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Abstract 

This Thesis is a modest attempt to make contributions in scientific research in intelligent, 

autonomus systems. Large progress has been made in the vision science in detecting/tracking 

people applications, like visual navigation in surveillance scenarios, or in specific situations 

such as Search and Rescue (SAR) operations using the Micro Autonomous Systems (MAS). 

The MAS, in our context, is a smaller version of an autonomous system. For example, auton-

omous systems could be mobile robots, miniature helicopter/quadrotor systems, or a smart 

cars such a self driving vehicles. A MAS is normally equipped with multiple sensors includ-

ing vision sensors such as cameras. They employ computer/micro processing 

onboard/offboard and usually, they are running with various computer algorithms to perform 

specific tasks. 

MASs help us with the tasks of daily living, co-habiting in our personal or public space. They 

interact with humans on a daily basis, navigating and cooperating with people. A MAS must 

be able to detect and track people in their environment. The challenge arose from the MAS 

perception, as when the MAS is moving, navigating in an environment, the objects they see 

are frequently occluded or truncated by the field-of-view. Another problem is that there is a 

large scale variation in those objects. Object detection and tracking algorithm must take place 

in near real time. 

This Thesis describes a system for detecting and tracking people, from image and depth sen-

sors data, to cope with the challenges of MAS perception. Our focus is on developing robust 

computer vision algorithms that provide robustness and efficiency for people detection and 

tracking from the MAS in real-time applications as mentioned earlier. The performance of 

our algorithms provided competitive results and surpasses other approaches as tested. The 

focus in this Thesisis on  MAS operations specifically in indoor environments. 

This Thesis consists of seven chapters. Chapter 1 provides an introductory to the structure of 

this Thesis, challenges in the development of robust computer vision algorithms for MAS, 

problem statement, and Thesis objectives. Research contributions are clearly presented in this 
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Chapter. Chapter 2 provides an overview of State of the Art in Computer Vision for MAS 

applications, especially in human detection. In this Chapter typical computer vision problems 

for human detection are explained. Calibration method and pre-processing of images, the 

targets detection, classification and recognition are explained next. The Histogram of Orient-

ed Gradients (HOG) and Part-based model are employed in this application. From the hard-

ware point of view, we explore new type of sensors, Red/Green/Blue-Depth (RGB-D) camera 

like Kinect. This type of hardware is available to everyone and it is becoming more popular 

for use on MAS platforms due to their rich of data, low price and light in weight. The depth 

data available from Kinect can speed up the computer vision process. Hence, we will contin-

ue investigating it further in the following Chapters. An overview of camera calibration for 

Kinect describes the steps involved in the calibration process. Kinect provides reasonable 

accurate focal lengths. Sometimes we may need to calibrate it to correct geometric distor-

tions. That can be achieved by using the manufacturer calibration tool, or by applying calibra-

tion algorithms provided by other researchers. 

The major contributions are presented in Chapter 3 through to Chapter 6. Novel robust com-

puter vision algorithms are presented and incorporating with RGB-D camera. Algorithms are 

built upon previous Chapter’s findings. For example, in Chapter 3, Human Body Detection 

from a Video File, involves with single person detection from a video file (stream of images).  

The proposed algorithm is developed based on Viola-Jones framework. Instead of using face 

features like eyes or nose, the skin tone was selected to provide a good contrast of upper body 

detection. Cascade object detector is used to identify location of the upper body, in a video 

frame, and than for tracking. 

Chapter 4 explains Multi Targets Detection and Tracking Algorithm in near real-time. It was 

performed using two stage processes, detection of moving targets and tracking by motion-

based model. Gussian Mixture Model (GMM), Morphological operation was applied to elim-

inate noise in pre-processing. Blob analysis is used next in order to detect moving targets 

(human in this case). Finally Kalman filter was used in the tracking part, to associate and 

manage tracks with the corresponding targets.  

Chapter 5 escalates from multi-targets detection and tracking into a two-dimensional space 

(use of a monocular configuration, a colour camera) to three-dimensional space (use of RGB-

D camera). The algorithms made use of the depth data from Kinect for pre-processing stage. 
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The detection stage was employing the Bayesian model, which used a set of detectors to im-

prove people detection rate. Detector combines use of colour and depth information for detec-

tion of upper body, face, skin colour, motion and shape. The tracking stage used Kalman fil-

ter for tracking people. A strategy was proposed for the track management, for effective track 

initialisation, update and deletion processes. 

Chapter 6 takes the subject of computer vision into another dimension. It studies the Simulta-

neous Localisation and Mapping (SLAM) problems in three-dimensional space. The RGB-D 

camera was used to obtain depth data. Configuration in localisation process was proposed 

using the Speeded Up Robust Features (SURF) and RANdom SAmple Consensus (RAN-

SAC). Front-end and back-end processing is introduced. The front-end consists of localisa-

tion steps, post refinement and loop closing system. The back-end focus on the post graph 

optimisation to eliminate error introduced from front-end.  

In conclusion, the proposed algorithms form Chapters 3-6 emphasises on people detection 

and tracking in real-time. The novel robust computer vision algorithms can be used in many 

engineering, humanitarian and other application fields. For example, they could be applied on 

the MAS platforms like quadrotor, or other Unmanned Aerial Vehicles (UAV)s. MAS can fly 

autonomously and take images in the indoor/outdoor environment. It can generate database 

and construct a 3D map in real-time for applications in visual navigation, search and rescue 

operation. The potential growth in this area is enormous, in particular with recent interest on 

self-driving cars, or e-commerce to fly drones, i.e. over the air delivery of packages. This 

field of study will probably make great contributions in real world applications, for the years 

to come. 

Keywords 

3D, Artificial Intelligence, Autonomous System, Computer Vision, Detection, Image Pro-

cessing, Kinect, Quadrotor, RGB-D, SLAM, Tracking, Unmanned Aircraft Systems, Visual 

Navigation, Vision System. 

 



vi 

Resume 

Miss Rapee Krerngkamjornkit has prepared this Thesis while, at the same time, working in 

industry on the real life engineering applications. She has strong research skills both in aca-

demia and industry which has advanced her as a PhD candidate to conduct research in devel-

opment of Novel Robust Computer Vision Algorithms for Micro Autonomous System (MAS) 

with the Royal Melbourne Institute of Technology (RMIT), now RMIT University. As a re-

searcher Rapee has already presented her scientific findings to conferencies across the world, 

from Chine to Europe. The papers are published in international journals, as given in the Pub-

lications list.  

Miss Rapee Krerngkamjornkit has over 14 years of experience as a Project Engineer and Sys-

tems Engineer. Her specialities are in Communications and Systems Engineering. Rapee’s 

activity domains are wired/wireless communications systems, air/ground communications, 

electronics and Radio Frequency (RF) communications, satellite communication, and systems 

architecture. Her previous work includes systems engineering in Communications, Command 

and Control Systems, Combat Systems, Satellite Communication Systems, Air Traffic Con-

trol/Management Systems, and Information Management Systems. 

Apart from the strong research commitment, Rapee's interests are in Project Management, 

Engineering Management, Project Life Cycle (PLC), and Systems Development Life Cycle 

(SDLC). She currently holds a Master degree in Engineering (Management) and has com-

pleted Systems Engineering, Requirements Analysis and Specification Writing courses. 

Rapee has a wide range of technical and engineering management skills which combined 

with her experience are transferable across a variety of industries, research and academic sec-

tors and can be applied anywhere as required. Her extensive knowledge and skills, coupled 

with her can do attitude, have made Rapee recognised as a highly capable and knowledgeable 

Communications/Systems Engineer and Researcher. As a well educated, open minded per-

son, Miss Rapee Krerngkamjornkit speaks four international languages. 



vii 

 

 

 

 

 

 

 

 

 

“Knowledge is love and light and vision.” 

– Hellen Keller 

 

 

 



viii 

Declaration 
 

This is to certify that: 

a) except where due acknowledgement has been made, the work is that of the candidate 
alone; 

b) the work has not been submitted previously, in whole or in part, to qualify for any 
other academic award; 

c) the content of the thesis is the result of work which has been carried out since the of-
ficial commencement date of the approved research program; 

d) any editorial work, paid or unpaid, carried out by a third party is acknowledged; 

e) ethics procedures and guidelines have been followed. 

 

R. Krerngkamjornkit 

Krerngkamjornkit, Rapee 

November 03, 2014. 



Publications 

 ix 

Publications 

Book Chapter 

Krerngkamjornkit, R. and Simic, M. “3D visual SLAM using RGB-D camera,” 7th Interna-

tional Conference on Intelligent Interactive Multimedia Systems and Services, Chania, 

Greece, 18-20 June, 2014. Smart Digital Futures 2014 R. Neves-Silva et al. (Eds.) IOS Press, 

2014 DOI:10.3233/978-1-61499-405-3-533  

IEEE Conference Proceeding 

Krerngkamjornkit R. and Simic M. " Enhancement of Human Body Detection and Tracking 
Algorithm based on Viola and Jones Framework," Telecommunication in Modern Satellite, 
Cable and Broadcasting Services (TELSIKS), 2013 11th International Conference on; Nis, 
Serbia, October 16-19, 2013.Volume: 01; Digital Object Identifi-
er:10.1109/TELSKS.2013.6704903; Publication Year: 2013 , Page(s): 613 – 618; IEEE Con-
ference Publications http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6704903 

Journal Papers 

• Krerngkamjornkit, R. and Simic M. “Human body detection in search and rescue opera-

tion conducted by Unmanned Aerial Vehicles,” The 3rd International Conference on Ad-

vances in Materials and Manufacturing Processes, Beihai, China, Dec., 2012. Internation-

al Journal of "Advanced Materials Research", 655-657, pp. 1077-1085, 2013 

• Krerngkamjornkit R. and Simic M. "Multi Object Detection and Tracking from Video 

File," The 2014 International Forum on Materials Processing Technology (IFMPT 2014), 

Guangzhou, China, January 18-19, 2014., Published in International Journal "Applied 

Mechanics and Materials”, Vol 533, ISSN 1662-7482, Pages 218-225, DOI 

10.4028/www.scientific.net/AMM.533.218   

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6704903


x 

Contents 
Acknowledgements ................................................................................................................................................ ii 

Abstract ................................................................................................................................................................. iii 

Keywords ................................................................................................................................................................ v 

Resume................................................................................................................................................................... vi 

Declaration .......................................................................................................................................................... viii 

This is to certify that: ......................................................................................................................................... viii 

Publications ........................................................................................................................................................... ix 

List of Figures ..................................................................................................................................................... xiv 

List of Tables ........................................................................................................................................................ xv 

Chapter 1 Introduction ..................................................................................................................................... 1 

1.1 Challenges for Computer Vision and Micro Autonomous Systems (MAS) ..................................... 2 

1.1.1 Detection ................................................................................................................................ 3 

1.1.2 Tracking ................................................................................................................................. 3 

1.1.3 Other challenges .................................................................................................................... 5 

1.2 Thesis proposal and objectives .......................................................................................................... 5 

1.3 Thesis Contributions ......................................................................................................................... 6 

1.4 Thesis Overview ............................................................................................................................... 7 

Chapter 2 State of the Art ................................................................................................................................ 9 

2.1 Introduction ....................................................................................................................................... 9 

2.2 Computer Vision for MAS .............................................................................................................. 10 

2.2.1 Human Detection ................................................................................................................. 10 

2.2.2 Histogram of Oriented Gradiants (HOG) ............................................................................. 13 

2.2.3 Part-based Model ................................................................................................................. 14 

2.3 Related work ................................................................................................................................... 14 

2.4 System Overview ............................................................................................................................ 15 

2.5 Camera Calibration ......................................................................................................................... 17 

2.5.1 Calibration Model ................................................................................................................ 18 



Contents 

 xi 

2.6 Modern Researches ......................................................................................................................... 19 

2.7 Conclusions ..................................................................................................................................... 19 

2.8 Applications .................................................................................................................................... 20 

Chapter 3 Human Body Detection from Video File ..................................................................................... 21 

3.1 Introduction ..................................................................................................................................... 21 

3.2 Related work ................................................................................................................................... 22 

3.3 Human Detection Method ............................................................................................................... 23 

3.3.1 Algorithm Overview ............................................................................................................ 23 

3.3.2 Segmentation ....................................................................................................................... 23 

3.3.3 Feature Extraction ................................................................................................................ 23 

3.3.4 Training................................................................................................................................ 24 

3.3.5 Classification ....................................................................................................................... 25 

3.3.6 Viola and Jones Framework ................................................................................................. 25 

3.4 Result and Disscussion .................................................................................................................... 28 

3.4.1 Dataset and Methodology .................................................................................................... 28 

3.4.2 Detect upper body to track ................................................................................................... 29 

3.4.3 Identify feature to track ........................................................................................................ 30 

3.4.4 Track the upper body ........................................................................................................... 30 

3.5 Conclusions ..................................................................................................................................... 33 

Chapter 4 2D Multi Targets Detection and Tracking Algorithm ............................................................... 35 

4.1 Introduction ..................................................................................................................................... 35 

4.2 Target Detection .............................................................................................................................. 35 

4.2.1 Point Detection .................................................................................................................... 36 

4.2.2 Background Subtraction....................................................................................................... 36 

4.2.3 Segmentation ....................................................................................................................... 36 

4.2.4 Supervised Learning ............................................................................................................ 36 

4.3 Target Tracking ............................................................................................................................... 37 

4.3.1 Point Tracking ..................................................................................................................... 38 

4.3.2 Kernal Tracking ................................................................................................................... 38 

4.3.3 Sihouette Tracking ............................................................................................................... 38 

4.4 Our Approach .................................................................................................................................. 39 

4.4.1 Kalman Filter ....................................................................................................................... 39 

4.4.2 Multi Targets Detection and Tracking (MTDT) Algorithm ................................................. 41 

4.4.3 Result and Discussion .......................................................................................................... 44 

4.5 Conclusions ..................................................................................................................................... 45 



Contents 

 xii 

Chapter 5 3D Multi Targets Detection and Tracking Algorithm Using RGB-D Camera ........................ 46 

5.1 Introduction ..................................................................................................................................... 46 

5.2 Related Work .................................................................................................................................. 47 

5.3 Overview of Approach .................................................................................................................... 48 

5.3.1 Data Acquisition and Preprocessing .................................................................................... 49 

5.4 Model Representation ..................................................................................................................... 49 

5.4.1 Bayesian Model ................................................................................................................... 50 

5.4.2 Observation Likelihood ....................................................................................................... 50 

5.4.3 Motion Prior ......................................................................................................................... 51 

5.4.4 Observation Cues ................................................................................................................. 51 

5.4.5 Skeleton Tracking ................................................................................................................ 53 

5.4.6 Kalman Filter Tracking ........................................................................................................ 54 

5.5 Experimental Evaluation and Discussion ........................................................................................ 55 

5.5.2 Dataset ................................................................................................................................. 57 

5.5.3 Results.................................................................................................................................. 58 

5.6 Conclusions ..................................................................................................................................... 59 

Chapter 6 3D Visual Simultaneous Localisation and Mapping (SLAM) Using RGB-D Camera ............ 61 

6.1 Introduction ..................................................................................................................................... 61 

6.2 Localisation ..................................................................................................................................... 62 

6.2.1 Data Association .................................................................................................................. 62 

6.2.2 Motion Estimate ................................................................................................................... 63 

6.2.3 Evaluation of Localization ................................................................................................... 65 

6.3 SLAM Using RGB-D Camera ........................................................................................................ 65 

6.3.1 RGB-D Sensor ..................................................................................................................... 65 

6.3.2 Visual SLAM ....................................................................................................................... 66 

6.4 3D Visual SLAM Framework ......................................................................................................... 66 

6.4.1 Related work ........................................................................................................................ 66 

6.4.2 Proposed 3D Visual SLAM Framework .............................................................................. 67 

6.4.3 Front End Processing ........................................................................................................... 67 

6.4.4 Back End Processing ........................................................................................................... 70 

6.4.5 Experiment and Discussion.................................................................................................. 71 

6.5 Applications .................................................................................................................................... 73 

6.6 Conclusions ..................................................................................................................................... 73 

Chapter 7 Conclusions and Future Development ......................................................................................... 75 

7.1 Summary of Results ........................................................................................................................ 75 



Contents 

 xiii 

7.2 Limitations ...................................................................................................................................... 77 

7.3 Future development ......................................................................................................................... 77 

Bibliography ......................................................................................................................................................... 80 

Curriculum Vitae ................................................................................................................................................. 87 

APPENDICES ...................................................................................................................................................... 93 

A1 Human Body Detection from VDO File ................................................................................................. 94 

A2 2D Multi Targets Detection and Tracking Algorithm ........................................................................... 98 

B1 Classification Using Bag of Features .................................................................................................... 111 

B2 Bag-of-Features Algorithm for Category-Level Classification........................................................... 119 

B3 Detecting People on a Ground Plane with RGB-D Data ..................................................................... 128 

B4 Model Based People Tracking Using Simulink .................................................................................... 138 



xiv 

List of Figures 
 

Figure 2-1 Human Detection from MAS for Search and Rescue (a) Aerial view and (b) 
Closed look .......................................................................................................................... 10 

Figure 2-2 General Framework of Human Detection .......................................................... 11 

Figure 2-3 Micro Autonomous System (MAS) ................................................................... 15 

Figure 2-4 Two RGB-D cameras [44], [45] ......................................................................... 17 

Figure 2-5 Kinect Openup [50]. Infrared (IR) projector and IR sensor are shown with RGB 
camera .................................................................................................................................. 18 

Figure 3-1 Human Detection Flow Diagram ....................................................................... 23 

Figure 3-2 Feature Types used by Viola and Jones ............................................................. 24 

Figure 3-3 Boosting Process Algorithm .............................................................................. 27 

Figure 3-4 Image of bicycle and HOG features of bicycle .................................................. 29 

Figure 3-5 Upper Body Detection and Tracking ................................................................. 29 

Figure 3-6 Train Cascade Clasifier Block Diagram ............................................................. 30 

Figure 3-7 Upper Body Detection with False Positive ........................................................ 32 

Figure 3-8 Upper Body Detection Improvement ................................................................. 33 

Figure 4-1 Target Tracking Methods ................................................................................... 38 

Figure 4-2 Tracking Approaches ......................................................................................... 39 

Figure 4-3 Multi Tarkets Detection and Tracking (MTDT) Flow Diagram ........................ 41 

Figure 4-4 Top left (a), right (b), Below left (c) right (d) – Multi Targets Detection and 
Tracking Results .................................................................................................................. 43 

Figure 5-1 The 3D MTDT Framework ................................................................................ 49 

Figure 5-2 Image Acquisition (a) RGB camera (b) Depth camera ...................................... 49 

Figure 5-3 Detection results (a) without upperbody cue (b) with multiple cues .................. 57 

Figure 5-4 Kinect Setup in Office Environment .................................................................. 58 

Figure 5-5 Multiple Target Tracking (a) RGB camera (b) Depth camera ........................... 59 

Figure 6-1 Proposed 3D Visual SLAM Framework ............................................................ 67 

Figure 6-2 Standard ICP Algorithm ..................................................................................... 69 
 



xv 

List of Tables 
Table 3-1 Comparison of Algorithms .................................................................................. 29 

Table 3-2 Upper Body Detection Algorithm ....................................................................... 31 

Table 3-3 Upper Body Detection Results ............................................................................ 32 

Table 4-1 Target Detection Categories ................................................................................ 37 

Table 4-2 Avarage Processing Time .................................................................................... 44 

Table 4-3 Comparison of Algorithms .................................................................................. 44 

Table 4-4 Comparison of Algorithms .................................................................................. 45 

Table 6-1 Evaluation for 3D Visual SLAM of Freiburg1 datasets (SURF) ......................... 71 

Table 6-2 Evaluation for 3D Visual SLAM of Freiburg1 datasets (HOG-Man) ................. 72 

Table 6-3 Comparison of Algorithms by ATE (m) .............................................................. 72 

 



1 

Chapter 1 Introduction 

This thesis addresses a number of key issues that are needed to build an automatic 

system to detect and track multiple objects in images or videos stream, especially in real-time 

applications. This problem is difficult. Over the past few years many researchers have inten-

sively investigated this topic. Every solution given by the research community has solved 

only a particular part of the issue and most of them were not accurate enough. 

Large progress has been made in the vision science in detecting/tracking people. In surveil-

lance scenarios, or in specific scenarios such as Search and Rescue (SAR), the Micro Auton-

omous System (MAS) perception problem differently. When the platform is moving, objects 

are frequently occluded, or truncated by the field-of-view, and so there is a large scale varia-

tion. 

Object detection and tracking must take place in near real time.  Shaw [1] defined Real-time 

systems as computer systems that monitor, respond to, or control an external environment. 

This environment (often humans are part of it) is connected to the computer system through 

sensors, actuators, and other input-output interfaces. The computer system must meet various 

timing and other constraints, that are imposed on it by the real-time behavior of the external 

world, to which it is interfaced.  

A real-time computer system can be a component of a larger system in which it is embedded. 

Applications and examples of real-time systems are appearing as part of commercial, gov-

ernment, military, medical, educational systems and infrastructures. Included are vehicle sys-

tems for automobiles, process control for power plants, medical systems for radiation thera-

py, military uses such as tracking, command and control, or manufacturing systems with ro-

bots. 

This thesis describes a system for detecting and tracking people from image and depth sen-

sors data to cope with the challenges of MAS perception. The system combines detectors in a 

unified framework. It is efficient, and has the potential to incorporate multiple sensor inputs. 
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The performance of novel algorithms presented her provide competitive results and surpasses 

other approaches in many cases.  

1.1 Challenges for Computer Vision and Micro Autonomous Systems (MAS) 

People detection in RGB images is an active research area in computer vision and, in recent 

years, numerous approaches have been proposed. Among them, there are consolidated tech-

niques that recognise people really well. The ability includes scanning the whole frame and 

detecting if the image features inside the local search window meet certain criteria. 

One of these techniques use a Support Vector Machine (SVM) to create a robust classifier 

based on HOG features [2]. The drawback of this approach is that the performance can be 

easily affected by background clutter and occlusions and, usually cannot run in the real time. 

An exhaustive search needs to analyse thousands of windows to scan the whole image for 

example when we process pedestrians as objects. 

The use of 3D information given by the Kinect can limit the number of local searches in or-

der to maintain the robustness of the HOG-based classifier but at the same time drastically 

reduce the time spent analysing the scene. For this purpose, we need to subdivide the point 

cloud in clusters and project each cluster back to the image. At this point we can evaluate 

HOG features on all (or only some of) the resulting windows and decide whether they are 

people or not. 

Once a set of human detections for each frame is collected, we need a method to concatenate 

them over time to assign every detection to the correct track. Well known and heavily studied 

approaches that perform this operation are based on Bayesian estimators, like Kalman filters 

or particle filters. Both have pros and cons. Usually a particle filter is more precise and cor-

rect than a Kalman filter but it is also much more time consuming. On the other hand, there 

are a lot of different implementations of Kalman filters that, with respect to their relative 

simplicity, perform almost as well as a particle filter but are considerably less computational-

ly expensive [3]. 

In general, there are several factors that contribute to building a robust people detector and 

tracker for real time applications. They are summarised as below: 
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1.1.1 Detection 

• Image processing creates dependencies on viewpoint. A small change in the person 

position or orientation may change its appearance. Human appearance and pose 

change considerably between images. The same problem is with the differences in 

clothing. A robust detector must handle the issues of viewpoint and scale changes for 

these invariances and variations. 

• Background clutter is common and varies from image to image. For example, images 

can be taken in natural settings, or outdoor scenes in cities and indoor environments. 

A good detector must be able to distinguish objects from complex background re-

gions.  

• Object color and general illumination varies considerably. For example from direct 

sunlight and shadows during the day to artificial or dim lighting at night. A robust de-

tector must handle color changes and provide invariance to a broad range of illumina-

tion and lighting changes. 

• Partial occlusions create a difficulty in detection because only part of the object is vis-

ible for processing. 

1.1.2 Tracking 

Object tracking is an important task within the field of computer vision. There are three key 

steps in video analysis: detection of interesting moving objects, tracking of such objects from 

frame to frame, and analysis of object tracks to recognise their behavior. Therefore, the use of 

object tracking is pertinent in the tasks of: 

• motion-based recognition, that is, human identification based on gait, automatic ob-

ject detection, etc;  

• automated surveillance, i.e. monitoring a scene to detect suspicious activities or un-

likely events; 

• video indexing, that is, automatic annotation and retrieval of the videos in multimedia 

databases; 
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• human-computer interaction, namely, gesture recognition, eye gaze tracking for data 

input to computers, etc; 

• traffic monitoring, i.e. real-time gathering of traffic statistics to direct traffic flow ; 

and 

• vehicle navigation, that is, video-based path planning and obstacle avoidance capabili-

ties. 

In its simplest form, tracking can be defined as the problem of estimating the trajectory of an 

object in the image plane as it moves around a scene. In other words, a tracker assigns con-

sistent labels to the tracked objects in different frames of a video. Additionally, depending on 

the tracking domain, a tracker can also provide object-centric information, such as orienta-

tion, area, or the shape of an object. Tracking objects can be complex due to: 

• loss of information caused by projection of the 3D world on a 2D image, 

• noise in images, 

• complex object motion, 

• nonrigid or articulated nature of objects, 

• partial and full object occlusions, 

• complex object shapes, 

• scene illumination changes, and 

• real-time processing requirements. 

We can simplify tracking by imposing constraints on the motion, and/or appearance of ob-

jects. For example, almost all tracking algorithms assume that the object motion is smooth, 

with no abrupt changes. We can further constrain the object motion to be of constant velocity, 

or constant acceleration, based on priori information. Prior knowledge about the number and 

the size of objects, or the object appearance and shape, can also be used to simplify the prob-

lem. 
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Numerous approaches for object tracking have been proposed. These primarily differ from 

each other, based on the way they approach the following questions:  

• Which object representation is suitable for tracking?  

