
Thank

Citatio

See th

Version

Copyri

Link to

you for do

on:

is record i

n:

ght Statem

o Published

wnloading

in the RMI

ment: ©

d Version:

 this docum

IT Researc

ment from

ch Reposit

the RMIT R

ory at:

Research RRepository

PLEASE DO NOT REMOVE THIS PAGE

Liu, H, Poon, P and Chen, T 2015, 'Enhancing partition testing through output variation', in
Proceedings of the 37th International Conference on Software Engineering - Volume 2
(ICSE 2015), United States, 16-24 May 2015, pp. 805-806.

https://researchbank.rmit.edu.au/view/rmit:31828

Accepted Manuscript

Copyright © 2015 IEEE. by The Institute of Electrical and Electronics
Engineers, Inc.

http://2015.icse-conferences.org/

http://researchbank.rmit.edu.au/

Poster: Enhancing Partition Testing through Output

Variation
Huai Liu Pak-Lok Poon Tsong Yueh Chen

RMIT University The Hong Kong Polytechnic University Swinburne University of Technology

huai.liu@rmit.edu.au pak.lok.poon@polyu.edu.hk tychen@swin.edu.au

Abstract—A major test case generation approach is to

divide the input domain into disjoint partitions, from which

test cases can be selected. However, we observe that in some

traditional approaches to partition testing, the same partition

may be associated with different output scenarios. Such an

observation implies that the partitioning of the input domain

may not be precise enough for effective software fault

detection. To solve this problem, partition testing should be

fine-tuned to additionally use the information of output

scenarios in test case generation, such that these test cases are

more fine-grained not only with respect to the input partitions

but also from the perspective of output scenarios.

Index Terms—Partition testing, choice relation framework,

output scenario.

I. INTRODUCTION

Partition testing is a popular approach to test case

generation. It first divides the set of all possible program

inputs (namely input domain) into disjoint partitions, and

then selects at least one input from each partition to

construct a set of test cases. Many software practitioners

consider that a single input will be sufficient to represent a

partition, if the partition is homogeneous [5]. Typical

partition testing methods include the CHOiCe reLATion

framEwork (CHOC’LATE) [1][2], classification-tree

method [4], and combinatorial testing [3].

However, we observe that, in some cases, the same input

partition is associated with different output scenarios,

indicating that some partitions are not sufficiently

homogeneous. This problem jeopardizes the very benefit of

using input partitions for generating test cases. To alleviate

the above problem, we propose that the variations of output

scenarios should also be considered when test cases are

generated. In this paper, we make use of a typical partition

testing method, namely CHOC’LATE, to illustrate how the

use of various output scenarios enhances partition testing.

II. CHOC’LATE: A PATITION TESTING METHOD

The purpose of CHOC’LATE [1] [2] is to help testers

generate test cases from specifications. It works as follows:

1. Identify categories and choices. Testers first identify

input parameters and environment conditions as

categories whose values or states affect the software

execution behavior. Each category is further partitioned

into choices, which refer to the category’s different cases.

2. Determine the relation between each pair of choices, and

capture all these relations in a choice relation table.

* This project is supported by an ARC grant.

3. Generate complete test frames from the choice relation

table. Any combination of choices is referred to as a test

frame. A test frame TF can be further defined to be

complete, if a test case is generated by selecting a

concrete value from each choice in TF.

4. For each complete test frame, construct a test case by

selecting a concrete value for each choice in the frame.

III. MOTIVATING EXAMPLE

As mentioned above, many partition testing methods,

including CHOC’LATE, focus on how to partition the input

domain so that test cases associated with the same partition

are similar in terms of the execution behaviors aiming at

achieving highly homogeneous partitions. However, we

argue that input-domain partitioning may not fully satisfy

this objective, as illustrated in the following example.

