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Abstract 

Ischaemic heart disease is consistently the number one ranking cause of death in Australia, 

as well as the western world.  Platelets are central in normal haemostasis to arrest bleeding 

following trauma and under pathological conditions of atherosclerotic plaque rupture and 

arterial thrombosis.  The development of platelet thrombi leads to the clinical sequela of 

cardiovascular disease (CVD) which in 2011 accounted for 31% of all deaths in Australia.(1)   

Ischaemic heart disease specifically accounted for 14.65% of all deaths nationwide in 

2011.(2)   

 

Numerous factors are implicated in increasing the thrombogenic potential of ruptured 

plaques including the role of increased blood shear rates in narrowed blood vessels and the 

increased responsiveness of platelet activation.  CD151 is a tetraspanin amongst several 

found on platelets.   This tetraspanin is a promising target in anti-platelet therapies as it acts 

in conjunction with cognate receptors particularly integrin αIIbβ3 in the regulation of platelet 

thrombus formation in vivo. Tetraspanins constitute a conserved family of four 

transmembrane protein domains with the characteristic ability to associate laterally with 

other membrane proteins in forming tetraspanin enriched microdomains.  These 

microdomains play critical roles in various functions such as fusion, trafficking and 

adhesion.(3)  The functional and physical associations between CD151 and integrin αIIbβ3  in 

murine platelets emphasises the criticial involvement of CD151 in modulating outside-in 

αIIbβ3 signalling pathways.(4)  Although studies have been done on CD151, none have 

specifically examined the effects of CD151 absence in an atherosclerosis setting.  

Tetraspanin CD151 was first identified in platelets and endothelial cells by using monoclonal 

antibodies against human acute myeloid leukaemia cells.(5)  It has since been identified in 

numerous other cell types.(6, 7)  

 

We developed a novel ApoE-/-.CD151-/- model by crossing the ApoE-/- genotype with the 

CD151-/- genotype.  CD151 has not been studied in the context of atherosclerosis and 

through this model, which we developed for the first time, in vivo and in vitro studies were 

able to be performed.    As the absence of CD151 has been reported to impart a protective 

effect on thrombotic complications, we first characterised the ApoE-/-.CD151-/- model, 

comparing it to the ApoE-/- gold standard model for atherosclerosis and examined the 

mendelian inheritance profiles, haematological and lipid parameters and cardiovascular risk 

factors such as body weight, age, body mass index and glucose levels.  Apart from 



 
 

 

significant differences in expected and generated Mendelian inheritance profiles and a 

raised total cholesterol level in the ApoE-/- we did not observe any other indication, from 

these parameters at least, that the ApoE-/-.CD151-/-  model has an influence on 

atherosclerosis and a decrease in cardiovascular risk factors  (Chapter 3).   

 

Histology and immunohistochemistry studies have also been performed on the novel ApoE-/-

.CD151-/- mouse model versus the ApoE-/-
 mouse.  Preliminary findings indicate a 

significantly reduced plaque burden in the ApoE-/-.CD151-/- mouse compared to the ApoE-/- 

mouse through haematoxylin and eosin staining of the aortic valve cusps (Chapter 4).  

Plaque composition on the contrary does not appear to be influenced by the absence of 

CD151 in atherosclerosis.  This was determined through immunohistochemical staining for 

F4/80 pan macrophage markers, smooth muscle actin, type 1 collagen and CD151 for 

CD151 expression (Chapter 5). 

 

Through in vivo studies, we showed the existence of a defect with ApoE-/-.CD151-/- platelets 

having prolonged times to occlusion upon FeCl3 induced vascular injury of the carotid 

arteries and also reduced thrombus formation as compared to ApoE-/- platelets.  In vivo tail 

bleeding assays similarly suggested a defect of unstable haemostasis as bleeding times, 

volume of blood lost and rebleeds were significantly increased in the ApoE-/-.CD151-/- model.  

These findings are consistent with what has been discussed in the literature.  We also 

reported conflicting findings as platelet aggregation responses appeared unchanged 

between the ApoE-/- and ApoE-/-.CD151-/- strains which implies that CD151 absence had no 

protective effect on agonist induced platelet aggregation.  Furthermore, we saw a similar 

pattern in our in vivo studies of the mesenteric arterioles whereby, thrombus area, volume 

and stability mirrored that of CD151+/+ 
 findings from previous studies.  This highlighted 

limitations to our study as ApoE-/- mice are atherogenic and accumulate fats more readily 

than wild-type mice.  We must take into account that not only the presence of excess fat can 

potentially have an influence in the mesenteric injury model but also that CD151 is polygenic 

in nature where its involvement in the development and progression of atherosclerosis is 

unclear.  In vivo studies in other vascular beds such as the cremaster arterioles where fat 

presence is lower, would be of benefit to confirm our findings (Chapter 6). 

 

 



 
 

 

We have contributed further to the understanding of tetraspanin CD151 in platelet thrombus 

formation models in vivo and also its influence on plaque burden in atherosclerosis.  We 

have particularly identified the potential of CD151 as an anti-thrombotic target for the 

development of novel anti thrombotics for cardiovascular diseases and cerebrovascular 

ischaemic diseases.  Our findings will need to be elucidated further by the inclusion of in vivo 

studies on other vascular beds in a mouse model. 

 



 4 

1 CHAPTER 1:  LITERATURE REVIEW 
 

1.1 Cardiovascular Disease overview 

The physiological processes of haemostasis are mediated primarily by the activation of 

platelets in conjunction with the coagulation cascade.  Whilst platelets are essential in 

endothelium repair or wound healing, platelets too can result in a cascade of unfavourable 

thrombotic events eventuating in myocardial infarction and ischaemic stroke.(8) In Australia, 

31% of all deaths were caused by cardiovascular disease and 14.6% of registered deaths in 

2011 were caused by ischaemic heart disease which continues to be a leading cause of 

death.(1,8)  We have seen a steady decline in deaths caused by ischaemic heart disease 

since 2000 with the proportions of deaths decreasing to 14.6% or 21,513 deaths from 19.5% 

and 26,063 deaths.(2) The economic burden is an estimated six billion dollars per year for 

both treatment and prevention of ischaemic heart disease.(9) Anti-platelet drug use has risen 

substantially over the late 1990s, with aspirin being the most frequently prescribed drug.  

Additionally, this was not including over the counter non-prescribed purchases. Likewise, 

anti-coagulant drugs have increased steadily in their use over the 1990s.(9) 

 

Where patients have underlying disease states falling under the category of acute coronary 

syndromes, specifically ischaemic stroke or transient ischaemic attack and peripheral artery 

disease (PAD), the likelihood of thrombosis occurring is increased. Permanent damage may 

occur to vascular beds and diseased vessels due to ischaemia and occlusion in vessels from 

uncontrolled thrombus formation.  There are numerous factors leading to this, one being 

increased platelet activation and shear due to narrowing of vessels following the rupture of 

atherosclerotic plaques or erosion of endothelial cells.  An interplay of several pathways and 

mechanisms are involved in the formation of platelet thrombi and overall haemostatic 

control.(8)  
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1.2 Platelet overview and ultrastructure 

Platelets are formed from nucleated megakaryocytes (30 – 100 µm) in the bone marrow.  

Maturation of the megakaryocytes involves the development and extension of proplatelet 

elongations into blood vessels and eventually the release of platelets into the blood.(8-10)   

Throughout this process, the platelets develop characteristic systems, forming its complex 

structure.   The two main systems developed are firstly, the open canalicular system (OCS) 

which is formed by surface membrane invaginations and secondly, the dense tubular system 

(DTS) which is formed of a closed network of residual endoplasmic reticulum of the 

megakaryocyte.(10,11)   The DTS acts a reservoir for calcium storage and binding sites as 

well as for enzymes involved in prostaglandin synthesis.  The DTS contains large amounts 

of amorphous materials and is distinct from the OCS system.(12,13)  In addition to calcium, 

the DTS also stores adenylate cyclase (cAMPase) which are both key regulators involved in 

platelet activation.(14) The OCS on the other hand is a network of membrane channel 

microtubules which runs throughout the platelet.  It acts as a conduit for α-granule release 

during platelet activation and provides an increased membrane surface area from the 

envaginated channels.(12,15) 

 

Platelets are anuclear, terminally differentiated and measure between 2.0 µm to 5.0 µm in 

diameter.  They circulate within the blood stream for approximately 8-10 days.(8,16-19)  

Thrombopoietin (TPO) is an important regulator of platelet production.  Its production is 

modulated either as a result of interleukin 6 stimulation to the parenchymal or sinusoidal 

endothelial cells, or by the proximal convoluted tubule cells within the kidney.(20,21)  

Platelets contain secretory organelles, glycogen as well as lipid substrates which assist in 

coagulation.   Under resting physiological conditions, circulating Prostaglandin I2 and nitric 

oxide contributes in preventing platelet activation.(22) When activated the platelet 

cytoskeleton undergoes changes from a resting discoid shape to that of a spherical shape 

mediated by an actin-dependant process.(22) The cytoskeleton is imperative for both 

maintaining the platelet structure at rest and to facilitate this shape change which occurs 

upon activation.(22) 
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Figure 1.1:  Left: Resting platelets are smooth and disc shaped.  Right:  Activated platelets, seen with protruding 

pseudopodia.(23) 

 

The formation of a platelet-thrombus plug occurs in three main steps comprising of an 

initiation phase, extension phase and a stabilisation phase.(18,24), Platelet activation and 

aggregation is initiated when injury is caused to the subendothelium of blood vessels 

exposing collagen, which then triggers the capture of flowing platelets by the initial tethering 

of von Willebrand factor (vWF).  Consequently this mediates the binding of Glycoprotein 

(GP) Ib-IX-V complexes on platelet surfaces with vWF and GPVI with exposed collagen.(8) 

Platelet adhesion is mediated with formation of these adhesion signaling complexes and 

ultimately the development of thrombi at the site of injury.(25)  
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1.2.1 Platelet granule contents 

Platelets contain three main secretory organelles which are: α-granules, dense granules and 

lysosomes.(10,15) Granule content is abundant in platelets and imperative in platelet 

adhesion, activation and consequently thrombus formation.(26) These organelles are highly 

specific, from their secretion of adhesion molecules, to release of agonists and influence of 

pathways which alter the conformational structures of platelet receptors.(26) 

 

Figure 1.2:  Platelets Granules.  Platelets contain numerous mediators involved in the regulation of haemostasis 

and thrombosis, chemotaxis, vasomotor functions, cell growth and inflammation. These include: α-granules, δ 

granules, lysosomes (λ granules), mitochondria and glycogen.  The plasma membrane is composed of a 

phospholipid bilayer and contains tunnel invaginations which forms the complex canalicular system.  The dense 

tubular system is a storage site for calcium and enzymes involved in platelet activation.(28,29,40,47)   
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1.2.1.1 Alpha granules 

Platelet α-granules are the most abundant type of secretory organelle found within 

platelets.(27,28)  Each platelet contains approximately 50 – 80 α-granules, measuring 200 – 

500 nm in diameter.(15,29)  Alpha granules contain a range of membrane bound proteins 

that are expressed both on plasma membranes at rest as well as on platelet surfaces and 

proteins which have been secreted extracellularly.(30) However for some proteins, for 

instance P-selectin and CD109, expression of these proteins on platelet surfaces are only 

observed following activation.(31) These proteins include integral membrane proteins, 

coagulants, anti-coagulants, fibrinolytic proteins, adhesion proteins, chemokines, growth 

factors (TGFβ), angiogenic factors as well as inhibitors and microbicidal proteins.(32,33)  

Chemokines such as CXCL4 and CXCL7 are platelet mediators which influence 

inflammation and are one of the more highly expressed proteins found in platelets.(34)  

CXCL4 in particular has been implicated in both early and late atherosclerosis as studies 

have demonstrated its presence in atherosclerotic plaque lesions in the carotid arties which 

correlates with severity of atherosclerosis.(35) 

Platelet to platelet interactions and platelet to endothelial interactions are mediated by 

adhesive proteins such as fibrinogen and vWF secreted from α-granules. The vWF found in 

α-granules amounts to approximately 20% of total vWF protein.(30) In platelet adhesion, α-

granule contents such as GPIb-IX-V, integrin αIIbβ3, and GPVI are expressed on plasma 

membranes following activation.(36)  Fibrinogen, which is the ligand for integrin αIIbβ3, is also 

contained within the α-granules and when released cross links with activated platelets for the 

formation of a stable thrombus.(37)  Alpha granules also contribute to coagulation with the 

release of factors and cofactors which are involved in the regulation of primary and 

secondary haemostasis.  Upon platelet activation, coagulation factors such as factor V, XI 

and XIII are secreted which are important in the coagulation cascade and crosslinking of the 

fibrin clot.(30)  

     

1.2.1.2 Dense granules 

Dense granules are fewer by about ten fold compared to α-granules in platelets with there 

being only 3-8 dense granules per platelet. They are also smaller at 150 nm with a much 

smaller surface area coverage.  Dense granules like α-granules are also formed in 

megakaryocytes.(38) These granules are lysosome-related organelles derived from 

endosomal compartments.  Vesicle formation is mediated by AP-3 and by large protein 

complexes throughout its maturity.(30) Dense granules as especially important in 
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haemostasis and thrombosis with their ability to amplify initial platelet activation and 

subsequently thrombus growth.  Platelet dense granules contain high concentrations of 

nucleotides such as ADP, ATP, cations such as calcium, magnesium, potassium, 

phosphates and bioactive amines.(38,39) Upon platelet activation, calcium and ATP platelet 

dense granules are released for protein kinase C phosphorylation, which are required for 

platelet aggregation.(40)  ADP and serotonin release from the platelet dense granules 

propagates the activation pathways through a positive feedback mechanism.  Although a 

weak agonist, ADP is capable of stimulating platelet shape change, reversible and 

secondary aggregation and ultimately is important in platelet function.  ADP amplifies platelet 

responses which have been induced by other platelet agonists and contributes to stable 

platelet aggregates.(41,42)  Studies have also identified dense granule contents being 

involved in atherosclerosis and atherothrombosis.  Human atherosclerotic plaque lesions 

displayed the presence of 14-3-3zeta, which is secreted by activated platelets however it 

was absent in healthy normal aortic tissue.(43)  Studies have also shown that mice with 

defective dense granule secretion and lacking HSP3 were protected from atherosclerosis as 

they were found to demonstrate reduced atherosclerotic plaque lesions.(44)    

 

1.2.1.3 Lysosomes 

Lysosomes are found in small numbers in platelets.(45,46) Platelet lysosomes contain 

glycosidases, proteases and cationic proteins with bactericidal capabilities. Lysosome 

membranes also contain integral membrane proteins and are suggested to be required for 

calcium regulation in cells, especially platelets.(47,48) 
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1.3 Coagulation 

Upon injury caused to the subendothelial wall of blood vessels, coagulation is also initiated 

and occurs simultaneously with platelet recruitment and activation with the exposure of blood 

to tissue factor.(49,50)  This is followed by thrombin production through the coagulation 

pathways: intrinsic, extrinsic and common pathways where coagulation factors are converted 

to their active forms.  The extrinsic pathway is initiated with the abundant expression of 

tissue factor on subendothelial cells as well as the collagen platelet derived polyphosphates 

which subsequently triggers the intrinsic pathway involving factor XII pathway.(51-53) Factor 

V and factor VIII activation is mediated by thrombin, which further promotes the production of 

thrombin and eventually the production of fibrin and formation of a platelet plug or clot.  The 

fibrin fibres present at platelet surfaces stabilises and strengthens the thrombus and later 

mediates the platelet dependent retraction of clots.(54,55)  The fibrin web is capable also of 

capturing free flowing erythrocytes and leucocytes which may contribute further in vessel 

occlusion.  Inactivation or degradation of FV and FVIII on the other hand is regulated via a 

negative feedback mechanism mediated by activated protein C (APC) and its cofactor 

protein S when thrombin is generated in excess.  Activation of protein C in solution is 

catalysed by thrombin and is enhanced with binding to endothelial cell protein C receptor 

(EPCR).    With binding of APC to EPCR, protease-activated receptor-1 (PAR-1) signalling is 

initiated. APC is also involved in the activation of endothelial cells through outside-in 

signalling.  This in turn leads to intracellular G protein activation and cellular responses such 

as anti-apoptosis and anti-inflammation functions.(56)  Until recently, interactions between 

protein C and APC with human platelets were vaguely defined.  Studies have suggested the 

role of protein C and APC in the promotion of cell signalling with binding to either ApoER2 

and GPIbα. The binding of platelets with immobilised protein C or APC induces intracellular 

signalling at a rapid rate and the subsequent activation of platelets.  For this to occur 

ApoER2 and GPIbα are required.  White et al. (57) demonstrated that with the presence of 

soluble recombinant apolipoprotein E receptor 2’ (ApoER2’) and receptor-associated protein 

(RAP), platelet adhesion to either APC or protein C is inhibited.  Platelet adhesion as well as 

glycoprotein 1bα dependent aggregation, was also found to be supported by protein C.(57)   

 

 

 

 

 



 
 

11 
 

 

Figure 1.3: The coagulation cascade is initiated by either tissue factor exposure at the site of trauma (Extrinsic 

Pathway) or by activation of factor XII by activation of damaged negatively charged surfaces (Intrinsic Pathway).  

The extrinsic and intrinsic pathways converge at the Common Pathway for thrombin formation, through the 

conversion of prothrombin to thrombin by the prothrombinase complex, FXa and FVa. Thrombus formation 

occurs as fibrinogen cleaves thrombin and aggregation of platelets occur. FXIII stabilises the fibrin clot which is 

later followed by plasmin mediated fibrinolysis resulting in the production of fibrin degradation products and clot 

dissolution. Plasminogen conversion to plasmin occurs by tissue type plasminogen activator (tPA), whilst 

inhibition of tPA is regulated by plasminogen activator inhibitor 1. The coactivation of plasminogen by fibrin is also 

inhibited by the thrombin activatable fibrinolysis inhibitor, which cleaves the c-teminal lysine residues of 

fibrin.(51,52) 
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1.3.1 Coagulation: extrinsic pathway 

The key step to beginning the extrinsic pathway is the exposure and expression of tissue 

factor at the site of vascular injury which acts as a potent trigger for the initiation of the in 

vivo coagulation cascade.(58)  Tissue factor binds to and activates factor VII which is a 

soluble clotting factor.  FVII, like factors X, IX, protein C and prothrombin are vitamin K-

dependent proteins containing a γ-glutamyl carboxyl acid Gla residue at the N terminal, 

necessary for normal functioning of the molecule with calcium ions, activators, substrates 

and phospholipid surfaces.(59)  It is estimated that approximately 1% of total factor VII 

circulates in factor VIIa form.  The exposure of tissue factor results in the formation of TF:VII 

inactive complex as well as TF:VIIa active complex.  Other factors such as factor IXa, Xa, 

XIIa and thrombin are capable of activating factor VII.(60, 61)  The TF:VIIa formed complex 

activates factor IX through proteolysis, and is capable of activating factor X directly in 

vitro.(62)  In the presence of activated factor VIII, activated factor IX may also activate factor 

X.  Formation of the tenase complex is integral for activation of factor X.  In humans, 

deficiencies in factor VIII or IX is associated with haemophilia A and B and the 

corresponding haemorrhagic symptoms which manifest.(63)  Studies have shown that trace 

amounts of factor Xa has the ability to activate prothrombin bound to integrin αIIbβ3 

consequently producing localised thrombin.(49)  Recent studies have also suggested that in 

atherosclerotic disease the rupture of vulnerable plaques exposing prothrombotic material 

particularly tissue factor is a rapid activator of the coaguation cascade.  Factor XIIa 

dependent amplification comes second where a delay in the activation of FXIIa may be 

attributed by plaque contents such as collagen, nucleic acids and polyphosphates and thus 

proposing FXIIa as a potential anti-coagulant target.(64)   

 

1.3.2 Coagulation: intrinsic pathway 

The intrinsic pathway is initiated when factor XII comes in contact with negatively charged 

surfaces, resulting in activation of factor XII.  A series of events occur following the binding of 

factor XII heavy chains to negative surfaces.  These include an increase in the concentration 

of local enzymes, autoactivation, factor XI, factor XIIa dependent prekallikrein and high 

molecular weight kininogen (HK).  Factor XIa is a dimeric serine protease which then 

activates factor IX.(65) HK is cleaved by kallikrein and results in the release of bradykinin.  

Activation of factor XII can also by triggered by kallikrein.  The intrinsic pathway also 

functions through a negative feedback process as the light chain of HK is cleaved by factor 

XIa which releases the factor from activated surfaces.(66)  The intrinsic pathway was 
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previously thought to be insignificant however recent studies have shown that mice with 

Factor XII deletions have a greater propensity to developing unstable thrombi.(67,68)  

 

1.3.3 Coagulation: common pathway 

The common pathway is where the extrinsic and intrinsic pathways converge for the 

generation of thrombin.  Factor Xa converts prothrombin (FII) to thrombin (FIIa) by cleaving 

off the N terminal Gla portion of prothrombin.  Conversion of FII to FII also results in the 

cleavage of fibrinogen to form fibrin following fibrin polymerisation and the formation of the 

fibrin clot.(69)  Thrombin generation can increase more than 300,000 fold as a result of 

prothrombinase complex interaction on prothrombin, and interacts with fibrinogen, factor V, 

VIII, XI, platelet receptors and proteins S and C in the formation of a haemostatic plug or 

fibrin clot.(69)  Activation of factors V, VII, VIII and XI by thrombin enhances thrombin 

formation.  Thrombin production can be controlled by conversion of protein C to activated 

protein C by thrombomodulin and consequently inhibiting factors Va and VIIIa.(70) 

 

1.3.4 Coagulation: fibrinolysis 

Clot formation and dissolution is a highly regulated process ensuring blood loss is controlled 

and balanced against controlled thrombus formation to avoid occlusion of blood flow.  

Plasminogen activator inhibitors are produced during thrombus formation allowing fibrin 

formation to continue until the site of vascular injury is repaired. Plasminogen activator 

inhibitor-1 protects against excessive fibrinolysis.    Once repaired, endothelial cells release 

tissue plasminogen activators such as tissue type plasminogen activator (tPA) or urokinase-

like plasminogen activator (uPA) which then converts plasminogen to plasmin.(71)  Fibrin 

degradation products such as D-dimers are produced as plasmin mediated fibrinolysis 

progresses and clot lysis occurs.  These act as markers of thrombotic activity.(72) Factors 

Va, VIIIa, protein C and S are also inactivated in plasmin presence.   Fibrinolysis is also 

regulated by α2 anti-plasmin which degrades circulating plasmin ensuring fibrinolysis of the 

thrombus is limited.(73) 
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1.4 Membrane surface proteins 

Certain Glycoproteins (GP), form adhesion signaling complexes on platelet plasma 

membranes.  These complexes are crucial for initiating signaling events and consequently 

platelet activation.(25) 

 

1.4.1 GPIb-IX-V complex 

Platelet GPIb-IX-V is a leucine rich repeat glycoprotein, which binds not exclusively just to 

vWF but also α-thrombin, coagulation factors and adhesive proteins.(74) As mentioned, 

GPIb-IX-V binds with vWF to form complexes on the platelet plasma membrane and 

contributes towards the adhesion of platelets in the blood.(25)  Platelets in the circulation 

express GPIb-IX-V on their surface, and is suggested to be a major adhesion receptor 

amongst other receptors.(75) The GP-Ib-IX-V complex is composed of 4 polypeptide genes: 

GPIbα, GPIbβ, GPIX, GPV, that in a mature megakaryocyte is arranged in a 2:2:2:1 

stoichiometry.  These polypeptides associate very closely with one another seeing its role in 

the biosynthesis of platelet receptors.  Of these peptides, GPV appears to be the least 

associated with the complex seeing no genetic defects of the GPV gene has been reported 

as far in Bernard Soulier Syndrome (BSS) cases.(25)   BSS occurs with dysfunction or 

deficiency to the GPIb-IX-V complex and results in a severe bleeding diathesis.  According 

to studies, the GPIb-IX complex is required for transport or trafficking of the complex to the 

platelet plasma membrane. Recent studies show that GPIbα and GPIbβ interact at 

transmembrane (TM) domains. Disulfides formed between GPIbα and  the 2 GPIbβ subunits 

are suggested to occur with assistance from the TM-TM interactions.  These interactions 

cause the membrane-proximal Cys residues to come together closer and encourage the 

formation of the disulfide bonds. (25,48)  

Under conditions of high shear, GPIbα is of critical importance for platelet adhesion.   Both 

platelet tethering and adhesion is hindered in wild type mice, which have had the GPIbα 

binding site for vWF blocked.(76) Stoll et al. (77) blocked this binding site in an arterial 

thrombosis model of wild type mice through the use of antibody p0p/B Fab fragments. The 

authors reported prolonged tail bleeding times but no spontaneous haemorrhage. GPIbα is 

also reported to be involved in the pathogenesis of focal ischaemic stroke in mice. (76)  In 

humans the risk of ischaemic stroke is increased where allelic variants of GPIbα are 

present.(76)  
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1.4.2 Collagen receptors α2β1 GPVI/FcR γ-chain complex 

The subendothelial collagen exposed as a result of vascular injury, actions as a potent 

agonist for the eventual formation of thrombus and platelet adhesion.(78) As an agonist, 

collagen has the capabilities to induce the secretion of granules, shape change and platelet 

aggregation.  Two collagen receptors are found in human platelets, namely integrin α2β1  and 

the GPVI/FcR γ-chain complex.  At the site of injury and under shear stress, α2β1 serves as a 

better receptor in platelet-collagen interactions in ensuring stable platelet adhesion.  The 

GPVI/FcR γ-chain complex meanwhile is associated with platelet activation.(79) Marjoram et 

al. (79) reported findings indicating the interplay of α2β1 with other platelet receptors for ADP, 

TXA2 and thrombin.  A mechanism involving platelet priming of α2β1  by first initiating 

suboptimal stimulation of platelet Gq-linked  G protein coupled receptors (GPCRs) resulted in 

more efficient adhesion of platelets to collagen.(79)  GPVI on the other hand is an activating 

receptor which on binding with collagen initiates a signaling cascade and consequently 

platelet activation.  The absence or inhibition of GPVI is found to prevent the formation of 

arterial thrombi, both in humans and mouse platelets.(80) In contrast to α2β1, GPVI binds to 

collagen at lower affinity.  GPVI is composed of two Immunoglobulin like extracellular 

domains, a mucin-like core, transmembrane domain region and a cytoplasmic short tail.  