• Which image features should be used?  

• How should the motion, appearance, and shape of the object be modelled?  

The answers to these questions depend on the context/environment in which the tracking is 

performed, and the end use for which the tracking information is being sought. 

1.1.3 Other challenges 

Computer vision research in other areas, for example image processing and segmentation, has 

past its research peak. It is noticable that there have not been many revolutionary ideas, or 

breakthroughs, in the research in this field for the past decade, in contrast with the advance-

ment in new technologies, such as smart sensors, virtual reality gear and Micro Unmanned 

Aerial Vehicles (drone) applications. Researchers should engage in developing new algo-

rithms and techniques, in computer vision field, to accommodate for needs, by the use of new 

resources and capabilities. There is a high demand for new research and development in both 

commercial and military applications.  

An example is in the area of Micro Autonomnous Systems, which has captured a lot of atten-

tions from companies like Amazon, that plan to use “drones” to deliver packages directly to 

customers’ doors to reduce time by 30 minutes [4]. In the military world, a mobile robot, or 

quadrotor, can be used for indoor/outdoor navigation for search and rescue, border protection 

or other. The computer vision algorithms that runs onboard or offboard MAS will increase 

the robustness and efficiency in performing those tasks. 

1.2 Thesis proposal and objectives 

This thesis targets the problem of visual object detection and tracking, in images and videos, 

for real-time applications. In particular, it addresses the common issues and challenges such 

as noise in images, partial and full object occlusions, complex object shapes, scene illumina-

tion changes, real-time processing and others that were discussed in the previous section. Our 

main objectives can be summarised as follows: 
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• To develop computer vision algorithms that will be addressing the needs of real-time 

application for MAS. 

• To improve the robustness/precision of the current computer vision algorithms for de-

tecting and tracking people. 

• To accommodate for the use of RGB-D sensors data (image & video) input. 

• To investigate other suitable applications of the developed computer vision algo-

rithms. 

The work of robust computer vision algorithms for MAS will support growing interest from 

companies and public sectors to implement the technology in applications that suits their 

needs, whether it is in the sales industry, buiding and construction, or defence, security, or 

border protection. 

1.3 Thesis Contributions 

The main contributions to the science field of Artificial Inteligence and Image Processing 

for the applications in people detection and tracking include:  

• The thesis contains a survey of the most important methods in the research area of 

people detection and tracking, using image processing and vision, especially the use 

of new technologies like an RGB-D camera. 

• It contains a study and comparison of the most important foreground detection tech-

niques, and proposes an integral image based, fast and reliable foreground detection 

technique.  

• Identifies  research gap in computer vision algorithms for people detection and track-

ing 

• Provides a comparison of detection and tracking techniques. 

• Proposes a Human Body Detection (HBD) algorithm based on the Viola and Jones 

framework that has better detection rates and lower false positives. 
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• Introduces a new method of tracking moving people from monocular configuration by 

using the Gaussian Mixture Model and Kalman filter in the near real-time. 

• Introduces a novel 3D Multi Targets Detection and Tracking (MTDT) framework. 

The proposed framework speeds up the entire computing process and increases the ef-

ficiency of real-time tracking. 

• Proposes a visual SLAM framework using a keyframe-based approach that provided a 

competitive result. 

• Identifies the current and future applications of computer vision algorithms. 

1.4 Thesis Overview 

An overview of the challenges in computer vision, for the MAS applications in peo-

ple detection and tracking, is presented here. Overall goals and key contributions are high-

lighted.  

The thesis is organised into seven chapters. This Introduction is the first chapter. The second 

chapter contains a survey of the current human body detection science domain and camara 

calibration techniques. The following four chapters cover the most important components of 

people detection and tracking framework, which build up on a single human upper body de-

tection, people detection and tracking in traditional 2D space, followed by detection and 

tracking in 3D space for surveillance and navigation applications. The last chapter contains 

conclusions and the future research directions. 

• Chapter 2 describes the current level of development in human body detection. It focuses 

particularly on person detection from the MAS in Search and Rescue (SAR) operations. It 

provides a high level overview of frameworks from image acquisition and processing, seg-

mentation, classification and recognition. It identifies related work conducted in this field. 

The popular methods of the subject are also discussed. This chapter, aslo, presents an over-

view of the traditional camera calibration methods. It identifies the need for calibration of the 

Time of Flight (ToF) cameara (3D sensor, or Kinect).  It investigates the use of planar surface 

and a checker board pattern for the 3D camera calibration method for a depth and color cam-

era pair. 
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• Chapter 3 emphasises the human body detection methods. It describes that the task can be 

solved by one of the two approaches: the single detection window, or the parts-based model. 

Our proposed algorithm was built on the well known Viola and Jones framework. It added 

upgrading on the tracking method, by using chosen features set in the detection process, to 

further improve tracking of upper body. This contributed to the better processing of person 

detection and tracking task.  

• Chapter 4 includes a further enhancement of the previous chapter. Method applied does not 

detect and track only a single person in the screen, but deal with many people. The proposed 

algorithm used motion features to detect people in videos for near real time applications. The 

proposed algorithm consists of two main parts; the moving people detection, and tracking and 

detection of people over frames. The first part uses a background subtraction method, based 

on Gussian Mixture Models, while the second part uses a tracking method with use of Kal-

man filter for track estimation. 

• Chapter 5 takes multi targets (people) detection and tracking into the 3D space by using 

Kinect to capture depth images and videos. The proposed 3D Multi Targets Detection and 

Ttracking (MTDT) algorithm is based on the Bayesian model. The multi cues detectors in-

clude an upper body detector, face detector, skin colour detector, motion detector and shape 

detector. In the new tracking method, Kalman filter is employed and a better tracking man-

agement process is proposed, which includes initialising, updating, recovery and removal 

actions. 

• Chapter 6 describes an extension of the previous work, of 3D detection and tracking, into a 

visual navigation application. The proposed algorithm of a 3D Visual SLAM framework fo-

cuses on two parts: the frontend and backend processing, which we called a ‘Key Frame’ 

based approach. The frontend consists of a localisation steps performed by using of SURF 

and RANSAC, followed by a pose refinement and loop closing system. The backend focuses 

on post graph optimisation to reduce accumulated errors. At the end of this chapter, potential 

real-time applications are discussed in more details. 

• Chapter 7 summarises presented approach and the key results obtained, and provides a 

discussion of the advantages and limitations of the work. Finally, it also provides some sug-

gested directions for future research in this area. 
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Chapter 2 State of the Art 

2.1 Introduction 

Finding human victims in post-disaster scenarios is one of the primary goals of any search 

and rescue (SAR) operation. There has been significant progress in developing ground robots 

for SAR applications. However, most of these robots lack the mobility for autonomous explo-

ration of disaster sites. The recent development of lightweight and inexpensive Micro Auton-

omous Systems (MAS)s has led to the possibility to survey a disaster area from the air in or-

der to identify humans needing help [5], [6], [7], [8]. 

MASs are becoming commonly available for military and civil applications. They are able to 

perform highly complex missions while requiring minimal, or no human operation. MASs 

can perform a wide range of tasks such as surveillance, search and rescue in hard to reach 

places, or hostile environments. 

In a SAR mission, tasks can be tedious with camera coverage of a given area requiring preci-

sion, and the human operator action requires endurance. In the case of emergency situations, 

such as natural disasters, finding potential survivors who need medical attention is the most 

important task. SAR missions require high precision and long operation times. Due to the 

repetitive and accurate nature of the exercise, it is an ideal problem to be solved by computer 

based techniques [9]. Fig. 1 shows typical scenarios of human body detection using MAS. 

A MAS developed by Wzorek et al. [10] autonomously plans and executes complete missions 

from takeoff to landing. To reduce human involvement, and speed up the search process, im-

age data examination could be conducted by automated algorithms that analyse data in the 

real time, or it could be done post mission. The Rudol and Doherty [11] algorithm can identi-

fy, and geographically locate, places where human bodies can be found. These types of au-

tomated real time algorithms are required to achieve complex SAR tasks. 
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2.2 Computer Vision for MAS 

2.2.1 Human Detection 

Human body detection and localisation are important and challenging problems in computer 

vision.  Bahadori and Iocchi [12] classify human body detection into two sub problems, the 

physical appearance problem and the classification problem. Examples of physical problems 

are from self-occlusion, variation of clothing, and the ambiguities in the projection of a 3D 

human shape onto the 2D image plane. 

For the classification problem, the main issue is the classification of an object as as a human 

or non-human. Usually, an object classifier consists of an object representation, a model and 

a classifier [12, 13]. Object classification, by shape, is difficult for many reasons. Shapes of a 

class can be distorted by sensor noise or digitisation. They can differ due to varying view-

points (aspect). Parts of a shape can be occluded. Partially occluded shapes need to be classi-

fied correctly since the human body is an articulated object. Articulated objects have parts 

attached via joints that can move. In addition to that shapes can differ depending on age, race, 

and structure [14]. 

A review of the human body detection framework, including various methods and algorithms, 

is presented here.  Selected methodology involves image processing, segmentation, object 

classification and recognition.  Examples of well-known algorithms such as HOG and part-

based models are described.  Improvements of the algorithms by combining models and by 

introducing additional sensors will be assessed for their impact on SAR performance. 

 

 

 

 

Figure 2-1 Human Detection from MAS for Search and Rescue (a) Aerial view and (b) 

Closed look 
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2.2.1.1 Detection Method 

There are several methods to detect an object in an image frame. Human body detection can 

be addressed in three steps as shown in Figure 2-2. The first step is image segmentation. Ob-

jects are partitioned into a set, or cluster of connected pixels. The partitioned clusters are pre-

sented to image classification. Features are distinguished and classified from predefined clas-

ses for various parts of the human body. The feature set is provided for recognition. The clas-

sified features are composed in order to match a human body model. Classification and 

recognition can sometimes be combined into one step, such as used in the neural network 

algorithm [15], [16], [17]. Iterations through multiple images can be used to improve classifi-

cation of the body. 

 

 

 

 

 

 

 

 

Figure 2-2 General Framework of Human Detection 

2.2.1.2 Pre-Processing 

In computer vision, segmentation is the process of partitioning a digital image into multiple 

segments, such as sets of pixels. The goal of segmentation is to simplify and/or change the 

representation of an image into regions as a focus for further investigation. Image segmenta-

tion is typically used to locate objects and boundaries such as lines and curves. In computer 

vision terms, it is assigning a label to every pixel in an image, such that pixels with the same 

label share certain visual characteristics.  

The result of image segmentation is a set of segments that collectively cover the entire image, 

or a set of contours extracted from the image. Each of the pixels, in a region, is similar with 

respect to some characteristic, or computed property, such as colour, intensity, or texture. 
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Adjacent regions are different with respect to the same characteristics. The task of the seg-

mentation is to split the image into several regions based on colour, motion or texture infor-

mation. 

2.2.1.3 Classification 

Classification is determining whether or not the image data contains some specific object, 

feature, or activity. This task can be solved robustly and without effort by a human, but it is 

not satisfactorily solved in computer vision. It is an intrinsically difficult computer vision 

problem, for the general case random objects, in arbitrary situations. The methods used for 

dealing with this problem can solve specific object recognition, such as simple geometric 

objects, human faces, printed and hand-written characters, and vehicles in particular situa-

tions. They are typically described in terms of well-defined illumination, background and 

pose of the object relative to the camera.  

Classification is basically a pattern recognition problem of assigning an object to a class or a 

set of classes. Thus, the output of the recognition system is an integer label. The task of the 

classifier is to partition the feature space into class-labelled decision regions [18]. Examples 

of classifiers are: Bayes classifier, a nonparametric classifier which is using nearest neigh-

bours, and a normal class-conditional densities classifier. The latter classifier can be used to 

classify objects into classes, if the class-conditional densities are known to be normal. The 

equation 2.1 is shown below.  

Assume that we have N classes of objects and that k th class contains Nk examples, of which 

the i th is written as Xk,i. For each class k, we can estimate the mean, 𝜇𝑘, and standard devia-

tion, ∑k for that class-conditional density, as given by equations (2.1) and (2.2). 

𝜇𝑘 = 1
𝑁𝑘
∑ 𝑿𝑘, 𝑒𝑁𝑘
𝑖=𝑙    (2.1) 

∑ k = 1
𝑁𝑘−1 

� (𝑿𝑘, 𝑒 − 𝜇𝑘)(𝑿𝑘, 𝑒 − 𝜇𝑘)𝑇𝑁𝑘
𝑖=𝑙    (2.2) 

To classify an example 𝑿, choose the class k with the smallest value of 

δ(𝑿; 𝜇𝑘,∑ k )2 −  Ρ𝑒{𝑘} +  1
2

log |∑ k |    (2.3) 

where 
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δ(𝑿; 𝜇𝑘,∑ k ) =  1
2

 [(𝑿 − 𝜇𝑘)T  ∑ (𝑿 − 𝜇𝑘)](12) −1
k    (2.4) 

Ρ𝑒{𝑘}  is called Class Conditional Densities. The term δ(𝑿; 𝜇𝑘,∑ k ) in equations (2.3) and 

(2.4) is known as the Mahalanobis distance. The algorithm can be interpreted geometrically, 

as the correct class is the one whose mean is closest to the data item, taking into account the 

variance [19]. 

2.2.1.4 Recognition 

Recognition is the process of joining and reconstruction, of the detected part, to find the posi-

tion of the body. In the human body detection method there is a straight interaction between 

the method of classification and modelling [20]. Different varieties of the recognition prob-

lem are, object recognition and identification. 

There are several methods to detect body composition. Problem of determining similarity of 

two shapes has been studied in several fields. The design of a similarity measure depends on 

how a shape is represented. Common categories of these methods are global shape descrip-

tion, point based similarity and part based representation [12]. The global shape description, 

and point based similarity, are very sensitive to noise and occlusion, while the part based rep-

resentation has been proven to handle articulation and occlusion more effectively. 

2.2.2 Histogram of Oriented Gradiants (HOG) 

One of the classification models for people detection is the use of HOG detector [21]. In this 

model, histograms of image gradients are calculated and normalised in a local and overlap-

ping block scheme. This is then concatenated to a single descriptor of a detection window, 

which is densely scanned over all scales and locations in a test image. 

The HOG is a powerful classifier. It enables high levels of performance for object detection 

in cluttered scenes, e.g., pedestrian detection in street scenes [22]. We can employ HOG to 

learn a robust outer shape. It is robust to illumination changes and to small variations in 

viewpoint. However, in the presence of high variability in articulation and partial occlusion, 

HOG often fails because the model cannot recover from distorted descriptors. It is doubtful 

how these models could be generalised to the more challenging search and rescue scenarios. 
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2.2.3 Part-based Model 

This model gives the flexibility to deal with highly varying body poses. A part-based model 

refers to a broad class of detection algorithms used on images. Various parts of the image are 

used separately in order to determine if, and where, an object of interest exists. Amongst the-

se methods, one refers to the scheme that seeks to detect a small number of features and their 

relative positions, and then determines whether or not the object of interest is present. 

Fischler and Elschlager’s part-based model used the relative position of a few template 

matches [23]. Perona and Zisserman’s faces detection model usses smaller part detectors, 

including mouth, nose and eye detectors. It combines them using relative positions to make a 

judgment about whether an image has a face [24].  

There are several part-based models to handle articulation. They vary in their level of detail-

ing. In particular 2D and 3D part-based models should be distinguished. The 2D disadvantage 

is that it is hard for models to deal with shape variations due to different viewpoints. With 3D 

model it is possible to match the model directly against 3D data [25]. This 3D method re-

quires searching through a high dimensional pose parameter space, for 3D pose recovery, at a 

higher cost.  In a search and rescue mission, when the data flow is in real-time, these methods 

may not be practical. 

2.3 Related work 

A lot of literature is available on human body detection using other types of sensors such as 

laser range finders and thermal cameras. Many mobile robotic systems are equipped with 

laser range finders. Researchers have used them for human detection and tracking [26], [27], 

[28], [29], [30]. The complementarities between visual and laser based detectors have been 

explored by Gate et al. [31], where a laser range finder is used both to extract regions of in-

terest, in camera images, and to improve the confidence of a part-based visual detector. 

Thermal images have also been extensively used for human detection. They are used for spe-

cifically designed methods [32], [33] or direct applications, such as human detection in day-

light images [34]. Complementary information approach, coming from different types of sen-

sors, was recently proposed in the context of autonomous victim detection [11], [35]. The 

work of Rudol and Doherty addresses victim detection from MASs. The authors propose to 

utilise a thermal camera to pre-filter image locations and subsequently verify them using a 
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visual object detector. Humans lying on the ground are assumed to be in upright poses and 

the search is restricted to image locations that are likely to contain humans without thermal 

imaging. Andriluka et al.[8] addresses the complex problem of detecting arbitrarily articulat-

ed people.  

Combining multiple sensors for people detection is clearly beneficial in many scenarios. 

However, it comes at the high cost of an increased payload.  The proposed research therefore, 

aims to evaluate and push state of the art technology in human body detection, to optimise the 

performance outcomes for this complex task. 

2.4 System Overview 

Typical platforms used for experiments are quadrotor helicopters Figure 2-3. These kinds of 

vehicles are able to take off and land vertically and can hover at a fixed position [36]. The 

quadrotor is often used as a flying platform for search and rescue missions. The propulsion 

system, which is using four independently controlled motors and propellers, allows the car-

riage of comparatively heavy payloads. The typical quadrotor can carry up to a 500g of pay-

load, consisting of cameras and other sensors. The total MAS weight is approximately 1200g 

including the controller system and batteries for an endurance of 20 minutes. It can be easily 

deployed in outdoor missions and indoor scenarios. 

 

 

 

 

Figure 2-3 Micro Autonomous System (MAS) 

2.4.1.1 Additional Sensors 

Due to the instability of a quadrotor, the vehicle’s attitude and velocity has to be controlled 

permanently. Therefore it is equipped with a 3-axis inertial sensor and magnetometer, a pres-

sure sensor, a GPS receiver, and an ultrasonic ranger to measure the distance to the ground. 

The sensor information is fused, using an extended Kalman filter, and so deriving an integrat-

ed navigation solution [37]. The onboard computer executes navigation, flight control, high-
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level mission control and communication tasks. It interfaces the sensor board using a real-

time enabled Ethernet link. 

For image acquisition a camera is mounted onto the quadrotor, which can transmit video im-

ages to the ground stations, using the wireless network. The intrinsic camera parameters can 

be calibrated using a publicly available calibration toolkit [38]. The extrinsic parameters rela-

tive to the ground plane are estimated, using the height on an altitude, provided by the MAS 

integrated navigation solution [37]. 

2.4.1.2 Thermal Camera 

The benefit of using thermal cameras is in the clear images it captures in the darkest of 

nights, in light fog and smoke, and in the most diverse weather conditions. Researchers are 

interested in thermal imaging for all kinds of applications, including search and rescue opera-

tions. Compared with standard optical images, thermal imaging cameras offer a clear ad-

vantage for night time video surveillance.  Thermal camers system is robust in terms of light 

changes in the day time [39].  Mid and far infrared thermal cameras rely on heat sources and 

do not depend on the illumination. The output is the projection of thermal sensors, from the 

emission of heat, emited from the object. This unique feature can offer effective segmentation 

of objects. 

2.4.1.3 Image Fusion 

This technique could be applied when two or more sensors are used. Image fusion is the pro-

cess by which two or more images are combined into a single image, retaining the important 

features from each original image. The fusion of images is often required for images acquired 

from different instrument models, or capture techniques, of the same scene or object. The 

integrated image encompasses more information than any of the individual input images. The 

benefits of image fusion include its extended range of operation, increased spatial, temporal 

resolution and coverage. It reduces uncertainty, provides higher accuracy, reliability and 

compact representation. 

2.4.1.4 RGB-D Camera 

The new trend in boosting the performance of human body detection algorithms is the use of 

an RGB-D camera. The camera’s sensing systems capture RGB images, along with per pixel 

depth information. RGB-D cameras rely on either active stereo [40], [41], or time-of-flight 
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sensing [42] to generate depth estimates at a large number of pixels . Figure 2-4 shows exam-

ples of RGB-D cameras in use today. 

Depth imaging has advanced dramatically over the last few years. Pixels in a depth image 

indicate calibrated depth in the scene, rather than a measure of intensity, or colour, as in col-

our or thermal cameras applications. Shotton et al. [43] enabled the camera to give a 640 x 

480 image, at 30 frames per second, with depth resolution of a few centimetres. Depth cam-

eras offer several advantages over traditional intensity sensors, including working in low light 

levels, giving a calibrated scale estimate, being colour and texture invariant, and resolving 

silhouette ambiguities in pose. They also greatly simplify the task of background subtraction. 

But most importantly, it is straightforward to synthesise realistic depth images of humans and 

thus build a large training dataset at reduced computational cost. 

 

 

 

 

 

Figure 2-4 Two RGB-D cameras [44], [45] 

2.5 Camera Calibration 

Colour camera calibration has been studied extensively over the past decades [46], [47]. For 

depth sensors, different calibration methods have been developed depending on the employed 

technology. From the same viewpoint, ToF cameras simultaneously produce an intensity and 

a depth image. It simplifies calibration process because colour discontinuities can be accu-

rately localised [48]. Most structured light systems, for example the Kinect, use an infrared 

camera to detect a projected dot pattern. However, it returns a processed image that is not 

aligned with the original infrared image. There is a need to calibrate Kinect due to the com-

plicated geometric distortions observed [49].  

The well knowned calibrations algorithms are based on infared (IR) and RGB images of 

chessboard patterns, using the Calibration Matlab toolbox provided by Herrera C. et al. [49]. 
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A Kinect driver provides default camera models with reasonably accurate focal lengths. It is 

relating 3D points to 2D image coordinates, and does not model lens distortion. However, the 

Kinect uses low-distortion lenses and therefore, the edges of the image are not displaced by 

more than a few pixels.  

 

 

 

 

Figure 2-5 Kinect Openup [50]. Infrared (IR) projector and IR sensor are shown with RGB 
camera  

The planar checkerboard pattern was used for calibration, which can be constructed from any 

readily available planar surface, like flat table or wall. All cameras take an image from multi-

ple views of the calibration plane. The checkerboard corners provide suitable constraints for 

colour images, while the planarity of the points provides constraints on the depth images. The 

pixels at the borders of the calibration object can be ignored and thus depth discontinuities 

are not needed. 

2.5.1 Calibration Model 

The algorithm of [49] use a similar intrinsic model as shown in [46], which consists of a pin-

hole model with radial and tangential distortion correction. The projection of a point from  

 colour camera coordinates  𝑥𝑐 =  [𝑥𝑐 ,𝑦𝑐  , 𝑧𝑐]Τ to  

 colour image coordinates   𝑝𝑐 =  [𝑢𝑐  , 𝑣𝑐]Τ  

is obtained through the following equations (2.5 to 2.7). The point is first normalised by  

𝑥𝑛 =  [𝑥𝑛 ,𝑦𝑛]Τ  =   [𝑥𝑐/𝑧𝑐 ,𝑦𝑐/𝑧𝑐]Τ 

Distortion is then performed: 

𝑥𝑔 =  �2𝑘3𝑥𝑛𝑦𝑛 +  𝑘4(𝑒2 + 2𝑥𝑛2)
𝑘3(𝑒2 + 2𝑦𝑛2) + 2𝑘4𝑥𝑛𝑦𝑛

� (2.5) 

𝑥𝑘 =  (1 +  𝑘1𝑒2 + 𝑘2𝑒4 + 𝑘5𝑒6)𝑥𝑛 +  𝑥𝑔 (2.6) 
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 where 𝑒2 = 𝑥𝑛2 + 𝑦𝑛2 and  𝑘𝑐 = [𝑘1, … ,𝑘5] is a vector containing the distortion coeffi-

cients.  

 Finally, the image coordinates are obtained as given by equation (2.7): 

�
𝑢𝑐
𝑣𝑐� =  �

𝑓𝑐𝑥 0
0 𝑓𝑐𝑦

�  �
𝑥𝑘
𝑦𝑘� + �

𝑢0𝑐
𝑣0𝑐� (2.7) 

 where 𝑓𝑐 =  �𝑓𝑐𝑥 ,𝑓𝑐𝑦� are the focal lengths and  

  𝑃0𝑐 = [𝑢0𝑐 , 𝑣0𝑐] is the principal point.  

The same model applies to the colour and external cameras. The model for each camera is 

described by  

𝐿𝑐 =  {𝑓𝑐 ,𝑝𝑜𝑐 ,𝑘𝑐}      (2.8) 

2.6 Modern Researches 

Munaro et al. [51] proposed a fast and robust multi-people tracking algorithm for mobile plat-

forms equipped with a RGB-D sensor. Their approach features a novel depth-based sub-

clustering method explicitly designed for detecting people within groups or near the back-

ground and a joint likelihood (motion, colour appearance, and people detection confidence) 

for limiting drifts and ID switchs. An online learned appearance classifier, used robustly, spe-

cialises on a track, while using the other detections as negative examples. More modern re-

searches and our presented algorithms are described in Appendix B. 

2.7 Conclusions 

A review of human body detection methods, for MAS search and rescue applications, was 

presented here. The typical method consists of three steps: image processing, classification 

and recognition. The part-based model algorithm is popular for its ability to handle occlusion. 

Popular platform used for SAR is based on the quadrotor type MAS, with added sensors such 

as a laser range finder, thermal camera, GPS receiver and more. An inertial sensor is general-

ly used in MAS, for stabilisation and performances improvments. 

