al. (2011, 

p.54) observed that “even if the targets are not given, ANFIS may reach the optimum result 

very quickly”. Further, Tiwari et al (2012) noted that unlike the ANN, no vagueness is 

detected in the ANFIS. It is also argued that the ANFIS can attain the target more rapidly 

than can ANNs (Kumar et al. 2011). Hence, when dealing with a complex and high-

dimensional system, utilizing ANFIS is more practical to handle complex problem than using 

ANN (Noori et al. 2009). 

 

Noori et al. (2009) noted that errors implications in the ANFIS structure differ from those of 

neural networks. Further, to ascertain the optimal output, the epoch range is unlimited (Noori 

et al. 2009). Therefore in dealing with complex and high-dimensional data, the ANFIS is 

capable to provide better results than the ANN and other fuzzy-logic models based on the 

error measurement value such as RMSE (Chi et al. 2005; Yetilmezsoy et al. 2011). 

 

In the ANFIS system, each input parameter may be clustered into several class values in 

layer 1 to build up fuzzy rules. Each fuzzy rule would be set using two or more membership 

functions in layer 2. Several methods have been proposed to classify the input data and for 

the rule-making, among which the most common being grid partition (Jang et al. 1997) and 

subtractive fuzzy clustering (Chiu 1994). When there are a few input variables, grid partition 

is considered a suitable method for data classification. However, in this study because of 

many input variables and the requirement for considerable membership functions, the 

subtractive clustering method was utilized. For example, if we have 11 input variables and 

each input has variable 3 membership functions, the rules will be 311 rules (177,147 rules) 

and the calculation of the parameters of this model will therefore be very complex (Noori et 

al. 2009). Therefore, in this study subtractive fuzzy clustering was used to establish the rule-

based relationship between input and output variables.  

 

According to Yetilmezsoy et al. (2011, p.54), “the subtractive clustering method” is the 

method used to classify observations into clusters. Each observation is assumed to be a 

potential cluster centre and the likelihood measure of each observation is calculated in order 
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to define the cluster centre based on the concentration of adjacent observations 

(Yetilmezsoy et al. 2011). The highest potential observation is selected to be the first cluster 

centre by the algorithm. All observations surrounding the area of the first cluster centre are 

then removed in order to define the next data cluster and the next cluster centre is located. 

The process is iterated until all observations are located in a cluster centre radii (Yetilmezsoy 

et al. 2011). The subtractive clustering method comprises four algorithm parameters 

including “range of influence (ROI), squash factor (SF), accepted ratio (AR) and rejected 

ratio (RR)” (Cakmakci et al. 2010; Yager &  Filev 1994).   

  

 

Subtractive clustering was developed by Chiu (1994) in order to estimate both the number 

and initial locations of cluster centres. Consider a set T of N data points in a D-dimensional 

hyper-space, where each data point Wi (i = 1, 2, . . . , N) Wi  = (xi , yi) where xi denotes the p 

input variables and yi is the output variable. The potential value Pi of data point is calculated 

by Equation (7.7): 

 

   ∑    ‖     ‖
 
   

        (7.7) 

 

where         , r is the radius defining a Wi neighbourhood, and ‖ ‖ denotes the Euclidean 

distance (Wei et al. 2011). 

 

The data point with many neighbouring data points is chosen as the first cluster centre. To 

generate the other cluster centres, the potential Pi is revised of each data points Wi by 

Equation (7.8): 

 

         
         ‖     

 ‖        (7.8) 

 

where   
  = (  

    
 ) is the location of the kth cluster centre and   

  is its potential value. 

 

At the end of the clustering process, the method obtains q cluster centres and D 

corresponding spreads Si, i = (1, . . . , D). Then we define their membership functions. The 

spread is calculated according to   (Wei et al. 2011). 

 

 

 



  Chapter 7 

  ANFIS Modelling 

129 

 

7.3. ANFIS Models for Forecasting Australia’s Domestic LCC Passenger 

Demand 

 

7.3.1. ANFIS process 

 

As Figure 7.3 shows the study was undertaken in three discrete phases. In the first phase an 

extensive literature review was undertaken to identify the extant knowledge on the predictors 

of domestic LCC passenger demand. The requisite data was then sourced for the candidate 

input and output variables. This data was subsequently normalized following the 

recommendations of Ghassemzadeh et al. (2013) and Mittal et al. (2012). The following step 

involved the data input. The input of the data included the input data and output data in the 

form of data array (Chen et al. 2010, p. 1187). The final action at this stage involved defining 

and partitioning the universe of discourse for the input variables using the subtractive 

clustering method (Cakmakci 2007; Wei et al. 2011). 
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Figure7.3.The ANFIS process for forecasting Australia’s  

domestic LCC passenger demand 

 

The next step involved generating the fuzzy inference system (FIS) (Chen et al. 2010; 

Efendigil et al. 2009). The initialization of the fuzzy system was performed using the genfis 2 

command, which specifies the structure and initial parameters of the FIS with the training 

data matrix, number of membership functions (MFs), and membership types associated with 

each input (Patil et al. 2011). Generally, the coefficients for the MFs are initially selected by 

trial and error, and subsequently, fine-tuned using the hybrid learning algorithm (Gao & 

Ovaska 2002).   
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The FIS parameters from the training datasets were then optimised, using the least square 

method and the backpropagation gradient descent method for training the forecasting ANFIS 

models (Wei et al. 2011; Yetilmezsoy et al. 2011). The training of the study’s data was 

performed automatically in the ANFIS system and an array of training errors was obtained 

(Chen et al. 2010, p. 1187). Following training, an ANFIS model with forecasting function 

was obtained for output forecasting (Bagheri et al. 2014; Chen et al. 2010, p. 1187).  The 

models computed the overall output as a summation of all incoming signals (Efendigil et al. 

2009). Finally, a performance index, based on R2, MAE, MAPE, MSE and RMSE (see 

Section 7.6 below), was established to evaluate performance of the models. 

 

7.3.2. Data normalization  

 

In the ANFIS modelling, each input/output pair contained 11 inputs (that is, Australia’s real 

GDP, Australia’s real GDP per capita, Australia’s real best discount air fares, Australia’s 

population size, Australia’s unemployment size, Australia’s tourist accommodation 

establishments recorded bed spaces, world jet fuel prices, Australia’s real interest rates and 

3 dummy variables (the same dummy variables included in the MLR, ANN and GA 

modelling) and 1 output (PAX or RPKs, respectively). The output data are Australia’s 

domestic LCC’ enplaned passengers and RPKs (Section 4.3 presents the data sources).   

 

Prior to training data in the ANFIS, it is essential to transform all input into patterns. Training 

and testing vectors are also formed into patterns. Baseri (2011 p. 760) noted that “each 

pattern is formed with an input condition vector as well as the corresponding target vector”. 

Input and output data scaling is also an essential issue for consideration, particularly when 

process parameters’ operating ranges are diverse (Baseri 2011). Data normalization of data 

determines that the system will be trained efficiently, and ensures that results are not 

skewed by particular variables (Baseri 2011). 

 

All data were therefore normalized prior to use in the training phase using Equation (7.9). 

Data normalization was applied to transform the data to a symmetric distribution which 

improves model performance since the data appear to more closely satisfy the assumptions 

of a statistical inference procedure also following the transformations of variables 

(Ghassemzadeh et al. 2013). Data is normalized using the following equation: 

 

      
      

         
    (7.9)   
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where       is the normalized value,   is the actual value,      is the maximum value, and 

     is the minimum value (Kalkhaheh et al. 2012).  

 

There are several advantages of normalizing data prior to processing in ANFIS for 

prediction. One advantage being that the avoidance of attributes in greater numeric ranges 

dominating those of smaller data ranges. The second advantage is the avoidance of 

numerical difficulties experienced during the calculation (Mittal et al. 2012). With data 

normalization, the data are scaled so they fall within a pre-specified range, such as [0, 1] 

(Mitsa 2010).  In this study’s modelling process, all data values were scaled in the range 

between 0 and 1 using Equation (7.9). A further advantage of normalizing the data is that 

normalization also removes any arbitrary effects of similarity between objects whilst also 

increasing the answer rate data to the input signal (Mittal et al. 2012).  

 

7.4 ANFIS Models Setup 

 

This study utilized “the Fuzzy Logic Toolbox 2.2.16, the ANFIS (Adaptive Neuro-Fuzzy 

Inference System) Editor GUI graphical user interface” within the framework of MATLAB 

R2012b (8.0.0.783) (The MathWorks, Inc., USA.) software for modelling and simulation 

purposes. 

 

The Sugeno ANFIS network setup process is conducted with 25 membership functions and 

membership function type is Gaussian. The architecture of the study’s ANFIS is depicted in 

Figure 7.4. The ANFIS models used the hybrid learning algorithm. 

 

The neuro-fuzzy models were run for each combination of model parameter with varying 

numbers of epochs and types of input-output membership functions (MFs). This was to avoid 

the possible over-fitting of the models. In this study, the models were constructed using 25 

rules (Efendigil et al. 2009). Also, different types of membership functions (MFs) were tested 

(Baseri 2011; Yan et al. 2010) such as triangular-shaped built-in MF (triMF), generalized bell 

shape built-in MF (gbellMF) and Gaussian curve built-in MF (gaussMF) (Baseri 2011; Yan et 

al. 2010). The Gaussian-curve function and 25 rules is the best architecture for the two 

ANFIS models. The generated membership functions are able to display the interactions and 

relationships between the various ANFIS levels. Figure 7.5 A. and Figure 7.5 B. shows the 
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fine curves of the trained models of both ANFIS PAX and RPKs model with smooth curve 

interaction for each parameter suggesting the best fit of the developed models (Mittal et al. 

2012).  

  

 

 

Figure7.4.The optimum ANFIS model architecture for forecasting  

Australia’s domestic LCC enplaned passengers (PAX) and RPKs.  

 

 

In this study, the ANFIS model was structured for forecasting Australia’s domestic LCC 

passenger demand using Sugeno FIS approach with 8 inputs and 1 output. The ‘‘product” 

function is used for linking the rules together, ‘‘weighted average” is used for rule 

defuzzification and the subtractive clustering algorithm partition method is applied to 

generate optimum 12 fuzzy rule base sets (Efendigil et al. 2009) where membership 

functions shape in input layer is set as Gaussian membership function and the shape of 

linear membership function is used in output layer. Two examples of the ANFIS PAX and 

RPKs model’s 12 rules are as follows:   
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Figure7.5A.Initial and final Gaussian membership functions for the ANFIS PAX models. 
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Figure7.5B.Initial and final Gaussian membership functions for the ANFIS RPKs models. 
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Rule1:  If (Fare is in1cluster1) and (pop is in2cluster1) and (gdp is in3cluster1) and (unemp 

is in4cluster1) and (INT is in5cluster1) and (fuel is in6cluster1) and (Accom is in7cluster1) 

and (D1 is in8cluster1) then (PAX is out1cluster1) 

Rule 12: If (Fare is in1cluster12) and (pop is in2cluster12) and (gdp is in3cluster12) and 

(unemp is in4cluster12) and (INT is in5cluster12) and (fuel is in6cluster12) and (Accom is 

in7cluster12) and (D1 is in8cluster12) then (PAX is out1cluster12) 

 

7.5 ANFIS Models Data Training 

 

Training is a key part of the ANFIS model development process. The training process is 

used to optimize the model, and subsequent testing is to check the performance and 

consequently the generalization ability of the developed model (Mehta & Jain 2009). In this 

study, the testing data subset was independent from the training dataset.  While the training 

dataset was used for a training purpose in modelling the ANFIS, the testing dataset was 

used to validate ANFIS model’s accuracy and efficiency (Azadeh et al. 2010; Galavi & Shui 

2012; Übeyli et al. 2010). The data was therefore randomly divided into two datasets: 

training and testing. The training dataset consists of 36 observations which were used in the 

training phase (85 per cent of the overall dataset) and 6 observations which did not 

participate in the training phase were used to validate and test the ANFIS forecasting 

model’s accuracy and robustness (Yetilmezsoy et al. 2011).    

 

The task of the learning algorithm for the study’s ANFIS architecture is to tune all modifiable 

parameters, that is, (a1, b1, c1) and (p1, q1, r1), to ensure that the ANFIS output matches the 

training data. When the premise parameters a1, b1, c1 of the membership function are fixed, 

the output of the ANFIS can be expressed as (Übeyli et al. 2010):  

 

  
  

     
    

  

     
        (7.10) 

 

Substituting Equation (7.4) into Equation (7.10) yields: 

 

                  (7.11) 

 

Further substituting the fuzzy If-then rules into Equation (7.11), it becomes: 
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Following, rearrangement, the output can be expressed as:  

 

                                                    (7.13) 

 

which is a linear combination of the modifiable consequent parameters p1, q1, p2, q2, r1 and 

r2) (Übeyli et al. 2010, p. 682). 

 

To estimate the parameters’ optimal values, “the least squares estimation” (LSE) method 

can be utilised quite easily (Übeyli et al. 2010). In the ANFIS learning process, “a gradient 

based method” is normally used. Nevertheless, it is argued that this method performs very 

slowly and may be trapped in a local minimum (Kablan 2009). This study used a standard 

hybrid learning algorithm as proposed by Jang (1993), which utilises a combination of 

steepest gradient and LSE (Übeyli et al. 2010). Each epoch of this hybrid learning procedure 

comprises forward pass and back propagation (Chen et al. 2010).  

 

In the forward pass, functional signals proceed forward to till layer 4 and the resulting 

parameters are identified by the LSE (Kablan 2009; Yan et al. 2010). Once optimum 

consequent parameters are obtained, the backward pass commences at once (Efendigil et 

al 2009; Übeyli et al. 2010). In the backward pass, the error rates propagate backward and 

the premise parameters are updated by gradient descent (Yan et al. 2010; Yilmaz & Kaynar 

2011). The ANFIS output is estimated by utilizing consequent parameters located in the 

forward pass. In turn the output error is used to adapt premise parameters by back-

propagation algorithm’s standard mean (Übeyli et al. 2010). It has been demonstrated that 

this hybrid algorithm is highly efficient in ANFIS training (Jang 1993, Kablan 2009; Übeyli et 

al. 2010). Table 7.1 presents a summary of activities in both forward and backward passes. 

 

Table7.1.Summary of the activities in forward and backward passes for ANFIS  

    Forward Pass   Backward Pass 

Premise Parameters Fixed    Gradient Descent 

Consequent Parameters Least Squares Estimate Fixed 

Signals   Node outputs   Error Rates 

Source: Jang (1993) 

 

 

Each ANFIS model used 37 training data in 1-400 training epochs (Übeyli et al. 2010). 

Figure 7.6 shows the training curve of ANFIS (PAX Model) with root mean square error 
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(RMSE) of 5.55x10-6. Figure 7.7 shows the training curve of ANFIS RPKs model with an 

RMSE of 5.34x10-6 These figures display the level of modelling accuracy in terms of error 

achieved (Mittal et al. 2012). 

 

 

 

Figure7.6.Error change during training of the ANFIS PAX model 
 

 
 

 

Figure7.7.Error change during training of the ANFIS RPKs model 

 

 

A comparison between the actual and ANFIS forecast PAX and RPKs models values 

following the completion of training are presented in Figures 7.8 and 7.9, respectively. These 
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two figures show the ANFIS system is well-trained to model Australia’s actual domestic LCC 

passenger demand, as measured by both passengers carried and RPKs. 

 

7.6. ANFIS Model Evaluation Goodness of Fit Measures  

 

According to Kunt et al (2011, p.356), “Goodness-of-fit (GOF) statistics are useful when 

comparing results across multiple studies, for examining competing models in a single study, 

and also for providing feedback on the level of knowledge about the uncertainty involved in 

the phenomenon of interest.” Five measures were used in the ANFIS modelling: coefficient 

of determination (R2), mean absolute error (MAE), mean absolute percentage error (MAPE) 

(Azadeh et al. 2010; Chen et al. 2010), mean square error (MSE) and root mean square 

error (RMSE) (Yetilmezsoy et al. 2011).  

 

 

Figure7.8.Australia’s domestic LCC PAX actual and forecast values from  
the ANFIS model training phase. 
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Figure7.9.Australia’s domestic LCC RPKs actual and forecast values from  
the ANFIS model training phase 

 

For evaluating the ANFIS models, the mean absolute error (MAE), mean absolute 

percentage error (MAPE), mean square error (MSE), root mean squared error (RMSE), and 

coefficient of determination (R2)  were calculated using Equation (7.14) - Equation (7.18): 
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where    is the actual values     is the forecast values, N is the total number of data points 

(Tiryaki & Aydın 2014, p. 104).  
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7.7 ANFIS Modelling Results 

 

As earlier noted, this study utilized the Matlab’s fuzzy inference toolbox to construct the 

ANFIS model. The gradient and LSE methods which were embedded in the Matlab software 

were used as the ANFIS training algorithms. In general, the basic computation process 

comprised four steps. Firstly, the model’s input data which included input and output data 

were added to the system in the form of a data array (Chen et al. 2010). The second step 

was generation of a fuzzy inference system (FIS). Thirdly, the training function of the ANFIS 

model in Matlab’s fuzzy inference toolbox for training the input data was utilized. In the 

ANFIS system, data training was operated automatically and training performance index 

such as RMSE was produced (Chen et al. 2010). Following the data training, and as the final 

step, an ANFIS model was obtained for output forecasting Australia’s low cost domestic 

enplaned passengers and RPKs (Chen et al. 2010). Figure 7.10 presents Australia’s 

domestic LCC passengers (PAX) and RPKs demand forecasting models. The ANFIS 

structure is based on the Sugeno FIS type.  

 

The ANFIS was trained using Matlab with various possible combinations of the subtractive 

clustering parameters (range of influence (ROI) = 0.35-0.60, squash factor (SF) = 1.20-1.35, 

accept ratio (AR) = 0.40-0.55 and reject ratio (RR) = 0.10-0.20) for the range of epoch 

number from 1- 400 epochs. The constructed ANFIS model was manipulated until the best 

settings were obtained based on the lowest RMSE value. The hybrid learning algorithm was 

applied in the training phase. Data are normalized to the scale [0,1] to increase training 

performance. Training stopped when it reached the maximum epoch level or the training 

error target achieved (Yetilmezsoy et al. 2011).   
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Figure7.10.Australia’s domestic LCC enplaned passengers (PAX) or RPKs ANFIS forecasting system 
structure 

 

 

The RMSE steadied after running 50 epochs of PAX and RPKs training data. Final 

convergence values were 5.55x10-6 and 5.34x10-6 for the PAX and RPKs models, 

respectively.  

 

The parameters in the subtractive clustering fuzzy inference system comprise the range of 

influence (ROI) , squash factor (SF) , accept ratio (AR) and reject ratio (RR) 32 (Yetilmezsoy 

et al. 2011). The ANFIS models were operationalized by adjusting the subtractive clustering 

parameters around their default values systematically until the best settings were achieved 

on the basis of the lowest RMSE value (Yetilmezsoy et al. 2011). It is found that the optimum 

ANFIS structure of the PAX model with ROI = 0.45, SF = 1.25, AR = 0.50 and RR = 0.15 

return the lowest value of RMSE at 5.55x10-6 and the RPKs model with ROI = 0.45, SF = 

1.25, AR = 0.50 and RR = 0.15 return the lowest value of RMSE at 5.34x10-5. The optimum 

ANFIS model architecture for forecasting Australia’s domestic LCC enplaned passengers 

(PAX) or RPKs are shown Figure 7.10.  

 

Following training, the ANFIS model for forecasting Australia’s domestic LCC enplaned 

passengers and RPKs were validated by selecting six different observations, not included in 

the ANFIS training phase (Al-Ghandoor et al. 2012). Each validation data point was fed into 

                                                
32

 See Georgieva et al (2005, p. 90) for an overview of the range of influence (ROI), squash factor (SF), accept 
ratio (AR), and  reject ratio (RR) in subtractive clustering inference systems.    
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the system and then Australia’s forecast LCC enplaned passengers and RPKs values were 

computed and compared to the actual values.  

 

The pattern of variation of actual and forecast data of both the PAX and RPKs models are 

shown in Figure 7.11 and Figure 7.12, respectively. The blue dots (+) in these two figures 

indicate the model’s actual data and red dots (*) represent forecast data for the testing 

phase. The plots show actual and forecast data of both the PAX and RPKs model in the 

ANFIS testing phase are very close and reach the satisfactory RMSE at 0.047055 and 

0.053875 for PAX and RPKs ANFIS models, respectively.    

 

 

Figure7.11.Australia’s domestic LCC PAX model actual and  
forecast values during ANFIS testing phase  

 

 

 

Figure7.12.Australia’s domestic LCC RPKs model actual and 
forecast values during ANFIS testing phase 
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Importantly, ANFIS can be used to identify the optimum combination of input parameter 

magnitudes to yield the best possible model output as it is possible with ANFIS to locate the 

actual optima (Sarkar et al. 2014).  

 

A sample set of rule generation for forecasting Australia’s domestic LCC enplaned 

passengers (PAX) and RPKs has been shown in Figure 7.13 and Figure 7.14, respectively. 

Figure 7.13 shows the forecast PAX value from the ANFIS to be 0.84 when the input 

parameters assume the following magnitudes: Australia’s real best discount air fare = 0.48, 

Australia’s population size = 0.48, Australia’s real GDP = 0.58, Australia’s unemployment 

size = 0.13, Australia’s real interest rates = 0.98, world jet fuel prices = 1.0, Australia’s tourist 

accommodation= 0.9, D1 = 0.  