This latter feature allows for the binding of Fyn and Lyn Src kinases to the 51-aa tail of GPVI 

as well as complexing constitutively with FcR γ-chain dimer.  This association of FcR γ-chain 

dimer with GPVI is mediated primarily by arginine found in the transmembrane region of 

GPVI. (18,74)  The FcR γ-chain dimer acts as a signal-transducing subunit for the GPVI 

receptor being an immunoreceptor tyrosine-based activation motif (ITAM).(18,74)  The Src 

kinases, Fyn and Lyn phosphorylates the ITAM sequence when GPVI cross links with its 

ligands.  Syk then undergoes autophosphorylation and activation on binding with the 

tyrosine phosphorylated ITAM sequence.  Consequently a signalling cascade involving the 

effector proteins phospholipase (PL) Cγ2, PI3 kinase and adaptors, SLP76 and 

phosphorylated LAT forms a signalosome scaffold.  Inositol 1,4,5 triphosphate (IP3) and 1,2 

diaglycerol (DAG) are secondary messengers formed by PLCγ2.  Together protein kinase 

(PK) C is activated and cytosolic calcium concentrations increased.(8,18,74)  
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1.5 Integrins 

Integrins are cell adhesion receptors with a central role in promoting cell membrane 

bidirectional signaling.(81) These receptors act also in enabling anchorage dependent cell 

events, given the constant exposure to haemodynamic forces of the vasculature.(81)    

Integrins are composed of a heterodimeric complex consisting of non-covalent bound α and 

β subunits.  Twenty-four distinct integrin heterodimers are said to be formed through the 

combination of 18α and 8β known subunits.  For each heterodimer, a large extracellular 

domain (approximately 80 to 150 kDa structures) is present and bound to it are proteins from 

the extracellular environment.  Furthermore, a single transmembrane domain comprising of 

approximately 25 to 29 amino acid residues and a short cytoplasmic tail of 10 to 70 amino 

acid residues is contained within each subunit of an integrin.(82) The transmission of 

bidirectional signaling across the cell membrane is achievable due to the structural features 

of integrins.  The intracellular cytoplasmic domains are capable of anchoring cytoskeletal 

proteins, whilst the extracellular domains are able to bind with a range of ligands.  This 

subsequently forms a link between the interior and exterior components of the cell and 

ultimately bidirectional signaling.(82)   

 

Integrins possess the ability to intracellulary transduce signals after ligand binding.  This 

mechanism of signaling is referred to as outside-in signaling.  For instance, in the 

vasculature, integrins are observed to associate with the ECM and transduce outside in 

signaling which is crucial for adhesion, proliferation and migration of endothelial cells.(81)  

Integrins also can undergo conformational changes from a low to high affinity ligand binding 

state.(81,82) This latter mechanism of integrin signaling is referred to as inside-out signaling. 

(81,82)  

 

1.5.1 Integrin α2β1 

Integrin α2β1 is expressed at approximately 2000 to 4000 copies per platelet and makes for 

the second most expressed platelet integrin.  Binding of α2β1 with triple helical peptides 

occurs at a high affinity.  These peptides contain a GFO-GER or collagen derived 

hexapeptide sequence.(83)  With injury to the vasculature, platelets possess the capabilities 

of directly binding to the collagen exposed as a result of injury.  This is possible via α2β1 and 

GPVI receptors.  Integrin α2β1 in particular undergoes a conformational change to an active 

state with platelet activation and subsequently an increased affinity for binding with collagen.  
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Furthermore, in its active conformation and association with collagen, α2β1 promotes several 

events.  Firstly, GPVI induced signaling to PLCγ2 activation, integrin activation, as well as 

Ca2+ release and secretion.  Both human and mouse platelet ex vivo flow studies have been 

carried out also and revealed that platelet activation in some platelets was induced by GPVI 

prior to α2β1 binding.  The other remaining platelets however were observed to bind with α2β1 

before displaying stable adhesion.(83) 

 

 

1.5.2 Integrin αIIbβ3  

Intergrin αIIbβ3, a type 1 transmembrane receptor plays a critical role in haemostatic 

maintenance.  This integrin is converted to a high affinity state change where it binds to its 

natural ligand, fibrinogen. Similarly with α2β1, this activation step is linked to GPIb-IX-V 

signalling.  When activated, αIIbβ3 assists in platelet spreading, adhesion, capture of more 

platelets to the growing thrombus and ultimately stopping bleeding.(8,48)  

 

Figure 1.4.  Integrin αIIbβ3  in a low affinity conformation versus high affinity conformation schematic model and 

stabilisation of the integrin by tetraspanin association.  In a low affinity state, the integrin is bent down and when 

activated the integrin is in a straight position.  Tetraspanin association with the integrin during the high affinity 

conformer phase will result in stabilisation of the complex and consequently allowing the complex to engage with 

other molecules.   
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The integrin αIIbβ3 binds to its soluble ligand, fibrinogen via a conformational change 

mediated by agonists from a bent or low affinity state to that of an extended or active high 

affinity state.(8,48) Integrin αIIbβ3 is expressed  on the surface membranes of resting platelets 

at approximately 800,000 copies per cell (84)  in platelets and megakaryocytes and is 

formed by the αIIb and β3 subunits within the endoplasmic reticulum.(85) The αIIb subunit is 

cleaved into light and heavy chains by post-translational processing occurring in the golgi 

complex.     The rapid conversion to its active conformation is said to occur with the binding 

of the FERM (4.1/ezrin/radixin/moesin) domain of the cytoskeletal protein talin-1 to the β3 

cytoplasmic tail.(86) Delivery of talin-1 to β3 also occurs through the low molecular weight 

GTP binding protein Rap-1 and RIAM (Rap1-GTP interacting adapter molecule) which links 

platelet agonist-stimulated Rap-1 activaton to αIIbβ3 activation. Recent advances by Choi et 

al. (87) have identified a new structural model of integrin αIIbβ3.  By isolating purified intact 

inactive integrin αIIbβ3 and performing 3D reconstruction, the authors found that instead of the 

domain head bent downwards towards the membrane bilayer, they observed a upwards 

orientation of the domain head and confirmed this by using antibody-based epitope mapping 

which has also been discovered in studies examining cryo-electron microscopy models of 

intact integrin αIIbβ3.(88)  Another interesting finding was that the legs of integrin αIIbβ3 were 

coiled and not straight as previously demonstrated.  Despite these new discoveries, Choi et 

al. (87) noted that these discoveries were made in the absence of extracellular ligands and 

intracellular regulators and as such requires further examination to observe if the integrin 

maintains this proposed new conformation when binding to fibrinogen, talin and/or 

kindin.(87) 

 

Integrin αIIbβ3 is critical for haemostasis and is the most highly expressed integrin in platelets 

amongst the integrins. Integrin αIIbβ3 is imperative in mediating the aggregation, adhesion 

and spreading of platelets, as well as in clot retraction through post ligand binding signaling 

at the site of injury.(8) Thrombin, Thromboxane (TxA2), ADP and epinephrine are platelet 

agonists which are crucial for platelet plug extension.  These agonists respectively bring rise 

to numerous events contributing to amplification of platelet activation and ultimately 

extension and growth of the platelet plug/thrombus. (8,74)   A series of signaling events 

occurs on activation of αIIbβ3 specifically inside-out signaling that occurs through agonist-

induced activation of the integrin and outside-in signaling.(8) Binding of vWF to the 

extracellular domain of GPIb initiates intracellular signalling leading to calcium 

immobilisation.(18)  The regulation of the inside-out integrin αIIbβ3 pathway  is observed to be 

regulated by charge related interactions involving the α and β subunit cytosplasmic tails.  

Studies have shown that deletions or mutagenesis to the proximal areas of these 
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cytoplasmic dails leads to nonreversible activation of integrin αIIbβ3.(89,90)  Activation may 

also be mediated by the binding of GPVI with collagen and integrin α2β1, resulting in the 

generation of soluble agonists such as thrombin and ADP which acts on integrin αIIbβ3. 

Outside-in integrin αIIbβ3 signalling is characterised by the binding of αIIbβ3 to its ligands. 

Fibrinogen occupied αIIbβ3 binding induces integrin clustering and consequently the 

reorganisation of the platelet cytoskeleton.  Platelet aggregation, spreading and clot 

retraction are post occupancy events which follow.(4)   

 

Recent studies have demonstrated binding of kindlin-3 to integrin αIIbβ3 is involved in 

activation of the integrin as well as integrin αIIbβ3 dependent responses of platelets and thus 

may be necessary for arterial thrombus formation.(91)  Impaired integrin αIIbβ3 mediated 

platelet aggregation is observed in vivo to be impaired when kindlin-3 expres sion is 

defective, as the protein is known to be important in integrin function.(91)  Activation of 

integrin αIIbβ3 in platelets and irreversible binding to fibrinogen has also recently been 

identified to occur in response to ADAP, a haematopoietic restricted adapter protein.(92) 

Integrin αIIbβ3 is a unique ligand binding integrin whereby it is able to complex with 

tetraspanins and as such improve its stability when it its active conformation.(93)  Genetic 

defects affecting the quantitative or qualitative expression or dysfunction of αIIbβ3 in turn 

causes Glanzmann’s thrombasthenia (GT).  This disorder is characterized by severe 

bleeding, due to the defective aggregation of platelets, defective fibrinogen binding and 

retraction of fibrin clots which highlights the important of αIIbβ3 for the maintenance of 

haemostasis.(81,94)     
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Figure 1.5. Platelet activation and aggregation.  Platelets are drawn to the site of injury where the 

subendothelium is exposed, and interacts with GP Ib and GP Ib-IX-V complexes with collagen bound vWF.  

Following platelet adhesion, integrin αIIbβ3  activation interacts with fibirnogen, vWF and fibronectin which in turn 

maintains stable platelet aggregates, promoting thrombus growth.  Agonists such as ADP, TXA2 and thrombin 

are released from the platelet alpha and dense granules amplifying platelet activation through their respective 

receptors.(4) 

 

 

1.6 Tetraspanins 

Tetraspanins are transmembrane proteins involved in the regulation of cell morphology, 

fusion, signalling and cell migration. These proteins possess four transmembrane domains 

conserved amino acids, a conserved CCG motif, and two cysteine residues.(95,96)  EC1 or 

the short extracellular loop hosts 13-31 of the 200-350 amino acids in tetraspanins whilst 

EC2 or large extracellular loop has 69-132 amino acids with a constant and variable region.  

The constant region is split into three α helices A, B and E.(97,98) Structurally, tetraspanins 

are demonstrated to have rod-shaped structures that are compacted together.  These 

structures project from the plasma membrane at a height of approximately 5 nm. 

Tetraspanin clustering and modification, as well as the formation of tetraspanin 

microdomains is influenced by palmitoylation of the membrane proximal cysteine residues 

and additional N-linked sugars to the structure. 
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Figure 1.6.  Common structural model of a tetraspanin.  Tetraspanins possess four transmembrane domains, two 

extracellular loops (labeled EC1 and EC2) and also contain highly conserved cysteine amino acid residues.   

 

Tetraspanins are known to form multimolecular membrane complexes into tetraspanin 

enriched microdomains (TEMs). TEMs are also formed through signalling and major 

histocompatibility antigen complexes and growth factors.(8,97,99,100)   Recent data 

confirms the presence of TEMs in platelets in association with membrane receptors, both 

integrin and non-integrin.(101)  Also, interactions between tetraspanins with gangliosides 

and other tetraspanins are suggested to occur in cis.(100)  Studies have also shown links 

between integrins and tetraspanins.  Cell adhesion to specific laminins, are mediated via this 

association being integrin dependent.    

 

The tetraspanins CD151, CD81, CD82, C0/029 and CD9 in both in vitro and in vivo studies 

are shown to moderate cancer cell motility.(102) Until recently, several other tetraspanins 

have been identified in platelets and currently include the following platelet tetraspanins, 

namely CD9 (Tspan29), Tspan32 (TSSC6, PHEMX), CD63 (Tspan30), Tspan9 (NET-5), 

Tspan33 (Penumbra), Tspan14 (DC-TM4F2), Tspan15 (NET-7), Tspan2, Tspan18 

(Neurospanin) and CD151 (Tspan24).(103)  
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1.6.1 Tetraspanin CD151 (Tspan24) 

CD151 is a 254 amino acid protein with a structure specific to that of a tetraspanin.(98,103, 

104) CD151, like CD9, CD63, CD81, CD82, and A15/Talla1 are palmitoylated.  CD151 

palmitoylation in particular requires intracellular membrane proximal cysteines.  

Palmitoylation of CD9, CD63, and CD151 specifically is imperative seeing its involvement in 

stabilising tetraspanin-tetraspanin associations.  Studies have revealed impairments in 

heterophilic tetraspanin interactions where mutations to the CD9 and CD151 palmitoylation 

sites have occurred.  It has been shown also that a common impairment in the aggregation 

of platelets and formation of thrombi at sites of vascular injury occurs with an inhibition in 

palmitoylation of platelets. Studies suggest both CD151 N and C termini are 

intracellular.(105) It has a N-glycosylation site in the EC2 loop and also shown to be 

palmitoylated on cysteine residues.(106, 107)  The C-terminal (SLKLEHY) cytoplasmic 

domain bears a YRSL sequence referred to as a YXX endocytosis motif.  This motif is 

imperative in promoting internalisation of CD151.  This in turn modulates the endocytosis of 

related integrins and consequently integrin-dependent cell migration.  Hemler (99,100)  

demonstrated that mutations caused to this motif disrupts and decreases CD151 

internalisation and cell migration,  therefore suggesting that cell motility is regulated through 

integrin trafficking.(99,100)  Because CD151 is unable to autophosphorylate it is proposed 

that signalling molecule/cytoskeletal protein recruitment is mediated by ‘phosphorylation or 

nonphosphorylation events’.(100)   CD151 is expressed quite predominantly in endothelial, 

epithelial (cell to cell junctions), Schwann cells, smooth and cardiac muscles, platelets and 

megakaryocytes as well as the immune system.(96,100,101)  The tetraspanin is typically 

located on cell surfaces and in contact with basement membranes.(108)  

 

In humans, the CD151 gene is found on chromosome 11p15.5.   The gene is comprised of 8 

exons.  Of this, the exons 2 to 8 are found to encode for CD151 polypeptide.(99,106) 

Ashman observed CD151 to demonstrate double bands appearing in the region of 28 to 32 

kDa.(5) In platelets, studies have reported varying data in the expression of CD151.(5)  

Whilst several studies has reported CD151 to be expressed at levels as high as 

approximately 10,000 copies per platelet, a study has also shown CD151 being expressed 

at approximately 1,000 copies per platelet only.  It is proposed that perhaps the type of mAb 

used is important on whether it detects CD151 alone or in combination with other receptors 

including integrin αIIbβ3.(8) 

 In in vitro and in vivo platelet related studies, CD151 is suggested to be involved in 

regulating platelet function. CD151 is noted to be crucial in the regulation of laminin binding 
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proteins, especially in organising the integrins α3β1, α6β1 and α6β4 into TEMs.(102)  The 

association of CD151 with integrin α3β1 in particular has been shown to stabilise the 

activated conformation of integrin α3β1 with laminin and thus increasing its binding 

activity.(103) 

 

In addition, the integrin αIIbβ3 through recent studies is also reported to be closely linked with 

CD151 and TSSC6, and important in mediating cell adhesion strengthening in platelets as 

well as in regulating integrin αIIbβ3 outside-in signalling.(8)   Integrin αIIbβ3 outside-in signalling 

occurs with binding of fibrinogen resulting in integrin cross-linking.  With this, signalling 

molecules and the platelet proteins undergo tyrosine phosphorylation and ultimately 

resulting in cytoskeletal reorganisation, aggregation of platelets and cell adhesion. Note that 

CD151 and TSSC6 however does not mediate inside-out integrin αIIbβ3 signalling through 

agonist induced activation such as with Tyrosine kinase pathways or G-coupled receptors. 

Like CD151 and TSSC6, CD9 has also been found to show a constitutive association with 

the integrin αIIbβ3.(4, 109)  The findings of Roberts et al. (111) and Ashman (5) are 

supportive of CD151 and this tetraspanins involvement in platelet function.(5,110)  In using 

14A2.H1, a monoclonal antibody (mAb) against CD151 and ADP as an agonist, the authors 

were able to demonstrate platelet activation and aggregation occurring in a Fc receptor 

dependent manner.(5,110)  Signalling mediated by Fcγ receptor II α (FcγRIIα) is thus 

suggestive to be influenced by CD151 involvement. More recently, platelet activation 

occurring independent of the Fc receptors was identified where the mAb 11B1.G4 was 

used.(4)  The degree of this association between CD151 and αIIbβ3 is said to be of a first 

level direct interaction out of a classification of 3 levels.  Lau et al. (4) supported this with 

their findings in which the interaction showed stability and was resistant to Triton X-100.(4) 

 

Associations between CD151 and signalling molecules have also been documented.  Both 

phosphatidylinositol 4-kinase and PKC are observed to associate with CD151 on cytosolic 

surfaces and therefore providing a link between integrins and signalling molecules.(93,109)  

Studies have indicated that these associations may be co-immunoprecipitated.(4)  In 

addition, the expression of protein tyrosine phosphatase µ is reported to be regulated by 

CD151 as well as recruitment of this protein at cell-cell junctions.(111) CD151 appears to 

have a regulatory role on Ras and in inhibiting activation of Ras that is mediated through 

adhesion dependent pathways.(112)  CD151 is seen to be influential also in GTPase activity 

particularly in the activation of Cdc42 and RhoA.(113,114) Recent findings have identified 

CD151 involvement in non-tumorigenic HB2 mammary epithelial cells in activating 
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extracellular signal regulated kinases 1 and 2 or Erk1/2 and also protein kinase B (Akt) 

signalling.   Research has also shown Erk 1/2 involvement in cell proliferation.(115)  Erk1/2 

is one of four mitogen-activated protein kinase (MAPK) members.  Prior to the immediate 

pathway leading to activation of Erk1/2, vWF binding with GP1b-IX-V and the subsequent 

activation of αIIbβ3 in platelets occurs first.(116) Activation of Erk1/2 then is initiated by 

MAP/Erk kinase 1 (MEK 1) and MAP/Erk 2 (MEK2).  MEK1/2 are part of the MAPK kinase 

(MAPKK) family.  MEK activation occurs by phosphorylation with Raf kinase of which  

protein kinase activity foremost requires activation by Ras.(117)  Consequently, with 

activation and phosphorylation of MEK1/2, the Thr-Glu-Tyr (TEY) sequence components, 

threonine and tyrosine residues are then phosphorylated and thus Erk1/2 activation.(115) 

 

CD151 involvement in Erk 1/2 is suggested to occur upstream of the activation events as an 

absence of CD151 is observed to disrupt signalling of both Erk1/2 and Akt pathways.(118) 

Studies utilizing rat fibroblasts showed decreased Ras activation (adhesion dependent) with 

CD151 expression.  As Erk1/2 and Akt activation in cells occurs downstream of the Ras 

signalling pathway, these were both affected and therefore failed to be activated with CD151 

expression.  Focal adhesion kinase (FAK) and c-Src on the other hand did not appear to be 

attenuated with CD151 expression.  The importance of the C-terminal domain of CD151 is 

further demonstrated here with the use of mutant CD151 produced, showing its 

imperativeness in the negative regulation of Ras activity.(112) In addition, studies have 

reported also of the influence of calcium and calmodulin interactions in Erk pathways, as 

with modulating the activity of Src kinases and Ras activity.  It was established also that with 

calmodulin inhibitors, Erk pathways were observed to be disrupted.(119)  

 

Apart from cell motility, studies have also mentioned of CD151 involvement in cancer and 

metastasis regulation.  Data shows an inhibition in the migration of endothelial cells for 

wound healing, neutrophil chemotactic motility and cancer cell phagokinetic motility when 

anti-CD151 antibodies are used.(120)  Studies have also observed treatment with anti-

CD151 antibodies and reported a decrease in the invasiveness and spread of specific 

cancer cells.  On the other hand where over expression of the tetraspanin is observed, 

metastasis is more aggressive.(120-122)  Studies indicate also the importance of CD151 in 

vasculogenesis and angiogenesis regulation.  In vitro Matrigel assay studies reveal CD151 

influence in regulating the formation of EC cables.  In addition, pathological angiogenesis is 

found to be defective in CD151 knockout mice.(123) 



 
 

25 
 

Mutations and the resultant diseases in both human and mouse CD151 have been 

identified.  In humans, where CD151 does not have an integrin binding domain intact, 

patients are seen to suffer from the diseases: end stage hereditary nephritis and pretibial 

epidermolysis bullosa.(8)  This mutation is rare and occurs in only approximately 8% of the 

population, specifically individuals of Indian Jewish heritage.(8,124)  The mutation occurs at 

position 140 where an in-frame stop codon causes truncation and loss of the integrin binding 

domain.  In mice, mutations in CD151 leads to diseases and symptoms different to that 

identified in humans.(8) 

 

In vitro studies have revealed that initial ligand binding is not affected by CD151.  Integrin-

dependent adhesion strengthening and post ligand binding events however are shown to be 

influenced by CD151.(125) Data involving mice studies demonstrate laminin binding 

integrins in CD151 knockout mice in vivo to function normally despite the altered phenotype.  

Haemostasis however is unstable with this phenotype.  Platelet aggregation is abnormal with 

prolonged bleeding times, increased blood loss and occurrence of rebleeds.  Notably, 

CD151 deletion has not been found to affect αIIbβ3 integrin inside-out signalling.  However, 

αIIbβ3 outside-in signalling is impaired in CD151-/- platelets.  Furthermore, recent findings 

have identified that in vivo regulation of thrombus formation requires platelet CD151.(4)  

Thrombi is unstable and smaller in CD151-/-  and CD151+/-  mice in comparison to CD151+/+  

mice, observed  through laser induced injury to cremaster muscle arterioles.  In a similar 

pattern, CD151-/-  and CD151+/-  mice versus CD151+/+  mice were seen to have prolonged 

times in reaching 95% of vessel occlusion.  For this latter experiment, the authors employed 

the Folt FeCl3 induced carotid injury model.  Collectively, this demonstrates the importance 

of tetraspanin-integrin αIIbβ3 complexes in regulating the formation of platelet thrombi and 

effective platelet adhesion.(111)   

 

In human platelets, the integrin αIIbβ3 is observed to associate with only a smaller non-

glycosylated section of CD151 whilst α6β1 and α3β1 are capable of associating with 

glycosylated CD151.(83)  The lateral associations of CD151 with integrin α6β1 is particularly 

influential in the integrins role in outside-in signalling.(112)  Cell morphology regulation and 

migration are influenced by the complexes formed between α6β1 and α3β1, and CD151.(113, 

114,125)    This regulation is achieved by mediating cytoplasmic signalling(126) and 

adhesion. (113,114,125) Studies have suggested also of the role CD151 has in α3β1 

glycosylation and trafficking regulation.(99, 116)  
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The CD151 and α3β1 complex compared to other integrin and tetraspanin complexes is 

observed to exhibit a greater level of stoichiometry and stability.  This is seen with the 

resistance of the complex to triton X-100 detergent and interaction being present when 

immunoprecipitated and specificity with the QRD194-196 binding sequence.(102,117) In 

addition, with direct covalent cross linking, this complex also shows high levels of 

proximity.(102)  The integrin α3β1 is not found to be present in cells or tissues where CD151 

association is also absent.  Studies have identified the regions in the CD151 extracellular 

loop (QRD194-196) and α3 extracellular domain to be the sites most important in forming more 

stable associations.(127)  In contrast, the interactions between CD151 with α6β1 and α6β4 are 

less stable than compared to α3β1.  Integrin α3β1 in contrast to other integrins is also seen to 

demonstrate greater PtdIns 4-kinase activity.  With CD151 immunodepletion, this activity is 

observed to decrease.  This association between CD151 and α3β1 is reported to be localised 

in the integrins extracellular domain.(5) Also, Lammerding et al. (122) found adhesion 

strengthening mediated by integrins and cell spreading which are both dependent on α6 to be 

reduced where the CD151 and α6 complex is affected.(122)  This is supported by findings in 

which the C-terminal of CD151 is specifically observed to be vital for these functions to occur 

and ultimately form on matrigel experiments.(112) 

 

CD151 involvement in platelet function is important as evidenced by its involvement in the 

regulation and organisation of laminin binding proteins into tetraspanin enriched 

microdomains.(102) In addition, cytoskeletal reorganisation, platelet aggregation and cell 

adhesion is mediated by outside-in signalling through the constitutive association of CD151 

with integrin αIIbβ3.(5,110)  In vitro studies have reported abnormalities in platelet 

aggregation as a result of platelet CD151 deficiency.  The formation of thrombi in vivo was 

also noted to be affected by the absence of CD151 in platelets.(4)  In the context of 

atherosclerosis in humans, CD151 expression and distribution is poorly understood.  Human 

in vitro studies demonstrated increased protein expression and distribution of CD151 in 

atherosclerotic tissues suggesting the involvement of CD151 in atherosclerosis disease 

progression.(128)  Although the literature shows that in vitro studies of CD151 in platelets 

have been well studied, its involvement in the physiological setting of atherosclerosis is 

lacking. 
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1.7 PECAM-1 

In humans, Platelet endothelial cell adhesion molecule-1 (PECAM-1) is found on activation 

responses by sending inhibitory dephosphorylating signals to platelets and immune cells via 

the Immunoreceptor tyrosine-based activatory motifs (ITAM)-dependent pathways.(129,130)  

The regulation of cell signalling therefore is crucial between the negative regulation of ITAM 

receptors with ITIM-containing receptors as it is necessary for producing the appropriate 

responses and required cellular activities. The structure of PECAM-1 is composed of an 

intracellular region with two tyrosine (Y663 and Y686) ITIMs, 1 transmembrane domain and 

6 Ig domains in the extracellular domain. On a molecular level, the extracellular Ig domains 

in PECAM-1 are suggested to be involved in both homophilic and heterophilic interactions 

with ligands located on adjacent cells.  Intracellular signalling molecules interact with 

PECAM-1 non-convalently for transduction of the extracellular signals to occur.  This is due 

to the inability of PECAM-1 to elicit intrinsic enzymatic activities. Outside-in signalling events 

are induced with PECAM-1 engagement which is followed by tyrosine phosphorylation, 

protein-tyrosine phosphatase  (PTP) activation and recruitment.  Cell adhesion is then 

disrupted  following Inside-out signalling and selective dephosphorylation.  In contrast, It has 

not been established as far whether the cytoplasmic signalling and cytoskeleton molecules 

such as ϒ-catenin, β-catenin, PLC-ϒ1 and PI3-kinase interacts directly PECAM-1 as would 

PTP, despite the associations observed.   The two tyrosines Y663 and Y686 in the 

intracellular region of PECAM-1 are common sites for Src homology 2 (SH2) domains.  The 

tyrosines subsequently undergo phosphorylation in response to stimuli.  Both Src family 

kinases and Csk related kinases are suggested to be involved in phosphorylation.  Studies 

have shown that phosphorylation still occurs where Src kinase inhibitors have been used 

thus suggesting Csk kinase involvement.(129) PECAM-1 is known to mediate several 

functions and has a role in the negative regulation of platelet activation and immune cells.  It 

is involved also in cell-cell contact formation and stabilisation.  This occurs at the lateral 

junctions of endothelial cells where it is most abundantly expressed.(129)   

 

In platelets, PECAM-1 acts as a key negative regulator where the collagen GPVI/FcR γ-

chain and ITAM signalling pathways are concerned.(129, 130) PECAM-1 knockout mouse 

studies have shown that PECAM-1 negatively regulates receptor antigen complexes on B 

cells, mast cells and FcRI-mediated signalling.   Thrombi formation was also increase in a 

study by Jackson kson which observed thrombus formation on immobilised collagen, under 

flow conditions in human models.  This was determined through a dose-dependent 

experiment with human PECAM-1-Ig chimera over control IgG.  Mice studies also revealed 
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that wild type mice formed smaller thrombi compared to PECAM-1 knockout mice.(131)  

Additionally PECAM-1 is known to mediate and maintain the vascular permeability barrier 

whilst also playing an imperative role in the transmigration of leukocytes with PECAM-1 

specifically modulating monocyte and neutrophil migration.(129,132,133)    PECAM-1 has 

been observed to be a regulator in angiogenesis and phagocytosis of apoptotic cells.  

Studies have shown also of PECAM-1 and its role in ECM adhesion and cell motility, cellular 

cytoskeleton assembly and integrin activities.  With this, recent research is suggestive of 

PECAM-1 in being linked to intracellular signal complexes formation with the molecule 

functioning as a scaffolding protein.(129)  Recent studies have demonstrated a constitutive 

association between PECAM-1 and Calmodulin (CaM).  This interaction is one of several 

PECAM-1 interactions found to occur independent of the ITIM region.   The association 

between PECAM-1 and CaM requires the sequence located in the intracellular region of 

PECAM-1, 599RKAKAK604. (129,130)   

 

1.8 Mechanisms of stable thrombus formation in mice 

The temporal and spatial formation of a platelet thrombus has been shown through in vivo 

murine studies to be a dynamic and complex process.  The interplay of platelets and platelet 

activation and aggregation, vWF, collagen, fibrinogen and fibronectin, intracellular calcium 

mobilisation, release of secondary mediators, ADP and TxA2 are all involved in this process.  