Other types of sensors are used for recognition process optimisation.  The benefits are real-

ised when operating in various environmental conditions.The RGB-D camera is the newest 



State of the Art 

 20 

sensor type that is becoming available to researchers at a consumer price. The depth infor-

mation from the camera is available without the need to perform the extra steps in a typical 

human body detection algorithm.  

The image fusion process is useful for combining and extracting image data in a human body 

detection algorithm. Image fusion is one of the prominent research strategies that can handle 

different types of data from multiple sensors. The availability of these types of sensors, at  

low cost, points to a promising future for researchers. Our research aim is to improve human 

body detection algorithms at less computational cost and to maintain most of the features in 

it. The future research will focus on the development of the optimal hardware and software 

algorithms for applications with the selected MAS platform. 

The calibration algorithm of [49] was proposed for a depth and colour camera pair, that is 

optimal in the sense of the postulated principles. The algorithm takes into account colour and 

depth features simultaneously to improve calibration of the camera pair system as a whole. It 

requires only a planar surface and a simple checkerboard pattern. The calibration result was 

better than that provided by the manufacturer. The disparity distortion correction model con-

siderably improved reconstruction accuracy.  

2.8 Applications 

Investigation conducted was focused on the detection and tracking of fully visible people in 

more or less upright poses. Person detectors were also being explored for the detection of 

pedestrians by smart cars. Typically, data from multiple sensors, such as stereos and infra-red 

cameras, are fused.  Domain specific knowledge is exploited, such as the fact that pedestrians 

often traverse cross walks. However, current performances are still far below that needed for 

such systems, to be used in the real world applications. A robust people detector would help 

to improve the overall system performance. Another application is in video surveillance and 

security, where real-time systems are needed to analyse and process video sequences for in-

trusion detection sensors.  
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Chapter 3 Human Body Detection from 

Video File 

3.1 Introduction 

Human body detection is the next step after the development of successful face detection al-

gorithms. Humans have been proven to be difficult objects to detect, because of the wide va-

riety in appearances due to articulation, clothing and illumination conditions that are common 

to outdoor scenes. 

A lot of research work was done in recent years on human detection. Previous methods differ 

in three perspectives: 

1. Use of different features such as edge, haar features and gradient orientation features;  

2. Use of different classifiers such as Nearest Neighbor, Neural Network, Support Vector 

Machine (SVM) and Adaboost;  

3. Treating the image region as a whole, or detecting each part first, and then combining 

them in geometric configurations. [52]. 

 

In most approaches, human body detection goes through two stages: segmentation of the 

moving target, and classification of the human body. In the segmentation stage, the optical 

flow method, and difference method, are often used. For classification, popular methods in-

clude template match, feature characterisation, cluster analysis, and machine learning ap-

proaches using various techniques such as support vector machine, Adaboost, and neural 

networks [53]. 

Detection of moving human bodies from live videos, especially from videos taken by a mov-

ing camera, is not a trivial task. There appear to be two leading approaches. One method uses 

a single detection window analysis, while the other uses a parts-based approach. Within each 
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method, different authors offer various features and different classifiers to handle the problem 

[54]. 

3.2 Related work 

The single-detection-window approach of Papgeorgiou and Poggio [54] uses a Haar-based 

representation, combined with a polynomial SVM. The work of Gavrila and Philomin [55] 

compare edge images to an exemplar dataset using the chamfer distance. Dalal and Triggs 

[56] use the single window approach with a dense HOG representation that was successfully 

applied for object representation [57]. Viola et al. [58] extended their Haar-like wavelets to 

handle space-time information for moving-human detection.  

Others have taken a parts-based approach that aims to deal with the great variability in human 

appearance, due to body articulation. In this approach, each part is detected separately, and a 

human is detected if some, or all of its parts, are presented in a geometrically plausible con-

figuration. Felzenswalb and Huttenlocher [59] use a pictorial structure approach, where an 

object is described by the connection of its parts, and each part is represented by Gaussian 

derivative filters, of different scale and orientation. Ioffe and Forsyth [60] represent parts as 

projections of straight cylinders and propose efficient ways to incrementally assemble these 

segments into a full body assembly. Mikolajczyk et al. [61] represent parts as co-occurrences 

of local orientation features. The system proceeds by detecting features, then parts and even-

tually humans are detected based on the assembly of parts. 

Viola et al. [58] developed a framework for detecting humans in a surveillance environment. 

The environment assumes that people to be detected are a very small group and usually have 

a clear background (road, wall, etc.). In this scenario the detection performance greatly relies 

on the available motion information.  

We chose to work on enhancing the Viola and Jones framework [62]. For our application, we 

need to concentrate on real-time; therefore the frame to frame processing time is crucial. The 

speed of the approach taken by Viola and Jones is its strong point. Our enhancement aims to 

address some of the drawbacks from their work, which are sensitivity to noise, poor perfor-

mance with complex backgrounds and limits on scale and rotation. The following sections 

provide an explanation and the experimental results of our work. 
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3.3 Human Detection Method 

3.3.1 Algorithm Overview 

The success of the Viola-Jones detector illustrated the feasibility of real-time face detection. 

Their key to success is the simple and fast-to-compute set of features. They use a machine 

meta learning algorithm that could perform the computationally complex task of learning 

offline, as shown in Fig.1. The learning algorithm is called Adaboost [63]. The sacrifice at 

the feature level, applied here, can make the detector more sensitive to noise [64].  

 

 

 

 

 

Figure 3-1 Human Detection Flow Diagram 

3.3.2 Segmentation 

In computer vision, segmentation is the process of partitioning a digital image into multiple 

segments, or sets of pixels. The goal is to simplify, i.e. change the representation of an image 

into regions as a focus for further investigation. Image segmentation is typically used to lo-

cate objects and boundaries such as lines and curves. 

The result of image segmentation is a set of segments that collectively cover the entire image, 

or a set of contours extracted from the image. The set of pixels, in a region, are similar with 

respect to some characteristic, or computed property, such as colour, intensity, or texture.  

Adjacent regions are different with respect to the same characteristics.  The task of the seg-

mentation is to split the image into several regions based on colour, motion or texture infor-

mation [65].  

3.3.3 Feature Extraction 

Feature extraction is a type of dimensionality reduction that efficiently represents interesting 

parts of an image as a compact feature vector [66]. This approach is used when image sizes 
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Sequence Classifier Result 

Offline Training 

Detection 



Human Body Detection from Video File 

 24 

are large and a reduced feature representation is required to quickly complete tasks such as 

image matching and retrieval. Feature detection, feature extraction, and matching, are often 

combined to solve common computer vision problems, such as object detection and recogni-

tion, content-based image retrieval, face detection and recognition, and texture classification.  

Common feature extraction techniques include HOG, Speeded Up Robust Features (SURF), 

Local Binary Patterns (LBP), Haar wavelets, and color histograms. 

The Viola–Jones [62] object detection framework is the first object detection framework to 

provide competitive object detection rates in real-time. It was proposed in 2001 by Paul Viola 

and Michael Jones. Although it can be trained to detect a variety of object classes, it was mo-

tivated primarily by the problem of face detection. This algorithm is implemented in OpenCV 

[67]. 

The features employed by the detection framework involve the sums of image pixels within 

rectangular areas. As such, they are similar to the Haar basis functions, which have been used 

previously in the realm of image-based object detection. However, since the features used by 

Viola and Jones all rely on more than one rectangular area, they are generally more complex. 

Figure 3-2 illustrates the four different types of features used in the framework. The value of 

any given feature is always simply the sum of the pixels, within clear rectangles, subtracted 

from the sum of the pixels within shaded rectangles. 

 

 

 

 

 

Figure 3-2 Feature Types used by Viola and Jones 

3.3.4 Training 

One strategy to get a better classifier is to combine multiple classifiers. A natural approach is 

to train a classifier on a dataset, train a new classifier, and weigh each example to train the 

new classifier to get examples right. If the previous classifier was wrong; repeat this number 
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of times. The final result is a weighted combination of the outputs of all these classifiers. This 

general process is called boosting. Algorithm is presented in Figure 3-3. 

Boosting provides quite successful classifiers. The process can continue after the training 

error rate falls to zero.  The number of boosting rounds is usually chosen with a validation set 

(one continues to boost until the error on the validation set rises). 

3.3.5 Classification 

Classification is determining whether or not the image data contains some specific object, 

feature, or activity. This task can be solved robustly and without effort by a human, but it is 

not satisfactory. It is a difficult computer vision task. Methods, used for dealing with this 

problem, can solve specific objects recognition, such as simple geometric objects, human 

faces, printed, hand-written characters, and vehicles in particular situations. They are typical-

ly described in terms of well-defined illumination, background and pose of the object relative 

to the camera.  

Classification is basically a pattern recognition problem of assigning an object to a class, or a 

set of classes. Thus the output of the recognition system can be an integer label. The task of 

the classifier is to partition the feature space into class-labelled decision regions [65]. 

3.3.6 Viola and Jones Framework 

3.3.6.1 Integral Image 

Viola and Jones use features that are composed of sums of the images (I) within boxes β(I). 

Sums are weighted by 1 or -1, and then added together. This yields to the form: 

∑  𝛿𝑘 𝛽𝑘(𝐼)𝑘   (3.1) 

where 𝛿𝑖 ∈  {1,−1} and 

𝛽𝑘(𝐼)  =  ∑ ∑ 𝐼𝑖𝑗
𝑣2(𝑘)
𝑗−𝑣1(𝑘)

𝑢2(𝑘)
𝑖−𝑢1(𝑘)  (3.2) 

Such features are extremely fast to evaluate with a device called an integral image, labelled as 

𝑰�.  The integral image is formed from the images Iij. as shown in Eq. (3.3) 

𝐼𝑒𝑗 =  ∑ ∑ 𝐼𝑢𝑣
𝑗
𝑣−1

𝑖
𝑢−1  (3.3) 

where u and v refer to pixel values of an integral image. 
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This means that any sum within a box can be evaluated with four queries to the integral im-

age. It is easy to check that 

∑ ∑ 𝐼𝑖𝑗
𝑗
𝑣−1

𝑖
𝑢−1  =  𝐼𝑢2𝑣2 −  𝐼𝑢1𝑣2 − 𝐼𝑢2𝑣1 −  𝐼𝑢1𝑣1 (3.4) 

This means that any of the features can be evaluated by a set of integral image queries [60]. 

3.3.6.2 Features 

The Viola and Jones object detection procedure classifies images based on the value of sim-

ple features. The most common reason of using features rather than the pixels directly is that, 

features can act to encode ad-hoc domain knowledge that is difficult to learn using a finite 

quantity of training data. Rectangle features, while sensitive to the presence of edges, bars, 

and other simple image structure, are quite coarse. The set of rectangle features provide a rich 

image representation which supports effective learning. In conjunction with the integral im-

age, the efficiency of the rectangle feature set provides ample compensation for their limited 

flexibility. 

3.3.6.3 Learning and Classification 

Given a feature set and a training set of positive and negative images, any number of machine 

learning approaches could be used to learn a classification function. In this system a variant 

of AdaBoost is used both to select a small set of features and train the classifier [2]. In its 

original form, the AdaBoost learning algorithm is used to boost the classification perfor-

mance of a simple or sometimes called weak learning algorithm. 

It must be recalled that there are over 180,000 rectangle features associated with each image 

sub-window, a number far larger than the number of pixels. A very small number of these 

features can be combined to form an effective classifier. The main challenge is to find these 

features. The weak learning algorithm is designed to select the single rectangle feature which 

best separates the positive and negative examples. For each feature, the weak learner deter-

mines the optimal threshold classification function, such that the minimum number of exam-

ples is misclassified.  

A weak classifier ℎ𝑗(𝑥), given by equation (3.5), consists of a feature 𝑓𝑗, a threshold 𝜃𝑗 and a 

polarity 𝑝𝑗 j indicating the direction of the inequality sign: 
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ℎ𝑗(𝑥) =  �1 if 𝑝𝑗𝑓𝑗  (𝑥) <  𝑝𝑗𝜃𝑗 
0 otherwise

� (3.5) 

where 𝑥 is a 24 x 24 pixel sub-window of an image.  

Figure 3-3 993shows the summary of the boosting process. Features which are selected in the 
early rounds of the boosting process had error rates between 0.1 and 0.3. Features selected in 
later rounds, as the task becomes more difficult, yield error rates between 0.4 and 0.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3 Boosting Process Algorithm 

Given example image (𝑥1,𝑦1), … , (𝑥𝑛𝑦𝑛) where 𝑦𝑖 = 0, 1 for negative and 
positive example. 

Initialise weights 𝑤1,𝑖 =  1
2𝑚

, 1
2𝑙

  for 𝑦𝑖 = 0, 1 where m and l are the num-
ber of negatives and positives, respectively. 

For t = 1,…,T: 

1. Normalise the weights, 𝑤𝑡,𝑖 ←  𝑤𝑡,𝑖
∑ 𝑤𝑡,𝑗
𝑛
𝑗=1

 so that 𝑤𝑡 is a probability 

distribution function. 

2. For each feature j, train a classifier ℎ𝑗which is restricted to using a 
single feature. The error is evaluated with respect to 𝑤𝑡,∈𝑗  =
 ∑ 𝑤𝑖�ℎ𝑗(𝑥𝑖 −  𝑦𝑖)�𝑖 . 

3. Choose the classifier, ℎ𝑡, with the lowest error ∈𝑡. 

4. Update the weights, 𝑤𝑡+1,𝑖 =  𝑤𝑡,𝑖𝛽𝑡
1−𝑒𝑖  

Where 𝑒𝑖 = 0 if example 𝑥𝑖 is classified correctly, 𝑒𝑖 = 1 other-
wise,  

and 𝛽𝑡 =  𝑒𝑡
1− 𝑒𝑡

 

5. The final strong classifier 

is ℎ(𝑥) =  �1 ∑ 𝛼𝑡ℎ𝑡(𝑥) ≥  1
2

 ∑ 𝛼𝑡𝑇
𝑡=1

𝑇
𝑡=0

0 𝑜𝑜ℎ𝑒𝑒𝑤𝑒𝑒𝑒
� 

Where 𝛼𝑡 =  log 1
𝛽𝑡

 

end 
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3.3.6.4 The Cascade Classifier 

The boosted classifiers, which will reject many of the negative sub-windows, while detecting 

almost all positive instances can be constructed. In other words, the threshold of a boosted 

classifier can be adjusted so that the false negative rate is close to zero. Simpler classifiers are 

used to reject the majority of subwindows before more complex classifiers are called upon to 

achieve low false positive rates. 

The overall form of the detection process is that of a degenerate decision tree, which is what 

we call a “cascade”. A positive result from the first classifier triggers the evaluation of a se-

cond classifier which has also been adjusted to achieve very high detection rates. A positive 

result from the second classifier triggers a third classifier, and so on. A negative outcome at 

any point leads to the immediate rejection of the sub-window. 

Stages in the cascade are constructed by training classifiers using AdaBoost and then adjust-

ing the threshold to minimise false negatives. Note that the default AdaBoost threshold is 

designed to yield a low error rate on the training data. In general a lower threshold yields 

higher detection rates and higher false positive rates. 

3.4 Result and Disscussion 

3.4.1 Dataset and Methodology 

The system supports three types of features: Haar, Local Binary Patterns (LBP), and HOG. 

Historically, Haar and LBP features have been used for detecting faces. They work well for 

representing fine-scale textures. The HOG features have been used for detecting objects such 

as people and cars. They are useful for capturing the overall shape of an object. For example,  

Figure 3-4 visualises the HOG features and the outline of the bicycle. 

We have tested our algorithm on a public dataset PETS [68]. The sequence from the PETS 

datatset is composed of 3,400 images (size 720 x 576 pixels). Table 3-1 provide a comparison 

of human body detection algorithms based on the HOG. 
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Figure 3-4 Image of bicycle and HOG features of bicycle 

To quantify the human body detection performance, true positives (TP), false positives (FP), 

and false negatives (FN) are counted in each frame. Based on the counts, Recall (true positive 

rate) and Precision are compared as shown below: 

Recall (%) = 𝑇𝑃
𝑇𝑃+𝐹𝑁

  , Precision (%) = 𝑇𝑃
𝑇𝑃+𝐹𝑃

 (2.6) 

Table 3-1 Comparison of Algorithms 

Detector Recall (%) Precision (%) Avg time per frame (s) 
HOG+latent SVM [16] 64.1 95.3 1.2 
HOG+ Adaboost [17] 49.8 89.2 2.4 
HOG+linear SVM [18] 70.7 98.5 0.1 

 

In our experiment, we have created a simpler upper body tracking system that automatically 

detects and tracks the single upper body. The result was competitive to that provided in Table 

3.1. Object detection and tracking are important in many computer vision applications includ-

ing activity recognition, automotive safety, surveillance and autonomous driving. 

In our upper body tracking system, the complex tracking task is divided into three separate 

problems, as shown in Figure 3-5.  They are: Detect, Identify and Track upper body. 

 

 

Figure 3-5 Upper Body Detection and Tracking 

3.4.2 Detect upper body to track 

Before beginning tracking a body, we need to detect it. We used the cascade object detector 

to identify the location of an upper body in a video frame. This detector uses the Viola and 

Detect Upper 
Body 

Identify Upper 
Body 

Track Upper 
Body 
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Jones detection algorithm and a trained classification model for detection (refer to Figure 

3-6). We try to track an upper body across successive video frames. Head movements could 

cause a loss of tracking. This limitation is due to the type of trained classification model used 

for detection. Performing face detection for every video frame is computationally intensive 

task. To avoid this issue, we use a simple feature for tracking. 

 

 

 

 

 

 

 

 

Figure 3-6 Train Cascade Clasifier Block Diagram  

3.4.3 Identify feature to track 

Once the upper body is located in the video, we need to identify a feature that will help us to 

track it. For example, we can use the shape, texture, or colour. The feature that needs to be 

chosen, has to be unique to the object and remains invariant, even when the object moves. In 

this work, we use skin tone as the feature to track. The skin tone provides a good deal of con-

trast between the upper body and the background, and does not change when the face rotates, 

or moves. It depends on environmental light conditions.  

3.4.4 Track the upper body 

With the skin tone selected as the feature to track, we can use a Histogram Based Tracker for 

tracking, providing the capability to track an object using a histogram of pixel values. In this 

experiment, the Hue channel pixels are extracted from the region of the detected upper body. 

These pixels are used to initialise the histogram for the tracker. It tracks the object over suc-

cessive video frames using this histogram. The algorithm for upper body detection is shown 

in the Table 3-2. (refer to Appendix A for detailed description of algorithm). It is noted that 
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the method sometimes produces a false positive. In Figure 3-7 two upper bodies were found. 

One, from the right hand size on the photo, is false positive. The second one is the correct 

detected upper body. 

Many factors, such as file size, may have an impact on the result. The algorithm needs to be 

configured according to the design requirements, such as, what should be detected, video or 

image size, image type, or light. For example, when were changed the video file for the 

smaller size of human images, we noticed poor tracking results. Hue channel data has to be 

adjusted for sufficient contrast between the upper body region and the background. 

Table 3-2 Upper Body Detection Algorithm 

Detect upper body 
Create a cascade detector object. 
Read a video frame and run the detector. 
Draw the returned bounding box around the detected upper body. 
Identify upper body features to track 
Get the upper body information by extracting the Hue from the video frame. 
Convert to the Hue, Saturation and Value (HSV) colour space. 
Display the Hue Channel data and draw the bounding box around the upper body. 
Detect the upper body within the region. 
Track upper body 
Create a tracker object. 
Initialise the tracker histogram using the Hue channel pixels. 
Create a video player object for displaying video frames. 
Track the upper body over successive video frames until the video is finished. 
Extract the next video frame. 
Track using the Hue channel data. 
Insert a bounding box around the object being tracked. 
Display the annotated video frame using the video player object. 

 

Adjusting the size of the detector has improved results. The size of detector was too small for 

the original file size of 720 x 576 pixels, as the algorithm produced a false detection. If we 

increase the size of the detector, the false detection decreases. The behavior of these proper-

ties is affected by the scale factor. We managed to increase the size of search area and the 

scale factor. The following explains the relationship between setting the size of the detectable 

object and the scale factor. 
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3.4.4.1 Size of smallest and largest detectable object 

We can spcify the size of the smallest, or the largest object to detect. This value is given in 

pixels as a two-element vector, height and width. It must be greater than, or equal to the im-

age size used to train the model. We can reduce computation time when we know the mini-

mum object size, prior to processing the image. If this values are not specified, then the de-

tector sets it to the size of the image (I) used to train the classification model. 

3.4.4.2 Scaling for multiscale object detection 

We can specify a factor, to incrementally scale the search region. It can be set to an ideal val-

ue using:   size(I)/(size(I)-0.5). 

The detector scales the search region at increments between minimum size and maximum 

size using the following relationship:  

Search Region = (Training Size)*(ScaleFactorN). 

In this equation, N is the current increment, an integer greater than zero, and Training Size is 

the image size used to train the classification model. In summary, the scale factor determines 

the search window sizes. The size of search area can be varied, and is used to speed up com-

putational time. 

 

 

 

 

 

Figure 3-7 Upper Body Detection with False Positive 

In Figure 3-8 we have shown a better result obtained. Table 3-3 shows results of Viola and 

Jones compared to our method.  

Table 3-3 Upper Body Detection Results 

Method Detection (%) False positive (%) Processing time (ms) 
Viola & Jones 71.2 0.012 30 
Our method 84.6 0.007 28 

   



Human Body Detection from Video File 

 33 

 

It can be seen that our method has improved results in every department.  The percentage for 

detection rate was increased from 71.2% to 84.6%. The false positive rate was decreased 

from 0.012% to only 0.007%. Processing time was improved by 2 ms faster than the compar-

ison method. The experiment was running on the test platform powered by Window 7 (64 

bit), with Intel Core i3-2330M CPU 2.20 GHz. and Matlab 2011b. The same video file was 

used by both algorithms. The output results were provided for algorithms comparison. 

 

 

 

 

 

 

Figure 3-8 Upper Body Detection Improvement 

The main reason why our method is working better than Viola and Jones is because we 

choose a simple feature set and lower complexity (lower number of features used) for the 

upper body detection. However, the above algorithm was tested for only a single object (per-

son). It will be slightly more challenging to run the detector on multiple objects from a video 

file and observe the result. That is another research objective. A similar approach is used to 

test and optimise algorithms. 

3.5 Conclusions 

We have presented an approach for object detection that minimises computation time while 

achieving high detection accuracy. The approach was used to construct a face detection sys-

tem which yields 2 ms. faster than the previous approach based on the Viola and Jones 

framework. The system was tested in the near real-time. 

In our context, the term "near real-time" refers to the time delay introduced by automated 

data processing or network transmission. It occurs between the occurrence of an event and 
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the use of the processed data. For example, a near-real-time display an event, or situation, as 

it existed at the current time minus the processing time, as nearly the time of the live event.  

A “real-time” system is one which controls an environment variable, i.e. process, by receiv-

ing data, processing them, and returning the results sufficiently quickly to affect the environ-

ment / process, at that time [69]. A real-time system can be one where its application can be 

considered to be mission critical (equipment, process, procedure, software, etc.). The real 

time system failure will result in the malfunction of business operations. For example, in 

weapon system, failure to launch a rocket within a specific timeframe could lead to the war-

ship being hit.  

This two mili-seconds (2 ms.) faster processing time, achieved by new algorithm, when oper-

ates in the context of “mission critical” operations, could make a crucial difference, as we 

have described previously. The importance of this time improvement is application depend-

ent. 

We are conducting research in vision and image recognition for applications like advanced 

manufacturing, surveillance, search and rescue missions, autonomous driving and others. The 

very first, initial results are presented here. There is always space for improvements. Future 

work includes adjusting parameters and modifying functions, in order to achieve a more ac-

curate upper body detector. The following changes have to be investigated, for detection im-

provement: Associating detections over time, such as per size, shape, and colour. For tracking 

there are actions as follows: Varying parameters, including the tracking stage, assignment, 

deletion of track, adding a model to the original algorithm for “constant acceleration”, and 

adding the “Kalman” filter for every object, or other types of filters such as the “Particle” 

filter. 
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Chapter 4 2D Multi Targets Detection and 

Tracking Algorithm 

4.1 Introduction 

Visual tracking is a challenging task that refers to the process of estimating, over time, the 

location of one, or multiple objects in a video stream captured by a camera. Tracking can be 

found in a wide variety of commercial products, which relieve the operator from time con-

suming and challenging concentration tasks, i.e. face recognition, traffic control, human in-

teraction application, medical imaging, security and surveillance. 

Traditionally, visual tracking includes two parts: moving object detection and tracking the 

detected object over the frames. The first part is to detect/acquire the object of interest, based 

on motion information such as optical flow, or background subtraction. The second part is to 

maintain acquisition of the object based on the appearance, shape, or kinematic information 

as the object moves, or becomes stationary. 

4.2 Target Detection 

Every tracking method requires an object detection mechanism in every frame, or when the 

object first appears in the video. A common approach for object detection is to use infor-

mation in a single frame. Some object detection methods make use of the temporal infor-

mation computed from a sequence of frames to reduce the number of false detections. This 

temporal information is usually in the form of frame differencing, which highlights changing 

regions in consecutive frames.  

Given the object regions in the image, it is the tracker’s task to perform object correspond-

ence from one frame to the next in order, to generate the tracks. The following describes state 

of the art object detection methods [70], or categories as summarised in Table 4-1. 
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4.2.1 Point Detection 

Point detectors are used to find interest points in images which have an expressive texture in 

their respective localities. Interest points are already used in the context of motion, stereo, 

and tracking problems. A desirable quality of an interest point is its invariance to changes in 

illumination and camera viewpoint. Commonly used interest point detectors include the Har-

ris interest point detector [71], Kanade-Lucas-Tomasi (KLT) detector [72], and Scale Invari-

ant Feature Transform (SIFT) detector [73]. For a comparative evaluation of interest point 

detectors, refer to this survey [74]. 