 

 

Figure7.13.An example of a rule set for forecasting Australia’s domestic LCC enplaned passengers 
(PAX Model) 

 

Figure 7.14 shows that the forecast RPKs values from the ANFIS are 0.851, when the input 

parameters assume the following magnitudes: Australia’s real best discount air fare = 0.26, 

Australia’s population size = 0.59, Australia real GDP = 0.61, Australia’s unemployment size 

= 0.76, Australia’s real interest rates = 0.11, world jet fuel prices = 0.39, Australia’s tourist 

accommodation =0.95, and D1 = 0.  
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Figure7.14.An example of a rule set for forecasting Australia’s domestic LCC RPKS (RPKs Model) 

 

 

The ability of an ANFIS to identify the optimum combination of input parameter magnitudes 

that yield the best possible output makes the ANFIS network all the more robust in its 

performance. This feature also ensures that ANFIS serves as a suitable and more effective 

forecasting approach to forecast the optimum conditions for a given multi-parameter reaction 

(Sarkar et al. 2014). 

Surface graphs are obtained from the ANFIS to show the variation of output (in this study 

being either PAX or RPKs) with respect to two various parameters (X and Y-axis) (Figures. 

7.15-7.18) (Patil et al. 2011). In Figures 7.15 and 7.16, PAX is the same and these two 

figures depict the non-linearity and complexity associated in mapping input and output 

parameters of the ANFIS PAX model. Similarly, Figures 7.17 and 7.18, RPKs is the same 

and depicts the non-linearity and complexity associated in mapping input and output 

parameters of the ANFIS RPKs model. 
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Figure7.15.Obtained surfaces in ANFIS PAX model: PAX versus Australia’s 
population size and Australia’s GDP 

 

 

Figure7.16.Obtained surfaces in ANFIS PAX model: PAX versus Australia’s 
population size and Australia’s tourist accommodation 

 

Figure 7.15 presents the relationship between LCCs enplaned passengers, Australia’s GDP 

and population. It can be seen from this figure that Australia’s GDP and population have 

positive relationship to LCCs enplaned passengers. Similar to figure 7.15, figure 7.16 
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presents the relationship between LCCs enplaned passengers, Australia’s tourist 

accommodation and population. This figure also shows positive relationship between 

Australia’s tourist accommodation and Australia’s population to LCCs enplaned passengers.  

 

Figure7.17.Obtained surfaces in ANFIS RPKs model: RPKs versus Australia’s 
population size and Australia’s GDP 

 

 

Figure7.18.Obtained surfaces in ANFIS RPKs model: RPKs versus Australia’s 
population size and Australia’s tourist accommodation 
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Figure 7.17 presents the relationship between RPKs, Australia’s GDP and population. It can 

be seen from this figure that Australia’s GDP and population have positive relationship to 

RPKs. Similar to figure 7.17, figure 7.18 presents the relationship between RPKs, Australia’s 

tourist accommodation and population. This figure also shows positive relationship between 

Australia’s tourist accommodation and Australia’s population to RPKs.  

The performance index of training, testing and overall data of the ANFIS PAX and RPK 

models were calculated as shown in Table 7.2. Table 7.2 shows that both the PAX and 

RPKs ANFIS models achieve a very satisfactory predictive accuracy and reliability. Both 

models show that MAE, MAPE, MSE, RMSE are very low for training, testing and overall 

data sets. 

 

Table7.2.Performance index of ANFIS PAX and RPKs models for training, out of sample 
testing and overall data sets 

  
PAX 

Model 
  

RPKs 
Model 

 

Performance 
index 

Train 
data 

Test data  
Overall 

data 
Train 
data 

Test data  
Overall 

data 

MAE 10.93  213.00  60.41   12.33   218.97   62.93  

MAPE 0.21% 4.36% 1.23% 0.24% 5.55% 1.54% 

MSE 2.4x102 7.1x104 1.8x104  3.0 x102   8.2 x104   2.0 x104  

RMSE  15.51   267.52   133.07   17.43   286.81   142.74  

 

The overall forecast and actual value of Australia’s domestic LCC enplaned passengers 

(PAX Model) and RPKs (RPKs Model) were regressed, and as Figure 7.19A and Figure 

7.19B shows the R2 are very high, being around 0.9937 and 0.9946 for PAX and RPKs 

models, respectively.  
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Figure7.19A.Comparison of forecast and actual values of the ANFIS 

models for forecasting  Australia’s domestic LCC enplaned passengers (PAX) 

 

 

Figure7.19B.Comparison of forecast and actual values of the ANFIS 

models for forecasting  Australia’s domestic LCC RPKs 

 

The ANFIS PAX and RPKs models actual and forecast values are plotted in Figure 7.20 and 

Figure 7.21, respectively. It can be clearly seen from both these figures that the PAX and 

RPKs ANFIS models perform exceptionally well in forecasting Australia’s domestic LCC 

passenger demand, as measured by both enplaned passengers and revenue passenger 

kilometres performed (RPKs). 

 

Y = 1.003 X +5.112 

R
2
 = 0.9937  

 

Y = 1 X + 39.52 

R
2
 = 0.9946  
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Figure7.20.A comparison of Australia’s domestic LCC actual and forecast enplaned passengers 
(PAX) (ANFIS Model) 

 

 

Figure7.21.A comparison of Australia’s domestic LCC actual domestic and forecast RPKs (ANFIS 
Model) 

 

 

7.8 Summary 

 

This chapter has proposed two ANFIS models for forecasting Australia’s domestic LCC 

demand, as measured by enplaned passengers and revenue passenger kilometres 

performed (RPKs). Sugeno fuzzy rules were used in the ANFIS structure and Gaussian 
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membership function and linear membership functions were also developed. The hybrid 

learning algorithm and the subtractive clustering partition method were used to generate the 

optimum ANFIS models. Data was normalized to the scale [0,1] to increase the model’s 

training performance. The results found that the mean absolute percentage error (MAPE) for 

the out of sample testing data set of Australia’s domestic LCC enplaned passengers (PAX) 

and RPKs models were 4.36% and 5.55%, respectively.  

 

It can be concluded that the ANFIS is an approach which can be used effectively to model 

and forecast Australian domestic LCC passenger demand. The originality of this study is use 

of the genetic algorithm and adaptive neuro fuzzy inference system (ANFIS) approach which 

has not been previously used to forecast Australia’s domestic LCC passenger demand. The 

ANFIS models produced highly accurate and reliable results and showed a high forecasting 

capability. 
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CHAPTER EIGHT:  EMPIRICAL RESULTS OF THE STUDY 

 

8.1 Introduction 

 
This thesis has been concerned with specifying and empirically testing models which can be 

used to forecast Australia’s domestic LCC passenger demand. In order to achieve this aim, 

multiple linear regression (MLR) and three artificial intelligence-based forecasting models, 

were specified and empirically tested in the four previous chapters. The thesis also sought to 

achieve a greater understanding of the primary predictors of Australia’s LCC passenger 

demand. The way in which a firm competes in its chosen markets influences its business 

model and strategic positioning. The ‘original’ LCC business models largely followed that of 

United States-based Southwest Airlines. However, over the past decade around the world 

the LCC business models have evolved quite dramatically in response to changing customer 

requirements. Thus, an important aim of this thesis was to explore whether Australia’s 

domestic LCC have also moved towards a hybrid business model. 

 

This chapter summarizes the empirical findings of the study.  In so doing, it discusses the in-

depth modelling undertaken in Chapters 4 to 7, and distinguishes the most accurate, reliable 

and capable approach for forecasting Australia’s domestic LCC passenger demand. The 

chapter also discusses the principal socio-economic and air transport system variables of 

Australia’s LCC passenger demand. The hybridization of Australia’s domestic LCC market 

segment is also examined.       

 

This chapter is structured as follows: Section 8.2 compares the in-depth modelling results, 

and identifies and justifies the best performing modelling approach for forecasting Australia’s 

LCC passenger demand. Section 8.3 presents the principal predictors of Australia’s LCC 

passenger demand. This is followed by an examination of the hybridization strategies 

adopted by Australia’s domestic LCC over the past decade (Section 8.4).    

 

8.2 Comparison of the Models and Selection of the Best Performance Model  

 

Throughout this thesis, mention has been made of the critical importance of forecasting 

demand for airline management. This begs the question: what is the best model or 

forecasting approach available to airline management to forecast passenger demand? This 
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thesis aimed to examine this issue, and in order to do so, the following research question 

was proposed: 

 

What forecasting methods are available for estimating Australia’s domestic low cost carrier 

passenger demand and how do they differ in applicability and capability? 

 

The thesis commenced with an in-depth examination of the forecasting methods that have 

previously been used in air travel demand forecasting. This comprehensive survey of the 

literature provided valuable insights into the traditional air travel demand forecasting 

methods, the most popular method being multiple linear regression models. The survey of 

the literature also identified new, and novel, artificial intelligence-based forecasting methods 

that could be used to forecast Australia’s domestic LCC passenger demand. Consequently, 

four forecasting approaches were identified from the literature survey. This study therefore 

used a classical multiple linear regression (MLR), artificial neural network (ANN), genetic 

algorithm (GA), and the adaptive neuro fuzzy inference system (ANFIS) model to forecast 

Australia’s domestic LCC passenger demand. Two measures of Australia’s domestic LCC 

passenger demand were used in the study. The first measure was the number of Australia’s 

domestic LCC enplaned passengers (PAX). The second measure was Australia’s domestic 

LCC revenue passenger kilometres performed (RPKs) (Belobaba 2009; Holloway 2008).  

 

This section is divided into two parts. Part A reviews the modelling results and answers the 

first research question. In the second part of this section (Part B), the second research 

question is addressed. 

 

Part A 

As we have previously noted, the factors that influence air travel demand are complex 

(Doganis 2009; Vasigh et al. 2008). Each factor is composed of elements that can stimulate 

or reduce air travel demand. For airline passenger traffic demand forecasting purposes, 

these factors are more conveniently categorised into two broad groups, those external to the 

airline industry and those within the airline industry itself (Ba-Fail et al. 2000). Thus, in order 

to identify the predictors of Australia’s domestic LCC passenger demand, the study 

commenced with a comprehensive review of the extant literature, in order to identify the 

predictors of passenger demand that have been used in previous passenger air travel 

studies. 
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Based on the review of the literature and previous air travel demand forecasting studies, a 

total of eight independent variables were considered for testing in all the models. These 

independent variables are Australia’s real best discount airfare (proxy for airline passenger 

yields), Australia’s population size, Australia’s real GDP, Australia’s real GDP per capita, 

Australia’s unemployment size, world jet fuel prices, Australia’s real interest rates, and 

recorded bed capacities at Australia’s tourist accommodation (a proxy to model the influence 

of tourism for Australia’s domestic LCC).  

 

Three dummy variables were also included in the models (study). The first dummy variable 

explained the impact of the evolving Virgin Australia business model from an LCC model to a 

full service network carrier (FSNC) (Whyte et al. 2012) on Australia’s LCC traffic (enplaned 

passengers and RPKs). This is important because Australia’s domestic LCC passenger 

traffic has decreased significantly since 2011. This decline in traffic is primarily due to the 

evolution in Virgin Australia’s business model. Thus, the dummy variable reflecting the Virgin 

Australia changing business model (DUMMY 1) is zero for the period from Quarter 1 2002 to 

Quarter 4 2010 and one from Quarter 1 2011 to Quarter 1 2014. 

 

The second dummy variable (DUMMY 2) accounted for the loss of capacity following the 

collapse of Ansett Australia in 2001. At the time of its collapse in 2001, Ansett Australia’s 

domestic Australian market share was 35 per cent (Virgin Blue held around 10 per cent and 

Qantas had a 55 per cent market share) (Prideaux 2003). The collapse of Ansett Australia 

had a major impact on the tourism industry, especially in regional areas where Ansett’s 

subsidiaries provided substantial capacity. Whilst the other incumbent airlines increased 

seating capacity, the demand for seats exceeded supply for several months (Prideaux 

2003).   

 

The third dummy variable (DUMMY 3) accounted for the impact of the Commonwealth 

Games held in Melbourne from 15 to 26 March, 2006. The 2006 Melbourne Commonwealth 

Games was the largest sporting and community event held in Victoria’s history. The 

Commonwealth Games generated a total of 166,513 visitors. These visitors comprised 

57,010 overseas visitors, 60,125 interstate visitors, 37,035 regional Victoria visitors and 

12,343 other visitors (KPMG 2006). 

 

As we noted above, the study used two income measures in the modelling: Australia’s real 

GDP and real GDP per capita (GDP per capita is the gross domestic product divided by size 

of the population). Due to their direct relationship, gross domestic product (GDP) and GDP 
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per capita were not used as explanatory variables in the same model. Similarly, due to their 

direct relationship, population size and GDP per capita were not included in the same 

models (Ba Fail et al. 2000). 

 

Prior to examining the thesis modelling results, it is important for us to note that, “Goodness-

of-fit (GOF) statistics are useful for comparing modelling results, for examining competing 

models in a single study, and also for providing feedback on the level of knowledge about 

the uncertainty involved in the phenomenon of interest” (Kunt et al 2011, p.356). In this 

study, up to five key goodness of fit measures were used to compare the various modelling 

results and their performance: mean absolute error (MAE), mean absolute percentage error 

(MAPE), mean square error (MSE), the root mean square error (RMSE) and correlation 

coefficient (R). (see Section 4.4 for an overview of these GOF methods) (see, for example, 

Kunt et al. 2011; Yetilmezsoy et al. 2011; Ruiz-Aguilar et al. 2014; Tiryaki & Aydın 2014.)  

 

To classify the forecasting accuracy of Australia’s domestic LCC passenger demand models, 

this study followed the forecasting accuracy classification as presented by Martin & Witt 

(1989), which has been cited in at least 84 other reported studies, that is, the forecasting 

performance of a model is considered ‘highly  accurate  forecasting’ when MAPE is smaller 

than 10 per cent (MAPE<10%). Forecasting accuracy is regarded as ‘good forecasting’ 

when the MAPE falls between 10-20 per cent (10% ≤ MAPE ≤ 20%), and it is classified as 

‘reasonable forecasting’ where the MAPE is in the range of 20-50 per cent 

(20% ≤ MAPE ≤ 50%). Finally, if the MAPE is larger than 50 per cent the modelling results 

are considered to be ‘inaccurate forecasting’ (Martin & Witt 1989, p 417). The classification 

for MAPE is summarized and presented in table 8.1 

Table8.1.Classification for Mean Absolute Percentage Error (MAPE) 

MAPE Value Forecasting Accuracy 

MAPE < 10% Highly  accurate  forecasting 

10% ≤ MAPE ≤ 20% Good forecasting 

20% ≤ MAPE ≤ 50% Reasonable forecasting 

MAPE > 50% Inaccurate forecasting 

Source : Adapted from Martin & Witt (1989, p 417). 

 

The first model which was empirically examined in this study used a classical multiple linear 

regression (MLR) approach. The MLR has been extensively used in forecasting passenger 

air travel demand for air travel since 1950s. Interestingly, this approach has also been used 

in recent published air travel demand forecasting studies (see, for example, Kopsch 2012). 
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In light of the extensive use of this forecasting approach, and in the absence of any 

previously reported studies that have used such an approach to forecast Australia’s 

domestic LCC passenger demand, the study developed and empirically tested two classical 

linear regression econometric models: one based on Australia’s LCC enplaned passengers 

(PAX Model), and the second using revenue passenger kilometres performed (RPKs Model). 

In order to identify the most accurate and reliable MLR models, multiple linear regression 

assumptions including; a linear relationship between dependent and independent variables, 

normality of errors, autocorrelation, multi-collinearity and heteroschedasticity were tested for 

both the PAX and RPKs models. The results found that both models are very good in terms 

of Goodness of Fit measures and model accuracy. The MAPE of the MLR PAX model in 

estimating, testing and overall data are 5.00%, 8.63% and 5.89 %, respectively. The MAPE 

of the RPKs model in estimating, testing and overall data are 5.48%, 11.11% and 6.86%, 

respectively.     

 

Following the development and testing of the two MLR models, the study turned its attention 

to potential artificial intelligence-based forecasting approaches: artificial neural networks 

(ANNs), genetic algorithm (GA), and adaptive neuro-fuzzy inference system (ANFIS) that 

could be used to forecast Australia’s domestic LCC passenger demand. As highlighted in 

Chapter 1, in recent times these approaches have been increasingly used in various 

disciplines, and they have been considered to have superior predictive capabilities as 

compared to the traditional MLR forecasting approach (Garrido et al. 2014; Pan et al. 2013).  

 

Hence, the second models tested in this study used the artificial neural network (ANN) 

approach. ANN models have been increasingly used across various disciplines for 

forecasting due to their predictive capabilities. However, there has been very few reported 

studies that have developed and tested ANNs for forecasting a country’s domestic airline 

passenger demand, nor has there been any reported study that has proposed and 

empirically examined ANNs for forecasting Australia’s domestic LCC passenger demand. 

Consequently, this study aimed to address this gap in the literature, and has specified and 

empirically examined two artificial neural networks models (ANNs) for forecasting Australia’s 

domestic LCC passenger demand.  

 

For the ANN model development, Australia’s real best discount airfare, Australia’s population 

size, Australia’s real GDP, Australia’s unemployment size, world jet fuel prices, Australia’s 

real interest rates, recorded bed capacities at Australia’s tourist accommodation 

establishments, and dummy variable reflecting Virgin Australia changing business model 
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(DUMMY 1) were selected as ANN inputs. The neural network used multi-layer perceptron 

(MLP) architecture that comprised a multi-layer feed-forward network. The sigmoid and 

linear functions were used as activation functions together with the feed forward‐back 

propagation algorithm. The ANN used 70 per cent of the data set in the training phase and 

15 per cent in the testing phase. In order to avoid an over-fitting problem the validation 

process was carried out through the ANN process using another 15 per cent of the data set. 

The optimum ANN structure had 8 inputs, 8 neurons in the hidden layers and 1 neuron in the 

output layer for both the PAX and RPKs ANN models. The overall R-values of Model 1 (PAX 

Model) was 0.9914, and Model 2 (RPKs Model) was 0.9954, respectively. Also, the MAPE of 

the ANN PAX model in the training, testing, and overall data are 3.61%, 4.91% and 3.93%, 

respectively, and in the RPKs model are 3.95%, 5.73% and 4.39% respectively.     

 

The next modelling approach was based on a new, and novel, genetic algorithm. Despite 

their extensive use as a forecasting method in other disciplines, there has been no reported 

study that has proposed and empirically tested a genetic algorithm to forecast airline 

passenger demand. This thesis, for the first time, has introduced and empirically examined a 

new genetic algorithm for forecasting Australia’s domestic LCC passenger demand. In order 

to undertake this modelling, the Matlab code for the GA models was developed specially for 

this study. Two mathematical forms were tested in the GA modelling including; linear, and 

quadratic GA models. Eleven inputs as tested in the ANN model were tested in the GA 

modelling. The results found that the quadratic GA models of both PAX and RPKS model 

produces better results than the linear GA model. The MAPE of the GA PAX model in 

training, testing, and overall data are 2.76%, 5.37% and 3.40% respectively, and in the 

RPKs model are 3.37%, 5.75% and 3.68%, respectively        

 

The fourth approach used in this study is the adaptive neuro-fuzzy inference system (ANFIS) 

model. ANFIS is growing in popularity as a forecasting tool due to its greater accuracy and 

reliability together with their greater predictive capabilities. However, there has been no 

reported study that has proposed and empirically examined such an approach in the air 

travel demand study. This is also the first time that the ANFIS approach has been used for 

forecasting Australia’s domestic LCC passenger demand. It has been noted in Chapter 1 

that ANFIS have a high forecasting accuracy and ability. This is because they are a hybrid 

model which combine the advantages, and eliminate the disadvantages, of fuzzy and 

artificial neural network (ANN) model (Yetilmezsoy et al. 2011). Further, ANFIS is capable of 

handling complex and nonlinear problems when a more sophisticated system with high-

dimensional data is implemented, the use of ANFIS instead of ANN is considered to be more 
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appropriate to more quickly overcome the complexity of the problem (Noori et al. 2009; 

Giovanis 2012). 

In this study, two models, ANFIS PAX and ANFIS RPKs models were proposed. Sugeno 

fuzzy rules were used in the ANFIS structure and Gaussian membership function and linear 

membership functions were also developed. The subtractive clustering partition method was 

used to generate the optimum ANFIS PAX and ANFIS RPKs models. Data was normalized 

to the scale [0,1] to increase the model’s training performance. The results found that the 

MAPE for the training, testing and overall data set of LCCs enplaned passengers (PAX) 

model were 0.21%, 4.36% and 1.23%, respectively, and in RPKs model were 0.24%, 5.55% 

and 1.54%, respectively. 

 

Having described the models developed and tested, as well as their results, our attention 

turns now to a comparison of the models in order to identify the best performance model for 

forecasting Australia’s domestic LCC passenger demand. Mean absolute error (MAE), mean 

absolute percentage error (MAPE), mean square error (MSE), and root mean squared error 

(RMSE) defined in equations (8.1) to (8.4) were utilised to evaluate the model performances. 
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Table 8.2A presents a comparison of the forecasting accuracy in the training, out of sample 

testing, and overall data sets of Australia’s domestic LCC PAX models. The table 

summarises the MAE, MAPE, MSE, and RMSE for each of the forecasting methods (MLR, 

ANN, GA and ANFIS). As can be observed from the comparison of these goodness of fit 

measures in the out of sample testing data set, ANFIS model is superior to the other models.  
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Table 8.2B ranks the forecasting accuracy of the modelling approaches used to test forecast 

Australia’s domestic LCC enplaned passengers (PAX model). It can be seen that the 

forecasting accuracy of the ANFIS model is superior to the other forecasting approaches 

used in the study for the testing data set as measured by MAE, MAPE, MSE and RMSE 

values. This suggests that the ANFIS model is the best forecasting method approach to 

forecast the Australia’s domestic LCC enplaned passenger (PAX). The ANN, GA, and MLR 

model are ranked second, third and fourth, respectively. 

