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Abstract

Wireless Sensor Networks (WSNs) are firmly established as an integral technology that en-

ables automation and control through pervasive monitoring for many industrial applications.

Consisting of a large number of spatially distributed and autonomous sensors they collaborate

to collect process and deliver information. Usually deployed unattended in an area of interest

with little or no associated infrastructure their application domains span many environments.

These range from environmental or earth sensing applications and healthcare applications to

major industrial monitoring applications such as machine use, infrastructure and structural

monitoring. Streamlined sensing capabilities and the potential for aggregated intelligence via

parallel processing offer unique opportunities for distributed control in these applications. The

key features that are common to such applications can be noted as involving large amounts

of data, consisting of dynamic observation environments, non-homogeneous data distributions

with evolving patterns and sensing functionality leading to data-driven control and decision

making. Also in most industrial applications a major requirement is to have near real-time de-

cision support over streaming functionality that produces a large amount of data. Accordingly

there is a vital need to have a secure continuous and reliable sensing mechanism in integrated

WSNs where the integrity of the data is assured.

However, in practice WSNs are vulnerable to different security attacks, faults and mal-

function due to their inherent resource constraints, openly commoditised wireless technolo-

gies employed and often, naive modes of implementation. Misbehaviour resulting from such

threats manifest as anomalies in the sensed data streams in critically compromising the sys-

tems through wrong operational and control decisions. Therefore, it is vital that effective

techniques are introduced in accurately detecting anomalies and assuring the integrity of the
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data. Considering these factors this research focuses on investigating effective anomaly detec-

tion models for large scale industrial wireless sensor networks. Particular attention is given to

devising distributed models that are adaptable and scalable, works in an unsupervised manner

without prior training, achieves non-parametric and non-probabilistic detection over dynamic

data streams and supports near real-time decision making.

Focusing on achieving an anomaly detection framework that is both adaptable and scalable,

a hierarchical data partitioning approach with fuzzy data modelling is introduced first. In this

model unsupervised data partitioning is performed in a distributed manner by adapting fuzzy

c-means clustering in an incremental model over a hierarchical node topology. It is found that

non-parametric and non-probabilistic determination of anomalies can be done by evaluating the

fuzzy membership scores and inter-cluster distances adaptively over the node hierarchy. Robust

thresholds for anomaly differentiation are derived using only second order statistical knowledge

that is locally available. The viability of the model is demonstrated through sensitivity and

specificity analysis performed for a variety of data distributions. Scalability of the proposed

model is highlighted from the reduced communication costs that accompany high detection

accuracies that are achieved when compared to existing approaches.

Specifically, considering the heterogeneous data distributions with evolving patterns, a

granular anomaly detection model that uses an entropy criterion to dynamically partition the

data is proposed next. This successfully overcomes the issue of determining the proper number

of expected clusters with regard to an unsupervised cluster based anomaly detection process.

In this approach the data is partitioned on to different cohesive regions using cumulative point-

wise entropy directly. The effect of differential density distributions when relying on an entropy

criterion is mitigated by introducing an average relative density measure to segregate isolated

outliers prior to the entropy based partitioning. The combination of these two factors is shown

to be significantly successful in determining anomalies adaptively in a fully dynamic manner.

The model is also implemented in-network over a hierarchical topology with reduced commu-

nication costs in offering granular anomaly detection over different network levels. Robustness

of the proposed model is highlighted through the higher level of detection accuracy attained

for a variety of data distributions representing dynamic observation domains



vii

The need for near real-time anomaly evaluation is focused next on this thesis. Building upon

the entropy based data partitioning model that is also proposed, a Point-of-View (PoV) entropy

evaluation model is developed next. This employs an incremental data processing model that

is performed locally over the different nodes as opposed to batch-wise data processing. Three

unique points-of-view are introduced as the reference points over which point-wise entropy is

computed in evaluating its relative change as the data streams evolve. It is shown that each of

these points are capable in offering different lenses that evaluate relative entropy change with

regard to identifying anomalies in an online fashion. In order to identify instances of sensor

drift and level shifts that occur as part of normal behaviour, a secondary analysis stage is also

incorporated where potential anomalies are again subjected to entropy evaluation. This works

to significantly reduce false alarms that are common with an otherwise unsupervised process.

Experiments indicate higher detection accuracies with low false alarm rates for a variety of

evolving behaviour.

Overall this thesis proposes efficient unsupervised anomaly detection models that employ

distributed in-network data processing for accurate determination of anomalies. The intro-

duced models particularly cater to dynamic observation domains consisting of heterogeneous

and non-homogeneous data with evolving patterns. The resource constrained environment is

taken in to account in each of the models with innovations made to achieve non-parametric

and non-probabilistic detection. Therefore, the research contributions in this thesis presents

effective unsupervised models to solve the critical issue of determining data anomalies in scal-

able and adaptive frameworks that is robust with regard to dynamic data domains in large

scale industrial wireless sensor networks.
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Chapter 1

Introduction

Wireless Sensor Networks (WSNs) are a comparatively new technology that is increasingly

gaining traction over a wide spectrum of different applications in the context of pervasive

monitoring and automation [Yick et al., 2008]. They consist of a large number of spatially dis-

tributed and autonomous sensors that collaborate to collect, process and deliver information.

Each individual sensor node is equipped with a radio tranceiver, microcontroller an integrated

memory, an energy source (e.g battery or form of energy harvesting) and application sensors.

These sensors are used to jointly measure physical or environmental conditions such as temper-

ature, humidity, pressure, voltage, sound, vibration and motion. Most modern sensor networks

are designed and configured to support bi-directional functionality that allows for sensor ac-

tivity control and querying in addition to normal data communication originating from source

nodes.

Initially developed for military applications, such as battlefield surveillance their current

usage today spans a wide range of industrial and consumer applications where the need for

more automation and continuous monitoring is increasing [Gungor and Hancke, 2009]. To date,

WSNs have been successfully applied to many such domains and include environmental or earth

sensing applications (forest fire/landslide detection, water and air quality assessment, land

use/irrigation monitoring), healthcare applications (patient monitoring, body sensor networks)

and industrial applications such as machine use, infrastructure and structural health monitoring

[Buttyan et al., 2010], [Bertocco et al., 2008], [Luo et al., 2012], [Guevara et al., 2012].

1
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Figure 1.1: Wireless Sensor Networks in Distributed Industrial Infrastructure

WSNs are usually deployed unattended in an area of interest which may either be a ho-

mogeneous or heterogeneous environment. Their deployment typically involves little or no

infrastructure and can be classified as a structured or unstructured network [Yick et al., 2008].

If the node deployment is done in an ad-hoc manner it is said to be unstructured where as if it

is done in a pre-planned manner (typically in some form of a topological hierarchy) it is said

to be a structured network. Each node may perform a variety of services such as localization,

synchronization, data aggregation or compression as well as security and coverage depending

on the needs of the application in keeping effective network performance. The communica-

tion among sensor nodes is achieved through the radio transceiver and following the five layer

communication protocol stack that include the physical layer, data-link layer, network layer,

transport layer and the application layer.

The area that has gained the most popularity with regard to adaption of WSNs for pervasive

monitoring is the industrial monitoring applications. Streamlined sensing capabilities and the

potential for aggregated intelligence (via parallel processing) also offer unique opportunities for

distributed control as required in this area [Buttyan et al., 2010, Puccinelli and Haenggi, 2005].

However, these applications also provide the most challenges due to their very dynamic states

of monitored environments and the critical decision making that is enabled through sensed

data in contrast to most land use and environmental monitoring applications. Moreover these

applications feature continuous automation and control requirements as well as in some cases
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Figure 1.2: Wireless Sensor Networks (WSNs) in a Smart Grid Environment: WSNs are used for
distributed sensing and communication regarding a variety of applications in Smart Grid. From en-
suring energy security and renewable energy integration to dynamic power allocation and management
at micro-grid levels through real time consumer demand management they form a vital information
core that enables smart functionality. The different applications with regular time critical sensing
paves the way for very large amounts of multi dimensional data of which ensuring integrity is a core
concern in achieving reliable and optimum performance. Such data demographics are dynamic and
non-homogeneous presenting a challenge for traditional security measures. The Sensor networks are
often dynamically ordered on to a hierarchical topology offering sensing granularity at different levels
in this large scale heterogeneous environment.

the need for near real-time decision support. Examples include blockage and leakage detection

in pipeline systems, machine health monitoring, structural stability monitoring and predictive

maintenance to detect potential failures in large scale industrial facilities such as oil and gas

industries and power generation and distribution systems. Figure 1.1 shows an example of a

WSN connecting to an industrial process control system with the application environments

in power and oil sectors. Here, the HMI (Human Machine Interface) Server presents the

updated information collected over the WSN while the Historian Database keeps a record of all

aggregated observations. The WSN is typically modelled as a hierarchical topology of sensors

with the Network Manager controlling communication and processing the sensed information

in between.

Another key industrial platform where the use of WSNs is currently gaining prominence

is smart grids in the power industry. This application involves most features as discussed
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above and can be used as a key example that enables to understand the issues and challenges

involved in an industrial WSN application for pervasive monitoring. The essence of Smart

Grids lies in the integration of communication and networking technologies into traditional

electrical power grids, with the overarching goal being an efficient and timely communications

platform. Doing so unlocks critical capabilities, such as pervasive monitoring, fault diagnosis

and automation over all aspects of power generation, transmission and distribution [Bose,

2010, Aggarwal et al., 2010]. Issues pertaining to voltage sags, blackouts, congestion and

overloads can be addressed through tight integration between monitoring and communication

technologies over what is currently an inefficient, fragile and aged electricity infrastructure

[Gao et al.]. Major advantages in the use of WSNs include scalability, manageability and

extensibility within the context of a large-scale and geographically distributed infrastructure,

as well as a cost effective and interoperable method to perform multi-granularity monitoring

with a variety of sensing options [Gungor et al., 2010, Erol-Kantarci and Mouftah, 2011a].

A multitude of different smart-grid applications provide opportunities for the effective use

of WSNs in the area of distributed sensing and communications. For example, at the end-

user/consumer level, there are general energy management and appliance co-ordination issues

to address. From an industry perspective, there is the need to monitor transmission lines

for voltage sags and the balancing of power loads across districts. To address such needs,

WSNs provide streamlined sensing capabilities and an aggregated intelligence (via parallel

processing) for distributed control [Erol-Kantarci and Mouftah, 2011b]. Through flexible and

pervasive communications between consumer and utility controllers, WSNs are shown to effec-

tively reduce energy expenditure, lessen contribution to both peak loads and carbon emissions

[Erol Kantarci and Mouftah, 2011]. In [Liang et al., 2012], they are used for decentralized eco-

nomic dispatch and an optimal decision-making process for power generation in micro-grids.

They have also proven key in ensuring reliability across large-scale distributed transmission

lines, through voltage sensing and meteorological monitoring [Yang et al., 2011]. The applica-

tion context of WSNs in smart grid is depicted in Figure 1.2.

Therefore, underlying aspects of major industrial scale applications as represented by the

example context of the smart grid application can be identified as follows: (i) involves large
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amounts of sensed data; (ii) observes dynamic environments where the observation domain

consists of unpredictable and dynamic distributions; (iii) heterogeneity of data with differing

types in unmatched distributions; and (iv) sensing functionality leading to data-driven control

and core decision making. Accordingly, there is a vital need for a secure, continuous, reliable

and effective sensing mechanism through integrated WSNs, one that places utmost importance

on the integrity of the data. However, in practice the sensor nodes of a WSN are severely

limited by power, computation, memory and communication. This makes them vulnerable

to faults, node malfunction and different security threats both internal and external [Djenouri

et al., 2005, Shi and Perrig, 2004]. Furthermore, the physical security of the nodes cannot be

guaranteed as they are often deployed in large scale environments that allow physical access

and often without any tamper resistance measures due to cost considerations. The use of

publicly accessible communication channels and openly commoditised wireless technologies

often employed exacerbates the situation where the information exchange can be captured by

any parties with malicious intent. Consequently wireless sensor networks are threatened by

multiple factors which can be noted as follows [Lopez and Zhou, 2008].

• Node faults and malfunctions

• Communication attacks

• Denial of service attacks

• Node compromise and impersonation attacks

• Protocol specific attacks

Misbehaviour resulting from such occurrences will result in anomalies that are manifested

in sensor network data streams. If left undetected these data anomalies will lead to wrong

operational and control decisions that can impact wider society through severe economic losses,

environmental damage and possible human harm. Therefore, it is vital that proper techniques

are introduced in accurately detecting these anomalies given the critical role of the sensed

data in core decision making.
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This thesis focuses on how to effectively detect these anomalies in integrated wireless sen-

sor network environments and mitigate their impact on key decision support systems with an

aim to ensuring the security of the overall system. Of particular concern is the specific re-

source limitations in sensor nodes that mandate efficient procedures and models with reduced

computational and communicational complexity. Novel anomaly detection models are inves-

tigated with innovative data processing frameworks that are uniquely suitable for anomaly

detection in the application context of large scale industrial wireless sensor networks. Each of

the presented anomaly detection models are specifically designed to overcome the challenges

of unpredictable and dynamic environments in a robust manner that is both adaptable over

evolving data streams and scalable with regard to large scale implementation. The first part of

the research focuses on developing models that act in a completely unsupervised manner with-

out any prior knowledge in differentiating anomalous behaviour from normal behaviour. Next,

investigations are done and models introduced to classify data in a fully dynamic manner with

non-parametric and non-probabilistic detection of anomalies. The final concern is to present

an incremental approach for fully unsupervised anomaly detection that critically supports near

real-time decision making. In the next section the specific problems associated with anomaly

detection in WSNs are discussed and the challenges presented leading to the definitions of the

research questions in the following section.

1.1 Research Challenges

Securing the integrity of wireless sensor network data streams is an imperative task with

many significant challenges. This is especially critical when the underlying application is

part of the process control system of various critical infrastructures as in oil, gas and power

sectors. A successful security attack against such systems could result in potential threats to

public health and safety, environmental damage and massive economic losses effecting wide

aspects of society due to loss of power, manufacturing and transmission [Group, (2005, Marsh,

(1997]. These systems have been designed with specific attention given to reliability and

availability requirements. However, most of the time little or no attention is given to the

security aspects on the system’s design criteria. With process control systems increasingly
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moving away from traditional wired and closed systems into more heterogeneous, open and

wireless sensor network based environments, new risks and threats are appearing that cannot

be countered with existing security mechanisms. Therefore, it is an extremely important issue

to develop new solutions considering the specific threats and vulnerabilities from the integrated

WSNs and ensure security of the overall system.

Malicious attacks exploiting the wireless communication medium on WSNs [Djenouri et al.,

2005] enable for eavesdropping, illegal modification and data fabrication resulting in confiden-

tial information being available to unauthorized parties [Shi and Perrig, 2004]. These critical

data could then be used against the system for further process disruptions or inflicting wide

scale damage. Furthermore, an attacker with inside information can cause what are generally

termed as insider attacks. These will be much more difficult to defend against, and detecting

them reliably is vital. Inside attackers can modify data used in operational decisions, pro-

grams controlling industrial equipment or data reported to control centres. They could result

in widespread damage, premature system shutdown or interfere with existing safety systems

[Group, (2005, Marsh, (1997]. Therefore, security mechanisms that accurately and effectively

counters intrusions consisting of insider attacks as well as other routing (selective forwarding,

wormhole, sybil), jamming/spoofing and eavesdropping attacks in preventing critical situations

is extremely vital.

The nature of openly commoditised wireless technologies often employed, and the inherent

limitations of the sensor nodes themselves in naive implementations also expose the application

environment to a variety of threats and vulnerabilities that are both internal and external

[Djenouri et al., 2005, Shi and Perrig, 2004]. Such threats can: (i) affect the integrity of

the network through path and node configurations; (ii) alter routing processes; (iii) introduce

illegitimate network operations; (iv) perform illegal modifications or feed falsified data and (v)

induce process monitoring blackspots [Djenouri et al., 2005, Shi and Perrig, 2004, Luo et al.,

2006b, Phipatanasuphorn and Ramanathan, 2004]. Such threat vectors are easily realised

through attacks on WSNs deployed for industrial equipment monitoring purposes [Mo and

Sinopoli, 2012, Wang et al., 2010]. The need to deploy sensor networks unattended over a

large geographic area in most applications exacerbates the situation further, with physical
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security of individual nodes not guaranteed [Di Pietro et al., 2009]. This can lead to instances

of side-channel attacks [Ravi et al., 2004, Bar-El et al., 2006] and compromised security keys

that open windows of intrusion.

Most of the existing literature on this area focus on prevention-based measures. These

are mostly built around cryptography with particular focus on secure key-management, data

encryption and authentication [Eschenauer and Gligor, 2002, Du et al., 2004]. Some others has

focused on defining more secure routing protocols [Datta, 2005, Villas et al., 2013] and managing

link quality, security keys and reliability [Luo et al., 2006a, Yu and Guan, 2008]. Recent

studies have focused on both probabilistic and deterministic key protocols with symmetric

key cryptography [Rahman and El-Khatib, 2010, Gupta et al., 2007]. However, as the level of

protection gained from these measures increase, so does the communication and computational

complexity. This is not feasible in large distributed environments of industrial WSNs with

their limited resources. Furthermore, as these networks cover a large geographic extent it is

not always possible to guarantee the physical security of each sensor node. This can lead to

physical tampering on the sensor nodes as with side channel attacks and the security keys being

compromised [Ravi et al., 2004, Bar-El et al., 2006]. Secure routing methods [Boukerche et al.,

2006, Ben-Othman and Yahya, 2010, Gandham et al., 2008, Mun and Shin] propose mitigating

misbehaviour through stimulation of correct routing with node co-operation. These involve

path rating, detecting non forwarding nodes as well as management of a shared reputation

system for node behaviour. Again, it is costly in terms of energy to implement such solutions

in a large scale while only offering protection for known attacks. There is always a non negligible

probability for new attacks exploiting unknown vulnerabilities.

Another key concern is the unavoidable occurrence of faults in the sensor nodes that can

lead to wrong measurements and impact key process parameters [Sharma et al., 2007, Sharma

et al.]. In practice, isolated node failures through faults can bring down the entire network

through communication disruptions. The limited resources and capability may also degenerate

the quality of the data being produced. Especially when battery power is low the probability

of erroneous data may grow [Subramaniam et al., 2006]. Furthermore, in instances where the

sensor nodes are left unattended in harsh environments the nodes are frequently susceptible to
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adverse environmental effects. In such cases the sensor nodes may malfunction and produce

noisy, faulty, missing and redundant data.

Such situations as described of security attacks and faults often manifest as anomalies in

data streams and pose grave implications to decision-making processes at the heart of process

monitoring implementations, and can easily threaten key components of the underlying ap-

plication. If left undetected these data anomalies will lead to wrong operational and control

decisions on industrial infrastructure that impact wider society through power blackouts, con-

gestion and production loss, and can ultimately lead to severe economic losses, human harm and

environmental damage. Urgent focus is required for more data-centric security approaches that

ensure the integrity of the sensed data. Therefore, methods for accurate and efficient detection

of potential anomalies within the sensed data is of severe importance in WSN implementations.

These factors have led to the design of detection-based mechanisms as an indispensable next

level of security. Anomaly detection is defined as the process of comparing the observed be-

haviour with that of a built-up normal profile in order to identify any deviations. An anomaly

in this context is defined as an observation that is inconsistent in significantly deviating from

that of the majority normal data.

The key challenge for any evolving anomaly detection model for WSNs is to identify anoma-

lies with high accuracy but with minimal associated energy cost. In sensor networks the ma-

jority of the energy is consumed on data communication than computation implying that a

main focus should be on reducing communication overheads [Raghunathan et al., 2002]. For

example it is shown that in Sensoria sensors and Berkeley motes the ratio between communi-

cation and computation energy costs range from 103 to 104 [Zhao et al., 2003]. Therefore, a

relative overhead on computational costs can be favoured when coupled with a much higher

reduction in communicational complexity. This leads to distributed approaches that minimize

the amount of data that is communicated as well as divide the required computational cost

among the different nodes in contrast to that of a centralized approach. Development of such

distributed models mostly rely on an in-network data processing framework that involves per-

forming analysis on different individual nodes and then sharing information as required to

achieve the anomaly detection task.
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Therefore, considering these aspects of the current state in wireless sensor network appli-

cations for large scale industrial monitoring the following core challenges are identified with

regard to achieving an effective anomaly detection model.

• The resource constrained environment requiring high data processing efficiency with re-

duced communication and computational overheads.

• The heterogeneous observation environments with dynamic data distributions, requiring

an unsupervised, non-parametric and non-probabilistic data classification method.

• The Unavailability of labelled training data sets requiring a fully unsupervised anomaly

classification process.

• Non-homogeneous and multi-density data distributions within observation domains, that

can result in both individual and correlated clusters of normal and anomalous behaviour.

• The need to detect anomalies in an online fashion in facilitating real-time decision support

1.2 Research Questions

In order to overcome the afore-mentioned challenges the following research questions are defined

with the aim of achieving distributed anomaly detection for large scale industrial wireless sensor

networks. The anomaly detection models that are developed to address these research questions

are robust and adaptable with efficient and scalable data processing frameworks.

• First: How to detect anomalies accurately and efficiently in a manner that is both adapt-

able and scalable for large scale industrial wireless sensor networks? How to achieve

that task in an unsupervised process without prior knowledge in a non-parametric and

non-probabilistic fashion?

• Second: How to make the anomaly detection process fully dynamic and robust with

regard to data streams with heterogeneous distributions and evolving patterns?

• Third: How to detect anomalies in an incremental model that supports near real-time

decision making in large scale industrial wireless sensor networks?
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1.3 Limitations of Existing Solutions

There exists a wide range of anomaly detection methods [Chandola et al., b], [Chandola et al.,

2012], [Patcha and Park, 2007] that have been proposed specific to different application areas.

Most of these techniques are not presented in relation to WSNs and assume the availability

of significant computational resources as well as centralized access to all data under the inter-

ested domain [da Silva et al., 2005]. Such computationally and communicationally complex

algorithms cannot directly be applied in WSNs due to their inherent resource constraints [Xu

et al., 2010, Liu et al., 2011]. Therefore, distributed data processing frameworks are mandated

that achieves anomaly detection through localized processing on individual sensor nodes with

intermediate information sharing. While other distributed data clustering frameworks [Kar-

gupta et al., 2001, Tasoulis and Vrahatis, 2004] exist regarding different applications, these

only attempt to solve the problem of distributing/parallelizing the clustering process for large

data sets that exist in a single server and is largely homogeneous and static. The aim is only

to reduce computational loads and doesn’t address the fundamental issue of data that is gen-

erated distributively and in a dynamic environment as in WSNs. The very limited number of

such methods for WSNs [Nowak, 2003, Forero et al., 2011] are also severely handicapped as

they assume an independent and identicaly distributed (i.i.d) condition for all data and only

creates a global clustering considering the whole data domain as a single entity while ignoring

any dynamicity in the environment.

Previous attempts at anomaly detection aimed specifically towards WSNs exist [Zhang

et al., 2010, Chatzigiannakis and Papavassiliou, 2007, Onat and Miri, 2005, Xie et al., 2011].

However, almost all of them either focus on detecting/preventing specific attacks or consider

sensor networks in a generalized context with assumptions made on major limitations. Existing

approaches can be classified onto different classes as (i) Distribution based, (ii) Distance based,

(iii) Density based and (iv) Clustering based approaches. Of these, approximating distribution

models require significant prior knowledge for data fitting as well as expensive testing/refitting.

This is not practical in the sense of dynamically changing data and the low resource capacity

environment of WSNs. On the other hand, distance based approaches [Knorr et al., 2000]

identify outliers based on the fraction (β) of the data that is further than a defined distance
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(r) to the majority. However, this can lead to misclassifications and detection problems where

the observation domain consists of both sparse and dense distributions within a single time

window.

Density based techniques mine outliers depending on the local density of each observation

[Breunig et al., 2000, Xie et al., 2012]. The local neighborhood is typically defined by a distance

(r) that encompasses the K nearest data points. While this approach handles multi-density

distributions with minimum assumptions/parameters, it suffers in the context of anomalies

comprising of uniform density micro-clusters similar to normal data. In such instances the

parameter K will have to be defined as large as the size of these clusters. Thus, sensitivity

to this single parameter brings unreliability and reduced detection rates in the context of

observations that comprise of isolated outliers and uniform density micro-clusters of abnormal

behaviour. In [Papadimitriou et al., 2003], these issues are addressed using a local correlation

integral based on statistical measures derived through local neighborhood densities. This

identifies outliers non-parametrically and is robust considering dynamic distributions with

different densities. However, it cannot detect instances of abnormal behaviour (consisting

of micro-clusters) that has same density as normal data while being significantly different in

individual values.

Data partitioning/clustering approaches stand out as the most viable in this context when

implemented with a non-parametric approach. They offer fully unsupervised classification

without any prior knowledge/assumptions and can be adapted over an incremental model

that offers different granularity. This is best attained in a hierarchical network topology that

performs the partitioning distributively and evaluates anomalies incrementally over different

levels. However, existing data clustering approaches are not optimized for anomaly detection

and are mostly centralized processes with high complexity and resource costs. Furthermore,

inferring outliers through an integrated formula cannot easily be achieved as the explicit goal

is segregating data groups with only implicit attention on the effects of noise/outliers [Xu and

Wunsch, 2005, Rokach, 2010].

Considering these limitations this thesis focuses on advance anomaly detection models that

work in an unsupervised process in order to be non-parametric and non-probabilistic. The
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models are specifically implemented over distributed in-network data processing frameworks

that are uniquely suitable for the resource constrained environment of large scale industrial

wireless sensor networks.

1.4 Research Contributions

To address the research questions defined previously three different frameworks are proposed

each with its own unique models that enable efficient in-network anomaly detection for WSNs.