4.2.2 Background Subtraction 

Object detection can be achieved by building a representation of the scene, called the back-

ground model, and then finding deviations from the model for each incoming frame. Any 

significant change in an image region from the background model signifies a moving object. 

The pixels constituting the regions undergoing change are marked for further processing. 

Usually, a connected component algorithm is applied to obtain connected regions correspond-

ing to the objects. This process is referred to as the Background Subtraction. 

4.2.3 Segmentation 

The aim of image segmentation algorithms is to partition the image into similar regions. Eve-

ry segmentation algorithm addresses two problems; the criteria for a good partition, and the 

method for achieving efficient partitioning [12]. In this section, we discuss segmentation 

techniques that are relevant to object tracking. 

4.2.4 Supervised Learning 

Object detection can be performed by the process of learning about different object views, 

from a set of examples, using a supervised learning mechanism. Learning of different object 

views does not require storing a complete set of templates. Supervised learning methods gen-

erate a function that maps inputs to desired outputs from a given set of learning examples.  

Supervised learning is a classification problem where the learner approximates the behaviour 

of a function by generating an output in the form of a continuous value, called regression or a 

class label. In the context of object detection, the learning examples are composed of pairs of 

object features and an associated object class. 
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Table 4-1 Target Detection Categories 

Methods Previous Works 
Point Detection Harris detector [71], 

Affine Invariant Point Detector [74], 
Scale Invariant Feature Transform [73]. 

Background Subtraction Active contours [75], 
Mean-shift [76], 
Graph-cut [72]. 

Segmentation Mixture of Gaussians [77], 
Eigen background [78], 
Dynamic texture background [79]. 

Supervise Learning Support Vector Machines [80], 
Neural Networks [81], 
Adaptive Boosting [58]. 

4.3 Target Tracking 

The aim of an object tracker is to generate the trajectory of an object over time by locating its 

position in every frame of the video. Object trackers may provide the complete region in the 

image that is occupied by the object at every instant of time. The task of detecting the object 

and establishing correspondence between the object instances across video frames can either 

be performed separately or jointly. In the first case, possible object regions in every frame are 

obtained from an object detection algorithm, and then the tracker associates corresponding 

objects across frames. In the latter case, the object region and correspondence are jointly es-

timated by iteratively updating object location and region information obtained from previous 

frames.  

In either approach, the objects are represented using the shape and/or appearance models. The 

model selected to represent the object shape limits the type of motion or deformation it can 

undergo. For example, if an object is represented as a point, then only a translational model 

can be used. In the case where a geometric shape representation, like an ellipse, is used for 

the object, parametric motion models, like affine or projective transformations, are appropri-

ate. These representations can approximate the motion of rigid objects in the scene.  
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Figure 4-1 Target Tracking Methods 

4.3.1 Point Tracking 

Objects detected in consecutive frames are represented by points. The association of the 

points is based on the previous object state which can include object position and motion. 

This approach requires an external mechanism to detect the objects in every frame. An exam-

ple of object correspondence is shown in Figure 4-2(a). 

4.3.2 Kernal Tracking 

Kernel refers to the object shape and appearance. For example, the kernel can be a rectangu-

lar template or an elliptical shape with an associated histogram. Objects are tracked by com-

puting the motion of the kernel in consecutive frames as shown in Figure 4-2(b). This motion 

is usually in the form of a parametric transformation such as translation, rotation and affine. 

4.3.3 Sihouette Tracking 

Tracking is performed by estimating the object region in each frame. Silhouette tracking 

methods use the information encoded inside the object region. This information can be in the 

form of appearance density and shape models which are usually in the form of edge maps. 

Given the object models, silhouettes are tracked by either shape matching or contour evolu-

tion (see Figure 4-2(c)). Both of these methods can essentially be considered as object seg-

mentation applied in the temporal domain using the priors generated from the previous 

frames. 
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Figure 4-2 Tracking Approaches 

4.4 Our Approach 

Detection of moving objects, and motion-based tracking, are important components of many 

computer vision applications. The problem of motion-based object tracking can be divided 

into two parts: detecting moving objects in each frame and associating the detections corre-

sponding to the same object over time. 

The detection of moving objects uses a background subtraction algorithm based on Gaussian 

mixture models. Morphological operations are applied to the resulting foreground mask to 

eliminate noise. Finally, blob analysis detects groups of connected pixels, which are likely to 

correspond to moving objects. The association of detections to the same object is based solely 

on motion. The motion of each track is estimated by a Kalman filter. The filter is used to pre-

dict the track's location in each frame, and determine the likelihood of each detection being 

assigned to a track. 

Track maintenance becomes an important aspect of this approach. In any given frame, some 

detection may be assigned to tracks, while other detections and tracks may remain unas-

signed. The assigned tracks are updated using the corresponding detections. The unassigned 

tracks are marked invisible. An unassigned detection begins a new track. Each track keeps 

count of the number of consecutive frames where it remained unassigned. If the count ex-

ceeds a specified threshold, the example assumes that the object left the field of view and it 

deletes the track. 

4.4.1 Kalman Filter 

System using Kalman Filter finds the optimal solution, assuming the distributions of the state 

and the noise are Gaussian and the models are linear. The models can be written as:  

    



2D Multi Targets Detection and Tracking Algorithm 

 40 

𝑥𝑡 = 𝐹𝑡𝑥𝑡−1 + 𝑣𝑡−1 (4.1) 

𝑦𝑡 =  𝐺𝑡𝑥𝑡 + 𝑎𝑡 (4.2) 

 

In equations (4.1) and (4.2) xt represent prediction at time t and yt is measurement at time t,  

where 𝐹𝑡 and 𝐺𝑡 matrices define the linear relationship between the states and between the 

observations respectively, and where 𝑣𝑡 and 𝑎𝑡 are independent, zero-mean, white Gaussian 

noise processes with covariance 

𝐸 ��𝑣𝑡𝑛𝑡� (𝑣𝑘𝑇 ,𝑎𝑘𝑇)� =  �𝑅𝑡 0
0 𝑄𝑡

� (4.3) 

In equation (4.3) Rt represent measurement noise and Qt is process noise. 

Hence the optimal linear estimation is give by: 

 (A) Prediction step, where the mean prediction  𝑥𝑡|𝑡−1, the prediction covariance 

𝑃𝑡|𝑡−1 and the predicted measurement 𝑦�𝑡 are computed, respectively. 

𝑥𝑡|𝑡−1 =  𝐹𝑡𝑥𝑡−1 (4.4) 

𝑃𝑡|𝑡−1 =  𝐹𝑡 𝑃𝑡−1 𝐹𝑡𝑇 +  𝑄𝑡 (4.5) 

𝑦�𝑡 =  𝐺𝑡𝑥𝑡|𝑡−1 (4.6) 

 

 (B) Correction step, where the mean residual 𝑒𝑡 (as soon as the new measurement 𝑦𝑘 

is available), the error covariance 𝑆𝑡 and Kalman gain 𝐾𝑡 are computed as follows: 

𝑒𝑡 =  𝑦𝑡 −  𝑦�𝑡 (4.7) 

𝑆𝑡 =  𝐺𝑡𝑃𝑡|𝑡−1  𝐺𝑡𝑇 +  𝑅𝑡 (4.8) 

𝐾𝑡 =  𝑃𝑡|𝑡−1  𝐺𝑡𝑇𝑆𝑡−1  (4.9) 

The full derivation of the Kalman Filter can be found in [82] 

  



2D Multi Targets Detection and Tracking Algorithm 

 41 

 

 

 

 

 

 

 

 

 

 

Figure 4-3 Multi Tarkets Detection and Tracking (MTDT) Flow Diagram 

4.4.2 Multi Targets Detection and Tracking (MTDT) Algorithm 

The algorithm can be divided into eight sub-functions including read video frame, detect ob-

jects, predict track locations, detect tracks, update tracks, delete lost tracks, create new tracks, 

and display tracks. The following describes their functionalities. 

4.4.2.1 Read Video Frame 

Reading of video frames requires detecting foreground objects, and displaying results. First, 

it creates objects for reading a video from a file, then drawing the tracked objects in each 

frame, and playing the video. Lastly, it creates two video players, one to display the video, 

and one to display the foreground mask. 

Foreground Detection and Blob Analysis: The foreground detector is used to segment moving 

objects from the background. It outputs a binary mask, where the pixel value of 1 corre-

sponds to the foreground and the value of 0 corresponds to the background. Connected 

groups of foreground pixels are likely to correspond to moving objects.  The blob analysis 

system object is used to find such groups (called 'blobs' or 'connected components'), and 

compute their characteristics, such as area, centroid and the bounding box. 
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4.4.2.2 Initialise Tracks 

This step creates an array of tracks, where each track is a structure representing a moving 

object in the video. The purpose of the structure is to maintain the state of a tracked object. 

The state consists of information used for detection to track assignment, track termination, 

and display. Noisy detections tend to result in short-lived tracks. For this reason, it only dis-

plays an object after it was tracked for some number of frames.  

When no detections are associated with a track for several consecutive frames, algorithm as-

sumes that the object has left the field of view and deletes the track. This happens when track 

counter exceeds a specified threshold. A track may get deleted (as noise) if it was tracked for 

a short time, and marked invisible for most of the frames. 

4.4.2.3 Detect Targets 

This function returns the centroids and the bounding boxes of the detected objects. It returns a 

binary mask of the same size as the input frame. Pixels in the mask with a value of 1 corre-

spond to the foreground, and pixels with a value of 0 correspond to the background.  The 

function performs motion segmentation using the foreground detector. It then executes mor-

phological operations on the resulting binary mask to remove noisy pixels and to fill the holes 

in the remaining blobs. 

4.4.2.4 Predict Track Location 

This step uses the Kalman filter to predict the centroid of each track in the current frame, and 

update its bounding box accordingly. 

4.4.2.5 Detect Track 

Assigning object detections in the current frame to existing tracks is done by minimising cost. 

The cost is defined as the negative log-likelihood of a detection corresponding to a track.  

The algorithm involves two steps:  

The first step is to compute the cost of assigning every detection to each track. The cost takes 

into account the Euclidean distance between the predicted centroid of the track and the cen-

troid of the detection. It also includes the confidence of the prediction, which is maintained 

by the Kalman filter. The results are stored in an M x N matrix, where M is the number of 

tracks, and N is the number of detections. 
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Second step is to solve the assignment problem represented by the cost matrix. The process 

takes the cost matrix and the cost of not assigning any detection to a track.  The value for the 

cost of not assigning detection to a track depends on the range of returned values. This cost 

value must be tuned experimentally. Setting it too low increases the likelihood of creating a 

new track, and may result in track fragmentation. In addition to that setting it too high may 

result in a single track corresponding to a series of separate moving objects. This function 

uses the Hungarian algorithm to compute an assignment which minimises the total cost. It 

returns an M x 2 matrix containing the corresponding indices of assigned tracks and detec-

tions in its two columns. It returns the indices of tracks and detections that remained unas-

signed. 

 

 

 

 

 

 

 

 

Figure 4-4 Top left (a), right (b), Below left (c) right (d) – Multi Targets Detection and 

Tracking Results 

Figure 4-4(a) shows tracking results of two pedestrians walking on the street. Figure 4-4(b) 

shows the foreground mask of Figure 4-4(a). Figure 4-4(c) and Figure 4-4(d) shows the track-

ing and foreground mask after 2 minutes of running a video file. 

4.4.2.6 Track Management  

Update Tracks 

This step updates each assigned track with the corresponding detection to correct the location 

estimate. It stores the new bounding box, and increases the age of the track and the total visi-

ble count by 1. Finally, it sets the invisible count to 0. 
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Delete Lost Tracks 

This step deletes tracks that have been invisible for too many consecutive frames. It deletes 

recently created tracks that have been invisible for too many frames overall. 

Create New Tracks 

This step creates new tracks from unassigned detections. It assumes that any unassigned de-

tection is a start of a new track. In practice, we can use other cues to eliminate noisy detec-

tions, such as size, location or appearance. 

Display Tracks 

This step draws a bounding box and labels them for each track on the video frame and the 

foreground mask. It then displays the frame and the mask in their respective video players. 

Because the Kalman filter reduces noise, the bounding box positions calculated by the track-

ing subsystem have smoother trajectories than those calculated by the detection subsystem. 

Table 4-2 below shows the average processing time for detection and tracking taken over 

2400 frames. 

Table 4-2 Avarage Processing Time 

Performing Task Processing Time (ms) 
Detection 31.6 
Tracking 36.3 

4.4.3 Result and Discussion 

Table 4-3 Comparison of Algorithms 

  Padeleris et al 
[83] 

Fanelli et al 
[84] 

Ying & Wang 
[85] 

MTDT (our) 

Regression X error (mm) N/A N/A 5.9 4.5 
Capability Y error (mm) N/A N/A 8.1 7.2 

Z error (mm) N/A N/A 4.6 4.1 
Location error (mm) 2.78 14.5 12.9 10.9 
Yaw error (deg) 1.0 9.1 8.1 7.0 
Pitch error (deg) 1.14 8.5 7.7 5.4 
Roll error (deg) 1.60 8.0 5.8 5.6 
Pose error (deg) N/A N/A 14.6 11.9 

Classification 
capability 

Detection rate (%) N/A N/A 89 95.6 
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Table 4-4 Comparison of Algorithms 

  Breienstein 
et al [86] 

Fanelli et 
al [84] 

Padeleris et al 
[83] 

MTDT 
(our) 

Regression X error (mm) N/A N/A N/A 4.5 
Capability Y error (mm) N/A N/A N/A 5.2 

Z error (mm) N/A N/A N/A 4.9 
Location error 
(mm) 

9.0 13.4 7.05 8.6 

Yaw error 
(deg) 

6.1 5.7 1.62 3.7 

Pitch error 
(deg) 

4.2 5.1 2.05 4.2 

Roll error (deg) N/A N/A N/A N/A 
Pose error 
(deg) 

N/A N/A N/A 6.2 

Classification 
capability 

Accuracy (%) 80.8 90.4 90.1 90.5 

 

4.5 Conclusions 
The contribution presented here was in the development of new algorithm to perform detec-

tion and tracking of multiple moving objects from the video file. In the detection process, a 

background subtraction method was used, based on Gaussian mixture models. The main con-

tribution in tracking is the use of Kalman filter and the track management function.  The as-

signed track was updated using the feed from corresponding detection. 

The results show that the system can operate in near real time as shown in Table 4-2 to suc-

cessfully detect, track, and identify multiple targets in the presence of partial occlusion. 

For future work, we aim to modify parameters for the detection, assignment and deletion 

steps.  The likelihood of tracking errors can be reduced by using a more complex motion 

model, such as constant acceleration, by using an Extended Kalman filter or Partical filter. 

Also, we can incorporate other cues for associating detections over time, such as size, shape, 

and color. 
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Chapter 5 3D Multi Targets Detection and 

Tracking Algorithm Using RGB-D Camera 

5.1 Introduction 

People detection and tracking is an important and fundamental component for many robotics 

applications, interactive systems and intelligent vehicles operations. Popular sensors for this 

task are cameras and range finders. Both types of sensors have advantages and drawbacks. 

The new type of sensor, that combines both image and depth data, which has become public-

ly available, affordable and increasingly reliable, is called an RGB-D sensor. 

Many researchers have addressed the issue of detecting people in range data. Early works 

used 2D range data for this task [29], [30]. People detection in 3D range data is a rather new 

problem with little related work. Navarro et al. [87] collapse the 3D scan into a virtual 2D 

slice to find salient vertical objects above ground and classify a person by a set of SVM clas-

sified features. Bajracharya et al. [88] detect people in point clouds from stereo vision by 

processing vertical objects and considering a set of geometrical and statistical features of the 

cloud based on a fixed pedestrian model. Unlike these works, that require a ground plane 

assumption.  Luber et al. [89] overcomed this limitation via a voting approach of classified 

parts and a top-down verification procedure that learns an optimal set of features in a boosted 

volume tessellation. 

In computer vision, the problem of detecting humans from single images has been extensive-

ly studied. Recent works include [90], [91], [92], [56], [93] which either use a part-based ap-

proach or a sliding window. In the former approach, body parts independently vote for the 

presence of a person, while in the latter a fixed-size detection window is scanned over dif-

fierent scale space positions of the image to classify the area under the window. Other works 

address the problem of multi-modal people detection. Ess et al. [94] proposes a trainable 2D 

range data and camera system, Felzenszwalb et al. [95] use a stereo system to combine image 
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data, disparity maps and optical flow, and [96] use intensity images and a low-resolution 

time-of-flight camera. 

We develop a robust dense depth person detection that is based on the HOG method, and the 

depth characteristics of the Kinect RGB-D sensor. We use data fusion technique based on the 

Bayesian model for detecting people from multiple cues including RGB-D data. We compare 

our algorithm with several alternative methods, including visual HOG, a geometric person 

detector for 3D point clouds [97], and a Haar-based AdaBoost detector [98]. 

5.2 Related Work 
There are many approaches for person detection and tracking in the computer vision and ro-

botics literature. Many of these techniques such as [56], [93], [94], [95] have been shown to 

be successful in the outdoor environment, or within the setup scenarios. In outdoor scenes, 

people are mostly observed in an up-right ‘pedestrian’ position, whereas in indoor scenes 

people are often seen in more variable configurations such as sitting on chairs, truncated by 

the image boundary, or occluded. 

Methods have been proposed to track targets by learning a person-specific appearance model 

from an initial position [99], [92]. These methods work relatively well when the background 

is not cluttered, however they often suffer from the problem of track drift [100] and require 

manual selection of initial target positions. The improvement in recent people detection algo-

rithms has helped in the advancement of designing robust tracking-by detection algorithms 

[97], [90], [91], [98], [101]. For example, Wu et al. [102] integrated an image based detection 

algorithm into a tracking framework. Breitenstein et al. [97] proposed to use the detector con-

fidence value together with the detection output to generate a robust tracking algorithm. In 

contrast, Khan et al. [98] proposed a particle filtering method to track multiple interacting 

targets and employed it to analyse the behavior of ants. 

Recently, Brendel et al. [90] proposed a novel procedure based on the maximum weight of 

independent sets to solve the correspondence problem among targets. Choi et al. [91] pro-

posed an algorithm for simultaneously tracking multiple targets as well as estimating camera 

parameters. To make tracking more robust, Wojek et al. [101] explicitly reasoned for the tar-

gets occlusions. 
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Multiple approaches explore the idea of improving robustness and accuracy by injecting 

knowledge about 3D structure of the scene into the tracking process [94], [103], [87]. They 

proposed a system which combines depth information obtained from stereo cameras and de-

tection responses obtained from an RGB camera. In [27], a 2D LIDAR scanner is employed 

to detect and track people by identifying the legs’ cylinder shape. 

Availability of an affordable RGB-D camera from Microsoft, the Kinect [45] made it possible 

for everyone to obtain useful depth information. Recently Luber et al. [103] proposed a pe-

destrian tracking algorithm using a combination of HOG and HOD features with multiple 

Kinect cameras. Based on the assumption that the person is detected and segmented from the 

background, Shotton et al. [43] proposed a skeleton tracking method based on Random Forest 

using Kinect. 

The systems presented, however, do not focus on the indoor platform perception problem, 

and hence do not integrate all of the components necessary to perform the required task of 

multi-object detection and tracking. The following section proposes our algorithm to solve 

such a task. 

5.3 Overview of Approach 

The following figure shows the flow diagram of the proposed MTDT algorithm which can be 

divided into 3 main stages. It begins with image capturing by Kinect from the colour and 

depth sensors. This process is called Image or Data Acquisition and Processing. The detec-

tion stage utilises the Bayesion model to combine the multiple cues for improvement of ro-

bustness and accuracy. The tracking stage suggested the use of the Kalman filter for fast pro-

cessing of the multiple objects’ tracking for processing in real-time. 
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Figure 5-1 The 3D MTDT Framework 

5.3.1 Data Acquisition and Preprocessing 

The first step in any object detection process is to capture an RGB image and the correspond-

ing depth image from an RGB-D sensor, or in our case the Kinect sensor. For our experiment, 

we are using the Kinect Matlab function. Post capturing these images, we perform a simple 

pre-processing to the depth image again using simple image processing functions in Matlab 

targeting to solve a specific problem of the captured depth image. 

The original depth image returned by RGB-D sensors contains some regions with no infor-

mation about the depth of that region. This is because the infared light does not reflect well 

on all surfaces. Also the Kinect is designed to measure distances ranging from 60cm up to 

several meters. 

 

 

 

 

Figure 5-2 Image Acquisition (a) RGB camera (b) Depth camera 

5.4 Model Representation 

Inspired by Choi et al. [104], we approach this problem within a sequential Bayesian frame-

work. At each time stamp, we obtain the approximate posterior distribution of the presence 

and location in 3D space for a set of targets using an MTDT algorithm. Each hypothetical 

sample is then evaluated using a combination of detectors on the projection of the 3D loca-
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tion into the image plane. Below, we describe the Bayesian model observation likelihood and 

the motion model. Later on we describe each of the detectors in the framework. 

5.4.1 Bayesian Model 

Given a sequence of colour and depth images 𝐼1~𝑡 in time intervals, or stemps (1, 2,...,t), the 

goal is to detect and track people in 3D space. We track the top position of each person’s 

head. This can be achieved by finding the maximum a posteri (MAP) solution of the follow-

ing probabilistic formulation.  

 Let 𝑋𝑡 = 𝑋𝑡 
0 ,𝑋𝑡1, … ,𝑋𝑡𝑘 be a set of targets at time stamp 𝑜 and 

  𝑋𝑡𝑖 be each target’s head location parameterised as the 3D point (𝑥,𝑦, 𝑧).  

Following the Sequential Bayesian formulation, the posterior probability of targets 

𝑃(𝑋𝑡|𝐼1~𝑡) can be written as: 

𝑃(𝑋𝑡|𝐼1~𝑡) ∝  𝑃(𝐼𝑡|𝑋𝑡) ∫𝑃(𝑋𝑡|𝑋𝑡−1)  𝑃(𝑋𝑡−1|𝐼1~𝑡−1) 𝑑𝑥𝑡−1 (5.1) 

In (5.1), the equation represents the observation likelihood, the motion prior and the posterior 

at time t - 1, respectively. Assuming independent motion between targets, we can factorise 

the overall observation likelihood 𝑃(𝐼𝑡|𝑋𝑡) and motion prior 𝑃(𝑋𝑡|𝑋𝑡−1) as 

𝑃(𝐼𝑡|𝑋𝑡) =  ∏ 𝑃�𝐼𝑡�𝑋𝑡𝑖�
𝑀𝑡
𝑖=0 ,𝑃(𝑋𝑡|𝑋𝑡−1) = ∏ P�Xti�Xt−1i �Mt

i=0  (5.2) 

where 𝑀𝑡 indicates the number of targets at the time stamp t. 

5.4.2 Observation Likelihood 

Instead of using a single detection algorithm, we incorporate multiple weak detectors to ob-

tain a strong confidence value about the presence of a target(s) in the scene. Assuming inde-

pendence of the observations, we can rewrite the observation likelihood of a target  

𝑒 �𝑃�𝐼𝑡�𝑋𝑡𝑖�� as follows: 

𝑃�𝐼𝑡�𝑋𝑡𝑖� =  ∏ 𝑃𝑗�𝐼𝑡�𝑋𝑡𝑖�𝑁
𝑗=0  (5.3) 

where j is the weak detector. The 3D location of  𝑋𝑡𝑖 does not directly correspond to a point in 

the color and depth images 𝐼𝑡  , so we project 𝑋𝑡𝑖 into the image plane using the camera pa-

rameters. 
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5.4.3 Motion Prior 

The motion prior of each target encodes two characteristics: existence and smoothness. The 

former encodes the prior probability of the target’s presence at adjacent time stamps. The 

intuition is that if a target exists at time stamp 𝑜 − 1 then it is more likely for this target to 

exist at time stamp t, and vice versa. The latter enforces the smoothness of people’s motion in 

3D space, e.g. people cannot jump to distant locations or heights in a short time. We model 

the existence prior by two binomial probabilities, 𝑃𝑠 and 𝑃𝑒. 𝑃𝑠 is the probability of stay and 

𝑃𝑒 is the probability of entrance. 𝑃𝑠 encodes the likelihood that a target will exist in time 𝑜 if it 

exists in time 𝑜 − 1, and Pe encodes the probability that a new target will appear in the scene. 

In practice, we use 0.9 for 𝑃𝑠 and 0.1 for Pe. The motion smoothness is modelled as a Gaussian 

distribution over (𝑥,𝑦, 𝑧) centred on the location of the target at 𝑜 − 1. 

5.4.4 Observation Cues 

The colour and depth images contain different information for a more robust detection algo-

rithm. From this advantage, we combine five different observation models: HOG, frontal face 

detection, skin, motion, and shape based detctors. None of the detectors performs satisfactori-

ly by itself (e.g. the face detector misses people in profile, or people turned away from the 

camera, and the HOG detector yields many false positives and missing detections), but com-

bining them can generate much more reliable results. Note that our proposed model is flexi-

ble enough to handle additional observation cues as required to increase robustness.  

In this section, we will adopt log likelihood 𝑙�𝐼𝑡�𝑋𝑡𝑖� instead of the likelihood 𝑃�𝐼𝑡�𝑋𝑡𝑖� for 

simplicity. The entire observation likelihood 𝑃�𝐼𝑡�𝑋𝑡𝑖� can be obtained by taking the exponen-

tial, of a weighted linear sum, of each log likelihood. The following sections describe the 

detectors in detail. 