Table8.2A.A comparison of 4 models forecasting accuracy for Australia’s domestic LCC PAX 

Model dataset MAE MAPE MSE RMSE 

MLR estimating 258.58 5.00% 9.6x10
4
 310.43 

ANN training 182.66 3.61% 6.3x10
4
 251.19 

GA training 139.42 2.76% 3.1x10
4
 175.12 

ANFIS training 10.93 0.21% 2.4x10
2
 15.51 

MLR testing 405.34 8.63% 3.0 x10
5
 544.28 

ANN testing 232.00 4.91% 1.1x10
5
 327.74 

GA testing 242.95 5.37% 1.2x10
5
 340.43 

ANFIS testing 213.00 4.36% 7.1x10
4
 267.52 

MLR overall 294.53 5.89% 1.4 x10
5
 381.20 

ANN overall 194.74 3.93% 7.4x10
4
 271.93 

GA overall 164.77 3.40% 5.1x10
4
 227.02 

ANFIS overall 60.41 1.23% 1.8x10
4
 133.07 

 

Table8.2B.Forecasting accuracy’s ranking of 4 Australia’s domestic LCC PAX modelling  

Model dataset MAE MAPE MSE RMSE 

MLR estimating 4 4 4 4 

ANN training 3 3 3 3 

GA training 2 2 2 2 

ANFIS training 1 1 1 1 

MLR testing 4 4 4 4 

ANN testing 2 2 2 2 

GA testing 3 3 3 3 

ANFIS testing 1 1 1 1 

MLR overall 4 4 4 4 

ANN overall 3 3 3 3 

GA overall 2 2 2 2 

ANFIS overall 1 1 1 1 
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Table 8.3A presents a comparison of the forecasting accuracy in the training, out of sample 

testing, and overall data sets of Australia’s domestic LCC RPKs models. The table 

summarises the MAE, MAPE, MSE, and RMSE for each of the forecasting methods (MLR, 

ANN GA, and ANFIS). As can be observed from the comparison of these goodness of fit 

measures in the out of sample testing data set, the ANFIS model is superior to the other 

models.  

 

Table 8.3B ranks the forecasting accuracy of the modelling approaches used to test forecast 

Australia’s domestic LCC RPKs (RPKs model). It can be clearly seen that the forecasting 

accuracy of ANFIS model is once again superior to the other forecasting approaches used in 

the study, as measured by MAE, MAPE, MSE and RMSE values. This suggests that the 

ANFIS model is the best forecasting method approach to forecast the Australia’s domestic 

LCC RPKs. The ANN, GA and MLR model are ranked second, third and fourth, respectively. 

Table8.3A.A comparison of 4 models forecasting accuracy for Australia’s domestic LCC 
RPKs 

Model dataset MAE MAPE MSE RMSE 

MLR estimating 299.48 5.48% 1.2x10
5
 352.35 

ANN training 200.99 3.95% 7.3x10
4
 269.83 

GA training 159.01 3.37% 4.3x10
4
 208.38 

ANFIS training 12.33 0.24% 3.0x10
2
 17.43 

MLR testing 428.02 11.11% 2.4 x10
5
 495.31 

ANN testing 219.08 5.73% 8.5x10
5
 292.11 

GA testing 276.30 5.75% 1.0x10
5
 323.21 

ANFIS testing 218.97 5.55% 8.2x10
4
 286.81 

MLR overall 330.96 6.86% 1.5 x10
5
 392.21 

ANN overall 205.42 4.39% 7.6x10
4
 275.45 

GA overall 180.55 3.68% 5.5x10
4
 233.74 

ANFIS overall 62.93 1.54% 2.0x10
4
 142.74 
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Table8.3B.Forecasting accuracy’s ranking of 4 Australia’s domestic LCC RPKs modelling  

Model dataset MAE MAPE MSE RMSE 

MLR estimating 4 4 4 4 

ANN training 3 3 3 3 

GA training 2 2 2 2 

ANFIS training 1 1 1 1 

MLR testing 4 4 4 4 

ANN testing 2 2 3 2 

GA testing 3 3 2 3 

ANFIS testing 1 1 1 1 

MLR overall 4 4 4 4 

ANN overall 3 3 3 3 

GA overall 2 2 2 2 

ANFIS overall 1 1 1 1 

 

Therefore, based on the widely cited Martin and Witt (1989) MAPE values classifications, all 

Australia’s domestic LCC PAX and RPKs models can be considered as “highly accurate 

forecasts” except the MLR RPKs model which can be considered as “good forecasting”.        

 

Figure 8.1 and 8.2 presents the actual output values of Australia’s domestic LCC enplaned 

passengers and RPKs with the forecast values of the models tested in the study. This 

graphical presentation highlights a considerable overlap between the real and forecast 

outputs from the MLR, GA, ANN and ANFIS models indicating that the ANFIS models 

successfully forecast Australia’s domestic LCC passenger demand with a high level of 

accuracy. The comparison of the modelling results shows that the performance of the ANFIS 

was superior and offers highly improved forecasting over the classical MLR, GA and ANN 

models. 

 

 

 

   



  Chapter 8 

  Empirical Results 

162 

 

 

 

 

 

 
 

 

 

Figure8.1.A comparison of Australia’s domestic LCC MLR, GA, ANN and ANFIS actual and forecast PAX models 
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Figure8.2.A comparison of Australia’s domestic LCC MLR GA, ANN and ANFIS actual and forecast RPKs models 
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Part B 

 

The preceding part of this section focussed on addressing the first research question and 

highlighted the fact that there are multiple forecasting methods available to airline 

management to forecast passenger demand. Importantly, the modelling results showed that 

these modelling approaches do differ in applicability and capability. The artificial neuro-fuzzy 

inference system (ANFIS) method proved to have the most predictive capability, accuracy 

and reliability. In the following we turn our attention to the study’s second research question:  

 

How do artificial intelligence-based forecasting models perform in terms of accuracy and 

reliability in low cost carrier passenger demand forecasting as compared to the traditional 

multiple linear regression approach? 

 

The literature survey on air travel demand forecasting highlighted the fact that in recent 

times artificial based intelligence forecasting methods have attracted some research 

attention. The artificial neural network (ANN) approach was used by Alekseev and Seixas 

(2002, 2009) to forecast Brazil’s domestic air travel demand. In a further study, Blinova 

(2007) proposed an artificial neural network model for forecasting Russia’s air travel 

demand. Other artificial intelligence-based forecasting methods include genetic algorithm 

and the artificial neuro-fuzzy inference system (ANFIS) methods. As we have noted, there 

have been no reported studies that have proposed and empirically tested a genetic algorithm 

for forecasting air travel demand. Nor, has there been any previous reported study that has 

proposed and empirically examined a country’s domestic air travel demand using the 

artificial neuro-fuzzy inference system (ANFIS) method.  

 

It has been argued in the literature that artificial intelligence-based forecasting methods offer 

a number of advantages when compared to the traditional multiple linear regression 

modelling approach. The primary advantage of artificial neural networks (ANN) over other 

forecasting methods is that the network equally well predicts the processes whose regular 

components have any distribution law, whereas most other forecasting methods are best 

suited for processes that possess a regular component that belongs to a specific class 

(clearly, the method of polynomial smoothing is best suited for processes with a polynomial 

regular component, the method of smoothing by Fourier series is best suited for processes 

with a periodic regular component and so forth). A further advantage of ANNs is their ability 

to learn (Aizenberg 2011; Mrugalski 2013; Sineglazov et al. 2013). Artificial neural networks 

(ANN) also have the ability of mapping any linear or non-linear function and having no 
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associated data assumption requirements (Claveria & Torra 2014; Kunt et al. 2011; Santos 

et al. 2014).   

 

The Adaptive Neuro-Fuzzy Inference System (ANFIS), first introduced by Jang (1993), is a 

hybrid method comprising both fuzzy inference systems with the artificial neural network 

(ANN) (Fang 2012; Liu et al. 2008). This system therefore combines the benefits of both 

approaches; wherein the former brings prior knowledge into a set of constraints to obtain the 

optimal solution, while the latter is good at capturing various patterns (Jang et al. 1997; Xiao 

et.al. 2014; Yetilmezsoy et al. 2011). An ANFIS’s principal objective is the determination of 

the optimum values of equivalent fuzzy inference system parameters. This is achieved 

through application of a learning algorithm using input–output data sets.  Optimisation of 

parameters is undertaken in such a way during the training session that the error between 

the target and actual output is minimized (Goyal et al. 2014).   

 

ANFIS is considered a more powerful approach than the simple fuzzy logic algorithm and 

artificial neural networks as this technique provides a method whereby fuzzy modelling 

learns about the data set; in order to compute the membership function parameters which 

best allow the associated fuzzy inference system to track the given input/output data (Al-

Ghandoor et al. 2012, p. 130). A further advantage of ANFIS is the fact that it can be trained 

without the requirement for the expert knowledge normally required for the standard fuzzy 

logic design, and both numerical and linguistic knowledge can be combined into a fuzzy rule 

base by utilising fuzzy methods (Giovanis 2012). Other important advantages of ANFIS 

include its nonlinear ability, its capacity for rapid learning, and its adaptation capability. 

Furthermore, the strength of ANFIS is that it uses the artificial neural network’s ability to 

classify data and identify patterns (Giovanis 2012). Moreover, ANFIS develops a fuzzy 

expert system that is more transparent to the user and which is also less likely to produce 

memorization errors than an ANN (Giovanis 2012). 

 

Artificial neural network-based methods have been used successfully for modelling across a 

broad range of disciplines (Yetilmezsoy et al. 2011). However, poor interpretation has been 

reported as a major drawback of their utilization (Wieland et al. 2002). A major shortcoming 

of artificial neural networks (ANNs) is that they are unable to reveal causal relationships 

between major system components. Consequently, they are unable to improve the user’s 

explicit knowledge (Yetilmezsoy et al. 2011). Therefore, to overcome the problematic 

conditions of ANNs and fuzzy systems, a new system combining both ANNs and the fuzzy 
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system, called adaptive-network-based fuzzy inference system (ANFIS) was proposed by 

Jang (1993). 

 

Genetic algorithm (GA) is powerful stochastic search techniques that are based on the 

principle of natural evolution (Kunt et al. 2011). GA differs substantially from traditional 

optimization methods because they search for the population of points in parallel rather than 

a single point in order to obtain the best solution. Therefore, they provide several potential 

solutions to a given problem under study and the choice of the final solution is left to the user 

(Akgüngör & Doğan 2009).  

 

The principal strength of GA is their adaptive and self-organizing capabilities. These abilities 

enable GA to quickly solve difficult problems through three evolutionary mechanisms: (1) 

selection, (2) crossover, and (3) mutation (Hu 2002). The basic operations of GA include 

selection, a crossover of genetic information between reproducing parents and a mutation of 

genetic information which affect the binary strings characteristic in natural evolution (Ozturk 

et al. 2005). If GAs are suitably encoded, then they can be used to solve real world problems 

by mimicking this process (Akgüngör & Doğan 2009).    

 

Table 8.2A, Table 8.2B, Table 8.3A, and Table 8.3B above, presents a summary of the 

study’s modelling results. Based on the goodness of fit measures (MAE, MAPE, MSE, 

RMSE) that can be used to compare different modelling approaches (Kunt et al. 2011), the 

three artificial intelligence-based forecasted approaches tested in this study were clearly 

shown to provide more accurate and reliable LCC passenger demand forecasts. The 

modelling results of all three artificial intelligence-based methods were therefore superior 

when compared to the traditional multiple linear regression approach. This suggests that 

artificial intelligence-based forecasting methods provide more accurate and reliable 

forecasts.       

 

Hypothesis test 

This study further employed a hypothesis test to give an indication if the difference between 

the artificial intelligence-based forecasting models and the traditional multiple linear 

regression models was in fact statistically significant. Since the same 12 out of sample 

testing data set were used for forecasting in all models, the paired t-test (two samples for 

mean) was used to assess the forecasting accuracy of the models and also to test the 

hypothesis (H0) that there is not a significant difference in the forecasting accuracy of the 
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MLR vs ANN, MLR vs GA and MLR vs ANFIS models (Razi and Athappily, 2005; Zaefizadeh 

et al. 2011). The results of t-tests are presented in Table 8.4. 

 

Table8.4.Results of paired t-tests  

Test t-stat P-value  Conclusion 

PAX  H01 : MLR vs ANN 

PAX H02 : MLR vs GA 

PAX H03 : MLR vs ANFIS 

RPKs  H04 : MLR vs ANN 

RPKs H05 : MLR vs GA 

RPKs H06 : MLR vs ANFIS 

2.11 

3.14  

2.17 

2.29 

2.95 

2.18 

.0.029 

0.005 

0.026 

0.021 

0.007 

0.026 

µMLR > µANN 

µMLR > µGA 

µMLR > µANFIS 

µMLR > µANN 

µMLR > µGA 

µMLR > µANFIS 

Where µMLR, µANN, µGA, and µANFIS are mean forecasting error of MLR, ANN, GA and ANFIS models, 

respectively 

 

Table 8.4 shows that the p-values (one-tail) for PAX models H01 is 0.029, H02 is 0.005, H03 is 

0.026 and for RPKs models H04 is 0.021, H05 is 0.007, H06 is 0.026, therefore the hypothesis 

H01, H02, H03, H04, H05, and H06 which state that there is not a significant difference in the 

forecasting accuracy of the MLR vs ANN, MLR vs GA and MLR vs ANFIS models are 

rejected. This implies that the average forecasting error of the traditional multiple linear 

regression models is statistically significantly different from the average forecasting error of 

the artificial intelligence-based forecasting models (ANN, GA and ANFIS) at the 95 per cent 

confidence interval of the difference. The results indicated that the forecasting error of MLR 

models is higher than the ANN, and ANFIS models. 

 

These results also confirm that the artificial intelligence-based forecasting models provide 

more accurate and reliable as compared to the traditional multiple linear regression model 

when used to forecast Australia’s domestic airline enplaned passengers (PAX) and revenue 

passenger kilometres (RPKs), respectively. 
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8.3 The Primary predictors of Australia’s Low Cost Carrier Domestic Air Travel 

Demand 

 

As noted in Section 4.4 that in the standard air transport modelling and forecasting 

approach, two vectors including socio-economic and air transport system vector, are used 

and combined through mapping, so that the target demand forecasting can be accomplished 

(Alekseev & Seixas 2009; Rengaraju & Arasan 1992). 

 

The comprehensive review of the literature on previous air travel demand forecasting studies 

reported in the leading journals showed that the socio-economic and air transport system 

vectors influencing air travel demand were real GDP, real GDP per capita, population and air 

fares. Other important factors that influence air travel demand reported in the literature 

include unemployment (McKnight 2010), tourism demand (Davidson & Ryley 2010; Graham 

2006; Koo et al. 2013) and real interest rates (Cook 2007; Wensveen 2011). However, the 

five reported studies that focussed on forecasting Australia’s air travel demand (3 domestic 

and 2 international) did not include the latter three variables in the proposed and tested 

forecasting models.  

 

A key aim of this study was therefore to explore the predictors of Australia’s domestic LCC 

passenger demand in order to achieve a greater understanding of the factors which 

influence the Australia’ domestic LCC air travel demand. Thus, in order to obtain a greater 

awareness of the factors that may influence Australia’s domestic LCC passenger demand, 

the following research question was asked:  

 

What are the principal predictors of Australia’s domestic LCC’s passenger demand?  

 

Based on the review of the literature and previous air travel demand forecasting studies, 

socio-economic and air transport system vectors comprised eight independent variables 

were considered for testing Australia’s domestic LCC passenger demand models. The 

models were measured by the number of Australia’s LCC domestic enplaned passengers 

(PAX Model), and Australia’s LCC domestic revenue passenger kilometres performed (RPKs 

Model) (Belobaba 2009; Holloway 2008). These independent variables are Australia’s real 

best discount airfare (proxy for airline passenger yields), Australia’s population size, 

Australia’s real GDP, Australia’s real GDP per capita, Australia’s unemployment size, world 

jet fuel prices, Australia’s real interest rates, recorded bed capacities at Australia’s tourist 
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accommodation and three dummy variables reflecting Virgin Australia changing business 

model, the collapse of Ansett Australia, and the Commonwealth Games in 2006. 

 

Table 8.5 presents a summary of the independent variables that were included each of the 

modelling approaches. We will examine each in turn.  

 

Table8.5.A summary of the independent variables included in the MLR, GA, ANN and ANFIS 
PAX and RPKs models   

Variables MLR GA ANN ANFIS 

Australia’s real best discount airfare     

Australia’s population size  -    

Australia’s real GDP -    

Australia’s real GDP per capita  - - - 

Australia’s unemployment size -    

World jet fuel prices     

Australia’s real interest rates     

Recorded bed capacities at Australia’s tourist accommodation -    

 

 

8.3.1 Australia’s real best discount air fares 

 

Price of travel options has an important impact on total air travel demand. The monetary (out 

of pocket costs) prices of airline fares, together with the implied disutility costs of air fare 

restrictions (for example, the requirement to stay over on a Saturday night and non-refund 

ability of tickets), are perhaps the most critical predictors of the volume of air travel demand 

(Belobaba 2009).   

 

Australia’s domestic LCC principally focus on Australia’s leisure air travel market. In the 

leisure air travel market, the dominant requirement is for cheap air fares. This is due to a 

number of important reasons. Unlike in the corporate or business travel air travel market 

sub-segment, leisure travellers are spending their own money on their travel requirements. 

Their travel expenditure is typically not tax-deductible in the way that benefits a traveller who 

is independent of a corporate traveller. Often, too, leisure travel is undertaken as a family 

group. In such circumstances, the amount of cash payable will be multiplied several times 

over to account for each family member travelling, thereby making access to cheap air fares 

even more important. Finally, in the leisure travel market segment suffer from what Shaw 
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(2011, p. 41) calls “being at the back of the queue in terms of people being willing to pay 

more”. When a family is travelling on a holiday a decision has to be taken as to spending 

money on a luxurious but expensive flight, or on a good high quality hotel and meals at their 

chosen destination(s). Not surprisingly, in many cases, a decision is made to focus 

expenditure at the destination, because people may be staying at the destination for a 

fortnight or more, as opposed to travelling in an aircraft for just a few hours (Shaw 2011). 

 

The marketing strategies of Australia’s domestic LCC place a high emphasis on the 

provision of “cheap air fares” or “low air fares”. This is very much exemplified in Jetstar 

Airways, Australia’s largest domestic LCC, mission statement: Jetstar’s mission is to offer all 

day, every day low fares to enable more people to fly to more places, more often (Jetstar 

Airways 2014). Tigerair Australia also promotes itself as an airline that offers “affordable 

travel options” (Tiger Airways Holdings 2014a).         

 

An important part of the modelling undertaken in this thesis was to explore the significance 

of air fares as a predictor of Australia’s domestic LCC passenger demand. This was 

significant because there has been no reported study that has examined and tested the 

relationship between Australia’s real best discount air fares and its influence on Australia’s 

domestic LCC passenger demand. Australia’s real best discount air fare was used as a 

proxy for the monetary cost of LCC air travel in Australia. As can be seen in Table 8.5, 

Australia’s real best discount air fares proved to be a predictor variable in all four modelling 

approaches undertaken in the study.  

 

The coefficient of Australia’s real best discount air fares was found to be (-16.49) in the MLR 

PAX and (-18.79) in the RPKs models, and (-5.28) in the GAPAXDElin model, and (-3.58) in 

the GARPKSDElin model, respectively. Australia’s real best discount air fares was also 

shown to be an important predictor variable in the ANN models with the contribution value of 

4.64 and 5.92 in the PAX and RPKs model, respectively.      

  

In addition, the demand price elasticity can be obtained by converting the MLR PAX and 

RPKs models to double log linear form where the estimated coefficient represented demand 

price elasticity (Vasigh et al. 2013). The double-log linear regression for PAX and RPKs 

models are presented as following;  

 (1):                                                          and  

(2):                                                           
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Where PAX is Australia’s domestic LCC enplaned passengers, RPKs is Australia’s domestic 

LCC revenue passenger kilometres performed, X1 is airfare (Australia’s real best discount air 

fare), X 2 is Australia’s real GDP per capita, X3 is Australia’s real interest rates, X4 is World jet 

fuel price, and X5 is dummy variable (DUMMY 1) reflecting Virgin Australia’s changing 

business model.  

The coefficient of airfare indicated that a 10 per cent decrease in airfare would increase the 

Australia’s domestic LCC enplaned passengers by 5.5 per cent and a 10 per cent decrease 

in airfare would increase the Australia’s domestic LCC RPKs by 7.0 per cent. Since the 

model was expressed in double-log form, the airfare coefficient represented an estimate of 

airfare elasticity. According to the absolute value of the airfare coefficient in PAX and RPKs 

models which are less than one, (-0.55) in PAX model and (-0.70) in RPKs model, it is 

suggested that Australia’s domestic LCC passenger is price inelastic (Li 2010). The 

implication being that an increase in airfare will result in a less than proportionate decrease 

in the quantity demanded and the total revenue will increase (Li 2010).  

 

The ANFIS models were tested with and without Australia’s real best discount air fares as a 

predictor variable. In this modelling approach, both the PAX and RPKs models were found to 

be more accurate and reliable, and provided a greater forecasting capability when Australia’s 

real best discount air fares was included as a predictor variable in the models. The findings 

therefore support the literature (see, for example, Belobaba 2009; Doganis 2009; Shaw 

2011) and show that Australia’s real best discount air fares is an important predictor of 

Australia’s domestic LCC passenger demand, as measured by both enplaned passengers 

and revenue passenger kilometres. 