1.4.1 Contribution #1

The approach proposed in the first framework uses distributed anomaly detection to achieve

high efficiency on the WSN, in accurately identifying intrusions and faults that compromise

the security of the overall system. The issues presented in the first research question are ad-

dressed here with an innovative approach that effectively utilize in-network processing in a

distributed anomaly detection framework. Fuzzy c-means clustering [Bezdek et al., 1984] is

adapted in an incremental manner for unsupervised data partitioning over several analytical

stages with regard to a hierarchical node topology. Thresholds are introduced adaptively at

each of these stages in differentiating local anomalies from the fuzzy membership scores and

inter-cluster distances. These thresholds are determined adaptively using second order sta-

tistical knowledge that is available at each analytic stage. Global correlations are evaluated

incrementally over the node hierarchy in identifying global anomalies as the network domain

expand. The approach is extensively evaluated using different data distributions with spatially

sparse and dense representations of normal and anomalous behaviour. These data distribu-

tions are derived from the publicly available sensor data distributions from Intel Research

Laboratories [Bodik et al., 2004] and the Australian Research Council’s research network on

Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP) [Suthaharan et al.,

2010]. Experimental investigations are performed in calculating the detection accuracy and

complexity in terms of communication overheads. Detailed comparisons are done with regard

to a centralized data processing approach and the existing fixed-width based data clustering
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approach in [Rajasegarar et al., 2006]. The major contributions of this research are highlighted

below.

• A distributed data processing algorithm for efficient anomaly detection: This uses dis-

tributed in-network processing over a hierarchical sensor node topology. Centroidal-

based fuzzy data clustering is performed at each node while communicating only the

locally identified cluster centroids and corresponding outliers to the next hierarchical

level in reducing communication overheads. The use of a centroid based data clustering

approach enables an efficient incremental model where data can be processed as they

are sensed, and evaluated for anomalies at different stages on the hierarchical topology.

Experimental results demonstrate significant communication reductions compared to ex-

isting centralized solutions [Chatzigiannakis and Papavassiliou, 2007, an Huang et al.,

2003].

• An unsupervised classification method for heterogeneous and dynamic data distributions

in WSNs: This is a distributed adaptation of the fuzzy c-means algorithm [Bezdek et al.,

1984], where fuzzy membership scores are computed by evaluating global correlations over

an incremental model. This is performed at several analytical stages over a hierarchical

topology enabling the model to accurately detect both local and global anomalies. This

reduces misclassifications compared to other binary classification methods [Onat and

Miri, 2005, Eik Loo et al., 2006], which are deterministic as well as restricted to local

data correlations. Experimental results clearly demonstrate reduced false positives with

the sensitivity range increasing compared to a non-fuzzy fixed-width clustering scheme

[Rajasegarar et al., 2006].

• Non-parametric and non-probabilistic detection for local and global anomalies: The thresh-

olds for identifying local and global anomalies, are derived based on second order statis-

tical knowledge of mean and standard deviation. These are introduced to fuzzy mem-

bership scores and inter-cluster distance distributions adaptively at different analytical

stages. Therefore, unlike in [Onat and Miri, 2005] and [Rajasegarar et al., 2006], no

arbitrary definitions of parameters or probabilistical assumptions are made, leading to a
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robust and more accurate detection of anomalies. Experimental results show an average

sensitivity in detection accuracy of (83.44 – 95.1%) and an average specificity in detection

accuracy of (99.73 – 99.98%) compared to (12 – 48%) and (14 – 72%) for the existing

data clustering approach in [Rajasegarar et al., 2006].

1.4.2 Contribution #2

The challenges with regard to the second research question are addressed here with an inno-

vative data processing framework that detects anomalies at different levels on a hierarchical

topology. In-network data processing is performed over several analytical stages, working to

reduce the amount of data communicated as well as offer granular detection. The data space

on each sensor node with regard to a specific time window ∆T , is partitioned in to different

cohesive regions using an entropy criterion that captures data characteristics above second

order statistics. This is performed in a non-parametric and completely unsupervised man-

ner. Unlike in the previous model the number of data partitions are determined dynamically.

Data correlations are therefore, compared through a point-wise entropy measure that is fur-

ther complemented by a relative density factor for a defined local neighbourhood at each data

point. The effect of noise and isolated outliers on the partitioning process is effectively curtailed

through their prior segregation using the relative density measure. Thresholds are then applied

adaptively on each analytical stage in identifying anomalous data regions as well as individ-

ual outliers. The resultant local anomalies together with average entropy and corresponding

density information in identified regions, are then communicated to the next hierarchical level,

where more global correlations are evaluated and representative anomalies at that level of

granularity identified. This is performed at all the different network levels until the root of

the hierarchy is reached for the considered WSN. Experimental investigations are performed

to calculate the detection accuracy for both normal and anomalous data points through sensi-

tivity and specificity analysis as well as communication complexity compared to a centralized

data processing approach. The major contributions of the research are summarised below:

• A dynamic and unsupervised data partitioning method for heterogeneous and dynamic

data: This partitions the data into different cohesive regions, based on correlations iden-
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tified through a point-wise entropy measure using euclidean distance similarity. The ef-

fects of noise and outliers is mitigated through prior segregation of such through the use

of average relative density calculations defined over two localised neighbourhood levels.

Unlike in [Gokcay and Principe, 2002, Temel and Aydin, 2007], entropy is used directly

in determining the partition formations and significantly the number of partitions are

determined dynamically without prior knowledge in contrast to most existing methods

[Rokach, 2010]. This is performed at each node for its local observation domain over a

hierarchical topology, enabling different levels of granularity. The resulting partitions are

representative for anomaly detection while being sensitive to local density variations and

robust for dynamic distributions. Experimental results demonstrate high classification

accuracy of more than 94% in both sensitivity and specificity metrics consistently over

different data distributions.

• Non-parametric and non-probabilistic detection of anomalies that is robust and adaptive

over different granular levels: This identifies anomalies using adaptive thresholds derived

from second order statistical information for observed mean entropy measures and cor-

responding average relative densities over different analytical stages. Each stage focuses

only on domain knowledge available at that network level in avoiding any arbitrary def-

initions of parameters or probabilistic assumptions. This leads to a more robust and

accurate detection for dynamic data with differential density compared to existing meth-

ods as in [Chandola et al., a, Hodge and Austin, 2004]. Experimental results show higher

averages in the detected true positives and true negatives with a corresponding reduction

in false positives and false negatives.

• A distributed data processing framework for efficient and scalable anomaly detection:

This capitalizes on in-network data processing performed in parallel on each sensor node,

where local data is aggregated over a defined sliding window. Entropy-based data par-

titioning is performed locally while communicating only the identified local anomalies,

and representative information (of mean entropy and related average relative density)



Research Contributions 17

on defined partitions, to the next hierarchical level. Thus, communication overheads are

dramatically reduced leading to enhanced efficiency, while the use of a data-partitioning

method enables an incremental model where data is processed as they are sensed and

evaluated for anomalies on different granular levels. Experimental results demonstrate an

average communication reduction of more than 85% compared to a centralized approach

where analysis is performed globally.

1.4.3 Contribution #3

The third contribution addresses the issue of enabling near real-time anomaly detection in

an incremental approach in relation to the concerns in research question three. This is again

performed through the effective use of an entropy criterion to differentiate anomalies. The pro-

posed model is implemented in-network with data processing performed in an online fashion.

This supports the real time nature of a typical WSN monitoring application in mitigating neg-

ative impacts of batch models. Specifically, in the proposed model a small buffer is maintained

in relation to incoming data streams and according to memory constraints at each node. This

data buffer is continuously updated with the addition of the latest data point and the removal

of the oldest. With the arrival of each new data point the point-wise entropy is calculated

according to three unique Point-of-View (POV) approaches. These are introduced as (i) PoV

of the mean µ, (ii) PoV of the incoming data point η and (iii) PoV of the historic mean µ′

(without the influence of latest data point). Then the change in entropy with the advent of a

new data point is is evaluated in relation to the current buffer elements of each sensor node in

identifying anomalous points.

However, in order to accommodate instances where sudden sensor drifts or level shifts make

the observed data distribution jump to a new range before continuing normal behaviour (in that

range), a secondary analysis is performed for potential anomalies identified in the first stage.

Therefore, a secondary buffer is introduced and any element that is designated as an anomaly

in the first stage is temporarily stored there. If the potential anomalies are continuously

identified the secondary analysis will be performed on this buffer to evaluate entropy change
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within the context of these new measurements. This gives the option to identify a major change

in measurement range that can be normal within a particular application environment such as

voltage monitoring where the measured voltage may jump between ranges as part of normal

behaviour. The accuracy of detection is extensively investigated and performance evaluated

over different data distributions using sensitivity and specificity analysis. This is performed

with regard to classifying normal data when the data stream evolves with evident sensor drifts

and with regard to detecting anomalies while the normal data stream continues to evolve. A

detailed comparison to other existing approaches is also done. The major contributions of this

research can be summarised as follows.

• Dynamic evaluation of anomalies in an online fashion for evolving data streams. This

uniquely detects outliers and abnormal behaviour in data streams while accommodating

for dynamic and evolving patterns of normal behaviour. A dual buffer model is used

in facilitating the detection of sudden behaviour changes in the data streams that may

happen as part of normal activity within the observation environment and enabling re-

altime decision support. Experiment results reveal high accuracy of more than 98% in

average sensitivity in detecting abnormal behaviour while still being robust with reduced

misclassifications as the different data streams evolve dynamically.

• PoV approach in evaluating relative change in entropy for dynamic detection of abnormal

behaviour. This uses point-wise entropy and its relative change as compared to the

mean entropy value observed over the buffered data space over evolving data streams

to uniquely capture the abnormalities and outliers that are present. As such three PoV

approaches are proposed as different lenses providing insight for more accurate detection.

Therefore, the perspectives of the mean µ, the median η and the historic mean µ′ with

regard to the maintained data buffer is used. The experimental results show improved

accuracy in sensitivity (more than 98% in average) and specificity (more than 96% in

average) metrics with regard to these PoV’s in facilitating anomaly detection in an online

fashion.
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1.5 Thesis Organization

The remaining chapters of this thesis are organized as follows.

• Chapter 2: Hierarchical Data Partitioning with Fuzzy Data Modelling for

Scalable Anomaly Detection. This chapter presents the unsupervised data partition-

ing approach that is developed using fuzzy c-means clustering in an incremental model

towards scalable anomaly detection over a hierarchical sensor network topology. Non-

parametric and non-probabilistic detection methods are introduced in a distributed and

in-network data processing framework. Detailed evaluation of the proposed model is

presented with quantitative and qualitative comparisons to existing work.

• Chapter 3: Dynamic Data Partitioning with an Entropy Criterion for Multi-

granular Anomaly Detection. The entropy based dynamic data partitioning approach

for WSN anomaly detection is presented in this chapter. The unique advantages of an

entropy criterion to partition data in the context of anomaly detection is discussed in

relation to limitations in existing work. The model is evaluated over different data sets

extensively with regard to accuracy and communication complexity studies.

• Chapter 4: Point-of-View (POV) Entropy Evaluations for Real-time Decision

Support in Evolving Data Streams. An in-network data processing model that uses

a point-wise entropy criterion to identify data anomalies in an online fashion is presented

here. Three unique reference points are introduced as part of a Point-of-View (PoV)

approach that computes entropy and offer different lenses to evaluate its relative change

as the data stream evolve on each sensor node. In order to identify instances where the

data stream may suddenly shift its spatial distribution as part of normal behaviour a

secondary analysis is performed employing a secondary data buffer that stores potential

anomalies identified in the primary phase of detection. The approach is evaluated for

classifying normal data as the distribution evolve as well as anomalous data that is

aberrant in different degrees. Detailed comparisons to existing work are also presented
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• Chapter 5: Conclusion. This chapter concludes the thesis with a summary on major

contributions and key findings of the performed investigations. Potential areas for future

research along with some limitations of the proposed models are also presented.

Note: The three core chapters (chapters 2 - 4) are presented in a standalone and self-

contained manner as much as possible in enhancing accessibility to major theoretical contri-

butions. Therefore, the relevant context including discussions on related work, descriptions on

data sets used and evaluation metrics are presented in each of these chapters separately in the

relevant discussion vein specific for that chapter



Chapter 2

Hierarchical Data Partitioning with

Fuzzy Data Modelling for Scalable

Anomaly Detection (HDP-FM)

As discussed in Chapter 1, Wireless Sensor Networks (WSNs) have increasingly gained promi-

nence over a variety of applications with regard to providing an efficient and cost effective

platform for pervasive monitoring. However, due to the nature of the WSNs themselves in-

cluding resource limitations and modes of implementation they are vulnerable to different kinds

of security attacks, malfunctions and faults. Taken together these issues impact the integrity

of the sensed and communicated data in undermining the decision making processes that rely

on the continuous availability of accurate monitoring data.

In addressing this issue and in relation to the first research question as presented in Section

1.2, this chapter introduces a new data partitioning model based on fuzzy data modelling in

order to detect sensed data anomalies in a robust and scalable framework. Data processing is

performed in a distributed manner with efficient in-network procedures over a hierarchical node

topology that is adapted as the network model. Unsupervised data partitioning is performed

distributively by adapting fuzzy c- means clustering in an incremental model. Non-probabilistic

anomaly detection is then performed through fuzzy membership evaluations over the resulting

21
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data clusters and through thresholds on observed inter-cluster distances. Thresholds are de-

termined adaptively in a dynamic manner using second order statistical knowledge available

at each analysis stage on the hierarchy. The approach is made to be as non-parametric as

possible with such adaptive measures taken where any fixed thresholds are used.

The rest of the chapter is organized as follows. First, Section 2.1 presents the background

for the study consisting of the main research problems and the challenges that are to be

overcome within the relevant context. Limitations of existing solutions are also discussed.

Further, we specifically highlight the motivation for the research and the contributions of the

proposed model in addressing the identified research issues. Section 2.2 extensively analyses

and discusses existing approaches and their drawbacks with regard to anomaly detection in

the current context as well as specific limitations in identified related work. The proposed

data partitioning approach based on fuzzy data modelling for distributed anomaly detection

is then presented in detail in Section 2.3. It focuses separate sections in soft data partitioning

with fuzzy clustering that include distributed and local phases of clustering, anomaly detection

where detection of both individual outliers and anomalous clusters are presented as well as a

section presenting the overall algorithmic framework. Extensive experiments are performed

using a variety of data distributions representing different aspects of observed behaviour in

Section 2.4. Here the different sub sections focus on the nature of the data sets used, evaluation

criteria, detailed discussions on results for detection accuracy and communication efficiency and

finally on a comparative analysis. The chapter is summarised in Section 2.5

2.1 Motivation and Contributions

Modern industrial processes in the sectors of energy, utilities and manufacturing increasingly

depend on Supervisory Control and Data Acquisition (SCADA) systems for process control.

Most of these systems are large and distributed, with the geographic range extending in the

order of kilometres for typical power, water and oil distribution applications. In such systems

wireless sensor networks (WSNs) provide a low cost and flexible solution to sensing and moni-

toring. They provide a large number of low cost sensors in a variety of sensing options enabling

more fine grained process monitoring. It is more feasible in terms of economical cost to deploy



Motivation and Contributions 23

them flexibly, while increasing the sensing ability compared to their wired counterparts [Roman

et al., 2007, Ye and Heidemann, 2006]. However, due to their inherent limitations in terms

of power and communication bandwidth, as well as vulnerabilities pertaining to the wireless

nature of communication, they add to the security risks of process control (SCADA) systems

[Djenouri et al., 2005].

Ensuring the security of industrial process control systems is vital given the critical aspects

of the underlying infrastructure. A successful security attack against such systems could result

in potential threats to public health and safety, environmental damage and massive economic

losses effecting wide aspects of society due to loss of power, manufacturing and transmission

[Group, (2005, Marsh, (1997]. These systems have been designed with specific attention given

to reliability and availability requirements. However, most of the time little or no attention

is given to the security aspects on the system’s design criteria. With process control systems

increasingly moving away from traditional wired and closed systems into more heterogeneous,

open and wireless environments, new risks and threats are appearing that cannot be countered

with existing security mechanisms. Therefore, it is an extremely important issue to develop

new solutions considering the specific threats and vulnerabilities from the integrated WSNs

and ensure security of the overall system.

Malicious attacks exploiting the wireless communication medium on WSNs [Djenouri et al.,

2005] enable for eavesdropping, illegal modification and data fabrication resulting in confiden-

tial information being available to unauthorized parties [Shi and Perrig, 2004]. These critical

data could then be used against the system for further process disruptions or inflicting wide

scale damage. Furthermore, an attacker with inside information can cause what are generally

termed as insider attacks. These will be much more difficult to defend against, and detecting

them reliably is vital. Inside attackers can modify data used in operational decisions, pro-

grams controlling industrial equipment or data reported to control centres. They could result

in widespread damage, premature system shutdown or interfere with existing safety systems

[Group, (2005, Marsh, (1997]. Therefore, security mechanisms that accurately and effectively

counters intrusions consisting of insider attacks as well as other routing (selective forwarding,

wormhole, sybil), jamming/spoofing and eavesdropping attacks in preventing critical situations
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is extremely vital.

Most of the research focus on securing WSNs have been on intrusion prevention systems.

These involve designing more secure communications through encryption and authentication

as well as secure routing protocols. Recent studies have focused on both probabilistic and

deterministic key protocols with symmetric key cryptography [Rahman and El-Khatib, 2010,

Gupta et al., 2007]. However, as the level of protection gained from these measures increase, so

does the communication and computational complexity. This is not feasible in large distributed

environments of industrial WSNs with their limited resources. Furthermore, as these networks

cover a large geographic extent it is not always possible to guarantee the physical security of

each sensor node. This can lead to physical tampering on the sensor nodes as with side channel

attacks and the security keys being compromised [Ravi et al., 2004, Bar-El et al., 2006]. Secure

routing methods [Boukerche et al., 2006, Ben-Othman and Yahya, 2010, Gandham et al.,

2008, Mun and Shin] propose mitigating misbehaviour through stimulation of correct routing

with node co-operation. These involve path rating, detecting non forwarding nodes as well as

management of a shared reputation system for node behaviour. Again, it is costly in terms of

energy to implement such solutions in a large scale while only offering protection for known

attacks. There is always a non negligible probability for new attacks exploiting unknown

vulnerabilities. These factors have led to the design of intrusion detection mechanisms as an

indispensable next level of security

Contributions

The approach proposed in this chapter uses distributed anomaly detection over a hierarchical

node topology to achieve high efficiency on the WSN, in accurately identifying intrusions and

faults that compromise the security of the overall system. The following are some of the

major challenges addressed by the proposed approach, which are not satisfactoraly addressed

in existing solutions [Zhang et al., 2010, Chatzigiannakis and Papavassiliou, 2007, Onat and

Miri, 2005, Xie et al., 2011]:

• Resource constrained environment requiring high data processing efficiency with reduced

communication and computational overheads.
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• Unpredictable dynamic changes in the monitored environment requiring non-parametric

anomaly detection without prior knowledge of the data distribution.

• Unavailability of labelled training data sets requiring a fully unsupervised anomaly clas-

sification process.

These challenges have been addressed here with an innovative data partitioning approach

that works in an unsupervised manner. Data is processed in-network in a distributed anomaly

detection framework that effectively reduce associated communication costs. Fuzzy c-means

clustering [Bezdek et al., 1984] is adapted incrementally for unsupervised data partitioning, on

several analytical phases over a hierarchical node topology. Non-parametric anomaly detection

is performed based on a robust thresholding technique defined using second order statistical

knowledge. The thresholds are introduced adaptively at each data processing stage in evalu-

ating local outliers from the calculated fuzzy membership scores and inter-cluster distances.

Global anomalies are identified through the evaluation of global correlations in an incremen-

tal model over the node hierarchy. The proposed approach is evaluated using different data

distributions with both sparse and densely concentrated representations of normal and ab-

normal behaviour. Two major data sets are derived based on the publicly available sensor

data distributions from Intel Research Laborataries [Bodik et al., 2004] and the Australian

Research Council’s research network on Intelligent Sensors, Sensor Networks and Information

Processing (ISSNIP) [Suthaharan et al., 2010]. Experiments are performed to calculate both

the detection accuracy (for normal/abnormal data instances) as well as complexity in terms

of communication overheads. Detailed comparisons are done with regard to a centralized ap-

proach and the existing data clustering approach in [Rajasegarar et al., 2006]. The major

technical contributions of this research are highlighted below.

• A distributed and in-network data processing algorithm: Data is processed distributively

at each node over an assumed hierarchical sensor node topology. Centroidal-based fuzzy

clustering that is performed at each node communicates only the identified local centroids

and corresponding anomalies between two network levels. Communication overheads are

reduced by using a centroidal based data clustering approach where the data can be
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processed as they are sensed, and evaluated for anomalies over different network levels

in a hierarchical topology. Experimental results demonstrate an average communication

reduction range of 98 – 99% compared to existing centralized solutions [Chatzigiannakis

and Papavassiliou, 2007, an Huang et al., 2003].

• An unsupervised classification method for heterogeneous and dynamic data distributions:

The fuzzy c-means algorithm [Bezdek et al., 1984], is adapted in a distributed manner

to score fuzzy memberships in an incremental model that evaluates increasingly global

correlations over a hierarchical network topology. The different analytical stages corre-

sponding to different network levels allow the model to accurately detect both local and

global anomalies. Misclassifications are reduced compared to other binary classification

methods [Onat and Miri, 2005, Eik Loo et al., 2006], which are deterministic as well as

restricted to local data correlations. Experimental results clearly demonstrate reduced

false positives with the sensitivity range increasing from (12% - 48%) to (83.44% - 95.1%)

compared to a non-fuzzy fixed-width clustering scheme [Rajasegarar et al., 2006].

• Non-parametric and non-probabilistic detection of anomalies: Thresholds are introduced

on calculated fuzzy membership scores and inter-cluster distance distributions adaptively

at different analytical stages in identifying both local and global anomalies. Second

order statistical knowledge of mean and standard deviation is used in deriving thresholds

without relying on any probabilitical or parametric methods. Therefore, unlike in [Onat

and Miri, 2005] and [Rajasegarar et al., 2006], no arbitrary definitions of parameters

or probabilistical assumptions are required. This leads to a robust and more accurate

detection of anomalies that is scalable. Experimental results show an average sensitivity

in detection accuracy of (83.44 – 95.1%) and an average specificity in detection accuracy

of (99.73 – 99.98%) compared to (12 – 48%) and (14 – 72%) for the existing data clustering

approach in [Rajasegarar et al., 2006].
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2.2 Related Work & Rationale

The rationale for adapting distributed anomaly detection in an unsupervised and non-parametric

approach to identifying anomalous behaviour in WSNs is discussed here. The limitations of

existing work are presented and focus is build upon the unique approach to be implemented.

Anomaly detection, as a branch of intrusion detection, identifies abnormal behaviour with-

out prior knowledge on the nature of that behaviour. Therefore, anomalies are identified as

measurements that significantly deviate from an established profile for normal behaviour within

a particular spatio-temporal domain. This enables the detection of new types of attacks and

emergent abnormal behaviour in the system through an incremental model that profiles the

normal behaviour. This is preferable in the sense of industrial WSNs due to scalability and flex-

ibility in adaption for dynamically changing data distributions and large scale implementations

[Raghunathan et al., 2002, Pottie and Kaiser, b].

Existing anomaly detection techniques can generally be identified under two major classes.

The first class uses unsupervised learning to build a normal profile that is used to identify

anomalous outliers without any prior knowledge on observed data. The second class is based

on supervised learning that makes use of prior knowledge in building up a normal profile.

This method requires the use of a training data set with labeled annotations. However, in

the proposed application context, such training data sets are unavailable with dynamic data

distribution changes requiring the classifier to be retrained each time with new labeled data.

Therefore, no prior knowledge can reliably be assumed, requiring an unsupervised classification

with the identification of outliers being both non-parametric and non-probabilistic regarding

the observed distribution.

Most of the existing anomaly detection techniques assume the availability of significant

computational resources as well as centralized access to all data under the interested domain

[da Silva et al., 2005]. Such computationally and communicationally complex algorithms cannot

directly be applied in WSNs due to their inherent resource constraints [Xu et al., 2010, Liu

et al., 2011]. Therefore, distributed data processing frameworks are mandated that achieves

anomaly detection through localized processing on individual sensor nodes with intermediate

information sharing. While other distributed data clustering frameworks [Kargupta et al., 2001,
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Tasoulis and Vrahatis, 2004] exist regarding different applications, these only attempt to solve

the problem of distributing/parallelizing the clustering process for large data sets that exist in

a single server and is largely homogeneous and static. The aim is only to reduce computational

loads and doesn’t address the fundamental issue of data that is generated distributively and

in a dynamic environment as in WSNs. The very limited number of such methods for WSNs

[Nowak, 2003, Forero et al., 2011] are also severely hadicapped as they assume an independent

and identicaly distributed (i.i.d) condition for all data and only creates a global clustering

considering the whole data domain as a single entity while ignoring any dynamicity in the

environment.

Previous attempts at anomaly detection aimed specifically towards WSNs exist [Zhang

et al., 2010, Chatzigiannakis and Papavassiliou, 2007, Onat and Miri, 2005, Xie et al., 2011].

However, almost all of them either focus on detecting/preventing specific attacks or consider

sensor networks in a generalized context with assupmtions made on major limitations. Chatzi-

giannakis et al [Chatzigiannakis and Papavassiliou, 2007] proposed a scheme based on PCA

(Principal Component Analysis) and the subspace method. However, lacking a distributed ap-

proach, data is processed centrally leading to high communication overheads. Onat et al [Onat

and Miri, 2005] introduced a method based on predefined statistical models for neighbouring

nodes. A normal profile is built upon average recieve power and average packet arrival rates.

This is heavily limited by the assumptions on normal behaviour probabilities that define the

thresholds for deviations from the normal profile. Huang et al [an Huang et al., 2003] proposed

a cross feature analysis measure but limits itself to only identifying routing anomalies based

on feature correlations that can be selective. A clustering technique is used by Loo et al in

[Eik Loo et al., 2006] for detecting routing attacks by creating fixed width clusters on routing

records. However, the determination of cluster boundaries for outliers is not clear when dy-

namic changes occur in the observed data. Rajasegarar et al [Rajasegarar et al., 2006] provided

a distributed clustering approach that overcomes most of the limitations mentioned above. The

clustering provides a means of unsupervised anomaly detection while the distributed frame-

work largely reduces the communication costs. However, the use of fixed width clusters has

an impact on accuracy when defining an appropriate width for the clusters. Anomalies are
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also evaluated based on a threshold for inter-cluster distance on a K-nearest neighbourhood

algorithm. The parameter K cannot easily be defined and can be arbitary given the dynamic

changes to data that can be expected.

2.3 Distributed Anomaly Detection Based on Incremental

Fuzzy Cluster Evaluation

Considering the limitations in existing methods, a novel anomaly detection framework is re-

quired that deals with the specific constraints of sensor nodes and challenges pertaining to

the dynamic nature of the sensed data itself. The proposed approach takes these aspects into

consideration to identify both standalone and distributed attacks through local and global

data correlations in a co-operative framework. It considers dependencies between attributes of

locally sensed data as well as the spatial and temporal correlations among neighbouring nodes

in a distributed environment.