𝑃�𝐼𝑡�𝑋𝑡𝑖� ∝  𝑒𝑥𝑝 �∑𝑊𝑗𝑙𝑗 �𝐼𝑡�𝑋𝑡𝑖�� (5.4) 

5.4.4.1 Upper Body Detector 

The first cue originates from the distribution of gradients in the image as encoded by the 

HOG [56]. To obtain a detection response, the HOG detector performs a dot product between 

the model parameter w and the HOG feature h, and thresholds the value (above zero) to find 

person detections. In this work, we incorporate two HOG detection models, an upper body 
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detector and a full body detector, to cope with i) occlusion of the lower body, ii) different 

pose configurations, and iii) different resolutions of people in images. 

Previous work [91] used a Gaussian model centered on positive detections to obtain the ob-

servation model. However, such approaches often fail when there are many missed detections 

or false positives. Inspired by [97], we directly use the detection response to model the obser-

vation likelihood from the HOG detector. 

𝑙𝐻𝑂𝐺�𝐼𝑡�𝑋𝑡𝑖� =  𝜔 . ℎ �𝑓𝑃�𝑋𝑡𝑖�� (5.5) 

where 𝑓𝑃 is an image projection function, ℎ �𝑓𝑃�𝑋𝑡𝑖�� represents the HOG feature extracted 

from the image projection of 𝑋𝑡𝑖. 

5.4.4.2 Face Detector 

The Viola-Jones face detector [105], as implemented in OpenCV [67], detects people reliably 

if the image of the face is large enough (greater than 24 pixels) and the frontal side of the face 

is visible. We incorporate the face detector response, as another likelihood measure, by calcu-

lating the maximum overlap ratio between detection output 𝑌𝑡𝑘 of the face detector and image 

projection of hypothesis 𝑋𝑡𝑖 across all K face detections at time t: 

𝑙𝐹𝑚𝑐𝑒 =  max𝑘 𝑂𝑅 �𝑌𝑡𝑘 ,𝑇𝑓 �𝑓𝑃�𝑋𝑡𝑖��� (5.6) 

where 𝑇𝑓 is a face cropping transformation and 𝑂𝑅(∙,∙) is the standard overlap ratio between 

two rectangles (the intersection over the union of the two rectangles). 

5.4.4.3 Skin Color Detector 

One of the cues used is skin colour. If a person exists in a location 𝑋𝑡𝑖, then skin pixels corre-

sponding to the face region are likely to be observed. To detect skin pixels, we threshold each 

pixel in HSV colour space and apply a median filter on the binary skin image 𝑙𝑆𝑘𝑖𝑛. Given the 

output, the likelihood is obtained by computing the ratio of skin pixels lying in the face re-

gion of a hypothesis: 

𝑙𝑆𝑘𝑖𝑛 =  1

�𝑇𝑓�𝑓𝑃�𝑋𝑡
𝑖���

 ∑ 𝐼𝑆𝑘𝑖𝑛 (𝑥,𝑦)∈𝑇𝑓� 𝑓𝑃�𝑋𝑡
𝑖�� (𝑥,𝑦) (5.7) 

where |∙| represents the area of a bounding box ∙ and 𝑙𝑆𝑘𝑖𝑛 is the filtered binary skin image. 
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5.4.4.4 Motion Detector 

We use motion as an additional cue that implies (with high confidence) the presence of a per-

son in the scene. In order to efficiently identify moving pixels in 3D, we apply an octree-

based change detection algorithm [14] to the point clouds at two consecutive time stamps. A 

binary motion image is obtained by projecting each of the moving points into the image. Sim-

ilar to the skin detector, the likelihood is obtained by calculating the ratio of moving pixels 

lying in the body region of a hypothesis.  

𝑙𝑀𝑜𝑡𝑖𝑜𝑛 =  1
�𝑓𝑃�𝑋𝑡

𝑖��
 ∑ 𝐼𝑀𝑜𝑡𝑖𝑜𝑛 (𝑥,𝑦)∈𝑓𝑃�𝑋𝑡

𝑖� (𝑥,𝑦) (6.8) 

where 𝑙𝑀𝑜𝑡𝑖𝑜𝑛 is the binary motion image. Note that for many of these cues, such as face de-

tection, skin colour detection and motion detection, a positive observation increases the like-

lihood that a person is present, but the lack of observation does not decrease the likelihood 

that a person is present. 

5.4.4.5 Shape Detector (Depth) 

To model the likelihood of people in depth images, we define the log likelihood 𝑙𝑆ℎ𝑚𝑝𝑒 as a 

distance between a shape template and the observed shape of a human. Some white spots 

were used as a reference in 3D object. The image point coordinates were accurately obtained 

by a sub-pixel accuracy estimation off the white spot centres and corrected according to the 

lens distortion parameters. The template is defined for only the head and shoulder region 

since this is among the most stable body elements across various types of common human 

body configurations. Given a depth image and the location of a person 𝑋𝑡𝑖, a W (width) by H 

(height) dimensional binary vector is constructed by thresholding the depth image around 𝑋𝑡𝑖. 

Then,  

𝑙𝑆ℎ𝑚𝑝𝑒 =  �𝐼𝑡�𝑋𝑡𝑖� =  𝑇𝑠 − 𝑑 �𝑆𝑡𝑒𝑚𝑝,𝑆�𝑓𝑃�𝑋𝑡𝑖�; 𝐼𝑡�� (6.9) 

where 𝑇𝑠 is a threshold, 𝑆𝑡𝑒𝑚𝑝 is the template, 𝑆�𝑓𝑃�𝑋𝑡𝑖�; 𝐼𝑡� is the shape vector of 𝑋𝑡𝑖, and 

𝑑(∙,∙)is the distance between template and shape vector of 𝑋𝑡𝑖. 

5.4.5 Skeleton Tracking 

Performing image acquisition with a Kinect for Windows camera is similar to using other 

cameras and adaptors, but with several key differences: 
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The Kinect for Windows device has two separate physical sensors, and each one uses a dif-

ferent DeviceID in the videoinput object. The Kinect colour sensor returns colour image data. 

The Kinect depth sensor returns depth and skeletal data.  

The Kinect for Windows device returns four data streams. The image stream is returned by 

the colour sensor and contains colour data in various colour formats. The depth stream is re-

turned by the depth sensor and returns depth information in pixels. The skeletal stream is re-

turned by the depth sensor and returns metadata about the skeletons. There is also an audio 

stream, but this is unused by Image Acquisition Toolbox. 

The skeleton data that the Kinect produces is accessible from the depth device as a part of the 

Matlab function. The Kinect for Windows can track the position of up to six people in view 

and can actively track the joint locations of two of the six skeletons. It also supports two 

modes of tracking people based on whether they are standing or seated. In standing mode, the 

full 20 joint locations are tracked and returned; in seated mode the 10 upper body joints are 

returned. We used the Matlab image acquisition function.  Skeletal metadata was accessed 

through the depth sensor object.  

5.4.6 Kalman Filter Tracking 

The tracking of objects is handled by the Kalman filter for predicting the new states of the 

objects of interest. The Kalman filter is implemented in the general way. A technique for as-

sociating the estimated objects with their correct current counterparts is presented. By meas-

uring the object's colour histogram and Euclidean distance, a scoring matrix is calculated. 

The scoring matrix describes how good the predicted objects fit the ones in the previous 

frame. The algorithm determines how the objects are assigned to the predicted ones. With this 

method, system is able to successfully assign objects to detections, handle new objects that 

enter the scene and delete objects that exit the scene. 

5.4.6.1 Tracks management 
The policies of creation/update/deletion of the tracks are important to get good results from 

the whole tracking process. For this purpose, for each track we maintain a state as a combina-

tion of the following variables: 

• Status indicates whether the track is new or not. 

• Validation indicates whether the track has been promoted to human or not. 



3D Multi Targets Detection and Tracking Algorithm Using RGB-D Camera 

 55 

• Visibility indicates if the track is completely visible, partially occluded or completely 

not visible (lost). 

The use of these variables is summarised in the following section. 

5.4.6.1.1 Initialisation 

A new track is created from an unassociated detection, if the confidence value given by the 

detectors goes over a defined threshold, for a fixed number of times, while the track is con-

sidered new. If this happens, the track is promoted to validated, otherwise it is discarded. 

5.4.6.1.2 Update 

After the detection-track association, Kalman filter is updated with the measurement of the 

centroid of the cluster. Then if the cluster is not occluded, the classifier is also updated. This 

limitation is given by the fact that when a person is occluded, some colours can become less 

visible or even missing, so updating the classifier would decrease the importance of these 

colour features, thus distorting the results of successive classifications. 

5.4.6.1.3 Recovery 

After a full occlusion, a person could be wrongly assigned to a new track instead of the old 

one. This happens if neither the Kalman filter, nor the classifier, correctly associates new 

detection to the previous track. But, while the trajectory error of the Kalman filter cannot be 

corrected, the classifier can manage to recover from this mistake. In particular, following the 

first frames after its creation, the new track histograms are evaluated by the classifiers of the 

missing tracks and, if the result is above a determined threshold, the new track is deleted and 

the old one recovered. 

5.4.6.1.4 Removal 

After a person becomes occluded, or goes out of the scene, the correspondent track is marked 

as missing. A track is deleted and no longer considered if it remains in that state for a certain 

number of consecutive frames or, as described above, if it is not validated before time runs 

out. 

5.5 Experimental Evaluation and Discussion 

In this section, we discuss the experimental evaluation of our algorithm. The main contribu-

tion was the proposal of the MTDT algorithm which consist of three stages: The image pro-

cessing stage, the detection stage, and tracking stage. In image processing stage, we incorpo-
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rated the RGB-D data input. The input contains the colour and depth data. In the second stage 

for detection, we incorporated the Bayesian model using the multiple detectors that improve 

people detection rate. The detectors include upper body detector, face detector, skin colour 

detector, motion detector, and the shape based detector. In the final stage, new tracking ap-

proach made use of Kalman filter in predicting the people in the scene of interest. The pur-

pose track management suggested the policies for track creation, update and deletion. 

We describe details of the actual implementation. Testing was performed on collected data, 

when a stationary Kinect sensor was placed in an office environment.  

5.5.1.1 Implementation 

An RGB-D sensor [45] provides a pair of images, one RGB and one depth. From these imag-

es, detection proposals are generated using a combination of HOG detections, face detections 

and 3D point cloud clusters [106]. 

The 3D clusters are generated by constructing a 3D point cloud from the depth image and the 

camera parameters [106]. Given the robot’s known 3D base location, 3D points on the floor 

plane can be reliably removed in this type of robotics applications. The remaining points are 

clustered using Euclidean clustering [107]. A single proposal for the location of a human 

head is given by the highest point in a cluster. The proposals from all of the clusters are fil-

tered by height (1.3~2.3 m) as appropriate to our application and environment. The final re-

maining proposals are associated with existing tracks using the Hungarian algorithm and 3D 

distance. This utilises our algorithm and guides the sampling procedure. 

The detector can process 640 x 480 images in 100~200 milliseconds to obtain HOG-based 

proposals and a confidence map efficiently. The full body detections are obtained from the 

model trained on the INRIA dataset [56]  and upper body detections from the CALVIN mod-

el [108]. Our previous work in [109] provides reliable face detections using the Haar feature-

based face detection algorithm with a frontal face model [110]. The HOG detector for the 

upper body and face detector are the slowest components in our system, hence they are pro-

cessed in parallel to the sampling algorithm. 

A Hamming distance is computed between the template and the shape in a depth-image win-

dow for the depth-based upper body template. A more sophisticated distance such as a 
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weighted distance, or learning a depth template, could provide a better estimation; this will be 

investigated for future work. 

Skin pixels are found by thresholding the HSV between (2, 60, 40) and (15, 200, 200). Final-

ly, the octreebased motion detector is discretised to 3cm. In the current implementation, the 

model weights for each detector component are experimentally chosen using validation data 

since no large dataset of RGB-D data from a moving, indoor platform is available. 

Sampling is performed as follows. In each frame, we sample 2500 samples. The posterior 

distribution at each time stamp is approximated by 40 unweighted samples. This sampling 

takes about 100 milliseconds to process one frame. 

 

 

 

 

Figure 5-3 Detection results (a) without upperbody cue (b) with multiple cues 

Figure 5-3 shown above, represents our output from the proposed MTDT algorithm. In (a), 

the algorithm produced the skeleton tracking of the body correctly, however the detection 

was not near the upper body. While in (b), when multiple cues were used, the upper body and 

skeleton tracking yield a better result and improved accuracy. 

5.5.2 Dataset 

We quantitatively evaluate our algorithm using our dataset. This dataset is acquired in an 

office scenario with a fixed Kinect camera as already mentioned. The dataset contains 15 

videos each spanning 2 minutes. The Kinect is mounted approximately 1.2 metres high in 

horizontal to improve field of view. Figure 5-4 shows the system setup in an office environ-

ment. 
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Figure 5-4 Kinect Setup in Office Environment 

Videos recorded humans under different pose configurations (e.g. sitting on a chair, standing 

up, and walking by) observed from different view points, and subject to various degrees of 

occlusion or self-occlusion. For the used dataset, we annotated people with bounding boxes 

around upper bodies with 3D locations inferred from the bounding boxes, depth images, and 

targets. The annotation is provided for four images per second. 

5.5.3 Results 

We compared our algorithm against two baseline methods: the Deformable Parts Model 

(DPM) [95] full body detector and upper body detector as trained by [108]. The DPM detec-

tor is known to be more accurate than the HOG detector, but the implementation of the HOG 

detector is faster. We will integrate the DPM detector into our system in the future. 

Our algorithm significantly outperforms DPM methods on both upper body and full body. On 

our dataset, the improvement is approximately 13% over the DPM. This improvement is 

achieved by using the weaker HOG detector within our system. Howerver, the full body de-

tector does not work well in our dataset, due to occlusions, reduced size of field of view and 

sometimes the person’s posture, e.g. sitting. 

The contribution of each detector module in our method was analysed. The depth shape de-

tector playing the most significant role, and the HOG detector providing the second largest 

contribution. When people do not show their face, the face detector is not very useful. How-

ever, when people do show their faces, the face detector is a very strong contributor to overall 

detection. This fact is somewhat diluted in the analysis. Motion and skin indicators have simi-

lar issues, being very strong in some instances and useless in others. The reasonable perfor-

mance of the full algorithm, as opposed to the variability of the individual detectors, is prom-

ising. 
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Finally, we evaluated our algorithm’s localisation accuracy. We measured over different 3D 

distance thresholds. Our algorithm achieves more accurate results when people are within 

approximately 5 metres of the camera. This is to be expected as the Kinect provides virtually 

no depth information past 5 metres of distance, and in fact the depth information past 3 me-

tres is extremely noisy. 

Overall, the experiments we performed show that our algorithm outperforms state-of-the-art 

detectors. In addition, the fusion of multiple detection cues provides a more reliable final re-

sult. Our fusion method is capable of handling the variable performance of each individual 

detector. 

 

 

 

 

Figure 5-5 Multiple Target Tracking (a) RGB camera (b) Depth camera 

Experimental set up platform that involved of MS Windows, Kinect for Windows and Matlab 

produced great results. We experimented with other platforms, such as the Kinect for Win-

dows SDK version 1.7 and their toolkit of drivers, tools, Application Programming Interface 

(API), device interfaces, and code samples, in order to simplify development of applications 

for commercial deployment. Method processes the raw data from the sensor and provides 

information such as skeleton data, although it is still limited to two people. Figure 5-5 shows 

the results from Kinect for Windows SDK. In (a) the RGB camera provides skeleton tracking, 

and in (b) skeleton tracking from depth image. We have not implemented our MTDT algo-

rithm in this platform, hence it cannot be evaluated for a comparison of results. We will in-

vestigate this further in future work.  

5.6 Conclusions 

In this chapter, we have introduced an algorithm that can detect and track people in indoor 

spaces without instrumenting the environment. An ensemble of detectors comprising the up-

per body, face, skin colour, motion detector, and shape detector were fused in the 3D MTDT 

algorithm based on the Bayesian model. Each detector has different strengths and weaknesses 
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when focusing on different body components or data characteristics, allowing the overall 

combination to better handle occlusion, motion, truncation, and pose variation.  

Raw data from the Kinect provided rich information for skeleton tracking. The tracking part 

was based on the Kalman filter. Objects are assigned to the associated track for each person. 

With our track management function we are able to initialise, update, recover, and remove 

tracks. The 3D MTDT yielded robust and accurate person detection with 13% improvement 

compared to the DPM algorithm. The overall results for detecting and tracking multiple peo-

ple in an indoor environment yielded 96% accuracy. 
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Chapter 6 3D Visual Simultaneous Locali-

sation and Mapping (SLAM) Using RGB-D 

Camera 

6.1 Introduction 

Simultaneous localisation and mapping (SLAM) is a process by which a mobile enti-

ty answers two primary questions: “Where am I?” and “What is the structure of my environ-

ment?”. The entity, which might be a robot, a vehicle, or a human, requires the answers con-

tinuously, as navigation or other decisions depend upon them. SLAM is the task of estimat-

ing, from sensor observations, both motion and structure in an unknown environment [111]. 

Varieties of SLAM solutions to this problem are already available. Those approaches can be 

classified by the use of filtering or smoothing. Filtering approaches model the problem as an 

on-line state estimation, where the state of the system consists of the current robot position 

and the map. The estimate is augmented and refined by incorporating the new measurements 

as they become available. Popular techniques like Kalman [112], [113] particle filters [114], 

[115], [116] or information filters [117], [118] fall into this category. The filtering approaches 

are usually referred to as on-line SLAM methods to highlight their incremental nature. Con-

versely, smoothing approaches estimate the full trajectory of the robot from the full set of 

measurements [119], [120], [121]. These approaches address the so-called full SLAM prob-

lem, and they typically rely on the least square error minimisation techniques. In this chapter 

we will focus on the smoothing approach. 

A recent focus of SLAM research is the use of vision sensors, such as cameras, due to their 

advantages over laser, ultrasonic and sonar range finders. Cameras are information rich, rela-

tively inexpensive and easily available. Additionally, 3D information is simple to obtain, ei-

ther immediately with stereo vision, or in a delayed form by triangulating over several frames 

in monocular configurations. Performing 3D Visual SLAM with a single video camera, while 
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an attractive prospect, adds its own difficulties to the already existing challenges of the 

SLAM problem.   

Another method to obtain 3D data is by using the RGB-D camera which captures RGB imag-

es, along with per pixel depth information. RGB-D cameras rely on either active stereo or 

time-of-flight sensing to generate depth estimates at a large number of pixels. This has be-

come an increasing trend over the past few years due to their lower price and availability for 

researchers. We will describe our 3D visual SLAM framework by stepping through each pro-

cess, from localisation and mapping methods, in the form of frontend and backend pro-

cessing. The new approach is then evaluated and compared to the other state-of-the-art algo-

rithms. We will discuss 3D visual SLAM applications for MASs vision navigation and vi-

sion-based control systems. 

6.2 Localisation 

There are two types of localisation: local and global. Local, also known as pose maintenance, 

aims at determining the current pose of the robot relative to its previous pose(s) by estimating 

the local motion of the robot. Global localisation on the other hand, aims at estimating the 

pose of the robot relative to a global metric map, when no prior knowledge about its pose and 

motion is available. These two share common steps of data association and motion estimates. 

6.2.1 Data Association 

Data association involves matching the current set of observations with the past ones. In vis-

ual localisation, observations are usually natural 3D landmarks in the environment, identified 

by feature extraction methods from the image taken by the robot.  Successful data association 

requires the extracted features from the image frames to be distinctive and robust against 

viewpoint variations and changes in lighting. Traditional approaches to data association, such 

as those based on the widely used Harris detector [71] and KLT tracker [122], are sensitive to 

scale and orientation of the images and are not suited for localisation. Therefore, it is neces-

sary to use techniques that are invariant to scale, rotation and even affine changes (to com-

pensate for view-point variation).  

We used Speeded Up Robust Features (SURF) [123] for our data association step. SURF is a 

robust local feature detector that can be used in computer vision tasks like object recogni-

tion or 3D reconstruction. It is partly inspired by the SIFT descriptor [124]. The standard ver-
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sion of SURF is several times faster than SIFT and more robust against different image trans-

formations than SIFT. SURF is based on sums of 2D Haar wavelet responses and makes an 

efficient use of integral images. It uses an integer approximation to the determinant of the 

Hessian blob detector [71] which can be computed extremely quickly with an integral image 

(3 integer operations). As features, it uses the sum of the Haar wavelet response around the 

point of interest. Again, these can be computed with the aid of the integral image. 

Other descriptors for camera locationsation include Features from Accelerated Segment Test 

(FAST), FAST-Enhanced Repeatability (FASTER) [125], Binary Robust Independent Ele-

mentary Features (BRIEF) [126], and Oriented FAST and Rotated BRIEF (ORB) [127]. Alt-

hough FAST, FASTER and BRIEF are widely used because of their computational advantage 

however they do not perform well with orientation invariance, unlike SIFT or SURF that in-

clude an orientation operator. On the otherhand, ORB overcomes this orientation invariance 

limitation but it does not address scale invariance adequately. 

6.2.2 Motion Estimate 

Motion estimation involves computing the transformation that would bring each observation 

into the best alignment with its match. In local localisation, the estimated motion is relative to 

the previous pose of the robot, while in global localisation, it is relative to the origin of the 

world coordinate (map). Each three pairs of matched 3D landmarks can be used to estimate 

the robot’s pose. However the poses estimated from different pairs of matches may not be the 

same. This is mainly due to the presence of outliers in the results of data association. There-

fore, a robust fitting method should be applied to approximate the pose that is consistent with 

as many matched landmarks as possible. 

Given a set of current 3D landmarks Pt and their correspondences from past observations, 

𝑃𝑡−1 a 6 DOF motion, defined by the 3x3 rotation matrix R and the 3x1 translation vector T, 

maps each landmark P onto its correspondence P’: 

𝑃′ = 𝑅𝑃 + 𝑇 (6.1) 

T = (∆Χ, ∆Υ, ∆Ζ) indicates the translations in Χ, Υ, and Ζ axes and R corresponds to rota-

tions around each of these axes: yaw, ∆α, rotation around Χ, pitch, ∆θ, rotation around Υ, and 

roll, ∆β, rotation around Ζ. Given R and T, the current location (Χc, Υc, Ζc) and orientation 
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(αc, θc, βc) of the robot, in the world coordinate system, can be determined by the following 

equations respectively: 

�
𝑋𝑐
𝑌𝑐
𝑍𝑐
� = −𝑅−1𝑇 + �

𝑋𝑝
𝑌𝑝
𝑍𝑝
�  (6.2) 
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In (7.2) and (7.3), the elements of the set (𝑋𝑝, 𝑌𝑝, 𝑍𝑝, 𝛼𝑝, 𝜃𝑝, 𝛽𝑝) refers to the previous 

known pose of the robot. It is well known that R and T can be estimated from three non-

colinear matched landmarks. However, very often there are more matched landmarks than 

just three. Furthermore, poses estimated from different triplets of matched landmarks may not 

be the same due to the presence of outliners in the results of data association. Therefore, a 

robust fitting method should be applied to approximate the pose that is consistent with as 

many matched landmarks as possible.  

Least square is one of the most commonly used fitting strategies employed in many localisa-

tion methods. Given the set of matched landmarks, S = (∆Χ,∆Υ,∆Ζ,∆α,∆θ,∆β), a vector of 

correction X is subtracted from an initial motion estimate S0: 

𝑆 =  𝑆0 − 𝑋 (6.4) 

An initial pose estimate S0 in local localisation step is usually computed from odometry in-

formation, while in global localisation it is either a null vector or an initial estimate computed 

by other techniques (e.g. Hough Transform, RANSAC). If we set S0 to a null vector, X can be 

obtained by optimising the vector of error measurement ε, i.e. the re-projection error of 3D 

landmarks. For a known camera calibration matrix K, ε is defined as: 

𝜀 =  
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 (6.5) 

Where 𝑃𝑡𝑘is the position of the feature point in the reference frame corresponding to 3D 

landmark 𝑃𝑡𝑘. 
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As an alternative to the above approach, we used the RANSAC method [128], which searches 

for a random subset of matched landmarks that leads to a motion on which many of the corre-

sponding landmarks agree. The algorithm starts by randomly selecting three pairs of non-

collinear matched landmarks, and estimating a hypothesis pose. All matched landmarks are 

evaluated based on their re-projection error as calculated by (6.5) and those with error less 

than a predefined threshold are counted as supports for the hypothesis motion. The random 

selection, motion estimation, and support seeking steps are repeated for 𝑚𝑟𝑚𝑛𝑠𝑚𝑐 times or 

until a hypothesis is found which is consistent with 𝑎𝑟𝑚𝑛𝑠𝑚𝑐 percent of all matched landmarks. 

The estimated motion with maximum support is then selected and used by a least squares 

technique for the inliers to obtain a better motion estimate. 

6.2.3 Evaluation of Localization 

Evaluation of the algorithm with the lowest localisation error in [129] and our previous work 

in multi object detection and tracking featuring detection methods as detailed in Chapter 5. 

We have suggested that a combination of SURF and RANSAC, which yield a robust perfor-

mance, should be used in novel 3D Visual SLAM Framework. This yields to robust perfor-

mances. 

6.3 SLAM Using RGB-D Camera 

6.3.1 RGB-D Sensor 

As mentioned above, RGB-D cameras augment their standard RGB values with depth meas-

urements. Early research on RGB-D sensors was based on the combined colour images with 

depth measurements, from time-of-flight cameras, or laser rangefinders. These usually pro-

duce only a few depth measurements compared to the number of pixels within the RGB im-

age. 