 

To demonstrate the importance of the relationship between Australia’s real best discount 

and the Australia’s domestic LCC passenger demand (both enplaned passengers and 

RPKs), the data are plotted in Figure 8.3. 
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Figure8.3.The relationship between Australia’s real best discount air fares and Australia’s domestic 
LCC passenger demand 

 

 

8.3.2 Australia’s population size 

 

It has been suggested that population has a direct effect on the size of an air travel market 

and may cause a bias in the estimates if omitted. For instance, a large increase in air traffic 

may reflect a sudden increase in population rather than other effects (International Air 

Transport Association 2008). Australia’s population size was included as a predictor variable 

in the study’s genetic algorithm (GAPAXDE and GARPKSDE models), artificial neural 

network (ANN), and artificial neuro-fuzzy inference system (ANFIS) PAX and RPKs models. 

The coefficient of Australia population size was found to be 0.0004 in the GAPAXDElin 

model, and 0.0005 in the GARPKSDElin model, respectively. Australia’s population size was 

also shown to be an important predictor variable in the ANN models with the contribution 

value of 6.84 and 6.66 in the PAX and RPKs model, respectively. The ANFIS models were 

tested with and without Australia’s population size as a predictor variable. In this modelling 

approach, both the PAX and RPKs models were found to be more accurate and reliable, and 

provided a greater forecasting capability when Australia’s population size was included as a 

predictor variable in the models. 

 An explanation for the importance of the growth in Australia’s population size as a predictor 

of Australia’s domestic LCC passenger growth is that over the duration of the period of the 

study (2002-2012), Australia’s population has increased from 19,453,400 in 2002 to 

22,728,300 in 2012. Clearly, this growth has increased has the potential size of Australia’s 

domestic air travel market. In order to highlight the importance of the relationship between 

PAX = 8512 – 41.45 FARE RPKs = 9744 -54.2 FARE 
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Australia’s population size and the Australia’s domestic LCC passenger demand (both 

enplaned passengers and RPKs), the data are plotted in Figure 8.4.  

 

  

Figure8.4.The relationship between Australia’s population size and Australia’s domestic LCC 
passenger demand 

 

8.3.3 Australia’s real GDP  

 

There is an extensive body of literature that notes that real GDP is the major driving force of 

air travel demand, regardless of trip purpose (see, for example, Dempsey 2004; Doganis 

2009; Janić 2011). Economic growth is regarded as the primary predictor of air travel 

demand: an increase in GDP normally entails more than proportional increase in airline 

traffic, and conversely, demand is extremely sensitive to economic recessions (Dempsey 

2004). Australia’s real GDP was included as a predictor variable in the study’s genetic 

algorithm, artificial neural network (ANN), and artificial neuro-fuzzy inference system 

(ANFIS) PAX and RPKs models. The coefficient of Australia’s real GDP was found to be 

0.03 in both GAPAXDElin and GARPKSDElin model. Australia’s real GDP was also shown to 

be an important predictor variable in the ANN models with the contribution value of 4.42 and 

4.59 in the PAX and RPKs model, respectively.  The ANN and ANFIS models were tested 

with and without Australia’s real GDP as a predictor variable. In these modelling approaches, 

both the PAX and RPKs models were found to be more accurate and reliable, and provided 

a greater forecasting capability when Australia’s real GDP was included as a predictor 

variable in the models. 

 

The findings are similar to those of Aderamo (2010), Alekseev and Seixas (2009) and 

Sivrikaya & Tunç (2013), who found that real GDP is a major predictor of domestic air travel 

demand. 

PAX = -4176 + 0.0004 POP 
RPKs = -7784 + 0.0006 POP 
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In order to demonstrate the importance of the relationship between Australia’s real GDP and 

the Australia’s domestic LCC passenger demand (both enplaned passengers and RPKs), 

the data are plotted in Figure 8.5. 

 

  

Figure8.5.The relationship between Australia’s real GDP and Australia’s domestic LCC passenger 
demand 

 

8.3.4 Australia’s real GDP per capita 

 

Non-business related air travel tends to be discretionary in nature and is paid from 

disposable income. Higher levels of income are often associated with greater disposable 

income and, thus, more non-business related trips by air (McKnight 2010). Historically, 

leisure travel has shown a strong response to personal income levels. Two things tend to 

occur as an individual personal income rises. First, they spend more on non-essential items. 

These often include expenditure on travel by all modes. Second, air travel, which has a 

higher cost is considered a more comfortable and convenient transport mode for longer 

journeys, becomes more competitive against surface transport modes and there is a shift of 

demand from surface transport modes to air. In other words, increases in income result in 

higher levels of expenditure by individuals on leisure travel, and at the same time a higher 

proportion of that expenditure is devoted to travel by air rather than by surface modes 

(Doganis 2009).  

 

In order to model the influence of income as a predictor of Australia’s domestic LCC 

passenger demand, two income measures were used in the study – Australia’s real GDP 

and Australia’s real GDP per capita. As we have just noted in Section 8.3.3, Australia’s real 

GDP was found to be a more significant predictor variable in the study’s genetic algorithm, 

artificial neural network (ANN), and adaptive neuro fuzzy inference system (ANFIS) PAX and 

PAX = -1097 + 0.02GDP RPKs = -3227 + 0.03GDP 
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RPKs models than Australia’s real GDP per capita. However, in the case of the traditional 

multiple linear regression PAX and RPKs MLR modelling, Australia’s real GDP per capita 

was found to be more statistically significant. The coefficient is 1.94 in MLR PAX model and 

2.39 in MLR RPKs model.  

 

Figure 8.6 shows the importance of the relationship between Australia’s real GDP per capita 

and the Australia’s domestic LCC passenger demand (both enplaned passengers and 

RPKs). 

 

 

Figure8.6.The relationship between Australia’s real GDP per capita and Australia’s domestic LCC 
passenger demand 

 

The finding that Australia’s real GDP per capita is a driver of Australia’s domestic LCC 

passenger demand supports the views of the literature that GDP per capita is, in fact, an 

important predictor of air travel demand (Doganis 2009; Love et al. 2006).              

 

 

8.3.5 Australia’s unemployment size 

 

As we have previously noted, employment also influences air travel demand (Doganis 2009). 

Ceterus paribus, rising levels of employment tend to positively influence air travel demand, 

while increasing levels of unemployment tend to dampen or depress air travel demand 

(McKnight 2010).This occurs because there are significant economic effects associated with 

employment. The standard of living of certain demographic groups and individuals will be 

affected by changes in the incidence of a country’s employment and unemployment rate 

(Martin 1991). Job losses result in a significant decline in income and hence consumption for 

individuals and their families. Job losses also have a “snow-ball” effect as the reduction in 

PAX = -12080 + 1.01GDPPC RPKs = -17540 + 1.46GDPPC 
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expenditure by families experiencing loss of jobs means further loss of demand for 

businesses, resulting in further unemployment (Goolsbee 2010). 

 

Australia’s unemployment size was included as a predictor variable in the study’s genetic 

algorithm, artificial neural network (ANN), and artificial neuro-fuzzy inference system 

(ANFIS) PAX and RPKs models. The coefficient of Australia’s unemployment size was found 

to be (-12.33) in the GAPAXDElin model, and (-12.75) in the GARPKSDElin model, 

respectively. Australia’s unemployment size was also shown to be an important predictor 

variable in the ANN models with the contribution value of 4.07 and 5.42 in the PAX and 

RPKs model, respectively. The ANFIS models were also tested with and without Australia’s 

unemployment size as a predictor variable. In the ANFIS modelling approach, both the PAX 

and RPKs models were found to be more accurate and reliable, and provided a greater 

forecasting capability when Australia’s unemployment size was included as a predictor 

variable. The modelling results therefore suggest that changes in Australia’s unemployment 

size are a significant predictor of Australia’s domestic LCC passenger demand.  

 

Figure 8.7 shows the importance of the relationship between Australia’s unemployment size 

and the Australia’s domestic LCC passenger demand (both enplaned passengers and 

RPKs). 

  

Figure8.7.The relationship between Australia’s unemployment size and Australia’s domestic LCC 
passenger demand 

 

 

8.3.6 World jet fuel prices 

 

Oil prices are quite often viewed as a key indicator of travel costs, particularly for air travel 

(Li 2010). Indeed, sharp increases in world oil prices have had significant (though often 

PAX = 8260 -5.38UEMP RPKs = 8743 – 5.88UEMP 
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temporary) effects on air travel demand (Penner 1999). This is because an increase in oil 

prices results in higher travel costs. The higher travel costs subsequently results in leisure 

traveI, the primary focus of Australia’s domestic LCC, being more expensive (Li 2010).  

 

As can be observed in Table 8.5, world jet fuel prices were included as a predictor variable 

in all four modelling approaches (MLR, GA, ANN, ANFIS). The coefficient of world jet fuel 

prices was found to be (620.68) in the MLR PAX and (632.05) in the RPKs models, and 

(683.16) in the GAPAXDElin model, and (660.25) in the GARPKSDElin model, respectively. 

World jet fuel prices was also shown to be an important predictor variable in the ANN models 

with the contribution value of 4.97 and 3.73 in the PAX and RPKs model, respectively.      

 

It is expected that relationship between fuel price and air travel demand will be negative 

since an increase in fuel prices, leads to higher air travel costs and therefore make leisure 

travel dearer (Li 2010). However, in this study the coefficient of jet fuel price was found to be 

positive. According to Morrell and Swan (2006), oil prices sometimes can move with air 

travel demand, that is, when the economy grows fast, demand for oil increases since oil is 

essential to grow the economy. And when the economy is growing, consumer confidence is 

escalating, causing air travel demand to increase. 

 

The ANFIS models were tested with and without world jet fuel prices as a predictor variable. 

In this modelling approach, both the PAX and RPKs models were found to be more accurate 

and reliable, and provided a greater forecasting capability when world jet fuel prices were 

included as a predictor variable. 

 

8.3.7 Australia’s real interest rates 

 

As we noted in Chapter 4, short-term conditions such as official interest rates can have a 

strong influence on the growth potential of both individual airlines and the total industry 

(Abed et al. 2001). This is because interest rates influence the balance between expenditure 

and saving (Cook 2007). If interest rates decline, this may influence demand for goods and 

services. This is because many homeowners have a mortgage and the falling interest rate 

will increase their discretionary income. This is the income that they have available to 

purchase non-necessities. Hence, they will purchase more of most normal goods and 

services (Wilkinson 2005). Furthermore, high interest rates will inhibit economic activity, 

which can have a dampening effect on airline traffic (Wensveen 2011). 
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As can be seen in Table 8.5, Australia’s real interest rates were included as predictor 

variables in all four modelling approaches (MLR, GA, ANN, ANFIS). The coefficient of 

Australia’s real interest rates was found to be (-212.58) in the MLR PAX and (-198.26) in the 

RPKs models, and (-720.25) in the GAPAXDElin model, and (-684.66) in the GARPKSDElin 

model, respectively. Australia’s real interest rates was also shown to be an important 

predictor variable in the ANN models with the contribution value of 3.75 and 4.48 in the PAX 

and RPKs model, respectively. The ANFIS models were tested with and without Australia’s 

real interest rates as a predictor variable. In this modelling approach, both the PAX and 

RPKs models were found to be more accurate and reliable, and provided a greater 

forecasting capability when Australia’s real interest rates were included as a predictor 

variable. A similar situation occurred with the genetic algorithm models, which were also 

tested with Australia’s real interest rates included and not included as a predictor variable.  

 

Based on these findings it can be concluded that Australia’s real interest rates do act as a 

predictor of Australia’s domestic LCC passenger demand. This finding therefore supports the 

views of Abed et al. (2001) and Cook (2007) who have suggested that interest rates act as a 

predictor of air travel demand. This is also an important finding, as it is to the best of the 

author’s knowledge, the first time that real interest rates have been included as a predictor 

variable in air travel demand forecasting models. The study findings therefore provide a new 

insight into the importance of Australia’s real interest rates as a predictor of Australia’s 

domestic LCC passenger demand.  

 

Figure 8.8 shows the importance of the relationship between Australia’s real interest rates 

and the Australia’s domestic LCC passenger demand (both enplaned passengers and 

RPKs). 
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Figure8.8.The relationship between Australia’s real interest rates and Australia’s domestic LCC 
passenger demand 

 

 

8.3.8 Recorded bed capacities at Australia’s tourist accommodation 

 

Low cost carriers (LCCs) have become an integral part of today's tourism and air transport 

industries. Air transport and tourism are natural complements – for many tourist trips, air 

travel is the preferred transport mode and for some trips, it is the only transport means 

available. In addition, lower air fares result in more tourists as customers of the tourism 

industry, and lower ground costs induce more tourists to utilise the services of airlines. The 

LCCs have become extremely important as they are having significant impacts on tourism. 

Most LCCs are oriented towards the leisure travel market segment, though some also 

attempt to attract price conscious business travellers. The most pronounced impact LCCs 

have is on the size of the overall market. Indeed, the lower air fares offered by LCCs leads to 

more travel, though some travel may be at the expense of the surface modes. Furthermore, 

the products and services offered by LCCs are changing tourism markets. The ready 

available of cheap, and in some instances very low, air fares makes air travel trips of a short 

duration feasible. In addition, LCCs are having a further important impact on the 

development of secondary destinations. Holiday makers are increasingly discovering the 

attractions of destinations which were less well known, and in some cases less crowded. 

Such destinations have realised the importance of the LCCs generating new tourism 

demand for their destinations, and in some instances they have been offering financial 

inducements to the LCCs to operate services. LCCs are therefore changing, as well as 

growing, tourism markets (Forsyth 2006).  

 

PAX = 4419 +152INT RPKs = 4577 –+160.1INT 
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Tourists also often use LCCs flights to take a short-break or short holidays (Macchiavelli & 

Cinesi 2006). Indeed, low-cost carriers are significant for the development of weekend, city 

or short-break tourism and are influencing the expansion of potential destinations (Graham & 

Shaw 2008). Visiting friends and relatives (VFR) traffic are also using LCCs as part of their 

travel plans (Bieger & Wittmer 2006). The LCCs are therefore extending the range of 

motivations and frequency of travel for private leisure (Olipra 2012).  

 

An examination of the markets served by Australia’s domestic low cost carrier shows that 

tourist destinations form a key part of their route network structure. For example, Tiger 

Airways currently serves Cairns, Coffs Harbour, Gold Coast, Mackay, and the Whitsunday 

Coast, all of which are key tourism destinations. Hence, due to the close relationship 

between LCCs and tourism, recorded bed capacities at Australia’s tourist accommodation, 

was included as a proxy variable for tourism (Tsekeris 2009), in order to empirically examine 

the relationship between tourism and Australia’s domestic LCC passenger demand.  

 

The modelling results presented in Table 8.5, show that the tourism proxy variable was 

significant, and has been included as a predictor variable in the artificial neural network PAX 

and RPKs (ANN) models, the genetic algorithm GAPAXDE and GARPKSDE models, and 

the ANFIS PAX and RPKs models. The coefficient of Australia’s tourism attractiveness was 

found to be 0.01 in both the GAPAXDE and GARPKSDE model, respectively. Australia’s 

tourism attractiveness was also shown to be an important predictor variable in the ANN 

models with the contribution value of 5.82 and 8.16 in the PAX and RPKs model, 

respectively. 

 

The ANN and ANFIS models were tested with and without Australia’s tourism attractiveness 

as a predictor variable. In these modelling approaches, both the PAX and RPKs models 

were found to be more accurate and reliable, and provided a greater forecasting capability 

when Australia’s tourism attractiveness were included as a predictor variable. The findings of 

the study therefore reveal that Australia’s tourism attractiveness is indeed an important 

predictor of Australia’s domestic LCC passenger demand. The findings are also consistent 

with other studies that have examined the influence of LCCs on domestic tourism demand 

(Bieger & Wittmer 2006; Chung & Wang 2011).   

 

Figure 8.9 shows the importance of the relationship between Australia’s tourism 

attractiveness and the Australia’s domestic LCC passenger demand (both enplaned 

passengers and RPKs). 
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Figure8.9.The relationship between Australia’s tourism attractiveness and Australia’s domestic LCC 
passenger demand 

 

8.3.9 Summary of the principal predictors of Australia’s domestic low cost 

carrier passenger demand 

 

A key aim of this thesis was to examine: What are the principal predictors of Australia’s 

domestic LCC passenger demand? In the preceding section it was shown that the primary 

predictors of Australia’s domestic LCC passenger demand are Australia’s real best discount 

airfare, Australia’s population size, Australia’s real GDP, Australia’s real GDP per capita, 

Australia’s unemployment size, world jet fuel prices, Australia’s real interest rates, and 

recorded bed capacities at Australia’s tourist accommodation. The socio economic variables 

comprise Australia’s population size, Australia’s real GDP, Australia’s real GDP per capita, 

Australia’s unemployment size, Australia’s real interest rates, recorded bed capacities at 

Australia’s tourist accommodation. The two principal air transport system variables 

influencing Australia’s domestic LCC passenger demand are Australia’s real best discount 

airfares and world jet fuel prices.  

 

Importantly, this study sought to examine for the first time the influence of three new socio- 

economic factors - Australia’s unemployment size, tourism attractiveness factor, and 

Australia’s real interest rates – as predictors of Australia’s domestic LCC passenger 

demand. Australia’s real interest rates were included in all of the study’s models, whereas 

Australia’s unemployment size and tourism attractiveness factor, using recorded bed 

capacities at Australia’s tourist accommodation as a proxy were included in all models 

except the MLR models due to this independent variable statistically insignificant relationship 

with the dependent variables (Australia’s LCC enplaned passenger and RPKs). However, 

PAX = -20770 +0.04 ACCOM RPKs = -27430+0.05 ACCOM 



  Chapter 8 

  Empirical Results 

182 

 

the inclusion of Australia’s real interest rates as a predictor variable in the GA, ANN and 

ANFIS model improved these model’s accuracy, reliability, and predictive capability. It can 

therefore be concluded that Australia’s unemployment size, tourism attractiveness factor, 

and Australia’s real interest rates are, in fact, important predictors of Australia’s domestic 

LCC passenger demand and are worthy of consideration in any future air travel demand 

forecasting studies. 

    

The results of the independent variables used in MLR, GA, ANN and ANFIS for both PAX 

and RPKs models were summarised and presented in Table 8.5. It was noted that when 

modelling the MLR, GA, ANN and ANFIS models using two demand measurements, PAX 

and RPKs, the same set of independent variables were included in both PAX and RPKs 

models.  

 

In the MLR PAX and RPKs models, 5 independent variables were found to be significant: 

Australia’s real best discount airfare, Australia’s real GDP per capita, Australia’s real interest 

rates, world jet fule prices and dummy variable reflecting Virgin Australia changing business 

model. While in the GA, ANN and ANFIS PAX and RPKs models, a total of eight 

independent variables were included in the models. These were Australia’s real best 

discount airfare, Australia’s population size, Australia’s real GDP, Australia’s unemployment 

size, world jet fuel prices, Australia’s real interest rates, recorded bed capacities at 

Australia’s tourist accommodation and three dummy variables reflecting Virgin Australia 

changing business model, the collapse of Ansett Australia, and the Commonwealth Games 

in 2006. The modelling results are plausible and support the findings in the literature and, 

very importantly for the first time, provide important insights for industry practitioners and key 

stakeholders into the principal predictors of Australia’s domestic LCC passenger demand. 

 

8.4 The Hybridization of Australia’s Low Cost Carriers Business Models   

 

Recall now that Koo (2009) has noted that there are numerous variations to the LCCs’ 

business model. Indeed, as we saw in Chapter 3 (Section 3.4), it has been argued that the 

business models of many LCCs around the world have been evolving into what has been 

termed a ‘hybrid’ model (Tomová & Ramajová 2014; Vidović et al. 2013). In light of the 

evolving LCCs’ business models, and the trend towards a ‘hybrid model’, a further aim of this 

thesis was to investigate whether Australia’s domestic LCC have also implemented a 

“hybrid” business model. In order to achieve this aim, the following research question was 
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proposed: How have Australia’s domestic low cost carriers business model followed that of 

other low cost carriers from around the world? 

 

A key finding of this thesis is that Australia’s domestic LCC have indeed moved towards a 

hybrid business model. This has occurred from not long after Jetstar Airways was 

established in 2004. The analysis in Section 3.4 revealed that Australia’s domestic LCC’s 

business model has been hybridized as follows:  

 

Product: Both Jetstar and Tiger Airways product attributes have become similar to those of 

full service network carriers. This is because both airlines have now embraced and offer 

frequent flyer programs (which is not a traditional LCC business model attribute). Jetstar 

offers a form of premium seating (first three rows of economy) on their domestic Australian 

services.     

 

Fleet: Both Jetstar and Tiger Airways follow the typical LCC business model in regards to 

their Australian domestic fleet. Both of these airlines have selected the Airbus A320 as their 

preferred aircraft type. Jetstar also operates a small sub-fleet of six Airbus A321 aircraft on 

more dense routes in Australia. One of the unique features of Jetstar’s hybridization has 

been its focus on both domestic Australian services, international services from Australia to 

key Asian and US leisure markets, as well as its Pan-Asian strategy. Consequently, the 

Jetstar Group has a heterogenous aircraft fleet structure, with the airline group fleet 

compromising Airbus A320, A321 and A330 as well as Boeing B787 aircraft (the latter two 

types are operated by Jetstar International). Also, an example of the hybridization of the 

Jetstar business model is that it offers “Star” or business class seats on its international 

services to and from Australia.   

 

Route Network: Both Jetstar and Tiger Airways operate a point-to-point route network 

connecting Australia’s major capital cities. Their route networks also focus on connecting 

Australia’s major capital cities with key leisure and tourist markets. For example, both 

airlines focus heavily on serving key tourist destinations in Queensland, such as, the Gold 

Coast. Following the trend in other LCC markets around the world, Australia’s LCC are also 

focusing on serving secondary tourist markets. This is evident by the operation of services 

by both LCCs to destinations, such as Ballina and Coffs Harbour in NSW, and the 

Whitsunday Coast in Queensland. In general terms, both Tiger and Jetstar Airways 

Australian operations utilize primary or major airports. An exception to this strategy is 
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Jetstar’s use of Avalon Airport, located 55 kilometres from Melbourne, from which it provides 

5 daily services each day to Sydney (Lannen 2014).   