The proposed approach can be summarised as follows. A WSN is modelled as a hierar-

chical topology of sensor motes with several tiers offering different levels of granularity (see

Figure 3.4). This organization of the network with the selection of parent nodes on each

level can be achieved using any of the techniques proposed in the literature [Ganesan et al.,

b, Malpani et al., 2000]. Each node collects multidimensional data measurements from the

observed environment and aggregates them locally within a fixed window of time (∆t). The

nodes are considered to be time synchronised and maybe deployed in either a homogeneous

or heterogeneous environment. Therefore, observations can constitute either same or different

data distributions which are unknown and cannot be predetermined.

The framework identifies both local and global anomalies using an unsupervised and non-

parametric process: local anomalies are identified using correlations/similarities among data

within a single node, whereas g lobal anomalies are identified considering correlations/similarities

on the union set of measurements representing multiple sensor nodes on the network. Detection

of global anomalies require the knowledge of all data observations sensed within that specific

spatial and temporal domain, which incurs large energy intensive communication overheads,
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when adapted in traditional centralized schemes [Zhang et al., 2010, Onat and Miri, 2005].

The proposed framework overcomes this through a distributed data clustering approach that

utilize in-network processing, in an incremental model for a hierarchical WSN topology.

S3S2

S1

S4 S5 S6 S7

Gateway Node

 Parent 
 Nodes

Leaf Nodes

Local Data Clustering (fcm)
Final Cluster Evaluation

Intermediate Anomalies

Local Anomalies

Global Anomalies

Local Data Clustering (fcm)
Secondary Cluster Evaluation

Local Data Clustering (fcm)

Cluster Centroids

Cluster Centroids

Figure 2.1: Distributed Anomaly Detection Architecture on a 2 Level WSN Hierarchy

The core of the framework consists of a distributed data clustering algorithm, adapting

fuzzy logic and fuzzy set theory concepts to accurately model the normal behaviour of the

sensed data space. First, local data partitioning is performed using fuzzy c-means (fcm) clus-

tering, and statistical thresholds are adaptively introduced to precisely classify the data points

(observations) into clusters and identify local outliers using local correlations at each node.

Later, the resulting cluster centroids and outlying data points are communicated over the net-

work (node) hierarchy to the next level. Here, the data points are again evaluated for cluster

memberships considering more global correlations on the union set of data points at each level.

This is performed recursively until the gateway node enabling global anomalies to be detected

using the thresholds on membership values computed at this (global) level.

Figure 2.1 graphically summarises the architecture of the proposed distributed anomaly

detection framework considering a two level hierarchical topology with seven sensor nodes.

Nodes S4, S5, S6 and S7 are the leaf nodes with nodes S2 and S3 as their immediate parents
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with node S1 making up the final gateway node for the assumed hierarchy. Each of the main

algorithmic steps that are performed at each node as well as the communicated data between

each level are shown with respect to the relavant node and hierarchical level.

2.3.1 Soft Partitioning and Fuzzy Clustering

A sensor network data space consisting of multidimensional attributes cannot directly be par-

titioned into a set of disjoint clusters. Therefore, any hard assigning of individual observations

into specific clusters will be arbitrary. In such cases a soft-partitioning of the data space is

preferable using weights to each observation and cluster indicating the degree to which that

observation belongs to any particular cluster. The value wij is then used as the weight that

any observation (say Xi) belongs to a particular cluster Cj . Fuzzy clustering provides a non-

probabilistic assignment of weights wij , which represent membership scores based on fuzzy logic

and fuzzy set theory through distance dissimilarity. The main concept in fuzzy set theory in

this context is that a particular observation is allowed to belong to a particular cluster with

a membership value between 0 an 1, while a pertaining statement derived through fuzzy logic

can be true to a degree between 0 and 1.

The fuzzy partitioning of a concerned multidimensional data space for a WSN can be

explained as follows. Let us consider a set of observations X = [X1, X2, ..., Xn], where each

data point Xi is a d-dimensional observation, where Xi = (xi1, xi2, ..., xid). Then a group of

fuzzy clusters C1, C2, ..., Ck is a subset of all possible fuzzy subsets of X where

• The summation of weights for a particular point add up to 1, i.e.
∑k

j=1wij = 1.

• Each cluster consists with non-zero weight atleast one data point, and doesn’t consist

with a weight of 1, all the points. We have: 0 <
∑n

i=1wij < n.

In this context the fuzzy c-means (fcm) algorithm [Bezdek et al., 1984] is versatile in

defining a fuzzy psuedo partition for a WSN. It minimizes an objective function (denoted as

Jm), which is the weighted sum of squared errors,
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Jm(U,C;X) =
k∑
j=1

n∑
i=1

wmij ||xi − cj ||2A, 1 < m <∞

where C = (c1, c2, ..., ck) is a vector of unknown cluster prototypes and cj ∈ Rp. Here wij

is the membership degree for data point Xi in the jth cluster. The inner product given by the

norm matrix A defines the similarity measure between a particular data point and the cluster

centroid (center). The Euclidean Distance is chosen as the similarity measure, as it provides

an effective similarity score with comparitively low computational complexity. Therefore a

nondegenerate fuzzy psuedo partition of X is derived by the representing matrix U = [wij ].

Focusing on centroid-based clustering to effectively capture the structure of the data is vital

to having an efficient distributed approach. Therefore, cluster centroids are used to represent

the set of individual data points for that cluster at different stages in the proposed model. This

reduces both the amount of data communicated among different levels on the hierarchy as well

as computational costs involved with their analysis. The main stages in our data clustering

approach can be represented in two phases as follows.

2.3.1.1 Local Clustering Phase

Soft partitioning of the data space is done using fuzzy clustering considering a local neighbour-

hood of one hop distance at each analysis level over the concerned hierarchy. Accordingly, all

of the sensor nodes in the considered sensor network will locally cluster its own data space for

a specific temporal window of time (∆t). This is the initial step in the proposed algorithm and

is performed using fuzzy c-means with a user defined number of expected clusters. Therefore,

each node produces a set of fuzzy values wij with regard to the degree of membership towards

the determined number of clusters CK . Next, de-fuzzification of the soft clustering is performed

through the introduction of statistically derived thresholds for the cluster membership values of

each data point. These (thresholds) will be non-probabilistic and non-parametric in the sense

that they will not be based on any prior knowledge of the data distribution. The thresholds

are derived from the statistical features of the observed data itself in truly representing the

currently observed distribution in an incremental model, rather than relying on hard coded

values that are arbitrary in a dynamic environment. Therefore, we use the value of one stan-
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dard deviation away from the mean as the threshold (T ) for defining cluster memberships. T

is defined as follows:

T (T1, T2) = 1/n
n∑
i=1

Xi ±

√√√√1/n
n∑
i=1

[Xi − (1/n
n∑
i=1

Xi)2]

T1, T2 is applied on the set of maximum values of wij computed for each data point. There-

fore, each node identifies the relevant set of clusters, denoted as C1, C2, · · · , Ck, and their

members (with membership between thresholds). It also identifies the set of local outliers that

cannot be attributed to a particular cluster, with a satisfactory degree (membership outside of

thresholds).

2.3.1.2 Distributed Clustering Phase

After the local clustering phase, every node sends the representative cluster centroids and the

identified local outliers to each of their immediate parent nodes on the hierarchy. The number

of these anomalies and centroids will be largely lesser in extent compared to the number of

total observations. Therefore, the overall communication cost compared to centralized methods

[Chatzigiannakis and Papavassiliou, 2007, an Huang et al., 2003], where all the observations are

transmitted, is significantly lower. Each parent node then combines the received information

with the results of its own local clustering in incrementally refining clusters. This helps in

evaluating global correlations (across multiple nodes) as well as reducing any misclassification

at the local level.

Therefore, each parent node calculates new membership scores and updates the clustering

with respect to the the union set of outliers and centroids (local and recieved). Therefore, the

outliers are evaluated again for membership scores in a refined set of clusters at each of the

parent nodes via the evaluation of global correlations at that level. The parent level results

of intermediatte outliers are identified by applying the statistical thresholds T1, T2 to current

degrees of calculated membership scores. The computed centroids and anomalies are then sent

to their parent nodes in the hierarchy. This process is recursively repeated until the root of

the hiearchy (gateway node) is reached, and the final results obtained with global anomalies

identified.
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2.3.2 Anomaly Identification

As stated earlier, anomalies can be defined as either local or global. However, they can also be

either individual data points or a group of data points in a cluster, which can be reffered to as

individual anomalies and anomalous clusters respectively. The identification of these anomalies

is performed via two mechanisms within the distributed fuzzy clustering framework described

above. The first mechanism involves the identification of specific outlying data points repre-

senting individual anomalies, while the second mechanism identifies outlying clusters where all

member points of that cluster are considered to be anomalous.

2.3.2.1 Outliers as Individual Anomalies

Outlying data points are identified by applying the thresholds T1, T2 on the highest membership

degrees [max U(wij)values] resulting from the soft partitioning of the data by fcm. This value,

(one standard deviation away from the mean) is introduced adaptively at each hierarchical stage

over the network. Therefore, the final remaining outliers at the gateway node provides the set of

individual anomalies. These data points have now been evaluated for cluster membership at all

the existing hierarchical levels of the sensor network, in evaluating more global correlations and

showing no satisfactory degrees of cluster membership. These outliers corresponding to both

local and global anomalies is therefore, declared as the set of individual anomalies identified

for the concerned observation domain.

2.3.2.2 Anomalous clusters

The second mechanism computes the intra-cluster distances between each of the representing

clusters generated at each hierarchical level until the gateway node. The statistical thresholds

(T1, T2) of one standard deviation away from the mean with respect to the distribution of ob-

served intra-cluster distances will define the clusters being considered as normal or anomalous.

Once this is performed accurately, the result is a set of normal and anomalous clusters with

representative centroids at the gateway node. With the thresholds being applied adaptively

over different topological levels for the network, both local and global anomalies are identified

and isolated with respect to the formed clusters on observed data distributions at each level.
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Furthermore, the accumulated results of globally evaluated anomalies at the gateway node

is shared down the sensor network hierarchy and used for anomaly detection locally. This will

provide the foundation for detecting global anomalies on a local basis in detecting distributed

anomalous behaviour in the network.

2.3.3 The Distributed Anomaly Detection Algorithm

The individual steps of the framework (for anomaly detection) is summarised as follows.

1. Each sensor node Sj aggregates its local observations over a specific time period ∆t.

2. Each sensor node Sj uses fuzzy c-means clustering on the locally observed data domain

as below in minimizing the objective function (J) of weighted sum of squared errors with

m determining weights influence.

Jm(U,C;X) =
k∑
j=1

n∑
i=1

wmij ||xi − cj ||2A, 1 < m <∞

initiate fuzzy pseudo partition with exponent m > 1

repeat

// compute centroids

cj =
n∑
i=1

wmij
Xi∑n

i=1 .w
m
ij

// score fuzzy membership values

wij =
(1/||xi − cj ||2)1/(m−1)∑n
q=1(1/||xi − cq||2)1/(m−1)

until cj doesn’t change

3. Each sensor node Sj then calculates the euclidean distance (i.e. dist(ci, cj), i 6= j) be-

tween the identified cluster prototypes (i.e. {c1, c2, c3, ...ck} ∈ C) in step 1 together

with the mean inter-cluster distance for the set of inter cluster distances (i.e. Dc =
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dist(ci, cj) : j = 1...(|C| − 1)) at each cluster prototype.

4. The cluster memberships are then evaluated and the local anomalies identified as both

individual outlying data points and anomalous clusters through derivation of the sta-

tistical thresholds (T1 and T2) on the highest membership value in the fuzzy partition

[maxU(wij)] as well as the inter-cluster distance between cluster centroids.

T (T1, T2) = 1/n
n∑
i=1

Xi ±

√√√√1/n
n∑
i=1

[Xi − (1/n
n∑
i=1

Xi)2]

for T1, T2 where X = max[Uik] and X = mean[Dc]

if maxUik < T1 —— maxUik > T2 then

Xi= local anomaly

end if

if mean(distcij) > T2 then

∀Xi ∈ C,Xi= local anomaly

end if

5. Each sensor node communicates the resulting anomalous data points (Xa) and the cluster

prototypes(C) (both normal and anomalous) to its immediate parent node.

6. The parent node Su collects the received information and combines them with its own

local clustering results in merging and refining the clusters as well as the anomaly clas-

sification in secondary evaluation of fuzzy membership scores, as in Step 3 - 4.

7. Recursively follow Steps 1 - 6 up until gateway node Sg.

8. Results at the gateway node represent final anomalies comprising and representing both

local and global anomalies on the considered WSN domain.

9. Gateway node Sg sends the global anomalies back to individual nodes through its children.
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10. Children nodes compare the conceding local clusterings with the global anomaly values

and detects them locally.

2.4 Results & Evaluation

The proposed anomaly detection algorithm is evaluated using both synthetic and real data

sets in this section. This is performed in terms of classification accuracy for both normal

and anomalous data points, as well as communication overheads compared to a centralized

approach. A comparitive analysis is also performed between the proposed approach and the

work in [Rajasegarar et al., 2006], which is the only distributed algorithm that propose an

unsupervised approach to detect anomalies. Therefore, experimental evaluations on sensitivity

and specificity analysis is performed between the two algorithms on different data distributions.

2.4.1 Data Sets

Two data sets representing different data distributions for normal and anomalous behaviour

are used. These data sets consist of observations from real sensor motes as well as artificially

created data points that are introduced to act as anomalies. The first data set is based on

the publicly available Intel Lab Data consisting of real measurements collected from 54 sensors

deployed at the Intel Berkeley Research Lab [Bodik et al., 2004]. The data collected includes

timestamped topology information along with temperature, humidity, light and voltage values

as the measured parameters from Mica2Dot sensors with weatherboards implemented. The

format of the data is presented in the form shown in Table 2.1. As this data isn’t annotated

and doesn’t contain any labelled information on observed anomalies, it is used in evaluations as

follows. Four different data distributions are created by considering the available node data of

the first four sensor motes (mote 01 - mote 04). The four attributes of temperature, humidity,

light and voltage together are used as data vectors corresponding to individual observations

with 4700 observations per single node.

First, the data is cleaned manually by identifying extreme values and removing them with

the use of scatter plots. The rest of the data is labeled as normal for evaluations. Once this is
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Table 2.1: Intel Data Set Data Format; Each observation consists of 4 mote attributes and 4
measured parameters

Attr. 1 Attr. 2 Attr. 3 Attr. 4 Para. 1 Para. 2 Para. 3 Para. 4

date:y-m-d time:h:m:s epoch moteid temperature humidity light voltage
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Figure 2.2: Data Distributions based on the Intel Sensor Data Set. Two data distributions representing
a spatially dispersed (top, left) and a spatially concentrated (top, right) set of anomalous vectors are
derived together with two complete distrbutions of tightly correlated and spatially focused observations
representing normal behaviour (bottom).

complete two sets of randomly generated data are introduced in each for two derived normal

data distributions to act as labelled anomalies. These data vectors are generated to represent

two types of anomaly distributions that may occur in the form of a randomly dispersed set and

a more focally concentrated set of anomalous observations. For this purpose, random sets of

vectors are drawn from the standard uniform and standard normal distributions each over the

normal measurements of individual attributes. Therefore, this data is simulated using matlab

data generation algorithms for standard normal and uniform distributions. The resulting data

sets are merged with the earlier derived normal data distributions of mote 01 and mote 03.
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The data sets of mote 02 and mote 04 are kept as derived in representing only normal data

distributions without any labelled anomalies. The resulting four data distributions are shown

with respect to two attributes each in Figure 2.2. Then a three level hierarchical organization

of wireless sensor nodes is simulated as depicted in Figure 2.1. The four data distributions

created are taken as corresponding to the data distributions of leaf nodes S4 - S7 according to

this hierarchical architecture.
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Figure 2.3: Data Distributions based on the ISSNIP Data Set. The two distributions with anomalous
data represent a set of sequentially distributed anomalies with two tightly correlated normal data sets
where one is is spatially concentrated (top, right) and the other more sequentially distributed (top, left).
The (bottom) two distributions consist of similarly corresponding normal data without anomalies.

The second data set that is used is the annotated data set with labelled anomalies avail-

able from the Australian Research Council Research Network on Intelligent Sensors, Sensor

Networks and Information Processing (ISSNIP) [Suthaharan et al., 2010]. This data corre-

sponding to a multi-hop wireless sensor network deployment using TelosB sensor motes is used

according to the same three level hierarchy as assumed in Figure 2.1. The data consists of

temperature and humidity measurements collected over a period of 6 hours in 5 second in-
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tervals with 4690 observations per each node. In this deployment anomalous observations are

introduced to the data from node 01 and node 03 by artificially manipulating the measured

temperature and humidity values. This is done by introducing a source of hot water and steam

within the observed environment. The resulting data distributions available from mote 01-

mote 04 is assumed to represent the leaf nodes S4 - S7 according to the simulated three level

network hierarchy as stated before. Therefore, the data distributions of node S4 and node S6

will have the introduced labelled anomalies while nodes S5 and S7 has no anomalous data and

represents normal observations. The data distributions for each of these sensor nodes are as

depicted in Figure 2.3.

2.4.2 Evaluation

The proposed algorithm was implemented on the matlab environment for a simulated wireless

sensor node hierarchy based on the two data sets created. Investigations on classification

accuracy and communication efficiency were carried out by varying the number of locally

expected clusters for each data distribution. Six experiment levels are chosen corresponding to

the expected number of clusters from 7 to 12. This range was selected as any number below

that will be too small to optimally represent a general sensor mote data distribution to score

comparable fuzzy values, while a larger number would increase the computational complexity

in making the process infeasible. Therefore, for each of the three hierarchical stages the False

Positive Rate (FPR) and the False Negative Rate (FNR) were calculated based on the observed

number of False Positives (FP) and False Negatives (FN) with the number of clusters ranging

from 7 - 12. A fasle positive is identified in the instance where a normal measurement is detected

as anomalous and a false negative identified in the instance an anomalous measurement is

detected as normal. The false positive rate gives the ratio between the detected false positives

and the actual normal measurements while the false negative rate gives the ratio between the

detected false negatives and the actual number of anomalies respective to the underlying data

distribution.

FPR =
FP

(FP + TN)
FNR =

FN

(FN + TP )
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The observed instances of True Poitives (TP) and True Negatives (TN) is also determined

at each stage. Then the Sensitivity and Specificity values are calculated as follows to be the

main evaluation metrics for data classification accuracy.

sensitivity =
TP

(TP + FN)
specificity =

TN

(TN + FP )

Sensitivity measures the probability that a statistical test is positive for a given true positive

statistic, while specificity measures the probability that a statistical test is negative for a given

true negative statistic. These parameters are calculated in three stages as detailed next. The

first set of results are computed based on the local fcm clustering for each of the four sensor

nodes S4 - S7 in the assumed three level hierarchy depicted in Figure 2.1. Next, the results are

calculated for the intermediate fuzzy scoring and cluster refining at nodes S2 and S3 and the

final results are computed at the gateway node S1. The number of individual data points and

the number of cluster centroids that are communicated on each wireless communication link are

also recorded between the three topological levels for the node hierarchy. These are recorded

in order to calculate the reduction in communication overhead for the algorithm compared to a

centralized approach where all observed data points are communicated to the gateway node as

is the case in most existing frameworks. The values of the objective function of the local fcm

clustering is plotted against the number of iterations in investigating the complexity of arriving

at a stable minimum with respect to the expected number of clusters. fcm works by minimizing

the weighted sum of squared errors as the objective function, and therefore, the minimum value

it reaches without any observed subsequent change produces the optimal clustering with the

number of iterations representing time complexity. The scatterplots highlighting the change

in the identified clusters and their distribution as well as isolated anomalies corresponding to

the increase in the number of clusters in each data distribution are also presented.

2.4.2.1 Classification Accuracy - Intel Data Set

Performance analysis on data distributions based on the Intel Research Lab Data is evaluated

first. The accuracy of data classification is investigated with respect to identifying anomalous

and normal data points by calculating the values for sensitivity and specificity. Considering the
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assumed three level hiararchical topology, results are given for each of the four local clustering

phases at nodes S4 - S7, the two intermediate clustering phases at nodes S2 - S3 and the final

analysis at the gateway node S1 in the sequence of tables from Table 2.2 to Table 2.5.

2.4.2.1.1 Local Clustering Results

The first data distribution consists of a spatially dispersed set of random vectors as the intro-

duced anomalies at node S4 corresponding to the scatterplot in Figure 2.2(top,left). Results

in Table 2.2 show the calculated average sensitivity as 0.9050 with an average specificity of

0.9983 over the expected number of clusters from 7-12. Therefore, the proposed approach

achieves extremely high accuracy in classifying normal data in detected True Negatives and

very high accuracy in classifying anomalies in detected True Positives. The corresponding

objective function plots show the required number of iterations in the fcm algorithm slightly

increasing with the number of expected clusters in the range of 15 - 20 in Figures 2.4. There’s

no major impact to accuracy in the choice of the expected number of clusters in the investigated

range from 7-12 other than a slight decrease at the lower and higher ends of cluster numbers.

This can be explained in two stages corresponding to the increase in the False Negative rate

regarding a spatially dispersed set of random anomalies. For a higher number of clusters, the

calculated fuzzy membership values will be more compact and closer together with every data

point getting a score that is closer to the mean in the set of fuzzy values. This is due to the

fact that a higher number of clusters for a randomly spread out data distribution provides

the opportunity for most data points to belong to a particlular cluster prototype with a high

membership score depending on the distance between them. Therefore, the calculated number

of outliers will be low from the defined threshold of one standard deviation away from the

mean on the membership value, as some of the anomalies also get high membership scores that

are closer to the mean with the increase in clusters numbers leading to an increase in the False

Negative rate.

On the other hand, for a smaller number of clusters the calculated fuzzy membership scores

indicate most of the data points belonging satisfactoraly to the identified clusters without clear

outliers. Therefore, the anomalies are being identified through classifying anomalous clusters
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Table 2.2: Classification Accuracy (Node S4) Anomalous Data : Distribution 1 INTEL

No. Clusters FN FNR FP FPR Sensitivity Specificity TN TP

7 15 0.1402 2 4.3545e-04 0.8598 0.9996 4591 92

8 9 0.0841 11 0.0024 0.9159 0.9976 4582 98

9 9 0.0841 25 0.0054 0.9159 0.9946 4568 98

10 8 0.0748 2 4.3545e-04 0.9252 0.9996 4591 99

11 8 0.0748 2 4.3545e-04 0.9252 0.9996 4591 99

12 12 0.1121 5 0.0011 0.8879 0.9989 4588 95

rather than individual outliers. However, as the number of clusters are small and the observed

data distribution is spread out randomly over a wide range the inter-clustster distances between

them are also large with little variation. Therefore, introducing a threshold of one standard

deviation away from the mean on inter-cluster distance for anomalous clusters provide a higher

probability for them to be classified as normal. This results in a higher False Negative rate.

The scatterplots for the clustering and the isolated anomalies are presented in Figures 2.4.

Table 2.3: Classification Accuracy (Node S6) Anomalous Data : Distribution 2 INTEL

No. Clusters FN FNR FP FPR Sensitivity Specificity TN TP

7 0 0 196 0.0426 1 0.9574 4404 100

8 0 0 1 2.1739e-04 1 0.9998 4599 100

9 0 0 1 2.1739e-04 1 0.9998 4599 100

10 0 0 32 0.0070 1 0.9930 4568 100

11 0 0 32 0.0070 1 0.9930 4568 100

12 0 0 1 2.1739e-04 1 0.9998 4599 100

For the second set of results presented in Table 2.3, the sensitivity and specificty of detec-

tion is analysed corresponding to the data distribution in mote S6 with a clearly defined set

of spatially focused values from a randomly defined uniform distribution forming the anoma-

lies. Here, 100% sensitivity (1.0000) is achieved for all stages with an average specificity of

0.9905. Therefore, for a set of tightly correlated and spatially concentrated anomaly range

(Figure 2.2(top,right)), the proposed approach ideally identifies all of the observed anomalies

correctly together with a very high accuracy of 99% in classifying normal data. In such a

situation, the woking hypothesis of data clustering that all normal data will be closer together

in a tightly correlated and large set of vectors, while anomalous data will be a small set of
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vectors significantly away from the normal data and with loose correlation, produces very high

accuracy through the classification of anomalies in outlying clusters that significantly standout

as deviations from the observed inter-cluster distances corresponding to normal data. The

scatterplots for the clustering and the isolated anomalies are presented in Figure 2.6 with the

objective function variation showing the required number of iterations below 20.

The data distributions of mote S5 and mote S7 provide two complete distributions of all

normal data without any anomalies corresponding to the most probable scenario in a real

sensor network deployment (Figure 2.2(bottom)). As there are no anomalies in this situation

the major influencing metric will be the false positive rate. The results for these two data

distributions are identical and as given in Table 2.4 show ideal detection accuracy through

specificity values of 100% in all stages with 0 false positive rate. Therefore, the probability of

a detected normal data point being actually normal through the proposed detection approach

leads to ideal classification accuracy in the normal run of the sensor network deployment. The

objective function reaches stability below 15 iterations with the cluster distributions as shown

in Figures 2.5 and 2.7.

Table 2.4: Classification Accuracy (Nodes S5 and S7) Normal Data : Distribution 3 and
Distribution 4 INTEL

No. Clusters FN FNR FP FPR Sensitivity Specificity TN TP

7 0 NAN 0 0 NAN 1 4700 0

8 0 NAN 0 0 NAN 1 4700 0

9 0 NAN 0 0 NAN 1 4700 0

10 0 NAN 0 0 NAN 1 4700 0

11 0 NAN 0 0 NAN 1 4700 0

12 0 NAN 0 0 NAN 1 4700 0

2.4.2.1.2 Distributed Clustering Results

The intermediate step of secondary fuzzy scoring and cluster refining on the hierarchical frame-

work is done at the nodes S2 and S3 via second level evaluation of membership values and

inter-cluster distances. Here, the detection accuracy for the combined union of data sets were

found to be 0.9050 and 1.0000 in average sensitivity with an average specificity of 0.9992 and
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0.9953 respectively at nodes S2 and S3.The final results for the Intel data set are calculated at

the gateway node S1 based on all the local and intermediate clustering results recieved. These

results as shown in Table 2.5, clearly demonstrates that the proposed algorithm has compa-

rable or very high acccuracy in terms of classification accuracy through the sensitivity and

specificity metrics. The final average sensitivity and average specificity values come to 0.9509

(95%) and 0.9972 (99%). Therefore, considering the detection of anomalies within a given

temporal window of ∆t on a hierarchical network topology the proposed framework provides

highly accurate classification in clearly identifying both normal data and anomalies.