The translocation of platelets and adhesion through platelet adhesive receptor-ligand 

interactions to the exposed endothelium occurs as part of the initial stages of thrombus 

formation.  The accumulation of platelets occurs at this site followed by shedding of the 

thrombus and embolisation downstream.(134-137) Occlusion of the vessel occurs with 

growth of the thrombus in due course, as a result of recurring plaque injuries and thrombus 

formation.  The stability of the thrombus is also influenced by numerous factors, in particular, 

the signalling events of integrin αIIbβ3, platelet adhesive ligand interactions, platelet adhesion, 

Src family kinases, protein tyrosine phosophatase PTP1B, secondary wave mediators and 

receptors: P2Y12, ADP and TxA2.(138)  In vivo studies have also reported the involvement of 

the following receptors in thrombus stability: Semaphorin 4D, CD40L and Gas6.(134,139)   
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1.9 Atherosclerosis 

Atherosclerosis is a chronic inflammatory disorder involving the complex interactions of 

plasma lipoproteins, monocytes, vascular endothelial and smooth muscle cells, lymphocytes, 

platelets, lipids, genetics and the haemodynamics of arterial blood flow.(140-142)  It is 

characterised by the narrowing of blood vessels caused by growth and presence of 

atherosclerotic plaque lesions, also referred to as atheromas or fibro-fatty plaques.(143)  

The rupture or erosion of an atherosclerotic plaque lesion leads to atherothrombosis, termed 

as the formation of a thrombus, following these events.  Subsequently, occurring in 

conjunction with the accumulation of lipids, an occlusive thrombus/thrombi develops as the 

intima of the coronary and carotid arteries thickens progressively and ultimately resulting in 

myocardial infarction and stroke. (64,140) In Australia, 14.6% of deaths in 2011 were caused 

by ischaemic heart diseases and has continuously been the number one cause of death 

since 2000.(2)    

 

Platelets have an integral role in the onset and development of atherosclerosis, and is 

associated with the inflammation processes and atherogenesis of this disorder.(144)  

Platelet adhesive interactions with leukocytes and the endothelium subsequently leads to 

the recruitment of leukocytes to the vascular wall,  migration of mononuclear cells and foam 

cell formation. (140,145,146)  The interaction of platelets with leukocytes and endothelial 

cells initiates a localised inflammatory response which is contributed by cytokine, 

chemokine, proinflammatory molecule and modulators such as CD40L (CD154) release, 

accelerating the formation of early atherosclerotic lesions.(146)   The release of platelet 

derived growth factor from platelets also contributes to plaque angiogenesis as it stimulates 

smooth muscle proliferation.(147)  The contribution of platelets in atherosclerosis and plaque 

development is further evidenced by studies in which ApoE knockout mice platelets were 

observed to adhere to arterial intimas prior to the detection of atherosclerotic lesions.  

Platelets in the circulation were also observed to have secreted proinflammatory chemokines 

and formed platelet-monocyte aggregates.(148-150)  These studies also showed that 

genetic deletion of the αIIb subunit of integrin αIIbβ3 resulted in a decrease in lesion 

development.(148-150)  Furthermore, in vivo studies using intravital microscopy models 

showed that platelets adhered to arterial walls even in the absence of endothelial cell 

disruption.(145,151)  These in vivo and in vitro findings support the theories of platelet 

involvement in the onset and development of atherogenesis and atherosclerosis disease in 

mice.(144-146)  This also reiterates the importance of examining platelet signalling pathways 

and tetraspanins such as CD151 for the prevention and management of atherosclerosis 

through targeted therapies. 
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Figure 1.7.  Progression of atherosclerotic lesions in arterial thrombosis.  The development of atherosclerotic 

lesions is preceded by leukocyte to platelet and leukocyte to endothelial interactions.  In asymptomatic disease, 

proatherogenic leukocytes and foam cells are recruited throughout progression of atherosclerosis which 

stabilises the plaque.  The collagen rich fibrous cap developed also improves plaque stability.  As atherosclerosis 

progresses, the lipid core becomes necrotic and the fibrous cap begins to thin.  This unstabilises the plaque and 

renders it vulnerable to rupture.  Exposure of the thrombogenic contents following plaque rupture results in rapid 

platelet accumulation and generation of fibrin.  The repetitive cycles of injury and thrombus formation leads to 

progression of the atherosclerotic lesion and gradual narrowing of the lumen causing a stenosis and eventually a 

myocardial infarction, or ischaemic stroke.(146)  
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1.9.1 Thrombotic complications in atherosclerosis 

Arterial thrombosis occurs mostly in the coronary circulation and involves the exposure of 

thrombogenic components of an unstable atherosclerotic plaque to the blood.(152-155)  

Previous studies have identified the primary involvement of platelet rich thrombi in plaque 

development and consequently also the increased risk of an acute coronary event occurring.  

Most atherosclerotic lesions develop slowly and rarely cause life threatening 

thrombosis.(146)  Studies have shown that in some individuals (postmortem) atherosclerosis 

was reversed spontaneously.  Thrombi which had formed on disrupted plaques appeared 

small and non occlusive, suggesting an asymptomatic coronary disease condition.(154, 156-

158)  In unstable coronary lesions on the other hand, the risk of suffering an acute coronary 

event is increased as compared to asymptomatic conditions and progresses rapidly over a 

matter of months.(154,156,159)  Platelets also appear to be more reactive to platelet 

agonists such as ADP, thrombin and collagen in atherosclerotic patients.  Studies also show 

an increase in their adhesion to the endothelium and secretion of other proinflammatory 

proteins such as chemokines and cytokines.(160) These inflammatory responses 

accelerates the progression of atherosclerosis and subsequent risk of acute coronary 

syndromes.(161) 

 

1.9.2 Tetraspanins in atherosclerosis 

Studies have reported of the involvement of tetraspanins in the pathogenesis of 

atherosclerosis and atherothrombosis.  Platelets have also been implicated in the 

progression of disease not just in the late stages but also in the early stages of atheroma or 

atherosclerotic plaque lesion formation.(162) Tetraspanin CD63 has been shown to be 

associated with atherosclerosis disease.  CD63 is highly expressed in platelets and localised 

predominantly to the lysosomes and dense granules, and is expressed together with P-

selectin upon platelet activation on platelet surfaces.(123,163)  According to Cha et al. (164) 

whole blood flow cytometry analysis revealed the expression of CD63 and P-selectin was 

elevated and persisted up to 90 days after atherosclerotic ischaemic stroke events.  CD63 

and P-selectin expression has also been shown to be elevated in the acute phase on an 

ischaemic stroke by Zeller and colleagues.(165)  It was suggested that the hyperactivation of 

platelets in atherosclerotic ischaemic stroke may persist for long periods and assist in 

proposing renewed anti platelet agents for the management of atherosclerosis disease.(164)  

Furthermore, the use of statins have been demonstrated to be helpful in regulating 

atherosclerotic ischaemic stroke which saw a reduction in CD63 expression.(166) Platelet 

derived microparticle (PMP) subpopulations have also been studied in atherosclerosis 
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disease as it is associated with raised levels of platelet activation and been observed to 

circulate in higher concentrations in atherosclerosis.  It has been reported that PMP 

subpopulations exposes CD63 and P-selectin, and thus act as a more reliable marker of 

platelet activation rather than overall PMP numbers.(167) Similarly, CD81 like CD63 is 

conserved as part of a syntenic group in that their chromosomal order is preserved between 

the mouse and human species.(106) CD81 is broadly expressed and influences cellular 

function in the nervous and immune systems.(168-172)  Endothelial CD81 has been shown 

in human arteries to be upregulated in early human atheromas.  The authors proposed that 

CD81 may play an integral role in early atherosclerotic plaque formation by enhancing 

monocyte adhesion involving intercellular adhesion molecule 1 (ICAM-1) and vascular cell 

adhesion molecule 1 (VCAM-1).(173)  Recently, another group also identified CD81 as a 

valuable marker of early atherosclerotic plaque presence.  They performed in vitro studies 

using ultraonic imaging on murine bend.3 cells and inducing oxidative stress with phenazine 

methosulfate.  The results demonstrated that epithelial CD81 expression was upregulated in 

the presence of oxidative stress which corrected with the administration of anti-CD181 

antibodies.(174)  Another tetraspanin said to be involved in the pathogenesis of 

atherosclerosis is CD9.  Tetraspanin CD9 was first identified by its reactivity with BA-1 

monoclonal antibody raised against the leukaemia cell line, NALM-6.(175,176)  CD9 is 

expressed on numerous cells including eosinophils, basophils, macrophages, fibroblasts, 

neuronal cells, oocytes, smooth muscle cells epithelial cells and various cancers.(177-179)  

Expression of CD9 was demonstrated and localised to the human aortas and coronary 

arteries, especially in atherosclerotic plaque lesions through immunohistochemical 

studies.(180)  The proliferation of smooth muscle cells in the intima of arteries is a key event 

in plaque formation and was proposed by Nishida et al. (180) to be associated with CD9 

expression.  In vitro studies of cultured smooth muscle cells showed high expression of CD9 

and was also associated with vascular smooth muscle cell proliferation.(181)  The authors 

also identified that an increase in CD9 expression in the proliferative phenotype was double 

that of the contractile phenotype, and also found that CD81, was upregulated likewise.(181)  

Double immunofluorescence studies displayed the co-localisation of CD9 with CD36 on 

human platelets prior to solubilisation.  CD36 is a scavenger receptor involved in the 

formation of foam cells through the phagocytosis of oxidised low density lipoprotein (LDL) by 

macrophages in atherosclerosis.(182)  According to Miao et al. (182) CD9 may be involved 

in mediating the biological functions of CD36 as their findings showed associations between 

the proteins.     
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1.10 Apolipoprotein E 

Apolipoprotein E (ApoE) is an important glycoprotein required for the metabolism and 

transport of lipids.  ApoE has been noted also to have a protective role on atherosclerosis 

and is a component of all lipoproteins with the exception of LDL.(183-188) ApoE acts on the 

lipid metabolism pathway and is associated with hepatic uptake as well as the breakdown of 

lipoproteins via LDL receptors (LDL-R) and LDL like receptor proteins in the liver. These 

proteins act also in clearing chylomicron remnants, reverse cholesterol transport (RCT), 

hepatic very low-density lipoprotein (VLDL) stimulation, as well as in enzyme activation.(184-

189)  Recent studies have demonstrated the particular importance of ApoE in RCT in vivo 

where deletion of ApoE caused a decrease in macrophage RCT by 30%.(184)  The anti-

atherogenic effects of ApoE extends into LDL oxidation inhibition, endothelial and smooth 

muscle cell proliferation, platelet aggregation and inhibition of T-lymphocyte proliferation and 

activation.(183)   

 

 

1.10.1 Apolipoprotein E structure 

ApoE is a 299 amino acid protein and is found on the 5’ end of a 50kb gene cluster on 

chromosome 19 in humans.(190,191)  ApoE has two functional heparin binding domains.  

The N terminal contains the ApoE receptor binding regions at residues 136 – 150 whilst the 

C terminal at residues 244 - 272 contains highly lipophilic binding regions which inserts into 

lipoprotein surfaces.(191-194)  ApoE exists as three isoforms: ApoE2 (Cysteine 112 and 

Cysteine 158), ApoE3 (Cysteine 112 and Arginine 158) and ApoE4 (Arginine 112 and 

Arginine 158).(195, 196)  

 

1.10.2 Apolipoprotein E mouse model 

The ApoE knockout mouse model was first developed in 1992 and since then has allowed 

scientists to observe the progression of atherosclerosis.(185) Mice possess a natural 

resistance to atherosclerosis, an attribute likely to be a result of plasma cholesterol ester 

transfer protein absence. Approximately 85% or 85 mg/dL of total serum cholesterol 

circulates as HDL which is understood to have an atheroprotective effect.  This shift in 

plasma lipid profile differs to that of humans significantly.(185) Through genetic manipulation 

and disruption of ApoE, this natural resistance is challenged and thus allowing us to study 
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atherosclerosis in a murine model.  The differences in lipid profiles and cholesterol 

metabolism between murine and humans presents some limitations however is still widely 

acknowledged to be a gold standard murine model atherosclerosis studies.(185)  

 

When comparing between C57BL/6 wild type mice and ApoE knockout mice, the latter 

maintains a normal heart rate as well as blood pressure, however the aortic and mitral flow 

velocities and pulse velocities are elevated in ApoE knockout mice. Furthermore, when fed a 

standard chow diet, the ApoE knockout mouse exhibits cholesterol levels of up to 

approximately five times more than wild type with hypercholesterolaemia ranging around 400 

mg/dl.(185)   Heterozygous knockout mice on the contrary were observed to exhibit 

comparable cholesterol levels to wild type control mice.(183)  

 

Studies have shown that in ApoE-/- mice atherosclerotic lesions develop at a greater rate 

than in normal mice.  Even on a normal mouse diet, ApoE-/- mice compared to normal mice 

are seen to demonstrate abnormalities in lipid metabolism with data showing the 

accumulation of foam cells on aortic walls at approximately 3 months which then by 8 

months develop into atherosclerotic lesions and vessel occlusion.  CD151 on the other hand 

is important in thrombus formation as CD151-/- arterioles develop smaller thrombi that are 

less stable and have a tendency to embolise.(127) CD151-/- mice have prolonged bleeding 

times, increased blood loss and occurrence of rebleeds, indicating unstable 

haemostasis.(197)  

 

As discussed, CD151 a tetraspanin superfamily member is required for the regulation of 

thrombus formation and growth in vivo.  Also, particularly in cell adhesion strengthening and 

acting as a structural scaffold.  Factors such as platelet and ligand interactions, as well as 

integrin signalling events involving αIIbβ3 are influential in the stability of thrombi formed.  As 

with signalling events, Src family kinases, Eph kinases and PTP1B are also involved; as are 

the following agonists: ADP, TXA2, P2Y12 receptors.  Research also indicates the 

involvement of Gas6 and CD40L in platelet signalling. PECAM-1 on the contrary plays a 

crucial role in inducing outside in signalling events with engagement of PECAM-1.(197) 

Therefore, PECAM-1 is highly influential on the stability of thrombi formed given its role in 

inducing outside in signal transduction, and the phosphorylation events which follow together 

with the activation and recruitment of relevant signalling molecules.  Prolonged tail bleeding 
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times have been demonstrated in studies observing PECAM-1 deficient mice.(131)    This 

was reported by irradiating mice followed by reconstitution with either PECAM-1 or wild type 

platelets and observing for a correction in bleeding time which required presence of 

endothelial PECAM-1.(131)   

Additionally, in a disease setting, atherosclerosis is polygenic in nature involving the 

contribution of an altered lipid metabolism, multiple cell types, inflammation, development of 

atherosclerotic lesions and plaque formation.  CD151 is broadly expressed in multiple cell 

types and has never been studied in the context of atherosclerosis.  Using a proatherogenic 

mouse model ApoE-/- crossed with CD151-/- mouse strain will give investigators an indication 

of whether cell surface contact receptors play an important role in regulating 

atherothrombosis and plaque stability.  Previous findings determined by the Jackson 

laboratory have shown that at least in platelets, CD151 is important for the growth and 

stability of platelet thrombi formed in vivo.(4,197)  Absence of CD151 may confer some 

resistance in the setting of a proatherogenic mouse model of ApoE-/-.CD151-/- in the 

development of atherothrombosis and plaque stability.  These findings will elucidate the 

extent of CD151 deficiency in atherosclerosis and identify potential targets for the 

development of anti-thrombotic therapies.   
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1.11 Summary and aims 

Platelets are paramount in the regulation of haemostasis. Platelets are anucleate fragments 

of megakaryocytes found only in mammals  and are involved in a range of processes such 

as inflammation, host defense, coagulation, malignancies and wound healing.  Its diverse 

abilities to adapt to different physiological situations emphasises its importance in 

haemostasis.  Defects to platelet functioning and the subsequent impact on coagulation, 

platelet aggregation and activation can pose serious implications to patient health.  Bleeding 

and thrombotic events which manifest as ischaemic heart disease continues to be the 

leading cause of death in Australia as reported in the latest statistics released in 2013.(2)   

Studies on tetraspanins and in particular CD151 have examined the effects of deficiencies 

on platelet function.  CD151 regulates the function of integrin αIIbβ3 and therefore the 

formation of a haemostatic plug to suspend bleeding.  Whilst conclusions have been made in 

the literature on the effects of CD151 absence and the outcomes expected, none of these 

studies have examined the effects of CD151 deficiency specifically in atherosclerosis.  

Plaque rupture and the sequential development of thrombi leads to vessel occlusion and 

potentially a myocardial infarction or stroke.  Based on the literature, we hypothesise that 

CD151 deficiency may confer resistance in an atherosclerotic setting by using a novel ApoE-

/-.CD151-/- model for the investigation of atherothrombosis and plaque stability.  In order to 

address this hypothesis, the following aims were projected: 

 

1.  Develop and characterise the ApoE-/-.CD151-/- genotype.  This is a novel model in which 

the specific CD151 gene knockout mouse crossed with an ApoE knockout mouse permitted 

the in vivo study of the absence of CD151 in atherosclerosis. ApoE-/- mice were used as a 

control as this model has been established to be a gold standard for experimental 

atherosclerosis studies.  Chapter 3 of this thesis documents the development of the novel 

strain as well as haematological, lipid, glucose and weight profiles. 

 

2. To examine plaque burden between the ApoE-/- and ApoE-/-.CD151-/- model.  CD151 is 

expressed not only in platelets but also in endothelial, cell to cell junctions in epithelial cells, 

Schwann cells, smooth and cardiac muscles, and the immune system.(96, 100, 101) The 

tetraspanin is typically located on cell surfaces and in contact with basement 

membranes.(108) Histology studies were used to asses the impact CD151 deficiency on 

atherosclerotic plaques and their development in Chapter 4 and 5. 
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3.  To examine plaque composition between the ApoE-/- and ApoE-/-.CD151-/- model.  

Immunonhistochemical studies were used to assess the role of smooth muscle actin type I 

collagen and macrophages. 

 

4.  To investigate whether platelet activation, aggregation and the formation of thrombi is 

affected in vivo and in vitro in CD151 deficiency in atherosclerosis compared to the literature 

where it has been examined in a non-atherosclerotic setting.    Chapter 6 discusses the 

investigation of different vascular beds subjected to injury and the observation of platelet 

recruitment in vivo.  Thrombotic events and thrombus formation in response to these injuries 

were investigated in an atherosclerotic setting with the use of the ApoE-/-.CD151-/- model.  In 

vitro studies on the other hand examined platelet aggregation and adhesion responses to 

agonists.   
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2 CHAPTER 2:  METHODS 

 
2.1 Mice and development of the ApoE-/-.CD151-/- strain 

ApoE-/- C57BL/6 background mice were purchased from the Animal Resources Centre (ARC, 

Perth, WA).  CD151-/- (C57BL/6 background) mice were originally generated by A.Prof Mark 

Wright and Professor Leonie Ashman as previously described.(102)  Both ApoE-/- and 

CD151-/- strains were generated using C57BL/6 genetic embryos.  ApoE-/- and CD151-/- mice 

were crossed to generate the ApoE-/-.CD151-/- strain.    All mice were housed in a pathogen-

free and barrier protected facility room in the RMIT Animal House Facility under protocols 

approved by the RMIT Animal Ethics Committee (AEC).  The age and sex matched mice 

were given free access to food and water throughout experiments and fed a standard chow 

diet comprising of 65% carbohydrate, 15% fat, 20% protein (NIH-31 Chow diet; Ziegler 

Brothers, Gardner, PA) for 16 weeks.  All experimental procedures were approved by the 

RMIT AEC – AEC Number 0927 and 1332.  The mouse genotypes were confirmed by 

polymerase chain reaction (PCR) screening of mouse tail genomic deoxyribonucleic acid 

(DNA). 

  

2.1.1 Genotyping of ApoE-/- and ApoE-/-.CD151-/-  mice 
2.1.1.1 Isolation of mouse genomic DNA 

Mouse tail tissue clippings from 3 week old pups were taken for the isolation of mouse genomic 

DNA.  The ‘DNeasy’ protocol for rodent tails was used and is as detailed in the DNeasy tissue 

kit handbook from Qiagen Pty. Ltd. (Clifton Hill, Victoria).  All materials used for the protocol 

were purchased from Qiagen Pty. Ltd.  (Clifton Hill, Victoria).     

 
2.1.1.2 PCR protocol  

For ApoE PCRs, PCR products were prepared using ApoE primers only whereas for 

ApoE.CD151 genomic DNA, PCR products were prepared using both CD151 and ApoE 

primers. 

 

For CD151, three primers were used to genotype mouse tail DNA from the tail clippings of the 

pups.  Firstly as the forward primer (FP) for wild type mice, CD151 primer 1 (5’ 

GCTCCATGTTCCGTACACT 3’).  Secondly, for the common reverse primer (RP) for both wild 
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type and CD151 knockout, CD151 primer 2 (5’ CAGCTTAGGACCTCTTCTCA 3’).  Finally, as 

the forward primer which is specific for CD151-/- located on the 5’ of the PGK-Neo cassette, 

CD151 primer 4 (5’ ATGATAACCCACCATGTGTC 3’).  PCR products for wild type and CD151-/- 

yield 400 base pair (bp) products.   

 

Preparation of the PCR master mix was made according to the number of genomic DNAs 

prepared.  For each tail clipping, a mix was prepared containing 1 x PCR Taq Gold Buffer 

(Perkin Elmer, Boston, MA), 0.09 mM MgCl2  (Perkin Elmer, Boston, MA), 2.5 mM dNTPs  

(Progen Industries Ltd., Richlands BC, Qld), 1.25 mM each of forward and reverse primers (KO 

allele: CD151 2, CD151 4; WT allele:  CD151 1, CD151 2),  0.2 U/µl of Taq Gold DNA 

polymerase (Perkin Elmer, Boston, MA), and made to a final volume of 25 µl.  The PCR master 

mix was aliquoted in 25 µl aliquots and to each tube, 1 µl of each genomic DNA pre diluted 1:20 

Milli-Q water was added. 

 

For ApoE, three primers were used to genotype mouse tail DNA from the tail clippings obtained.  

These were: ApoE 180 (5’ GCCTAGCCGAGGGAGAGCCG 3’) as the FP, ApoE 181 (5’ 

TGTGACTTGGGAGCTCTGCAG 3’) as the RP and ApoE 182 (5’ GCC GCC CCG ACT GCA 

TCT 3’) also as the reverse primer.    When the WT allele is present, the ApoE 180 and 181 

primer pair yields a 155 bp product and when the KO allele is present, the ApoE 180 and 182 

primer pair yields a 245 bp product. 

 

The ApoE master mix was prepared with 1x PCR Taq Gold Buffer (Perkin Elmer, Boston, MA), 

2 mM MgCl2 (Perkin Elmer, Boston, MA), 0.2 mM dNTPs  (Progen Industries Ltd., Richlands 

BC, Qld), 0.5 µM each ApoE forward and reverse primers, 0.3 U/µl Taq Gold DNA polymerase 

(Perkin Elmer, Boston, MA), and was made up to a final volume of 10 µl.  The PCR master mix 

was aliquoted in 10 µl aliquots and to each tube, 2 µl of each genomic DNA was added. 

 

The DNA amplification process for both ApoE and CD151 PCR products were treated similarly.  

DNA amplification was performed under these cycling conditions on a C1000 Touch™ Thermal 

Cycler (Bio-rad Laboratories, Budapest, Hungary), as follows.  The starting temperature was set 

to 94 °C for 15 min followed by 35 cycles of denaturation at 94 °C for 1 min, annealing was set 

at 55 °C for 1 min and extension at 72 °C for 30 sec.  
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2.1.1.3 GAPDH PCR control 

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is commonly used as a control in 

PCR to determine the integrity of genomic DNA.  GAPDH is not only a crucial enzyme 

involved in glycolysis but is also known to be a housekeeping gene as its expression is 

inherent and required for cell survival.(198)   

 

The two primers used to confirm the presence and integrity of genomic DNA from the tail 

clippings obtained were: GAPDH 5’TCACCACCATGGAGAAGGC as the FP and GAPDH 5’ 

GCTTAAGCAGTTGGTGGTGCA as the RP.  Where DNA is present, the primer pair yields a 

200 bp product.  

 

The GAPDH master mix was prepared with 1x PCR Taq Gold Buffer (Perkin Elmer, Boston, 

MA), 1.0 mM MgCl2 (Perkin Elmer, Boston, MA), 0.1 mM dNTPs (Progen Industries Ltd., 

Richlands BC, Qld), 0.4 µM each of GAPDH forward and reverse primers (Sigma Aldrich, St. 

Louis, MO), 0.06 U/µl Taq Gold DNA polymerase (Perkin Elmer, Boston, MA), and was 

made up to a final volume of 10 µl with milli-Q water.  The PCR master mix was aliquoted in 

10 µl aliquots and to each tube, 1 µl of each genomic DNA was added.  The DNA 

amplification process was performed as per ApoE and CD151 PCR products with a C1000 

Touch™ Thermal Cycler (Bio-rad Laboratories, Budapest, Hungary) at a starting 

temperature of 94 °C for 15 min followed by 35 cycles of denaturation at 94 °C for 1 min.  

Annealing was set at 55 °C for 1 min and extension at 72 °C for 30 sec.  

 

2.1.1.4 Agarose gel electrophoresis 

Electrophoresis of PCR products was performed using a 2% (w/v) agarose Tris-Acetic Acid-

EDTA (TAE) gel, pH 8.5.  The gel solution was prepared with 1x Gel Red Nucleic Acid stain 

(Invitrogen, Camarillo, CA). Once the gel had set, it was submerged in 1x TAE buffer pH 8.5.  

Prepared PCR products were mixed with DNA loading buffer (Geneworks, Thebarton, South 

Australia) in a 7 µl to 3 µl ratio.  In the first well on the gel (from left), 4 µl of 2 log ladder NEB 

marker was loaded as a DNA marker standard.  On each gel, known CD151+/- or ApoE+/- 

heterozygous, CD151-/- or ApoE-/- homozygous, WT DNA were loaded as controls.  A milli-Q 

water lane was also loaded as a blank and non-DNA control for contamination.  Electrophoresis 

was carried out at 120V and run until the dye migrated approximately three quarters down the 
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gel.    The Gel Red Nucleic Acid stain when bound to DNA, will fluoresce at an excitation 

maximum of 280 nm and 502 nm and at an emission maximum of 530 nm.  The Biorad 

Molecular Imager Gel Doc™ XR+ system was used to visualise DNA and Infinity Capture 

Software Version 12.6 for Windows to capture and print the PCR images.  

 

2.1.2 Body weights 

The body weights of ApoE-/- and ApoE-/-:CD151-/-  mice were documented from 5 weeks of 

age to 16 weeks of age.  Body weights were measured with scales in the RMIT Animal 

Facility.  At 16 weeks, mice were issued for experiments. 

 
2.1.3 Body mass index 

Body Mass Index (BMI) of ApoE-/- and ApoE-/-.CD151-/-  mice were calculated at 16 weeks on 

the day of experimentation.  BMI is reported as an arbitrary unit (AU) and is measured by the 

formula: weight of mouse (g) / length from mouse nose to anus (mm)2
.  BMI is a gross 

measurement of weight adjusted for height in humans or in our study, for the body length of 

mice.  This measurement is incapable of differentiating between over weightedness due to 

lean or fat mass, and is used in the human population to provide a quick measurement for 

the assessment of obesity.    