The camera provides frames at VGA resolution of 640x480 pixels. If we want the depth im-

age to be aligned, pixel by pixel to its colour counterpart, we need to calibrate the cameras 

and transform all points in the depth image into RGB pixel coordinates, as the centre of pro-

jection of camera can never be at the same position. Fortunately, off-the-shelf hardware such 

as the Microsoft Kinect can do this transformation in hardware already. Our previous study of 

RGB-D sensors [130] provides an example of RGB-D type and their applications. 
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6.3.2 Visual SLAM 

The problem of inferring camera poses and mapping environment, given  only  images, is 

also known as “structure and motion”, in the computer vision literature, and as the problem of 

photogrammetry. The main difference to visual SLAM in robotics is the need for real-time 

algorithms. An autonomous robot needs to know where it is, while moving in an environ-

ment. Work on real-time visual SLAM started to spread after Andrew Davison’s work on 

MonoSLAM in 2003 [131], which used an Extended Kalman Filter (EKF) to track image 

features and the camera pose. Due to the computational complexity of the EKF, it can only 

track a very limited number of features at the same time. Nist´er in [132] demonstrated that 

Visual Odometry (VO) can be used efficiently even by matching large numbers of interest 

points in successive frames. When using RGB-D sensors, a new SLAM approach becomes 

available if we assume that there is always a large number of depth measurements. 

6.4 3D Visual SLAM Framework 

6.4.1 Related work 

There are many successful approaches to solve the visual SLAM problem using RGB-D sen-

sors. Laser-based localisation and mapping approaches often use scan matching, or the iterat-

ed closest point algorithm (ICP) [133] to estimate the motion between frames. GraphSLAM 

methods [134] use these motion estimates as inputs to construct and optimise a pose graph. 

Typically, these methods render a joint map only after pose graph optimisation, and this map 

is generally not used for further pose optimisation. The resulting maps are often represented 

as occupancy grid maps or octrees [135] and are therefore well suited for robot localisation or 

path planning. Henry et al. [136] was the first to apply the Graph SLAM approach to RGB-D 

data using a combination of visual features and ICP. A similar system was recently presented 

by Endres et al. [137] and was extensively evaluated on a public benchmark. In [138] a hand 

held approach using 3D point clouds was provided by an RGB-D sensor. 

The SLAM task can be divided into a frontend estimation that transforms between frames and 

a backend optimising the pose graph only, as in [138].  We will discuss the frontend and 

backend processing in the following section. 
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6.4.2 Proposed 3D Visual SLAM Framework  

Our proposed framework is similar to the recent work of Henry et al. [136].  However, we 

have used the SURF instead of SIFT feature as a preferred configuration in the localisation 

step. The frontend relies on SURF for feature extraction and matching. Then the location is 

estimated using RANSAC. A generalised ICP (GICP) algorithm is used for refining the 

alignment. This new variant of GICP combines shape and visual information for scan align-

ment. The SURF features with RANSAC act as an initialisation for GICP, which reduces the 

computation time.  The generated map is refined using Hierarchical Optimisation for Pose 

Graphs on Manifolds (HOG-Man). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-1 Proposed 3D Visual SLAM Framework 

6.4.3 Front End Processing 

SLAM front-end uses a registration step to align consecutive data frames. The alignment is 

usually done by estimating an approximate transformation between the consecutive frames 
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and then refining this initial estimate. The approach used in this study can be summarised into 

3 main steps: 

1. Computing the correspondence between successive frames; 

a) Find 2D feature correspondence between RGB Images, 

b) Reject bad correspondence, 

c) Transform the 2D features to their equivalent 3D features. 

2. Estimate the initial alignment of the frames; and 

3. Refine the alignment. 

6.4.3.1 Pose Refinement 

A standard ICP algorithm, introduced by Chen and Medioni [139] and; Besl and McKay 

[133], iteratively performs two operations until convergence. The first operation consists of 

finding the closest point in one point set, for each point in the other set. In the second opera-

tion, the motion between the two point sets is estimated using only the corresponding point 

pairs. Like most non-linear minimisation algorithms, the ICP algorithm needs a good initiali-

sation. Sometimes, this initialisation can be obtained by using knowledge about the position 

of the 3-D sensors, or by user input. If this is not possible, more elaborate techniques like 

principal component analysis, or a constrained exhaustive search become necessary. For our 

approach, we consider Generalised-ICP (GICP) [140], which is based on attaching a proba-

bilistic model to the minimisation step of the ICP algorithm as shown in Figure 6-2. 
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Figure 6-2 Standard ICP Algorithm 

The technique keeps the standard ICP algorithm unchanged to reduce complexity and main-

tain speed. Correspondences are still computed with the standard Euclidean distance rather 

than a probabilistic measure. This is done to allow the use of kd-trees in the look up of closest 

points and hence maintain the principle advantages of ICP over other fully probabilistic tech-

niques. Furthermore, the GICP is shown to be more robust to incorrect correspondences, and 

thus makes it easier to tune the maximum match distance parameter present in most variants 

of ICP. While maintaining the speed and simplicity of ICP, the GICP could also allow the 

addition of outlier terms, measurement noise and other probabilistic techniques to increase 

robustness. 

input: Two pointclouds: 𝐴 =  {𝑎𝑖},   𝐵 =  {𝑏𝑖}  An initial 
transformation: 𝑇0 

output: The correct transformation T, which aligns A and B. 

𝑇 ←  𝑇0; 

while not converged do 

   for i ← 1 to N do 

  𝑚𝒊 ← FindClosestPointInA(T. 𝑏𝑖); 

 if �𝑚𝑖 –  𝑇. 𝑏𝑖� ≤  𝑑𝑚𝑚𝑥 then 

    𝑤𝑖 ← 1; 

       else 

          𝑤𝑖 ← 0; 

       end 

    end 

    𝑇 ← 𝑎𝑒𝑎𝑚𝑒𝑎 {∑ 𝑤𝑖 ‖𝑇. 𝑏𝑖 −  𝑚𝑖‖2𝑖 }  

end 
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6.4.3.2 Keyframe selection 

We can overcome the limitation by adapting ideas of keyframe-based pose SLAM methods 

[141], [142], [143]. To limit local drift, we estimate the transformation between the current 

image and a keyframe. Every keyframe is inserted into a map and connected to its predeces-

sor through a constraint. When previously seen regions of the scene are revisited, additional 

constraints to older keyframes can be established to correct for the accumulated drift. These 

additional constraints are called loop closures. Therefore, a SLAM system needs to addition-

ally perform: keyframe selection, loop closure detection and validation, and map optimisa-

tion. 

6.4.3.3 Loop closing 

The loop detection is an important part of the front-end processing, since without it the graph 

will be like a linear chain. There are many loop closing techniques presented in the literature. 

According to [144], they can be classified into 3 main categories: map to map, image to map, 

and image to image. 

In this study a simple image to image loop detection approach is used. In the front-end, the 

graph is constructed as the camera moves. Thus, new areas are discovered and new poses are 

added to the graph. When adding a new pose, registration is required to align the data togeth-

er. After a certain time, small errors in registration will accumulate resulting in inconsistency 

in the generated map. This is obvious if the robot revisits a previously mapped place. Error 

will appear in the same place twice in the map. Hence, there is a need for the back-end pro-

cessing to adjust the accumulative error and align the complete data sequence. 

6.4.4 Back End Processing 

The incremental frame-to-frame alignment method inherently accumulates drift, because 

there is always a small error in the estimate. This error is caused by sensor noise and inaccu-

racies of the error model, which does not capture all variations in the sensor data. The SLAM 

back-end role is to optimise the map reducing this error by optimising the underling graph 

structure provided by the front end. This graph is composed of η vertices storing the observa-

tion at certain poses, and edges representing the neighbour relations between these poses. 

Global optimisation techniques estimate optimally all poses to build a consistent map of the 

environment. 
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6.4.4.1 Map optimisation 

The mapping uses a subset of all camera images (also called keyframes) to build a 3D point 

map of the surroundings. The keyframes are selected using some heuristic criteria. Then, a 

batch optimisation is applied on the joint state of map points and keyframes poses. There are 

several important differences that can be mentioned in comparison to the standard SLAM 

algorithm by Davison et al. [145]. First of all it does not use any EFK-based state estimation 

and does not consider any uncertainties, sparing a lot of computational effort. The lack of 

modelling uncertainties is compensated by using a vast amount of features and the local and 

global batch optimisation. This makes the algorithm fast and the map very accurate.  

HOG-Man is a new hierarchical optimisation solution to the graph-based SLAM problem. 

During online operation, the approach corrects only the coarse structure of the scene and not 

the overall map. In this way, only the updates for the parts of the map, that need to be in-

spected for making the data associations, are carried out. The hierarchical approach provides 

accurate non-linear map estimates while being highly efficient. 

6.4.5 Experiment and Discussion 

In our experiment, we have used evaluation tools as in [146] to evaluate our algorithms simi-

lar to the work of [147], which used two error metrics; the absolute trajectory error (ATE), 

and the relative pose error (RPE). The ATE is useful for measuring the performance of visual 

SLAM systems. It measures the absolute trajectory error by comparing the difference be-

tween the estimated and the groundtruth path after associating them using the timestamps. It 

also computes the mean (average), median and the standard deviation of these differences. 

The RPE is useful for measuring the drift of visual odometry systems. It computes the error 

in the relative motion between pairs of timestamps. 

Table 6-1 Evaluation for 3D Visual SLAM of Freiburg1 datasets (SURF) 

Sequence Name Translational RMSE Rotational RMSE Optimization Runtime 

FR1 

FR1 desk 

FR1 desk2 

FR1 floor 

FR1 plant 

0.080 m 

0.034 m 

0.048 m 

0.019 m 

0.054 m 

2.440 deg 

1.657 deg 

2.092 deg 

0.876 deg 

3.064 deg 

0.080 s 

0.034 s 

0.048 s 

0.019 s 

0.054 s 
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FR1 room 

FR1 rpy 

FR1 teddy 

FR1 xyz 

0.051 m 

0.048 m 

0.109 m 

0.021 m 

2.471 deg 

2.552 deg 

3.919 deg 

0.909 deg 

0.051 s 

0.048 s 

0.109 s 

0.021 s 

Average 0.052 m 2.220 deg 0.052 s 

Standard Deviation 0.028 m 0.980 deg 0.028 s 

 

Table 6-2 Evaluation for 3D Visual SLAM of Freiburg1 datasets (HOG-Man) 

Error Dataset Trajectory  

Error 

Translational Error Rotational  

Error 

RMSE 

Median 

Min 

Max 

Average 

FR1 room 

FR1 room 

FR1 room 

FR1 room 

 

0.079756 

0.065114 

0.010718 

0.163685 

0.070692 

0.077349 

0.073415 

0.014209 

0.147075 

0.071589 

3.628420 

0.042559 

0.282858 

7.151021 

3.127450 

Standard Deviation  0.036927 0.029291 1.839698 

 

Table 6-3 Comparison of Algorithms by ATE (m) 

Dataset 3D Visual SLAM 

(our) 

Dense Visual 

SLAM 

RGB-D 

SLAM 

MRSMap KinFu 

FR1 desk 

FR1 desk2 

FR1 room 

0.034 

0.048 

0.071 

0.021 

0.046 

0.084 

0.023 

0.043 

0.084 

0.043 

0.049 

0.069 

0.057 

0.420 

0.313 

 

The results presented in Table 6-1, Table 6-2, and Table 6-3 shown the RMSE value of abso-

lute trajectory error. Our 3D visual SLAM system yields competitive results compared to 

other state-of-art systems. In FR1 room dataset, we come behind the Multi-Resolution Surfel 

maps (MRSMap) [142]. In terms of the error produced, we received the 2nd best score. We 

also came in 3rd place for FR1 desk, and FR1 desk2 behind the RGB-D SLAM [137], and 

Dense Visual SLAM [148]. From the presented results, our approach proved to be one of the 

best algorithms in term of performance measured by ATE. Although it does not give the best 
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results compared to the Dense Visual SLAM or RBG-D SLAM, it does outperform MRSMap 

and KinectFusion (KinFu) [149] with the exception of FR1 room dataset that we fall behind 

the MRSMap.  

The reason why our approach did not produce the best score could come from the perfor-

mance of our test PC. We used an average laptop running Window 7 (64 bit) Intel Core i3-

2330M CPU (2.20 GHz) with 4GB RAM. The others [38], [41] have used Linux 3.2.0 (32 

bit), Intel i7-3610QM CPU (2.30 GHz), and Intel Core i7-2600 CPU (3.40 GHz) with 16 GB 

RAM. Our test platform may have been one of the factors contributing to the obtained results. 

For future work, we will look into improving the CPU processing time as well as enhance-

ment on parallel computing for frontend and backend 3D visual SLAM. We will also look at 

configuration of image resolution and processing time to achieve the optimum performance. 

6.5 Applications 

Applications of mobile robots include transportation, search and rescue, automated vacuum 

cleaning robots and many others. The development of the systems that can operate in com-

plex environments based on on-board sensors, without relying on external reference system 

like GPS, has been a major research focus in the robotics community over the last decades. 

MASs (Micro Autonomous Systems) have several indispensable applications in surveillance, 

intelligence and search and rescue (SAR) operations. The use of 3D visual SLAM onboard 

MAS is not yet spread although there are some successful implementations like [150], [151]. 

MASs such as quadrotor are particularly suitable for indoor navigation, due to their low 

speed flight and in-place hovering capabilities. The navigation in indoor environments is 

challenging from perception and control aspects [152]. Another application worth mentioning 

is vision-based MAS control, which is widely used in the area of robotics. Vision-based con-

trol uses image features in their feedback path; the pose is estimated by means of the visual 

SLAM algorithm to stabilise the position of MAS. It is usually integrated with visual tracking 

methods [153]. 

6.6 Conclusions 

We have successfully demonstrated a new 3D visual SLAM framework. First, we described 

the localisation algorithm which shares two common steps of data association and motion 
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estimate. We suggested the configuration of SURF and RANSAC based on our evaluation of 

previous work.  

Many visual SLAM research efforts are using single, or multiple cameras, as one type of sen-

sors in computer vision and photogrammetry context. However, in robotics, we need to con-

sider new solutions for real-time applications. Using RGB-D sensors for visual SLAM has 

proved to be one of the most interesting research areas in the past years due to their afforda-

ble price, availability and new, more powerful, algorithms that have been developed. 

We have introduced a 3D visual SLAM framework which incorporates a keyframe-based 

approach. The frontend processing consists of localisation steps, post refinement, and a loop 

closing system. The backend processing focuses on post graph optimisation. Our approach 

was compared with other state-of-the-art algorithms. It has generated competitive results and 

performs well for chosen datasets. This improvement is the result of localisation, post re-

finement, loop closing, and post graph optimisation methods application. 

A quadrotor can take images from an on-board camera and fly autonomously, in the indoor or 

outdoor environments, using the database in the real-time. The output from the 3D visual 

SLAM algorithm can produce a 3D model, which is useful for various tasks such interior 

design and architecture. The maps can be created using both the 3D point clouds and octomap 

for indoor robot navigation, environment perception, and vision-based control applications.  

For future work, we will investigate 3D visual SLAM for stereo cameras. This would allow 

us to work on larger areas, such as outdoor scenes like football fields or construction sites. 

We will look at implementing the 3D Visual SLAM algorithm to run onboard a quadrotor 

and find a configuration for resolution and real-time processing. It is envisaged that the cam-

era pose estimation is fast, accurate, and robust enough to be used for position control of an 

autonomous quadrotor. 
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Chapter 7 Conclusions and Future Devel-

opment 

This thesis presents a comprehensive research results and describe a complete 

framework for the problem of detecting and tracking multiple objects in images and videos. 

The proposed approach builds upon ideas in image processing, computer vision and machine 

learning to provide a general, easy to use and fast method for multi object detection and 

tracking applications.  

The main contribution of the presented research is the development of robust computer vision 

algorithms, for detection and tracking, of single and multiple humans, in real-time applica-

tions. It is shown that proposed features give better performance compared to many state-of-

the-art algorithms. 

We have incorporated the RGB-D sensor, the ‘Kinect’ device that has several advantages 

over the traditional cameras. These include working in a low lighting environment, simplify-

ing the task of background subtraction, and providing realistic images of humans. We have 

used a better training dataset which subsequencly was reducing the computational cost. 

The proposed frameworks, and the incorporated Kinect device for the MTDT algorithms, can 

be used for several other computer vision tasks, ranging from tracking to activity recognition. 

The applications are in both commercial and military domains. For example we could have a 

military surveilliance application, or search and rescure in the hostile environment.  For 

commercial applications, an example would be e-commerce used to delivery packages over 

the air/ground by MAS. New applications are emerging on daily bases. 

7.1 Summary of Results 

• Chapter 1 – Introduction 

• Chapter 2 – Literature Review 

• Chapter 3 - Human Body Detection From Video File 
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Chapter 3 presents an approach for human upper body detection. Research objective was to 

minimise computation time and improve detection accuracy. Our proposed solution has 

framework divided into 3 main processing functions; detect upper body, identify upper body 

and track upper body. In the upper body detection, we have utilised an existing Viola-Jones 

detection algorithm and a trained classification model. In the upper body identification, we 

have identified the skin tone colour as a feature to track. The histogram based tracker method 

was used for the process of upper body tracking. The approach was used to construct an up-

per body detection system with 84.6% accuracy, 0.007 % of false positive and 28 ms pro-

cessing time, when available hardware was used as specified before. 

• Chapter 4 - 2D MTDT Algorithm 
Chapther 4 presents an algorithm that performs 2D detection and tracking of multiple moving 

objects from a video file. The detection part uses background subtraction based on Gaussian 

mixture models. The tracking part is estimated by a Kalman filter. Our results show that the 

system can operate in near real time and successfully detect, track, and identify multiple tar-

gets in the presence of partial occlusion. The average processing time for detection and track-

ing over 2400 frames are 31.6 and 36.3 ms respectively. 

• Chapter 5 - 3D MTDT Algorithm using RGB-D Camera 
Chapter 5 introduces an algorithm that can detect and track people in indoor spaces without 

instrumenting the environment. Multiple detectors comprising upper body, face, skin colour, 

motion, and shape detectors. The 3D MTDT algorithm was modelled based on the Bayesian 

theorem. Each detector has different strengths and weaknesses focusing on different body 

components or data characteristics, allowing the overall combination to handle occlusion, 

motion, truncation, and pose variation.  

Raw data from Kinect provided rich information for skelenton tracking. The tracking part 

was based on the Kalman filter application. Each object was assigned to its associate track. 

This is done for each person. Our track management function was able to initialise, update, 

recover, and remove tracks. The 3D MTDT provided robustness and high accuracy of person 

detection with a 13% improvement compared to DPM algorithm. Overall results for detecting 

and tracking multiple people in an indoor environment in 3D space earned 96% of accuracy. 

• Chapter 6 - 3D Visual SLAM 
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In Chapter 6 a new 3D visual SLAM framework was presented. First, we described the local-

isation algorithm which shares two common steps of data association and motion estimate. 

We proposed a configuration of SURF and RANSAC based on our evaluation of previous 

work.  

We have introduced a 3D visual SLAM framework which incorporates the keyframe-based 

approach. The frontend processing consists of localisation steps, post refinement by utilising 

G-ICP method and a loop closing system. The backend processing focuses on post graph op-

timisation using the HOG-Man method. Our approach was compared with other state-of-the-

art algorithms. It has generated competitive results and performs well with the chosen da-

tasets. 

• Chapter 7 – Conclusion and Future Development 

7.2 Limitations 

The algorithm we proposed in Chapter 6, has also some limitations, mainly from the Kinect 

sensor. Two of the most significant ones are the limited field of view and the poor depth es-

timation over eight metres of distance. The Kinect also suffers in the presence of sunlight and 

failed to detect people. Regarding the HOG people detector, it performs very well when deal-

ing with people completely visible, however it gives poor performance in the presence of 

partial occlusions.  

Another key problem is the time needed to evaluate a single image (128 × 64 pixels): about 

1.5 milliseconds on our hardware, described before. However the classifier proved to be very 

effective to recover tracks after full occlusions, as it needs a scene of constant light. It was 

observed that when there is some change in the brightness of the environment, its effective-

ness decreases. This is caused by the type of features we use to classify the tracks; they are 

not very robust to lighting changes. 

7.3 Future development 

For future directions in these research areas, we are aiming to develop computer vision algo-

rithms to: 

• add multiple cameras to support the  Wh algorithms  

• integrate with MAS platforms to operate in real time and on-board 

• operate with stereo camera for multiple targets detection and tracking 
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• integrate with virtual reality gears e.g. Oculus Rift for visual control 

• Investigate for parallel computing options 

 

The developed computer vision algorithms will: 

• have high efficiency, robustness for real time applications 

• add machine learning mechanism e.g. deep learning, online training 

• work with various type of targets (classification problem) 

• handling of environmental factors i.e. shadow, illumination 

• improve articulation and occlusion 

• make use of open platform, open SW/library/dataset 

Chapter 3 – We are conducting research in vision and image recognition for the appli-

cations in advanced manufacturing, surveillance, search and rescue missions, autonomous 

driving and other. Some initial results are presented here. For future improvements, we will 

adjust parameters and modify some functions in order to have more accurate upper body de-

tectors. 

Chapter 4 – We aim to modify parameters for the detection, track assignment and de-

letion steps.  The likelihood of tracking errors can be reduced by using a more complex mo-

tion model, such as constant acceleration by using an Extended Kalman filter or Partical fil-

ter. Also, we can incorporate other cues for associating detections over time, such as size, 

shape, and colour to inprove the detection rate. 

 Chapther 5 – In future work, we wanted to use data-driven training to improve the 

algorithm’s parameters without hand tuning. For example, logistic regression can be used to 

map detector confidence for better likelihood values. We aim to learn person-specific detec-

tion models to improve data association, such as when people leave the field of camera view 

of the camera for short periods of time. We will improve tracklets for better matching of 

overall algorithm robustness to provide meaningful track results from which motion patterns 

can be learned. The idea is to learn the interactions between people during different activities, 

like walking in a group or standing in a queue. 

Chapter 6 – We will investigate 3D visual SLAM for stereo cameras. This would al-

low us to work on larger areas, such as outdoor scenes like football field or construction sites. 

We will look at implementing the 3D Visual SLAM algorithm to run onboard a quadrotor 
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and find a configuration for resolution and real-time processing. It is envisaged that the cam-

era pose estimation is fast, accurate, and robust enough to be used for position control of an 

autonomous quadrotor. 
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APPENDIX A – ALGORITHM EXPLANATION & SOURCE CODES 
 

A1 Human Body Detection from VDO File  

The following describes human body detection from vdo file algorithm. 

Introduction 

Object detection and tracking are important in many computer vision applications including 

activity recognition, automotive safety, and surveillance. In this algorithm, we will develop a 

simple upper body tracking system by dividing the tracking problem into three separate stag-

es: 

1. Detect the upper body to track 

2. Identify features to track 

3. Track the upper body 

 

Stage 1: Detect the Upper body to track 

Before we begin tracking an upper body, we need to first detect it. Use 

the vision.CascadeObjectDetector to detect the location of an upper body in a video frame. 

The cascade object detector uses the Viola-Jones detection algorithm and a trained classifica-

tion model for detection. The detector is configured to detect upper body, but it can be 

changed for other object types. 

 

% Create a cascade detector object. 

UpperBodyDetector = vision.CascadeObjectDetector(); 

% Read a video frame and run the detector. 

videoFileReader = vision.VideoFileReader('visionUpBody.avi'); 

videoFrame      = step(videoFileReader); 

bbox            = step(upperDetector, videoFrame); 

 

% Draw the returned bounding box around the detected upper body. 

videoOut = insertObjectAnnotation(videoFrame,'rectangle',bbox,'UpperBody'); 

figure, imshow(videoOut), title('Upper Body'); 
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Detectd upper body 

We can use the cascade object detector to track an upper body across successive video 

frames. However, when the the person turns their head or body, we may lose tracking. This 

limitation is due to the type of trained classification model used for detection. To avoid this 

issue, and because performing face detection for every video frame is computationally inten-

sive, this algorithm uses a simple feature for tracking. 

Stage 2: Identify Upper Body Features To Track 

Once the upper body is located in the video, the next step is to identify a feature that will help 

we track the upper body. For example, we can use the shape, texture, or colour. Choose a 

feature that is unique to the object and remains invariant even when the object moves. 

In this work, we use skin tone as the feature to track. The skin tone provides a good deal of 

contrast between the face and the background and does not change as the person rotates or 

moves. 

% Get the skin tone information by extracting the Hue from the video frame converted to the 

HSV color space. 

[hueChannel,~,~] = rgb2hsv(videoFrame); 

% Display the Hue Channel data and draw the bounding box around the upper body. 

figure, imshow(hueChannel), title('Hue channel data'); 

rectangle('Position',bbox(1,:),'LineWidth',2,'EdgeColor',[1 1 0]) 
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Hue channel data 

Stage 3: Track the Upper Body 

With the skin tone selected as the feature to track, we can now use 

the vision.HistogramBasedTracker for tracking. The histogram based tracker uses the CAM-

Shift algorithm, which provides the capability to track an object using a histogram of pixel 

values. In this work, the Hue channel pixels are extracted from the nose region of the detected 

upper body. These pixels are used to initialise the histogram for the tracker. The example 

tracks the object over successive video frames using this histogram. 