Table 2.5: Final Classification Accuracy (Node S1): Distributions 1,3 and 2,4 INTEL

No. Clusters FN FNR FP FPR Sensitivity Specificity TN TP

7 15 0.0725 198 0.0106 0.9275 0.9894 18395 192

8 9 0.0435 12 6.4540e -004 0.9565 0.9994 18581 198

9 9 0.0435 26 0.0014 0.9565 0.9986 18567 198

10 8 0.0386 34 0.0018 0.9614 0.9982 18559 199

11 8 0.0386 34 0.0018 0.9614 0.9982 18559 199

12 12 0.0580 6 3.2770e -004 0.9420 0.9997 18587 195

2.4.2.2 Classification Accuracy - ISSNIP Data Set

Next, the proposed algorithm is evaluated on the data sets based on the annotated data

from ISSNIP. Considering the same assumed hierarchical topology for the sensor network as

discussed above the results are given for each of the local, intermediate and final data clustering

and analysis stages through Table 2.6 -2.9.

2.4.2.2.1 Local Clustering Results

The results on Table 2.6 for the data distribution with introduced anomalies depicted in Figure

2.3(top,left) gives an average sensitivity rate of 0.6035 and an average specificity rate of 0.9998.

Therefore, very high accuracy in classifying normal data is achieved with a corresponding very

low false positive rate. However, the classification of actual anomalies show a marked reduction

with a corresponding high false negative rate. This can be mainly attributed to the nature of

the data distribution itself. As the main hypothesis for a data clustering approach is that the
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normal data for a typical spatio-temporal observation domain will be tightly correlated and

spatially closer together while the anomalies will be small in number with loose correlation

and spatially distanced from the normal data, it drives the proposed framework to identify

anomalies based on a threshold of one standard deviation away from the mean on the calcu-

lated fuzzy membership scores and inter-cluster distances. However, as it is clear from the data

distribution in Figure 2.3 the concerned data has introduced anomalies that gradually increase

from the observed normal data sequentially. This is due to the fact that the ISSNIP researchers

have artificially manipulated the observed temperature and humidity values through the in-

troduction of a temporally increasing heat source for anomaly generation. Hence, a portion

of the annotated anomalous data are spatially very close to the majority of the normal data.

This drives the framework to classify them as normal in increasing the false negative rate and

impacting on the overall sensitivity measured. The false negatives ranging from 22-25, directly

correspond to these data that are very similar to the majority of normal data although they

are annotated as anomalies. Meanwhile the anomalies that are more spatially different in the

range of sequentially increasing observations are correctly classified.

Table 2.6: Classification Accuracy (Node S4) Anomalous Data : Distribution 1 ISSNIP

No. Clusters FN FNR FP FPR Sensitivity Specificity TN TP

7 22 0.3793 1 2.1589e -04 0.6207 0.9998 4631 36

8 25 0.4310 1 2.1589e -04 0.5690 0.9998 4631 33

9 25 0.4310 1 2.1589e -04 0.5690 0.9998 4631 33

10 22 0.3793 1 2.1589e -04 0.6207 0.9998 4631 36

11 22 0.3793 1 2.1589e -04 0.6207 0.9998 4631 36

12 22 0.3793 1 2.1589e -04 0.6207 0.9998 4631 36

In an industrial sensor network deployment setting, an anomaly feature that sequentially

increases as here will be detected by the proposed approach when it passes the derived thresh-

old. As this threshold is set to be only one standard deviation away from the mean for the

concerned parameter (i.e membership value or inter-cluster distance) the anomaly will be de-

tected before it can increase up to a level that can be harmful to the system. On the other

hand, for this data distribution there is no major imapct to the observed accuracy in the choice

of the number of expected clusters from 7-12 with the objective function reaching a stable min-
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Table 2.7: Classification Accuracy (Node S6) Anomalous Data : Distribution 2 ISSNIP

No. Clusters FN FNR FP FPR Sensitivity Specificity TN TP

7 0 0 5 0.0011 1 0.9989 4585 100

8 3 0.0300 1 2.1786e -04 0.9700 0.9998 4589 97

9 2 0.0200 1 2.1786e -04 0.9800 0.9998 4589 98

10 0 0 3 6.5359e -04 1 0.9993 4587 100

11 11 0.1100 4 8.7146e -04 0.8900 0.9991 4586 89

12 3 0.0300 1 2.1786e -04 0.9700 0.9998 4589 97

imum between 10-15 iterations as shown in Figure 2.8. The local clustering results and the

identified anomalies for each number of expected clusters are also given in Figure 2.8.

The results for the second ISSNIP data distribution with anomalies are given in Table

2.7. Here we have very high classification accuracy in both the average sensitivity and average

specificity rates of 0.9683 and 0.9995 over the range of expected number of clusters from 7-12.

All the objective function values reach a stable minimum between 10-15 as presented in Figure

2.10. The corresponding scatterplots featuring the identified clusters and the anomalies are

also shown. This data distribution also has introduced anomalies that sequentially increase

from near the spatial domain of the majority normal data (See Figure 2.3(top,right)). However,

in this case the normal data is more tightly pact through spatial correlations in contrast to the

loosely spread anomalies resulting in increased detection accuracy compared to the previous

data distribution.

Table 2.8: Classification Accuracy (Nodes S5 and S7) Normal Data : Distribution 3 and
Distribution 4 ISSNIP

No. Clusters FN FNR FP FPR Sensitivity Specificity TN TP

7 0 NAN 0 0 NAN 1 4690 0

8 0 NAN 0 0 NAN 1 4690 0

9 0 NAN 0 0 NAN 1 4690 0

10 0 NAN 0 0 NAN 1 4690 0

11 0 NAN 0 0 NAN 1 4690 0

12 0 NAN 0 0 NAN 1 4690 0

The results for the two data distributions with no anomalies and representing all normal

measurements are as presented in Table 2.8. As both of these data distributions consist only of
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tightly correlated spatially compact observations our approach provides an ideal classification

accuracy through a constant value of specificity 1 for the range of cluster numbers from 7-12.

There are no false positives observed at each phase for both distributions with the maximum

number of iterations in reaching a stable minimum in objective function value below15 as

shown in Figures 2.9 and 2.11, with the corresponding cluster distributions as depicted.

2.4.2.2.2 Distributed Clustering Results

Considering the secondary results from the two intermediate stages of clustering at nodes S2

and S3 in the hierarchical topology, the average sensitivity achieved was 0.6035 and 0.9683 with

an average specificity of 0.9999 and 0.9998 over the range of clusters from 7-12. Results for the

final clustering and global anomaly detection at the gateway node for all data distributions are

given in Table 2.9. In the context of the data distributions based on the ISSNIP data set the

proposed approach provides very high classification accuracy in terms of final average sensitivity

and specificity rates of 0.8344 and 0.9998. Here the reduction of sensitivity to 83% corresponds

to the sequential nature of the anomaly distribution at node S01 as explained previously. An

ideal specificity of 99% is achieved in classifying normal data for all distributions.

Table 2.9: Final Classification Accuracy (Node S1): ISSNIP 1,3 and 2,4

No. Clusters FN FNR FP FPR Sensitivity Specificity TN TP

7 22 0.1392 6 3.2255e -004 0.8608 0.9997 18596 136

8 28 0.1772 2 1.0752e -004 0.8228 0.9999 18600 130

9 27 0.1709 2 1.0752e -004 0.8291 0.9999 18600 131

10 22 0.1392 4 2.1503e -004 0.8608 0.9998 18598 136

11 33 0.2089 5 2.6879e -004 0.7911 0.9997 18597 125

12 25 0.1582 2 1.0752e -004 0.8418 0.9999 18600 133

2.4.2.3 Communication Efficiency & Complexity

Considering WSNs deployed in critical infrastructure monitoring it is vital that the network

lifetime is sustained and extended in reducing blackouts and process monitoring gaps. There-

fore, a distributed approach for data analysis is vital in reducing communication overheads.

This is due to the fact that in sensor networks the majority of the consumed energy is spent on
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data communication rather than on computation [Pottie and Kaiser, b, Raghunathan et al.,

2002]. Here, we investigate the communication overheads incurred at each level of the proposed

approach concerning the assumed network model compared to a centralized approach in Tables

2.10 and 2.11. The number of individual data vectors communicated on each wireless link at

first and second hierarchical levels on the topology are calculated. Then the overhead reduction

percentage is calculated based on the ratio of the communicated data points with respect to

a centralized approach where all observations of each node are sent. This is investigated for 6

stages with the expected number of clusters ranging from 7-12.

Table 2.10 provides the analysis for the Intel data distribution. The computed ratios show

a least reduction ratio of 0.0322 (96.77%) to a highest ratio of 0.0107 (98.92%) for wireless

links on level 1, accumulating up to ratios of 0.0211 (97.90%) to 0.0113 (98.87%) in level 2.

Similarly the results in Table 2.11 for the ISSNIP data set gives a least reduction ratio of 0.0120

(98.80%) and a highest ratio 0.0046 (99.54%) in level1, with the final reductions accumulating

upto 0.0080 (99.20%) least and 0.0075 (99.25%) highest over the range of cluster numbers from

7-12. Thus, the average communication reduction percentage for the Intel data set is 98.58%

on the first level with 98.63% on the second level. The corresponding values for the ISSNIP

data set stands at 99.18% and 99.23%. Therefore, this level of communication reduction of

more than 98% average at all instances will greatly benefit the concerned sensor network in

saving energy and maximizing active life-time.

In the proposed algorithm the time complexity to calculate the membership matrix and

achieve a soft partitioning of the data is O(ndc2i) where n is the number of data points, d

the number of dimensions, c the number of clusters and i is the number of iterations. Here, n

is the major determinative factor with the highest effecting value for complexity compared to

others. However, n is effectively curtailed after one algorithmic step, as from the the second

stage onwards only the local outliers are processed with the identified cluster centroids that

are communicated (as above results clearly show). Considering the first step, the number of

observations can be determined by the operator in limiting n through a specifically chosen time

window ∆t within the application context.

The message complexity can be analyzed as follows. On each link the basic message com-
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plexity will be O(N) where N = [nC + Ai], with C and A being the number of clusters and

local anomalies at each sensor node (i). While C varies consistently from 6-12 in this im-

plementation, n represents the link level in the considered hierarchical topology. Therefore,

message complexity is concluded to be far lower than a centralized implementation where N

consists of all observation vectors at each node accumulating over different network levels. The

general transport capacity of a WSN consisting of M nodes in a unit area is given by O(
√
M)

bit-m/s [Gupta and Kumar, 2000]. With a bit meter defined as the transport of 1 bit over 1

meter, the throughput per node is then given by O(1/
√
M) bit-m/s. Therefore, this becomes

the fundamental boundary of communication for a generalized WSN considering node distance

and connectivity aspects. Accordingly, the algorithm implementation in the proposed approach

is quite feasible for any such condition in a given WSN. At any given time in the presented

iterative approach, only the nodes in one level are communicating with their immediate parent

nodes which are defined to be only one hop away. No simultaneous transmissions occur be-

tween different levels as such other than on that singular level across the network confirming to

that of the acceptable throughput limits. Furthermore, for any reasonable scenario of WSNs in

an industrial monitoring setting it can be assumed that the average distance between nodes is

of O(1/
√
M) offering further sufficient monitoring density. Therefore, it can be clearly stated

that the communication requirements are satisfied within the physical power and bandwidth

considerations of the network according to transport capacity as derived through distance and

node density criteria.

2.4.2.4 Comparative Analysis

Here, the key limitations in other distributed clustering algorithms [Kargupta et al., 2001,

Tasoulis and Vrahatis, 2004, Nowak, 2003, Forero et al., 2011] are highlighted against the

proposed approach. In [Kargupta et al., 2001] and [Tasoulis and Vrahatis, 2004] two methods

are proposed based on collective principal component analysis and k-windows. [Kargupta et al.,

2001] achieves a global clustering of a single centrally located data set distributively at different

nodes through local data projection along global Eigen vectors derived using local counterparts

and samples of locally projected data. In [Tasoulis and Vrahatis, 2004], this is done based on the
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Table 2.10: Communication Overhead Analysis: INTEL Data Set; The number of data points com-
municated on each wireless link for 2 levels on a hierarchical topology are given with the ratio and
reduction percentage corresponding to the variation in the expected number of clusters from 7-12

No.
Clus-
ters

Centralized
Approach
(Level1)

Distributed
Approach
(Level1)

Reduction
Ratio-
Percentage
(Level1)

Centralized
Approach
(Level2)

Distributed
Approach
(Level2)

Reduction
Ratio-
Percentage
(Level2)

7 9400 101 0.0107 -
98.92%

18800 397 0.0211 -
97.90%

7 9400 303 0.0322 -
96.77%

18800 - -

8 9400 117 0.0124 -
98.75%

18800 218 0.0116 -
98.84%

8 9400 108 0.0115 -
98.85%

18800 - -

9 9400 132 0.0140 -
98.60%

18800 233 0.0124 -
98.76%

9 9400 110 0.0117 -
98.83%

18800 - -

10 9400 111 0.0118 -
98.82%

18800 243 0.0129 -
98.71%

10 9400 142 0.0151 -
98.50%

18800 - -

11 9400 112 0.0119 -
98.80%

18800 244 0.0130 -
98.70%

11 9400 143 0.0152 -
98.50%

18800 - -

12 9400 112 0.0119 -
98.81%

18800 213 0.0113 -
98.87%

12 9400 113 0.0120 -
98.80%

18800 - -

positioning, moving and enlargement of windows to capture the most number of data points at

different locations and then merging intersecting ones centrally. These are severely hampered

by the associated communication costs at each step and being non adaptable for dynamic data

that is itself generated distributively. Also a global clustering does not reflect the intermediate

corelations that are critical to identify anomalies at different granularity levels in a WSN while

a large number of user defined parameters makes the process practically unfeasible.



Results & Evaluation 60

Table 2.11: Communication Overhead Analysis: ISSNIP Data Set; The number of data points com-
municated on each wireless link for 2 levels on a hierarchical topology are given with the ratio and
reduction percentage corresponding to the variation in the expected number of clusters from 7-12

No.
Clus-
ters

Centralized
Approach
(Level1)

Distributed
Approach
(Level1)

Reduction
Ratio-
Percentage
(Level1)

Centralized
Approach
(Level2)

Distributed
Approach
(Level2)

Reduction
Ratio-
Percentage
(Level2)

7 9380 44 0.0047 -
99.53%

18760 149 0.0079 -
99.21%

7 9380 112 0.0119 -
98.81%

18760 - -

8 9380 42 0.0045 -
99.55%

18760 140 0.0075 -
99.25%

8 9380 106 0.0113 -
98.87%

18760 - -

9 9380 43 0.0046 -
99.54%

18760 142 0.0076 -
99.24%

9 9380 108 0.0115 -
98.85%

18760 - -

10 9380 47 0.0050 -
99.50%

18760 150 0.0080 -
99.20%

10 9380 113 0.0120 -
98.80%

18760 - -

11 9380 48 0.0051 -
99.50%

18760 141 0.0075 -
99.25%

11 9380 104 0.0111 -
98.90%

18760 - -

12 9380 49 0.0052 -
99.48%

18760 147 0.0078 -
99.22%

12 9380 110 0.0117 -
98.83%

18760 - -

In [Nowak, 2003], an incremental EM algorithm is adapted for distributed clustering in

WSNs.The data is modelled as a mixture of Gaussians with each component assumed to repre-

sent one elementary condition. However, the final outcome treats the whole composite of data

sets at individual nodes as a single entity requiring close form expressions for local estimators

using sufficient statistics. Furthermore, the mixing probabilities can be unreliable with the con-

tribution of mixture components requiring prior knowledge on distributions and the ideal of
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a static homogeneous environment without any dynamicity. A distributed k-means algorithm

and finite mixture model are presented for both deterministic and probabilistic partitional

clustering in [Forero et al., 2011]. Both methods only achieve a central global clustering of the

data domain that is considered distributed to individual nodes. Two major limiting factors are

assumptions that the data is independent and identically distributed (i.i.d condition) as well as

cluster numbers to be similar at each node. In the distributed k-means version a broadcast step

is also required communicating the updated local cluster memberships at each iteration. This

acts as a major burden and also allows inappropriate data sharing over a broadcast domain as

opposed to a single hop criterion limiting unwarranted exposure. The probabilistic partitional

method is presented as a follow-up of estimating mixture density formed by class conditional

probability density functions (pdfs). Here, the representativeness of the used tuning scalars

as well as the no-consensus constraints on langrangian multipliers remains key obstacles for

improved accuracy and robust adaptation. Finding the minimum for the parameter that guar-

antees stability is also challenging with the presence of different scalar, vector and matrix

updates required at different iterative steps. Thus, both remain untenable for a distributed

anomaly detection approach in a WSN context.

2.4.2.5 Performance Comparison

Here, the performance of the proposed algorithm is compared with that of the approach in

[Rajasegarar et al., 2006]. The fixed-width clustering algorithm is implemented on a hierarchi-

cal framework for a three level sensor node topology and tested on the same two data sets from

Intel and ISSNIP described in Section 2.4.1. Sensitivity and Specificity values are calculated

for evaluating detection accuracy by varying the specified value for the width parameter w.

The range between 0.001 and 0.0125 is chosen in 0.0025 intervals, as values below that will

contribute to a large number of clusters with some even being singletons and contributing to

higher computational and communicational costs. The parameter K in determining the near-

est neighborhood for anomaly detection is kept fixed at 10. It is chosen to be high enough

so that it is meaningful in the sense where large numbers of clusters are observed while still

being small enough to reduce computational costs. The results are represented in side-by-side
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Figure 2.12: Comparison of Sensitivity and Specificity Variations for Anomaly Detection based on
Distributed fixed-width Clustering (left) and Distributed fcm Clustering (right) for Data Sets based on
INTEL (top) and ISSNIP (bottom) Distributions

plots (Figure 2.12) for comaprison with the variation in sensitivity and specificity obtained for

our proposed method on the same data sets.The graphs show that both approaches maintain

a very high degree of accuracy in determining normal data with the specificity being between

99%-100% in all instances. However, while the sensitivity values for the proposed scheme is

more or less maintained at an acceptable range between 80% - 86% for ISSNIP data and a

high 92% - 96% for Intel data, the results for the fixed-width clustering progressively decreases

through out with the increase in cluster width. Furthermore, they are much lower compared to

the proposed fcm based method as only being between 12% - 48% for ISSNIP data and 14% -

72% for Intel data through-out the investigation range. Therfore, it is clear that the proposed

method achieves significant gains in detection accuracy compared to [Rajasegarar et al., 2006]

while still being distributed, unsupervised and non-parametric with regard to dynamic and
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heterogeneous data.

2.5 Conclusion

In this chapter a distributed anomaly detection framework is presented for industrial wireless

sensor networks. There-in, soft partitioning of the data space is performed making use of the

fuzzy c-means algorithm in an incremental model. An innovative data processing framework

was implemented that efficiently and accurately classifies the data in identifying anomalies

through maximizing distributed in-network processing in a hierarchical architecture. Eval-

uation of the proposed approach was performed for different data distributions representing

different anomaly profiles based on both real and artificial data sets. The experimental results

demonstrate very high detection accuracy with greater reductions in communication overheads

on the network. These communication reductions highlight the scalability in extending the

model flexibly for large scale distributed sensor networks. The proposed algorithm is compari-

tively analyzed with that of existing data clustering approaches and it’s performance evaluated

through sensitivity and specificity analysis. The downside of the current model is the require-

ment of the number of expected clusters to be specified at the local level. Future research will

address this problem in achieving a dynamic allocation of cluster numbers through the specific

information gained through each observational domain.



Chapter 3

Dynamic Data Partitioning with an

Entropy Criterion for

Multi-granular Anomaly Detection

(DDP-EC)

This chapter proposes a fully dynamic and unsupervised data partitioning model for contex-

tual anomaly detection in Wireless Sensor Networks (WSNs). This corresponds to the second

research question on how to attain the number of data clusters dynamically in a data parti-

tioning based anomaly detection approach for WSNs. A key limitation in the model developed

in Chapter 2 is that the number of partitions are to be determined beforehand by the opera-

tor. Therefore, the number of clusters remain static unless operator intervention is made with

regard to dynamic and evolving data streams. While it is shown in Section 2.4 that a cluster

number that is not too small or not too large (as in the range between 6-12) will produce

excellent results even over diverse data distributions, it is of interest to have a technique in

determining this number dynamically from the data itself. Furthermore, the partitions that

are produced in the previous model are limited to hyper-spherical clusters formed through the

evaluation of data characteristics at or below second order statistics.

64
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In addressing these issues and improving the formation of clusters towards a dynamic pro-

cess, an entropy based data partitioning model is introduced. This captures data characteristics

that are beyond second order statistics through a point-wise entropy measure that is directly

used to determine the number and composition of data partitions in an adaptable and dynamic

manner. A relative density measure is also defined to evaluate areas with differential density

in identifying outliers and strengthening the entropy based data partitioning process. Further-

more, the proposed model is implemented on a hierarchical network topology for a WSN in

the interest of providing multi-granular anomaly detection accompanied by low communication

costs through a distributed and in-network data processing approach. The model is therefore

specifically designed to fit the environment of large scale pervasive sensor networks with an

aim of differentiating sensed data anomalies in a robust and scalable framework.

The rest of the chapter is organized as follows. Section 3.1 gives the contextual environment

of industrial WSNs where dynamic data streams are encountered. It discusses the motivation

for the proposed model and the specific contributions of this research. The related work and

the rationale for integrating an entropy measure with local neighbourhood density for anomaly

detection in the given context is presented in Section 3.2. Section 3.3 presents the proposed

multi-granular anomaly detection model with subsections focusing on aspects of partitioning

entropy based regions and techniques for non-parametric anomaly detection. The framework

is evaluated using both real and synthetic data sets corresponding to a variety of data dis-

tributions for large integrated WSNs in Section 3.4. The classification accuracy is evaluated

over different granular levels from local to global with regard to a hierarchical network topol-

ogy in this section. Communication costs are also comparatively evaluated with respect to a

centralized data processing approach. Section 3.5 concludes the chapter with a discussion of

limitations and future work.

3.1 Motivation and Contributions

Wireless Sensor Networks (WSNs) are increasingly gaining widespread traction over a broad

spectrum of applications that require an effective and pervasive monitoring mechanism [Buttyan

et al., 2010, Bertocco et al., 2008, Luo et al., 2012, Guevara et al., 2012]. They consist mainly
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of a large number of low-cost sensor nodes that can collaboratively collect, process and deliver

information. Major advantages include scalability, manageability and extensibility within the

context of observing large-scale geographically distributed environments/infrastructure, as well

as a cost effective and interoperable method to perform multi-granularity monitoring with a

variety of sensing options [Akyildiz et al., 2002, Puccinelli and Haenggi, 2005].

Streamlined sensing capabilities and the potential for aggregated intelligence (via parallel

processing) in WSNs offer unique opportunities for distributed control as required in many in-

dustrial or environmental monitoring applications [Buttyan et al., 2010, Puccinelli and Haenggi,

2005]. Therefore, WSNs are becoming a key enabler for a multitude of process control systems

that make decisions through distributed data sensing and communication capabilities [Akyildiz

et al., 2002, Bertocco et al., 2008].

Accordingly, there is a vital need for a secure, continuous, reliable and effective sensing

mechanism, one that places utmost importance on the integrity of the data. However, the

nature of openly commoditised wireless technologies often employed, and the inherent limita-

tions of the sensor nodes themselves in naive implementations would expose the application

environment to a variety of threats and vulnerabilities [Djenouri et al., 2005, Shi and Perrig,

2004]. Such threats can: (i) affect the integrity of the network through path and node configu-

rations; (ii) alter routing processes; (iii) introduce illegitimate network operations; (iv) perform

illegal modifications or feed falsified data and (v) induce process monitoring blackspots [Dje-

nouri et al., 2005, Shi and Perrig, 2004, Luo et al., 2006b, Phipatanasuphorn and Ramanathan,

2004]. Such threat vectors are easily realised through attacks on WSNs deployed for industrial

equipment monitoring purposes [Mo and Sinopoli, 2012, Wang et al., 2010]. The need to deploy

sensor networks unattended over a large geographic area in most applications exacerbates the

situation further, with physical security of individual nodes not guaranteed [Di Pietro et al.,

2009]. This can lead to instances of side-channel attacks [Ravi et al., 2004, Bar-El et al., 2006]

and compromised security keys that open windows of intrusion. Another key concern is the

unavoidable occurrence of faults in the sensor nodes that can lead to wrong measurements and

impact key process parameters [Sharma et al., 2007, Sharma et al.].

Such situations of security attacks and faults often manifest as anomalies in data streams
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and pose grave implications to decision-making processes at the heart of process monitoring

implementations, and can easily threaten key components of the underlying application. If

left undetected these data anomalies will lead to wrong operational and control decisions on

industrial infrastructure that impact wider society through power blackouts, congestion and

production loss, and can ultimately lead to severe economic losses, human harm and environ-

mental damage. Recent research has only focused on securing WSN communications, often

through defining more secure routing protocols [Datta, 2005, Villas et al., 2013] and managing

link quality, security keys and reliability [Luo et al., 2006a, Yu and Guan, 2008]. Urgent focus

is required for more data-centric security approaches that ensure the integrity of the sensed

data. Therefore, methods for accurate and efficient detection of potential anomalies within the

sensed data is of severe importance in WSN implementations.

However, for meaningful interpretation of anomalies, it is necessary to identify the common

underlying aspects of WSN applications from a data-centric point of view as: (i) involving large

amounts of sensed data; (ii) observing dynamic environments where the observation domain

consists of unpredictable and dynamic distributions; (iii) heterogeneity of data with differing

types in unmatched densities; and (iv) sensing functionality leading to data-driven control

and core decision making. These aspects pose significant challenges for contextual anomaly

detection that are yet to be addressed satisfactorily in the existing literature and include;

• A heterogeneous environment with dynamic data distributions, requiring an unsuper-

vised, non-parametric and non-probabilistic data classification method.

• Non-homogeneous and multi-density data distributions within any instance of an ag-

gregated observation domain, consisting of both individuals and correlated clusters of

normal and anomalous behaviour.