 

2.1.4 Full blood examination 

ApoE-/- and ApoE-/-.CD151-/-  mice at 16 weeks were anaesthesised by inhalation with 2% 

(v/v) isoflurane (vaporised) with 3 litres/min oxygen.  An Isotec 3 machine was used to carry 

out the anaesthesia.  Blood for full blood examination (FBE) was drawn via cardiac puncture 

with a 1 ml syringe and a 26 gauge needle.  Whole blood was transferred from the syringe 

into a potassium ethylene-diaminetetraacetic acid (EDTA) 1.3 ml capacity microtube 

(Sarstedt, Nümbrecht, Germany).  After cardiac puncture, mice were sacrificed via cervical 

dislocation.  A Cell Dyn Emerald analyser was used to run the blood samples for acquiring 

full blood examination parameters.  At all times, Cell Dyn controls (high, normal and low 

ranges) were run to ensure the analyser was performing optimally and recording true results.  

Note, the mice had free access to food (Section 2.1) and water with no restrictions. 
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2.1.5 Non-fasting blood glucose 

Random blood glucose (mmol/L) was measured from mouse whole blood.  A drop of blood 

drawn from each ApoE-/- and ApoE-/-.CD151-/- mice (Section 2.1.4) was reserved for non-

fasting blood glucose testing with an Accu-Chek® Advantage meter and Accu-Chek® Comfort 

Care test strips (Roche Diagnostics, Indianapolis, IN).  Results are verified by control tests 

carried out with the use of Accu-Chek® comfort curve control solutions. 

 

2.1.6 Lipid profiling 

Blood samples for random non-fasting/no diet controlled lipid profiles were collected from the 

same syringe of blood drawn via cardiac puncture for FBE, as described in section 2.1.4. 

However, instead of transferring all the blood drawn into a paediatric EDTA tube, 

approximately 100 µl of blood for lipid profiling was transferred into a lithium heparin 1.3 ml 

capacity microtube (Sarstedt, Nümbrecht, Germany).  Lithium heparin was used as an 

anticoagulant as it is known to have minimal interference in water shifts, chelation and has 

low concentrations of cations.(199)  Plasma samples were obtained by centrifugation of the 

whole blood samples for 10 minutes at 1960 xg without brake in a Beckman Coulter Allegra 

X-12R centrifuge.  The plasma samples were then transferred to eppendorf tubes and stored 

in a - 80 °C freezer for batch analysis.  A Dimension XL (Dade Behring, Deerfield, Illinois) 

biochemistry analyser was used to obtain the lipid profiles.  To ensure the accuracy of 

results, controls and calibrators specific for the Dimension XL analyser were run and made 

sure to be within the expected control result ranges.  All controls and calibrators used were 

produced and purchased from Dade Behring (Dade Behring Inc, Deerfield, Illinois).   

 

2.1.7 Organ weights and lengths 

ApoE-/- and ApoE-/-:CD151-/-  mice were anaesthesised by inhalation with 2% (v/v) isoflurane 

(vaporised), 3 litres/min oxygen with an Isotec 3 machine.   After cervical dislocation, a 

dissection was made to expose the heart and other internal organs.  A 1 ml syringe with a 25 

gauge needle of phosphate buffered saline (PBS) pH 7.4 (8 g NaCl, 0.2 g, KCl, 1.44 g 

Na2HPO4, 0.24 g KH2PO4, bring to 1 L milli-Q water, pH adjusted to pH 7.4 with 

concentrated HCl) was infused into the left ventricle.  PBS pH 7.4 was flushed through the 

heart gently to remove blood cells from the heart and aorta.  The heart was removed with the 

aortic arch intact.  Where possible, the arch of the aorta down to the ascending aorta was 

also kept intact and removed together. Fat and irrelevant tissues attached to the aorta were 
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trimmed off carefully under a Prism Optical microscope (Scitech, Preston, Victoria).  The 

brachiocephalic, left common carotid and left subclavian arteries on the aortic arch were also 

kept intact and fat trimmed around these areas.  The heart and attached aorta was 

measured for length with a ruler and weighed.  Following this the heart and aorta was 

immediately fixed in 10% (v/v) buffered formalin (disodium hydrogen orthophosphate 203.7g, 

sodium dihydrogen orthophosphate 88.5 g, formaldehyde 2.5L and Milli-Q H2O 22.5L) at 

room temperature for 48 hours.  The kidneys, lungs and liver were also collected, measured 

for length and weight and subsequently fixed in 10% (v/v) buffered formalin as above.  

 

Figure 2.1.  Outline of blood collection for FBE, random blood glucose, lipid profiling and collection of organs, 

beginning from time of anaesthesia. 
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2.1.8 Tissue sectioning and staining 

The heart, kidneys, lungs and liver were collected from ApoE-/- and ApoE-/-. CD151-/- mice as 

described in Section 2.1.7.  The organs were maintained in 10% (v/v) buffered formalin 

solution for 48 hours for adequate fixation.  The heart of each mouse was cut transversely 

caudal to the atria after fixation as shown below (Figure 2.2).   This image also illustrates the 

area of the heart, which was sectioned and studied.   

 

Figure 2.2.  Representative image of a heart and aorta isolated from ApoE-/- and ApoE-/-.CD151-/- mice. The 

image shows fat and surrounding tissues have been removed and trimmed from the aorta.    The area between 

the two lines illustrates the area in which atherosclerotic lesions were examined.  

 

After isolating this area, the hearts were placed in individual cassettes.  Other organ tissues 

such as the liver, kidneys and lungs were also trimmed of fat if necessary and cut into small 

sections for tissue processing.  These organs were placed in individually labelled cassettes 

as well.  Each individual cassette was labelled with the animal ID and date of collection of 

organs.  Tissue processing was performed using a Leica ASP200 S (Leica Biosystems, 

Wetzlar, Germany) fully enclosed tissue processor.  A pre-programmed rodent schedule for 

processing was used.  This runs in six hour schedules or can be prolonged to an overnight 

schedule.    The tissues were sectioned beginning from the transverse cut in 5 µm serial 

sections with a Leica MM2235 microtome (Leica biosystems, Wetzlar, Germany) and stained 

with Haematoxylin and eosin, Verhoeff’s Van Gieson to identify elastic fibres and Masson’s 

trichrome for the identification of collagen and differentiating it from smooth muscle.  These 

sections were sectioned onto uncoated glass slides.  Sections were also made on 

Superfrost® plus positively charged microscope slides (Thermo Fisher Scientific Inc., 
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Waltham, MA) for immunohistochemistry (IHC) type 1 collagen, smooth muscle actin, 

macrophage F4/80 and CD151 H80 staining.  

 

2.1.8.1 Haematoxylin and eosin 

All organs collected and processed were stained for H & E.  Tissue sections were dewaxed 

and hydrated through xylene, graded alcohols and tap water.  Nuclear staining was 

performed in Mayer’s haematoxylin [haematoxylin (1.0 g), sodium iodate (0.2 g), potassium 

aluminium sulphate (50.0 g), choral hydrate (50.0 g), citric acid (1.0 g), distilled water (1 l)] 

for approximately 2.5 min then rinsed in tap water briefly, followed by several dips in Scott’s 

tap water [potassium bicarbonate (2.0 g), magnesium sulphate (20.0 g), distilled water (1 l)], 

then rinsed in tap water thoroughly for approximately 2 min.  Tissue sections were examined 

at this stage to ensure sharp staining of the nuclei.  Where a stronger stain was required, the 

steps beginning from staining with the Mayer’s haematoxylin was repeated.  The subsequent 

steps involved counterstaining with 1% (w/v) aqueous eosin [eosin Y (10.0 g), acetic acid (1 

ml/g), distilled water (1 litre)] for 2 min followed by a brief rinse in tap water.  Finally the 

tissues were dehydrated through increasing concentrations of alcohol culminating with 

xylene, mounted with DPX [Lustrex (80 mg), xylol (280 ml) and dibutyl phosphate (40 ml)] 

and coverslipped. 

 

 

2.1.8.2 Masson’s trichrome for collagen 

For Masson’s trichrome staining the Hall’s modification was used.(200)  This method has 

been shown to be reliable for formalin fixed paraffin tissues and requires an essential step 

involving a mordanting step with Bouin’s solution that has been brought to 60°C.  Only aortic 

cusp sections were examined with Masson’s trichrome staining for both ApoE-/- and ApoE-/-. 

CD151-/- mice.  Tissue sections were dewaxed and hydrated through xylene, graded alcohols 

and tap water.  Tissues were then treated in Bouin’s fixative solution for 30 min at 60°C, 

followed by a brief rinse in water and stained with Weigert’s iron haematoxylin for 10 min 

[haematoxylin (5.0 g), absolute ethanol (500 ml), ferric chloride (30% (w/v) aqueous) (20 ml), 

distilled water (500 ml), concentrated hydrochloric acid (5 ml)].  A brief rinse in water was 

followed with differentiation of nuclei in 0.5% (v/v) acid alcohol (0.5 ml of hydrochloric acid in 

100 ml of 70% ethanol) and a 1 min wash in water.  Staining with 1% (w/v) brilliant crocein in 

1% (v/v) phosphotungstic acid was done for 10 min, rinsed with 1% (v/v) phosphotungstic 
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acid then stained in 0.5% (w/v) aniline blue in 1% (v/v) acetic acid for 10 min.  A last wash in 

1% (v/v) acetic acid for 1 min was performed then finally tissues were dehydrated in alcohol, 

xylene, mounted with DPX [Lustrex (80 mg), xylol (280 ml) and dibutyl phosphate (40 ml)] 

and coverslipped. 

 

2.1.8.3 Verhoeff’s Van Gieson for elastic fibers 

Only aortic cusp sections were examined with Verhoeff’s Van Gieson staining for both ApoE-

/- and ApoE-/-. CD151-/- mice.  Tissue sections were dewaxed and hydrated similar to other 

staining methods mentioned above.  Tissues were stained with a solution composed of 5% 

(w/v) alcoholic haematoxylin (20 ml), 10% (w/v) aqueous ferric chloride (8 ml) and Lugol’s 

iodine solution (7 ml) for 15 min.  This solution was freshly prepared for each staining batch.  

Tissues were then briefly rinsed in water with excess water wiped from the slide gently with a 

tissue.  Sections were differentiated in 2% (w/v) aqueous ferric chloride for a few seconds.  

The reaction was stopped by rinsing briefly in tap water then 3 – 4 quick dips in 95% (v/v) 

ethanol and rinsed in water again.  Counterstaining was carried out with Van Gieson’s stain 

[picric acid saturated aqueous (93 ml), acid fuchsin (7 ml)] for 5 min where sections were 

then blotted with Grade 1 Whatman paper (GE Healthcare Life Sciences, Buckinghamshire, 

England). Tissues were dehydrated in alcohol, xylene, mounted with DPX [Lustrex (80 mg), 

xylol (280 ml) and dibutyl phosphate (40 ml)] and coverslipped. 

 

2.1.8.4 Immunohistochemical staining: anti type I collagen 

Immunohistochemical (IHC) staining was performed with a Dako autostainer plus automated 

system.  Sections were stained with anti type I collagen polyclonal rabbit antibody (Rockland 

Immunochemicals Inc, Gilbertsville, PA).  Firstly, tissues underwent antigen retrieval in a 

97°C tank for 10 min in DAKO flex low pH 6 retrieval solution (Agilent Technologies, 

Glostrup, Denmark).    This solution also deparaffinises the paraffin fixed section.  The slides 

were moved to the DAKO autostainer plus where they were rinsed with 0.05 M Tris-HCL 

0.05% (v/v) Tween 20 [10 x Tris HCL Tween 20, 0.5M Tris base, 0.5% (v/v) Tween 20, pH 

7.6.  Trizma base (61 g), distilled water (1 l), adjusted to pH 7.6 with concentrated HCl] (Tris-

HCL wash buffer) and incubated for 30 min in 1% (v/v) triton X solution to permeabilise the 

tissues.  Slides were washed again with Tris-HCL wash buffer followed by a blocking step for 

background and unspecific staining with a peroxidase blocking solution [30% (v/v) H2O2 (10 

ml), 1X PBS (90 ml)] for 10 mins followed by another washing step.  This was followed by a 

0.4 % (w/v) casein protein block (Tris-HCL Wash buffer (100 ml), skim milk powder (4 g)] for 

30 mins, a wash step to remove the protein block, and incubation with the primary antibody 
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for 30 mins being the anti type I collagen rabbit polyclonal antibody at a 1/200 dilution to 

reveal the presence of collagen in the aortic valve cusp.  After rinsing with Tris-HCL wash 

buffer the sections were stained for 30 min with a secondary peroxidase conjugated affini-

pure goat anti rabbit antibody at a dilution of 1/800 (Jackson ImmunoResearch Laboratories 

Inc., Westgrove, PA).  The tissues were washed again with Tris-HCL wash buffer and 

incubated for 5 min with 3,3' diaminobenzidine (DAB substrate) solution.  After the final rinse 

with Tris-HCL wash buffer, slides were counterstained in Mayer’s haematoxylin as detailed 

in section 2.1.8.1, mounted with DPX and coverslipped.   

 

2.1.8.5 Immunohistochemical staining: smooth muscle cell actin 

IHC staining of the aortic valve cusp of ApoE-/- and ApoE-/-.CD151-/- mice was performed to 

the same protocol as for anti type I collagen.  Note, to stain specifically for smooth muscle 

cell actin (SMC α), an anti-alpha Smooth muscle actin rabbit polyclonal antibody (Abcam, 

Cambridge, UK) was used as the primary antibody at a dilution of 1/200 and with a 

peroxidase conjugated affini-pure goat anti-rabbit antibody at a dilution of 1/800 (Jackson 

ImmunoResearch Laboratories Inc., Westgrove, PA). 

 

2.1.8.6 Immunohistochemical staining: CD151 H80 

Likewise to the above IHC methods, the staining protocol was similar with the exception of 

antibodies used.  In this case, a CD151 H80 rabbit polyclonal antibody (Santa Cruz 

Biotechnology Inc., Dallas, Texas) was used at a dilution of 1/800.  A peroxidase conjugated 

affini-pure goat anti rabbit secondary antibody was also used at a dilution of 1/800 (Jackson 

Immunoresearch laboratories, PA, USA). 

 

2.1.8.7 F4/80 pan macrophage marker (MAC) 

Pan macrophage staining in the aortic valve cusps of ApoE-/- and ApoE-/-. CD151-/- mice was 

performed to the same protocol as above.  For this specific staining, an anti-mouse F4/80 

Antigen PE antibody (Ebioscience, San Diego, CA) was used at a dilution of 1/400 and for 

the secondary antibody, a peroxidase goat anti-rat IgG secondary at a dilution of 1/2000 

(Invitrogen, Camarillo, CA). 
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2.1.9 Quantification of plaque burden 

Haematoxylin and Eosin stained sections were examined for plaque burden and presence in 

the aortic valve cusps of ApoE-/- and ApoE-/-. CD151-/- mice.  This was measured consistently 

at the level in which the aortic valve leaflets were visible.  Sections were imaged using a 

Leica DMD108 microscope (Leica Microsystems, Wetzlar, Germany) with a 4x and 10x 

objective and camera. The Leica imaging system was used to digitally measure the aortic 

area, which is expressed as the aortic cross sectional area.  The percentage of the aortic 

valve cusp area that shows evidence of plaque formation was calculated by also using the 

Leica DMD 108 imaging system program function to outline the plaque and dividing the 

plaque area by the aortic valve cusp area (Figure 2.3).  Measurements were performed in a 

blinded mode with mice specimens labeled independently and decoded on conclusion of 

analysis.  

2.1.10 Quantification of positive staining in IHC 

Quantification of positive staining for Immunohistochemical stains was determined by a 

positive pixel count algorithm v9.1 (Aperio Technologies Inc, CA, USA).  Slides were firstly 

scanned with an Olympus BX 41 microscope with a 4x and 10 x objective and an Olympus 

DP70 camera (Olympus Optical Co. Ltd, Tokyo, Japan).  Digital Image files were opened in 

the Image Scope (Aperio Technologies Inc, CA, USA) program then analysed with the 

algorithm.  The algorithm quantifies the amount of a specific stain found present on the 

scanned image by counting the number and intensity sum and categorises the intensities 

into weak, positive and strong intensity range.  Negatively stained pixels which did not fall 

within the positive intensity ranges were also counted to allow for quantification of positive 

stained pixels in proportion to total stained pixels on the scanned image.  Staining was 

quantified on only the areas which were occupied by a plaque by selecting the plaque areas 

with the measurement and selection tool.  

 

 

 

 

 

Figure 2.3  Schema of a cross section of an aorta at the level in which the aortic valve cusps are visible and 

coronary artery is in view.  This area was selected for plaque burden measurements with H & E staining, as well 

as examination of plaque burden via immunohistochemical staining. 
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2.1.11 Intraperitoneal anaesthesia administration for dissection experiments 

The anesthesia is administered interperitoneally with a 26 gauge needle, with a combination 

of Ketamine (200 mg/kg 20:1 w/v) (Ketalar, Pfizer, New Zealand) and Xylazil (10 mg/kg 1:1 

w/v) (Ilium, Xylazil 1001: Troy Laboratories Pty Ltd, Smithfield, NSW).  A pedal reflex test is 

performed by pinching the front and hind paws gently with forceps to determine if the mouse 

is anesthesised sufficiently.  If the mouse does not withdraw its paw or respond by flinching, 

dissection of the mouse can begin. 

 

2.1.12 Ferric chloride (FeCl3) induced carotid artery injury 

Ferric Chloride (FeCl3) induced carotid artery injury experiments were performed on ApoE-/- 

and ApoE-/-. CD151-/- mice of 4 to 6 weeks in age.  Experiments were done in pairs where 

one strain, for instance an ApoE-/- mouse would be anesthesised and subjected to 

experimentation, then culled prior to beginning another experiment with an ApoE-/-.CD151-/-  

mouse.  The order in which mice were experimented on was randomised.  

 

Once the mouse is sufficiently anesthesised as per Section 2.1.11, a straight line cut incision 

is made along the throat with a pair of scissors, followed by a blunt dissection made to 

expose the trachea.  Connective tissue is removed gently to avoid damage to the 

surrounding jugular vein and vagus nerve whilst locating the artery.  The carotid artery is 

found approximately 2 mm laterally and posterior to the trachea.  Once isolated, a piece of 

suture thread is placed under the artery and another on the furthest end of the exposed 

carotid artery to support and elevate it throughout the experiment.   

 

A Moor instruments laser doppler perfusion monitor and probe (Moor Instruments, UK) is 

used to monitor the blood flow in the carotid artery.  The Doppler flow probe is placed gently 

near the artery with the red laser visible and aimed on the middle of the artery.  A baseline 

reading of 1000 AU on the monitor indicates that 100% blood flow rate is present.  Blood 

flow is recorded beginning at 1000 AU.  A standardised 4 mm x 1 mm strip of Whatman filter 

paper (Grade 1, Whatman) infused in 20% (w/v) FeCl3 (Sigma Aldrich, St. Louis, MO) for 3 

seconds is placed carefully on the carotid artery without disrupting the laser placement for 4 

minutes to induce FeCl3 injury then removed. The carotid artery was then washed with saline 

gently to remove any residual FeCl3.  Blood flow recording is continuous throughout this time 



 
 

50 
 

and is stopped after the monitor displays a reading of below 50 AU which is equivalent or 

greater than 95 % vessel occlusion.  The blood flow trace is saved for later analysis.  To 

conclude the procedure, the mouse is sacrificed via cervical dislocation.  The time to 

occlusion is determined by measuring the time from removal of the FeCl3 filter paper to when 

only 5% or less blood flow remained.   

 
2.1.13 Cardiac puncture blood collection 

ApoE-/- and ApoE-/-.CD151-/-  mice were subject to anaesthesia by inhalation of 2% (v/v) 

isoflurane (vaporised) with 3 litres/min oxygen (BOC gases, Preston, Victoria).  An Isotec 3 

machine was used to carry out the anaesthesia.  Blood for in vitro collagen adhesion and 

platelet aggregation experiments were drawn via cardiac puncture with a 1 ml syringe and a 

26 gauge needle.  Whole blood was transferred from the syringe into a tube containing 100 

µl 3.2 % (w/v) trisodium citrate and mixed by inverting gently. 

 

2.1.14 In vitro flow shear rate 

An Ibidi three channel µ-slide III (0.1 × 1.0 × 45 mm, IBIDI, Martinsried, Germany)  flow 

chamber was coated with 500 µg/mL type 1 fibrillar chrono-par collagen (Nycomed, 

Konstanz, Germany) and incubated at 37 °C for 60 min.  Whole blood samples were 

collected from ApoE-/- and ApoE-/-.CD151-/-  mice through cardiac puncture as per Section 

2.1.13.   Platelet counts were obtainined by diluting whole blood 1:10 in Ringers citrate buffer 

(RCD) pH 6.5 (108  mM NaCl, 38  mM KCl, 1.7  mM NaHCO3, 21.2  mM sodium citrate, 

27.8  mM glucose and 1.1  mM MgCl2·6  H2O, pH adjusted to pH 6.5), then normalise platelet 

counts across both strains to 100 x 109L in RCD pH 7.4 (108  mM NaCl, 38  mM KCl, 1.7  mM 

NaHCO3, 21.2  mM sodium citrate, 27.8  mM glucose and 1.1  mM MgCl2·6  H2O, with pH 

adjusted to 7.4).   The blood was then incubated with 0.05% (w/v) rhodamine (Sigma Aldrich, 

St. Louis, MO) at 37 °C for 30 min away from direct light. A Harvard Apparatus PHD 2200 

standard syringe pump (Harvard Apparatus, Boston, MA) was used to induce a wall shear 

rate of 1800-1 seconds, at an infusion rate of 168.65 on the device.  Only one microslide was 

coated and examined at a time.  The microslide was examined with a  Zeiss Axiovert 135 

microscope (Zeiss, Oberkochen, Germany),  Zeiss Axiocam Mrm camera and corresponding 

analysis and recording program, Axiovision Rel version 4.6 software. Real-time images were 

captured in 1 min cycles for 6 cycles at the time of perfusion. Thrombus area, thrombus 

height and thrombus volume were determined using Z-stack analysis image obtained 

through the deconvolution process in the Axiovision Rel version 4.6 software.   
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2.1.15 Ferric chloride-induced vascular injury and intravital microscopy (IVM) 

ApoE-/- and ApoE-/-.CD151-/-  mice were anesthesised as per section 2.1.11.  Once 

sufficiently anesthesised a dissection was made to either right or left side of the mouse neck 

to locate the jugular vein and insert a cannula (0.61 mm x 0.28 mm, Microtube extrusions, 

Sydney, NSW).  Two silk suture threads (Fine Science Tools, BC, Canada) were placed 

under the jugular vein to raise and support the vein and cannula.  This allowed for direct 

infusion of 0.05 % (w/v) rhodamine dye as well as anaesthetic into the mouse circulatory 

system.  The mesentery was then located and exposed by creating a midline abdominal 

incision.  The internal organs were undisturbed and intestines untangled on the microscope 

board to expose the arterioles.  Mesenteric arterioles of 80-100 µm diameter were identified 

under the microscope with a 20 x objective under bright field light settings.  Once isolated, 

the arteriole was subjected to 7.5 % (w/v) FeCl3-induced injury by soaking a 1 mm x 4 mm 

strip of Whatman filter paper for 3 seconds in the FeCl3 solution and gently placing this strip 

on the arteriole for 4 minutes.  Rhodamine dye was infused into the animal through the 

cannula inserted into the jugular vein.  From bright field light the microscope settings were 

changed to a rhodamine channel to view platelets fluorescing in the artery on the monitor.  

Images were recorded on an Axiovision Rel version 4.6 software using a Zeiss Axiovert 135 

microscope (Zeiss, Oberkochen, Germany) and Zeiss Axiocam Mrm camera.  The 

Axiovision software recorded z-stack real time images through time lapse analysis over 5 

cycles for 2 minutes each for analysis of thrombus formation upon FeCl3 induced injury.  

This was performed for each arteriole isolated.  Anesthesia was infused into the animals 

circulatory system through the cannula inserted into the jugular vein to ensure the mouse is 

adequately anesthesised throughout the experiment.  Pedal reflex checks were performed 

on the mouse’s paws to ensure the mouse is anaesthesised sufficiently.  At the conclusion of 

the procedure, the mouse was sacrificed via cervical dislocation. Parameters including 

vessel length and diameter were documented whilst parameters such as thrombus area, 

thrombus height, thrombus volume, vessel volume, percentage of vessel occlusion and 

stability score were determined through the deconvolution process in the Axiovision Rel 

version 4.6 software.   
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2.1.16 Z-Stack analysis and acquiring parameters analysed from IVM images 

Deconvolusion of rendered Z-stack images was performed using the Axiovision Rel version 

4.6 software.  This produced 3D images of the thrombus present.  The thrombus was 

calculated from the front view above the vessel as well as the length of the vessel and its 

radius to obtain the volume of the vessel.  Side profile views of the 3D image acquired was 

used to determine the height of the thrombus. 

 

The thrombus height (µm) was calculated from the average of the highest and lowest point of 

the thrombus, while thrombus area (µm2) was calculated by outlining the thrombus or thrombi 

recorded. The volume of the thrombus was calculated by multiplying the height and area 

together. The percentage of vessel occluded by thrombus was calculated by dividing the 

thrombus volume by the volume of the vessel (π x radius of vessel2 x length of vessel) 

multiplied by 100.  The stability score is an arbitrary unit of clot stability which is 

representative of the stability of thrombus growth over a given time. This was calculated by 

the average of the percentage of vessel that was occupied by the thrombus over 2 min (at 

time points 6 min and 8 min). The stability score is categorised according to the percentage 

of vessel occlusion as follows: 0-10 % = 1, 11-20 % = 2, 21-30 % = 3, 31-40 % = 4, 41-50 % 

= 5, 51-60 % = 6, 61-70 % = 7, 71-80 % = 8, 81-90 % = 9, 91-100 % = 10. 

 

2.1.17 Platelet aggregation 

ApoE-/- and ApoE-/-.CD151-/-  mice were subjected to the procedure as described in section 

2.1.13 for the collection of whole blood through cardiac puncture.  Following blood collection, 

the tubes were centrifuged in a Beckman Coulter Allegra X-12R centrifuge (Beckman 

Coulter, USA)  at 190 xg for 10 min at room temperature without brake to obtain platelet rich 

plasma (PRP).  After separation, the PRP layer was gently isolated into a new tube.  Platelet 

counts were obtained by diluting 1:10 of the PRP in RCD Buffer pH 6.5 (108  mM NaCl, 

38  mM KCl, 1.7  mM NaHCO3, 21.2  mM sodium citrate, 27.8  mM glucose and 1.1  mM 

MgCl2·6  H2O, pH adjusted to 6.5) and analysed with a Cell Dyn Emerald haematology 

analyser (Abbott Laboratories, Abbott Park, Illinois).  The platelet count for both ApoE-/- and 

ApoE-/-.CD151-/- mice was normalised to 100 x 109L in RCD Buffer pH 7.4 (108  mM NaCl, 

38  mM KCl, 1.7  mM NaHCO3, 21.2  mM sodium citrate, 27.8  mM glucose and 1.1  mM 

MgCl2·6  H2O, with pH adjusted to 7.4). The remaining blood was centrifugated at 930 xg for 

10 min room temperature, without brake to obtain platelet poor plasma (PPP) which will act 
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as a murine baseline for platelet aggregation testing. The PPP was diluted 1:2 in RCD pH 

7.4. 