Example (Resource Allocation). Suppose that there are

m projects, each of which generates a revenue of ri with a

manpower requirement of pi (i = 1, 2, …, m), and n

departments, each of which has ej (j = 1, 2, …, n)

employees. A program Res attempts to assign projects to

departments such that (a) each project is either assigned to

one department or discarded, (b) the total manpower

required from each department does not exceed its ej, and

(c) the total revenue of all the assigned projects is

maximized. The input for Res includes three sets of integers:

two m-tuples R = (r1, r2, …, rm) and P = (p1, p2, …, pm), and

one n-tuple E = (e1, e2, …, en). ∀i, ri > 0, pi > 0, and ∀j, ej >

0. The output of Res is one m-tuple S = (s1, s2, …, sm). si = j

(where i = 1, 2, …, m and j = 1, 2, …, n) represents that the

ith project should be assigned to the jth department, while si

= 0 means that the ith project is discarded.

The categories and choices for Res are shown in Table I.

For Res, there are six categories in total, each of which is

associated with three choices. However, it does not mean

that there will be 3
6
 = 729 possible complete test frames,

because some combinations of choices are invalid according

to the specification. A total of 234 complete test frames can

be constructed using algorithms provided by CHOC’LATE.

Let us look at a complete test frame {1b, 2a, 3a, 4a, 6b}.

Both of the following test cases can be generated from it:

• TC#1: R = (129, 129), P = (55, 55), E = (182).

• TC#2: R = (61, 61), P = (97, 97), E = (114).

Because (55 + 55 < 182), the output of TC#1 is S = (1,

1), that is, both projects are assigned to the only department.

The output of TC#2 is S = (1, 0) or S = (0, 1), that is, only

one project is assigned while the other is discarded (because

(97 + 97 > 114)). In other words, TC#1 and TC#2 trigger

e00787
Sticky Note

different output scenarios, even though they come from the

same complete test frame (that is, the same input partition).

TABLE I. CATEGORIES AND CHOICES FOR RES (i1 i2 and j1 j2)

Categories Associated Choices

1. Number of

projects (m)

1a. m = 1

1b. m = 2

1c. m 3

2. Number of

departments
(n)

2a. n = 1

2b. n = 2

2c. n 3

3. Revenue of

project (ri)

3a. ∀ pair of i1 and i2, ri1=ri2

3b. ∀ pair of i1 and i2, ri1 ri2

3c. ∃ pair of i1 and i2, ri1=ri2, and ∃ pair of i1 and i2, ri1 ri2

4. Manpower

for project (pi)

4a. ∀ pair of i1 and i2, pi1=pi2

4b. ∀ pair of i1 and i2, pi1 pi2

4c. ∃ pair of i1 and i2, pi1=pi2, and ∃ pair of i1 and i2, pi1 pi2

5. Number of

employers in
department (ej)

5a. ∀ pair of j1 and j2, ej1=ej2

5b. ∀ pair of j1 and j2, ej1 ej2

5c. ∃ pair of j1 and j2, ej1=ej2, and ∃ pair of j1 and j2, ej1 ej2

6. Relation

between pi and

ej

6a. ∀ i, pi > max (e1, e2, …, en)

6b. ∀ i, pi min (e1, e2, …, en)

6c. ∃ pair of i and j, pi > ej, and ∃ pair of i and j, pi ej

The above observation clearly shows that, although

partitioning the input domain by existing methodologies (for

example, CHOC’LATE) ensures the homogeneity in terms

of the selected input aspects, some test cases from the same

partition may still be heterogeneous with respect to output

scenarios. Intuitively speaking, to maximize testing

effectiveness, each partition should be as homogeneous as

possible, and one good way to do this is to have fine-grained

partitions that are not only related to input parameters but

also corresponding to output scenarios.

IV. ENHANCING CHOC’LATE BY OUTPUT VARIATION

We suggest that, on top of the “traditional” partitioning

of the input domain, a partition testing method should also

consider the variation in program outputs, with a view to

fine-tuning the test case generation process. Here, we

propose an enhanced method, namely CHOiCe reLATion

framEwork with DIstinguishing outPut scenarios (abbre-

viated as CHOC’LATE-DIP). It improves CHOC’LATE

from the following perspectives.