• A resource constrained environment requiring high data-processing efficiency with re-

duced computational and communication complexities.
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3.1.1 Contributions

The aforementioned challenges are addressed here with an innovative entropy based data par-

titioning framework that dynamically detects anomalies at different levels on a hierarchical

topology. Granular evaluation of anomalies is achieved efficiently by using in-network data

processing over several analytical stages that correspond to different network levels on an

assumed node hierarchy.

More specifically, the data space that is aggregated on each sensor node for a specific

time window ∆T , is partitioned onto different cohesive regions in a completely unsupervised

and non-parametric process. The different regions are identified based on data correlations

compared through a point-wise entropy measure. This is further complemented by a relative

density factor for a defined local neighbourhood at each data point. This effectively curtails

the effect of noise through prior segregation of individual outliers. At each analytical stage

thresholds are derived adaptively and introduced to identify both anomalous data regions

(partitions) and individual outliers. The average entropy value and corresponding density

information is communicated along with identified local anomalies to the next hierarchical

level. More global correlations are evaluated based on the entropy measure at that network

level in identifying representative anomalies at that level of granularity. This is performed at

multiple levels until the root of the hierarchy is reached for the considered WSN.

The framework is evaluated using different data distributions that represent a variety of

dense and sparse regions for dynamic behaviour. Two major data sets are used based on the

publicly available sensor data distributions from Australian Research Council’s research net-

work on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP) [Suthaha-

ran et al., 2010] and Intel Research Laboratories [Bodik et al., 2004]. Sensitivity and specificity

analysis is used to calculate the detection accuracy of both normal and anomalous data points

while communication complexity is compared to that of a centralized data processing approach.

The major technical contributions of the research are summarised below:

• A dynamic and unsupervised data partitioning method that is responsive to heterogeneous

and dynamic data: A point-wise entropy measure using Euclidean distance similarity is
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used to evaluate data correlations in partitioning the data on to different cohesive regions.

The negative effects of noise and outliers are mitigated through average relative density

comparisons that identifies and segregates such instances prior to the partitioning. The

average relative density is defined to be compared over two localised distance neighbor-

hood levels. Entropy is then used directly in determining the number and composition

of data partitions directly as opposed to existing entropy based approaches [Gokcay

and Principe, 2002, Temel and Aydin, 2007]. Significantly the number of partitions are

determined dynamically without prior knowledge in contrast to most existing methods

[Rokach, 2010]. Experimental results over a variety of dynamic data distributions demon-

strate high classification accuracy of more than 94% in both sensitivity and specificity

metrics consistently.

• Non-parametric and non-probabilistic detection of anomalies that is robust and adaptive

over different granular levels: Anomalies are differentiated through introduced thresholds

on observed mean entropy measures and corresponding average relative densities. These

are derived from second order statistical information of mean and standard deviation

over different analytical stages in the assumed hierarchy. Unlike in most existing meth-

ods [Chandola et al., a, Hodge and Austin, 2004], by focusing only on domain knowledge

that is available locally at each network level, any definitions of arbitrary parameters or

probabilistic assumptions are avoided. Therefore, a more accurate detection of anomalies

is achieved in a robust and scalable manner for dynamic data distributions with differ-

ential density. Higher averages in the detected true positives and true negatives with

a corresponding reduction in false positives and false negatives is observed for different

dynamic data domains.

The use of a distributed data processing framework enabling a more efficient and scalable

anomaly detection process further complements these innovations. Local data is aggregated

over a defined sliding window with data processing performed in-network and in parallel at each

node. Only the local anomalies and representative information on defined entropy based data

partitions are sent between different network levels. This reduces communication overheads
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Figure 3.1: Dynamic & Non-homogeneous Data Distributions: The observed data in the context of
WSN sensing and monitoring can be dynamic with the distribution changing unpredictably through
time. Considering an aggregated distribution instance for a window of time ∆T , the data will also be
non-homogeneous with both ordered and non-ordered areas differentiated through observation density.

dramatically when compared to a centralized data processing approach. The use of a data

partitioning method also enables an incremental model where the data can be processed as

they are sensed while anomalies are evaluated over different granular levels. Communication

complexity investigations reveal a cost reduction of more than 85% compared to a centralized

approach where analysis is performed globally.

3.2 Related Work and Rationale

Here, we discuss the rationale for adapting a data partitioning approach based on point-wise

entropy and average local neighborhood density for anomaly detection. There is extensive lit-

erature regarding anomaly detection in both the statistics and database community [Chandola

et al., a, Hodge and Austin, 2004, Ramaswamy et al.]. However, these approaches are not di-

rectly applicable in the context of a large scale WSN environment, either because they assume

prior knowledge on input data distributions, require parametric or probabilistic assumptions

or not being tailored to work in a resource constrained environment.

Another factor of key concern is the nature of the data itself. In the considered context the

observation domain is assumed to be dynamic and non-homogeneous as highlighted in Figure

3.1. Therefore, regarding any considered anomaly detection approach, the data space is non



Related Work and Rationale 71

static with the distribution changing with time. Furthermore, an aggregated instance of the

distribution at any time window ∆T can be non-homogeneous and of differential density.

Existing approaches can be classified onto different classes as (i) Distribution based, (ii)

Distance based, (iii) Density based and (iv) Clustering based approaches. Of these, approxi-

mating distribution models require significant prior knowledge for data fitting as well as expen-

sive testing/refitting. This is not practical in the sense of dynamically changing data and the

low resource capacity environment of WSNs. On the other hand, distance based approaches

[Knorr et al., 2000] identify outliers based on the fraction (β) of the data that is further than a

defined distance (r) to the majority. However, this can lead to misclassifications and detection

problems where the observation domain consists of both sparse and dense distributions within

a single time window.

Density based techniques mine outliers depending on the local density of each observation

[Breunig et al., 2000, Xie et al., 2012]. The local neighborhood is typically defined by a distance

(r) that encompasses the K nearest data points. While this approach handles multi-density

distributions with minimum assumptions/parameters, it suffers in the context of anomalies

comprising of uniform density micro-clusters similar to normal data. In such instances the

parameter K will have to be defined as large as the size of these clusters. Thus, sensitivity

to this single parameter brings unreliability and reduced detection rates in the context of

observations that comprise of isolated outliers and uniform density micro-clusters of abnormal

behaviour. In [Papadimitriou et al., 2003], these issues are addressed using a local correlation

integral based on statistical measures derived through local neighborhood densities. This

identifies outliers non-parametrically and is robust considering dynamic distributions with

different densities. However, it cannot detect instances of abnormal behaviour (consisting

of micro-clusters) that has same density as normal data while being significantly different in

individual values.

Data partitioning/clustering approaches stand out as the most viable in this context when

implemented with a non-parametric approach. They offer fully unsupervised classification

without any prior knowledge/assumptions and can be adapted over an incremental model

that offers different granularity. This is best attained in a hierarchical network topology that
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performs the partitioning distributively and evaluates anomalies incrementally over different

levels. However, existing data clustering approaches are not optimized for anomaly detection

and are mostly centralized processes with high complexity and resource costs. Furthermore,

inferring outliers through an integrated formula cannot easily be achieved as the explicit goal

is segregating data groups with only implicit attention on the effects of noise/outliers [Xu and

Wunsch, 2005, Rokach, 2010].

Existing data clustering algorithms such as [Kumarage et al., 2013] are focused mainly on

the two aspects of distance or density to identify data partitions. Such approaches are limited

as they only capture second order characteristics of statistics and tends to work well only for

distributions with hyper-spherical or hyper-elliptical clusters. Another concern is how to de-

fine the number of expected clusters dynamically without prior knowledge or resorting to static

definitions. These concerns are overcome in [Yao et al., 2000] by using point-wise entropy to

directly cluster the data towards a fuzzy inference model. However, it uses predefined direct

thresholds β and γ in removing the impact of noise and defining the similarity boundary for

each cluster. This is purely arbitrary and cannot be adapted for anomaly detection in the

context of dynamic multi-density distributions. On the other hand density based clustering

methods cannot be used for anomaly detection when abnormal behaviour can consist of re-

gions with similar density to the normal majority. Therefore, a distributed data clustering

approach is mandated that directly considers information characteristics above second order

statistics (using an appropriate entropy measure) and is robust for multi-density dynamic data

observations.

3.3 Distributed Multi-granular Detection Model

In this section we describe the proposed distributed data partitioning framework with the aim

for an accurate and efficient detection of observed anomalies over different granular levels in a

WSN environment.
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Figure 3.2: Anomaly Detection Architecture: Multi-granularity analysis of anomalies is performed
on a hierarchical node topology. The individual processing steps performed at each node are shown
respective to network level with the specific data that is communicated among different tiers for a two
level sensor node hierarchy. E - Regions are the different data partitions as identified through an entropy
criteria

3.3.1 The Sensor Network Model

We consider a network model consisting of a hierarchical topology of sensor nodes. Therefore,

the nodes are ordered on to several tiers offering different levels of sensing granularity. These

range from individual observation domains at the lowest tier to a domain encompassing the

entire network at the highest tier. For each node, there is a parent node that receives infor-

mation and is aware of the status of its children (nodes). For example in Figure 3.2, nodes

S5 and S6 are parent nodes with S1,S2 and S3,S4 being their respective child nodes. The

hierarchical organization of the network can be achieved using any of the existing techniques

in the literature [Ganesan et al., a, Sohrabi et al., 2000, Zhang et al., 2008, Zhao et al., 2004,

Liu and Haenggi, 2006] and it is assumed that this is done prior to the functionality in the

proposed model is implemented.

The model is implemented in-network considering a sliding time window of ∆T at each

sensor node. Therefore, each node aggregates it’s local observations within the time window

and performs the following tasks in a data driven non-parametric approach. First, the average
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relative densities of each data point are computed in order to identify sparsely populated regions

and individual outliers/noise. Then the data distribution is modelled on to different cohesive

regions based on the point-wise entropy of each point vector considered. Based on these defined

regions and corresponding relative densities at each observation, anomalies are identified as

both individual data points and cohesive clusters of abnormal behaviour. The resultant local

anomalies (at each leaf node) are then communicated together with representative information

(mean entropy and related average relative density) on identified regions to the parent nodes

at each level. This information is processed at the parent node in evaluating more global

correlations and identifying anomalies at that level of granularity. This process is performed

recursively until the root of the hierarchy is reached for the concerned (sensor node) topology.

Figure 3.2 graphically summarises the architecture of the proposed model. We look at each of

the individual tasks in detail in the following.

3.3.2 Estimating Local Density Variations

In the proposed method, the average relative densities for all observations within the considered

time window is calculated first. This is carried out in order to identify sparsely populated

regions consisting of isolated outliers prior to the actual partitioning of the data. Thus, any

effect of these outliers on the partition process is mitigated. We use the following definition in

calculating an appropriate measure for such.

Definition 1. : Average Relative Density

Consider a set of observations X = [X1, X2, ...Xi...Xn], where each data point Xi is a m-

dimensional observation, with Xi = (xi1, xi2, ..., xim). Then, the average relative density (dar)

of any data point Xi is defined as follows based on two distance neighborhoods r and R.

dar(Xi, R, r) =
density(Xi, r)

{
∑

Y ∈N(Xi,R) density(Y, r)}/ |N(Xi, R)|

• The density of an individual data point is defined as the number (n) of observations

within a defined distance neighborhood.
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• Two comparative distance neighborhoods are defined as the Counting Neighborhood (r)

and Sampling Neighborhood (R).

• The counting neighborhood is the neighborhood of radius (r), over which the density (n)

is estimated for each data point.

• The sampling neighborhood (R) is the neighborhood of radius (R), over which we collect

samples in order to estimate the average.

• The subset of observations in X falling within the sampling neighborhood (R) of Xi is

taken as N(Xi, R) with any such instance represented by Y . Therefore, N(Xi, R) ≡ {Y ∈

X|dist(Y,Xi) ≤ R} with dist(Y,Xi) being the simple euclidean distance between Y and

Xi.

R
r
1

2

3

4
5

6

Figure 3.3: Average Relative Density: Average density at a data point is calculated relative to two
distance neighborhoods (Counting Neighborhood (r) and Sampling Neighborhood(R)). The number of
observations on each is taken as the local density for each neighborhood. In the above example average
relative density is calculated for observation instance 1. Accordingly, six data points come under the
sampling neighborhood R each with local densities of 1,3,3,2,2 and 1 (for instances 1 - 6) respectively
over counting neighborhoods r. Therefore, the average density at instance 1, is 2(=12/6). Average
relative density is then obtained as 0.5(=1/2) through the ratio of local and average densities according
to definition above

This definition results in an appropriate measure when comparing local density variations

within a larger data distribution as required for contextual outlier identification. An example

is given in Figure 3.3, that illustrates the calculation of average relative density over two
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distance neighborhoods. In this research we have used R as 0.75 in the normalized distance

distributions over the closed interval [0, 1] with a corresponding 0.1 value for r. Thus, r is

defined on a range that is small enough to identify minute density variations within the data

while the larger value for R provides compensation in a more global view. Therefore, this

criteria gives a quantitative measure representative of the degree that a particular observation

is isolated compared to it’s neighbors. This is then vitally used towards identifying sparsely

populated regions and individual outliers based on a defined threshold of one standard deviation

(σ) away from the mean (µ). Thus, for the set of calculated average relative density values,

any value that is one standard deviation (σ) away from the observed mean (µ) (regarding the

same set of average relative density values) is declared as an outlier. Considering the set of

average relative density values as A = [A1, A2, ..Ai, ..An] with each Ai = darXi the threshold is

given as follows

T = 1/n
n∑
i=1

Ai +

√√√√1/n
n∑
i=1

[Ai − (1/n
n∑
i=1

Ai)2]

3.3.3 Estimating Entropy based Data Regions

Once the average relative densities have been computed and sparsely distributed outliers iden-

tified, the data is modelled onto different cohesive regions or partitions based on entropy.

There are several techniques that make use of entropy in partitioning a particular data dis-

tribution [Gokcay and Principe, 2002, Temel and Aydin, 2007]. However, almost all of them

use entropy as a measure to validate already identified partitions or optimize an existing num-

ber of partitions. Therefore, most of them involve defining an initial partitioning using a

separate existing algorithm and later estimating the probability density functions and such

(pdfs) for each partition in order to measure entropy for validation. This implies that the

resultant data partitions are representative of the similarity measure used in the original par-

titioning/clustering algorithm and are not using an entropy criteria as a property that binds

data points to a specific cluster. However, in our approach we divide the data distribution into

cohesive partitions/regions (E−Regions) using the cumulative point-wise entropy of each data

point directly. This has the following desirable properties. (i) Provides a single value criteria
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in clustering members together. (ii) Non-parametric calculation when coupled with distance

based similarity measure. (iii) Not limited to hyper-spherical or hyper-elliptical data clusters.

(iv) Captures data characteristics that are not limited to second order statistics. (v) Adaptive

to dynamic data distribution changes and (vi) The number of similarity regions is determined

algorithmically without prior knowledge.

Definition 2. : E - Region

Let us consider a set of observations X = [X1, X2, ..Xi, .., Xn], where each data point Xi

is a m-dimensional observation with Xi = (xi1, xi2, ..., xim). Then a group of E - regions

E1, E2, ..Ei, .., Ek are defined over the spatial distribution of X based on entropy similarity and

constituting of a subset of all possible subsets of X where,

• Each defined region Ei,Ej, is disjoint from one another, i.e. Ei ∩ Ej = ∅, ∀i, j.

• Each defined region Ei, has a maximum similarity difference on entropy between it’s

constitutive elements that is less than one standard deviation (σ) of the overall pointwise

entropy distribution observed within that region.

• We have: Ei(maxe)−Ei(mine) < (1)σ holds ∀i where, maxe and mine are the maximum

and minimum entropy values observed between any two elements in Ei.

In deriving the measure of entropy similarity an entropy value for each data point relative

to other observations within a concerned data distribution is calculated first. We make use

of the following point-wise derivation based on Shannons Entropy definition [Yao et al., 2000,

Temel and Aydin, 2007] in determining the entropy value eij between two data points Xi and

Xj using a measure for similarity Sij .

eij = −Sij logSij − (1− Sij) log(1− Sij)

Therefore, the cumulative point-wise entropy for any observation i ∈ X is given by,
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ei = −
j 6=i∑
j∈X

(Sij logSij + (1− Sij) log(1− Sij))

where Sij is the similarity measure between data points xi and xj normalized to be in the

closed interval [0.0 - 1.0]. We take the similarity between two data points as given by,

Sij = exp−αDij

Dij is defined as the proximity measure between the two data points. We use the euclidean

distance as it is efficient to compute and provides effective proximity.

Dij =
√

(xi1 − xj1)2 + (xi2 − xj2)2 + ...(xim − xjm)2

α is taken as the corresponding value when the similarity measure is substituted by 0.5

similarity (as to be non-partial over a normalized input range) and the mean distance between

all data points. Therefore, it is calculated adaptively based on the current data distribution in

avoiding arbitrary assumptions as follows;

α = − ln 0.5/D̄

Based on these definitions and findings we dynamically partition the data space on to

different regions as follows. First the cumulative point-wise entropy for each data point is

evaluated by calculating the normalized euclidean distances for the considered data distribution

on each sensor node. Then the data point with the least entropy value is selected as the

ordered point around which the region is to be defined. However, if the chosen data point

lies in the set of points identified as one of sparsely populated individual outliers/noise (as

derived through average relative densities in Section 3.3.2), it is removed and the next point

with the least entropy is chosen. Then a similarity region is defined based on the entropy

by assigning other data points with similarity less or greater than one standard deviation
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(σ) of the original selection. Note that the individual outliers identified previously are also

considered at this step.These data points are then removed and the next region defined based

on the next observed least entropy value. This is repeated until no data points are left and the

data distribution is completely partitioned on to disjoint regions with similar entropy while

mitigating the effects from local density variations.

3.3.4 Anomaly Detection

Once the considered data distribution at each sensor node per time window ∆T is partitioned

in to a set of cohesive similarity regions as detailed in the previous section, anomaly detection

is performed as follows. Anomalies are identified based on two major characteristics as (i)

individual data points that are anomalous and (ii) E - regions where all constitutive data

points on that region are considered anomalous.

Individual Anomalies: These are data points that are located with sparse density on the

considered data distribution and are not a member in any of the defined E - regions. Thus,

we define an individual anomaly as follows.

Definition 3. : Individual Anomaly;

Any data point Xi ∈ X that is declared an anomaly will satisfy the following criteria,

• The average relative density (dar) of Xi is ≥ T ,

where T = 1/n
∑n

i=1Ai +
√

1/n
∑n

i=1[Ai − (1/n
∑n

i=1Ai)
2],

with A being the set of average relative densities with each Ai = darXi.

• Xi 6∈ Ej ,∀i, j

Anomalous Regions: These are complete E - regions that are defined according to the

proposed data partitioning criteria and identified to be anomalous by the proposed model.

These represent dense groupings of data points comprising abnormal behaviour.

Definition 4. : Anomalous Data Region;

An E - region identified to be anomalous will have the following properties.
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• A mean entropy value for the region that is higher than one standard deviation away from

the average mean entropy value observed at all other defined E - regions for that node.

• The relative density of the data point with entropy value that is closest to the mean

entropy of the region will have a far lower value compared to the highest relative density

observed at that node. Therefore, we use a threshold of < 0.25 of max dar in classifying

the region as anomalous.

As the above definitions make clear one standard deviation away from the mean is used

as a parameter in differentiating anomalies. However, as it is a value that is derived from the

data itself and applied on both average relative density and mean entropy values independently

over different stages it acts as an adaptive parameter as opposed to a more direct one (which

can be arbitary) and in keeping with the general assumption that a majority of the data is

assumed to be normal.

3.3.5 Distributed Multi Granularity Analysis

Once the data is partitioned and the local anomalies identified with corresponding E - regions

at each node, the following information is communicated to respective parent nodes in the

hierarchy.

• Detected local anomalies

• The data point with entropy value that is closest to the mean (µ) entropy of each E -

region (This data point represents the corresponding E region)

• The locally calculated entropy value (ei) of each representative data point and its average

relative density (dar)

Therefore, each parent node combines the received information in compiling the set of

anomalies at that level of network granularity. The entropy values and average relative den-

sities on each E - region is therefore considered based on the union set of all partitions (E -

Regions) received at the parent node. The same criteria in identifying anomalous regions as
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defined before is applied and the corresponding abnormal regions identified without resorting

to additional assumptions. The received individual anomalies are kept as such without any

further refinement. The resulting anomalies and the representative information on E regions

are then sent to the parent nodes on the next network tier. This is performed recursively until

the root of the hierarchy is reached.

If any region that was locally identified as normal is now detected as anomalous, the corre-

sponding member points are requested from the child node. On the other hand, any E - region

that was earlier detected as abnormal but is now normal will only be represented by its rep-

resentative data point as mentioned before, when communicated to the next level. Therefore,

at each network level the detected anomalies are refined based on different granularity levels

that evaluates correlations across multiple nodes in that network tier based on the expanded

domain knowledge. This cross evaluation is vital in the case that a particular sensor node is

compromised with all its observations being anomalous. Such data will only be detected as

abnormal when compared to a neighboring node as achieved here.

3.4 Results & Evaluation

The proposed model is evaluated through a combination of both real and synthetic data sets.

Different data sets are used to highlight the robustness of the model regarding multi-density

dynamic distributions. Classification accuracy for both normal and anomalous data points are

analysed with the communication overheads over the network hierarchy compared to that of

a centralized approach. Experiments are performed using sensitivity and specificity metrics

as the main evaluation criteria. We simulate an assumed three level hierarchical architecture

for a wireless sensor network as presented in Figure 3.2. The data sets are then taken as

corresponding to the bottom tier of four sensor nodes S1 - S4 which communicates with parent

nodes S5 and S6. These in turn are under the purview of root node S7.
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Figure 3.4: Data Distributions based on the ISSNIP Data Set: The two distributions with anomalous
data (top) represent a set of sequentially distributed anomalies with two tightly correlated normal data
sets where one is spatially more closer to the anomalies (left) and the other more spatially distributed
(right). The (bottom) two distributions consist of tightly correlated normal data sets where one is
sequentially concentrated (left) and the other more spatially distributed (right).

3.4.1 Data Sets

Two data sets are used consisting of both real sensor mote measurements and artificially

created data points that act as introduced anomalies. These are derived as to represent the

dynamic multi-density observation environment for a typical WSN application environment.

The first data set is based on the annotated data with labelled anomalies available from the

Australian Research Council Research Network on Intelligent Sensors, Sensor Networks and

Information Processing (ISSNIP) [Suthaharan et al., 2010]. Four different data distributions

are created corresponding to the sensed data of the first four sensor motes (mote 01 - 04).

This data has been collected through the deployment of a multi-hop WSN using TelosB sensor

motes measuring temperature and humidity fluctuations over a period of 6 hours in 5 second
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intervals. Anomalous observations are included at motes 01 and 03 by artificially manipulating

the temperature and humidity values in the observed environment. In our experiments the data

from these four sensor motes are taken as corresponding to the data distributions of leaf nodes

S1 - S4 according to the assumed three level hierarchy depicted in Figure 3.2. Therefore, nodes

S1 and S2 will have anomalous data while S3 and S4 contain only normal measurements. The

four data distributions are shown in Figure 3.4.

Table 3.1: Data Format (Intel); Each observation consists of 4 mote attributes and 4 measured
parameters

Attrib. 1 Attrib. 2 Attrib. 3 Attrib. 4 Para. 1 Para. 2 Para. 3 Para. 4

date:y-m-d time:h:m:s epoch moteid temperature humidity light voltage

14 16 18 20
2.55

2.6

2.65

2.7

Temperature C

V
o

lt
a

g
e

 V

S1 Data Distribution (INTEL)

16 18 20 22
2.55

2.6

2.65

2.7

Temperature C

V
o

lt
a

g
e

 V
S2 Data Distribution (INTEL)

17 18 19 20

2.7

2.75

2.8
S3 Data Distribution (INTEL)

Temperature C

V
o

lt
a

g
e

 V

17 18 19 20
2.6

2.65

2.7

2.75
S4 Data Distribution (INTEL)

Temperature C

V
o

lt
a

g
e

 V

0 50 100
  

anomaly normal data point

Figure 3.5: Data Distributions based on the Intel Sensor Data Set: Two data distributions representing
both spatially dispersed and spatially concentrated clusters of anomalous points are presented (top).
One features the higher density anomalies closer to the similarly dense normal data (top, left) with the
other having less dense anomalies close (top, right). The (bottom) two data sets depict two complete
distributions of tightly correlated and spatially focused observations representing normal behaviour.
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The second data set is based on the public sensor mote data from Intel Berkeley Research

Laboratory and consists of real measurements collected from 54 sensors [Bodik et al., 2004].

Time-stamped topology information is included along with the measured parameters of tem-

perature, humidity, light and voltage using Mica2Dot sensors with weatherboards. The data

format takes the form shown in Table 3.1 and isn’t annotated. Therefore, in the absence of

labelled information on anomalies it is used in our evaluations as follows. The temperature,

humidity, light and voltage attributes together are taken as data vectors corresponding to in-

dividual observations. Subsequently, four hundred (400) of these observations are considered

in sequence per single node in representing the aggregated data over a considered time period

∆T .

First, extreme values in the data are identified through scatter plots as isolated anomalies.

The remaining data is labelled as normal for evaluations. Other annotated anomalies are then

introduced using two sets of randomly generated data at two of the nodes. Two types of

anomaly distributions as randomly dispersed and more focally concentrated are represented

via the generated data points. In generating such, random sets of twenty (20) data vectors

are drawn from the standard uniform and standard normal distributions considered over the

normal measurements. These are merged with the data distributions derived earlier for mote 01

and 03. The data sets of mote 02 and 04 are kept as originally derived without any anomalies in

representing only normal data. The resulting four distributions are then assumed to represent

the observation domains of leaf nodes S1 - S4 according to the assumed three level hierarchy as

stated before. Therefore, the data distributions of node S1 and node S2 will have the labelled

anomalies while nodes S3 and S4 has no anomalous data and represent completely normal

behaviour. The data distributions for each of these sensor nodes are as depicted in Figure 3.5.