 

A Chronolog 4-channel platelet aggregometer (Chrono-log Corp, Havertown, PA) was used 

for light transmission platelet aggregation.  PRP aggregation was performed by aliquoting 

250 µl of prepared PRP from each ApoE-/- and ApoE-/-.CD151-/- mice into glass cuvettes, with 

a magnetic stirring flea in each for constant stirring at 1000 RPM.  To each glass cuvette, 

100 µg/ml of fibrinogen and 1 mM CaCl2 was added and incubated for 5 minutes at 37°C in 

the aggregometer, appropriately labeled as ApoE-/- or ApoE-/-.CD151-/- PRP.   The baseline 

was set using the prepared PPP prior to stimulation with agonists for the initiation of platelet 

aggregation.  For each agonist, a cuvette containing the prepared ApoE-/-  PRP was 

analysed as trace 1 versus  ApoE-/-.CD151-/-  PRP as trace 2.   The following agonists were 

used independently for stimulation of platelets in sequential tests:  lyophilised ADP (5 µM 

and 10 µM; Chrono-Log Corp, Havertown, PA), protease-activated receptor 4 (PAR-4) (200 

µM and 300 µM; H-Ala-Tyr-Pro-Gly-Lys-Phe-NH2 (AYPGKF-NH2; GL Chemicals, China), 

type 1 fibrillar collagen (3.75 µg/ml and 7.50 µg/ml; Chrono-Log Corp, Havertown, PA), CRP 

(0.625 µg/ml and 1.25 µg/ml; CC Peptide Gly-Cys-Hyp-(Gly-Pro-Hyp)10-Gly-Cys-Hyp-Gly-

NH2 (Mr: 3294), Cross linked with 1.5 M SPDP (3-(2-pyridyldithio)propionic acid N-

hydroxysuccinimide ester; Sigma P3415).  Platelet aggregation was monitored and recorded 

over a 10 minute period to obtain the maximal aggregation amplitude.   

 

2.1.18 In Vivo tail bleeding assay 

In vivo tail bleeding assays were conducted on ApoE-/- and ApoE-/-.CD151-/-  mice of age 6 – 

8 weeks to examine haemostasis.  The mice were subjected to anaesthesia via inhalation 

with 2% (v/v) isoflurane (vaporised) with 3 litres/min oxygen.  An Isotec 3 machine was used 

to carry out the anaesthesia.  A 2 mm diameter, by 1 cm section of tail tip was selected and 

excised with a scalpel blade.  The volume of blood lost was measured by allowing blood 

droplets from the tail to fall into an eppendorf tube filled with 100 µl of 3.2 % (w/v) trisodium 

citrate, followed by a calculation subtracting the 100 µl of 3.2 % (w/v) trisodium citrate to 

obtain the final volume of blood lost.  The bleeding time was measured from when blood first 

appeared at the tip of the tail to cessation of bleeding.  If bleeding was found to restart within 

1 minute, this was recorded as a rebleed and plotted as a percentage of the group tested 

which showed a positive rebleed result.       
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2.1.19 Results analysis 

GraphPad Prism version 6.0 (GraphPad Software, Inc. La Jolla, CA) was used to perform all 

statistical analysis.  All values are expressed as mean  ± standard error of the mean (SEM).  

Haematological parameters, body weights, organ lengths and weights, and random blood 

glucose results, maximal platelet aggregation, time to 95% vessel occlusion, blood volume 

lost, time to cessation of bleeding, haemostasis instability, thrombus parameters, plaque 

lesion areas, % pixel positive staining were calculated as mean ± standard error of the mean 

(SEM) in ApoE-/- vs ApoE-/-.CD151-/-   groups.   Mean ± SEM between ApoE-/- vs ApoE-/-

.CD151-/- groups were compared statistically using a students two tailed unpaired t-test. 

When comparing more than two groups, the ANOVA test was used..  Statistical significance 

was reported when the p value was < 0.05.   
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3 CHAPTER 3:  DEVELOPMENT AND CHARACTERISATION OF THE ApoE-/-.CD151-/- 

STRAIN 

 
3.1 Introduction 

The role of CD151 in atherosclerosis in vivo has to date not been examined.  As such, ApoE-

/-.CD151-/- mice were generated by cross breeding CD151-/- mice with ApoE-/- mice.  Being a 

novel mouse line, the development and characterisation of the ApoE-/-.CD151-/-
 strain had 

not been reported previously.   

 

The CD151 protein is linked to vascular morphogenesis, hemidesmosome formation, cancer 

metastasis, neurite outgrowth, cell migration, wound healing, immune responses, integrin 

trafficking and haemostasis.(4,6,102,119,175,197,201)  CD151 is ubiquitous and present in 

endothelial cells, smooth muscle, megakaryocytes, cardiac muscle, immune system, 

epithelia and platelets.(5)  In platelets, CD151 has been shown to have functional 

importance in the positive regulation of platelet function both in vivo and in vitro.  Recent 

findings have determined the absence of platelet CD151 in vivo results in smaller and 

thrombi that are less stable and tend to embolise.   Orlowski et al.(197) also identified 

platelet CD151 as a regulator of thrombus growth and stability in vivo.(197) 

 

Little is known of the involvement of CD151 specifically in atherosclerosis and plaque 

stability in this diseased setting.  Yang et al. (128) investigated CD151 protein expression 

and distribution of the tetraspanin in atherosclerotic tissues in humans.  The authors 

reported a significantly increased level of CD151 protein expression in atherosclerotic 

arteries compared to normal healthy arteries through western blotting analysis.(128) 

Histological studies further suggested CD151 involvement in atherosclerosis development as 

atherosclerotic arteries stained more intensely for CD151 than healthy arteries.(128)   

 

The mouse model of atherosclerosis was introduced in the mid 1980s.  It has since seen 

many developments from using inbred mice to genetically engineered mice that are more 

widely accepted in atherosclerosis research for mimicking human disease.(202)  Findings 

have shown the C57BL/6 WT mouse strain to have a genetic predisposition to 

atherosclerosis and thus used commonly for atherosclerosis studies.  Genetically modified 

mice used in atherosclerosis studies are also often back crossed onto the C57BL/6 WT 
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strain. The ApoE-/-  atherosclerosis model is capable of developing spontaneous and diet 

induced atherosclerotic lesions which resembles many of the features observed in humans.  

With this, the mouse model has gained in popularity and is the most used mammalian model 

for the study of atherosclerosis today.(203)   

 

ApoE is understood to have multiple functions.  Its role predominantly is in the regulation of 

lipoprotein metabolism and maintaining homeostasis of plasma cholesterols.  ApoE has, 

since, its discovery in 1973 by Shore and Shore, been identified as a major component in 

plasma lipoproteins.(204) Low Density Lipoprotein Receptor (LDL-R) recognition sites are 

found in the amino terminal region of the ApoE protein where upon binding with lipids causes 

a conformational change in the amino terminus.  The amino acids 165-169 forms a helix 

resulting in an increase in positive electrostatic potential and consequently rendering a 

higher binding affinity of ApoE with the LDL-R on parenchymal liver cells for the uptake and 

degradation of lipoproteins.(205-207) Secondary mechanisms of lipoprotein regulation and 

transport is also maintained through the attachment of ApoE to LDL related receptor proteins 

(LRP) and heparan sulphate proteoglycans (HSPG) for chylomicron clearance.  Studies 

have also reported the activation of enzymes associated with lipoprotein metabolism, direct 

stimulation of triglyceride and hepatic Very Low Density Lipoprotein (VLDL) production and 

reverse cholesterol transport capabilities by ApoE. (188, 208-210)  Its role in atherosclerosis 

is reported by numerous studies performed on humans and animals.  In humans, decreased 

expression or absence of the ApoE glycoprotein is shown to be associated with 

atherosclerosis and a raised lipoprotein profile.(211,212)  Schaefer et al. (211)  and Ghiselli 

et al. (212) demonstrated that the condition Type III hyperlipoproteinaemia is associated with 

and manifests in individuals with homozygous familial ApoE deficiency.  This condition is a 

rare autosomal recessive condition of which defect is suggested to be caused by the inability 

to synthesise ApoE and an accumulation of lipoprotein constituents in the LDL and VDL 

regions.  In homozygotes, Schaefer et al. observed significantly elevated LDL and VLDL 

cholesterol whilst heterozygotes develop mild hyperlipidaemia.  Menopause and aging is 

also proposed to have an influence on expression of hyperlipidaemia.    

Similarly, animal studies of ApoE-/- mice report significantly raised cholesterol levels caused 

primarily by impaired clearance of low density lipoproteins in comparison to wild type 

mice.(213,214)  Even on a low fat or chow diet, ApoE-/-
 mice develop complex atherosclerotic 

lesions as a consequence of lipoprotein accumulation.(213,215)  The involvement of ApoE in 

atherosclerosis is further supported by its potential anti-atherogenic roles evidenced in 

studies reporting a reduction in atherosclerosis progression with the reconstitution of ApoE 
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through synthetic ApoE peptide injections and also via increasing the expression of ApoE 

genes in ApoE-/- mice.(216,217)  

  

In humans, circulating lipoproteins in hypercholesterolaemic patients are suggested to 

influence platelet function and the abnormalities associated in atherosclerosis.(218,219)  

LDL, VLDL and oxidised LDL are atherogenic lipoproteins with which contain apolipoprotein 

B-100, and have been observed to increase platelet aggregation and activation in patients 

with raised cholesterol levels.(220,221)  A similar situation is observed in mice where 

dyslipidaemia precedes atherosclerosis disease and the development of atherosclerotic 

lesions.(203)   

 

Cross breeding the ApoE-/- (C57BL/6 WT background) proatherogenic mouse model with a 

CD151-/- mouse strain will give insight into the effects of the absence of CD151 (C57BL/6 

WT background) in an atherosclerotic setting.  Our observations will give an indication as to 

the involvement of cell surface contact receptors in the regulation of atherogenesis and 

atherothrombosis.  Normal reference ranges on the haematological parameters and lipid 

profiles of ApoE-/-.CD151-/- are not available. In addition, Mendelian ratios and development 

of the strain have not been documented.   Whilst Whitman et al. (203) found ApoE-/- mice to 

breed efficiently and produce acceptable litter sizes, and CD151-/- mice to breed similarly, the 

Mendelian inheritance frequencies of ApoE-/-.CD151-/- strain has not been studied.(203)  It is 

not known whether any developmental problems, mortality or morbidity is affected.  Given 

these lines of evidence, establishing mouse lipid and haematological parameters of this 

novel ApoE-/-.CD151-/- mouse strain and developmental characteristics holds great value for 

investigating the hypothesis and presumed protective effect of knocking out the CD151 gene 

in an atherosclerosis setting. 
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3.2 Results 

 
3.2.1 Development of the ApoE-/-.CD151-/-  strain 

Previous studies have demonstrated that the tetraspanin family member, CD151 is important 

in modulating the function of platelet integrin αIIbβ3 and is also associated functionally and or 

physically with GPVI.(4,109)  CD151 is thus required for the regulation of thrombus growth 

and stability and this has been supported by in vivo studies.(197,222) It is not known 

whether cell surface contact receptors such as CD151 play an important role in regulating 

atherogenesis and atherothrombosis.  Therefore to investigate this, the proatherogenic 

ApoE-/- model was intercrossed with the CD151-/- mouse strain to examine if CD151 has any 

influence in atherosclerosis. As this was the first reported ApoE-/-.CD151-/- generated, how 

the strain was developed from genotyping the strain, to the mendelian inheritance 

frequencies, measurement of haematological parameters, lipid profiling and body weights 

was investigated.  

 

Heterozygote matings sired ApoE-/-.CD151+/- and ApoE-/-.CD151-/- offspring.  The first ApoE-/-

.CD151-/- breeders generated through these crosses were two females (51 B and 120 D) and 

one male (110 E) (Figure 3.1).  
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Figure 3.1.  Development of the ApoE-/- and the ApoE-/-
.CD151-/- strain.  ApoE-/- and CD151-/- mice were crossed 

producing litters of ApoE+/- . CD151+/-  mice.  The first ApoE-/-.CD151-/- breeders were obtained through the 

crossing of Mouse 118 A with 95 A to give 51 B (ApoE-/-.CD151-/- ).  Animals 77 C and 123 C were crossed 

producing another two ApoE-/-.CD151-/- , animal(s) 110 E. and 120 D.   

 

Genotyping of the ApoE-/-.CD151-/- was carried out to confirm both ApoE and CD151 

proteins had been knocked out. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was 

used as a control to confirm the integrity of isolated genomic DNA.  This was important to 

ensure that the relevant proteins were lacking in the mice.  Visualisation of a 245 bp product 

on an ApoE PCR, in the absence of a 155 bp wild-type product confirms the ApoE protein 

has been knocked out.  Figure 3.2 (a) demonstrates this with 188C and 16E being ApoE-/-

mice.  As CD151 wild-type and knockout allele yields a similar 400 bp product, two separate 

2% (w/v) agarose gels were run with primers specific for the wild-type or CD151 knockout 

allele.  Figure 3.2 (b) and (c) demonstrates that the CD151 gene has been knocked out in 

animals 188 C and 16E, which subsequently concludes that both these animals are ApoE-/-

.CD151-/- mice. A glyceraldehyde-3-phosphate dehydrogenase (GAPDH) PCR was run as an 

internal control to validate these results and the integrity of mouse genomic DNA where 

bands of 200 bp were produced and visible on the PCR.  
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Figure 3.2.  Representative PCR to determine the ApoE-/-.CD151-/- mouse strain. Analytical gels showing 

amplified PCR products of mouse (a) ApoE-/-  fragment (245 bp); (b) CD151+/- (400 bp); (c) CD151-/- (400 bp) and 

(d) GAPDH (200 bp) respectively.  PCR products were electrophoresed on Gel Red nucleic acid stained 2% (w/v) 

agarose gel.  (a) Lane 1: 2 NEB 2-log ladder marker, Lane 2: WT mouse DNA control, Lane 3: Heterozygous 

ApoE+/- DNA control, Lane 4: Homozygous ApoE-/- DNA control, Lane 5: Milli-Q H2O control, Lanes 6-7: ApoE+/+ 

offspring DNA, Lanes 8-9: ApoE-/-.  (b) Lane 1: 2 NEB 2-log ladder marker, Lane 2: WT mouse DNA control, Lane 

3: Heterozygous ApoE+/- DNA control, Lane 4: Homozygous ApoE-/- DNA control, Lane 5: Milli-Q H2O control, 

Lanes 6-7: ApoE+/- offspring DNA, Lanes 8-9: ApoE-/- offspring DNA.  (b)  Lane 1: 2 NEB 2-log ladder marker, 

Lane 2: WT mouse DNA control, Lane 3: Heterozygous CD151+/- DNA control, Lane 4:Homozygous ApoE-/- DNA 

control, Lane 5: Milli-Q H2O control, Lanes 6-7: CD151+/- offspring DNA, Lanes 8-9: CD151-/- offspring DNA. (c)  

Lane 1: 2 NEB 2-log ladder marker, Lane 2: WT mouse DNA control, Lane 3: Heterozygous CD151+/- DNA 

control, Lane 4:Homozygous ApoE-/- DNA control, Lane 5: Milli-Q H2O control, Lanes 6-9: CD151+/- offspring 

DNA. (d)  Lane 1: 2 NEB 2-log ladder marker, Lane 2: Milli-Q H2O control, Lanes 6-9: GAPDH gene of offspring 

DNA. (a)-(d) Animals 188C and 16E are ApoE-/-.CD151-/- and is confirmed with the GAPDH PCR which acts as a 

housekeeping gene and an internal control for integrity of mouse genomic DNA. Bp, Base pairs.  
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Figure 3.3. CD151 primer design.  (a)  Wild-type CD151 locus.  (b)  Restriction maps are shown for the targeting 

vector.  (c)  Mutated CD151 locus after Cre-mediated recombination.  Coding exons are illustrated as shaded 

boxes, and noncoding exons are shown as open boxes. loxP sites are indicated by triangles.   Primer 1, 3 and 4 

are all forward primers.  These forward primers complemented the common reverse primer shown as primer 2 in 

the figure above to distinguish between wild-type, targeted or floxed and deleted alleles.  The common reverse 

primer (5-CAGCTTAGGACCTCTTCTCA) is homologous to the sequence downstream of exon 7.  Primer 1 (5-

GCTCCATGTTCCTGTACACT) is used to detect the wild-type alleles and is homologous to the sequence in exon 

7, whilst primer 3 (5-GCCTCTGTTCCACATACACT) is used to detect the targeted or floxed alleles as is 

homologous to the the sequence in the neomycin cassettee.  Lastly primer 4 (5-ATGATAACCCACCATGTGTC)  

targets the deleted alleles and is homologous to the sequence in exon 1b. PCR products for wild type and 

CD151-/- yields a 400 base pair (bp) product.  

 

 

 

 

 

 

 

Figure 3.4. ApoE primer design.  (a)  Wild-type ApoE locus.  (b)  Insertion of the neomycin cassette (neo) disrupts 

the gene sequence replacing exons 2 and a portion of exon 3.  Part of exon 3 (illustrated as a shaded box in (b)) 

and the neo cassette is amplified and yields either a knockout allele of 245 bp or a wild type allele of 155 bp.  

ApoE 180 is the sense or common forward primer with sequence 5-GCC TAG CCG AGG GAG AGC CG-3 which 

in conjunction with reverse primer ApoE 181 (5’-TGT GAC TTG GGA GCT CTG CAG C) yields a 155 bp PCR 

wild type product.  Whilst primer ApoE 180 in conjunction with reverse primer ApoE 182 (5’-GCC GCC CCG ACT 

GCA TCT) yields a 245 bp PCR knockout product.   
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3.2.2 Mendelian inheritance frequencies  

The Mendelian inheritance frequencies for ApoE-/- mice was as expected.  No obvious signs 

of developmental problems, mortality or morbidity was observed in this strain.  However, as 

shown in Table 3.1 (a), the mice lacking the CD151 protein showed a marked reduction in 

the percentage generated.  The expected percentage of CD151-/- mice is approximately 

three fold than what was actually achieved. This is reflected also in the number of mice 

where 10 were expected but only 3 CD151-/- mice were achieved as shown in Table 3.1(b).  

This carried over to when CD151+/- mice were crossed with ApoE-/- mice and the percentage 

of animals obtained were half than what was expected (Table 3.1 (c)).  Table 3.1 (d) shows 

the number of mice expected and the actual number of mice achieved through heterozygous 

breeding of CD151+/- mice on ApoE-/- .  Both the percentage and number of CD151-/- mice on 

ApoE-/-  achieved was half of what was expected. 

 

Table 3.1:  Mendelian inheritance frequencies 

 

The ratios of expected and actual percentage and percentage achieved of heterozygous ApoE and CD151 

breeding is shown in table 3.1(a).  Table 3.1(b) shows the numbers of mice obtained through heterozygous 

pairings, whilst table 3.1(c) and 3.1(d) shows the ratio of percentages and numbers achieved through 

heterozygous breeding of CD151+/- mice on ApoE-/-.   
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3.2.3 Body weights of  ApoE-/-  compared to  ApoE-/-.CD151-/- mice 

Body weights were recorded every week from 5 weeks of age to the day of experiment at 16 

weeks of age.  A population of n=17 mice from each strain was compared at each 

progressing week (Figure 3.5) and analysed for statistical difference via an unpaired 

Student’s t-test.  A steady increase in body weight is observed as the mice progressed in 

age however no significant differences (P > 0.05; NS) were seen throughout the testing 

period between the different strains of mice. No statistically significant differences were 

observed between the body weights of ApoE-/- 
 and ApoE-/-.CD151-/-  mice (Table 3.2). 

 

Table 3.2:  Body weight of ApoE-/- versus ApoE-/-.CD151-/-  mouse strains 

Age  

(weeks) 

ApoE
-/- 

± SEM (n= 17) 
(grams) 

ApoE
-/-

.CD151
-/- 

± SEM (n= 17) 
(grams) 

P Value  

(P < 0.05) 

5 20.50 ± 0.50 19.33 ± 1.09 NS 

6 22.03 ± 0.29 21.67 ± 0.93 NS 

7 23.83 ± 1.30 23.00 ± 0.29 NS 

8 24.33 ± 1.30 23.83 ± 0.44 NS 

9 24.67 ± 1.30 24.67 ± 0.33 NS 

10 26.00 ± 1.44 25.33 ± 0.44 NS 

11 27.67 ± 1.64 25.83 ± 0.44 NS 

12 29.67 ± 1.83 26.67 ± 0.44 NS 

13 30.33 ± 1.67 26.67 ± 0.67 NS 

14 31.00 ± 1.76 27.73 ± 0.73 NS 

15 31.50 ± 1.76 28.50 ± 0.76 NS 

16 32.17 ± 1.59 29.17 ± 0.93 NS 
 

The mouse body weight ± SEM over a 16 week period on a chow fed diet shows no significant difference 

between strains as P values are greater than 0.05 at every stage. NS, Not Significant, unpaired Student’s t-test. 
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Figure 3.5.  Body weight of ApoE-/- versus ApoE-/-.CD151-/-  mouse strains on a chow fed diet for 16 weeks.  The 

graph of mouse body weight ± SEM over a 16 week period on a chow fed diet shows no significant difference 

between strains as P values are greater than 0.05 at every stage. N=17 in each group, unpaired Student’s t-test.   

 

3.2.4 Body mass index 

Body Mass Index was calculated using the body weights in Section 3.2.3. For each animal, 

the weight (g) was divided by the length (mm) of the mouse from nose to anus squared.  BMI 

is reported as an arbitrary unit and is a general measurement for assessing obesity.   

 

ApoE-/- mice are reported to have lower body weights and are leaner than wild type 

mice.(223,224)  A near identical BMI profile between the ApoE-/- mouse and ApoE-/-.CD151-/- 

strain suggests that the absence of CD151 has not had an effect on adipogenesis and ApoE 

mediated VLDL uptake.(225)  No statistical difference was observed between ApoE-/- and 

ApoE-/-.CD151-/-  mice BMI as calculated by a unpaired Student’s t-test (n=17 in each group 

P > 0.05).   

 

 

 

5 6 7 8 9 10 11 12 13 14 15 16

0

5

10

15

20

25

30

35

Age (Weeks)

W
ei

gh
t (

gr
am

s)
ApoE-/-

ApoE-/-.CD151-/-



 
 

65 
 

 

Figure 3.6.  Body mass index (BMI) of ApoE-/- versus ApoE-/-.CD151-/-  mouse strains on a chow fed diet for 16 

weeks.  BMI is measured as weight in grams divided by length in mm squared and reported as an arbitrary unit 

(AU).  The P value (P<0.05) is greater than 0.05 and shows no significant difference in BMI between of ApoE-/- 

versus ApoE-/-.CD151-/-  mouse strains. N=17 in each group.  NS, Not Significant, unpaired Student’s t-test.   

 

 

3.2.5 Haematological parameters ApoE-/-   compared to  ApoE-/-.CD151-/- mice 

The absence of CD151 in atherosclerosis and its compounding effect on haematological 

parameters have not been tested as such full blood examinations were performed on ApoE-/- 

and ApoE-/-.CD151-/- 
 mouse strains (n=10).  Results from our laboratory for C57BL/6 WT 

mice were provided (n=6) of which was comparable with no significant differences to 

reference ranges established by the University of Arizona, Animal Pathology Services (226)  

Only the platelet count between ApoE-/- and ApoE-/-.CD151-/- showed a remarkable difference 

with a statistical significance of P < 0.0001 (n=10 per group). However, when referred to the 

University of Arizona mouse wild-type reference ranges, mouse platelet counts are observed 

to range from 592 x 109/L to 2972 x 109/L.(226)   All other haematological parameters in the 

ApoE-/-  and ApoE-/-.CD151-/-
  mice appeared normal with no statistical difference observed 

compared to the C57BL/6  WT reference ranges.    
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Table 3.3:  Haematological parameters of C57BL/6 versus ApoE-/- versus ApoE-/-.CD151-/- 

mice 

 

Table 3.3 shows the haematological parameters of C57BL/6 versus ApoE-/- versus ApoE-/-

.CD151-/-  mouse strains on a chow fed diet for 16 weeks.  Platelet count in ApoE-/-.CD151-/-  

mice is significantly higher than compared to C57BL/6 wild type mice, and compared to 

ApoE-/- mice with a P value of < 0.001.  There is no significant difference reported in the 

remaining haematological parameters between ApoE-/- versus ApoE-/-.CD151-/-  mouse 

strains and are comparable to the C57BL/6 WT strain.  The P value for each parameter is 

greater than 0.05 , n=10 tested in each group, unpaired Student’s t-test.    

 

3.2.6 Non-fasting blood glucose testing 

Blood glucose testing was performed as described in Section 2.1.5 for ApoE-/-  and ApoE-/-

.CD151-/- mouse strains.  Statistical analysis with a Student’s unpaired t-test revealed no 

significant difference in random glucose results between strains (P > 0.05; n=17 in each 

group) (Figure 3.7).  Reference values for C57BL/6 wild type mice were sourced from an 

article by Fernandez et al.(227). The mice in their study were tested at 16 weeks of age, 

fasted for 5 hours and blood collected through submandibular venipuncture.  Apart from the 

age of mice at time of testing (16 weeks), other conditions were not consistent between their 

study and ours.  Their findings however were very similar to what we reported with their 

Haematological 

parameters 

C57BL/6 WT ± SEM 

n=10 

ApoE 
-/- 

± SEM 

n=10 

ApoE
-/-

.CD151
-/- 

± SEM 

n=10 

P Value  

< 0.05 

WBC x 10
9
/L 6.20  ± 1.03 4.78 ± 0.97 4.90 ± 1.08 NS 

RBC x 10
12

/L 9.07 + 0.22 8.87 ± 0.23 8.59 ± 0.09 NS 

HGB g/L 132.33 ± 3.08 138.33 ± 3.53 122 ± 3.00 NS 

PCV L/L 0.44 ± 0.01 0.47 ± 0.01 0.42 ± 0.01 NS 

MCV fl 48 ± 0.6 52 ± 1.9 49 ± 1.5 NS 

MCH pg 14.6 ± 0.2 15.3 ± 0.5 14.0 ± 0.3 NS 

MCHC x 10
3
/L 302 ± 3.4 297 ± 1.8 288 ± 5.5 NS 

RDW % 13.3 ± 0.2 13.3 ± 0.3 13.7 ± 1.0 NS 

PLT x10
9
/L 726.67 ± 23.10 785.33 ± 111.49 *** 1124.67 ± 14.86 *** P < 0.001 

WBC/Neut x10
9
/L 0.56 ± 0.18 0.33 ± 0.09 0.99 ± 0.10 NS 

WBC/Lymph x10
9
/L 5.47 ± 0.89 3.69 ± 0.83 4.88 ± 0.32 NS 

WBC/Mono x10
9
/L 0.17 ± 0.07 0.21 ± 0.07 0.47 ± 0.12 NS 
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C57BL/6 WT blood glucose reported at 225.7 ± 26.5 mg/dL.  In our study, the ApoE-/- mouse 

had a blood glucose of 227.5  ± 10.9 mg/dL, whilst the ApoE-/-. CD151-/- reported a blood 

glucose reading of 238.5 ± 8.5 mg/dL.  Results from the current study were converted from 

mmol/L to mg/dL for a fair comparison by multiplying mean ± SEM in mmol/L by 18 to obtain 

values in mg/dL.  Note that the authors cautioned on the various methods of blood retrieval 

and the outcome on biochemistry analysis.  Factors such as animal handling, restraining, 

mode of anaesthesia, level of invasiveness and subsequent discomfort will influence 

results.(227)  Perhaps a closer comparison is an article by Moghadasian et al.(228) which 

compared ApoE-/- and C57BL/6 wild type mice between 10 – 12 weeks old, fed ad libitum 

with a glucose (mmol/l)  reading at 15.2 ± 0.2 mmo/L in C57BL/6 WT and at 13.4 ± 1.1 

mmol/L in ApoE-/- mice.(228)   

    

Figure 3.7.  Random non-fasting blood glucose measurement of ApoE-/- versus ApoE-/-.CD151-/-  mouse strains 

on a chow fed diet at 16 weeks of age.  Graph of mouse random blood glucose is taken at time of cardiac 

puncture.  Mice were sacrificed via cervical dislocation after collection of blood samples.  No significant difference 

in blood glucose is observed between ApoE-/- and ApoE-/-.CD151-/-  mouse strains. N=17 in each group, unpaired 

Student’s t-test. 