 

A further example of the hybridization of Jetstar’s business model has been the airline’s 

recent strategic alliance signed with Emirates Airline. A unique feature of this alliance is that 

Jetstar will be able to drive domestic tourism destinations through the additional feed of 

traffic from Emirates vast global route network. Jetstar also has code-sharing arrangements 

with other airlines (primarily full service network carriers), who are members of the oneworld 

strategic airline global alliance. Traditionally, LCCs have not embraced strategic alliances or 

code-sharing arrangements with other full service network carriers (FSNCs).       

 

Pricing and distribution channels: Throughout the history of their operations in Australia, 

both Jetstar and Tiger Airways have adopted a dynamic air fare pricing strategy, with large 

discounts often being offered to stimulate demand.  Virgin Blue, when it was an LCC, 

followed a similar strategy. This suggests that both Jetstar and Tiger are following the pricing 

attribute of the traditional LCC business model. However, both airlines offer a simplified 

pricing structure with deeply discounted fare levels available for customers that book flights 

early. In contrast, later booking customs often pay higher air fares. This suggests that both 

airlines use a price discrimination strategy (Belobaba 2009), and are mindful of customer’s 

willingness-to-pay (WTP). 

 

In recent times, both airlines have moved away from the traditional LCC business model that 

did not embrace the use of global distribution systems (GDSs) and travel agents, due to their 

high costs, to one, where both airlines are now members of GDS, and Jetstar actively 

pursue business from travel agents. Notwithstanding, both airlines also encourage 

passengers to book directly with them via their website. This is a cost and customer service-

related strategy.        

 

Focus on ancillary revenue streams: Historically, the traditional LCC business model has 

placed a very high focus on the generation of ancillary revenues. The analysis of Australia’s 

domestic LCC market presented in Section 3.4, found that Jetstar, throughout its history, has 

also implemented strategies to capture ancillary revenues, from such areas as in-flight meal 

charges, and rental fees for the use of in-flight entertainment equipment (IFE). 

 

Tiger Airways also earns revenue from a diverse range of sources, including fees for 

bookings made by the internet and by travel agents, excess baggage charges, sporting 
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baggage charges, booking amendment charges, and preferred selected seat charges (Tiger 

Airways Holdings 2014b).   

 

8.5 Summary  

This chapter has presented the study’s empirical results. It was shown that there are multiple 

forecasting approaches available to airline management to forecast passenger demand. In 

addition to the traditional multiple linear regression (MLR) approach, genetic algorithm, 

artificial neural networks (ANNs), and the adaptive neuro-fuzzy inference system (ANFIS) 

approaches, the latter three based on artificial intelligence methods, are available for this 

critical airline management function. The study results showed that the adaptive neuro-fuzzy 

inference system (ANFIS) approach was the most accurate and reliable model, and provided 

the most predictive capability in forecasting Australia’s domestic LCC passenger demand. 

The chapter also discussed the primary predictors of Australia’s domestic LCC passenger 

demand. It was shown that these primary predictors are Australia’s real best discount airfare, 

Australia’s population size, Australia’s real GDP, Australia’s real GDP per capita, Australia’s 

unemployment size, world jet fuel prices, Australia’s real interest rates, and recorded bed 

capacities at Australia’s tourist accommodation. The socio-economic variables comprise 

Australia’s population size, Australia’s real GDP, Australia’s real GDP per capita, Australia’s 

unemployment size, Australia’s real interest rates, recorded bed capacities at Australia’s 

tourist accommodation. The two principal air transport system variables influencing 

Australia’s domestic LCC passenger demand are Australia’s real best discount airfares and 

world jet fuel prices.  

 

Finally, the chapter discussed the hybridization strategies that Australia’s domestic LCC 

have defined and implemented in response to the changing market requirements. These 

strategies are very similar to those of other LCCs based in other parts of the world. 

 

The following chapter presents the study’s concluding remarks, highlights the limitations of 

the study, discusses the significance of the research undertaken, and offers suggestions for 

future research.    
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CHAPTER NINE: CONCLUDING COMMENTS  

9.1 Overview 

Due to the vast size of the Australian continent, the country’s varied and rugged topography 

and scattered population present significant transport challenges (Nolan 1996). Australia’s 

LCC have responded to this challenge since their inception in 2000. Starting from relative 

humble beginnings with Virgin Blue’s initial operations, Australia’s LCC have since achieved 

considerable market success. Indeed, since the deregulation of Australia’s domestic airline 

market in 1990, the LCCs market segment has also displayed strong growth, peaking in 

2010 with a 57 per cent market share, and is now around 31 per cent. The decline in the size 

of this market segment since 2011 can largely be attributed to the change in business model 

of Virgin Australia, who, as we have noted throughout this thesis, has moved from a more 

traditional LCCs to FSNCs business model since 2011. 

 

In order to satisfy the dynamic changes in airline passenger demand as well as optimise 

aircraft utilisation and revenues, LCCs require highly accurate and reliable passenger 

demand forecasts. Also, in defining and implementing strategies, it is a critical requirement 

for airline management to be cognizant of the factors that shape not only passenger 

demand, but also the market environment in which they compete. As has been argued 

throughout this thesis, the factors that influence passenger demand are varied in nature, and 

may have a positive or negative influence on traffic demand. Therefore, when defining and 

implementing a business model and competitive strategies, Australia’s LCC require models 

that will enable them to forecast their passenger traffic with the highest possible degree of 

accuracy. They will also need to be mindful of the factors that will influence passenger 

demand and their competitive strategies. With this in mind, this thesis has sought to identify 

and empirically examine the most accurate and reliable forecasting methods, as well as to 

obtain key insights into the factors that will either positively or negatively influence Australia’s  

LCC passenger demand.  This was the general aim of this thesis. 

 

This thesis has four key aims. These are restated below: 

• Empirically examine the International Civil Aviation Organization recommended 

econometric passenger forecasting modelling approach with the artificial 

intelligence-based forecasting methods in order to determine the optimum method 

for forecasting Australia’s LCC demand. 
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• Empirically examine whether artificial intelligence-based forecasting models provide 

more accurate and reliable Australia’s LCC passenger demand forecasts as 

compared to the traditional multiple linear regression approach. 

• Explore the principal predictors of Australia’s domestic LCC passenger demand. 

• Investigate whether Australia’s domestic LCC have adopted a hybrid business 

model similar to other LCCs located around the world.     

 

This concluding chapter is structured as follows. Section 9.2 explains the requirement for the 

research. Section 9.3 discusses how the research will be useful for key industry 

stakeholders and academics. This is followed by the study approach (Section 9.4), and a 

comment on the modelling results (Section 9.5). Section 9.6 summarizes the research 

outcome. Section 9.7 highlights the study’s methodological and theoretical contributions. 

Section 9.8 identifies and explains the limitations of the study and offers suggestions for 

future research.   

  

9.2 The Requirement for Basic Research 

 

Irrespective of the business model defined and implemented by an airline, this thesis has 

argued that forecasting passenger demand is a most critical requirement for airline 

management. Indeed, as Doganis (2009) observes forecasting is considered the most 

critical area of airline management. The importance of forecasting air travel demand for 

airline executives is as follows: 

 Demand forecasting is essential when planning and scaling capital investment and 

infrastructure, and when scaling air transport related firms (Fernandes & Pacheco 

2010).   

  In order to plan the supply of services that is necessary for an airline to satisfy that 

demand (Doganis 2009).  

 Forecasting passenger transport demand is of critical importance for airlines as well 

as for investors since investment efficiency is greatly influenced by the accuracy and 

adequacy of the estimation performed (Blinova 2007).  

 Air traffic forecasts are also one of the key inputs into airlines’ fleet planning, route 

network development, and they are also used in the preparation of airline’s annual 

operating plans (Ba-Fail et al. 2000). 
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The literature on airline passenger demand forecasting is extremely extensive and, as 

reported in Chapter 2, has attracted considerable research attention since 1950, and 

especially since 2001. However, there is a surprising lack of research focussing on the 

development and empirical testing of the traditional multiple linear regression (MLR) and 

artificial intelligence-based methods to forecast Australia’s LCC passenger demand. Further, 

there have been no reported studies that have proposed and empirically tested models for 

forecasting Australia’s domestic LCC passenger demand – a critical research area in its own 

right. The optimum modelling method, in terms of accuracy, reliability, and predictive 

capability, for forecasting Australia’s domestic LCC passenger demand is therefore not 

readily identifiable. Based on the critical importance of forecasting for airline management 

the key aim of this thesis was to address this apparent gap in the literature. Indeed, the lack 

of previous research in this area was a key motivation for this study.  

 

Furthermore, the factors that influence air travel demand are complex (Doganis 2009; 

Vasigh et al. 2008). Each factor is composed of elements that can stimulate or reduce air 

travel demand. The comprehensive review of the extant literature on airline passenger 

demand forecasting revealed that in addition to income measures (real GDP or real GDP per 

capita), cost (air fare), that there are other socio-economic factors, for example, 

unemployment and real interest rates, which may stimulate or reduce demand. In the 

absence of any studies that have proposed and empirically examined models for forecasting 

Australia’s domestic LCC passenger demand, it was not clear what the primary predictors of 

Australia’s domestic LCC passenger demand actually are. Nor has there been any reported 

research into the influence of Australia’s unemployment, real interest rates, and tourism 

attractiveness on Australia’s domestic LCC passenger demand. Thus, a secondary aim of 

this research was to achieve a greater understanding of the factors which influence in 

Australia’s domestic LCC passenger demand. This investigation also sought to identify 

whether Australia’s unemployment, tourism attractiveness, and real interest rates are 

significant predictors of Australia’s domestic LCC passenger demand. 

 

In addition, the LCC industry has been evolving around the world in response to changing 

customer requirements. This has led to new type of business model, which has been termed 

a ‘hybrid’ model (Tomová & Ramajová 2014; Vidović et al. 2013). In light of the evolving LCC 

business models, and the trend towards a ‘hybrid model’, a further aim of this thesis was to 

explore whether this strategy has been adopted by Australia’s domestic LCC as well.  
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9.3 To whom is this Research Useful? 

 

Knowledge of the critical predictors of Australia’s LCC passenger demand together with new, 

more accurate, and reliable forecasting models can assist LCC executives in more precisely 

forecasting their passenger demand. Also, the choice of new more powerful, and accurate 

and reliable, passenger demand forecasting models may be of considerable assistance to 

government agencies, aviation consultancy organisations, and industry bodies, who have an 

interest in forecasting future air travel demand. Airport managers could also benefit from the 

results of this study as forecasting is a critical part of the airport master planning process. 

From an academic perspective, the modelling results of this thesis provide new insights into 

LCC passenger demand forecasting methods and, it is hoped, that they will facilitate future 

additional research into this critical area. 

 

9.4 The Study Approach 

 

The study commenced with a comprehensive survey of the airline management, 

transportation, and economics literature as well as government reports that have focused on 

air travel demand modelling. The objective of this task was to review the air travel demand 

modelling approaches that have been undertaken over the period 1950 to 2014. An 

additional objective was to identify any previous studies that have focused on forecasting 

LCC passenger demand, both globally, and, most importantly in the context of this thesis, in 

Australia. The survey revealed that by far the most predominant air travel demand 

forecasting method was the traditional multiple linear regression (MLR) method. 

Interestingly, this is also the recommended passenger forecasting approach of the 

International Civil Aviation Organization (ICAO), the world’s peak air transport body.  

 

Once the previous air travel demand modelling approaches were identified, a review of the 

economics and statistics/forecasting journals was then conducted in order to identify any 

new contemporary modelling approaches that could potentially be used for airline passenger 

air travelling demand forecasting was undertaken. Two such methods identified were the 

genetic algorithm and adaptive neuro-fuzzy inference system (ANFIS) approaches. The 

literature survey also revealed that there has been very limited use of artificial neural 

networks (ANNs) for forecasting airline passenger demand.   

 

Based on this approach there was strong justification for testing the traditional or classical 

linear regression (MLR) forecasting approaches with the artificial intelligence-based 
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forecasting methods identified from the comprehensive literature survey. As noted earlier, 

the artificial intelligence-based approaches for forecasting air travel demand have attracted 

surprisingly limited research focus in the literature. A total of three studies have proposed 

and tested artificial neural networks in the context of air travel demand forecasting (Alekseev 

& Seixas 2002, 2009; Blinova 2007). Moreover, there have been no reported studies that 

have proposed and empirically tested genetic algorithm or artificial neuro-fuzzy inference 

system (ANFIS) LCC passenger demand forecasting models. 

 

The predictors of air travel demand were also investigated in the literature survey. 

Specifically, this survey sought to identify any previous studies that had developed and 

tested models for forecasting LCC demand, so as to ascertain the independent variables 

included in the modelling. Surprisingly, no such studies were found. The literature survey 

revealed a range of socio-economic and air transport system factors that have been 

identified as predictors of air travel demand. Based on these insights, the data for the 

variables included in the modelling was collected.    

 

The data on Australia’s domestic LCC enplaned passengers and revenue passenger 

kilometres performed (RPKs) as well as key socio-economic data relating to the key 

predictors of Australia’s domestic LCC passenger demand was collected from various 

sources and provided the empirical basis for the exploratory investigation. The important 

predictors of Australia’s domestic LCC passenger demand were subsequently modelled 

using four modelling approaches (multiple linear regression, artificial neural network, genetic 

algorithm and adaptive neuro-fuzzy inference system). Each of the modelling approaches 

were evaluated using up to five goodness-of-fit measures: mean absolute error (MAE), mean 

absolute percentage error (MAPE), mean square error (MSE), root mean square error 

(RMSE), and correlation coefficient (R). The results of the modelling are extremely plausible. 

We comment on the findings in the following section. 

 

Finally, following the approach of Bowen (2009), a comprehensive document search was 

undertaken to investigate whether Australia’s domestic LCC have adopted a hybrid business 

model similar to other LCCs located around the world 
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9.5 A Comment on the Modelling Results 

 

The modelling techniques presented in this thesis are new and novel and should assist 

Australia’s LCC executives in forecasting their passenger demand, both in terms of enplaned 

passengers, and revenue passenger kilometres performed (RPKs). To this author’s 

knowledge, only Alekseev & Seixas (2002, 2009) and Blinova (2007) have used artificial 

neural networks (ANNs) to forecast domestic passenger air travel demand. There have been 

no reported studies proposing either genetic algorithm or adaptive neuro-fuzzy inference 

systems (ANFIS) models for forecasting Australia’s domestic LCC passenger demand. The 

results have demonstrated that it is possible and indeed plausible to use artificial neural 

networks (ANNs), genetic algorithm, and ANFIS models to forecast Australia’s domestic 

LCC passenger demand. These artificial intelligence-based approaches have been shown to 

provide more accurate and reliable results when compared to the multiple linear regression 

models. This is the most important finding as it highlights the value of artificial intelligence 

methods. Thus, the International Civil Aviation Organization and other key industry 

stakeholders involved with forecasting passenger demand could therefore consider the use 

of such methods rather than the traditional multiple linear regression method.  

 

Of the three artificial intelligence-based methods used in the study, the new, and novel, 

ANFIS PAX and RPKS models were shown to be the most accurate and reliable of the 

modelling approaches undertaken in thesis, in terms of accuracy, reliability, and predictive 

capability, and measured by the following goodness-of-fit measures: MAE, MAPE, MSE, and 

RMSE. 

 

PAX Model: MAE = 213.0, MAPE = 4.36 per cent, MSE = 7.1x104, and RMSE = 267.52. 

 

RPKs Model: MAE = 218.97, MAPE = 5.55 per cent, MSE = 8.2x104, and RMSE = 286.81. 

 

In the multiple linear regression (MLR) PAX and RPKs models, 5 independent variables 

were found to be significant: Australia’s real best discount airfare, Australia’s real GDP per 

capita, Australia’s real interest rates, world jet fuel prices, and dummy variable reflecting 

Virgin Australia changing business. In the Genetic Algorithm (GA)             and 

             models, a total of 9 independent variables were included in the models: 

Australia’s real best discount airfare, Australia’s population size, Australia’s real GDP, 

Australia’s unemployment size, Australia’s real interest rates, world jet fuel prices, recorded 
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bed capacities at Australia’s tourist accommodation, two dummy variables reflecting Virgin 

Australia changing business model, and the Commonwealth Games in 2006. While in the 

ANN and ANFIS PAX and RPKs models, a total of 8 independent variables were included in 

the models. These were Australia’s real best discount airfare, Australia’s population size, 

Australia’s real GDP,  Australia’s unemployment size, Australia’s real interest rates, world jet 

fuel prices, and one  dummy variable reflecting Virgin Australia changing business model. 

The modelling results are plausible and support the findings in the literature and, very 

importantly for the first time, provide important insights for industry practioners and key 

stakeholders as to what are the principal predictors of Australia’s domestic LCC passenger 

demand. 

 

9.6 Research outcomes 

 

The key aim of this thesis was to specify and empirically examine three artificial intelligence-

based approaches (ANNs, GA and ANFIS) as well as the multiple linear regression 

approach, in order to identify the optimum model for forecasting Australia’s LCC passenger 

demand. The core outcome of this research, the fact that modelling based on artificial neural 

network is far more effective than the traditional linear models prescribed by the International 

Civil Aviation Organization (ICAO), means that future work is essential to validate this.  

 

Four research questions are addressed and the key finding are summarised as following; 

 

What forecasting methods are available for estimating Australia’s domestic low cost carrier 

passenger demand and how do they differ in applicability and capability? 

 

The thesis commenced with an in-depth examination of the forecasting methods that have 

previously been used in air travel demand forecasting. This comprehensive survey of the 

literature provided valuable insights into the traditional air travel demand forecasting 

methods, the most popular method being multiple linear regression models. The survey of 

the literature also identified new, and novel, artificial intelligence-based forecasting methods 

that could be used to forecast Australia’s domestic LCC passenger demand. Consequently, 

four forecasting approaches were identified from the literature survey. This study therefore 

used a classical multiple linear regression (MLR), artificial neural network (ANNs), genetic 

algorithm (GA), and the adaptive neuro fuzzy inference system (ANFIS) model to forecast 

Australia’s domestic LCC passenger demand. Two measures of Australia’s domestic LCC 
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passenger demand were used in the study. The first measure was the number of Australia’s 

domestic LCC enplaned passengers (PAX). The second measure was Australia’s domestic 

LCC revenue passenger kilometres performed (RPKs) (Belobaba 2009; Holloway 2008). 

The thesis highlighted the fact that there are multiple forecasting methods available to airline 

management to forecast passenger demand. Importantly, the modelling results showed that 

these modelling approaches do differ in applicability and capability. The artificial neuro-fuzzy 

inference system (ANFIS) method proved to have the most predictive capability, accuracy 

and reliability based on the goodness of fit measures (MAE, MAPE, MSE, RMSE).   

 

How do artificial intelligence-based forecasting models perform in terms of accuracy and 

reliability in low cost carrier passenger demand forecasting as compared to the traditional 

multiple linear regression approach? 

 

The three artificial intelligence-based forecasted approaches tested in this study were clearly 

shown to provide more accurate and reliable LCC passenger demand forecasts. The 

modelling results of all three artificial intelligence-based methods were therefore superior 

when compared to the traditional multiple linear regression approach. This suggests that 

artificial intelligence-based forecasting methods provide more accurate and reliable forecasts 

in Australia’s domestic LCC passenger demand.    

 

What are the principal predictors of Australia’s domestic LCC passenger demand?  

 

The results conclude that the principal predictors of Australia’s domestic LCC passenger 

demand comprise of the socio economic variables including; Australia’s population size, 

Australia’s real GDP, Australia’s real GDP per capita, Australia’s unemployment size, 

Australia’s real interest rates, recorded bed capacities at Australia’s tourist accommodation. 

And the two principal air transport system variables influencing Australia’s domestic LCC 

passenger demand are Australia’s real best discount airfares and world jet fuel prices.  

 

Importantly, this study sought to examine for the first time the influence of three new socio- 

economic factors - Australia’s unemployment size, tourism attractiveness factor, and 

Australia’s real interest rates – as predictors of Australia’s domestic LCC passenger 

demand. Australia’s real interest rates were included in all of the study’s models, whereas 

Australia’s unemployment size and tourism attractiveness factor, using recorded bed 

capacities at Australia’s tourist accommodation as a proxy were included in all models 

except the MLR models due to this independent variable statistically insignificant relationship 
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with the dependent variables (Australia’s LCC enplaned passenger and RPKs). The 

inclusion of Australia’s real interest rates as a predictor variable in the MLR, GA, ANN and 

ANFIS model improved these model’s accuracy, reliability, and predictive capability. This is 

also an important finding, as it is to the best of the author’s knowledge, the first time that real 

interest rates have been included as a predictor variable in air travel demand forecasting 

models. It can be concluded that Australia’s unemployment size, tourism attractiveness 

factor, and Australia’s real interest rates are, in fact, important predictors of Australia’s 

domestic LCC passenger demand and are worthy of consideration in any future air travel 

demand forecasting studies. 

 

How have Australia’s domestic low cost carriers business model followed that of other low 

cost carriers from around the world? 

 

This thesis revealed that Australia’s domestic LCC have indeed moved towards a hybrid 

business model. This has occurred from not long after Jetstar Airways was established in 

2004. Jetstar Airways has enhanced its product offering to include frequent flyer 

arrangements and inter-airline pricing and code-sharing agreements – product attributes 

normally eschewed by LCCs. In a highly innovative and indeed unique strategy, Tiger 

Airways Australia has developed an infrequent flyer program – a world first, further 

confirming the hybridization of Australia’s domestic LCC’s business models 

 

9.7 Overall Contribution to Knowledge of the Study 

9.7.1 Air travel demand forecasting methodological contribution 

 

The major contribution of this thesis is the advancement in the forecasting approaches and 

models that have been developed and tested for forecasting Australia’s LCC passenger 

demand. The genetic algorithm and artificial neuro-fuzzy inference systems (ANFIS) 

approaches are, in fact, new and novel modelling paradigms, and for the first time, these 

approaches have been applied for forecasting Australia’s domestic LCC passenger demand. 