3.4.2 Evaluation

The proposed framework was implemented for a simulated three level sensor node hierarchy on

the matlab environment. Experiments were carried out in investigating classification accuracy

and communication complexity in terms of the data communicated using the two created data

sets. Therefore, considering each analytical stage on the hierarchy the False Positive Rate
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(FPR) and the False Negative Rate (FNR) were calculated based on the number of False

Positives (FP) and False Negatives (FN) observed at each node. A false positive is an instance

where a normal measurement is detected as anomalous while a false negative is an instance

where an anomalous measurement is detected as normal. The false positive rate is the ratio

between the detected number of false positives and the actual normal measurements. The false

negative rate is the ratio between the detected number of false negatives and the actual number

of anomalies for the considered data distribution.

FPR =
FP

(FP + TN)
FNR =

FN

(FN + TP )

Similarly, the corresponding instances of True Positives (TP) and True Negatives (TN) are

also determined at each stage leading to the computation of the main Sensitivity and Specificity

values. Sensitivity indicates the probability that a statistical test is positive for a given true

positive statistic, while specificity indicates the probability that a statistical test is negative

for a given true negative statistic. These are calculated as follows to be the major evaluation

criteria for data classification accuracy.

sensitivity =
TP

(TP + FN)
specificity =

TN

(TN + FP )

The number of data points that are communicated on each wireless link is noted over

the three level hierarchy in determining communication savings compared to a centralized ap-

proach, where all the observations are communicated to the root node. We begin our discussion

by analysing the cumulative point-wise entropy distributions for each data distribution. Lim-

itations for anomaly detection are highlighted when the focus is only on entropy without a

contributing density factor. Then, we analyse the classification accuracy of the framework for

different data distributions based on calculated metrics on a local, intermediate and final level

in the considered three level hierarchy. We conclude the evaluation through a discussion on

communication complexity complimented by the experimental results for data reduction over

different wireless links. The scatter plots highlighting the identified data partitions in E - Re-

gions and their distribution as well as isolated anomalies corresponding to the analysis through

mean entropy and average relative density in each data distribution are also presented.
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Figure 3.6: Entropy Distributions: Data is plotted based on the cumulative point-wise entropy value
of each data point over it’s local distribution. Each data point is presented as comparative to the
mean entropy value on each distribution with the differentiation noted on a standard deviation basis.
It is highlighted that for multi-density distributions similar entropies are allocated for both normal and
anomalous data depending on the orderliness and local area density at each data point. Therefore,
it is clear that an approach based purely on entropy alone is not sufficient enough to differentiate
between anomalous outliers/clusters and the normal data when the considered distributions are non-
homogeneous with varying density.

3.4.2.1 Entropy Distributions

Here, we plot the data distributions on both INTEL and ISSNIP data sets based on the

calculated values for cumulative point-wise entropy. Figure 3.6, presents these through a three

level categorization using the mean (µ) and the standard deviation (σ) of entropy values on

each distribution. We use the intervals to be within one σ of µ, between one and two σ away

from µ and more than two σ away from µ. The mean is chosen as the central value to compare

as for any anomaly detection criteria the major assumption is that the majority of the data is

normal and that the anomalies will be a minority that is significantly different. Thus, we use
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µ to represent a middle ground entropy value representing the majority of normal data and

compare the deviations. This is done as from information theory, entropy is less for orderly

data configurations and high for disorderly configurations.

It can be seen from the corresponding scatter plots that while a majority of normal data

resides within one σ from µ and a majority of anomalies in two σ away from µ, some of

the normal data is also two σ away with some anomalies being within one σ. This apparent

contradiction is due to the fact that the data distributions are representative of dynamic

multi-density observation domains. Therefore, the normal data can consist of relatively sparse

regions bordering a majority dense region while the majority of anomalies can be sparse with

small dense micro-clusters possible in the same data distribution. Thus, when point-wise

entropy is calculated it will result in both ordered dense regions (in normal data) as well

as small high density areas (in anomalies) having similar values. On the other hand some

of the sparsely populated fringe areas of normal behaviour will have similar entropy values

with the majority sparse anomalies. Therefore, it is clear that a data partitioning approach

that considers only entropy will not be ideal in detecting anomalies where the observation

domain is non-homogeneous with multi-density distributions possible. This results in the need

for a complimentary density factor that leverages on the entropy deviations for orderly and

disorderly configurations in having an effective data partitioning for anomaly detection.

Table 3.2: Classification Accuracy : ISSNIP Data Distributions (Local Phase)

Sensor Node FN FNR % FP FPR % Sensitivity Specificity TN TP

S1 (ISSNIP) 3 0.0300 0 0.0000 0.9700 1.0000 300 97

S3 (ISSNIP) 0 NAN 0 0.0000 NAN 1.0000 400 0

S2 (ISSNIP) 0 0.0000 0 0.0000 1.0000 1.0000 342 58

S4 (ISSNIP) 0 NAN 22 0.0550 NAN 0.9450 378 0

Table 3.3: Classification Accuracy : INTEL Data Distributions (Local Phase)

Sensor Node FN FNR % FP FPR % Sensitivity Specificity TN TP

S1 (INTEL) 0 0.0000 18 0.0450 1.0000 0.9550 382 40

S3 (INTEL) 0 NAN 12 0.0273 NAN 0.9727 428 0

S2 (INTEL) 1 0.0250 18 0.0450 0.9750 0.9550 382 39

S4 (INTEL) 0 NAN 1 0.0023 NAN 0.9977 439 0
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Table 3.4: Classification Accuracy : Distributed Phase (Parent Nodes)

Sensor Node FN FNR % FP FPR % Sensitivity Specificity TN TP

S5 (ISSNIP) 3 0.0300 0 0.0000 0.9700 1.0000 700 97

S6 (ISSNIP) 0 0.0000 22 0.0296 1.0000 0.9703 720 58

S5 (INTEL) 0 0.0000 30 0.0357 1.0000 0.9642 810 40

S6 (INTEL) 1 0.0250 19 0.0226 0.9750 0.9773 821 39

Table 3.5: Classification Accuracy : Final Results (Root Node)

Sensor Node FN FNR % FP FPR % Sensitivity Specificity TN TP

S7 (ISSNIP) 3 0.0189 22 0.0152 0.9810 0.9847 1420 155

S7 (INTEL) 1 0.0125 49 0.0291 0.9875 0.9708 1631 79

3.4.2.2 Classification Accuracy - Local Phase

Performance on the initial local data partitioning phase is evaluated first. The accuracy of data

classification with respect to identifying both normal and anomalous data points is performed

through sensitivity and specificity analysis. Corresponding results on data distributions for

ISSNIP and INTEL data sets are as given on Table 3.2 and Table 3.3. The data distributions

with abnormal behaviour for the ISSNIP data set represents a set of spatially dispersed (sparse)

sequential anomalies compared to the tightly correlated dense majority of normal data. Each

has areas of different density in the anomalous data region offering challenges to traditional

means of anomaly detection. However, the results in Table 3.2 show that the proposed approach

achieves very high accuracy in classifying both normal and anomalous data. While an ideal

specificity of 1.0 is achieved in identifying normal data for both distributions at nodes S1 and

S2 the respective sensitivity values are 0.97 and 1.0. The very slight reduction for node S1 is

due to the fact that a minor portion of the normal data is spatially very close to the anomalies

offering little variations in both average relative density and point-wise entropy compared to

the data at node S2. Considering the data distributions with no anomalies at node S3 and

S4 the proposed approach achieves very high specificity values of an ideal 1.0 and 0.94. Again

the slight drop in specificity corresponds to the sparse individual outliers at node S4 that are

very close to the majority dense area while the tightly correlated but sequentially spread out

distribution in node S3 offers an ideal scenario of normal behaviour.
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Considering the INTEL data set, the distributions for normal behaviour are tightly corre-

lated dense regions with only discrete variations over a minute range for the observed voltage

parameter. The added anomalous behaviour offer two regions each of multi-density data rep-

resenting both higher and lower relative densities to the majority normal data. The proposed

method again achieves very high accuracy in detecting anomalies with sensitivity values of 1.0

and 0.97 for nodes S1 and S2. Similarly the classification of normal data in nodes S3 and S4

remain high at 0.97 and 0.99 respectively. Therefore, it is clear that the proposed techniques

achieve very high detection accuracy with higher True Negative and True Positive rates with

corresponding lower False Positive and False Negative rates. This is shown to be achieved

consistently for different multi-density distributions representative of a dynamic observation

environment through the different data sets used. The scatterplots for the data partitioning

through identified E − Regions and the isolated anomalies are presented in Figures 3.7 and

3.8 respectively for both ISSNIP and INTEL data sets.
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Figure 3.7: Identified E - Regions: Data distributions partitioned on to different cohesive E−Regions
using both cumulative point-wise entropy as well as average relative density for ISSNIP and INTEL
data sets. Granular partitions are obtained that reflects both orderliness through the entropy measure
and local density variations through average relative density towards an effective anomaly detection
approach. Unlike in Figure 3.6 where only entropy is considered the number of granular partitions are
determined adaptively to represent the nature of the distribution as closely as possible.
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Figure 3.8: Isolated Anomalies: The detected anomalies and the normal data as classified through
the proposed approach is presented regarding the local data partitioning phase at each sensor node for
ISSNIP and INTEL data sets.

3.4.2.3 Classification Accuracy - Distributed Granular Phase

The intermediate step of anomaly detection offering second tier level of granularity in the

considered topology is performed at nodes S5 and S6. The results for both ISSNIP and INTEL

data sets are as given in Table 3.4. Anomalies are identified based on the received local

anomalies and representative information on E−Regions from the previous local partitioning

phase. Therefore, the observation domain will expand to include both normal and anomalous

data regions at each node with corresponding density variations. Here, the detection accuracy

is maintained consistently as in the previous local phase with sensitivity values of 0.97 and 1.0

with specificity of 0.97 and 1.0 for the ISSNIP distributions at nodes S5 and S6 respectively.

Similarly, the results are 1.0 and 0.97 in sensitivity and 0.96 and 0.97 in specificity for the

INTEL data set at nodes S5 and S6.

The final values for classification accuracy through sensitivity and specificity analysis is

given in Table 3.5. The False Positive and False Negative rates as well as the True Negative

and True Positive rates are calculated considering the global observation domain at root node

S7. Therefore, anomalies are detected over the complete hierarchy consisting of the union set

of all four data distributions for each ISSNIP and INTEL data set. We achieve a very high final
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sensitivity value of 0.98 for both data sets while the specificity comes up to a similarly high

0.98 and 0.97 for ISSNIP and INTEL respectively. Thus, it is demonstrated that the proposed

method achieves high detection accuracy for both normal and abnormal behaviour consistently

throughout the hierarchy. No shifts in detection accuracy are observed as the observation

domain expands and manages to offer consistently accurate results at multi-granularity levels

for different dynamic data distributions.

3.4.2.4 Communication Complexity

Considering the inherent power limitations in wireless sensor networks, it is critical that any

proposed data processing framework limits any overheads on energy consumption. In WSNs

the majority of consumed energy is spent on data communication rather than computation

[Pottie and Kaiser, a, Li et al., 2011, Raghunathan et al., 2002]. Thus, special emphasis should

be given on reducing the amount of data communicated on each wireless link for a given sensor

network topology. Here, this is investigated considering the communication overheads that are

incurred on each wireless link for the proposed hierarchical data processing framework. We

compare the amount of data that is communicated to that of a centralized approach where all

sensed data is communicated over each considered time window. The communication overhead

is calculated based on the ratio of the number of messages communicated in the proposed model

to that of a centralized approach in Tables 3.6 and 3.7 for the ISSNIP and INTEL datasets

respectively. Therefore, experimental results are given for each of the four wireless links at the

first tier and the succeeding two links at the second tier on the considered hierarchy.

Table 3.6: Message Complexity (ISSNIP Dataset)

Sensor Node # Msgs (Pro-
posed Model)

# of Msgs
(Centralized)

Ratio Overhead Reduction %

S1 Link #1 106 400 0.2650 73.50%

S3 Link #2 66 400 0.1650 83.50%

S2 Link #3 29 400 0.0725 92.75%

S4 Link #4 36 400 0.0900 91.00%

S1/S3 Link #5 135 800 0.1687 83.13%

S2/S4 Link #6 102 800 0.1275 87.25%
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Table 3.7: Message Complexity (INTEL Dataset)

Sensor Node # Msgs (Pro-
posed Model)

# of Msgs
(Centralized)

Ratio Overhead Reduction %

S1 Link #1 76 440 0.1727 82.73%

S3 Link #2 69 440 0.1568 84.32%

S2 Link #3 30 440 0.0681 93.19%

S4 Link #4 27 440 0.0613 93.87%

S1/S3 Link #5 106 880 0.1204 87.96%

S2/S4 Link #6 96 880 0.1090 89.10%

Considering the experimental results on Table 3.6 (ISSNIP data set), the least overhead

reduction is 73.5% and the highest 92.75% leading the average reduction in communication

overhead to be 85.18% on the first network tier. Considering the second tier level these savings

cumulate to an average value of 85.19%. Similarly, the results on Table 3.7 for the INTEL data

set shows an average overhead reduction of 88.52% on the first tier and a cumulative 88.53%

for the second tier over the considered time window. Therefore, this level of communication

reduction of more than 85% in average will lead to considerable savings on energy usage in

maximizing active life-time and avoid any disruptions for process monitoring.

3.5 Conclusion

In this chapter an anomaly detection framework is presented that offers multi-granularity analy-

sis for wireless sensor networks. Data is partitioned on to different cohesive regions dynamically

based on cumulative point-wise entropy and average relative density that is computed over two

distance-neighborhood levels. This overcomes the challenge of other existing solutions in ef-

fectively dealing with the dynamic multi-density nature of the considered observation domain.

Consequent to the data partitioning, anomalous behaviour is identified as both individual

outliers and groups of correlated observations through defined E − regions. Thresholds for

differentiating between normal and anomalous are derived adaptively based on second order

statistical knowledge available at each analytical stage. This is implemented over an innova-

tive data processing framework that makes use of in-network processing on different network

tiers enabling the detection of anomalies at multiple granularity levels on a hierarchical node
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topology.

Experimental Results demonstrate higher detection accuracy for both normal and anoma-

lous data with corresponding low false positives and false negatives. The added reductions

on communication overheads highlight the scalability in extending the model efficiently over a

large scale sensor field. A factor that is not discussed in this chapter is the establishment of

the hierarchy in implementing the framework. While the proposed model is based on a static

topology that is assumed a priory, this is a limitation considering dynamic topology changes

that are possible within the domain of WSNs. Future research will address this issue in dy-

namically identifying parent nodes where granular analysis is performed over different levels

through availability and node density aspects.



Chapter 4

Point-of-View Entropy Evaluations

for Real-time Decision Support in

Evolving Data Streams (POV-EE)

This chapter focuses on the concerns raised by the third research question in Chapter 1.

Specifically, the need to have an anomaly detection procedure that supports decision making

in near real-time. The two models that were developed in Chapters 2 and 3 were using a

batch-wise approach for analysing the data. Therefore, the streaming data that is encountered

on each node is aggregated over a small period of time before the analysis is performed on

that data set as a group. However, given the nature of most of the industrial applications that

utilize wireless sensor networks for pervasive monitoring it is desirable to have an incremental

approach that is capable of facilitating the determining of anomalies in near real-time. Such

an approach is able to determine any anomalous data as they are sensed on each node in the

wireless sensor network.

The work in this chapter introduces an anomaly detection model that determines anomalies

in an online fashion through an incremental approach. Inspired by the work in chapter 3 an

entropy criterion is used to differentiate the anomalies from normal behaviour. Three unique

reference points are adapted as part of a Point-of-View (PoV) approach that offer different
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lenses to evaluate the relative change in entropy that occurs as a data stream evolve. Therefore,

point-wise entropy is calculated relative to these reference points and analysis performed using

a Mean Relative Entropy (MRE) measure that is defined for each sensed data point. It is

shown that this measure is significantly capable of identifying any aberrant form of behaviour

in the data when computed respective to the three reference points that are introduced.

In order to identify instances where the data stream may suddenly shift its spatial distri-

bution as part of normal behaviour a secondary analysis is carried out employing a secondary

data buffer that stores potential anomalies identified in the primary phase of detection. This

dual buffer model with a second analytic phase for potential anomalies works to significantly

reduce false alarms that are common with an otherwise unsupervised process. The viability of

the proposed model is investigated with respect to accurately detecting different forms of aber-

rant behaviour as well as evolving patterns of normal behaviour with evident flows of sensor

drift.

The rest of the chapter is structured as follows. Section 4.1 gives the background for

WSNs in the context of real-time applications of industrial monitoring. The advantages of an

incremental approach are presented in contrast to a batch-wise approach in this section before

the specific contributions of the proposed model are detailed. Section 4.2 discusses some of

the relevant related work in detail. In Section 4.3 the proposed incremental model employing

an entropy criterion is presented in detail. This consists of subsections that focus on the

defined entropy criterion, the point-of-view approach at computing entropy and the anomaly

detection phase. Evaluation of the proposed models regarding accuracy is then performed

employing a three pronged approach. This is performed for a variety of data distributions

that represent different facets of dynamic and evolving data streams in Section 4.4. The first

phase investigates the accuracy in classifying normal behaviour as the data stream evolves

with evident spatial drifts. The second phase evaluates the model for detection accuracy with

regard to different forms of aberrant behaviour representing anomalies. Finally, a comparative

analysis is performed with regard to some of the most qualitatively relevant work in the area.

Section 4.5 concludes the chapter.
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4.1 Motivation and Contributions

Wireless Sensor Networks (WSNs) consisting of low cost sensor nodes that collaborate to collect

and deliver data are increasingly being established as the main form of large scale pervasive

monitoring [Akyildiz et al., 2002] [Puccinelli and Haenggi, 2005]. They are being adapted

for a variety of industrial scale applications from infrastructure (oil and gas pipelines, power

plants, transmission lines) and equipment (turbines, material processing machines) monitoring

to meteorological and land use monitoring in agriculture [Buttyan et al., 2010], [Bertocco et al.,

2008], [Luo et al., 2012], [Guevara et al., 2012]. Therefore, WSNs are enabling automation

with distributed and granular control in such applications through the timely gathering and

presentation of information for decision making.

As such, the integrity of the gathered data is of utmost importance. The data should be

reliable and accurate in addition to being efficiently sensed and communicated. However, the

nature of the sensor networks themselves as well as naive modes of implementation often used

introduces different threats and vulnerabilities that directly impact the integrity of the sensed

data [Djenouri et al., 2005], [Shi and Perrig, 2004]. In particular, the resource limitations of

sensor nodes has resulted in less focus on security as opposed to efficiency making the sensor

networks vulnerable to different security attacks. Also in most large scale implementations it is

impractical to ensure the physical security of individual nodes and that opens up possibilities

of tampering and side channel attacks where the nodes are compromised [Bar-El et al., 2006],

[Ravi et al., 2004]. Furthermore, there is always the possibility of node failure through software

corruption and hardware malfunction [Rajasegarar et al., 2008]. All of these situations impact

the integrity of the sensed data streams through incorrect readings or bogus data [Sun et al.,

2007]. Such instances will severely impact the decision making systems at the heart of these

applications. Therefore, it is of critical importance to enable a mechanism that effectively

detects the anomalous instances and differentiate the normal data on sensor network data

streams in mitigating the negative impact they inflict on integrated systems and applications.

However, such an anomaly detection mechanism needs to critically consider and cater to

the unique nature of the data that is encountered in WSN applications. Figure 4.1, presents

the contextual data environment of WSN applications. These can be noted as (i) continuous
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Para #1

Integrated Wireless Sensor Networks

Transmission Lines & Pipeline Monitoring

Industrial Equipment Monitoring

Power Plant Operations Automation

Land  & Meteorological Monitoring

Time

Dynamic and Evolving Data Streams

Para #2

Areas with Differential Density

Large Volumes of Streaming Sensor Data

Level Shift

Figure 4.1: Wireless Sensor Networks (WSNs) Application Environment: WSNs are used for dis-
tributed sensing and communication regarding a variety of industrial-scale applications. From infras-
tructure/equipment monitoring to environmental and meteorological monitoring they form a vital infor-
mation core that enables automation and smart functionality. The different applications with regular
time critical sensing paves the way for very large amounts of multi dimensional streaming data of
which ensuring integrity is a core concern in achieving reliable and optimum performance. Such data
demographics are dynamic and non-homogeneous with differential density presenting a challenge for
traditional anomaly detection measures. The Sensor networks are often dynamically ordered on to
a hierarchical topology offering sensing granularity at different levels with each node independently
generating a stream of dynamically evolving data that often enable real time decision support.

streaming of large data volumes, (ii) dynamic fluctuations on data streams with evolving pat-

terns, (iii) data heterogeneity over different streams in unmatched distributions and critically

(iv) near real time impact on key decision making through streaming functionality. Considering

these facts this research aims to provide a contextual anomaly detection model that successfully

addresses the following challenges in contrast to the existing literature [Zhang et al., 2010],[Xie

et al., 2011] in this area.

• Dynamic and evolving data streams mandating an unsupervised and non-probabilistic

model for differentiating between normal and abnormal.

• Detect anomalies in an online fashion in facilitating real time decision support.
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• Efficient in-network procedures with reduced complexity considering resource limitations.

Table 4.1: Deficiencies in Batch-wise approaches in relation to an Incremental approach for
anomaly detection over streaming data

Features & Functionality Batch-wise Approaches [Ra-
jasegarar et al., 2014],[Ku-
marage et al., 2014],[Kumarage
et al., 2013]

Incremental Approaches
[Burbeck and Nadjm-Tehrani,
2007],[Wang et al., 2008],[Hill
and Minsker, 2010],[Subrama-
niam et al., 2006]

Managing Streaming Data
Breaks up the data on to stored
groups for processing as indi-
vidual batches

Data processing done in an in-
cremental manner without any
selective batch processing

Infeasible to store large volumes
of data on a single batch

Not required to store such
amounts of data in an incre-
mental mode of analysis

Dynamicity & Adaptability
Cannot identify evolving data
patterns within a batch

Capable of identifying data pat-
terns in a fully dynamic manner
through incremental analysis

Cannot determine anomalies as
they occur as data is processed
as a batch

Evaluates and detects anoma-
lies as they are sensed in an on-
line fashion

Cannot adapt to sensor drift or
level shifts

Dynamically adapts through
incremental analysis over the
streaming data

Detection Accuracy
Accuracy depends on the cho-
sen period of time for batch
processing of data

Time period has no intrinsic ef-
fect on accuracy as detection
is performed in a near real-
time manner as opposed to pre-
determined time intervals

Accuracy depends on the qual-
ity of data within the selected
batch of data

Accuracy not dependent on se-
lected data groups as data is
handled as an incremental se-
ries as opposed to batch-wise
in determining the normality
model

The most common way to detect anomalies in such data streams is to model the normal

data and identify any deviations from the resulting normal profile. Such models can be divided

on to two categories based on the time when the normal profile is built and the analysis carried

out. That is as incremental models and batch-wise models. A model is termed batch-wise when
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the data (sensor measurements in the current context) is stored over a certain pre-determined

time period before they are analysed as a group. The normal profile is then built upon this

stored data space in order to identify any deviations at the end of each such time period. On

the other hand an incremental model doesn’t store any amount of grouped data in order to

build the normal profile or perform analysis at specific time intervals on the stored groups. In

this approach the model is being adaptively updated as the data arrive and any anomalies are

determined in a near- real time manner. Therefore, it is advantageous to have an incremental

approach rather than a batch-wise approach for anomaly detection within the current context.

We compare the main deficiencies of batch-wise models in relation to the clear advantages of

an incremental approach for a streaming data context in Table 4.1.

4.1.1 Contributions

The above mentioned challenges are uniquely addressed in this research through the effective

use of an entropy criterion to differentiate anomalies. An incremental model is proposed to

evaluate relative entropy change and identify anomalies in an online fashion and negate the

deficiencies of existing batch models. This is also implemented in-network with data processing

performed locally and in parallel at each node in supporting the real-time nature of typical

industrial WSN monitoring applications.

Specifically, in the proposed incremental model, a small buffer is maintained at each sensor

node in relation to the incoming data streams. The size of the buffer is to be determined

according to the memory constraints specific to the considered WSN. This buffer is kept cur-

rent through continuous updates where each incoming data point is added while the oldest

is removed. The relative change in point-wise entropy over the buffered data space is then

evaluated with each incoming data point. This is performed through the introduction of three

unique Point-of-View (PoV) approaches taken to be as (i) PoV of the mean µ, (ii) PoV of the

median η and (iii) PoV of the historic mean µ′ (without the influence of latest data point).

The relative change in entropy is then evaluated using a defined mean relative entropy measure

that is used to differentiate anomalies.

A key concern for an incremental approach is to detect level shifts and sensor drifts that
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may occur as part of normal behaviour in the data stream. In such instances, the observed

data distribution may suddenly shift to a new spatial range before continuing normal behaviour

(in that range). For this purpose a secondary buffer is introduced accompanied by a second

analytic stage for any potential anomalies. Therefore, any element that is designated as po-

tentially anomalous through relative entropy evaluation in the primary analytic phase will be

temporarily stored on the secondary buffer that accumulates the next potential anomalies if

detected continuously. The relative change in entropy is then evaluated within the context of

the new measurements through the use of the trio of PoV evaluations. This significantly iden-

tifies any sudden change in measurement range that can be normal in a particular application

domain such as voltage monitoring where the observed voltage may jump between different

ranges as part of normal behaviour. Therefore, in the proposed approach such occurrences

will not be misclassified as anomalies in reducing the false alarm rate that may otherwise have

been common with regard to the unsupervised approach adapted. The model is graphically

presented in Figure 4.2.

The proposed models are evaluated using several different data distributions that represent

dynamically evolving data streams. These distributions are derived based on two major pub-

licly available data sets from Intel Berkeley Research Laboratories [Bodik et al., 2004] and the

Australian Research Council’s Intelligent Sensors, Sensor Networks and Information Process-

ing (ISSNIP) group [Suthaharan et al., 2010]. Sensitivity and specificity analysis is used to

investigate the detection accuracy over different data distributions that represent unique facets

of evolving behaviour. The major technical contributions of this research can be summarised

as follows.

• Dynamic evaluation of anomalies in an online fashion for evolving data streams. Dy-

namic and evolving patterns of observation behaviour is accommodated for in a two-step

model for detecting outliers and abnormal behaviour in near real-time. Sensor drifts and

level shifts where sudden spatial changes in the data stream may occur as part of normal

behaviour are catered for through the use of a dual buffer model here potential anomalies

undergo secondary analysis. Experimental investigations reveal high detection accura-

cies of more than 98% in average sensitivity for different forms of abnormal behaviour
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while still being robust with reduced misclassifications where the data streams evolve

with evident sensor drift.