1. In addition to categories and choices with respect to the

input parameters and environment conditions (which, for

clarity, are hereafter referred as I-categories and I-

choices, respectively), identify different scenarios of

program outputs and define categories and choices for

these scenarios (referred to as O-categories and O-

choices, respectively). The O-categories and O-choices

for Res are listed in Table II (the I-categories and I-

choices are already listed in Table I).

2. Construct an extended choice relation table. Besides the

relation between each pair of I-choices, the table also

captures the relation between each pair of O-choices as

well as that between every I-choice and every O-choice.

3. Generate valid combinations of I-choices and O-choices

as “complete test frames” from the extended choice

relation table. Since these generated “complete test

frames” contain both I-choices and O-choices, we call

them IO-based complete test frames (abbreviated as

CTFIO). For clarity, those complete test frames containing

I-choices only are called I-based complete test frames

(abbreviated as CTFI). For Res, a total of 607 CTFIO can

be generated. Table III shows the relevant statistics for

Res, confirming that the situation of having a CTFI

associated with multiple CTFIO is very common.

TABLE II. O-CATEGORIES AND O-CHOICES FOR RES

O-categories O-choices

I. Number of

selected projects

Ia. No project is assigned

Ib. All projects are assigned

Ic. Only some projects are assigned

II. Number of

departments with
projects assigned

IIa. No department is assigned any project

IIb. All departments are assigned project(s)

IIc. Only some departments are assigned project(s)

TABLE III. RELATIONSHIP BETWEEN CTFI AND CTFIO FOR RES

k
Number of Percentage of

CTFI associated with k CTFIO

1 101 43.2%

2 13 5.5%

3 120 51.3%

4. Based on each CTFIO, not only can a test case be

generated, but its corresponding type of expected output

can also be determined simultaneously. In

CHOC’LATE, generating a test case from CTFI and

determining its corresponding type of expected output

are two “separate” tasks. In CHOC’LATE-DIP, these

two tasks are integrated through CTFIO. This represents

another merit of CHOC’LATE-DIP over CHOC’LATE.

V. DISCUSSION AND CONCLUSION

The traditional approach to partitioning the input domain

may not be sufficiently strong to ensure similar execution

behaviors for the same resultant partitions. In this paper, we

propose that output scenarios should also be explicitly

considered for any partition testing method to improve the

homogeneity of the input partitions, which, in turn, is the

key factor for high fault-detection effectiveness. Such

improvement is not only restricted to the testing method

(CHOC’LATE) under this study, but can be generally used

for enhancing many other partition testing techniques.

Due to the page limit, we only used one real-life system

for the illustration and case study. A larger scale empirical

study is our next step to investigate how to improve various

partition testing methods on different types of systems.

REFERENCES

[1] T.Y. Chen, P.-L. Poon, S.-F. Tang, and T.H. Tse. DESSERT:

a divide-and-conquer methodology for identifying categories,

choices, and choice relations for test case generation. IEEE T

Software Eng, 38(4):794-809, 2012.

[2] T.Y. Chen, P.-L. Poon, and T.H. Tse. A choice relation

framework for supporting category-partition test case

generation. IEEE T Software Eng, 29(7):577-593, 2003.

[3] D.M. Cohen, S.R. Dalal, J. Parelius, and G.C. Patton. The

combinatorial design approach to automatic test generation.

IEEE Software, 13(5):83-88, 1996.

[4] M. Grochtmann and K. Grimm. Classification tree for

partition testing. Software Test Verif Rel, 3(2):63-82, 1993.

[5] D. Hamlet. Partition testing does not inspire confidence.

IEEE T Software Eng, 16(12):1402-1411, 1990.

	Liu, J -n2006053929.pdf
	Iyer-Raniga, Usha- n2006046404- A greenhouse gas.pdf
	Abstract
	Introduction
	Method
	Unit of assessment and system boundary
	Inventory
	Impact assessment

	Results
	Discussion
	Limitations
	Exclusion of travel
	Partition methodology
	Stadium life time and attendance
	Exclusion of upstream construction processes

	Conclusion
	Acknowledgement
	Funding
	References