 

% Detect the nose within the upper body region. The nose provides a more accurate measure 

of the skin tone because it does not contain any background pixels. 

noseDetector = vision.CascadeObjectDetector('Nose', 'UseROI', true); 

noseBBox     = step(noseDetector, videoFrame, bbox(1,:)); 

 

% Create a tracker object. 

tracker = vision.HistogramBasedTracker; 

 

% Initialize the tracker histogram using the Hue channel pixels from the nose. 

initialiseObject(tracker, hueChannel, noseBBox(1,:)); 

 

% Create a video player object for displaying video frames. 

videoInfo    = info(videoFileReader); 
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videoPlayer  = vision.VideoPlayer('Position',[300 300 videoInfo.VideoSize+30]); 

 

% Track the upper body over successive video frames until the video is finished. 

while ~isDone(videoFileReader) 

 

    % Extract the next video frame 

    videoFrame = step(videoFileReader); 

 

    % RGB -> HSV 

    [hueChannel,~,~] = rgb2hsv(videoFrame); 

 

    % Track using the Hue channel data 

    bbox = step(tracker, hueChannel); 

 

    % Insert a bounding box around the object being tracked 

    videoOut = insertObjectAnnotation(videoFrame,'rectangle',bbox,'UpperBody'); 

 

    % Display the annotated video frame using the video player object 

    step(videoPlayer, videoOut); 

 

end 

 

% Release resources 

release(videoFileReader); 

release(videoPlayer); 

 

In this work, we created a simple upper body tracking system that automatically detects and 

tracks a single upper body. We tried changing the input video file and configuration. wW 

were able to track other object types. In some case, we notice poor tracking results. By ad-

justing the Hue channel data to ensure there is enough contrast between the upper body re-

gion and the background, the problem was fixed. 
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A2 2D Multi Targets Detection and Tracking Algorithm  

This algorithm shows how to perform automatic detection and motion-based tracking of mov-

ing objects in a video from a stationary camera. 

Detection of moving objects and motion-based tracking are important components of many 

computer vision applications, including activity recognition, traffic monitoring, and automo-

tive safety. The problem of motion-based object tracking can be divided into two parts: 

Part 1: detecting moving objects in each frame 

Part 2: associating the detections corresponding to the same object over time 

The detection of moving objects uses a background subtraction algorithm based on Gaussian 

mixture models. Morphological operations are applied to the resulting foreground mask to 

eliminate noise. Finally, blob analysis detects groups of connected pixels, which are likely to 

correspond to moving objects. 

The association of detections to the same object is based solely on motion. The motion of 

each track is estimated by a Kalman filter. The filter is used to predict the track's location in 

each frame, and determine the likelihood of each detection being assigned to a track. 

Track maintenance becomes an important aspect of this algorithm. In any given frame, some 

detections may be assigned to tracks, while other detections and tracks may remain unas-

signed. The assigned tracks are updated using the corresponding detections. The unassigned 

tracks are marked invisible. An unassigned detection begins a new track. 

Each track keeps count of the number of consecutive frames, where it remained unassigned. 

If the count exceeds a specified threshold, the example assumes that the object left the field 

of view and it deletes the track. 

This algorithm is a function with the main body at the top and helper routines in the form 

of nested functions below. 

 

function multiObjectTracking() 

% Create System objects used for reading video, detecting moving objects, and displaying the 

results. 

obj = setupSystemObjects(); 

tracks = initialiseTracks(); % Create an empty array of tracks. 
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nextId = 1; % ID of the next track 

 

% Detect moving objects, and track them across video frames. 

while ~isDone(obj.reader) 

    frame = readFrame(); 

    [centroids, bboxes, mask] = detectObjects(frame); 

    predictNewLocationsOfTracks(); 

    [assignments, unassignedTracks, unassignedDetections] = ... 

        detectionToTrackAssignment(); 

 

    updateAssignedTracks(); 

    updateUnassignedTracks(); 

    deleteLostTracks(); 

    createNewTracks(); 

 

    displayTrackingResults(); 

end 
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The following describes 2D MTDT algorithm in step by step 

• Create System Objects 

• Initialise Tracks 

• Read a Video Frame 

• Detect Objects 

• Predict New Locations of Existing Tracks 

• Assign Detections to Tracks 

• Update Assigned Tracks 

• Update Unassigned Tracks 

• Delete Lost Tracks 

• Create New Tracks 

• Display Tracking Results 

Create System Objects 

Create System objects used for reading the video frames, detecting foreground objects, and 

displaying results. 

    function obj = setupSystemObjects() 

        % Initialize Video I/O 

        % Create objects for reading a video from a file, drawing the tracked 

        % objects in each frame, and playing the video. 
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        % Create a video file reader. 

        obj.reader = vision.VideoFileReader('atrium.avi'); 

 

        % Create two video players, one to display the video, 

        % and one to display the foreground mask. 

        obj.videoPlayer = vision.VideoPlayer('Position', [20, 400, 700, 400]); 

        obj.maskPlayer = vision.VideoPlayer('Position', [740, 400, 700, 400]); 

 

        % Create System objects for foreground detection and blob analysis 

        % The foreground detector is used to segment moving objects from 

        % the background. It outputs a binary mask, where the pixel value 

        % of 1 corresponds to the foreground and the value of 0 corresponds 

        % to the background. 

 

        obj.detector = vision.ForegroundDetector('NumGaussians', 3, ... 

            'NumTrainingFrames', 40, 'MinimumBackgroundRatio', 0.7); 

 

        % Connected groups of foreground pixels are likely to correspond to moving 

        % objects.  The blob analysis System object is used to find such groups 

        % (called 'blobs' or 'connected components'), and compute their 

        % characteristics, such as area, centroid, and the bounding box. 

 

        obj.blobAnalyser = vision.BlobAnalysis('BoundingBoxOutputPort', true, ... 

            'AreaOutputPort', true, 'CentroidOutputPort', true, ... 

            'MinimumBlobArea', 400); 

    end 

Initialise Tracks 

The initialiseTracks function creates an array of tracks, where each track is a structure repre-

senting a moving object in the video. The purpose of the structure is to maintain the state of a 

tracked object. The state consists of information used for detection to track assignment, track 

termination, and display. 

The structure contains the following fields: 
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• id : the integer ID of the track 

• bbox : the current bounding box of the object; used for display 

• kalmanFilter : a Kalman filter object used for motion-based tracking 

• age : the number of frames since the track was first detected 

• totalVisibleCount : the total number of frames in which the track was detected (visible) 

• consecutiveInvisibleCount : the number of consecutive frames for which the track was not 

detected (invisible). 

Noisy detections tend to result in short-lived tracks. For this reason, the example only dis-

plays an object after it was tracked for some number of frames. This happens 

when totalVisibleCount exceeds a specified threshold. 

When no detections are associated with a track for several consecutive frames, the example 

assumes that the object has left the field of view and deletes the track. This happens 

when consecutiveInvisibleCount exceeds a specified threshold. A track may also get deleted 

as noise if it was tracked for a short time, and marked invisible for most of the of the frames. 

    function tracks = initialiseTracks() 

        % create an empty array of tracks 

        tracks = struct(... 

            'id', {}, ... 

            'bbox', {}, ... 

            'kalmanFilter', {}, ... 

            'age', {}, ... 

            'totalVisibleCount', {}, ... 

            'consecutiveInvisibleCount', {}); 

    end 

Read a Video Frame 

Read the next video frame from the video file. 

    function frame = readFrame() 

        frame = obj.reader.step(); 

    end 

Detect Objects 

The detectObjects function returns the centroids and the bounding boxes of the detected ob-

jects. It also returns the binary mask, which has the same size as the input frame. Pixels with 
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a value of 1 correspond to the foreground, and pixels with a value of 0 correspond to the 

background. 

The function performs motion segmentation using the foreground detector. It then performs 

morphological operations on the resulting binary mask to remove noisy pixels and to fill the 

holes in the remaining blobs. 

    function [centroids, bboxes, mask] = detectObjects(frame) 

 

        % Detect foreground. 

        mask = obj.detector.step(frame); 

 

        % Apply morphological operations to remove noise and fill in holes. 

        mask = imopen(mask, strel('rectangle', [3,3])); 

        mask = imclose(mask, strel('rectangle', [15, 15])); 

        mask = imfill(mask, 'holes'); 

 

        % Perform blob analysis to find connected components. 

        [~, centroids, bboxes] = obj.blobAnalyser.step(mask); 

    end 

Predict New Locations of Existing Tracks 

Use the Kalman filter to predict the centroid of each track in the current frame, and update its 

bounding box accordingly. 

    function predictNewLocationsOfTracks() 

        for i = 1:length(tracks) 

            bbox = tracks(i).bbox; 

 

            % Predict the current location of the track. 

            predictedCentroid = predict(tracks(i).kalmanFilter); 

 

            % Shift the bounding box so that its center is at 

            % the predicted location. 

            predictedCentroid = int32(predictedCentroid) - bbox(3:4) / 2; 

            tracks(i).bbox = [predictedCentroid, bbox(3:4)]; 
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        end 

    end 

Assign Detections to Tracks 

Assigning object detections in the current frame to existing tracks is done by minimizing 

cost. The cost is defined as the negative log-likelihood of a detection corresponding to a 

track. 

The algorithm involves two steps: 

Step 1: Compute the cost of assigning every detection to each track using the distance method 

of the vision.KalmanFilter System object™. The cost takes into account the Euclidean dis-

tance between the predicted centroid of the track and the centroid of the detection. It also 

includes the confidence of the prediction, which is maintained by the Kalman filter. The re-

sults are stored in an MxN matrix, where M is the number of tracks, and N is the number of 

detections. 

Step 2: Solve the assignment problem represented by the cost matrix using 

the assignDetectionsToTracks function. The function takes the cost matrix and the cost of not 

assigning any detection to a track. 

The value for the cost of not assigning a detection to a track depends on the range of values 

returned by the distance method of the vision.KalmanFilter. This value must be tuned exper-

imentally. Setting it too low increases the likelihood of creating a new track, and may result 

in track fragmentation. Setting it too high may result in a single track corresponding to a se-

ries of separate moving objects. 

The assignDetectionsToTracks function uses the Munkres' version of the Hungarian algo-

rithm to compute an assignment which minimizes the total cost. It returns an M x 2 matrix 

containing the corresponding indices of assigned tracks and detections in its two columns. It 

also returns the indices of tracks and detections that remained unassigned. 

    function [assignments, unassignedTracks, unassignedDetections] = ... 

            detectionToTrackAssignment() 

 

        nTracks = length(tracks); 

        nDetections = size(centroids, 1); 

 

        % Compute the cost of assigning each detection to each track. 
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        cost = zeros(nTracks, nDetections); 

        for i = 1:nTracks 

            cost(i, :) = distance(tracks(i).kalmanFilter, centroids); 

        end 

 

        % Solve the assignment problem. 

        costOfNonAssignment = 20; 

        [assignments, unassignedTracks, unassignedDetections] = ... 

            assignDetectionsToTracks(cost, costOfNonAssignment); 

    end 

Update Assigned Tracks 

The updateAssignedTracks function updates each assigned track with the corresponding de-

tection. It calls the correct method of vision.KalmanFilter to correct the location estimate. 

Next, it stores the new bounding box, and increases the age of the track and the total visible 

count by 1. Finally, the function sets the invisible count to 0. 

    function updateAssignedTracks() 

        numAssignedTracks = size(assignments, 1); 

        for i = 1:numAssignedTracks 

            trackIdx = assignments(i, 1); 

            detectionIdx = assignments(i, 2); 

            centroid = centroids(detectionIdx, :); 

            bbox = bboxes(detectionIdx, :); 

 

            % Correct the estimate of the object's location 

            % using the new detection. 

            correct(tracks(trackIdx).kalmanFilter, centroid); 

 

            % Replace predicted bounding box with detected 

            % bounding box. 

            tracks(trackIdx).bbox = bbox; 

 

            % Update track's age. 

            tracks(trackIdx).age = tracks(trackIdx).age + 1; 
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            % Update visibility. 

            tracks(trackIdx).totalVisibleCount = ... 

                tracks(trackIdx).totalVisibleCount + 1; 

            tracks(trackIdx).consecutiveInvisibleCount = 0; 

        end 

    end 

Update Unassigned Tracks 

Mark each unassigned track as invisible, and increase its age by 1. 

    function updateUnassignedTracks() 

        for i = 1:length(unassignedTracks) 

            ind = unassignedTracks(i); 

            tracks(ind).age = tracks(ind).age + 1; 

            tracks(ind).consecutiveInvisibleCount = ... 

                tracks(ind).consecutiveInvisibleCount + 1; 

        end 

    end 

Delete Lost Tracks 

The deleteLostTracks function deletes tracks that have been invisible for too many consecu-

tive frames. It also deletes recently created tracks that have been invisible for too many 

frames overall. 

    function deleteLostTracks() 

        if isempty(tracks) 

            return; 

        end 

 

        invisibleForTooLong = 20; 

        ageThreshold = 8; 

 

        % Compute the fraction of the track's age for which it was visible. 

        ages = [tracks(:).age]; 

        totalVisibleCounts = [tracks(:).totalVisibleCount]; 
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        visibility = totalVisibleCounts ./ ages; 

 

        % Find the indices of 'lost' tracks. 

        lostInds = (ages < ageThreshold & visibility < 0.6) | ... 

            [tracks(:).consecutiveInvisibleCount] >= invisibleForTooLong; 

 

        % Delete lost tracks. 

        tracks = tracks(~lostInds); 

    end 

Create New Tracks 

Create new tracks from unassigned detections. Assume that any unassigned detection is a 

start of a new track. In practice, we can use other cues to eliminate noisy detections, such as 

size, location, or appearance. 

    function createNewTracks() 

        centroids = centroids(unassignedDetections, :); 

        bboxes = bboxes(unassignedDetections, :); 

 

        for i = 1:size(centroids, 1) 

 

            centroid = centroids(i,:); 

            bbox = bboxes(i, :); 

 

            % Create a Kalman filter object. 

            kalmanFilter = configureKalmanFilter('ConstantVelocity', ... 

                centroid, [200, 50], [100, 25], 100); 

 

            % Create a new track. 

            newTrack = struct(... 

                'id', nextId, ... 

                'bbox', bbox, ... 

                'kalmanFilter', kalmanFilter, ... 

                'age', 1, ... 

                'totalVisibleCount', 1, ... 
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                'consecutiveInvisibleCount', 0); 

 

            % Add it to the array of tracks. 

            tracks(end + 1) = newTrack; 

 

            % Increment the next id. 

            nextId = nextId + 1; 

        end 

    end 

Display Tracking Results 

The displayTrackingResults function draws a bounding box and label ID for each track on the 

video frame and the foreground mask. It then displays the frame and the mask in their respec-

tive video players. 

    function displayTrackingResults() 

        % Convert the frame and the mask to uint8 RGB. 

        frame = im2uint8(frame); 

        mask = uint8(repmat(mask, [1, 1, 3])) .* 255; 

 

        minVisibleCount = 8; 

        if ~isempty(tracks) 

 

            % Noisy detections tend to result in short-lived tracks. 

            % Only display tracks that have been visible for more than 

            % a minimum number of frames. 

            reliableTrackInds = ... 

                [tracks(:).totalVisibleCount] > minVisibleCount; 

            reliableTracks = tracks(reliableTrackInds); 

 

            % Display the objects. If an object has not been detected 

            % in this frame, display its predicted bounding box. 

            if ~isempty(reliableTracks) 

                % Get bounding boxes. 

                bboxes = cat(1, reliableTracks.bbox); 
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                % Get ids. 

                ids = int32([reliableTracks(:).id]); 

 

                % Create labels for objects indicating the ones for 

                % which we display the predicted rather than the actual 

                % location. 

                labels = cellstr(int2str(ids')); 

                predictedTrackInds = ... 

                    [reliableTracks(:).consecutiveInvisibleCount] > 0; 

                isPredicted = cell(size(labels)); 

                isPredicted(predictedTrackInds) = {' predicted'}; 

                labels = strcat(labels, isPredicted); 

 

                % Draw the objects on the frame. 

                frame = insertObjectAnnotation(frame, 'rectangle', ... 

                    bboxes, labels); 

 

                % Draw the objects on the mask. 

                mask = insertObjectAnnotation(mask, 'rectangle', ... 

                    bboxes, labels); 

            end 

        end 

 

        % Display the mask and the frame. 

        obj.maskPlayer.step(mask); 

        obj.videoPlayer.step(frame); 

    end 

This algorithm created a motion-based system for detecting and tracking multiple moving 

objects. The tracking in this algorithm was solely based on motion with the assumption that 

all objects move in a straight line with constant speed. When the motion of an object signifi-

cantly deviates from this model, the example may produce tracking errors.  
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The likelihood of tracking errors can be reduced by using a more complex motion model, 

such as constant acceleration, or by using multiple Kalman filters for every object. Also, we 

can incorporate other cues for associating detections over time, such as size, shape, and col-

our. 
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APPENDIX B – MODERN RESEARCES & OTHER COMPUTER VISION APPROACHES 
 

B1 Classification Using Bag of Features 

This algorithm shows how to use a bag of features approach for image category classifica-

tion. This technique is also often referred to as bag of words. Visual image categorization is a 

process of assigning a category label to an image under test. Categories may contain images 

representing just about anything, for example, dogs, cats, Download Caltech101 Image Set 

• Load Image Sets 

• Prepare Training and Validation Image Sets 

• Create a Visual Vocabulary and Train an Image Category Classifier 

• Evaluate Classifier Performance 

• Try the Newly Trained Classifier on Test Images 

 

Download Caltech101 image set 

To learn about bag of features image category classification, we will first download a suitable 

image data set. One of the most widely cited and used data sets is Caltech 101, collected by 

Fei-Fei Li, Marco Andreetto, and Marc 'Aurelio Ranzato. 

% Location of the compressed data set 

url = 

'http://www.vision.caltech.edu/Image_Datasets/Caltech101/101_ObjectCategories.tar.gz'; 

% Store the output in a temporary folder 

outputFolder = fullfile(tempdir, 'caltech101'); % define output folder 

if ~exist(outputFolder, 'dir') % download only once 

    disp('Downloading 126MB Caltech101 data set...'); 

    untar(url, outputFolder); 

end 

 

Load image sets 

Instead of operating on the entire Caltech 101 set, which can be time consuming, use three 

categories: airplanes, ferry, and laptop. Note that for the bag of features approach to be effec-
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tive, majority of each image's area must be occupied by the subject of the category, for ex-

ample, an object or a type of scene. 

rootFolder = fullfile(outputFolder, '101_ObjectCategories'); 

Construct an array of image sets based on the following categories from Caltech 101: 'air-

planes', 'ferry', 'laptop'. Use imageSet class to help us manage the data. 

Since imageSet operates on image file locations, and therefore does not load all the images 

into memory, it is safe to use on large image collections. 

imgSets = [ imageSet(fullfile(rootFolder, 'airplanes')), ... 

            imageSet(fullfile(rootFolder, 'ferry')), ... 

            imageSet(fullfile(rootFolder, 'laptop')) ]; 

Each element of the imgSets variable now contains images associated with the particular cat-

egory. We can easily inspect the number of images per category as well as category labels as 

shown below: 

{ imgSets.Description } % display all labels on one line 

[imgSets.Count]         % show the corresponding count of images 

ans =  

 

    'airplanes'    'ferry'    'laptop' 

 

 

ans = 

 

   800    67    81 

 

Note that the labels were derived from directory names used to construct the image sets, but 

can be customized by manually setting the Description property of the imageSet object. 

 

Prepare training and validation image sets 

Since imgSets above contains an unequal number of images per category, let's first adjust it, 

so that the number of images in the training set is balanced. 

minSetCount = min([imgSets.Count]); % determine the smallest amount of images in a cate-

gory 
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% Use partition method to trim the set. 

imgSets = partition(imgSets, minSetCount, 'randomize'); 

 

% Notice that each set now has exactly the same number of images. 

[imgSets.Count] 

ans = 

 

    67    67    67 

 

Separate the sets into training and validation data. Pick 30% of images from each set for the 

training data and the remainder, 70%, for the validation data. Randomize the split to avoid 

biasing the results. 

[trainingSets, validationSets] = partition(imgSets, 0.3, 'randomize'); 

The above call returns two arrays of imageSet objects ready for training and validation tasks. 

Below, we can see example images from the three categories included in the training data. 

airplanes = read(trainingSets(1),1); 

ferry     = read(trainingSets(2),1); 

laptop    = read(trainingSets(3),1); 

 

figure 

 

subplot(1,3,1); 

imshow(airplanes) 

subplot(1,3,2); 

imshow(ferry) 

subplot(1,3,3); 

imshow(laptop) 
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Create a visual vocabulary and train an image category classifier 

Bag of words is a technique adapted to computer vision from the world of natural language 

processing. Since images do not actually contain discrete words, we first construct a "vocabu-

lary" of SURF features representative of each image category. 

This is accomplished with a single call to bagOfFeatures function, which: 

1. extracts SURF features from all images in all image categories 

2. constructs the visual vocabulary by reducing the number of features through quantization 

of feature space using K-means clustering 

bag = bagOfFeatures(trainingSets); 

Creating Bag-Of-Features from 3 image sets. 

-------------------------------------------- 

* Image set 1: airplanes. 

* Image set 2: ferry. 

* Image set 3: laptop. 

 

* Extracting SURF features using the Grid selection method. 

** The GridStep is [8 8] and the BlockWidth is [32 64 96 128]. 

 

* Extracting features from 20 images in image set 1...done. Extracted 81684 features. 

* Extracting features from 20 images in image set 2...done. Extracted 70832 features. 

* Extracting features from 20 images in image set 3...done. Extracted 98344 features. 

 

* Keeping 80 percent of the strongest features from each image set. 
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* Balancing the number of features across all image sets to improve clustering. 

** Image set 2 has the least number of strongest features: 56666. 

** Using the strongest 56666 features from each of the other image sets. 

 

* Using K-Means clustering to create a 500 word visual vocabulary. 

* Number of features          : 169998 

* Number of clusters (K)      : 500 

 

* Initializing cluster centers...100.00%. 

* Clustering...completed 26/100 iterations (~0.37 seconds/iteration)...converged in 26 itera-

tions. 

 

* Finished creating Bag-Of-Features 

 

Additionally, the bagOfFeatures object provides an encode method for counting the visual 

word occurrences in an image. It produced a histogram that becomes a new and reduced rep-

resentation of an image. 

img = read(imgSets(1), 1); 

featureVector = encode(bag, img); 

 

% Plot the histogram of visual word occurrences 

figure 

bar(featureVector) 

title('Visual word occurrences') 

xlabel('Visual word index') 

ylabel('Frequency of occurrence') 

 

This histogram forms a basis for training a classifier and for the actual image classification. 

In essence, it encodes an image into a feature vector. 

Encoded training images from each category are fed into a classifier training process invoked 

by the trainImageCategoryClassifier function. Note that this function relies on the multiclass 

linear SVM classifier from the Statistics and Machine Learning Toolbox™. 

categoryClassifier = trainImageCategoryClassifier(trainingSets, bag); 
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Training an image category classifier for 3 categories. 

-------------------------------------------------------- 

* Category 1: airplanes 

* Category 2: ferry 

* Category 3: laptop 

 

* Encoding features for category 1...done. 

* Encoding features for category 2...done. 

* Encoding features for category 3...done. 

 

* Finished training the category classifier. Use evaluate to test the classifier on a test set. 

 

The above function utilizes the encode method of the input bag object to formulate feature 

vectors representing each image category from the trainingSets array of imageSet objects. 

 

Evaluate classifier performance 

Now that we have a trained classifier, categoryClassifier, let's evaluate it. As a sanity check, 

let's first test it with the training set, which should produce near perfect confusion matrix, i.e. 

ones on the diagonal. 

confMatrix = evaluate(categoryClassifier, trainingSets); 

Evaluating image category classifier for 3 categories. 

------------------------------------------------------- 

 

* Category 1: airplanes 

* Category 2: ferry 

* Category 3: laptop 

 

* Evaluating 20 images from category 1...done. 

* Evaluating 20 images from category 2...done. 

* Evaluating 20 images from category 3...done. 

 

* Finished evaluating all the test sets. 

 

* The confusion matrix for this test set is: 
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                        PREDICTED 

KNOWN        | airplanes   ferry   laptop    

-------------------------------------------- 

airplanes    | 0.85        0.15    0.00      

ferry        | 0.00        1.00    0.00      

laptop       | 0.00        0.00    1.00      

 

* Average Accuracy is 0.95. 

 

Next, let's evaluate the classifier on the validationSet, which was not used during the training. 

By default, the evaluate function returns the confusion matrix, which is a good initial indica-

tor of how well the classifier is performing. 

confMatrix = evaluate(categoryClassifier, validationSets); 

 

% Compute average accuracy 

mean(diag(confMatrix)); 

Evaluating image category classifier for 3 categories. 

------------------------------------------------------- 

 

* Category 1: airplanes 

* Category 2: ferry 

* Category 3: laptop 

 

* Evaluating 47 images from category 1...done. 

* Evaluating 47 images from category 2...done. 

* Evaluating 47 images from category 3...done. 

 

* Finished evaluating all the test sets. 

 

* The confusion matrix for this test set is: 

 

 



 

 118 

                        PREDICTED 

KNOWN        | airplanes   ferry   laptop    

-------------------------------------------- 

airplanes    | 0.74        0.21    0.04      

ferry        | 0.04        0.91    0.04      

laptop       | 0.13        0.00    0.87      

 

* Average Accuracy is 0.84. 

 

Additional statistics can be derived using the rest of arguments returned by the evaluate func-

tion. See help for imageCategoryClassifier/evaluate. We can tweak the various parameters 

and continue evaluating the trained classifier until we are satisfied with the results. 

 

Try the trained classifier on test images 

We can now apply the newly trained classifier to categorize new images. 

img = imread(fullfile(rootFolder, 'airplanes', 'image_0690.jpg')); 

[labelIdx, scores] = predict(categoryClassifier, img); 

 

% Display the string label 

categoryClassifier.Labels(labelIdx) 

ans =  

 

    'airplanes' 
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B2 Bag-of-Features Algorithm for Category-Level Classification  

 

This algorithm was a modification from previous algorithm, which is on image classification, 

where an image is classified according to its visual content. For example, does it contain an 

airplane or not. Important applications are image retrieval - searching through an image da-

taset to obtain (or retrieve) those images with particular visual content, and image annotation 

- adding tags to images if they contain particular object categories. 