• PoV approach in evaluating relative change in entropy for dynamic detection of abnormal

behaviour. Abnormalities and outliers present in the data stream is captured through the

evaluation of relative change observed in entropy that is computed in a point-wise manner.

The point-wise entropy of a data point is therefore, compared to the mean entropy value

that is observed over the buffered data space at each node. Three PoV approaches are

introduced based on three reference points over which point-wise entropy is computed.

Each PoV act as lens providing different insight for more accurate detection of anomalies.

The three reference points proposed are the perspective of the mean µ, the median η and

the historic mean µ′ in relation to the maintained data buffer. Improved accuracy in

sensitivity (more than 98% in average) and specificity (more than 96% in average) is

achieved with regard to the three PoV’s as revealed by the extensive experiments.

These innovations are combined together in a framework that is implemented through

efficient in-network procedures with reduced complexity and is uniquely suitable for industrial

WSN environments to facilitate anomaly detection in an online fashion.

4.2 Related Work

There exists a wide range of anomaly detection methods [Chandola et al., b], [Chandola et al.,

2012], [Patcha and Park, 2007] that have been proposed specific to different application areas.

[Zhang et al., 2010] and [Xie et al., 2011] provide a good overview of the techniques specific

for streaming sensor network environments. Considering existing batch-wise approaches, [Ra-

jasegarar et al., 2014] and [Kumarage et al., 2014] stands out as they employ data clustering

based models that can be adaptive and implemented in a non-supervised manner without prior

training. In [Rajasegarar et al., 2014], a fixed-width clustering algorithm is employed to cluster

the data on each sensor node with anomaly detection performed using the average inter-cluster

distance over a nearest neighborhood. A distributed data processing model is adapted to iden-

tify local and global anomalies together with a cluster merging process. However, determining
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the width of the clustering algorithm remains a major limitation in addition to the inherent

weaknesses of a batch-wise model as discussed in the previous section. [Kumarage et al., 2014]

introduces an entropy based data clustering approach that overcomes most of the limitations

in [Rajasegarar et al., 2014]. It is more adaptive and responsive to dynamic data fluctuations

while being mostly non-parametric in implementation. However. it still inherits the major lim-

itations of a batch-wise approach and the inability to determine anomalies in a near real-time

manner. The concept of using point-wise entropy for anomaly detection is adapted towards an

incremental model in the current work as inspired from the work in [Kumarage et al., 2014].

Focusing on incremental models of anomaly detection on streaming data, [Wang et al., 2008]

provides a multi-pronged detection model based on reducing feature extracted data vectors

using PCA. The resulting distance between the vector and its subspace reconstruction is used

for classifying and detection. However, it is mainly limited as prior training is required for new

data streams with different detection models. Anomaly detection employing a fast incremental

clustering model is introduced with a new grid index that improves efficiency in [Burbeck

and Nadjm-Tehrani, 2007]. While it has advantages in dynamic adaptability with limited

support for evolving data streams through an integrated method for extension and forgetting

of out-dated elements, it still employs a semi-supervised model with incremental training data

required and does not fully support real-time detection. A scalable auto-regressive data driven

model with prediction is introduced in [Hill and Minsker, 2010]. While these approaches mostly

parallel the work in change detection on time series data the use of threshold based techniques

coupled with prediction intervals can be unreliable over mostly dynamic data streams. Other

variants of auto regression in mostly linear time series data such as [Subramaniam et al., 2006]

and [Gustafsson, 1996] involves high computational and memory complexity and can be unfit

for near real-time decision support in sensor network data streams.

4.3 PoV Approach for Incremental Anlaysis

Considering the limitations in the above work and inspired by employing an entropy criterion

to detect any aberrant deviations of data, a fully dynamic and adaptive model for anomaly

detection is built for real-time decision support as detailed next.
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Figure 4.2: Proposed Model for Incremental Anomaly Detection: The main data processing and
analytical steps of the proposed dual buffer model for PoV entropy evaluation for streaming WSN data
is presented with regard to achieving near real-time anomaly detection

In this section we construct the three PoV analysis models for contextual anomaly detection

in wireless sensor networks. The architecture of the proposed model is depicted in summarized

form in Figure 4.2. Given that sensor networks naturally produce a data stream the model

can be formally introduced as follows. Let X = {X1, X2, ., Xi, ., Xn} be a finite set of n

points where each Xi is a multi-dimensional vector Xi = [xi1, xi2, xi3, .., xid] corresponding

to a measurment made by an individual sensor node. As per the streaming model X can

only be read in increasing order of the indices i and each node can only have information

over a small subset of data it has seen so far as opposed to having random access to all data

within the complete set. The subset of data that each node can retain and perform analysis

according to memory constraints is taken as the Primary Buffer Space: BPj at each node j.

The different nodes in the network are considered to be time synchronized and deployed in

either a homogeneous or heterogeneous observation environment where dynamic behaviour is

assumed. Therefore, observations will constitute of same or different distributions that evolve

over time and are previously unkown and not pre-determined.
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4.3.1 The Entropy Criteria

The core functionality in the proposed approach is derived from the use of an entropy criteria

in differentiating anomalies from the data stream. This is performed in an online fashion over

the buffered data at each node in identifying data anomalies on the fly with the advent of each

new observation. The major advantages of having an entropy method to filter out abnormal be-

haviour from normal behaviour can be listed as follows; (i) Data characteristics that are above

second order statistics are represented, (ii) Non-parametric and non-probabilistic computation

when combined with a similarity measure using distance, (iii) Evolves with and adaptive to

dynamic distribution changes and (iv) robust in capturing a variety of data anomalies from

different causes due to the emphasis on randomness or surprise compared to that of the or-

dered flow expected in normal behaviour. As we are dealing with a data stream consisting

of indvidual multi-dimensional observations we use the following point-wise definition that is

derived from shannon’s entropy.

Definition 5. Point-wise Entropy for Multi-dimensional Data

Considering a set of observations X = {X1, X2, ., Xi, ., Xn}, with each instance Xi being a

d-dimensional vector, where Xi = [xi1, xi2, xi3, ., xid] the point-wise entropy Ei of a particular

data point Xi in relation to a certain data point Xj is taken as,

Eij = −Sij logSij − (1− Sij) log(1− Sij)

,

• where Sij is the adapted similarity measure between the two data vectors Xi, Xj and is

given by,

Sij = exp
−αPXij , ∀Xi, Xj ∈ X,
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• here, PXij represents the proximity measure between the two data vectors Xi and Xj .

According to the above definition there are two major factors that need to be determined in

order to compute a point-wise entropy value for a certain data point in a stream; (i) Proximity

measure PXij and (ii) parameter α. We use the simple Euclidean Distance DXij for determining

proximity between two data points both for its effectiveness and simplicity in computation.

α is then determined as the value resulting from the substitution of the mean distance DmX

as the proximity measure for a similarity value of 0.5 considering a normalized input-range

in the interval [0.0-1.0]. This will be non-partial and neutral with regard to the subsequent

computations of an entropy value and adaptive to each dynamic domain as Dxm is updated

with the evolving data stream. Therefore, we have;

DXij =
√

(xi1 − xj1)2 + (xi2 − xj2)2 + ...(xid − xjd)2

α = − ln 0.5/D̄ where D̄ = DmX

Based on the above definition for point-wise entropy the following observations are derived.

Observation 1: The value Eij between any two data points will be in the closed interval

[0, 1].

∴ [0, 1] = {Eij ∈ R|0 ≤ Eij ≥ 1}

Observation 2: Eij will tend towards zero when the similarity (Sij) is either tending

towards one or zero. Therefore, while an average similarity between two data vectors will

result in an entropy value that tends towards one the higher the similarity or dissimilarity

between them the entropy value will tend towards 0.

∴ when Sij −→ 1 or 0,

Eij −→ 0
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4.3.2 The PoV Approach

The derived point-wise entropy measure is then adapted for analysis over a streaming data

model through an innovative Point-of-View (PoV) approach. Considering the Primary Buffer

Space BPj at each node j, where the latest updated set of observations XBPj
is retained, the

point-wise entropy is calculated relative to three unique vantage points. These points as se-

lected from the insights from observations 1 and 2 act as lenses offering a clear view on how

entropy evolves on a dynamic data stream while each providing an independent perspective

relative to its spatial positioning over the distribution of the buffered data space. Accordingly

we define three such points as the PoVs of interest. Each PoV is proven to be adequate and

capable in detecting anomalies accurately in the next section

Definition 6. Point-of-View (PoV)

Considering the set of observations XBP
= {X1, X2...Xi...Xn}, that is retained on the pri-

mary buffer BPj at a given sensor node j where each instance Xi is a d-dimensional observation

(Xi = [xi1, xi2, xi3...xid]) the point relative to which the point-wise entropy Eij is calculated over

all data points in XBP
is defined as a PoV point of interest. Three such points offering in-

dependent perspectives on entropy are defined to be as follows. Note that all operations are

point-wise operations.

• PoV 1: PoV of the Mean - µ

This is the point-wise mean for the complete set of data points XBP
retained in the

primary data buffer on each sensor node at a given instance. We have;
n∑
i=1

Xi/ |XBP
|

• PoV 2: PoV of the Historic-Mean - µ′

This is the point-wise mean for the considered set of data points that is in XBP
before

the advent of the last element n at a given instance. We have;

n−1∑
i=1

Xi/|XBP
| − 1
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• PoV 3: PoV of the Median - η

This is the value that seperates the higher half of the data space in the primary data buffer

XBP
, from the lower half with respect to numerical value of each observation attribute on

each sensor node. We have;

Xη = [xη1, xη2, ., xηk, ., xηd]

where xηk is the middle value in the ordered set of kth attributes ∀Xi ∈ XBP

4.3.3 Anomaly Evaluation

Evaluation for anomalies in the data stream is performed in an online fashion with the advent

of each new data point. As a new data point gets added to the primary buffer (BP ), each

sensor node computes the point-wise entropy [Eij ] values over the buffered data relative to

the three PoV’s of interest. Then for each new incoming data point a Mean Relative Entropy

(MRE) value is computed according to the following definition.

Definition 7. Mean Relative Entropy (MRE)

Considering a computed set of point-wise entropy values E = {E1, E2...Ei...En} over a

buffered data space XBPj
, where each instance Ei is calculated relative to a given PoV according

to Definition 1 and Definition 2, the Mean Relative Entropy is calculated in relation to any

data point in the data space as given by,

MREi = Ei/[1/n
n∑
i=1

Ei]

• where Ei is the point-wise entropy between a data vector in buffered data space X and

the selected PoV as given in Definition 1 and Definition 2 ∀Xi ∈ X

The above defined MRE value is then used as a measure that signifies the relative change in

point-wise entropy Ei for the incoming data relative to that of the average entropy encountered

over the buffered data from the perspective of a selected PoV. Therefore, if the MRE is less
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than a given threshold T the latest data point that contributed to this change is marked as a

potential anomaly. The following lemma highlights the basis for the MRE usage in the current

context.

Lemma 1: Given an anomalous data point that is significantly aberrant from the normal

data, the corresponding MRE value as computed from Definition 3 will significantly deviate

towards zero as opposed to a value that tends towards one for the normal data.

Proof: According to observations 1 and 2, the Ei value for an aberrant data point will

tend towards zero given its dissimilarity to the considered PoV being either the mean, historic

mean or the median as defined in Definition 2. On the other hand the Ei values for the buffered

normal data space will tend towards one. Therefore the mean entropy value over the buffered

data space will retain a value that is significantly closer towards one. This results in an MRE

value that will increasingly deviate towards zero given that the numerator tends towards zero

while the denominator tends towards one as per the definition for MRE in Definition 3.

Values of 0.25 and 0.5 for T are investigated in the next section in concluding that a value of

0.5 is significantly successful for correct classification. Therefore, for any computed cumulative

point-wise entropy value Eci we have;

if : Ei/[1/n
n∑
i=1

Ei] < T −→ PotentialAnomaly

4.3.3.1 Secondary Evaluation

Once a potential anomaly is encountered another secondary buffer space BS is initiated with

that data point being it’s first element. Then, the next incoming data point is allocated in

place of the last element in the primary buffer and the PoV evaluation on entropy variation

performed. If that point is also found out to be potentially anomalous in the context of the

primary buffer it is added to the secondary buffer as the next element. This process is continued

until the secondary buffer space is filled up when all incoming data are continuously found to
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be anomalous with respect to the data distribution retained in the primary buffer XBP
. Once

the secondary buffer is filled the PoV operations will be performed on that buffer in evaluating

for anomalies within the new context of XBS
. However, if the incoming data points are not

anomalous with regard to the data now retained in the secondary buffer while still being

anomalous relative to the primary buffer, operator mediation is required. This will signify

that the streaming data has suddenly shifted over to a different spatial region (value range)

before continuing normal behaviour within that range. This could be part of normal behaviour

expected in the considered application. A typical example is voltage monitoring where the

observed voltage level may suddenly shift to a different range. Therefore, the proposed model

allows for this contingency in identifying such sudden shifts in observed behaviour. This

significantly lowers the number of flase positives that would otherwise have inundated the

system.

4.4 Evaluation and Results

In this section the proposed PoV entropy evaluation models for real-time anomaly detection

in sensor network data streams is evaluated using a three pronged approach. First, the per-

formance of the model is investigated with regard to accuracy in classifying normal behaviour

over dynamic and evolving data streams. Adaptability over instances where sensor drift and

level shifts are evident is studied. Next, the model is investigated for accuracy in it’s primary

goal of identifying anomalies that are present in the data stream while the underlying normal

data distribution continues to evolve dynamically. Investigations are performed with regard to

anomalies that are aberrant in both an orderly and chaotic manner in relation to the normal

data distribution. Finally, a detailed comparison is performed in contrasting the strengths of

the proposed model as opposed to some of the qualitatively significant related work.

4.4.1 Data Sets

Several data sets are made use of that represent a variety of possible sensed data distributions in

the extensive experimentation performed in evaluating the proposed models. These are derived
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from the publicly available wireless sensor network data from Intel Research Laboratories at

Berkeley [Bodik et al., 2004] and the research network on Intelligent Sensors, Sensor Networks

and Information Processing (ISSNIP) of the Australian Research Council [Suthaharan et al.,

2010]. Each individual data set is taken as corresponding to the data stream encountered

at a single sensor node and represents different facets of dynamic and evolving behaviour on

each node’s observation domain. Four separate data distributions (N1 - N4) are derived from

the available data corresponding to the multi-hop readings of four sensor nodes (Mote id1 -

Mote id4) from ISSNIP. This data is from a multi-hop WSN deployment of TelosB sensor

motes that monitor temperature and humidity variations over a period of time in five second

intervals. The measurements at nodes one (N1) and three (N3) represent dynamic and evolving

patterns (with evident sensor drift and level shifts) as influenced by the artificial manipulation

of temperature and humidity in the observed environment. In contrast, the data from nodes

two (N2) and four (N4) have less variation while being more concentrated as the fluctuation

of the temperature and humidity are as expected in a normal environment. Therefore, we

derive four data distributions consisting of four hundred (400) consecutive measurements of

temperature and humidity readings each, with N1 and N3 consisting of the portion of data

(100 measurements) that evolves continuously in the temporal domain over a dispersed (spread

out) spatial range while N2 and N4 constitutes of four hundred (400) measurements of dynamic

behaviour that is concentrated (focused) over a smaller spatial range. The four derived data

distributions are presented in Figure 4.3.

From the Intel lab sensor data we derive another four data distributions consisting of both

a tightly correlated set of measurements focused over a small spatial range as well as a segment

that evolves dynamically over an extended spatial range. Again we draw four hundred readings

each which are in temporal sequence corresponding to four sensor motes. The data includes

real measurements of four parameters (temperature, humidity, voltage and light) together with

time-stamped topology information from Mica2Dot sensors with weatherboards. The four data

distributions as derived (N5 - N6) are depicted with respect to the temperature and humidity

parameters in Figure 4.4. The complete sets of data in the eight derived distributions are

labelled as normal for the subsequent experimental evaluations.
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Figure 4.3: Experimental Data Distributions (Normal Data - ISSNIP): The first two data distributions
derived from the ISSNIP data (N1 and N3) represents a tightly correlated core set of data that begins a
sequential drift in an evolving pattern over a spatially extended range. The next two data distributions
derived from ISSNIP (N2 and N4) consists of a more tightly correlated set of data with only limited
spatial variation or temporal drift. While both N1 and N3 contain clear patterns of sensor drift N3 also
displays a level gap in its readings. Each data distribution is represented from a spatial perspective
relative to the measured parameters as well as from a temporal view of each parameter independently.
The temporal view clearly shows the sequential and evolving pattern in contrast with the overall spatial
drift while the main representation shows the overall distribution of data. The temporal view is presented
in the second row underneath the main view for each data set.
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Figure 4.4: Experimental Data Distributions (Normal Data - INTEL): The first two data distributions
derived from the (INTEL) data (N5 and N6) represents a tightly correlated set of data that then drifts
on a continuous and sequential pattern. This drift is clearly evident in the latter portion of data in
distribution N5 as well as to a lesser extent in N6. The next two data distributions derived from
(INTEL) data (N7 and N8) feature two sets of data with tight correlation and almost no spatial drift
temporally. The temporal view clearly highlighting the evolving patterns and drift is represented below
the main view with respect to the measured parameters for each distribution.
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Figure 4.5: Experimental Data Distributions with Anomalies): Four data distributions are derived from
the previously composed data sets of N1,N3 (from ISSNIP) and N5,N6 (from INTEL) as containing
anomalous data in addition to the majority normal data. The latter portion of evolving data with
significant spatial drift are separated and re-integrated with the majority normal data portion in a
random manner with respect to both the number and positioning. This adds these latter values as
outlying anomalies to the tightly cohesive initial portion of data. Each derived data distribution is
shown with respect to the measured parameters of temperature and humidity in a temporal view as
two before and after plots. The top figure for each data set gives the initial view with the anomalies-
to-be data making up the tail-end of drifting normal data while the bottom figure shows these values
randomly inserted over the more cohesive normal data in making up the final distribution for evaluation.
In the resulting distributions N5(a) and N6(a) presents an orderly form of aberrant data while N1(a)
and N3(a) represent disorderly and chaotic forms of aberrant data as anomalies.
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Next, four separate data distributions are derived as to contain anomalous data in addition

to the majority of normal data that is encountered. We make use of the previously composed

node data of N1 and N3 from ISSNIP as well as N5 and N6 from INTEL. Each of these data sets

consist of a tail portion of 100 readings from a total of 400 that spatially deviates significantly

in a sequential manner. Therefore, in the purpose of introducing anomalies for evaluation, we

separate this portion of data and then re-integrate them with the tightly correlated and spa-

tially cohesive data readings making up the initial portion on each data set. This is performed

in a random manner in the sense that a different number of randomly chosen outer readings

are inserted at different locations that are also chosen randomly within the initial cohesive

normal data portion. These inserted values (100 readings) are then labelled as anomalous with

the remainder (300 readings) labelled as normal for use in the evaluation of proposed models.

The resulting data distributions produce both orderly and chaotic forms of aberrant data as

relative to the majority normal data. The derived data distributions [N1(a),N3(a),N5(a) and

N6(a)] are shown in Figure 4.5

4.4.2 Phase #1: Investigations on Evolving Normal Data

In the first phase of the experimental evaluation the accuracy of classifying normal behaviour

is investigated in instances where the sensed data distribution shows signs of spatial drift or

evolves dynamically. We make use of the eight data sets (N1-N4 from ISSNIP and N5-N8

from INTEL) that were derived as mentioned previously and consisting of all normal data of

different distributions with evolving patterns. These data sets are then subjected to the three

PoV models on a simulated sensor node using the matlab environment. For each data set we

calculate the false positive rate (FPR) and the true negative rate (TNR) or Specificity using

the resulting number of false positives (FP) and true negatives (TN) from the three different

PoV models. A false positive is when a normal reading is falsely classed as anomalous and

a true negative is when a normal reading is correctly classed as normal. The ratio between

the number of false positives and the actual normal readings gives the false positive rate while

the specificity or true negative rate is the ratio between the number of true negatives and the

normal readings. These results are computed with regard to two threshold levels of less than



Evaluation and Results 115

50% and 25% on the mean relative entropy value and given in Tables 4.2 -4.4.

Table 4.2: Classification Accuracy: PoV of the Mean - µ

Sensor Node N1 N2 N3 N4 N5 N6 N7 N8

FP (50%) 23 06 21 21 01 05 11 17

FPR % (50%) 0.0767 0.0150 0.0700 0.0700 0.0025 0.0167 0.0275 0.0425

Specificity % (50%) 0.9233 0.9850 0.9300 0.9300 0.9975 0.9833 0.9725 0.9575

FP (25%) 05 01 06 08 01 02 05 04

FPR % (25%) 0.0167 0.0025 0.0150 0.0200 0.0025 0.0067 0.0125 0.0100

Specificity % (25%) 0. 9833 0. 9975 0.9850 0.9800 0.9975 0. 9933 0. 9875 0.9900

Table 4.3: Classification Accuracy: PoV of the Median - η

Sensor Node N1 N2 N3 N4 N5 N6 N7 N8

FP (50%) 21 02 42 11 58 06 15 04

FPR % (50%) 0.0700 0.0050 0.1050 0.0250 0.1450 0.0200 0.0375 0.0100

Specificity % (50%) 0.9300 0.9950 0.8950 0.9750 0.8550 0.9800 0.9625 0.9900

FP (25%) 04 01 05 07 00 01 00 02

FPR % (25%) 0.0133 0.0025 0.0167 0.0175 0.0000 0.0025 0.0000 0.0050

Specificity % (25%) 0.9867 0.9975 0.9833 0.9825 1.0000 0.9975 1.0000 0.9950

Table 4.4: Classification Accuracy: PoV of the Historic-Mean - µ′

Sensor Node N1 N2 N3 N4 N5 N6 N7 N8

FP (50%) 04 06 05 01 03 01 07 04

FPR % (50%) 0.0133 0.0150 0.0167 0.0025 0.0075 0.0025 0.0175 0.0100

Specificity % (50%) 0.9867 0.9850 0.9833 0.9975 0.9925 0.9975 0.9825 0.9900

FP (25%) 00 01 01 00 01 00 00 00

FPR % (25%) 0.0000 0.0025 0.0025 0.0000 0.0025 0.0000 0.0000 0.0000

Specificity % (25%) 1.000 0.9975 0.9975 1.0000 0.9975 1.0000 1.0000 1.0000

The results give an average specificity in classifying normal behaviour as at 95.9% with a

corresponding low average false positive rate of 3.7% for the lower threshold of less than 50%

in MRE and a high 98.9% and 1.07% for the next threshold level (of less than 25% MRE) over

the eight different distributions with respect to the PoV of the mean. Similarly, for the PoV

of the median we have an average specificity of 94.7% and 99.2% with average false positive

rates of 5.2% and 0.7% over the two threshold levels. The PoV of the historic mean also clearly

depicts a higher accuracy level of 98.9% and 99.9% in average specificity with significantly lower
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levels of 1.1% and 0.09% in average false positive rate. Therefore, it is demonstrated that the

three proposed PoV based entropy evaluation models are clearly successful in classifying normal

behaviour with a very low false alarm rate and is adaptive and resilient in instances of dynamic

changes in the sensed data stream. The models maintain their high accuracy rate when clear

drift patterns are present as in the data distributions of N1 and N3. Furthermore, the use of

a secondary buffer in correctly identifying sudden shifts in the observed patter that are non-

anomalous is also successful as evident from the results with respect to the data distributions

in N3 and to a lesser degree in N1.
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Figure 4.6: Specificity Variation: The variation in specificity over the different data distributions from
N1-N8 is depicted relative to two threshold values of <50% and <25% over mean relative entropy
(MRE). In all instances the specificity is higher at <25% compared to < 50% while the latter also
demostrates higher acccuracy of >80% and more than 90% in a majority of cases.

The variation in specificity relative to the two threshold levels for MRE over the eight

different data distributions is comparatively depicted in Figure 4.6.

4.4.3 Phase #2: Investigations on Data with Anomalies

In the second phase of the experimental analysis we use the four data distributions with anoma-

lies [N1(a),N3(a),N5(a) and N6(a)] in a similar manner as in the previous step in calculating

the specificity and the false positive rate. However, with the presence of anomalies in addition
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to the afore-mentioned metrics we also calculate the false negative rate (FNR) and the true

positive rate or Sensitivity using the resulting number of false negatives (FN) and true positives

(TP) from the three entropy based PoV models. In this context, a false negative is when an

anomalous reading is incorrectly classed as normal and a true positive is when an anomaly is

correctly classed as anomalous. The ratio between the number of false negatives and the actual

anomalous readings gives the false negative rate while the ration between the number of true

positives and the anomalous readings give the sensitivity. The results obtained with respect

to a threshold value of 50% in MRE value are presented in Tables 4.5 - 4.7 each with respect

to the three different PoVs.

Table 4.5: Classification Accuracy: PoV of the Mean - µ

Sensor Node FN FNR FP FPR Sensitivity Specificity TN TP

N1(a) -ISSNIP 4 0.0400 01 0.0033 0.9600 0.9967 299 96

N3(a) -ISSNIP 0 0.0000 03 0.0100 1.0000 0.9900 297 100

N5(a) -INTEL 0 0.0000 01 0.0033 1.0000 0.9966 295 100

N6(a) -INTEL 0 0.0000 05 0.0167 1.0000 0.9833 295 100

Table 4.6: Classification Accuracy: PoV of the Median - η )

Sensor Node FN FNR FP FPR Sensitivity Specificity TN TP

N1(a) -ISSNIP 0 0.0000 21 0.0700 1.0000 0.9300 279 100

N3(a) -ISSNIP 0 0.0000 05 0.0167 1.0000 0.9833 295 100

N5(a) -INTEL 0 0.0000 28 0.0946 1.0000 0.9054 268 100

N6(a) -INTEL 0 0.0000 02 0.0067 1.0000 0.9933 298 100

Table 4.7: Classification Accuracy: PoV of the Historic-Mean - µ′

Sensor Node FN FNR FP FPR % Sensitivity Specificity TN TP

N1(a) -ISSNIP 0 0.0000 06 0.0200 1.0000 0.9800 294 100

N3(a) -ISSNIP 0 0.0000 03 0.0100 1.0000 0.9900 297 100

N5(a) -INTEL 8 0.0769 03 0.0100 0.9231 0.9899 297 92

N6(a) -INTEL 0 0.0000 01 0.0033 1.0000 0.9967 299 100

Considering the results in Table 3.5, PoV of the mean achieves an average sensitivity of

0.99 and an average specificity of 0.99 with corresponding low false positive and false negative

rates over the four different data distributions. Similarly the PoV of the median achieves an
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Figure 4.7: Sensitivity and Specificity Variation: The variation in sensitivity and specificity with
regard to detecting both normal and abnormal behaviour over the four data distributions with anomalies
[N1(a)-N6(a)] is presented above. The sensitivity mainains a near ideal of almost 100% in all instances
while being accompanied with a very high corresponding specificity value of more than 90% in a mjority
of distributions.

average of 1 and 0.95 in sensitivity and specificity metrics while the PoV of the historic mean

outcomes in the values of 0.98 and 0.99 for average sensitivity and specificity. This clearly

demonstrates that regardless of the PoV used all three proposed models achieve significantly

high success rates in accurately differentiating between anomalous and normal data. The

adaptive, resilient and robust features of the proposed methodology is made evident from the

fact that each model achieves high performance accuracy for the variety of spatial distributions

that the experimental data represent. The high values achieved for the accuracy metrics are

consistent with regard to both orderly [N5(a) and N6(a)] and chaotically [(N1(a) and N3(a)]

aberrant forms of abnormal behaviour. The relative variation in sensitivity and specificity

values over the four different data sets is comparatively depicted in Figure 4.7.