In fact, this is also the first reported study that has used genetic algorithm and ANFIS models 

for forecasting airline passenger demand.  

 

The models have been shown to be more accurate, reliable, and have greater predictive 

capability as compared to the traditional multiple linear regression models (MLR), which are 



   Chapter 9 

  Conclusion 

195 

 

the recommended approach of the International Civil Aviation Organization and other key 

government agencies around the world.   

 

9.7.2  Theoretical contribution 

 

As highlighted throughout this thesis, the factors that influence air travel demand are 

complex in nature. The comprehensive literature survey revealed a range of socio-economic 

and air transport system that have been postulated as influencing air travel demand. One of 

these factors was real interest rates (Cook 2007; Wensveen 2011). This study was the first 

to examine real interest rates as a predictor of air travel demand (not just Australia’s 

domestic LCC passenger demand). This thesis therefore makes an original contribution by 

establishing and empirically proving the link between Australia’s real interest rates and the 

development of Australia’s domestic LCC passenger demand model.  

 

The literature review also identified unemployment as a predictor of air travel demand. 

Despite this there has been no other study that has examined the influence of Australia’s 

unemployment size on Australia’s domestic LCC passenger demand (nor Australia’s 

domestic or international air travel markets, as well). Unemployment was found to be an 

important predictor of Australia’s domestic LCC passenger demand – being an independent 

variable in all four modelling approaches. This result confirms that changes in Australia’s 

unemployment size can influence the demand for Australia’s domestic LCC passenger 

demand. This finding provides a valuable insight into the importance of this relationship 

between Australia’s unemployment size and Australia’s domestic LCC passenger demand.     

 

Air transport and tourism have a very strong association. As noted in Chapter 4, Australia, as 

is the case with most developed economies, tourism industry is heavily oriented towards 

domestic expenditure by Australian residents (Hooper & van Zyl 2011). Domestic tourism 

accounts for three-quarters of tourism expenditure in Australia, with the balance accounted 

for by international tourists spending (OECD 2014). Australia’s domestic LCC have placed a 

very high strategic focus on serving Australia’s key tourist markets, particularly those in 

Queensland and Northern NSW. Thus, a further important finding of this study was that 

tourism attractiveness, not surprisingly, is a significant predictor of Australia’s domestic LCC 

passenger demand. This is an important finding and provides a greater understanding of the 

importance of the relationship between Australia’s domestic LCC and the tourism sector, a 

research area not previously examined in the context of Australia.      
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A further contribution of this thesis relates to the growing literature on the hybridization of the 

LCCs business models. Historically, the LCCs have eschewed strategic airlines with full 

service network carriers. An important finding arising from Section 3.4 on the hybridization of 

Australia’s LCC business models is that Jetstar has strategically aligned itself with full 

service network carriers (FSNCs). The airline has consummated direct alliance 

arrangements with Emirates, a major global FSNC, as well as similar agreements with 

oneworld strategic alliance members. This is a new contribution to the literature.    

 

Tomová and Ramajová (2014) have reported that LCC’s are, as part of their hybridization 

strategies, embracing loyalty programs (FFPs) as a key part of their service offering. This 

study found that Jetstar has followed this strategy, and has an agreement in place with 

Qantas Airways, where Jetstar passengers receive Qantas frequent flyer points. However, in 

a very novel approach, Tiger Airways Australia has introduced an “in-frequent” flyer program. 

Thus, this thesis extends the current understanding of airline frequent flyer programs by not 

only confirming Australia’s LCC frequent flyer program approaches confirm the views of   

Tomová and Ramajová (2014), but also showing that “in-frequent” flyer programs are now a 

new LCC customer relationship management (CRM) strategy.  

 

9.8 Study Limitations and Suggestions for Further Research 

9.8.1 Data limitations 

 

Australia’s LCC market segment has only developed over the period 2000-2014. One of the 

limitations of the current study, therefore, was that the data used in the modelling was 

restricted to this time period. As mentioned in Section 4.2, a further limitation of the study 

was that neither Australian Government agency nor Department collects the data for the 

actual number of domestic and/or international tourists carried on Australia’s LCC domestic 

services. Should this data become available in the public domain in the future, then possible 

future research could use both the actual domestic or international tourists travelling on 

Australia’s domestic LCC, in forecasting Australia’s domestic LCC passenger demand 

models.  
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9.8.2 Suggestions for future research 

 

The core outcome of this research, the fact that modelling based on artificial intelligence 

approaches is far more effective than the traditional linear models prescribed by ICAO, 

means that future work is essential to validate this. Future work will look at overcoming the 

main limitation of this work, the limited data set size. That is, the case study selected for this 

work, LCCs in Australia, can be changed to any other case around the world. A few 

suggested examples of this to be directly investigated as a follow up to this work includes 

regional air traffic in Australia, the total domestic traffic in Australia, and Australia’s 

international cargo demand. 

 

The transferability of the methods investigated (ANN, GA and ANFIS), does not mean the 

data will be limited to Australia, or to passenger demand. With suitably sourced data, the 

methods utilised could be applied to any aviation data, including in the airport master 

planning process, in which forecasts are a vital as they enable airports to project and plan 

future demand for airside and landside infrastructure. The approach could also be easily 

adopted to government bodies, to assist with a variety of future planning considerations. This 

could include staffing for different services and facilities, as well as tourism demand, just to 

name a few. 

 

With regards to the explicit case study of LCCs in Australia, as more data becomes available 

passengers and RPKs, it will become possible to use more data to obtain more robust 

modelling results, and to confirm the predictive ability of the models. This study has 

highlighted the requirement for basic research into the optimum models for forecasting 

Australia’s LCC passenger demand. The modelling presented in this study offers 

considerable promise for future air travel demand forecasting. 
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APPENDIX 1 EXAMINATION OF THE HYBRIDIZATION AUSTRALIA’S 

LCCs BUSINESS MODEL DOCUMENT SOURCES 
 

Table A1.  The document selected and data analysis for Australia’s LCCs business model 

Month/Year Document selected Data Analysis 

December 2003 Jetstar orders Airbus A320 for low- 

cost carrier fleet. (The Saigon 

Times Daily Ho Chi Minh City, 23 

Dec 2003) 

Details of Jetstar ordered A320s from Airbus 

A320.  

May 2004 Qantas data book 2013 Jetstar commenced operations in Australia 

in 2004. 

October 2004 Jetstar ups the ante in fare wars. 

(Weekend Australian, 2 October 

2004) 

Jestar announced conditional internet $49 

one-way fares. And it will move to an all-

A320 fleet by mid-2006, which will number 

23 aircraft and our A320 program remains 

on track. 

Jan 2005 Jetstar joins the Adelaide air fare 

war (The Advertiser, Adelaide, S. 

Aust, 29 Jan 2005) 

 

Compare Adelaide’s airfare between Jetstar 

and competitors. Details of boarding card 

types. 

May 2005 Jetstar winning blue with 

(The Australian Canberra, A.C.T 

13 May 2005) 

 

Analyse Jetstar business strategy. 

March 2006 Jetstar set for Perth 

(Herald Sun, Melbourne, Vic, 27 

Mar 2006) 

 

Jetstar launched flights to Perth and adding 

services to Sydney and Adelaide. 

August 2006 Jetstar cabin crew to lead AWAs 

(The Australian Canberra, A.C.T, 

14 Aug 2006) 

Analyse Jetstar employment policy. 

November 2006 In-Flight Entertainment  

(Avionics Magazine,  November 

2006) 

Jetstar chose digEcor's digEplayer XT for its 

new Airbus A330-200s. 

November 2006 Qantas data book 2013 Jetstar Long haul international flying 

commenced on 23 November 2006. 

February 2007 Tiger Airways Licks Chops At 

Australia 

Tiger airways announced to be low-cost and 

very low-fare airline. 

http://search.proquest.com/pubidlinkhandler/sng/pubtitle/The+Australian/$N/42763/DocView/357544351/fulltext/A1E58BBB232D4E51PQ/6?accountid=13552


   Appendix 1 

227 

 

(Wall Street Journal, Eastern 

edition,New York, N.Y, 14 Feb 

2007) 

February 2007 Tiger eyes off Aussie airways 

(Townsville Bulletin,Townsville, 

Qld, 10 Feb 2007) 

Tiger Airways Australia plan to offer 

domestic fares of less than $10 a route by 

the end of 2007. 

August 2007 Jetstar plans 'very large' A320 

order 

(Flight International,  Jul 31-Aug 6, 

2007) 

Qantas ordered 9 additional A320s for 

Jetstar. 

February 2008 No-Luggage Break Cuts Qantas 

Low-Cost Fares. 

(Flight International, Feb 19-Feb 

25, 2008) 

 

Jetstar offered a discount to passengers 

who have no check-in luggage. 

August 2008 Tiger Airways announces new 

flights from Adelaide 

(AAP Finance News Wire, Sydney, 

28 Aug 2008) 

Tiger Airways announced new flights from 

Adelaide to Hobart, the Gold Coast, Perth 

and Alice Springs.  

April 2009 Sagging sales put A380s on back 

burner at Qantas. 

(Flight International, Apr 21-Apr 

27, 2009) 

Jetstar will manage wage costs by 

employing a slew of initiatives such as 

annual leave, long service leave. 

October 2009 Jetstar accelerates A320 deliveries 

(Flight International, Oct 13-Oct 

19, 2009) 

 

The other five A320s to be delivered before 

the end of March will be go to its Singapore 

arm Jetstar Asia. 

December 2009 Jetstar to charge for ‘up front’ 

seats (australianaviation.com.au, 

December 21 2009) 

Jetstar announced ‘Up Front Seating’, an 

option of selecting a seat in the first three 

rows of the aircraft for an additional charge.  

June 2010 Jetstar interlines with Air France-

KLM, (australianaviation.com.au, 

June 2 2010) 

Jetstar interlines with Air France-KLM. 

September 2010 IPAD offers new choice for in-flight 

entertainment, 

(Flight International, Sep 7-Sep 13, 

2010) 

Jetstar Airways made headlines in June 

when it announced plans to become the first 

airline to rent iPads as in-flight 

entertainment. 

January 2011 Jetstar teams up with oneworld, 

Finnair, 

Jetstar teams up with oneworld, Finnair. 
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(australianaviation.com.au, 

January 28 2011] 

May 2011 Jetstar offer self service kiosks 

and web check-in offering for 

passengers. 

(australianaviation.com.au May 

2011) 

Jetstar offered self service kiosks and web 

check-in offering for passengers. 

May 2011 Jetstar takes fare bundling to the 

Max, (Australianaviation.com.au, 

May 17 2011) 

Jetstar takes fare bundling to the Max. 

February 2012 Jet and Jetstar to interline, 
(Australianaviation.com.au, 
February 24 2012) 

Jet and Jetstar to interline. 

June 2012 IPads Help Some Airlines Cut 

Costs 

(Business Week, Jun 11, 2012) 

Jetstar offered iPads for $10-$15 on flights 

over two hours. 

June 2012 Tiger Airways Half Price Sale on 

Now (Singapore Government 

News New Delhi: Athena 

Information Solutions Pvt. Ltd. Jun 

6, 2012) 

Tiger Airways offered domestic half-price 

sale. 

July 2012 Tiger Airways Latest Sale 

Features Fares on Popular Routes 

from $39.95 

(Singapore Government News 

New Delhi: Athena Information 

Solutions Pvt. Ltd., Jul 25, 2012) 

Tiger Airways Australia is gearing up for the 

commencement of its Sydney - Brisbane 

service by offering one way fares from 

$54.95* on the new route. 

October 2012 Tiger Airways Offers 30,000 

Airfares for 30% Off Regular Fare 

(Singapore Government News 

New Delhi: Athena Information 

Solutions Pvt. Ltd., Oct 4, 2012) 

Tiger Airways Australia offered 30% off the 

regular Tiger "Raw" domestic fares. 

September 2013 Qantas, Jetstar get nod from 

competition regulator. 

(The Business Times [Singapore] 

24 Sep 2013) 

Qantas and Jetstar have been establishing 

joint ventures in a number of Asian markets 

together with local airline partners which so 

called pan-Asia strategy.  

December 2013 Jetstar to stay at Avalon until 

2015, (Australianaviation.com.au, 

December 11 2013)  

Jetstar to stay at Avalon until 2015. 

January 2014 Tigerair affordable fares  now Tigerair collaborated with Amadeus, a 
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available via Amadeus.  

(Tigerair.com January 2014) 

leading technology partner for the global 

travel industry, which will strengthen their 

distribution channel. 

February 2014 Emirates and Jetstar to codeshare.  

(australianaviation.com.au 

February 2014) 

Emirates and Jetstar operated codeshare. 

 

March 2014 Tigerair launches web 

check.(Australianaviation.com.au, 

March 11 2014) 

Tigerair launches web check. 

April 2014 Tigerair Australia launched 

Infrequent Flyer program.  

(Tigerair.com, April  2014) 

Tigerair Australia launched Infrequent Flyer 

Club on April 8 2014. 

Note: The abovementioned documents relate to the analysis of the hybridization of 

Australia’s domestic LCCS as presented in Section 3.4.  
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APPENDIX 2 MATLAB CODE FOR THE GENETIC ALGORITHM 
 

APPENDIX 2.1  Matlab Code for GAPAXDE and GARPKsDE (Linear Form) 
 

clear 

 
%%%%%%%%%%%%%%%%%%% User Inputs %%%%%%%%%%%%%%%%%%%%%%%%%% 
% V = Index to specify the dependent variable being modelled (i.e. V=1 for 

PAX and V=2 for RPK). 
V=1; 
% K = Desired number of factors to include in the multi-linear model. 
K=11; 
% M = size of the population of solutions used in the genetic algorithm. 
M=1000; 
% Mutation Rate 
mu_rate=0.01; 
% Number to Breed 
PB=200; 
% Number of new/migrating Members 
PM=50; 
GA_cycles = 200; % This could be replaced with a tolerance termination 

condition. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
if PB+PM>=M 
    display('Invalid choice of PB and PM.') 
    break 
end 

  
if PB*PM==0 
    display('Invalid choice of PB and PM.') 
    break 
end 

  
% Load the data file. 
data=xlsread('dataGA.xlsx'); 
[m,n]=size(data); 

  
% Initialisation the population. 
P=zeros(M,n-2); 
for i=1:M 
    total=0; 
    while total<K 
        u=ceil((n-2)*rand(1)); 
        P(i,u)=1; 
        total=sum(P(i,:)); 
    end 
end 

  
% Perform MLR on each member of the initial population 
SS=zeros(M,1); 
for i=1:M 
    Y=data(:,V);   
    X=ones(m,K+1); 
    filled=1; 
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    j=0; 
    while filled<K+1 
        j=j+1; 
        if P(i,j)==1 
            filled=filled+1; 
            X(:,filled)=data(:,j+2); 
        end 
    end 
    beta=inv(X'*X)*X'*Y;  
    % sum of squares 
    Y_est=X*beta; 
    SS(i)=sum((Y-Y_est).^2); 
end 

  
% Rank the population 
P_sort=zeros(M,n-2); 
SS_sort=zeros(M,1); 
for i=1:M 
    [min_val,min_index]=min(SS); 
    P_sort(i,:)=P(min_index,:); 
    SS_sort(i)=min_val; 
    SS(min_index)=10^100; 
end 
display(SS_sort(1)) 

  
% Genetic Algorithm 
for GA=1:GA_cycles 
    display(GA) 
    % Calculate selection and elimination probabilities for the current 
    % population. 
    SS_inverse=zeros(M,1); 
    for i=1:M 
        SS_inverse(i)=1/SS_sort(i); 
    end 
    SS_Inv_Tot=sum(SS_inverse); 
    Prob_Select=zeros(M,1); % Cumulative Probabilities for selecting a 

population member for breeding 
    for i=1:M 
        Prob_Select(i)=sum(SS_inverse(1:i))/SS_Inv_Tot; 
    end 
    SS_Total=sum(SS_sort(2:M)); 
    Prob_Eliminate=zeros(M,1); 
    for i=2:M 
        Prob_Eliminate(i)=sum(SS_sort(2:i))/SS_Total; % Cumulative 

Probabilities for eliminating a population member to make way for migration 

and new generation. 
    end 

     
    if PB>=1 
        % Breed New Solutions. 
        P_Bred=zeros(PB,n-2); 
        for i=1:PB 
            % Select Parents 
            u1=rand(1); 
            index1=1; 
            while u1>Prob_Select(index1) 
                index1=index1+1; 
            end 
            Parent_1=P_sort(index1,:); 
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            u2=rand(1); 
            index2=1; 
            while u2>Prob_Select(index2) 
                index2=index2+1; 
            end 
            if index1==index2 % Avoid selecting the same parent twice. If 

possible choose the adjacent better parent, however if the best parent is 

already chosen then choose the next worst. 
                if index1~=1 
                    index2=index1-1; 
                else  
                    index2=index1+1; 
                end 
            end 
            Parent_2=P_sort(index2,:); 
            % Perform the gene crossing. 
            P_sum=(Parent_1+Parent_2)/2; 
            P_new=zeros(1,n-2); 
            for j=1:n-2 
                if P_sum(j)==1 
                    P_new(j)=1; 
                end 
            end 
            j=-1; 
            while sum(P_new)<K 
                j=j+1; 
                index=mod(j,n-2)+1; 
                if P_sum(index)==0.5 && rand(1)<0.5 
                    P_new(index)=1; 
                end 
            end 
            P_Bred(i,:)=P_new; 
        end 
        % Evaluate LS for each bred member 
        SS_Bred=zeros(PB,1); 
        for i=1:PB 
            Y=data(:,V);   
            X=ones(m,K+1); 
            filled=1; 
            j=0; 
            while filled<K+1 
                j=j+1; 
                if P_Bred(i,j)==1 
                    filled=filled+1; 
                    X(:,filled)=data(:,j+2); 
                end 
            end 
            beta=inv(X'*X)*X'*Y;  
            % sum of squares 
            Y_est=X*beta; 
            SS_Bred(i)=sum((Y-Y_est).^2); 
        end 
    end 
    % Introduce some new members 
    if PM>=1 
        P_migrate=zeros(PM,n-2); 
        for i=1:PM 
            total=0; 
            while total<K 
                u=ceil((n-2)*rand(1)); 
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                P_migrate(i,u)=1; 
                total=sum(P_migrate(i,:)); 
            end 
        end 
        % Evaluate LS for each new member 
        SS_migrate=zeros(PM,1); 
        for i=1:PM 
            Y=data(:,V);   
            X=ones(m,K+1); 
            filled=1; 
            j=0; 
            while filled<K+1 
                j=j+1; 
                if P_migrate(i,j)==1 
                    filled=filled+1; 
                    X(:,filled)=data(:,j+2); 
                end 
            end 
            beta=inv(X'*X)*X'*Y;  
            % sum of squares 
            Y_est=X*beta; 
            SS_migrate(i)=sum((Y-Y_est).^2); 
        end       
    end 
    % Eliminate Existing members of P_sort - This will get slow if we are 
    % eliminating too many. 
    Elim_Index_Set=zeros(M,1); 
    total=0; 
    while total<PB+PM 
        u=rand(1); 
        index=2; 
        while u>Prob_Eliminate(index) 
            index=index+1; 
        end 
        if Elim_Index_Set(index)==0 
            Elim_Index_Set(index)=1; 
            total=total+1; 
        end 
    end 
    count=0; 
    for i=1:M 
        if Elim_Index_Set(i)==1 
            count=count+1; 
            if count<=PB 
                P_sort(i,:)=P_Bred(count,:); 
                SS_sort(i,:)=SS_Bred(count,:); 
            else 
                P_sort(i,:)=P_migrate(count-PB,:); 
                SS_sort(i,:)=SS_migrate(count-PB,:); 
            end 
        end 
    end 
    P=P_sort; 
    SS=SS_sort; 
    % Rank the population 
    P_sort=zeros(M,n-2); 
    SS_sort=zeros(M,1); 
    for i=1:M 
        [min_val,min_index]=min(SS); 
        P_sort(i,:)=P(min_index,:); 



   Appendix 2 

234 

 

        SS_sort(i)=min_val; 
        SS(min_index)=10^100; 
    end 
    display(SS_sort(1)) 
end 

  
% Determine beta values for best solution. 
Y=data(:,V);   
X=ones(m,K+1); 
filled=1; 
j=0; 
while filled<K+1 
    j=j+1; 
    if P_sort(1,j)==1 
        filled=filled+1; 
        X(:,filled)=data(:,j+2); 
    end 
end 
beta=inv(X'*X)*X'*Y;  
% sum of squares 
Y_est=X*beta; 

  
% Final output display: 
display('Minimum Least Squares Value') 
display(SS_sort(1)) 
display('Variables included in the model (1 = included, 0 = not included)') 
display(P_sort(1,:)) 
display('Coefficients of the linear model. The first number is the 

constant, while the subsequent numbers are the variable coefficients.') 
display(beta) 

  
% Test - Output a matrix A showing the actual values in the first column 

and the predicted values in the second column.  
A=zeros(m,3); 
A(:,1)=data(:,V); 
for j=1:m 
    A(j,2)=beta(1); 
    count=1; 
    for i=1:n-2 
        if P_sort(1,i)==1 
            count=count+1; 
            A(j,2)=A(j,2)+beta(count)*data(j,i+2); 
        end 
    end 
end 

  
% Percentage Errors 
for i=1:m 
    A(i,3)=abs(A(i,1)-A(i,2))/A(i,1)*100; 
end 
display('Actual values of DV in column 1, predicted values of DV in column 