 

3.2.7 Lipid profiling of ApoE-/-  compared to ApoE-/-.CD151-/- mice 

Data on the lipid profiles of ApoE-/-  and ApoE-/-.CD151-/- mice are shown in Figures 3.8 (a) to 

(d).   Figure 3.8 (a) shows the ApoE-/-.CD151-/- total cholesterol being significantly lower than 

the ApoE-/- mice.  This was analysed with an unpaired Student’s t test, which reported the 

difference of a P value of < 0.05.  The total cholesterol in the ApoE-/- mouse at 131.7 ± 6.8 

mg/dL (7.3 ± 0.4 mmol/L) however, is less than half of the expected estimated cholesterol 
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levels which in previous murine studies are reported to be around 400-500 mg/dL even when 

fed a normal chow diet, ad libitum.  Additionally, it is also known that wild type mice carry 

their cholesterol predominantly as HDL with figures approximating 80-85 mg/dL.(225,229)  

Note however that studies have consistently shown HDL levels to be approximately 8 mg/dl 

in ApoE-/- mice.(230)  The current results are significantly different from previous ApoE-/- mice 

results and reflect HDL levels of that of wild-type mice instead of an ApoE-/- HDL cholesterol 

profile.  Figure 3.8 (b) shows that ApoE-/- had 82.4 ± 2.5 mg/dL (4.6 ± 0.1 mmol/L) HDL 

levels similar to previous findings on wild type mice but not ApoE-/- mice.  ApoE-/-.CD151-/-  

however displayed significantly lower HDL at 63.6 ± 3.1 mg/dL (3.5 ± 0.2 mmol/L) (unpaired 

Student’s t-test, P < 0.0005) which is suggestive of alterations to lipid metabolism in the 

absence of CD151.    The triglycerides and LDL levels results between the strains were not 

statistically different.  LDL was calculated using the formula(231):  LDL= Total Cholesterol – 

HDL Cholesterol – (Triglycerides/5). 

 

Figure 3.8 (a) – (d):  Random non fasting lipid profiles of ApoE-/- versus ApoE-/-.CD151-/-  mice on a chow fed diet 

for 16 weeks.  (a) and (b)  Total Cholesterol (mmol/L) (n=21) and High Density Lipoprotein (HDL) cholesterol 

(mmol/L) (n=15) is significantly higher in ApoE-/-. (c) and (d) No significant difference in Triglycerides (mmol/L) 

(n=21) and Low Density Lipoprotein cholesterol (LDL) (mmol/L) (n=17) is observed between ApoE-/- and ApoE-/-

.CD151-/-  mouse strains. An unpaired Student’s t-test was used to determine statistical significance. 
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3.2.8 Cardiovascular risk factors of ApoE-/-   compared to  ApoE-/-.CD151-/- mice 

Atherosclerosis is widely known to lead to unfavourable CVD events.  The weight, length, 

BMI and glucose levels of ApoE-/-  and ApoE-/-.CD151-/-
  mice were summarised together to 

identify if any significant quantitative changes are present in the ApoE-/-.CD151-/-mice 

compared to the ApoE-/- mouse strain.  The P values for each parameter was greater than 

0.05 and thus presenting no significant differences.   

 

Table 3.4:  CVD Risk Factors between ApoE-/- and ApoE-/-.CD151-/- mice 

 

 

 

 

 

 

Table 3.4 displays a summary of the CVD risk factors for ApoE-/- and ApoE-/-.CD151-/- mice.  

No significant difference is reported as P values were greater than 0.05 for all parameters 

(unpaired Student’s t-test).  Mouse length is measured from nose to anus in mm.  Body 

Mass Index (BMI) is measured as weight in grams divided by length in mm squared.  

Glucose is measured with a Accu-Chek® Advantage meter and Accu-Chek® Comfort Care 

test strips (Roche Diagnostics, Indianapolis, USA). 

 

3.2.9 Organ weights and lengths of ApoE-/-   compared to  ApoE-/-.CD151-/- mice 

The heart, lungs, kidneys and liver of ApoE-/- and ApoE-/-.CD151-/- mice were macroscopically 

observed for any morphological changes in overall appearance, size and weight.  Figure 3.9 

shows a representative image of organs derived from ApoE-/-  versus ApoE-/-.CD151-/- mice.  

Despite a visually larger ApoE-/-.CD151-/- lung and liver compared to that of ApoE-/- (Figure 

3.10 (c) and (d)), Figure 3.9 shows various organ weights, revealing no significant difference 

between mouse strains (P > 0.05, unpaired Student’s t-test).   

 

 

Parameter ApoE
-/-

 n=17 ApoE
-/-

.CD151
-/-

 n=17 P Value < 0.05 

Weight (g) ± SEM 28.18 ± 1.11 25.89 ± 0.94  NS 

Length (mm) ± SEM 99.51 ± 0.52 99.12 ± 0.65 NS 

BMI (AU) ± SEM 0.0028 ± 0.00 0.0026 ± 0.00 NS 

Glucose (mmol/L) ± SEM 12.65 ± 0.60 13.25 ± 0.47 NS 
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Figure 3.9   Images of organs from ApoE- /- and ApoE-/-.CD151-/- strains, harvested for histology. Organs from Left 

to Right  are from, ApoE- /- and ApoE-/-.CD151-/-  .  A.  Heart with aortic arch attached.  B.  Kidneys.  C.  Lungs.   D.  

Liver lobes: Media, Right, Left and Caudate.  Organs were harvested in 10% (v/v) Neutral Buffered Formalin for 

48 hours followed by processing with a rodent schedule on a Leica automated tissue processor. 

Figure 3.10.  Organ weights of ApoE-/- vs ApoE-/-.CD151-/-  mouse strains on a chow fed diet for 16 weeks (n=17 

in each group).  Graph of organ weight ± SEM over a 16 week period on a chow fed diet.  No significant 

difference is observed between heart, lung, kidney and liver between ApoE-/- vs ApoE-/-.CD151-/-  mouse strains 

(unpaired Student’s t-test).   
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At 16 weeks, ApoE-/- is observed to have a heart weight of 0.19 ± 0.01 g (Figure 3.9).  

Although the mice in our study are much younger, ApoE-/- heart weights in a previous study 

at 13 months, had a heart weight of 0.19 ± 0.01 g.  This study also noted that heart weights 

in ApoE-/- mice were 23% higher than heart weights of wild-type mice.(232)  This serves as a 

helpful guide in suggesting that the heart weights between ApoE-/- and ApoE-/-.CD151-/- mice 

are unchanged in the absence of CD151 and is increased when compared to wild-type mice.  

 

ApoE-/- mice kidney weights in our study were 0.33 ± 0.01 g and ApoE-/-.CD151-/-
 , 0.34 ± 

0.01 g, no statistically significant difference was recorded between the strains in an unpaired 

Student’s t-test.  These results were similar to a study which involved observing the weight 

of ApoE-/- mice at 20 weeks.  They reported a left kidney weight of 0.16 ± 0.003 g and right 

kidney weight of 0.16 ± 0.002 g.  Whilst we did not discriminate between the left and right 

kidneys, their study did.  Though, when added together (left and right kidneys), the overall 

weight of the kidney is 0.32 g and similar to what was documented in our observations.(233)  

 

The liver and lung weights of ApoE-/- mice have not reported in previous literature.  Our study 

will thus provide a useful guide for other researchers should they need a means of 

comparison for liver and lung weights of ApoE-/- mice.  Throughout our observations of lung, 

liver, heart and kidney weights of ApoE-/- and ApoE-/-.CD151-/- mice, no statistical significance 

in weights for each organ were observed between the strains (P > 0.05, unpaired Student’s 

t-test).   
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3.3 Discussion 

The literature on ApoE and its absence in the murine model in vivo, in vitro and in humans is 

comprehensive.  Tetraspanin CD151 has also been studied however not to the same extent 

as ApoE especially in an atherosclerotic setting in either animal models or humans.  The 

ApoE-/- proatherogenic model crossed with a mouse lacking the CD151 gene provides a 

means of investigating the absence of CD151 and its implication on atherothrombosis and 

atherogenesis.  This is of upmost importance given that the latest statistics from the 

Australian Bureau of Statistics (ABS) reported ischaemic heart disease as the leading 

underlying cause of death in Australia in 2011.  Ischaemic heart disease accounted for 

21,513 deaths in 2011 though this figure has seen a steady decline since 2000.(2)  This 

persists as a worldwide concern as cardiovascular disease is the leading cause of death.   

 

One of the more notable results deduced from characterisation of the ApoE-/-.CD151-/- is the 

significant reduction in the expected Mendelian inheritance frequencies.  This proved to be a 

great challenge throughout the study as litter sizes were small and few mice would survive 

past the weaning stages.  The percentage of CD151-/- generated through heterozygous 

breeding was only 7.9% which is approximately three fold less than the expected Mendelian 

inheritance frequency of 25% (Table 3.1 (a)). This is reflected also in the number of mice 

obtained through heterozygous pairings where 10 were expected but only 3 CD151-/- mice 

were generated, as shown on Table 3.1(b).  Heterozygous breeding of CD151+/- mice on 

ApoE-/- also shows a reduction in the actual Mendelian Inheritance frequency achieved as 

opposed to the expected percentage.  This was nearly halved as only 11.8% of ApoE-/-

.CD151-/- were generated and is also observed in Table 3.1(d) where the 2 ApoE-/-.CD151-/- 

mice were generated compared to the 4 animals expected. 

 

Additional throughout the study numerous ApoE-/-.CD151-/- mice were culled before meeting 

the age suitable for experimentation due to malocclusion in accordance with ethical 

guidelines and regulations.  This is a common condition in rodents in which maxillary and 

mandibular teeth are not aligned causing the incisors to overgrow.(234)  Other isolated 

incidents requiring culling also included culling of a female breeder due to a pup stuck in her 

birth canal, whilst another presented with a rectal prolapse.  Environmental factors were also 

noted to have an influence over the breeding patterns of mice.  The area in which the mice 

were housed was subjected to echoing noises and vibrations due to strong winds.  These 
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factors have been associated with stress in the female mice breeders subsequently leading 

them to eat their pups.    

 

Physically, the ApoE-/-.CD151-/- mice did not show any signs of malformation throughout its 

lifespan in the RAF and at time of experimentation.  Their body weights were comparable 

with no distinguishable difference to the ApoE-/- control strain (Figure 3.5).  Previous studies 

indicate ApoE-/- in having leaner bodies and a lower body weight to wild type C57BL/6 

mice.(223,224,235,236)   Despite also lacking the CD151 protein, the ApoE-/-.CD151-/- model 

appears to share similar body weight parameters to the ApoE-/- model suggesting body 

weight and lean mass to be uninfluenced by the absence of the tetraspanin in this 

atherosclerotic setting.  Furthermore, deletion of CD151 has not corrected body weights of 

ApoE-/-.CD151-/- mice and not reverted to a C57BL/6 WT mose body weight profile which as 

discussed is reported to be higher than ApoE-/-.   

 

Body weights of CD151-/- mice have been observed in studies investigating kidney renal 

disease.  Its presence is ubiquitous in endothelial, epithelial (cell to cell junctions), Schwann 

cells, smooth and cardiac muscles, platelets and megakaryocytes as well as the immune 

system.(6,96,100,101,237) In epithelial cells in particular, the integrins α3β1 and α6β4 are 

expressed predominantly in the basolateral compartments.   

 

The interaction and high stoichiometry of CD151 and integrin α3β1 for example  is reported to 

provide stability to α3β1 and laminin in its active conformation.(103,125) The extracellular 

matrix and the intracellular cytoskeleton are linked together by αβ heterodimeric cell surface 

proteins such as α3β1.    Human studies have demonstrated the importance of maintaining 

the CD151:α3β1 association, as well as the CD151:α6β4 associated heterodimers.  A 

condition of junctional epidermolysis bullosa is found to occur in human patients lacking a 

functional α6β4 heterodimer, with detachment of the epidermis occurring in the absence of 

β4.(238,239) In the case of α3, skin blistering is observed to occur as a result of basement 

membrane ruptures.  Mice lacking the α3 subunit suffer abnormalities in their lung and kidney 

epithelia and do not survive long after birth.(240,241)  Renal failure and glomerulosclerosis 

is observed to also occur when the complex organisation of the renal glomerulus is affected 

with the absence of α3.  The literature also reports early indications of kidney dysfunction 

being observed in CD151-/-  mice before reaching 3 weeks of age as mice were found to 
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develop proteinuria and were culled before 36 weeks of age due to substantial loss of body 

weight.  The authors did not state the exact age at which body weight declined and may 

likely, if compared to Figure 3.5 have occurred after 16 weeks of age as our study showed a 

steady and parallel increase in body weight between  the ApoE-/- mice and the ApoE-/-

.CD151-/- mice up to this age. It is not definitive if a decline can be predicted in the ApoE-/- 

.CD151-/- strain given that our study extends only to 16 weeks. Their study also found the 

extent of renal damage to be variable between CD151-/- litters and ranged from being mild to 

severe. Perhaps in litters where renal damage is severe, the ApoE-/-.CD151-/- strain might 

struggle to thrive with reduced body weights due to the weight profiles of the ApoE-/- strain 

which show mice have leaner and lower body weights and the CD151-/-
 mice which are 

culled due to renal abnormalities leading to severe weight loss.  In contrast however, a study 

by Wright et al. (102) characterised mice lacking the CD151 protein and found them to be 

“normal, healthy and fertile”.(102)  The authors did predict a possible occurrence of neonatal 

lethality for the reasons discussed above but did not encounter any difficulties with breeding 

and developing the strain.  This is further supported by a more recent article which reported 

the CD151-/- mouse strain to develop normally without any obvious deficiencies in their 

vascular development, tissues or organs, with specific attention towards the liver, heart, 

lungs and kidneys.  They concluded that the CD151 was not associated with vascular 

development as this was their study aim.(242)   The inconsistent findings in the literature on 

the development and survival of CD151-/- mice could well be contributed by the varied 

severity of renal damage between litters found in previous studies as well as being highly 

dependent on the genetic background of mice examined. 

 

In contrast, the literature on ApoE-/- development is consistent with the current findings as 

shown in Table 3.1 where the percentage and number of mice generated through ApoE 

heterozygous breeding was comparable to the expected values.  No obvious signs of 

developmental problems, mortality or morbidity was observed in this strain.  This is 

consistent with findings by Whitman (203) where he states ApoE-/- on a C57BL/6 WT 

background breeds well and generates a reasonable litter.(203)  Other scientists however 

also do note that the reduction in body weight of ApoE-/- mice and possibly ApoE-/-.CD151-/-  

could be due to a disruption in the delivery of liver derived very low density lipoprotein to 

adipocytes.  ApoE interaction with the VLDL receptor promotes triglycerides hydrolysis by 

lipoprotein lipase.  It is already well established that VLDL null mice are protected from 

obesity.  Perhaps the reduction in body weight in ApoE mice may be accounted partly by the 

absence of ApoE in this reaction.(243,244) 
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Whilst cholesterol transport and metabolism are relatable between mice and humans, lipid 

profiles however present differently between the species.  In humans, the risk of 

atherosclerosis and associated cardiovascular events are attributed by the low HDL to LDL 

ratios.(245)  It is known that humans predominantly carry their plasma cholesterol in the LDL 

form as opposed to wild-type mice, which carry their plasma cholesterol mostly in HDL 

fractions at approximately 80 mg/dl.(246)  In ApoE-/- mice, the predominant lipoprotein 

fractions found are VLDL/LDL with HDL lipoprotein fractions approximating 8 mg/dl 

only.(230)    Mice lacking the ApoE gene even on a normal chow diet, ad libitum are found to 

have total cholesterol ranges exceeding 400 mg/dl.(247,248)  This study imparts novel 

insights into the lipid profiles of CD151-/- mice in an atherosclerotic diseased setting with 

generation of the ApoE-/-.CD151-/-  mouse line.  Plasma samples of ApoE-/-.CD151-/- mice 

were obtained at 16 weeks of age and compared to the  ApoE-/- mouse strain.  Our findings 

show that ApoE-/-.CD151-/- mice total cholesterol is significantly lower compared to ApoE-/- 

mice (P < 0.05 n=21) (Figure 3.8).  Meanwhile we also found that ApoE-/- mice total 

cholesterol at 131.7 ± 6.8 mg/dL (7.3 ± 0.4 mmol/L) is less than half of the expected ranges 

for cholesterol levels compared to previous literature.  It appears just based on total 

cholesterol levels that the mice bred in the current study did not present a greater propensity 

to developing dyslipidaemia as expected when referred to the literature.  Furthermore the 

HDL profile of ApoE-/- mice (82.35 ± 2.46 mg/dL) in the current study also varied against 

expected HDL profiles of the ApoE-/- mice found in the literature, where the current HDL 

levels resembled more closely to a wild-type HDL lipoprotein profile ranging from 80-85 

mg/dL instead.(225,229)  Previous studies conducted on ApoE-/- mice consistently report 

HDL fractions to be in the 8 mg/dl range.(230) Despite ApoE-/-.CD151-/-   HDL levels being 

significantly lower at 63.6 ± 3.1 mg/dL (3.5 ± 0.2 mmol/L) (unpaired Student’s t-test, P < 

0.0005) compared to ApoE-/- at 82.35 ± 2.46 mg/dL (4.575 ± 0.14 mmol/L), these findings 

were still greater than expected.  Again compared to the literature, on a normal chow diet 

and ad libitum, triglycerides (15.3 ± 1.2 mg/dL) and LDL (56.0 131.7 ± 6.1 mg/dL) levels of 

ApoE-/- mice recorded in this study were also significantly lower.  These inconsistencies with 

the literature suggests that variables such as fasting or non fasting blood collection, and 

specimen handling are likely to have an influence in total cholesterol, HDL, LDL and 

triglycerides profiles.  With respect to total cholesterol, HDL and LDL, the absence of CD151 

in an atherosclerotic setting as observed in the ApoE-/-.CD151-/-  mouse line saw a reduction 

in these parameters compared to the ApoE-/- mouse strain.  Being a novel model, the 

influence of CD151 absence on atherosclerosis has not been studied and the findings of this 

thesis serves as a sole reference for lipid profiling in atherosclerotic mice deficient in CD151.  
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Recently Tani et. al (249) concluded that it is inaccurate to directly compare and extrapolate 

HDL results between ApoE-/- mice and humans.  This is because ApoE is integral in the 

formation of HDL particles in the murine model, ApoE is not required for HDL formation in 

humans.  They suggest this to be contributed by the lack of cholesteryl ester transfer 

proteins in mice.  Thus although clearly the absence of CD151 has had an influence on the 

lipid profiles of the ApoE-/-.CD151-/- with significantly lowered levels of HDL and total 

cholesterol compared to the ApoE-/- mouse strain, the former may not be reflective in a 

human atherosclerotic setting. 

 

The haematological parameters and glucose levels of ApoE-/- and ApoE-/-.CD151-/-  were 

compared.    These parameters were measured at time of experimentation (16 weeks of 

age) where the mice were fed ad libitum on a normal chow diet.  Table 3.3 shows no 

significance between the red and white blood cell parameters of ApoE-/-, ApoE-/-.CD151-/- as 

well as wild-type C57BL/6 WT mice.  Our findings did however report a significantly 

increased platelet count in the ApoE-/-.CD151-/- mouse compared to ApoE-/- and wild-type 

C57BL/6 WT mice.  We note however that platelet counts are known to be variable and as 

evidence is reported to range between 592 x 109/L to 2972 x 109/L in a wild-type C57BL/6 

mouse.(226)  These findings suggest that the absence of CD151 did not influence 

haematological production as measured by haematological parameters.  Likewise with body 

weight, the absence of ApoE is reported to reduce some aspects of the metabolic syndrome 

including impaired glucose tolerance due to obesity.  Glucose tolerance is unchanged in an 

ApoE mouse and this is seen in our study where the ApoE-/- and ApoE-/-.CD151-/-  mouse 

strains showed an unchanged glucose level between strains.  CD151 absence does not 

seem to have impacted on this either however it is not possible to conclude also if CD151 

absence may have possibly imparted a protective effect and improved insulin sensitivity like 

the absence of ApoE.  Nonetheless, investigating this parameter is important as 

cardivovascular events as a result of atherosclerosis are significantly increased in patients 

with diabetes. 

 

In a similar pattern, the organ weights between ApoE-/- and ApoE-/-.CD151-/- mice were also 

observed to be unchanged with no significant differences in their weights when harvested 

and measured at 16 weeks.  Again as  our study is characterising this novel ApoE-/-.CD151-/-  

mouse, our findings were compared to the ApoE-/- mouse which has been studied 

extensively.  Compared to previous literature the ApoE-/- mice in our study displayed similar 

heart and kidney weights.  Between the ApoE-/- and ApoE-/-.CD151-/-
 mice, no differences 
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were seen in body organ weights.  The literature however does not appear to have any data 

on liver and lung weights.  This study has observed the weights of these organs in both 

ApoE-/- and ApoE-/-.CD151-/- mice, and has not reported any significant differences (unpaired 

Student’s t-test, P > 0.05, n=17)  between the strains (Figure 3.10).       

 

The summarised cardiovascular risk factors shown in  Table 3.4 maintains that there is no 

significant increase in cardiovascular risk potential between ApoE-/- and ApoE-/-.CD151-/- mice 

for risk factors such as weight, body mass index and glucose levels, whilst lipid profiling in 

Figure 3.8 indicates a reduction of total cholesterol in the ApoE-/-.CD151-/- strain and 

consequently a reduction in HDL levels.  These results are paramount as 5.6 million 

Australian adults are reported to have high total cholesterol levels.(250)  The National health 

measures survey (NHMS) measured cholesterol levels and utilised these parameters as an 

indicator of cardiovascular disease.  

 

3.4 Conclusion 

Characterising the ApoE-/-.CD151-/- strain allows us not only to investigate the role of CD151 

in atherosclerosis and this may lead to strategies in the prevention and management of 

atherothrombosis and atherosclerosis, it also provides a baseline and foundation for this 

study to develop hypotheses and conclusions from the parameters collected.  There are no 

significant distinguishable features observed in this section of the study between the ApoE-/- 

and ApoE-/-.CD151-/- mouse strains.  Altough statistically significant reductions in total 

cholesterol and LDLs were observed in the ApoE-/-.CD151-/- genotype, as well as a raised 

platelet count in the ApoE-/-.CD151-/- strain, we are however limited by elements of diet and 

age of the mice which may have a profound effect on these findings.  This addresses our 

interest in the clinical sequela of disease in that we have observed key indicators of 

cardiovascular disease specifically lipid profiling and not found a clear cut answer on 

whether the absence of CD151 is protective in cardiovascular disease or not. (250)  Indeed, 

haematological parameters, lipid profiles are not sufficient to investigate the protective effect 

of CD151 if any, and requires other investigations in the following chapters to be analysed 

cumulatively.   
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3.5 Limitations 

As discussed, animal welfare is of high priority in that the age of the mice examined were 

maintained at a maximum of 16 weeks so as to avoid the formation of cutaneous xanthomas 

and skin lesions.  It would be most ideal to investigate haematological, lipid and glucose 

parameters at multiple time points such as at 16 weeks and an extended time point for 

instance 32 weeks to permit the investigation of more advanced atherosclerosis and the 

influence of CD151 absence in advanced disease.   The mice in this study were fed a chow 

diet ad libitum and were not subjected to fasting periods prior to blood draw for analysis of 

haematological, lipid and glucose parameters.  Therefore, further investigation under fasting 

parameters are warranted. 
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4 CHAPTER 4:  INVESTIGATING THE ROLE OF CD151 IN PLAQUE BURDEN USING 

AN APOE-/- MOUSE MODEL. 

 
4.1 Introduction 

 

The role of tetraspanin CD151 and the consequences of CD151 deficiency in atherosclerosis 

has not been determined.  To date, in vitro  and in vivo studies have investigated and been 

published on the influence of CD151 in various clinical conditions such as cancer 

metastases, pulmonary fibrosis, glomerulosclerosis, end stage renal disease, infectious 

diseases, wound healing as well as thrombus growth and stability.(107,119,121,197,251-

256)  

 

At the molecular level, CD151 is proposed to be involved in organising and modulating 

transmembrane protein function, which include laminin-binding integrins, proteases, 

hepatocyte growth factor receptors, epidermal growth factor receptors and transforming 

growth factor β receptors.(125,257-260)  The laminin binding integrins α3β1, α6β1, α6β4 

complexes lateral associations with CD151 where the interaction of CD151 with α3 and α6 

occurs in the extracellular loop region.(261,262) It was previously postulated that the 

absence of this interaction affects cell functions that are integrin dependent such as 

adhesion strengthening.  Recently however, Kazarov et al. (258) and Zevian et al. (263) 

demonstrated that the CD151 formed complex with α3 and α6 is not critical for function 

though is found to enhance the tetraspanin integrin complex.(258, 263)  Furthermore, Lau et 

al. (4) have also determined the role of CD151 in integrin αIIbβ3 fibrinogen binding protein 

function and its significance in the maintenance of haemostasis.  Absence of CD151 was 

reported to result in in vivo bleeding defects and impaired outside in integrin αIIbβ3 

signalling.(4,102)  

 

Histological analyses on CD151 deficiency in mice have been studied in various animal 

models.  This thesis investigates the effect of the absence of CD151 in the kidneys, lungs, 

liver and heart in an atherosclerotic setting and whether the phenotype associated with the 

absence of this tetraspanin observed in other animal models would present similarly in the 

ApoE-/-.CD151-/- mouse model.   The tissue architecture and organ morphology of ApoE-/- 
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and ApoE-/-.CD151-/- mice were examined with light microscopy to identify if the absence of 

CD151 has any influence in an atherosclerotic setting. 

The high affinity associations and complexes formed between CD151 and integrins α3β1, 

α6β1, α6β4 are paramount in the development, maintenance and function of kidney as well as 

skin epithelia.(240,241,264,265)  Glomerulosclerosis is a condition in which the kidney 

glomerulus suffers scarring leading to end stage renal disease.   Podocytes are visceral 

epithelial cells located in the glomerulus.(266)  Interference in the attachment of podocytes 

to glomerular basement membranes is central to the development of glomerulosclerosis.  

Integrin α3β1 is the most abundantly expressed laminin receptor integrin located on 

podocytes.(267)  Podocyte loss is progressive and ultimately resulting in the death at 5 – 6 

weeks of age in mice which lack the β1 subunit.(268, 269) Deficiencies in either α3 or the β1 

subunit results in proteinuria, a subsequent condition beginning with glomerulosclerosis.  