The distributions representing the Mean Relative Entropy (MRE) variation for each of

the three PoV models over the four different data sets with anomalies is given in Figure 4.8

and Figure 4.9. Figure 4.8 shows the variation of MRE for the two data distributions [N1(a)

and N3(a)] having a more chaotically aberrant form of anomalous behaviour while Figure 4.9

gives the same for the two data distributions [N5(a) and N6(a)] with the more orderly form
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Figure 4.8: Mean Relative Entropy (MRE) Distributions for N1(a) and N3(a) Data: MRE value for
normal data remains close to one consistently in the presence of an evolving data stream. The presence
of anomalies in a highly chaotic manner [N3(a)] as well as in a less chaotic form while still being clearly
aberrant [N1(a)] significantly deviates the MRE towards zero in all three PoV models. This drops to
less than 0.25 for PoVs of the mean and median while it attains a value between 0.25 and 0.5 for most of
the anomalous instances in PoV of the historic mean. The threshold values of 0.25 and 0.5 are marked
in each of the plots.
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Figure 4.9: Mean Relative Entropy (MRE) Distributions for N5(a) and N6(a) Data: N5(a) and N6(a)
presents a sequentially drifting normal data stream interspaced with non-chaotic anomalies. MRE
maintains a value range close to one over the normal data while clearly deviating for the anomalies
even when they are spatially very close to the normal drifting data for all three PoV models. As for
the previous data the PoV of the historic mean attains a value for the anomalies that is between 0.5
and 0.25 while for the other two PoVs the MRE directly drops to that of less than 0.25 n both data
sets.The threshold values of 0.25 and 0.5 are marked in each of the plots.
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of correlated abnormal data. The two threshold levels of 50% and 25% are also marked on

each MRE variation plot. It is clear from the plots that for each of the models the MRE value

remains at a range that is significantly close to one. This is maintained even in the event of

the normal data evolving in a dynamic manner as well as in the presence of both orderly and

chaotically aberrant forms of anomalies. A significant deviation of more than 0.5 typically

indicates an anomaly in all models. However, while this deviation goes to the extent of being

less than 0.25 in value for the PoV models of the mean and the median, it hovers above 0.25

and below 0.5 for the PoV of the historic mean. Therefore, the use of less than 50% as a

threshold for MRE value is successful in all cases while that of less than 25% is unfit for PoV of

the historic mean. Given the high performance in the accuracy metrics as discussed previously

it can be concluded that a threshold value of 50% is ideal irrespective of the PoV used and

that other than in the PoV of the historic mean, using a threshold of 25% achieves an even

higher accuracy level. It is also noted that even using a threshold of less than 50% MRE for

the PoV of the historic mean, the attained accuracy is significantly higher than the other two

PoVs which reaches that level when a threshold value of 25% is used.

4.4.4 Phase #3: Comparative Evaluation

In this section we do a comparative evaluation between the proposed model and some of the

most related work in the area of anomaly detction on large volumes of streaming data. Table

4.8 represents a qualitative evaluation of selected work with that of the proposed model in a

summarized format. The key metrics that are compared is the prior requirements for building

the normal profile, ability to support dynamic data patterns with evolving behaviour, support

for real-time analysis and quantitative measurements of accuracy with regard to the detection

rate and the false alarm rate. A brief description on the major techniques adapted is also

included.
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Table 4.8: Comparison of Related Work

Scheme Key-features Training for
Normal Profile

Adaptive for
Dynamic Be-
haviour

Real-time
Support

Detection
Accuracy

Fuzzy Cluster
based Ku-
marage et al.
[Kumarage
et al., 2013]

Fuzzy clustering
with adaptive sta-
tistical thresholds

Fully-
Unsupervised

Cluster-
dependent

Batch-model DR-95.08%
FAR-0.42%

Entropy based
Clustering
Kumarage et
al. [Kumarage
et al., 2014]

Clusters deter-
mined using
entropy with
adaptive statisti-
cal thresholds

Fully-
Unsupervised

Fully-
dynamic

Batch-model DR-98.42%
FAR-2.21%

HSCBS Ra-
jasegarar et al.
[Rajasegarar
et al., 2014]

Hyper-spherical
clusters with
nearest Neigh-
bour approach

Fully-
Unsupervised

Cluster-
dependent

Batch-model DR-95.15%
FAR-1.33%

PCA Wang
et al. [Wang
et al., 2008]

PCA based multi-
pronged detection

Prior-Training Training Re-
quired

√
DR-98.80%
FAR 0.4%

ADWICE
Burbeck et
al. [Burbeck
and Nadjm-
Tehrani, 2007]

Incremental
distance based
clustering

Prior-Training Training Re-
quired

√
DR-95.00%
FAR-0.03%

ADAM J.Hill
et al. [Hill and
Minsker, 2010]

Incremental
autoregressive
model with
prediction

Prior-Training Training Re-
quired

√
DR-95.39%
FAR-4.60%

Proposed
Model (PoV-
EE)

PoV Entropy
Evaluations

Fully-
Unsupervised

Fully-
dynamic

√
DR-99.89%
FAR- 0.83%
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4.5 Conclusion

In this chapter we present an anomaly detection model for real-time decision support in wireless

sensor network data streams. An entropy criterion is proposed for differentiating anomalous

incoming data over a buffered data space that is retained on each node while considering

memory constraints. Three unique Point-of-Views are proposed in computing the entropy

with regard to the continuously updated data space of the buffer. Therefore, with the advent

of each new sensed data point the point-wise entropy is calculated and its variance evaluated

from the perspectives of the (i) mean µ, (ii) median η and (iii) historic mean µ′ (without the

influence of latest data point). The differential change in entropy with the advent of each

new data point is evaluated in relation to the current buffer elements of each sensor node

in identifying anomalous points accurately in a unsupervised, non-probabilistic and adaptive

manner. A secondary buffer level is introduced in order to correctly identify sudden shifts or

spatial drifts in the data that may occur as part of normal behaviour.

Higher values for sensitivity and specificity metrics with lower false positives and false neg-

atives demonstrate the accuracy of the proposed models with regard to a variety of different

data distributions with temporaly evolving patterns. The detailed evaluations have also shown

the robustness and viability of the proposed models with regards to adaptively handling dy-

namic and non-homogeneous demographies of sensed data as well as the capability to function

in a near real-time manner in supporting decision making even as the data is sensed.



Chapter 5

Conclusion

Wireless Sensor Networks (WSNs) consisting of a large number of low cost, compact sensor

nodes coupled with radio transceivers for communication are increasingly becoming the core

technology in providing pervasive monitoring for a variety of applications. They are typically

deployed in large numbers over a wide area unattended in enabling control and automation

through continuous monitoring. Such application environments may either be homogeneous or

heterogeneous with dynamic state changes possible. However, given their inherent constraints,

WSNs are vulnerable to different faults, malfunction and malicious attacks. Misbehaviour

resulting from such occurrences will manifest as observed anomalies in sensor network data

streams. If left undetected these data anomalies will lead to wrong operational and control

decisions that can impact wider society through severe economic losses, environmental dam-

age and possible human harm. Therefore, it is vital that proper techniques are introduced

in accurately detecting these anomalies given the critical role of the sensed data in core de-

cision making. Acknowledging these concerns this research study has focused on introducing

novel anomaly detection models in innovative data processing frameworks in a manner that

is uniquely suitable for anomaly detection in the current application context of large scale

wireless sensor networks.

Existing work on securing and preserving the integrity of WSN data has mostly focused on

prevention than detection. These include designing secure communication protocols, managing

link quality and introducing light-weight cryptographic schemes. However, there is always the

124
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possibility that a new kind of attack may succeed with the exploitation of new vulnerabilities as

well as the unavoidable occurrence of faults and malfunction mandating an imperative need for

detection models. Most of the existing anomaly detection models are not specifically designed

to be implemented on WSNs as has been discussed extensively in previous chapters. Of the

limited amount of work that are presented uniquely for wireless sensor networks there are many

issues limiting their applicability in current application contexts of more dynamic and evolving

sensor network environments. The proposed models in this thesis span different areas including

the use of a point-wise entropy criterion in differentiating between abnormal and normal data,

unsupervised and dynamic data partitioning using distributed fuzzy memberships for data and

real time anomaly detection based on relative evaluations of point of view (PoV) entropy in

successfully overcoming these problems. Another area that has been explicitly focused on is

the formation of statistical techniques for developed detection models that are non-parametric

and non-probabilistic while being adaptive with regard to dynamic changes.

The research presented in this thesis has therefore explored the potential of unsupervised

data driven methods at anomaly detection that are both scalable with regard to large scale

implementation and adaptive in the context of dynamic state changes with evolving data pat-

terns relating to the observation environment. It also focused on the unique features of a WSN

environment including the resource constraints in coming up with innovative in-network data

processing frameworks that minimize the associated communication complexity of proposed

techniques. The complete contributions of this research have been presented in Chapters 2 to

4 of this thesis while a discussion and some remarks on key findings and their implications are

presented in Section 5.1. This is followed by a discussion on some limitations and future work

in Section 5.2

5.1 Concluding Remarks and Discussion

This thesis has focused on developing novel unsupervised models and associated techniques for

distributed anomaly detection in industrial wireless sensor networks. Particular attention was

given to developing scalable models that are adaptive and dynamic in the context of evolving

data streams while being considerate of the resource limitations in the sensor network environ-
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ment. Specially in reducing the communication overhead that is imposed on the network as it is

shown that most of the energy use in such wireless sensor networks is on communication rather

than computation. The core research contributions in the form of novel anomaly detection

models together with in-network data processing frameworks were presented in three chap-

ters. These are Chapter 2 to Chapter 4. The main research contributions there-in have been

demonstrated to be successful in addressing the main research questions that were identified

in Chapter 1 in line with the motivation provided.

In 2, it was shown that adapting fuzzy c-means clustering in an incremental model is capable

of achieving unsupervised data partitioning that facilitates distributed anomaly detection in

WSNs. The developed model was proven to be scalable and robust when implemented over

a hierarchical topology for a considered WSN. The experimental investigations have clearly

demonstrated that this approach achieves high accuracy in correctly classifying both normal

and abnormal data with less false positives and false negatives. The investigations have also

revealed that the number of clusters which is the only value that is operator mediated attains

the best results when it is a number between 6-12. A lesser value or higher value would degrade

the performance with regard to detection accuracy while a higher value would also inflict more

complexity. However, it is demonstrated that within this range (6-12) of statically defined data

partitions the model is robust with high detection rates across a variety of data distributions

A point-wise entropy criterion was presented as a viable direct measure to dynamically

partition data for the purpose of unsupervised anomaly detection in chapter 3. The number

of clusters were defined algorithmically in the proposed framework while adaptive anomaly

detection was performed through second order statistical knowledge that is available at different

analytical stages. The data processing framework was in-network and distributed with regard

to reducing communication costs as compared to a centralized approach. Granular anomaly

detection was performed in order to identify anomalies at different levels of granularity in the

sensor network. The use of an entropy criterion to directly partition the data overcomes the

limitations of hyper-spherical and hyper-elliptical clusters that are spatially local as formed in

other data partitioning approaches. It also provides a measure in capturing data characteristics

that are not limited to second order statistics. Extensive experiments have demonstrated its
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adaptability with regard to dynamic data streams in higher accuracies that are achieved with

a significant reduction in communication overheads.

While the presented models were batch-wise in the above mentioned chapters, focus was

concentrated upon an incremental approach that achieve near real-time decision support in

chapter 4. Therefore, a Point-of-View (PoV) approach was presented to evaluate the relative

change in entropy that occurs as a data stream evolves. Three unique reference points were

introduced and was shown to be successful in offering different lenses in evaluating the relative

entropy change. The data processing model was local in the sense that the model is imple-

mented at different nodes considering the data stream that is accessible at each node. In order

to reduce the false alarm rate through correct detection of sensor drift and spatial level gaps

a unique dual buffer model was also introduced in analyzing the data. This buffer space is to

be determined based on the memory constraints of each node. It was shown that the model

achieves high detection accuracy with low false alarms in a near real-time manner for a vari-

ety of data distributions representing evolving behaviour with different facets of abnormality.

Some of the main findings of each core chapter are discussed in detail below.

5.1.1 Hierarchical Data Partitioning with Fuzzy Data Modelling for

Scalable Anomaly Detection

A soft data partitioning approach based on fuzzy data modelling was presented as the first

main contribution of this thesis with regard to achieving distributed anomaly detection in

WSNs. The particular goals that this model achieved are;

• A fully unsupervised anomaly classification process without prior training with regard to

the unavailability of labelled training data sets.

• Non-parametric and non-probabilistic anomaly detection without prior knowledge of the

data distribution in relation to a dynamic observation environment with unpredictable

state changes.

• An in-network and distributed data processing framework with high efficiency and re-

duced communication and computational overheads for the resource constrained WSN
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environment.

Specifically, it was shown that fuzzy c-means clustering when adapted incrementally, on

several analytical phases over a hierarchical node topology is a viable approach in determining

data anomalies in an unsupervised manner that is both scalable and adaptive. Using a fuzzy

data clustering process rather than a fixed binary process has allowed the data be evaluated for

anomalies at different levels in enabling the model to accurately detect both local and global

anomalies from a network perspective. The use of a centroid based data clustering approach

has allowed the centroids to be used as representing complete data clusters in significantly

reducing the associated communication costs. This has also worked to reduce misclassifications

compared to other non-fuzzy classification methods, which are deterministic and restricted to

local data correlations. A key problem in a data clustering approach for anomaly detection is

determining the correct number of expected clusters to use. In the context of the proposed

model the investigations have revealed that the ideal number of clusters should be in the

range between 6-12. That is a number that is not too small and not too large with regard

to minimizing complexity and resulting in a representative set of data partitions. While this

number is statically defined, the experiments have clearly shown that within this range it

achieves high classification accuracy in both sensitivity and specificity metrics with low false

positives or false negatives. Experimental results showed reduced false positives with the

sensitivity range increasing from between (12% - 48%) to (83.44% - 95.1%) compared to a

non-fuzzy fixed-width clustering scheme.

The thresholding technique that was used on fuzzy membership scores and inter-cluster

distances was also demonstrated to be robust and adaptive in evaluating anomalies over dif-

ferent hierarchical levels. As it only uses second order statistical knowledge (of mean and

standard deviation) that is locally available at each analytic stage, the detection process is

non-parametric and non-probabilistic. High detection accuracy was consistently maintained

in all derived data distributions in the experimentation for both local and global phases of

anomaly detection in highlighting the versatility of the model.

The distributed and in-network data processing framework that was introduced has also

shown itself capable of significantly reducing the communication costs with regard to a cen-
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tralized approach. In the proposed model only the locally identified cluster centroids and

corresponding outliers were communicated to the next hierarchical level in reducing communi-

cation overheads. This has enabled an efficient incremental model where data can be processed

as they are sensed. A communication reduction of more than 98% on average was achieved at

all instances of experimentation. This demonstrated the significant benefit to the concerned

sensor network in saving energy and maximizing active life-time. Further, the detailed com-

parison that was performed with regard to a distributed data clustering approach that employ

fixed-width clustering has clearly shown that the proposed model far outpaces the latter in

terms of classification accuracy and adaptability. Experimental results showed an average sen-

sitivity in detection accuracy of (83.44 – 95.1%) and an average specificity in detection accuracy

of (99.73 – 99.98%) compared to (12 – 48%) and (14 – 72%) for an existing data clustering

approach employing fixed-width clustering.

5.1.2 Dynamic Data Partitioning with an Entropy Criterion for

Multi-granular Anomaly Detection

The next core section of this thesis introduced a fully dynamic anomaly detection framework

that offered multi-granularity analysis by employing an entropy criterion to directly partition

the data. The key limitation of having a static number of clusters is successfully overcome

through a dynamic determination of clusters that is completely data driven. The major goals

that were achieved in the proposed model are as follows.

• An unsupervised, non-parametric and non-probabilistic data classification method that

is fully dynamic over unpredictable and evolving data distributions.

• A robust detection of both isolated outliers and correlated clusters of abnormal data in

non-homogeneous and multi-density data distributions.

• An efficient data processing framework with reduced computational and communication

complexities for the resource constrained environment.

Specifically, a fully unsupervised data partitioning model was proposed to partition the

sensed data on to cohesive regions dynamically based on cumulative point-wise entropy and
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average relative density. The point-wise entropy measure was defined using euclidean distance

similarity and the density measure was defined to be computed over two distance-neighborhood

levels. The effects of noise and outliers were mitigated through prior segregation of such

through the use of this average relative density measure. Introduction of this step was shown

to be essential in dealing with the dynamic multi-density nature of the observation domain

in subsequently facilitating a direct partitioning of the data through entropy. This solves the

problem of isolated outliers having low entropy states that are similar to tightly correlated

cohesive groups of data. The number and composition of the data partitions in this process

were determined in a fully dynamic manner that is scalable over a hierarchical node topology.

More significant is that in this approach the number of partitions are determined adaptively

without prior knowledge in contrast to most existing methods.

The data partitions that were produced in this model are not limited to hyper-spherical

or hyper-elliptical clusters as the entropy measure is capable of capturing data characteristics

that are higher than second order statistics. As the entropy represents the level of orderliness

in the data these data partitions prove to be much more viable with regard to an anomaly

detection process. Granular evaluation of anomalies was attained over the hierarchical topol-

ogy with minimal communication overhead between network levels. Thresholds in determining

anomalies have been derived adaptively at each analytic stage from the second order statistical

knowledge that is available. Each stage therefore, focused only on domain knowledge avail-

able at that network level in avoiding any arbitrary definitions of parameters or probabilistic

assumptions. It is found that this leads to a more robust and accurate detection for dynamic

data with differential density compared to existing methods as in [Chandola et al., a, Hodge

and Austin, 2004]. Experiments yielded higher averages in the detected true positives and true

negatives with a corresponding reduction in false positives and false negatives resulting in more

than 94% in both sensitivity and specificity metrics consistently for a variety of different data

distributions.

Scalability of the approach was highlighted through the high communication cost reduc-

tion of more than 85% in average when compared to a centralized data processing approach.

The high sensitivity values that were achieved also demonstrated that the proposed model is
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successful in accurately classifying both forms of abnormal behaviour (outliers and groups) as

evident in the experimental data distributions that were used.

5.1.3 Point-of-View (PoV) Entropy Evaluations for Real-time Decision

Support over Evolving Data Streams

The final core chapter of this thesis presented an anomaly detection framework for wireless

sensor networks that enabled near real-time decision support. In this framework anomalies

are differentiated and detected as they are sensed on each node locally by using an efficient

incremental model that employ a unique Point-of-View (PoV) approach at evaluating relative

change in entropy. The previous two approaches that were presented focused on batch-wise data

processing models as opposed to an incremental approach that can support real-time detection

of anomalies. The particular issues that were addressed are: (i) continuous streaming of large

data volumes, (ii) dynamic fluctuations on data streams with evolving patterns, (iii) data

heterogeneity over different streams in unmatched distributions and (iv) near real time impact

on key decision making through streaming functionality. The following goals were attained

with respect to these challenges as mentioned below.

• An unsupervised and non-probabilistic model for differentiating between normal and

abnormal for evolving data streams

• Detection of anomalies in an online fashion in facilitating real time decision support

• Efficient in-network procedures with reduced complexity considering resource limitations

The proposed incremental model is implemented in-network with data processing performed

in an online fashion. This supports the real time nature of a typical WSN monitoring appli-

cation in mitigating negative impacts of batch models. In the proposed framework point-wise

entropy is evaluated according to three unique Point-of-View (POV) approaches. These ref-

erence points were introduced as (i) PoV of the mean µ, (ii) PoV of the median η and (iii)

PoV of the historic mean µ′ (without the influence of latest data point). Each PoV acts as

different lenses providing insight for more accurate detection when used within the context
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of an entropy criterion. Then the relative change in entropy was compared through a Mean

Relative Entropy (MRE) measure that is defined based on the calculated point-wise entropy

values for each PoV in determining any anomalies. It was shown that all three introduced

reference points are viable for the purpose of anomaly detection with the PoV of the historic

mean µ′ reporting the highest accuracy level in sensitivity and specificity metrics. Therefore

the adaption of a PoV approach for entropy evaluation is shown to be uniquely successful

in detecting anomalies in data streams while still accommodating for dynamic and evolving

patterns of normal behaviour.

A key problem for incremental models that determine anomalies as they are sensed is

how to accommodate instances where the observed data distribution may suddenly shift to a

new range (a level shift) before continuing normal behaviour (in that range). This problem is

overcome in the proposed approach by adding a second level of analysis regarding any potential

anomalies that are initially detected. Thus, any element that is designated as anomalous

through evaluation in the primary analytic phase is temporarily stored on a secondary buffer

that accumulates the next few incoming data points. Relative entropy change is then again

evaluated in the context of this new set of data before final determination of anomalies is

made. It was shown that this technique is uniquely capable of identifying any level shifts

or sudden sensor drift patterns that would otherwise contribute to a high false alarm rate.

Two threshold levels of 25% and 50% were investigated for differentiating anomalies from the

computed MRE values over a variety of different behaviour in the data streams. It was found

out that while a threshold of 50% can be used regardless of the selected PoV, a threshold of 25%

is not suitable with regard to the PoV of the historic mean. The detailed comparisons that were

done highlighted the advantages of the proposed approach from a qualitative perspective as well

as from a quantitative level. Detection accuracy of more than 98% in average sensitivity was

accompanied by a low false alarm rate of less than 0.8% in the proposed approach significantly

outperforming others.
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5.2 Future Work

This thesis has focused on developing new distributed anomaly detection methods for indus-

trial wireless sensor networks. The proposed models has dealt with the specific problems of

how to achieve non-parametric and non-probabilistic anomaly detection in an unsupervised

manner, how to make the process dynamic in the context of dynamic data streams and how

to achieve near real-time decision support on evolving data streams. Further, distributed data

processing frameworks have been introduced in achieving the above efficiently with reduced

communication overheads that fits the resource constrained environment of WSNs. While

these tasks have been successfully completed with high performance achieved in the proposed

models there exists some other possibilities that haven’t been the focus within the scope of this

research. However, addressing these issues could considerably add value and improve on some

of the limitations in the developed models, opening up pathways for future research based on

the context of this thesis. These can be discussed as follows.

Determining the expected number of clusters for the anomaly detection

approach with fuzzy data modelling

A key limitation in the work proposed in Chapter 2, is that the number of expected clusters

need to be determined beforehand by the operator. Therefore, the number of expected clusters

is a static attribute within the anomaly detection process. While this issue is addressed through

the novel entropy based data partitioning approach presented in Chapter 3, that is a completely

different model from the distributed fuzzy partitioning proposed in Chapter 2. Focusing on this

issue, methods can be investigated to perform a dynamic allocation of the clusters to this fuzzy

partitioning model. In such a model the number of clusters will be determined dynamically

based on the information available from the data itself. A potential avenue of research in

this direction is to randomly assign a number of clusters and then have a cluster merging or

dividing process based on a considered distance measure or other statistical criteria. Another

approach might be to compute the similarity of the data before the actual partitioning process.

The number of clusters may be determined whether to be higher or lower according to how
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similar or cohesive the data is. Exploring such methods to determine the number of clusters

in a non-parametric and data driven way will significantly improve the original model based

on fuzzy data modelling and make it fully dynamic with regard to evolving data.

Determining the node hierarchy for the anomaly detection framework

A factor that is not focused on the developed anomaly detection models in both Chapter

2 and Chapter 3 is the establishment of the node hierarchy. In implementing the models

a static topological hierarchy is assumed a priori. However, in most real WSNs dynamic

topology changes are possible. Furthermore, based on location and available resources the

amount of processing a certain node can engage in may differ. Methods can be explored to

determine different nodes and their role in a hierarchical topology using node connectivity,

resource availability and neighborhood density considerations. Based on such considerations,

the assumed node hierarchy may designed to be capable of evolving as the network state

evolves. A potential direction for such research is to use multi-dimensional Voronoi diagrams

for evaluating and determining nodes. This will provide a flexible and adaptive framework to

define the assumed topology of a given WSN in a dynamic manner. Such a framework will

significantly enhance the capabilities of the developed models in Chapter 2 and Chapter 3 in

being more responsive and scalable with regard to network level considerations.

Evolving thresholds for real-time anomaly detection with PoV entropy

evaluations

The work produced in Chapter 4 introduces a point-of-view entropy evaluation model to detect

anomalies in near real-time. This is primarily done via thresholding a defined Mean Relative

Entropy (MRE) value which accurately tracks the relative change in entropy as the data stream

evolves. However, in the proposed work, these thresholds are fixed at 50% and 25%. Methods

could be investigated in having this value determined adaptively based on the MRE distri-

butions that are computed. Different statistical thresholds can also be introduced based on

the main analysis on calculated entropy values. This will work to make the afore-mentioned

model more adaptive and resilient with regard to fluctuations in observed data distributions.
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Another aspect that is not focused on in the proposed model is the determination of the data

space. Investigations can be performed specific to different application criteria in selecting the

optimum data space to compare relative entropy change for a given data set. Such work will

significantly improve the proposed model in terms of detection accuracy as well as make it

more efficient with regard to memory allocation and resource utilization.
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