2, absolute percentage error in column 3.') 
display(A) 
display('Average Percentage Error') 
display(sum(A(:,3))/m) 
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APPENDIX 2.2  Matlab Code for GAPAXDE and GARPKsDE (Quadratic form) 
 

clear 

  
%%%%%%%%%%%%%%%%%%% User Inputs %%%%%%%%%%%%%%%%%%%%%%%%%% 
% V = Index to specify the dependent variable being modelled (i.e. V=1 for 

PAX and V=2 for RPK). 
V=1; 
% K = Desired number of factors to include in the multi-linear model. 
K=7; 
% M = size of the population of solutions used in the genetic algorithm. 
M=1000; 
% Mutation Rate 
mu_rate=0.01; 
% Number to Breed 
PB=200; 
% Number of new/migrating Members 
PM=50; 
GA_cycles = 200; % This could be replaced with a tolerance termination 

condition. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
if PB+PM>=M 
    display('Invalid choice of PB and PM.') 
    break 
end 

  
if PB*PM==0 
    display('Invalid choice of PB and PM.') 
    break 
end 

  
% Load the data file. 
data=xlsread('dataGA.xlsx'); 
[m,n]=size(data); 

  
% Specify an adjusted number of variables given the quadratic terms. 
nq=n+0.5*(n-2)*(n-1); 

  
% Initialisation the population. 
P=zeros(M,nq-2); 
for i=1:M 
    total=0; 
    while total<K 
        u=ceil((nq-2)*rand(1)); 
        P(i,u)=1; 
        total=sum(P(i,:)); 
    end 
end 

  
% Perform MLR on each member of the initial population 
SS=zeros(M,1); 
for i=1:M 
    Y=data(:,V);   
    X=ones(m,K+1); 
    filled=1; 
    j=0; 
    while filled<K+1 
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        j=j+1; 
        if P(i,j)==1 
            filled=filled+1; 
            indices=f(j,n); 
            if size(indices,2)==1 
                if indices~=j 
                    display('f is not returning the correct index') 
                end 
                X(:,filled)=data(:,indices+2); 
            else 
                X(:,filled)=data(:,indices(1)+2).*data(:,indices(2)+2); 
            end 
        end 
    end 
    beta=inv(X'*X)*X'*Y;  
    % sum of squares 
    Y_est=X*beta; 
    SS(i)=sum((Y-Y_est).^2); 
    if isnan(SS(i)) 
        SS(i)=10^99; 
    end 
end 

  
% Rank the population 
P_sort=zeros(M,nq-2); 
SS_sort=zeros(M,1); 
for i=1:M 
    [min_val,min_index]=min(SS); 
    P_sort(i,:)=P(min_index,:); 
    SS_sort(i)=min_val; 
    SS(min_index)=10^100; 
end 
display(SS_sort(1)) 

  
% Genetic Algorithm 
for GA=1:GA_cycles 
    display(GA) 
    % Calculate selection probabilities for the current 
    % population. 
    SS_inverse=zeros(M,1); 
    for i=1:M 
        SS_inverse(i)=1/SS_sort(i); 
    end 
    SS_Inv_Tot=sum(SS_inverse); 
    Prob_Select=zeros(M,1); % Cumulative Probabilities for selecting a 

population member for breeding 
    for i=1:M 
        Prob_Select(i)=sum(SS_inverse(1:i))/SS_Inv_Tot; 
    end 
    if PB>=1 
        % Breed New Solutions. 
        P_Bred=zeros(PB,nq-2); 
        for i=1:PB 
            % Select Parents 
            u1=rand(1); 
            index1=1; 
            while u1>Prob_Select(index1) 
                index1=index1+1; 
            end 
            Parent_1=P_sort(index1,:); 
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            u2=rand(1); 
            index2=1; 
            while u2>Prob_Select(index2) 
                index2=index2+1; 
            end 
            if index1==index2 % Avoid selecting the same parent twice. If 

possible choose the adjacent better parent, however if the best parent is 

already chosen then choose the next worst. 
                if index1~=1 
                    index2=index1-1; 
                else  
                    index2=index1+1; 
                end 
            end 
            Parent_2=P_sort(index2,:); 
            % Perform the gene crossing. 
            P_sum=(Parent_1+Parent_2)/2; 
            P_new=zeros(1,nq-2); 
            for j=1:nq-2 
                if P_sum(j)==1 
                    P_new(j)=1; 
                end 
            end 
            j=-1; 
            while sum(P_new)<K 
                j=j+1; 
                index=mod(j,nq-2)+1; 
                if P_sum(index)==0.5 && rand(1)<0.5 
                    P_new(index)=1; 
                end 
            end 
            P_Bred(i,:)=P_new; 
        end 
        % Evaluate LS for each bred member 
        SS_Bred=zeros(PB,1); 
        for i=1:PB 
            Y=data(:,V);   
            X=ones(m,K+1); 
            filled=1; 
            j=0; 
            while filled<K+1 
                j=j+1; 
                if P_Bred(i,j)==1 
                    filled=filled+1; 
                    indices=f(j,n); 
                    if size(indices,2)==1 
                        if indices~=j 
                            display('f is not returning the correct index') 
                        end 
                        X(:,filled)=data(:,indices+2); 
                    else 
                        

X(:,filled)=data(:,indices(1)+2).*data(:,indices(2)+2); 
                    end 
                end 
            end 
            beta=inv(X'*X)*X'*Y;  
            % sum of squares 
            Y_est=X*beta; 
            SS_Bred(i)=sum((Y-Y_est).^2); 
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        end 
    end 
    % Introduce some new members 
    if PM>=1 
        P_migrate=zeros(PM,nq-2); 
        for i=1:PM 
            total=0; 
            while total<K 
                u=ceil((nq-2)*rand(1)); 
                P_migrate(i,u)=1; 
                total=sum(P_migrate(i,:)); 
            end 
        end 
        % Evaluate LS for each new member 
        SS_migrate=zeros(PM,1); 
        for i=1:PM 
            Y=data(:,V);   
            X=ones(m,K+1); 
            filled=1; 
            j=0; 
            while filled<K+1 
                j=j+1; 
                if P_migrate(i,j)==1 
                    filled=filled+1; 
                    indices=f(j,n); 
                    if size(indices,2)==1 
                        if indices~=j 
                            display('f is not returning the correct index') 
                        end 
                        X(:,filled)=data(:,indices+2); 
                    else 
                        

X(:,filled)=data(:,indices(1)+2).*data(:,indices(2)+2); 
                    end 
                end 
            end 
            beta=inv(X'*X)*X'*Y;  
            % sum of squares 
            Y_est=X*beta; 
            SS_migrate(i)=sum((Y-Y_est).^2); 
        end       
    end 
    % Eliminate Existing members of P_sort - This will get slow if we are 
    % eliminating too many. 
    Elim_Index_Set=zeros(M,1); 
    total=0; 
    while total<PB+PM 
        SS_Total=sum(SS_sort(2:M).*(ones(M-1,1)-Elim_Index_Set(2:M))); 
        Prob_Eliminate=zeros(M,1); 
        for i=2:M 
            Prob_Eliminate(i)=Prob_Eliminate(i-1)+SS_sort(i)*(1-

Elim_Index_Set(i))/SS_Total; % Cumulative Probabilities for eliminating a 

population member to make way for migration and new generation. 
        end 
        if abs(Prob_Eliminate(M)-1)>10^(-4) 
            display(Prob_Eliminate(M)) 
            display('Problem with Prob_Eliminate') 
            pause(5) 
        end 
        u=rand(1); 
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        index=2; 
        while u>Prob_Eliminate(index) 
            index=index+1; 
        end 
        if Elim_Index_Set(index)==0 
            Elim_Index_Set(index)=1; 
            total=total+1; 
        end 
    end 
    count=0; 
    for i=1:M 
        if Elim_Index_Set(i)==1 
            count=count+1; 
            if count<=PB 
                P_sort(i,:)=P_Bred(count,:); 
                SS_sort(i,:)=SS_Bred(count,:); 
            else 
                P_sort(i,:)=P_migrate(count-PB,:); 
                SS_sort(i,:)=SS_migrate(count-PB,:); 
            end 
        end 
    end 
    P=P_sort; 
    SS=SS_sort; 
    % Rank the population 
    P_sort=zeros(M,nq-2); 
    SS_sort=zeros(M,1); 
    for i=1:M 
        [min_val,min_index]=min(SS); 
        P_sort(i,:)=P(min_index,:); 
        SS_sort(i)=min_val; 
        SS(min_index)=10^100; 
    end 
    display(SS_sort(1)) 
end 

  
% Determine beta values for best solution. 
Y=data(:,V);   
X=ones(m,K+1); 
filled=1; 
j=0; 
while filled<K+1 
    j=j+1; 
    if P_sort(1,j)==1 
        filled=filled+1; 
        indices=f(j,n); 
        if size(indices,2)==1 
            if indices~=j 
                display('f is not returning the correct index') 
            end 
            X(:,filled)=data(:,indices+2); 
        else 
            X(:,filled)=data(:,indices(1)+2).*data(:,indices(2)+2); 
        end 
    end 
end 
beta=inv(X'*X)*X'*Y;  
% sum of squares 
Y_est=X*beta; 
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% Final output display: 
display('Minimum Least Squares Value') 
display(SS_sort(1)) 
display('Sequence of Dependent Variables') 
var_seq=cell(1,nq-2); 
for i=1:nq-2 
    var_seq(i)={f(i,n)}; 
end 
display(var_seq) 
display('Variables included in the model (1 = included, 0 = not included)') 

%%% Need some labels. 
display(P_sort(1,:)) 
display('Coefficients of the linear model. The first number is the 

constant, while the subsequent numbers are the variable coefficients.') 
display(beta) 

  

  
% Test - Output a matrix A showing the actual values in the first column 

and the predicted values in the second column.  
A=zeros(m,3); 
A(:,1)=data(:,V); 
for j=1:m 
    A(j,2)=beta(1); 
    count=1; 
    for i=1:nq-2 
        if P_sort(1,i)==1 
            count=count+1; 
            indices=f(i,n); 
            if size(indices,2)==1 
                if indices~=i 
                    display('f is not returning the correct index') 
                end 
                A(j,2)=A(j,2)+beta(count)*data(j,indices+2);  
            else 
                

A(j,2)=A(j,2)+beta(count)*data(j,indices(1)+2)*data(j,indices(2)+2); 
            end 
        end 
    end 
end 

  
% Percentage Errors 
for i=1:m 
    A(i,3)=abs(A(i,1)-A(i,2))/A(i,1)*100; 
end 
display('Actual values of DV in column 1, predicted values of DV in column 

2, absolute percentage error in column 3.') 
display(A) 
display('Average Percentage Error') 
display(sum(A(:,3))/m) 
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APPENDIX 3 AUSTRALIA’S LCCs PAX AND RPKS ARTIFICIAL 

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS) SURFACE 

DRAWINGS. 
 

This appendix presents the ANFIS surface drawings of Australia’s domestic LCC enplaned 

passengers (PAX) and RPKs models, interaction terms. The figures that follow show the 

obtained surfaces between the dependent variable and the selected input variables (the 

relationship is presented using the three dimension surfaces).in the ANFIS system.  

 

 

APPENDIX 3.1 ANFIS Surface Drawings for Australia’s LCC enplaned 

passengers (PAX) Model 

 

 
Figure A.1. Obtained surfaces of PAX versus Australia’s population size  
and Australia’s real best discount airfare in the ANFIS PAX model 
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Figure A.2. Obtained surfaces of PAX versus Australia’s real GDP and  
Australia’s real best discount airfare in the ANFIS PAX model 

 

 

 

 

 

Figure A.3. Obtained surfaces of PAX versus Australia’s unemployment  
size and Australia’s real best discount airfare in the ANFIS PAX model 
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Figure A.4. Obtained surfaces of PAX versus world jet fuel prices and  
Australia’s real best discount airfare in the ANFIS PAX model 
 

 

 

 

 

Figure A.5. Obtained surfaces of PAX versus Australia’s real interest  
rates and Australia’s real best discount airfare  in the ANFIS PAX model 
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Figure A.6. Obtained surfaces of PAX versus Australia’s tourist  
accommodation and Australia’s real best discount airfare in the  
ANFIS PAX model 

 

 

 

 

Figure A.7. Obtained surfaces of PAX versus Australia’s real GDP and  
Australia’s population size in the ANFIS PAX model 
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Figure A.8. Obtained surfaces of PAX versus Australia’s unemployment  
size and Australia’s population size  in the ANFIS PAX model 
 

 

 

 

 

Figure A.9. Obtained surfaces of PAX versus world jet fuel price and  
Australia’s population size in the ANFIS PAX model 
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Figure A.10. Obtained surfaces of PAX versus Australia’s real interest  
rate and Australia’s population size in the ANFIS PAX model 

 

 

 

 

 

Figure A.11. Obtained surfaces of PAX versus Australia’s tourist  
accommodation and Australia’s population size in the ANFIS PAX model 
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Figure A.12. Obtained surfaces of PAX versus Australia’s unemployment  
size and Australia’s real GDP in theANFIS PAX model 
 

 

 

 

 

Figure A.13. Obtained surfaces of PAX versus world jet fuel price and  
Australia’s real GDP in the ANFIS PAX model 
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Figure A.14. Obtained surfaces of PAX versus Australia’s real interest  
rate and Australia’s real GDP in the ANFIS PAX model 
 

 

 

 

Figure A.15. Obtained surfaces of PAX versus Australia’s tourist  
accommodation and Australia’s real GDP in the ANFIS PAX model 
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Figure A.16. Obtained surfaces of PAX versus world jet fuel price  
and Australia’s unemployment size in the ANFIS PAX model 

 

 

 

 

Figure A.17. Obtained surfaces of PAX versus interest rate and  
Australia’s unemployment size in the ANFIS PAX model 
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Figure A.18. Obtained surfaces of PAX versus Australia’s tourist  
accommodation and Australia’s unemployment size in the  
ANFIS PAX model 
 

 

 

 

Figure A.19. Obtained surfaces of PAX versus Australia’s real interest rate  
and world jet fuel price in the ANFIS PAX model 
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Figure A.20. Obtained surfaces of PAX versus Australia’s tourist  
accommodation and world jet fuel price in the ANFIS  PAX model 

 

 

 

 

Figure A.21. Obtained surfaces of PAX versus Australia’s tourist  
accommodation and Australia’s real interest rate in the 
ANFIS  PAX model 
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APPENDIX 3.2 ANFIS Surface Drawings for Australia’s LCC RPK Model 
 

 

 
Figure A.22. Obtained surfaces of RPKs versus Australia’s population  
size and fare in the ANFIS RPKs model 

 

 

 

 
Figure A.23. Obtained surfaces of RPKs versus Australia’s real GDP  
and fare in the ANFIS RPKs model 
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Figure A.24. Obtained surfaces of RPKs versus Australia’s unemployment  
Size and fare in the ANFIS RPKs  model 

 

 

 

 

Figure A.25. Obtained surfaces of RPKs versus world jet fuel price  
and fare in the ANFIS RPKs model 
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Figure A.26. Obtained surfaces of RPKs versus Australia’s real interest  
rate and fare in the ANFIS RPKs model 

 

 

 

 

Figure A.27. Obtained surfaces of RPKs versus Australia’s tourist  
accommodation and fare in the ANFIS RPKs model 
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Figure A.28. Obtained surfaces of RPKs versus Australia’s real GDP  
and Australia’s population size in the ANFIS RPKs  model 

 

 

 

 

Figure A.29. Obtained surfaces of RPKs versus Australia’s unemployment  
size and Australia’s population size in the ANFIS RPKs model 
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Figure A.30. Obtained surfaces of RPKs versus world jet fuel price  
and Australia’s population size in the ANFIS RPKs model 

 

 

 

 

Figure A.31. Obtained surfaces of RPKs versus Australia’s real interest  
rate and Australia’s population size in the ANFIS RPKs model 
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Figure A.32. Obtained surfaces of RPKs versus Australia’s tourist  
accommodation and Australia’s population size in the ANFIS  RPKs model 
 

 

 

 

Figure A.33. Obtained surfaces of RPKs versus Australia’s unemployment  
size and Australia’s real GDP in the ANFIS RPKs model 
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Figure A.34. Obtained surfaces of RPKs versus world jet fuel price  
and Australia’s real GDP in the ANFIS RPKs model 

 

 

 

 

Figure A.35. Obtained surfaces of RPKs versus Australia’s real interest  
rate and Australia’s real GDP in the ANFIS RPKs model 
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Figure A.36. Obtained surfaces of RPKs versus Australia’s tourist  
accommodation and Australia’s real GDP in the ANFIS RPKs  model 

 

 

 

 

Figure A.37. Obtained surfaces of RPKs versus world jet fuel price  
and Australia’s unemployment size in the ANFIS RPKs model 
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Figure A.38. Obtained surfaces of RPKs versus Australia’s real interest  
rate and Australia’s unemployment size in the ANFIS  RPKs model 

 

 

 

 

Figure A.39. Obtained surfaces of RPKs versus Australia’s tourist  
accommodation and Australia’s unemployment size in the 
ANFIS RPKs model 
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Figure A.40. Obtained surfaces of RPKs versus Australia’s real interest 
 rate and world jet fuel price in the ANFIS RPKs model 

 

 

 

 

Figure A.41. Obtained surfaces of RPKs versus Australia’s tourist  
accommodation and world jet fuel price in the ANFIS RPKs model 
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Figure A.42. Obtained surfaces of RPKs versus Australia’s tourist  
accommodation and Australia’s real interest rate in the ANFIS RPKs model 
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APPENDIX 4 The HAC (heteroscedasticity and autocorrelation 

consistent) method of correcting the OLS standard errors  
 

This study used the HAC (heteroscedasticity and autocorrelation consistent) method to 

correct the bias of standard errors and t-statistics, if present (Gujarati 2003). This method 

also used by Berg and Coke (2004). The HAC method can correct standard errors and t-

statistics. After using the HAC method, adjusted standard errors and t-statistics would be 

presented while the coefficient estimator remains the same (Gujarati 2003).This method 

enhanced the robustness of standard errors and t-statistics which provide the consistent 

parameter estimates of the model. 

The results in Table A.1 and A.2 show that the standard errors and t-test of the original PAX 

and RPKs models being adjusted in order to make them more accurate and reliable.  

 

 

Table A.1 The results of PAX model using the HAC method  

Variable Coefficient 
 

Std. Error 
(original) 

Std. Error 
(adjusted) 

t-Statistic 
(original) 

t-Statistic 
(adjusted) 

X1 -16.49 6.01 7.26 -2.74 -2.27 

X2 1.94 0.24 0.19 8.09 10.17 

X3 -212.58 74.85 76.85 -2.84 -2.77 

X4 -4758.36 204.16 197.79 3.04 3.14 

X5 -22977.26 211.75 160.01 -22.47 -29.74 

C -16.49 3751.21 2986.38 -6.13 -7.69 
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Table A.2 The results of RPKs model using the HAC method  

Variable Coefficient 
 

Std. Error 
(original) 

Std. Error 
(adjusted) 

t-Statistic 
(original) 

t-Statistic 
(adjusted) 

X1 -18.79 6.83 8.20 -2.75 -2.29 

X2 2.39 0.27 0.18 8.79 13.09 

X3 -198.26 85.01 81.28 -2.33 -2.44 

X4 -4981.65 231.85 202.31 2.73 3.12 

X5 -29708.15 240.47 175.70 -20.72 -28.35 

C -18.79 4259.94 2832.19 -6.97 -10.49 

 
 

Table A.1 and A.2 compares the estimated coefficient, standard errors and t-statistics 

between the original and the corrected models. As can be seen the estimated coefficient 

remained the same but the standard errors of the HAC method have been corrected. This 

method enhanced the robustness of standard errors which provide the consistent parameter 

estimates of the model. 
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APPENDIX 5 A REVIEW OF THE MODELLING APPROACHES 

 

The theoretical approaches for forecasting airline passenger air travel demand in the late 

1940s and early 1950s were based on the use of gravity and multiple linear regression 

models (Wang & Song 2010). During this period, passenger flows were typically forecast 

between pairs of airports or between city pairs (Mayhill 1953). Seminal econometric air travel 

demand forecasting studies during the period from 1950 to 2014 include, among others 

(Wang & Song 2010), Lansing et al. (1961); Ghobrial (1992); Poore (1993); Alperovich & 

Machnes (1994); Ba-Fail et al. (2000), and Abed et al. (2001). Most of these studies, 

however, focused on the United States and European air travel markets. Also, these studies 

have predominantly used aggregated data.  

    

There have only been a few reported comprehensive surveys of the air travel forecasting 

studies. For example, Sarames (1972) briefly reviewed world air travel demand between 

1950 and 1980. In a further study, Karlaftis (1994) conducted an in-depth examination of air 

travel demand forecasting methodologies. Melville (1998) reviewed international airline travel 

demand. In this study, Melville concluded that there were less than 20 studies that had 

examined the importance of international air travel demand forecasting across various 

countries. Wang and Song (2010) have provided the most recent and largest scale of 

literature survey on air travel demand studies. The authors placed particular emphasis of 

their review on research development, publication sources, geographic focus, drivers of air 

travel demand, demand modelling and forecasting techniques, demand elasticity analysis, 

and leisure/tourism air travel demand (Wang & Song 2010). 

 

A5.1 Evolution of air travel demand 

 

Following the end of World War II, the global air transport industry has been a high growth 

industry. Indeed, a unique aspect of global aviation is that the industry has recorded strong 

growth in passenger demand. According to Air Transport Action Group (2000), throughout 

“the 1980s, and also for most of the 1990s, world airline passenger traffic grew on average 

by 6 per cent per annum”. The extremely tragic events of 9/11 resulted in a downturn in 

international airline traffic (Wang & Song 2010). The airline industry also experienced a 

serious downturn in passenger traffic as a result of the recent global financial crisis (GFC) 

from 2007 to 2009 (Centre for Aviation 2011). However, over the past few years the growth 
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in air travel demand has slowly returned. Interestingly, several impact analyses of air travel 

demand for the post 2001 period have been conducted (Wang & Song 2010). 