CD151 association with the α3β1 integrin stabilises the attachment of podocytes to the 

glomerular basement membrane.  This finding was validated by Sachs et al.(270) who found 

mice on a C57BL/6 WT background with a CD151 deficiency developing renal injury when 

subjected to severe hypertension. It should be noted that studies have also reported 

C57BL/6 WT mice to be amongst several which are resistant to renal disease, which may 

thus suggest the involvement of other genetic factors in the development of 

glomerulosclerosis.(242,270,271)  The ‘Friend Leukemia Virus Strain B’ or better known FVB 

mouse model is susceptible to renal injury and was backcrossed with CD151 deficient mice 

to confirm and determine the influence of CD151 on glomerulosclerosis.  Further to the 

phenotype demonstrated by C57BL/6 WT mice, the FVB mouse lacking CD151 also 

exhibited spontaneous glomerular injury.(272)  Histological examinations of 12 week old 

mice kidneys were observed to display abnormal endothelium and bowmans capsules.(270)  

On the other hand, mice lacking CD151 of 6-8 weeks in age were compared to C57BL/6 WT 

mice by Wright et al. (102) and found to demonstrate normal morphology with no 

comparable difference between the mouse strains.(102)  

 

Abnormalities in the lung architecture of CD151 deficient mice on a C57BL/6 WT 

background have recently been linked to the progression of idiopathic pulmonary fibrosis.  

According to Tsujino et al. (273), CD151 appears to be a valuable therapeutic target for 

fibrotic disease treatment.(273)  The development of pulmonary fibrosis is understood to 

stem from the impediment to the normal functioning of alveolar epithelial cells and 

consequently resulting in the activation of alveolar epithelial cells and immune 

response.(274,275)  Secretion of transforming growth hormone β1 and profibrotic factors 
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stimulates excessive extracellular matrix and collagen deposition in lungs.(273)  CD151 was 

found to be critical for epithelial integrity and was initially proposed to be linked to pulmonary 

fibrosis by the tetraspanins ability to form stable complexes with laminin binding proteins.  

Deficiencies in the β1 subunit of integrins have similarly been observed in pulmonary fibrosis 

given its associations with CD151.(276,277) Analysis of lung architecture through histology 

studies display decreased CD151 expression in alveolar epithelial cells of human patients 

with pulmonary fibrosis.   Also, CD151 mice on a C57BL/6 WT background aged 8-10 weeks 

were subjected to low dose bleomycin injury to enhance epithelial disintegrity and induce 

pulmonary fibrosis, both wild type and CD151 deficient mice showed increased lung fibrosis 

compared to saline controls.(273)    

 

CD151 has also been implicated in numerous stages of cancer progression where studies 

on mouse lung endothelial cells have demonstrated the influence of CD151 on tumor growth 

and metastasis.   The tetraspanin is suggested to act as a linker joining MT1 MMP and α3β1 

and regulating endothelial haemostasis at endothelial lateral junctions, thus acting as a 

positive regulator of tumor growth and metastasis.(278)  CD151 influence on signalling 

pathways in cancer and endothelial cells have also suggested its integral role in 

angiogenesis.  Although vascular development is unchanged in CD151 deficient mice, 

endothelial cell migration, invasion and spreading was found both in vitro  and in vivo to have 

been affected.  Deletion of CD151 was found to cause abnormalities in PKB/c-Akt, e-NOS, 

Rac and Cdc42 adhesion dependent activation.(242) Furthermore, a poor prognosis in lung 

carcinomas is associated with overexpression of CD151 and have in turn led to CD151 in 

being considered as an improved prognostic marker.  According to Kwon et al. (279) 

increased expression of CD151 correlates well with non-small cell lung cancers and patients 

with lung adenocarcinomas and thus may be an improved prognostic marker.  Studies have 

also shown in other cancers such endometrial cancers, CD151 expression is argued to be 

more a reliable prognostic marker than possibly histology studies.(280,281) 

 

Liver phenotypes associated with diseased conditions as a consequence of CD151 

deficiency have not been reported in the literature.  Tsujino et al. (273) did report however of 

fibrotic changes occurring in the liver of CD151 deficient mice however in humans liver 

symptoms are very rarely observed in pulmonary fibrosis.  In a transgenic adenocarcinoma 

mouse prostate model, mice lacking CD151 displayed a significant decrease on metastasis 

in the lung but not the liver.(282)   The effect of CD151 absence in the liver remains unclear 

however given the numerous lines of evidence in the literature, physiological functions 
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relying on integrin-ligand interactions, signalling, integrin intracellular trafficking, and 

compartmentalisation will likely be affected by the absence of CD151.(107,252) 

In addition to investigating the tissue architecture of organs, plaque development in ApoE-/- 

and ApoE-/-.CD151-/- in the aortic valve cusps of 16 week old mice were also investigated in 

this chapter.  Atherosclerotic plaque lesions were measured as a marker of plaque burden in 

ApoE-/- and ApoE-/-.CD151-/- mice.  Although the absence of CD151 has not been observed in 

the context of atherosclerosis, studies have shown to expect plaque development and the 

formation of foam cells in as early as approximately 10 to 15 weeks of age in ApoE-/- mice on 

a C57BL/6 WT background.(247,248,283)  The progression of atherosclerosis and 

development of plaques occurs quicker in ApoE-/-  western diet fed mice compared to chow 

fed mice.(283)  Fibrous plaques begin appearing in ApoE-/- mice after 20 weeks and were 

reported to be smaller in lesion size compared to mice fed a chow diet.(283)  Early fibrous 

plaques contain necrotic cores with foam cells enclosed by a fibrous cap composed of 

smooth muscle cells, elastic fibres and collagen.  Nakashima et al. (244) also found foam 

cells to persist in chow fed mice up to 30 weeks of age.(248)  Plaque lesions in the aortic 

valve cusps of 16 week old ApoE-/- and ApoE-/-.CD151-/- chow fed mice were subjected to H 

& E staining, Van Giesons and Massons trichrome staining for the identification of plaques 

and comparison in plaque lesion area between the strains.  Specialised staining allowed for 

identification of collagen deposition and smooth muscles in plaques as well staining of 

normal tissue architecture.  We predicted that the types of lesions expected would be that of 

early to intermediate atherosclerotic plaque lesions as categorised according to Virmani et 

al. (284) atherosclerotic plaque classification guidelines.(284)  
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4.2 Results 
4.2.1 Histopathology of lung sections between ApoE-/- and ApoE-/-.CD151-/- mice 

 

Despite the abundant expression of CD151 in lungs, its role in lung functioning in an 

atherosclerotic setting has not been determined.   Studies have investigated CD151 deletion 

and its implication on lung function in C57BL/6 WT mice.(273)  The presence of CD151 is 

found to be critical for the function of alveolar epithelial cells where a deficiency results in 

mesenchymal-like abnormalities and transforming growth factor-β activation which leads to 

pulmonary fibrosis.(274,275)  CD151 is most abundantly expressed in the basolateral 

surfaces of endothelial and epithelial cells.  The tetraspanin is required to maintain epithelial 

integrity and adhesion of alveolar epithelial cells to basement membranes and thus essential 

for lung structural development and maintenance.(285,286)  In vitro and in vivo models of 

cancer have also found CD151 be a positive regulator of tumour progression in various 

types of tumours.(251,256)  Intravasation and cell migration is augmented by CD151 and 

contributes to tumour metastasis.(287)  CD151 has been associated with the retention of 

cancer cells in lung vascular beds and lung metastasis.(121,257)  Transgenic 

adenocarcinoma of mouse prostate cancer models with a CD151 deficiency displayed 

significant impairments in the pulmonary metastasis formation.(282) 

 

Histopathological studies were performed on lung sections of ApoE-/- and ApoE-/-.CD151-/- 

mice. It is unknown if the absence of CD151 affects the lung architecture of ApoE-/- 

atherosclerotic mice and if in an atherosclerotic setting, CD151 deficient mice may display a 

similar phenotype to C57BL/6 WT mice lacking CD151. H & E staining was used to identify if 

any abnormalities were present in the morphology of the lung between the strains, and to 

characterise the lung morphology of ApoE-/- and ApoE-/-.CD151-/- mice.   

 

Lungs were harvested from 16 week old ApoE-/- and ApoE-/-.CD151-/- mice.  Cross sections 

stained with H & E were imaged with a Leica DMD108 microscope with a 4x and 10x 

objective and camera.  This investigation did not find any abnormalities in lung morphology 

in the absence of CD151 between the strains (Figure 4.1), as the morphology of the alveoli 

appears normal in ApoE-/- and ApoE-/-.CD151-/- mice (Figure 4.1 b and 4.1 d).   
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Figure 4.1.  Histopathology of the lung from an ApoE-/- mouse. Representative images indicate that (a) Lungs 

show normal morphology (H&E), x10).  (b) Alveoli appears normal (H&E, x40). Histopathology of the lung from an 

ApoE-/-
.CD151-/- mouse (c) shows normal morphology (H&E), x10).  (d) Alveoli appears normal (H&E, x40).  An 

N=17 was examined in each group.  
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4.2.2 Histopathology of liver sections between ApoE-/- and ApoE-/-.CD151-/- mice 

Liver cross sections of ApoE-/- and ApoE-/-.CD151-/- mice were studied. It is unknown if the 

absence of CD151 affects the liver function and the morphology of the organ in ApoE-/- 

atherosclerotic mice. H & E staining was used to identify if any liver abnormalities were 

present between the strains, and to characterise the liver morphology of ApoE-/- and ApoE-/-

.CD151-/- mice. 

 

Representative images of liver cross sections harvested at 16 weeks and stained with H & E 

are shown in Figure 4.2. Sections were imaged with a Leica DMD108 microscope with a 4x 

and 10x objective and camera.  No abnormalities were observed in the liver of both ApoE-/- 

and ApoE-/-.CD151-/- mice.  The sinusoids, hepatocytes and binucleate hepatocytes appears 

normal and similar in both strains.   

 

Figure 4.2.  Histopathology of the liver from an ApoE-/- (a) and (b), and ApoE-/-
.CD151-/- (c) and (d) mouse. (a) 

and (c) Both livers shows normal morphology with sinusoids and hepatocytes visible (H&E, x10).  (b) Hepatocyte 

and sinusoid appears normal (H&E, x40).  Binucleate hepatocytes can be seen and are common both in mouse 

and human hepatocytes. An N=17 was examined in each group. 
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4.2.3 Histopathology of kidney sections between ApoE-/- and ApoE-/-.CD151-/- mice 

ApoE-/- and ApoE-/-.CD151-/- mice kidneys were harvested at 16 weeks, cross sectioned and 

stained with H & E.  The absence of CD151 in an atherosclerotic setting has not been 

studied, where its influence on kidney function and architecture are unknown.   H & E 

staining was used to identify if any abnormalities were present in the morphology of the 

kidneys between the strains, and to characterise ApoE-/- and ApoE-/-.CD151-/- mice kidney 

morphology through histopathological studies. 

 

Representative images of kidney sections are shown in Figure 4.3 identifying no differences 

between ApoE-/- and ApoE-/-.CD151-/-  genotypes.  The Bowmans capsule, glomerulus and 

epithelia appear normal (Figure 4.3 b and d).  The absence of any abnormalities indicate the 

deletion of CD151 in an atherosclerotic setting has had no influence on kidney morphology.   

 Figure 4.3.  Histopathology of the kidney from an ApoE-/- (a) and (b), and ApoE-/-
.CD151-/- (c) and (d) mouse. (a) 

and (c) Kidneys show normal morphology (H&E, x10).  Glomeruli and the flattened epithelial linings of the loops 

of Henle are also visible.  (b) and (d) The glomerulus is surrounded by the Bowmans capsule (H&E, x40).  The 

Bowmans capsule epithelium is squamous in a female mouse.  An N=17 was examined in each group. 
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4.2.4 Identifying collagen presence in atherosclerotic plaques with Masson’s 
trichrome staining 

Specialised Masson’s trichrome Staining was used to reveal the presence of collagen 

deposition in atherosclerotic plaques of 16 week old ApoE-/- and ApoE-/-.CD151-/- mice.  

Plaques were restricted to those located in the aortic valve cusps of  ApoE-/- and ApoE-/-

.CD151-/- mice.   Representative microphotographs of atherosclerotic plaques in these mice 

showed collagen deposits and some cholesterol clefting present in both ApoE-/- and ApoE-/-

.CD151-/- mice.  Qualitatively, the morphological characteristics of the plaques were 

indistinguishable between the mouse genotypes.  The ApoE-/- mice genotype were observed 

to have more lesions present in their aortic valve cusps compared to  ApoE-/-.CD151-/- mice.  

Quantitative studies of lesion areas and overall plaque burden was performed on aortic valve 

cusp sections stained with H & E in subsequent studies.   Until the current study, no previous 

reported studies have been found to have studied the absence of CD151 in atherosclerosis 

and its influence of collagen deposition in plaque development through the use of 

specialised stains such as the Massons trichrome Stain. 

 

Figure 4.4.  Aortic Valve Cusps (AVC) in ApoE-/- (Left), ApoE-/-.CD151-/- 
 (right) stained with Masson’s trichrome 

for collagen.  Black arrow heads identify lesion areas. Collagen is stained blue, nuclei is stained black and 

cytoplasm, muscle and erythrocytes are stained red.  Light microscopy, original magnification 4x.  An N=17 was 

examined in each group. 

 

100.0 µm 100.0 µm 
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4.2.5  Identifying the presence of elastic fibres and collagen in atherosclerotic 
plaques with Verhoeff Van Giesons staining 

 

The aortic valve cusps of ApoE-/- and ApoE-/-.CD151-/- mice were stained with Verhoeff Van 

Gieson stain to identify the presence of elastic fibres and collagen in atherosclerotic plaques 

(Figure 4.5). No distinguishable differences in plaque morphology was observed between 

the ApoE-/- and ApoE-/-.CD151-/- genotypes.  Elastic fibres and nuclei stained blue-black and 

black whilst collagen is stained red.  Studies were performed on 16 week old mice on a 

normal chow diet fed ad libitum.   

 

 

 
 

Figure 4.5.  Aortic Valve Cusps (AVC) in ApoE-/- (Left), ApoE-/-.CD151-/- 
 (right) stained with Verhoeff Van Gieson 

for elastic fibres.  Black arrow heads identify lesion areas. Elastic fibres and nuclei are stained a blue/black colour 

and collagen a red stain.  Light microscopy, original magnification 4x.  An N=17 was examined in each group. 
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4.2.6 Comparing plaque burden of ApoE-/- mice to ApoE-/-.CD151-/- mice by 
quantifying atherosclerotic lesion areas in aortic valve cusps 

Haematoxylin and eosin stained aortic valve cusp sections from ApoE-/- and ApoE-/-.CD151-/- 

mice were measured to determine plaque burden and the influence of CD151 absence on 

atherosclerotic lesion development.  Quantification was performed using the area 

measurement tool in the  Leica DMD108 microscope imaging system.  At 16 weeks, ApoE-/-

.CD151-/-  mice showed significantly reduced atherosclerotic lesion areas compared to ApoE-

/- mice (5266 µm2 ± 1427 versus 34265 ± 2427, P < 0.0001 *** n=10) suggesting a delay in 

the development of atherosclerosis as demonstrated in the ApoE-/-.CD151-/- model (Figure 

4.7).  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. Representative images of ApoE-/- (female) and ApoE-/-.CD151-/- (female) aortic valve cusp sections 

stained with H & E.  Lesion areas are determined by measuring around lesions with measurement tools in the 

Leica DMD 108 microscope imaging system software.  Black arrows indicate lesions measured and foam cells.    

Light microscopy, original magnification 4x.  The representative image shown at a higher magnification shows an 

inset of the ApoE-/- panel and a mask identifying plaque boundaries.  Light microscopy, original magnification 10 

x . 
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Figure 4.7.  Plaque burden was quantified by measuring lesion area (µm2) in the aortic valve cusps of 16 week 

old ApoE-/- and ApoE-/-.CD151-/- mice.  A significant reduction in plaque burden is observed in the ApoE-/-.CD151-/- 

mouse genotype as compared to the ApoE-/- mouse.  Each data point represents the average lesion area per 

mouse, (*** P < 0.0001, n=13, unpaired Student’s t-test).   

 

4.2.7 Sex differences in plaque burden between ApoE-/- and ApoE-/-.CD151-/- mice 

 

To investigate if sex difference has an influence on plaque burden and lesion 

development, plaque burden was quantified by measuring lesion areas present in the 

aortic valve cusps of ApoE-/- and ApoE-/-.CD151-/- female and male mice.  As shown in 

Figure 4.8, a sex difference is observed to be evident and also influential in 

atherosclerotic lesion development in the absence of CD151.   CD151 is suggested to 

have a protective effect on plaque burden development in female mice as compared to 

male mice as observed by the marked reduction in plaque burden in the absence of 

CD151.   
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Figure 4.8. Sex difference appears to have an influence on plaque burden between ApoE-/- and ApoE-/-.CD151-/-  

mice.  Female ApoE-/-.CD151-/-  mice were found to have significantly lower plaque burden compared to female 

ApoE-/- mice.  The absence of CD151 in an atherosclerotic setting does not have as much of a profound effect on 

male ApoE-/- mice.  No statistically significant difference was reported between male ApoE-/- and ApoE-/-.CD151-/-  

mice for lesion area and thus plaque burden.  (female n=7; male n=5, unpaired Student’s t-test).   

 
 

 

 

 

 

 

 

 

 

  

Fe
m

al
e 

M
al

e 



 
 

92 
 

4.3 Discussion 

In order to explore the influence of which CD151 may have on atherosclerosis, it was 

important to study the implications of CD151 deficiency on the development of 

atherosclerotic plaque lesions.  Aspects of plaque burden were studied in 16 week old ApoE-

/- and ApoE-/-. CD151-/-  mice.  These mice were fed a standard chow diet consisting of 65% 

carbohydrate, 15% fat and 20% protein.  This study is formed on the hypothesis that CD151 

confers a protective effect on atherosclerosis when CD151 is absent.  The results indicate 

that ApoE-/-.CD151-/-  mice have a significantly decreased plaque burden compared to ApoE-

/- mice.  

 

Prior to the development of the ApoE-/- mouse model, the C57BL/6 mice was the sole murine 

atherosclerosis animal model available.(288,289)   There are limitations however to this 

latter model in that the development of atherosclerosis and atherogenesis lacks consistency 

with the progression of the disease in humans.  The atherosclerotic lesions which are formed 

in C57BL/6 WT models differ in their characteristics and composition when compared to 

human atherosclerosis.  The ApoE-/- model develops not only hypercholesterolaemia but 

also forms several types of lesions thatare observed to present in aortic valve cusps as well 

as in the arterial tree, whereas lesions in the ApoE-/-  model are more extensive varying from 

foam cells to fibrous plaques observed in more chronic and advanced atherosclerosis.(215, 

290)  On a normal chow diet, ApoE-/-
 mice are reported to begin displaying small nodule like 

lesions at 10 weeks of age.  In C57BL/6 WT mice however, a diet consisting of 1.25% 

cholesterol, 10% - 15% saturated fats and 0.5% cholic acid is required to induce lesion 

development, and is physiologically irrelevant to human diets.(288,289) 

 

Atherosclerotic plaque lesions in the aortic valve cusps were stained with H & E and 

measured for lesion area size as an indication of plaque burden.  The results propose a 

protective effect of CD151 deficiency as the ApoE-/-.CD151-/- group showed significantly 

lower plaque lesion areas (34265 ± 2427 µm2 versus 5266 ± 1427 µm2
, P < 0.0001 *** n=10; 

Figure 4.6).  A spread in the results was observed (Figure 4.7) and upon further analysis for 

sex differences, it appears that the female ApoE-/-.CD151-/- group specifically were found to 

have a significantly reduced plaque burden (Figure 4.8).  This protective effect of CD151 

absence did not carry over in males, as the plaque burden in ApoE-/- and ApoE-/-. CD151-/- 

groups did not show any statistically significant differences.  Compared to the literature, the 

plaques found to predominantly develop in the ApoE-/- and ApoE-/-.CD151-/-  mice were early 
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and occasionally intermediate lesions.  Necrotic cores formed were small and did not appear 

to be advanced in nature.  Note that Nakashima et al. (248) reported well formed fibrous 

plaques to develop only after 20 weeks of age in mice fed a chow diet whereas mice fed 

western style diets may begin demonstrating formation of early fibrous plaques in as early as 

15 weeks of age as lesion formation is known to be delayed in chow fed mice compared to 

high fat western diet fed mice.(248)  Classification according to human atherosclerotic lesion 

classification by the American Heart Association places the plaques observed in ApoE-/- and 

ApoE-/-.CD151-/- to also be early lesions varying from Type II to Type III lesions.(143,291)  

 

In humans, gender predisposition to atherosclerosis is suggested to occur in males.(292)  As 

monocyte derived macrophages are known to be integral in the introduction of early signs of 

atherosclerosis by the formation of fatty streaks, McCrohon et al. (292) hypothesised that 

increased expression of androgen receptors in males would result in a predisposition to 

atherosclerosis.  Their data indicated that a dose related, as well as a receptor mediated, 

increase in human macrophage lipid accumulation occurred in males only.(292)  On the 

contrary, a paper investigating published reviews of associations of ApoE genotype and 

coronary disease noted biases in findings due to small study populations.  The authors 

reassessed published associations between lipid levels, coronary risk and ApoE genotypes 

which previously had suggested a link between ApoE genotypes and women.(293,294)  

Furthermore they established that such associations in relation to sex and atherosclerosis 

disease is not relevant.(293)  Females however are reported to develop atherosclerosis and 

heart disease later in life compared to men, and is associated with the decrease in sex 

steroid hormones which occur in menopause.(295)  A study examined the response of 

vascular neotintimal formation in males and females by  using a cuff on the femoral artery.  

The results showed male mice respond more significantly than females in intimal 

growth.(296)  Studies have also shown that disease prognosis specifically in acute or 

chronic coronary disease is reported to be worse in males than females.(297)   Males and 

females are said to encounter similar levels of cardiac risk factors however the response to 

increased atherosclerotic risk burdens may be dependent on gender specific differences that 

may be influenced by hormones.(298-305) Studies in murine models have shown that 

administration of estrogen provides atheroprotective effects.(306)  Interestingly, studies have 

also reported that female ApoE-/- mice develop larger lesions that males in the aortic 

sinus.(307)  Minimal differences in plaque burden and distribution of lesions throughout the 

aorta have been noted between male and female ApoE-/- mice as well as LDL receptor 

deficient mice.(308)  Atherosclerosis development has also been reported to show 

associations between gender and immunity.  The extent of atherosclerosis in the inominate 
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arteries of male and female ApoE-/- mice are reported to be similar however in conditions in 

which immunity is compromised and deficiencies are present, atherosclerosis is reduced in 

ApoE-/-  mice only.(309) In light of the literature, our findings suggest a protective role of 

CD151 absence in atherosclerosis, specifically in female mice.  With this, it would be of 

interest to consider examining the influence of CD151 absence in mice of older ages and 

also to monitor reproductive hormones, and detectable immune deficiencies.  Note that 

animal welfare and the monitoring of skin lesions is of upmost importance and may be 

limiting in the experimental period of future studies.  

 

Representative images of H & E stained aortic valve cusps shown in Figure 4.6 illustrates 

the presence of early foam cell presence in ApoE-/- and ApoE-/-.CD151-/- mice. Visually the 

ApoE-/-. CD151-/- mice had fewer and smaller lesions present.  In both ApoE-/- and ApoE-/-. 

CD151-/-  groups, the Masson’s trichrome (Figure 4.4) specialised stain for collagen showed 

collagen staining (blue) being more dominant in the mass of the lesion and very minimally on 

the perimeter or cap of lesions, which showed some red staining indicative of muscle, 

erythrocyte and cytoplasm staining.  Likewise when the Verhoeff Van Gieson stain was 

used, the lesions stained red for collagen, whilst around the perimeter of the lesion, staining 

was mostly blue/black which is suggestive of elastic fibre staining (Figure 4.5).  These 

qualitative findings reveal that at 16 weeks, ApoE-/- and ApoE-/-.CD151-/- have developed 

foam cells and are beginning to show formation of a fibrous cap and progressing from early 

to intermediate lesion development.  As discussed prior, fibrous plaques are typically 

observed after 20 weeks where in comparison this study did not extend further than 16 

weeks as a precaution against animal welfare issues of skin lesion development.  

Immunohistochemical studies staining specifically for anti type I collagen, macrophages and 

smooth muscle actin would assist further in confirming the type of cells found in the plaque 

and determine composition of plaques between ApoE-/- and ApoE-/-.CD151-/- mice.  These 

findings will follow in Chapter 5. 

 

Furthermore, histology analysis on the morphology of representative kidney, lung, and liver 

sections stained with H&E showed normal morphology and organisation of structures in both 

ApoE-/- and ApoE-/-. CD151-/- mouse groups.  The loss of CD151 in the double knockout 

model did not bring about conditions which have been reported in the literature.  Studies 

have shown that due to the high affinity associations of CD151 with integrins α6β4 and α3β1, 

deletion or mutations to any of the integrin chains namely α6 or β4 leads to neonatal death by 

a condition with phenotype similar to epidermolysis bullosa in humans.(265,310)   These 
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patients which present with a syndrome referred to as Alport display symptoms of 

sensorineural deafness in addition to epidermolysis bullosa.  Patients exhibiting these 

symptoms are recommended to be tested for assays pertaining to lung function and 

observation of fibrotic changes, if present.(124)     

Basement membrane rupture occurring in kidneys and lung epithelia also leads to neonatal 

deaths in mice with an α3 integrin deletion.(240)  Absence of the β1  unit in conjunction with 

α3 absence are also observed to contribute to proteinuria and renal disease.(270) Similarly 

deficiencies in the β1 subunit of integrins is observed in pulmonary fibrosis, given its 

associations with CD151.(276,277) 

 

Sachs and colleagues (270) found in 12 week old CD151-/- mice on a similar C57BL/6 WT 

background to display a variability in the severity of renal pathology in mice lacking the 

CD151 tetraspanin in different litters. Through light microscopy the authors noted of 

interstitial fibrosis, some glomerulosclerosis occurring mildly and more extensive 

glomerulosclerosis and adhesions to the Bowman’s capsule in mice that were more severely 

affected by the deficiency of CD151.(270)  The current investigation did not detect any of 

these abnormalities and was unchanged between ApoE-/- and ApoE-/-.CD151-/- mice, with 

structures staining and appearing normally.  Parallels drawn from previous literature and the 

differences in genetic background of mice used to investigate the deficiency of CD151 in 

kidneys as well as other organs may be accountable for reasons as to why renal failure did 

not manifest in the ApoE-/- and ApoE-/-.CD151-/- mouse groups.(102,242,270)  FVB models 

have been used in the past to validate the involvement of CD151 in adhesion 

strengthening.(272)  Nonetheless, the absence of CD151 was consistently shown to be 

imperative for normal renal function and especially in the adhesion of podocytes to 

glomerular basement membranes.(272)    

 

Although no specific disease phenotypes have been associated with CD151 deficiency in 

the liver, CD151 absence has been implicated in cancer conditions whereby CD151 is 

involved in tumour progression and the migration and invasion of cancer cells which are 

associated with the lateral complexes formed between integrins α6β4 and α3β1, α6β1 with 

CD151.(237,261,262) Histology analysis conducted for this thesis did not observe any 

differences between ApoE-/- and ApoE-/-.CD151-/- mouse groups in the tissue architecture 

and morphology and thus in atherosclerosis, CD151 deficiency is unlikely to affect liver 
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function.(107)  According to the literature increased CD151 expression has been shown to 

correlate with poor prognosis of various cancers, inclusive of liver tumours. (195,311)  

 

Histology analysis of ApoE-/- and ApoE-/-. CD151-/- lung tissue architecture and morphology in 

this study did not demonstrate any changes associated with CD151 deficiency in 

atherosclerosis disease.  Prior to the investigations led by Tsujino et al. (311), CD151 had 

not been studied in the context of pulmonary fibrosis disease.  The only other condition in 

which CD151 absence has been observed to result in disease is cancer where 

overexpression of CD151 correlated with lung carcinomas.(280)  H & E staining of 30 week 

old CD151 (C57BL/6 WT background) deficient mouse lungs showed only slight changes to 

alveolar structures which the authors concluded to be insignificant.  However through Azan 

staining, they reported an increase in the deposition of collagen in alveolar walls which 

together with microarray studies were proposed to be linked with the spontaneous 

development of pulmonary fibrosis.(273)  To validate these findings, Tsujino et al. (273) 

performed electron microscopy studies which at 16 weeks of aged showed an increase in 

collagen deposition in alveolar walls and presence of hypertrophied alveolar epithelial cells.  