The algorithm run through: (i) training a visual classifier for five different image classes (air-

planes, motorbikes, people, horses and cars); (ii) assessing the performance of the classifier 

by computing a precision-recall curve; (iii) varying the visual representation used for the fea-

ture vector, and the feature map used for the classifier; and (iv) obtaining training data for 

new classifiers using Bing image search and using the classifiers to retrieve images from a 

dataset. 

% STEP 1: basic training and testing of a classifier 

  

% setup Matlab to use the training data 

setup ; 

  

% -------------------------------------------------------------------- 

% Stage A: Data Preparation 

% -------------------------------------------------------------------- 

  

% Load training data 

pos = load('data/aeroplane_train_hist.mat') ; 

%pos = load('data/motorbike_train_hist.mat') ; 

%pos = load('data/person_train_hist.mat') ; 

neg = load('data/background_train_hist.mat') ; 

names = {pos.names{:}, neg.names{:}}; 

histograms = [pos.histograms, neg.histograms] ; 

labels = [ones(1,numel(pos.names)), - ones(1,numel(neg.names))] ; 

clear pos neg ; 
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% Load testing data 

pos = load('data/aeroplane_val_hist.mat') ; 

%pos = load('data/motorbike_val_hist.mat') ; 

%pos = load('data/person_val_hist.mat') ; 

neg = load('data/background_val_hist.mat') ; 

testNames = {pos.names{:}, neg.names{:}}; 

testHistograms = [pos.histograms, neg.histograms] ; 

testLabels = [ones(1,numel(pos.names)), - ones(1,numel(neg.names))] ; 

clear pos neg ; 

  

% For stage G: throw away part of the training data 

% fraction = .1 ; 

% fraction = .5 ; 

fraction = +inf ; 

  

sel = vl_colsubset(1:numel(labels), fraction, 'uniform') ; 

names = names(sel) ; 

histograms = histograms(:,sel) ; 

labels = labels(:,sel) ; 

clear sel ; 

  

% count how many images are there 

fprintf('Number of training images: %d positive, %d negative\n', ... 

        sum(labels > 0), sum(labels < 0)) ; 

fprintf('Number of testing images: %d positive, %d negative\n', ... 

        sum(testLabels > 0), sum(testLabels < 0)) ; 

  

% For Stage E: Vary the image representation 

% histograms = removeSpatialInformation(histograms) ; 

% testHistograms = removeSpatialInformation(testHistograms) ; 

  

% For Stage F: Vary the classifier (Hellinger kernel) 

% ** insert code here for the Hellinger kernel using  ** 

% ** the training histograms and testHistograms       ** 
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% L2 normalize the histograms before running the linear SVM 

histograms = bsxfun(@times, histograms, 1./sqrt(sum(histograms.^2,1))) ; 

testHistograms = bsxfun(@times, testHistograms, 1./sqrt(sum(testHistograms.^2,1))) ; 

  

% -------------------------------------------------------------------- 

% Stage B: Training a classifier 

% -------------------------------------------------------------------- 

  

% Train the linear SVM. The SVM paramter C should be 

% cross-validated. Here for simplicity we pick a valute that works 

% well with all kernels. 

C = 100 ; 

[w, bias] = trainLinearSVM(histograms, labels, C) ; 

  

% Evaluate the scores on the training data 

scores = w' * histograms + bias ; 

  

% Visualize visual words by relevance on the first image 

% displayRelevantVisualWords(names{1},w) 

  

% Visualize the ranked list of images 

figure(1) ; clf ; set(1,'name','Ranked training images (subset)') ; 

displayRankedImageList(names, scores)  ; 

  

% Visualize the precision-recall curve 

figure(2) ; clf ; set(2,'name','Precision-recall on train data') ; 

vl_pr(labels, scores) ; 

  

% -------------------------------------------------------------------- 

% Stage C: Classify the test images and assess the performance 

% -------------------------------------------------------------------- 

  

% Test the linar SVM 
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testScores = w' * testHistograms + bias ; 

  

% Visualize the ranked list of images 

figure(3) ; clf ; set(3,'name','Ranked test images (subset)') ; 

displayRankedImageList(testNames, testScores)  ; 

  
 

% Visualize the precision-recall curve 

figure(4) ; clf ; set(4,'name','Precision-recall on test data') ; 

vl_pr(testLabels, testScores) ; 
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% Print results 

[drop,drop,info] = vl_pr(testLabels, testScores) ; 

fprintf('Test AP: %.2f\n', info.auc) ; 

  

[drop,perm] = sort(testScores,'descend') ; 

fprintf('Correctly retrieved in the top 36: %d\n', sum(testLabels(perm(1:36)) > 0)) ; 
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% STEP 2: learn new model 

  

% add required search paths 

setup ; 

  

% -------------------------------------------------------------------- 

% Stage A: Data Preparation 

% -------------------------------------------------------------------- 

  

vocabulary = load('data/vocabulary.mat') ; 

  

% Compute positive histograms from own images 

pos.names = getImageSet('data/myImages') ; 

pos.histograms = computeHistogramsFromImageList(vocabulary, pos.names, 'data/cache') ; 

  

% Add default background images 

neg = load('data/background_train_hist.mat') ; 

names = {pos.names{:}, neg.names{:}}; 

histograms = [pos.histograms, neg.histograms] ; 

labels = [ones(1,numel(pos.names)), - ones(1,numel(neg.names))] ; 

clear pos neg ; 

  

% Load testing data 

pos = load('data/horse_val_hist.mat') ; 

%pos = load('data/car_val_hist.mat') ; 

neg = load('data/background_val_hist.mat') ; 

testNames = {pos.names{:}, neg.names{:}}; 

testHistograms = [pos.histograms, neg.histograms] ; 

testLabels = [ones(1,numel(pos.names)), - ones(1,numel(neg.names))] ; 

clear pos neg ; 

  

% count how many images are there 

fprintf('Number of training images: %d positive, %d negative\n', ... 

        sum(labels > 0), sum(labels < 0)) ; 
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fprintf('Number of testing images: %d positive, %d negative\n', ... 

        sum(testLabels > 0), sum(testLabels < 0)) ; 

  

% Hellinger's kernel (histograms are l1 normalized) 

histograms = sqrt(histograms) ; 

testHistograms = sqrt(testHistograms) ; 

  

% -------------------------------------------------------------------- 

% Stage B: Training a classifier 

% -------------------------------------------------------------------- 

  

% Train the linear SVM 

C = 100 ; 

[w, bias] = trainLinearSVM(histograms, labels, C) ; 

  

% Evaluate the scores on the training data 

scores = w' * histograms + bias ; 

  

% Visualize the ranked list of images 

% figure(1) ; clf ; set(1,'name','Ranked training images (subset)') ; 

% displayRankedImageList(names, scores)  ; 

  

 

% Visualize the precision-recall curve 

% figure(2) ; clf ; set(2,'name','Precision-recall on train data') ; 

% vl_pr(labels, scores) ; 

  

 

% -------------------------------------------------------------------- 

% Stage C: Classify the test images and assess the performance 

% -------------------------------------------------------------------- 

  

% Test the linar SVM 

testScores = w' * testHistograms + bias ; 
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% Visualize the ranked list of images 

figure(3) ; clf ; set(3,'name','Ranked test images (subset)') ; 

displayRankedImageList(testNames, testScores)  ; 

  
 

% Visualize the precision-recall curve 

figure(4) ; clf ; set(4,'name','Precision-recall on test data') ; 

vl_pr(testLabels, testScores) ; 
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 % Print results 

[drop,drop,info] = vl_pr(testLabels, testScores) ; 

fprintf('Test AP: %.2f\n', info.auc) ; 

  

[drop,perm] = sort(testScores,'descend') ; 

fprintf('Correctly retrieved in the top 36: %d\n', sum(testLabels(perm(1:36)) > 0)) ; 
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B3 Detecting People on a Ground Plane with RGB-D Data 

This algorithm objective was to detect people from RGB-D data with the pcl_people module. 

With the proposed method, people standing/walking on a planar ground plane can be detected 

in real time with standard CPU computation. This implementation corresponds to the people 

detection algorithm for RGB-D data presented in the following papers: 

• M. Munaro and E. Menegatti. “Fast RGB-D people tracking for service robots”. In 

Autonomous Robots, Volume 37 Issue 3, pp. 227-242, Springer, 2014. 

• M. Munaro, F. Basso and E. Menegatti. “Tracking people within groups with RGB-D 

data”. In Proceedings of the International Conference on Intelligent Robots and Sys-

tems (IROS) 2012, Vilamoura (Portugal), 2012. 

The source code was downloaded and modified to include file containing the SVM parame-

ters. It implemented, people detection from a live RGB-D stream, obtained with an OpenNI-

compatible sensor (Microsoft Kinect, Asus Xtion, etc.). 

We can look at the algorithm step by step. The first lines allow to print a help text showing 
the command line parameters that can be set when launching the executable. No parameter is 
needed by default, but we can optionally set the path to the file containing the trained SVM 
for people detection (--svm) and the minimum HOG confidence allowed (--conf). Moreover, 
the minimum (min_h) and maximum (max_h) height of people can be set. If no parameter is 
set, the default values are used. 

 

int print_help() 
{ 
  cout << "*******************************************************" << std::
endl; 
  cout << "Ground based people detection app options:" << std::endl; 
  cout << "   --help    <show_this_help>" << std::endl; 
  cout << "   --svm     <path_to_svm_file>" << std::endl; 
  cout << "   --conf    <minimum_HOG_confidence (default = -1.5)>" << std::endl; 
  cout << "   --min_h   <minimum_person_height (default = 1.3)>" << std::endl; 
  cout << "   --max_h   <maximum_person_height (default = 2.3)>" << std::endl; 
  cout << "*******************************************************" << std::
endl; 
  return 0; 
} 

 

Below, the callback used for grabbing pointclouds with OpenNI is defined. 
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void cloud_cb_ (const PointCloudT::ConstPtr &callback_cloud, PointCloudT::Ptr& 
cloud, 
    bool* new_cloud_available_flag) 
{ 
  cloud_mutex.lock ();    // for not overwriting the point cloud from another thread 
  *cloud = *callback_cloud; 
  *new_cloud_available_flag = true; 
  cloud_mutex.unlock (); 
} 

 

The people detection algorithm used makes the assumption that people stand/walk on a pla-
nar ground plane. Thus, it requires to know the equation of the ground plane in order to per-
form people detection. In this presentation, the ground plane is manually initialised by the 
user by selecting three floor points from the first acquired pointcloud. In the following lines, 
the callback function used for ground plane initialisation is shown, together with the structure 
used to pass arguments to this callback. 

 

struct callback_args{ 
  // structure used to pass arguments to the callback function 
  PointCloudT::Ptr clicked_points_3d; 
  pcl::visualisation::PCLVisualizer::Ptr viewerPtr; 
}; 
   
void 
pp_callback (const pcl::visualisation::PointPickingEvent& event, void* args) 
{ 
  struct callback_args* data = (struct callback_args *)args; 
  if (event.getPointIndex () == -1) 
    return; 
  PointT current_point; 
  event.getPoint(current_point.x, current_point.y, current_point.z); 
  data->clicked_points_3d->points.push_back(current_point); 
  // Draw clicked points in red: 
  pcl::visualisation::PointCloudColorHandlerCustom<PointT> red (data-
>clicked_points_3d, 255, 0, 0); 
  data->viewerPtr->removePointCloud("clicked_points"); 
  data->viewerPtr->addPointCloud(data->clicked_points_3d, red, "clicked_points"); 
  data->viewerPtr-
>setPointCloudRenderingProperties(pcl::visualisation::PCL_VISUALIZER_POINT
_SIZE, 10, "clicked_points"); 
  std::cout << current_point.x << " " << current_point.y << " 
" << current_point.z << std::endl; 
} 



 

 130 

 

Main: 

The main program starts by initialising the main parameters and reading the command line 
options. 

 

int main (int argc, char** argv) 
{ 
  if(pcl::console::find_switch (argc, argv, "--
help") || pcl::console::find_switch (argc, argv, "-h")) 
        return print_help(); 
 
  // Algorithm parameters: 
  std::string svm_filename = "../../people/data/trainedLinearSVMForPeopleDetection
WithHOG.yaml"; 
  float min_confidence = -1.5; 
  float min_height = 1.3; 
  float max_height = 2.3; 
  float voxel_size = 0.06; 
  Eigen::Matrix3f rgb_intrinsics_matrix; 
  rgb_intrinsics_matrix << 525, 0.0, 319.5, 0.0, 525, 239.5, 0.0, 0.0, 1.0; // Kinect RGB 
camera intrinsics 
 
  // Read if some parameters are passed from command line: 
  pcl::console::parse_argument (argc, argv, "--svm", svm_filename); 
  pcl::console::parse_argument (argc, argv, "--conf", min_confidence); 
  pcl::console::parse_argument (argc, argv, "--min_h", min_height); 
  pcl::console::parse_argument (argc, argv, "--max_h", max_height); 

 

Ground initialsation: 

Then, the pcl::Grabber object is initialised in order to acquire RGB-D pointclouds and the 
program waits for the first frame. When the first pointcloud is acquired, it is displayed in the 
visualiser and the user is requested to select three floor points by pressing shift+click as re-
ported in the figure below. After this, Q must be pressed in order to close the visualiser and 
let the program continue. 

 

  // Read Kinect live stream: 
  PointCloudT::Ptr cloud (new PointCloudT); 
  bool new_cloud_available_flag = false; 
  pcl::Grabber* interface = new pcl::OpenNIGrabber(); 
  boost::function<void (const pcl::PointCloud<pcl::PointXYZRGBA>::ConstPtr&)> 
f = 
      boost::bind (&cloud_cb_, _1, cloud, &new_cloud_available_flag); 
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  interface->registerCallback (f); 
  interface->start (); 
 
  // Wait for the first frame: 
  while(!new_cloud_available_flag)  
    boost::this_thread::sleep(boost::posix_time::milliseconds(1)); 
  new_cloud_available_flag = false; 
 
  cloud_mutex.lock ();    // for not overwriting the point cloud 
 
  // Display pointcloud: 
  pcl::visualisation::PointCloudColorHandlerRGBField<PointT> rgb(cloud); 
  viewer.addPointCloud<PointT> (cloud, rgb, "input_cloud"); 
  viewer.setCameraPosition(0,0,-2,0,-1,0,0); 
 
  // Add point picking callback to viewer: 
  struct callback_args cb_args; 
  PointCloudT::Ptr clicked_points_3d (new PointCloudT); 
  cb_args.clicked_points_3d = clicked_points_3d; 
  cb_args.viewerPtr = pcl::visualisation::PCLVisualizer::Ptr(&viewer); 
  viewer.registerPointPickingCallback (pp_callback, (void*)&cb_args); 
  std::cout << "Shift+click on three floor points, then press 'Q'..." << std::endl; 
 
  // Spin until 'Q' is pressed: 
  viewer.spin(); 
  std::cout << "done." << std::endl; 
   
  cloud_mutex.unlock ();     
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Given the three points, the ground plane is estimated with a Sample Consensus approach and 
the plane coefficients are written to the command window. 

 

  // Ground plane estimation: 
  Eigen::VectorXf ground_coeffs; 
  ground_coeffs.resize(4); 
  std::vector<int> clicked_points_indices; 
  for (unsigned int i = 0; i < clicked_points_3d->points.size(); i++) 
    clicked_points_indices.push_back(i); 
  pcl::SampleConsensusModelPlane<PointT> model_plane(clicked_points_3d); 
  model_plane.computeModelCoefficients(clicked_points_indices,ground_coeffs); 
  std::cout << "Ground plane: " << ground_coeffs(0) << " 
" << ground_coeffs(1) << " " << ground_coeffs(2) << " 
" << ground_coeffs(3) << std::endl; 

 

In the following lines, we can see the initialisation of the SVM classifier by loading the pre-
trained parameters from file. Moreover, a GroundBasedPeopleDetectionApp object is de-
clared and the main parameters are set. In this algorithm, we can see how to set the voxel size 
used for downsampling the pointcloud, the rgb camera intrinsic parameters, 
the PersonClassifier object and the height limits. Other parameters could be set, such as the 
sensor orientation. If the sensor is vertically placed, the method setSensorPortraitOrientation 
should be used to enable the vertical mode in GroundBasedPeopleDetectionApp. 
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  // Create classifier for people detection:   
  pcl::people::PersonClassifier<pcl::RGB> person_classifier; 
  person_classifier.loadSVMFromFile(svm_filename);   // load trained SVM 
 
  // People detection app initialisation: 
  pcl::people::GroundBasedPeopleDetectionApp<PointT> people_detector;    // peo-
ple detection object 
  people_detector.setVoxelSize(voxel_size);                        // set the voxel size 
  people_detector.setIntrinsics(rgb_intrinsics_matrix);            // set RGB camera in-
trinsic parameters 
  people_detector.setClassifier(person_classifier);                // set person classifier 
  people_detector.setHeightLimits(min_height, max_height);         // set person classi-
fier 
//  people_detector.setSensorPortraitOrientation(true);             // set sensor orientation 
to vertical 

 

Main loop: 

In the main loop, new frames are acquired and processed until the application is terminated 
by the user. The people_detector object receives as input the current cloud and the estimated 
ground coefficients and computes people clusters properties, which are stored 
in PersonCluster objects. The ground plane coefficients are re-estimated at every frame by 
using the previous frame estimate as initial condition. This procedure allows to adapt to small 
changes which can occur to the ground plane equation if the camera is slowly moving. 

 

  // Main loop: 
  while (!viewer.wasStopped()) 
  { 
    if (new_cloud_available_flag && cloud_mutex.try_lock ())    // if a new cloud is 
available 
    { 
      new_cloud_available_flag = false; 
 
      // Perform people detection on the new cloud: 
      std::vector<pcl::people::PersonCluster<PointT> > clusters;   // vector containing 
persons clusters 
      people_detector.setInputCloud(cloud); 
      people_detector.setGround(ground_coeffs);                    // set floor coefficients 
      people_detector.compute(clusters);                           // perform people detection 
 
      ground_coeffs = people_detector.getGround();                 // get updated floor coef-
ficients 
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The last part of the code is devoted to visualisation. In particular, a green 3D bounding box is 
drawn for every person with HOG confidence above the min_confidence threshold. The 
width of the bounding box is fixed, while the height is determined as the distance between the 
top point of the person cluster and the ground plane. The average framerate is also shown 
every 30 frames, to evaluate the runtime performance of the application. Please note that this 
framerate includes the time necessary for grabbing the point clouds and for visualisation. 

 

      // Draw cloud and people bounding boxes in the viewer: 
      viewer.removeAllPointClouds(); 
      viewer.removeAllShapes(); 
      pcl::visualisation::PointCloudColorHandlerRGBField<PointT> rgb(cloud); 
      viewer.addPointCloud<PointT> (cloud, rgb, "input_cloud"); 
      unsigned int k = 0; 
      for(std::vector<pcl::people::PersonCluster<PointT> >::iterator it = clusters.begi
n(); it != clusters.end(); ++it) 
      { 
        if(it->getPersonConfidence() > min_confidence)             // draw only people with 
confidence above a threshold 
        { 
          // draw theoretical person bounding box in the PCL viewer: 
          it->drawTBoundingBox(viewer, k); 
          k++; 
        } 
      } 
      std::cout << k << " people found" << std::endl; 
      viewer.spinOnce(); 
 
      // Display average framerate: 
      if (++count == 30) 
      { 
        double now = pcl::getTime (); 
        std::cout << "Average framerate: " << double(count)/double(now - last) << " 
Hz" <<  std::endl; 
        count = 0; 
        last = now; 
      } 
      cloud_mutex.unlock (); 

 

Compiling and running the program 

Create a CMakeLists.txt file and add the following lines into it: 

 
 
1 
 

cmake_minimum_required(VERSION 2.8 FATAL_ERROR) 
project(ground_based_rgbd_people_detector) 
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2 
 
3 
 
4 
 
5 
 
6 
 
7 
 
8 
 
9 
1
0 

find_package(PCL 1.7 REQUIRED) 
 
include_directories(${PCL_INCLUDE_DIRS}) 
link_directories(${PCL_LIBRARY_DIRS}) 
add_definitions(${PCL_DEFINITIONS}) 
 
add_executable (ground_based_rgbd_people_detector MACOSX_BUNDLE src/
main_ground_based_people_detection.cpp) 
target_link_libraries (ground_based_rgbd_people_detector ${PCL_LIBRARIE
S}) 

 

After we have made the executable, we can run it: 

$ ./ground_based_rgbd_people_detector 

The following images show some people detection results on a Kinect RGB-D stream. 
The minimum and maximum height for people were set respectively to 1.3 and 2.3 me-
ters, while the minimum HOG confidence was set to -1.5. 
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http://pointclouds.org/documentation/tutorials/_images/Screen5.jpg
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B4 Model Based People Tracking Using Simulink 

Simulink can be used for people tracking application, the proposed people 

tracking model using Matlab simulink can be described as below: 

People Tracking 

This simulink detects and tracks people in a video sequence with a stationary 

background using the following process:  

1) Use the first few frames of the video to estimate the background image.  

2) Separate the pixels that represent the people from the pixels that represent the 

background.  

3) Group pixels that represent individual people together and calculate the ap-

propriate bounding box for each person.  

4) Match the people in the current frame with those in the previous frame by 

comparing the bounding boxes between frames. 

 

The following identifies the algorithm steps. 

• People Tracking Model 

• Segmentation Subsystem 

• Detection Subsystem 

• Tracking Subsystem 

• People Tracking Results 

 

Step 1: People Tracking Model 

The following figure shows the People Tracking model: 
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Step 2: Segmentation Subsystem 

In the Segmentation subsystem, the Autothreshold block uses the difference in 

pixel values between the normalized input image and the background image to 

determine which pixels correspond to the moving objects in the scene. 

 

 

Step 3: Detection Subsystem 

In the Detection subsystem, the Close block merges object pixels that are close 

to each other to create blobs. For example, pixels that represent a portion of a 

person body are grouped together. Next, the Blob Analysis block calculates the 

bounding boxes of these blobs. In the final step, the Detection subsystem merg-

es the individual bounding boxes so that each person is enclosed by a single 

bounding box. 
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Step 4: Tracking Subsystem 

In the Tracking subsystem, the Kalman Filter block uses the locations of the 

bounding boxes detected in the previous frames to predict the locations of these 

bounding boxes in the current frame. To determine the locations of specific 

people from one frame to another, the algorithm compares the predicted loca-

tions of the bounding boxes with the detected locations. This enables the algo-

rithm to assign a unique colour to each person. The algorithm also uses the 

Kalman Filter block to reduce the effect of noise in the detection of the bound-

ing box locations. 
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Step 5: People Tracking Results 

In the Detected window, the people in the scene are surrounded by bounding 

boxes. The algorithm assigns each bounding box a colour based on the order 

that each person is detected. For example, the first person detected has a red 

bounding box and the second person detected has a green box. The colour of 

these boxes changes because the people in the scene are not tracked. In the 

Tracked window, each person has a unique bounding box colour for the dura-

tion of the video. We can edit parameters box and select the plot positions of 

bounding boxes over time. 

In the Positions window, the plots the coordinates of the bounding boxes over 

time. The coordinates of each bounding box are defined by the row and column 

location of its upper-left corner as well as its width and height. Accordingly, 

each person in the video corresponds to four lines in the plot. 

Because the Kalman Filter block reduces noise, the bounding box positions cal-

culated by the Tracking subsystem have smoother trajectories than those calcu-

lated by the Detection subsystem. 
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Our Proposed People Tracking Model 

Use the Segmentation threshold scale parameter to scale the threshold value that 

was used to separate the target pixels from the background. The larger this value 

is, the fewer the target pixels. This parameter's value is typically near 1.  

 

Use the Box merging thresholds parameter to specify the threshold distances for 

the targets. If the distances between the boxes are smaller than these thresholds, 

the algorithm combines the boxes; otherwise, it considers the boxes belonging 

to separate targets. Enter a 2-element vector with values between 0 and H or W, 

where H and W are the height and width of the video stream, respectively.  

 

Use the Target tracking threshold parameter to specify the maximum distance a 

target can travel between two consecutive frames. This distance is defined as 

Distance = abs(2*(c1-c2)+(w1-w2))/(w1+w2) + abs(2*(r1-r2)+(h1-

h2))/(h1+h2). Here, r and c are the coordinates of the top-left corner of the tar-

get, and w and h are its width and height.  

 

Note: These parameters are passed to subsystems using the InitFcn callback. To 

access this callback, select File -> Model Properties. Then click the Callbacks 

tab and select InitFcn. 

Step 1 – Try different video input “pptacking.avi” 480x854, 30 fps. 

The video is original and created by Rapee. It was shot from 8th floor, we aim 

to detect and track people walking on the street. When tested the file, it appears 

that the size of people is too small to track.  
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Initial result with default setting gave a lot of false positive. The video results 

shows below: 

 

Scale 

The smallest object we can track was the white car in the following figure. This 

was captured by plot of positions which shows that white car is the best object 

to detect and tracking for this video file and setting. 

By increase scale to 3, the false positive reduced, the result shows below: 
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Tried change the setting to 3 (segmentation), 30 (box), 300 (tracking) thresh-

olds, result obtained was by far, the best suited, refer figure below: 

 

Plot positions for detect vs tracking  

The figure shows the plot positions of bonding boxes over time.  

We have tried varying parameter, algorithm/model as well as change of video 

files for different scale to determine the best set of parameter, scenario for peo-

ple detection. 
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