 

Wang and Song (2010) have stated that there has been a growing interest in studying air 

travel demand forecasting in recent times. The two authors presented a comprehensive 

review of previous air travel demanding forecasting studies that had been conducted over 

the period 1950-2008. This thesis has extended the work of Wang and Song (2010) on air 

travel demand modelling, by examining air travel demand forecasting studies that have been 

conducted over the period 2008 to 2014.  

 

Figure A5.1 shows that there were 7 studies devoted to air travel demand forecasting in the 

period 1950-1980. During the period from 1981-2000, a total of 23 studies on air travel 

demand forecasting were reported in the literature. In the post 2001 (9/11) period, there has 

been a considerable increase in air travel demand forecasting studies, with a total of 33 

studies undertaken and reported over this period. As can be seen in Figure A5.1, air travel 

demand forecasting has been regarded as a critical research area throughout the period 

1950-2014.  

 

 

Figure A5.1. Number of publications of air travel demand modelling and forecasting studies: 

1950-2014. 
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A5.2 Regional focus of air travel demand modelling and forecasting studies 

 

The air travel demand studies examined as part of this thesis found the reported studies had 

a specific geographical focuses. The studies have been based on international, domestic, 

regional, and intercity levels. Some studies have focused on specific airports (Wang & Song 

2010). The majority of air travel demand research has principally focused on the United 

States, Asia, Europe, and Australia (Figure A5.2). Wang and Song (2010, p. 39) noted that 

the “popularity of air travel demand research on the United States could be explained by its 

long history of air transport industry development”.  

 

As can be observed from Figure A5.2, there have been 5 reported Australian passenger air 

travel demand-related forecasting studies. Three of these studies have examined Australia’s 

domestic air travel demand, whilst the other two have examined Australia’s international air 

travel demand. Importantly, there have been no reported studies that have empirically 

examined Australia’s domestic LCC passenger demand.    

 

 

 

Figure A5.2. Summary of regional focus of air travel demand modelling and forecasting studies: 

1950-2014.  
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A5.3 Evolution of air travel demand modelling and forecasting techniques: 

1950-2014 

 

As previously noted, the period for study of air transportation demand modelling was divided 

into three distinct phases; 1950-1980, 1981-2000 and post 2001 (9/11) (Wang & Song 

2010). According to thesis literature survey, it is clear that most air transportation demand 

modelling, and forecasting, methods have mainly used an econometric approach. Amongst 

these 63 studies, 55 studies used econometric approach in their research, while 8 other 

studies introduced alternative artificial intelligence-based approaches; such as the artificial 

neural network model (ANN); fuzzy model; the integrated mixture of local experts model 

(IMLEM); and the adaptive neuro-fuzzy inference system (ANFIS) approaches, in their 

studies.  

 

During 1950-1980, air travel demand studies predominantly used direct demand models in 

order to analyse air travel demand (see, for example, Brown & Watkins 1968; Bower 1976). 

During the 1970s, several studies used logit model to develop air travel demand (Alamdari & 

Black 1992; Brooke et al. 1994). As compared with the published air travel demand 

forecasting studies published prior to 2001, modern air travel demand modelling 

methodologies have become more diverse and sophisticated in nature. Indeed, advanced 

models have been introduced to deal with the complexity in air travel demand forecasting 

(Wang & Song 2010).       

 

According to Song and Li (2008, p. 204), the econometric approaches that have been used 

in air travel demand modelling was dominated by two sub-categories of methods:  

 

 causal demand models such as multiple linear regression model (MLR).  

 non-causal time-series demand models, such as, Autoregressive integrated moving 

average models (ARIMA) (Song & Li 2008). 

 

One of the major advantages of the causal demand model over the time-series demand 

models lies in their ability to analyse causal relationships, between the air travel demand 

dependent variables, and their influencing factors or explanatory variables (Song & Li 2008; 

Doganis 2009). However, Frechtling (1996, 2001) argued that the disadvantages of using 

regression models include the large costs involved, the required substantial skill, and the 

need to forecast the independent variable in order to obtain forecasts of the dependent 
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variable. Econometric analysis achieves many useful roles beyond just the generation of 

forecasts. For example, econometric models provide a very useful framework that can 

underscore a progressive research strategy (Clements & Hendry 1998; Song & Li 2008). 

Notwithstanding, a time-series model cannot be of assistance when interdependent 

relationships among air travel demand, and other-related factors, are major concerns of 

businesses and governments (Song & Li 2008, p. 211).  

 

Gravity models33 were also widely used as a forecasting method in the early air travel 

demand forecasting studies (Fridström & Thune-Larsen 1989; Hutchinson 1993). These 

models were primarily based on forecasting air travel demand in origin-and-destination (O/D) 

city pairs (Wang & Song 2010). Gravity models have been extensively in previous research 

as a means to analyze bilateral activities. These activities have been diverse in scope, and 

have included passenger and air cargo flows, trade patterns, and investments. Gravity 

models are typically estimated using regression techniques. Gravity models also offer the 

ability to investigate the determinants that can significantly affect bilateral flows, such as, 

passengers (Chang 2014). Interestingly, despite their early development, there have been 

several air travel demand forecasting reported studies after 2007 that have been based on a 

gravity model approach (see, for example, Bhadra & Kee 2008; Grosche et al. 2007; 

Hazledine 2009; Wadud 2011).  

 

To alleviate spurious regression, which can quite often appear in traditional regression 

analysis based on ordinary least squares (OLS), a substantial effort has been undertaken in 

order to further advance the use of the causal demand approach in air travel demand 

modelling and forecasting (Song & Li 2008).  

 

Several new multivariate forecasting techniques, such as the Error Correction Model (ECM) 

(Koo et al. 2013), and the vector autoregressive (VAR) model (Blunk et al. 2006), have also 

been proposed in the literature. Song and Li (2010, p. 211) noted that “apart from the VAR 

model, these modern econometric models are known as the single-equation modelling 

approach, and the explanatory variables included in the models should be exogenous”. 

Conversely, the VAR model treats all variables as endogenous. With this modelling 

approach each variable is specified as a linear relationship with the other variables included 

in the model (Song & Li 2008). 

 

                                                
33

 The gravity model was first introduced in 1858 by Henry Carey. This model has become known as the ‘gravity 
concept of human interaction’ (Doganis 2009). 
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In 1991, Friedman proposed “a non-parametric multivariate adaptive regression spline 

approach (MARS)” forecasting approach. This approach is a non- parametric and nonlinear 

regression methodology. According to Chang (2014), the MARS forecasting method offers 

many advantages: 

 

 no restrictions on the underlying relationships between the response variable and 

explanatory variables,  

 no requirement to specify the function form as the parametric linear regression 

technique, 

 the greater flexibility of MARS to explore the non-linear relationships between a 

response variable and explanatory variables through the fitting of the model data into 

a series of spline functions (Chang 2014, p. 124). 

 

Chang (2014, p. 124) stated that “basic principle of MARS is to allow different functions over 

different intervals….the nonlinear relationship between a response variable and an 

explanatory variable is approximated by the use of separate regression slopes in distinct 

intervals of the explanatory variable region”. Chang (2014, p. 124) continued “since this 

approach allows for all functional forms and interactions, MARS is able to effectively track 

the complex data structures hidden in high-dimensional data”.  

 

Chang 2014 employed the (MARS) model to explore the determinants and the extent of their 

influence on the demand for cross-country air transport in the Asia-Pacific Economic 

Cooperation (APEC) region (Chang 2014). 

 

According to Song and Li (2008, p. 210), a “time-series model explains a variable with 

regard to its own past and a random disturbance term”. When using a time-series approach, 

the analyst must pay particular attention to investigating historic trends and patterns (such as 

seasonality) in the time series under study, and to then forecast the future based on these 

observed trends and patterns identified in the model (Song & Li 2008). 

 

Time-series models have been used extensively for air travel demand forecasting (see, for 

example, Anderson & Kraus 1981; Castillo-Manzano et al. 2012; Lai & Lu 2005; Oberhausen 

& Koppleman 1982; Pitfield 2007, 2008; Sen 1985; Uddin et al. 1985). The most common 

time-series approach has been the integrated autoregressive moving-average models 

(ARIMA), which was proposed by Box and Jenkins (1970). However, different versions of the 

ARIMA models have been applied in air travel demand modelling. The different versions of 
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the ARIMA models are dependent on the frequency of the time series. These include simple 

ARIMA, or seasonal ARIMA (that is, SARIMA) models (Song & Li 2008).  

 

The forecasting performance of the ARIMA/SARIMA models has been improved in recent 

times by utilizing alternative time-series approaches (Song & Li 2008). One approach has 

been to extend the univariate time-series models to a multivariate dimension, as well as 

examine if the additional information involved in the time series may improve the model’s 

forecasting accuracy (Song & Li 2008; Wang & Song 2010). For instance, Pitfield (2008) 

introduced an ARIMA model which included an intervention function in order to capture the 

impact of Southwest Airlines start-up services on passenger traffic volumes and airline 

market share in a variety of US domestic city pairs. 

 

In an earlier approach, Scarpel and Milioni (2007) introduced “an Integrated Mixture of Local 

Experts Model (IMLEM)” (Scarpel and Milioni 2007, cited in Scarple 2013). The IMLEM 

model integrates the parameter estimations for the partition of the input space and the 

training phase. This is done in such a way that the model’s input space is simultaneously 

partitioned. Also, the best expert is identified so as to improve the fitting and the model’s 

forecasting performance (Scarple 2013, p. 36).  

 

In a further modelling approach, Scarple (2013) introduced the Mixture of Local Experts 

Model (MLEM) in his study forecasting airline passengers at Brazil’s, São Paulo International 

Airport. Jacobs et al. (1991) introduced the mixture of local experts model (MLEM) approach 

in 1991. The authors argue that the MLEM approach is an ideal solution for addressing a 

complex problem. This is achieved by essentially dividing it into simpler problems whose 

solutions can be combined to yield a better one (divide-and-conquer principle). A unique 

feature of the MLEM is that it is actually built in stages (Scarpel 2013, p. 35). 

 

According to Scarpel (2013, p. 35), these MLEM development stages are: 

 

 The input space is divided into regions or clusters 

 Train all of the models (experts) in each of the clusters 

 Identify the best expert for each cluster 

 Implement a composition of the local experts using a gating function that decides 

how to weight the local expert output for a given input point (Scarpel 2013, p. 35).  
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Scarpel (2013, p. 35) reported that “with this approach, the partition of the input space, the 

training phase and the composition of the local experts are performed sequentially in such a 

way that the results achieved in any step are adopted in the following steps”.  

 

In addition to the above models, other new quantitative forecasting methods, predominantly 

artificial intelligence (AI), have emerged in the air travel demand forecasting literature. 

Artificial intelligence-based modelling techniques have become more popular in diverse 

disciplines over the past decade (Song & Li 2008). This growing popularity in their use is due 

to their robustness, high predictive capabilities, as well as their flexible behaviours to handle 

the multi-objective criteria in a straightforward manner (Yetilmezsoy et al. 2011).  Historically, 

artificial intelligence-based techniques derived from rule-based and logic-programmed 

systems. However, the more recent contemporary interest in this forecasting approach has 

focused on the precise heuristic methods (Song & Li 2008). The most notable being fuzzy 

logic, artificial neural networks (ANNs) and genetic algorithm (Toshinori 1998).The main 

advantage of artificial intelligence techniques are that they do not require any preliminary or 

additional information about data, for example, distribution and probability (Song & Li 2008, 

p. 212).  

 

Profillidis (2000) introduced the Fuzzy Linear Regression Model to forecast airport demand 

at Rhodes Airport in Greece. The fuzzy linear regression model is a possibilistic method that 

can be used in the context of possibility theory. This modelling technique captures vague 

and incomplete knowledge by means of possibility distributions. According to Profillidis 

(2000, p. 96), “in fuzzy linear regression models, the difference between data and estimated 

values is assumed to form an ambiguity that is due to the system's structure”. However, 

Profillidis (2000, p. 96) model would appear to bring the ambiguity of the relationship back to 

the system coefficients. This approach provides one way to construct an accurate 

relationship, which enters directly into the model through the fuzzy coefficients (Profillidis 

2000, p. 96).  

 

While the traditional regression forecasting method has its own model assumptions and pre-

defined underlying relationships between dependent and independent variables 

(explanatory) (Osborne & Waters 2002), artificial neural network (ANN) models are 

considered a superior forecasting method since no prior assumptions about underlying 

patterns in the data in the model development process are required (see, for example, 

Garrido et al. 2014; Pan et al. 2013).  
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In recent years, the use of ANNs has grown rapidly due to their ability of mapping any linear 

or non-linear functions. The primary advantage of an ANN over other forecasting methods is 

that the neural network equally well predicts the processes whose regular components have 

any distribution law, whereas most other forecasting methods are best suited for processes 

that possess a regular component that belongs to a specific class (clearly, the method of 

polynomial smoothing is best suited for processes with a polynomial regular component, the 

method of smoothing by Fourier series is best suited for processes with a periodic regular 

component and so forth). ANNs also have no associated data assumption requirements 

(Claveria and Torra, 2014; Kunt et al., 2011; Santos et al., 2014). A further advantage of 

ANNs is their ability to learn (Aizenberg, 2011; Mrugalski, 2013; Sineglazov et al., 2013). 

ANNs have now been applied for forecasting in a wide range of disciplines, including 

banking (Venkatesh et al., 2014), economics (Choudhary and Haider, 2012), energy demand 

prediction (An et al., 2014; Jarimillo-Morán et al., 2013; Tamizharasi et al., 2014), tourism 

demand forecasting (Claveria and Torra, 2014; Palmer et al., 2006), traffic accident 

prediction (Akgüngör and Doğan, 2009; Kunt et al., 2011), supply chain (Kochak and 

Sharma 2015), transportation (Jiménez et al., 2014), and water demand prediction 

(Behboudian et al., 2014). 

 

It is important to note, however, that several studies have come to the opposite conclusion. 

For example, Makridakis & Hibon (2000) concluded that neural network forecasts were less 

accurate than damped trend forecasts and combined forecasts. Crone et al. (2011) found 

that neural network forecasts were comparably accurate to forecasts from established 

statistical methods in time series prediction, but not more accurate (p.657). 

 

There have only been a few reported studies using artificial neural networks (ANNs) in air 

transport demand forecasting. The first reported study that proposed an ANN for forecasting 

air travel demand was by Nam & Schaefer (1995). The authors developed an ANN for 

predicting passenger traffic between the Republic of South Korea and the USA. Alekseev 

and Seixas (2002, 2009) developed neural network based forecasting models to predict the 

annual Brazilian air transport passenger demand. Kim et al. (2003) forecasted the air travel 

demand changes of Seoul-Busan and Seoul-Daegu airline routes which they considered 

competitive with the high speed rail services (HSR). Ba-Fail (2004) forecasted the number of 

domestic and international airline passengers in Saudi Arabia using the neural network 

technique. Blinova (2007) examined the possibility of using a neural network approach to 

forecast the expansion of the air‐transport network in Russia.  In a further study, Chen et al. 
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(2012) employed a back-propagation neural network (BPN) to improve the forecasting 

accuracy of air passenger and air cargo demand from Japan to Taiwan. 

 

In addition to ANNs, genetic algorithm is a further approach that can be applied for 

forecasting and optimization problems (Akgüngör & Doğan 2009; Kunt et al. 2011). Indeed, 

genetic algorithm (GA) is considered a powerful stochastic search technique and is based on 

the principle of natural evolution (Kunt et al. 2011). GA differs substantially from traditional 

optimization methods. This is because GA searches for the population of points in parallel 

rather than for a single point in order to obtain the best solution. Therefore, GA provides 

several potential solutions to a particular problem under study. The decision of the final 

solution is left to the user (Akgüngör & Doğan 2009).  

 

The genetic algorithm approach has been applied to a wide range of disciplines in recent 

times, including electric energy estimation (Ozturk et al. 2005); energy demand prediction 

(Ghanbari et al. 2013); housing price forecasting (Gu et al. 2011); tourism demand 

forecasting (Hernández-López & Cáceres-Hernández 2007; Hong et al. 2011); tourism 

marketing (Hurley et al. 1998); traffic accident severity prediction (Akgüngör & Doğan 2009; 

Kunt et al. 2011); and transport energy demand prediction (Haldenbilen & Ceylan 2005). In 

addition, Sineglazov et al. (2013) have proposed a genetic algorithm approach for solving 

the problems of forecasting experienced in the aviation industry. The authors have also 

noted that their GA may be applicable to forecasting regional aviation facilities and other 

industrial sectors that have demand patterns similar to those experienced by airlines. 

 

Another artificial based intelligence forecasting approach that is attracting considerable 

attention in the literature is the adaptive network-based fuzzy inference system (ANFIS). 

ANFIS was first introduced by Jang (1993). The Adaptive Neuro-Fuzzy Inference System 

(ANFIS) is a hybrid forecasting method comprising both fuzzy inference systems (FIS) with 

the artificial neural network (ANN) (Fang 2012; Liu et al. 2008). ANFIS is considered a more 

powerful approach than the simple fuzzy logic algorithm and artificial neural networks on 

their own. This is because the ANFIS technique provides a method whereby fuzzy modelling 

learns about the data set; in order to compute the membership function parameters which 

best enable the associated fuzzy inference system to track the given input/output data (Al-

Ghandoor et al. 2012, p. 130). A further advantage of ANFIS is the fact that it can be trained 

without the requirement for the expert knowledge normally required for the standard fuzzy 
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logic design. Both quantitative data and linguistic knowledge can also be combined into a 

fuzzy rule base through the utilization of fuzzy methods. Furthermore, the strength of ANFIS 

is that it uses the artificial neural networks (ANNs) ability to classify data and identify 

patterns within data (Giovanis 2012). Moreover, ANFIS develops a fuzzy expert system that 

is more transparent to the user and which is also less likely to produce memorization errors 

than an artificial neural network (ANN) (Raşit 2009). Giovanis (2012, p. 88) also observes 

that other important advantages of ANFIS “include its nonlinear ability, its capacity for rapid 

learning, and its adaptation capability”. 

 

This ANFIS approach has been applied to a growing range of disciplines, including transport 

mode choice (Andrade et al. 2007); economics (Fang 2012; Giovanis 2012); electricity 

demand forecasting (Zahedi et al. 2013); financial markets forecasting (Bagheri et al. 2014;  

Kablan 2009); gold price forecasting (Makridou et al. 2013); oil consumption forecasting 

(Senvar et al. 2013); stock market forecasting (Atsalakis & Valavanis 2009; Chen et al. 2013; 

Cheng et al. 2013; Svalina et al. 2013; Wei 2013); tourism demand forecasting (Atsalakis et 

al. 2014; Chen et al. 2010; Hadavandi et al. 2011); and ordering policy in supply chains (Latif 

et al. 2014). There has only been one published study using an ANFIS-based approach to 

model air transport demand forecasting (Xiao et al. 2014). Xiao et al. (2014) proposed a time 

series data-based neuro-fuzzy combination model, which was based on singular spectrum 

analysis, for the short-term air traffic prediction at Hong Kong International Airport.  

 

Based on the preceding analysis of the air travel demand forecasting studies that were 

identified in the comprehensive literature review, Figure A5.3 shows that 55 studies or 87.3 

per cent of the studies involved an econometric approach (regression-based), Five studies 

or 7.9 per cent used an artificial neural network (ANN) approach, whilst the adaptive neuro-

fuzzy inference system (ANFIS), fuzzy model and Integrated Mixture of Local Experts Model 

(IMLEM) approaches, were 1.59 per cent, respectively. 
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Figure A5.3. Summary of air travel demand modelling and forecasting studies forecasting 

approaches. 

Legend:  

Artificial neural network (ANN); Adaptive neuro-fuzzy inference system (ANFIS); Integrated mixture of 

local experts model (IMLEM). 

 

 

This section has presented the results of an extensive literature research, which found that 

63 journal articles have been published on domestic and international air travel demand 

forecasting since the early 1950s. It has also identified how the air travel demand forecasting 

approaches have evolved over time, and, most importantly, highlighted that there have been 

no reported studies that have developed and tested genetic algorithm or artificial neuro-fuzzy 

inference system (ANFIS) for forecasting Australia’s domestic LCC passenger demand.  
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APPENDIX 6 DATA TRENDS OF ALL VARIABLES  
 

Figures A6.1 to Figure A6.10 plot the graphs for the two dependent variables (enplaned 

passengers and revenue passenger kilometres performed) and the eight independent 

variables included in the study. As we previously noted in Chapter 3, Australia’s domestic 

LCCs enplaned passengers and revenue passenger kilometres performed have decreased 

sharply since 2011. This decline can be attributed to the change in Virgin Australia’s 

business model from an LCC business model to a FSNC business model. The decline in 

both Australia’s domestic LCC enplaned passengers and RPKs can be clearly observed in 

Figures A6.1 and A6.2, respectively.  

 

 

     

FigureA6.1. Australia’s LCCs enplaned passengers (Thousand)      FigureA6.2.Australia’s LCCs RPKs (Million) 

 

 

 

    

Figure A6.3.Australia’s real air fare (index)                Figure A6.4.Australia’s population size (Thousand) 
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Figure A6.5.Australia’s real GDP (Million)      Figure A6.6.Australia’s real GDP per capita  

 

 

 

    

Figure A6.7.Australia’s unemployment size (Thousand)      Figure A6.8.World jet fuel price (AUD$ per gallon) 

 

 

 

   

Figure A6.9.Australia’s real interest rates (percent)       Figure A6.10.Australia’s tourism accommodation capacity 

 