The basement membranes of the epithelial cells were also thicker than normal.  On a similar 

C57BL/6 WT background but in conjunction with atherosclerotic disease and at 

approximately half the age, the ApoE-/- and ApoE-/-.CD151-/- mouse groups investigated in 

this study did not appear to be affected by the absence of CD151 in tissue architecture, 

morphology as well as function. 

 

In light of these findings CD151 was not observed to have impacted on the liver, kidneys and 

lungs of ApoE-/-.CD151-/- mice with tissue architecture being comparable between ApoE-/- 

and ApoE-/-.CD151-/- mouse groups. Being a novel strain, ApoE-/-.CD151-/-  mouse genetical 

data has not been studied and thus the Mendelian distribution demonstrated in this study 

does not have a point of reference to compare to.  As discussed in Chapter 3.3, the 

Mendelian inheritance frequencies was altered with smaller litter sizes and survival in the 

ApoE-/-.CD151-/- mouse group.  Previous studies which had investigated conditions 

associated with the absence of CD151 resulting in abnormalities of lung and kidney were 

suspected and proposed to have an influence in this reduction in Mendelian inheritance 

frequencies, however was not demonstrated or observed to have manifested through 

visualisation of respective tissue architectures in the present study.  Indeed, in studying the 

Mendel laws of inheritance, numerous factors beyond the scope of this thesis’ study may be 

implicated and contributory to this survival bias and segregation.  Meiotic Drive Elements 
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(MDs) are capable of cheating Mendel laws of inheritance through disrupting chromosome 

segregation during the process of meiosis.  In the literature, non mendelian inheritance in 

mice have been reported to occur as a result of the mouse t haplotype in the house mouse, 

involving the interaction of different genes and ultlimately affecting population numbers.(312)  

Note also that previously documented mutations have been identified and shown to not alter 

CD151 function.(124) 

  

4.4 Conclusion 

Plaque burden was found to be significantly reduced in the ApoE-/- mouse group lacking 

CD151 (ApoE-/-.CD151-/-) compared to ApoE-/- mice.  Histological analysis of organ 

morphologies and tissue structures did not display any abnormalities and were consistent 

between the strains with organ structures appearing unchanged in the absence of CD151.   

 

4.5 Limitations 

At 16 weeks, ApoE-/-.CD151-/- mice showed significantly reduced plaque burden compared to 

ApoE-/- mice suggesting a positive protective effect of CD151 absence.  The atherosclerotic 

lesion types observed at this age were early to intermediate plaque lesions.  As the 

morphology of lesions transform over the progression of atherosclerosis disease, re-

examining the parameters of plaque burden at an older age would greatly extend our 

understanding of the contribution CD151 absence and whether the protective effect seen at 

16 weeks on atherosclerosis plaque burden extends in older age.  To confirm the findings 

determined on the characterisation of organs in the absence of CD151 in atherosclerotic 

disease, organs should be harvested at an older age to examine for defects if any, to the 

epithelial membranes in particularly the kidneys and lungs.  Finally, the gold standard of 

histology staining in atherosclerosis is Oil red O and Sudan black staining for lipids and thus 

warrant further studies to include these staining techniques for determining the presence of 

plaques lesions in the aortic valve cusps of ApoE-/- and ApoE-/-.CD151-/- mice.  Despite this, 

studies have been observed to assess plaque lesion areas and burden solely on H&E 

stained sections.  Due to logistics, limited access to facilities and training, Oil Red O staining 

was not achievable and technique was unsatisfactory.  H&E staining was found to provide in 

this instance, more accurate measurements of plaque lesions areas in the aortic valve cusps 

of mice studied. 
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5 CHAPTER 5:  INVESTIGATING THE ROLE OF CD151 IN PLAQUE COMPOSITION 

USING AN APOE-/- MOUSE MODEL. 

 
5.1 Introduction 

Atherosclerosis is referred to as a chronic inflammatory disease characterised by the 

interaction of monocytes with adhesion molecules on endothelial surfaces.(313,314) These 

events of endothelium dysfunction are observed to precede the appearance of 

atherosclerotic plaques which is subsequently followed by a series of events involving the 

migration of lipoproteins, lymphocytes into the endothelial space, an increase in vascular 

permeability, proliferation of smooth muscle cells and progression to an increased 

proinflammatory state.(315,316)  Vascular inflammation occurring in the early stages of 

atherosclerosis is associated with the influx of monocytes and leukocytes within the vessel 

wall.(317)  Macrophages and dendritic cells are formed from the differentiation of monocytes 

and proceed to transforming into macrophage derived foam cells through the phagocytosis 

of lipoproteins.(318,319)  Fatty streaks which present in the early phases of atherosclerosis 

are composed of these foam cells as well as VLDLs or LDLs.(320)  The fibrous plaque is 

composed of foam cells, cholesterol crystals and cell debris which progressively form the 

necrotic core.(313,321) 

 

The formation and progression of atherosclerotic plaques is polygenic in nature involving 

multiple cell types that express numerous cell adhesion molecules including CD151, a 

tetraspanin superfamily member.  CD151 is localised to the intracellular vesicles and at cell-

cell junctions in endothelial cells, at the cellular level.(7) As mentioned prior, CD151 

associations with integrins are well known where complexes of this tetraspanin with specific 

integrins are shown to have the ability to mediate biological processes.(6, 261, 262, 322-

324)  These complexes include the stable associations of CD151 with laminin-binding 

integrins such as α3β1, α6β1, α6β4, as well as α7β1 (237,325,326)  primarily in processes of 

cancer metastasis, cell to cell adhesion, cell to extracellular matrix adhesion strengthening 

and cell motility.(111,113,119,122,261,287,327,328)  CD151 is expressed in endothelial 

cells, dendritic cells, smooth muscle cells, T lymphocytes, macrophages and platelets which 

are all involved in atherosclerotic plaque development and rupture.(6)   

 

Despite showing increased CD151 expression in human atherosclerotic arteries as 

compared to healthy arteries, the influence of CD151 on atherosclerosis is still yet to be 
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elucidated.(128)  CD151 is shown to be present in the medial layer and adventitial layer of 

vessel walls, including the endothelium.(123)  A study has shown that in cultured human 

umbilicial vein cells, 66% of CD151 is located intracellularly.  Endothelial cell CD151  

meanwhile is concentrated at cell to cell junctions together with  tetraspanins CD9 and 

CD81.(329)  The interactions of CD151, CD9 and CD81 on endothelial cells are reported to 

be crucial for the adhesion of ICAM-1 and VCAM-1.  In atherosclerosis, lesions develop and 

are localised in areas of which blood flow is disturbed and prone to inflammation.(330)  

ICAM-1 and VCAM-1 expression is increased at these areas in the course of plaque 

formation.(331-334)  CD81 expression is upregulated in atherosclerotic lesions, especially in 

early stages of the disease as compared to advanced human atherosclerotic plaque lesions.  

Rohlena et al. (173) published on the suspected involvement of CD81 in early plaque 

formation.  Their previous studies did not find an increased expression of CD151 or CD9 in 

an atherosclerotic setting in comparison to CD81.(335) Notwithstanding the varied and 

limited findings on CD151 in atherosclerosis, it is critical to investigate these findings 

particularly as atherosclerosis is influenced by a number of different cells, inclusive of 

platelets.(336)  Disruption to the endothelium consequently results in platelet adhesion and 

leukocyte infiltration, occurring early in the development of atherosclerosis.(145)   Inhibition 

of platelet adhesion has shown to decrease the accumulation of leukocytes and the 

subsequent reduction in atherosclerotic lesion development in ApoE-/- mice.(337)  Barreiro et 

al. (338)   have similarly reported the integral role of CD151 in the migration of lymphocytes 

and in maintaining stable adhesion of lymphocytes subjected to extravasation.(338)   

 

According to recent in vitro and in vivo studies, CD151 has been shown to be a promoter of 

angiogenesis.(7,102,242,322)  Studies utilising CD151 deficient animals have supported this 

finding, and reinforced the function of CD151 in vesicle trafficking.(339-342)  Angiogenesis is 

reported through histology studies to be influential in the development of atherosclerotic 

plaque lesions, as the formation of new vessels within atherosclerotic plaques and arterial 

walls are associated in the pathogenesis of cardiovascular events.(343,344) 

 

Whilst histologic analysis of the aortic valve cusps for quantification of plaque lesion areas 

are informative in determining plaque burden in ApoE-/- versus ApoE-/-. CD151-/- mice 

(Chapter 4), immunohistochemical studies for the assessment of CD151 expression, F4/80 

macrophages, type I collagen and smooth muscle actin are also important to investigate 

plaque composition.  The influence of CD151 absence is unknown in the progression of 

atherosclerosis and plaque development.  Investigating different markers allows for the 
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characterisation of cellular components associated with plaques at 16 weeks of age between 

the ApoE-/- and ApoE-/-.CD151-/- mouse model and to support the hypothesis that CD151 

absence confers a protective effect on atherosclerosis.    Histopathological examination of 

plaque lesions with H & E staining in Chapter 4 (Representative images shown in Figure 4.6) 

showed that plaques formed were comparable to early and intermediate lesions of ApoE-/- on 

a C57BL/6 WT genetic background observed by Nakashima et al. (248)  Classification of the 

atherosclerotic lesions according to the American Heart Association showed early lesions or 

Type II to Type III lesions.  The latter lesion type, also known as intermediate lesion 

(preatheroma) was mostly observed in the ApoE-/-.CD151-/-  mouse group.(345) 
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5.2 Results 

 

5.2.1 CD151 H80 expression in atherosclerotic plaques of ApoE-/- mice compared to 

ApoE-/-.CD151-/- mice 
 

CD151 expression was examined in ApoE-/- atherosclerotic plaque lesions formed in the 

aortic valve cusps of 16 week old mice.  ApoE-/-.CD151-/- plaque lesions were also examined 

to compare the affect of CD151 absence on the development of an atherosclerotic plaque 

and to confirm the presence of CD151 in atherosclerotic plaque lesions. Being a broadly 

expressed tetraspanin, CD151 is present not only on platelets but also on endothelial cells, 

smooth muscle, megakaryocytes, cardiac muscle, immune system and epithelia.(5)  In 

platelets specifically, the absence of platelet CD151 in vivo results in smaller and thrombi 

that are more prone to embolisation and instability.  Thrombus growth and stability in vivo 

has also been reported to be regulated by platelet CD151.(197)  
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Figure 5.1.  IHC staining of the aortic valve cusp of ApoE-/- and ApoE-/-. CD151-/- mice was performed to stain for 

CD151 expression.  (a) – (b) CD151 H80 rabbit polyclonal primary antibody was used at a dilution of 1/800, whilst 

a peroxidase conjugated affini-pure goat anti rabbit secondary antibody was used at a dilution of 1/800.  

Visualisation of the stain was carried out with DAB solution. (a) kidney tissue was subjected to the same staining 

protocols to serve as a positive control. CD151 expression is evident in ApoE-/- plaque lesions whilst ApoE-/-. 

CD151-/- plaques lack any positive staining which is as expected.    
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Plaque composition was analysed and expression of CD151 quantified with the Aperio 

positive pixel algorithm v9.1.  The results of this investigation are reported in Table 5.1 and 

Figure 5.1.  ApoE-/- lesions were positive for CD151 with strong positive CD151 staining 

accounting for 5.7 ± 0.8 % of plaque lesions, 31.9 ± 5.5 % positive staining and 8.4 ± 3.9 % 

weak positive staining. ApoE-/-.CD151-/- lacked positive staining with very minimal unspecific 

weak positive staining observed (3.4 ± 1.1 %) and negativity for 96.0 ± 1.3 % of the plaque 

lesion (Table 5.1 and Figure 5.2).  These results confirm the presence and expression of 

CD151 in atherosclerotic plaque lesions in the ApoE-/- mouse model.  Positive control kidney 

tissues validates these results together with the lack of positive staining of CD151 in 

atherosclerotic plaque lesions of ApoE-/-.CD151-/- mice.   

 

Table 5.1.  CD151 stained in plaque lesions 

 

An unpaired Student’s t-test shows statistical significance in negative, strong positive and 

positive staining in ApoE-/- compared to ApoE-/-.CD151-/- CD151 expression in atherosclerotic 

plaque lesions (*** P < 0.0005, ** P < 0.005, n=10 in each group).  

 

 

 

 

 

 

 

 

 

 Stain (Mean ± SEM % pixel positive staining) 

Genotype Negative  Strong Positive Positive Weak Positive 

ApoE-/- 51.943 ± 3.561 *** 5.671 ± 0.758 *** 31.880 ± 5.467 ** 8.404 ± 3.875 

ApoE-/-.CD151-/- 96.013 ± 1.299 0.308 ± 0.090 0.261 ± 0.130 3.418 ± 1.096 
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Figure 5.2.  IHC studies for CD151 shows positive antibody staining at 5.7 ± 0.8 % in the ApoE-/- mouse strain.  

Positive and Weak positive staining was also observed (31.9 ± 5.5 % and 8.4 ± 3.9) confirming CD151 

expression and presence in atherosclerotic plaque lesions in the aortic valve cusps of 16 week old ApoE-/-mice.  

The ApoE-/-. CD151-/-  lacked positive staining with the plaque lesions showing 96.0 ± 1.3 % negativity or absence 

of any positive staining.  The ApoE-/-. CD151-/-  plaque lesions showed 3.4 ± 1.1 % weak staining however this is 

attributed by unspecific weak staining.  
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5.2.2 Type 1 collagen immunohistochemical staining of plaques in the aortic valve 

cusps of ApoE-/- mice compared to ApoE-/-.CD151-/- mice 
 

IHC staining was performed to quantitate for type I collagen present on plaques.  Collagen is 

important in maintaining atherosclerotic plaque stability. Whilst there are many types of 

collagen present in vessel walls, type I and type III are the most abundant.(346,347) As 

fibrillar collagen adds strength and elasticity to a plaque, an imbalance in the synthesis and 

degradation of collagen will influence vessel wall stability and the vulnerability and rupturing 

of plaques.(347-349)  

 

Aortic valve cusp sections were stained with anti type I collagen antibody to detect collagen, 

followed by peroxidase conjugated affini-pure goat anti rabbit secondary antibody, with 

antibody staining visualised with DAB solution. Representative images (Figure 5.3) of 16 

week old mice fed a normal chow diet ad libitum, demonstrates positive staining and 

presence of collagen in the test tissues.  The atherosclerotic plaque lesions appeared to be 

early in type, with intimal thickening observed and foam cells present.  In the early phases of 

atherosclerosis, plaque composition is typically unchanged and only seen to change after 17 

weeks onwards as it progresses into the advanced phases of atherosclerosis.(350,351) 

Kidney tissues were used as a positive control.  
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Figure 5.3. IHC staining of the aortic valve cusp of ApoE-/- and ApoE-/-. CD151-/- mice was performed for detection 

of type 1 collagen. (a) Kidney sections were used as a positive control.  (b)  A primary anti type I collagen rabbit 

polyclonal antibody was used at a dilution of 1/200, followed by a peroxidase conjugated affini-pure goat anti 

rabbit secondary antibody at a dilution of 1/800.  DAB was used for visualisation of the antibody stain. Light 

microscopy, original magnification 10 x.  
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The Aperio positive pixel count algorithm v9.1 was used to quantify positive collagen staining 

in ApoE-/- and ApoE-/-.CD151-/- atherosclerotic plaque lesions.  Positive staining was minimal 

with only 0.1 ± 0.1 % strong positive for ApoE-/- and 0.1 ± 0.04 for ApoE-/-.CD151-/- .  ApoE-/-  

showed slightly higher weak positive staining at  19.4 ± 1.7 percent compared to ApoE-/-

.CD151-/-  at 18.0 ± 1.6 % (Mean ± SEM, n=10 in each group).   

 

Table 5.2.  Percentage of type 1 collagen stained in lesions 

 

 

 

 

 

Table 5.2 does not show any statistical significance between all categories of positive and 

negative staining between ApoE-/- and ApoE-/-.CD151-/- 
 atherosclerotic plaque lesions. An 

unpaired Student’s t-test was used to determine statistical significance.  P values were 

greater than 0.05 for all categories of staining percentages between ApoE-/- and ApoE-/-

.CD151-/- genotypes (n=10 in each group).   

 

 

 

 

 

 

 

 

 

 Stain (Mean ± SEM % pixel positive staining) 

Genotype Negative  Strong Positive Positive Weak Positive 

ApoE-/- 80.131 ± 2.421 0.088 ± 0.067 2.233 ± 0.495 19.362 ± 1.691 

ApoE-/-.CD151-/- 78.957 ± 1.918 0.079 ± 0.043 3.649 ± 0.556 17.980 ± 1.571 
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Figure 5.4.  Positive stain distribution of Type 1 Collagen Immunohistochemical staining in 16 week old ApoE-/- 

and ApoE-/-.CD151-/- mice.  Positive and Strong positive staining is low with only weak positive staining of 

collagen present.  The plaque has stained predominantly negative for collagen.   
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5.2.3 Smooth muscle actin immunohistochemical staining of plaques in the aortic 

valve cusps of ApoE-/- mice compared to ApoE-/-.CD151-/- mice 
 

Presence of smooth muscle cells in atherosclerotic plaque lesions was quantified in 16 week 

old ApoE-/- and ApoE-/-.CD151-/- aortic valve cusps.  SMCs are involved in the synthesis of 

collagen in plaques, migrating from the media to intima layer of vessel walls resulting in the 

subsequent increase of collagen synthesis.(352)  Collagen is a key regulator of SMC 

proliferation suggesting its central involvement in atherosclerotic plaque lesion development.  

The absence of CD151 and its influence on plaque development has not been studied and 

as such the SMC content of atherosclerotic plaques in ApoE-/- and ApoE-/-.CD151-/- were 

compared. 

 

An anti-alpha SMC rabbit polyclonal antibody was used as the primary antibody (dilution 

1:200), and a peroxidase conjugated affini-pure goat anti-rabbit antibody as the secondary 

antibody (dilution 1:800).  Antibody staining was visualized with DAB solution and imaged 

with an Olympus BX 41 microscope and an Olympus DP70 camera, followed by 

quantification analysis with the Aperio positive pixel count algorithm v9.1 on atherosclerotic 

plaque lesions.  Figure 5.5 (b) shows positive staining of SMC in atherosclerotic lesions in 

both ApoE-/- and ApoE-/-.CD151-/- genotypes.  The absence of CD151 has not influenced  

SMC composition in plaques as no statistically significant difference was observed between 

the genotypes in percent positive staining.  

 

 

 

 

 

 

 

 

 



 
 

110 
 

 

 

 

 

Figure 5.5. IHC staining of the aortic valve cusp of ApoE-/- and ApoE-/-. CD151-/- mice was performed to stain for 

smooth muscle cell actin.  (a) A tongue section was stained under the same conditions as ApoE-/- and ApoE-/-. 

CD151-/-  aortic valve cusps as a positive control.  (b)  Representative images of atherosclerotic plaque lesions 

stained with anti-alpha smooth muscle actin rabbit polyclonal antibody  (primary antibody 1/200) and with a 

peroxidase conjugated affini-pure goat anti-rabbit antibody (secondary antibody 1/800).  DAB was used to 

visualise antibody staining.  Light microscopy, original magnification 10 x. 
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Quantified values for SMC positive pixel counts in ApoE-/- and ApoE-/-.CD151-/- 

atherosclerotic plaque lesions are shown in Table 5.3.  In ApoE-/- plaque lesions, only 36.0 ± 

2.8 % of the plaque stained weak positive for SMCs, 8.1 ± 0.9 % for positive and 0.3 ± 0.1 % 

for strong positive, whereas ApoE-/-.CD151-/- plaque lesions were found to stain 39.7 ± 4.2 % 

weak positive, 8.5 ± 0.9 % positive and 0.07 ± 0.03 % for strong positive staining.  In both 

ApoE-/- and ApoE-/-.CD151-/- 
 mice tested, negative staining accounted for more than 50% of 

negative staining with no statistical significance observed between the genotypes for any 

positive or negative staining (P > 0.05, n=10 in each group, unpaired Student’s t-test).    

These findings suggest that SMC content in atherosclerotic plaque lesions are unchanged 

between the different genotypes and has not been affected by the absence of CD151.  

 

Table 5.3  Percentage of SMCs stained in lesions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Stain (Mean ± SEM % pixel positive staining) 

Genotype Negative  Strong Positive Positive Weak Positive 

ApoE-/- 55.618 ± 2.018 0.318 ± 0.117 8.101 ± 0.877 35.963 ± 2.849 

ApoE-/-.CD151-/- 51.746 ± 4.851 0.068 ± 0.033 8.459 ± 0.903 39.727 ± 4.229 
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Figure 5.6.  Atherosclerotic plaque lesions in 16 week old ApoE-/- and ApoE-/-.CD151-/- mice stained weak positive 

and positive for SMCs.  Negative staining amounted to 55.6 ± 2.0 % for ApoE-/- lesions and 51.7 ± 4.9 % ApoE-/-

.CD151-/-
 whilst in total approximately 40-50% of the atherosclerotic plaque lesion stained positive.   
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5.2.4 Macrophages F4/80 immunohistochemical staining of plaques in the aortic 
valve cusps of ApoE-/- mice compared to ApoE-/-.CD151-/- mice 

Macrophages are cells which have differentiated from monocytes into mononuclear 

phagocytes.  The uptake of lipoproteins results in the transformation of these phagocytic 

cells into foam cells, which are essentially a class of macrophages.  An impairment or 

imbalance to lipid metabolism influences the phenotype of macrophages, affecting the 

subsequent immune responses.(353)  M2 macrophages are also known as alternatively 

activated macrophages and are reported to be dominant in earlier lesions as opposed to M1 

macrophages which dominate in advanced plaques and atherosclerotic disease.(354-356) 

 

Monocyte recruitment occurs as an inflammatory response to the accumulation of 

apolipoprotein B-containing lipoproteins in the subendothelium. Studies have shown that 

unstable atherosclerotic plaques are those which typically have thin fibrous caps and a 

substantial necrotic core with macrophages located close to the cap.(284357)  Macrophages 

are inflammatory cells which are associated with collagen synthesis whereby the release of 

metalloproteinases results in collagen proteolysis and SMC apoptosis.(352)  These 

metalloproteinases are often found in macrophages.(348)  Deguchi et al. (358) suggested 

the vulnerability of a plaque to rupturing, may be associated with a disruption to collagen 

fibre organisation as a consequence of increased metalloproteinase expression.(358-362)   

 

The characteristics and the composition of atherosclerotic plaque lesions in CD151 deficient 

mice are unknown.  The study of ApoE-/-.CD151-/- 
 murine plaque lesions compared to ApoE-/- 

lesions and the contribution of macrophages to the development of atherosclerotic disease 

was investigated through immunohistochemical staining of lesions in the aortic valve cusps 

of 16 week old mice.  Antibody staining was performed with a primary anti-mouse F4/80 

antigen PE antibody at a dilution of 1/400 whilst a peroxidase goat anti-rat IgG secondary 

antibody was used at a dilution of 1/2000.  Visualisation of the antibody stain was achieved 

with a DAB stain.  Liver tissues were subjected to the same staining conditions to serve as a 

positive control and is shown in a representative image in Figure 5.7 (a).  IHC antibody 

staining of ApoE-/- and ApoE-/-.CD151-/- plaque lesions are shown in Figure 5.7 (b).  

Quantification of positive staining was performed by Aperio positive pixel count algorithm 

v9.1 on atherosclerotic plaque lesions. 
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Figure 5.7. IHC macrophage staining of the aortic valve cusp of ApoE-/- and ApoE-/-. CD151-/- mice was achieved 

with the use of a primary anti-mouse F4/80 macrophage antigen PE antibody (dilution 1/400) and a peroxidase 

goat anti-rat IgG secondary antibody (dilution 1/2000). (a) – (b)  A representative image of a liver section is 

shown and was treated according to the same antibody staining protocol to act as a positive control.  Stained 

ApoE-/- and ApoE-/-. CD151-/- sections shows the presence of positive macrophage staining.  Light microscopy, 

original magnification 10 x. 
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Positive macrophage staining in ApoE-/- and ApoE-/-.CD151-/- was similar with no statistical 

significance (P > 0.05, n=10 in each group, Unpaired Student’s t-test) observed between the 

strains.  Table 5.4 shows only 0.03 ± 0.02 % strong positive staining occured in ApoE-/- and 

0.03 ± 0.01 % in ApoE-/-.CD151-/- when subjected to antibody staining.  The plaque lesion 

stained predominantly negative with both strains approximately 80% negative.  Figure 5.8 

provides an illustration of the positive stain distribution with yellow or weak positive staining 

being the most dominant of the positive stain categories by both ApoE-/- and ApoE-/-.CD151-/- 

mouse genotypes. 

 

Table 5.4.  Percentage of Macrophages stained in lesions 

 

 

 

 

 

 

Figure 5.8.  Atherosclerotic plaque lesions in 16 week old ApoE-/- and ApoE-/-.CD151-/- mice stained 18.1 ± 2.2 % 

and 16.5 ± 1.3 % for weak positive macrophages, less than 3 % positive staining and less than 0.1% strong 

positive staining in both ApoE-/- and ApoE-/-.CD151-/- plaque lesions.  Lesions were negative for any positive 

staining or macrophages in 79.7 ± 2.5 % in ApoE-/- plaque lesions and 80.7 ± 1.9 % in ApoE-/-.CD151-/-
  lesions.   
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 Stain (Mean ± SEM % pixel positive staining) 

Genotype Negative  Strong Positive Positive Weak Positive 

ApoE-/- 79.715 ± 2.464 0.025 ± 0.023 2.169 ± 0.664 18.085 ± 2.240 

ApoE-/-.CD151-/- 80.663 ± 1.920 0.026 ± 0.008 2.848 ± 0.595 16.460 ± 1.330 
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5.3 Discussion 

The influence of CD151 deficiency on atherosclerotic plaque development and composition 

during disease progression was studied in 16 week old ApoE-/- and ApoE-/-.CD151-/-  mice.   

Although plaque burden appears to be significantly decreased in ApoE-/-.CD151-/- compared 

to ApoE-/- mice, the composition of the plaques appear to be unchanged and unaffected by 

the lack of CD151 in atherosclerosis. Thus CD151 deficiency in atherosclerosis may provide 

resistance to the development of plaque lesions despite an insignificant transformation in 

plaque composition between the strains.   

 

As ApoE-/- mice fed on an extended chow diet can develop skin lesions, the ApoE-/- and 

ApoE-/-.CD151-/- mice were bred to 16 weeks only for histology studies to avoid animal 

welfare issues. When compared to the literature, studies have shown that on a normal chow 

diet, we would expect to observe early to intermediate lesions formed by the accumulation of 

early foam cells in the subendothelial layer of ApoE-/- plaque lesions from 10 – 15 weeks of 

age.(248)  ApoE-/- mice on chow diets were only observed to begin displaying early fibrous 

plaques after 20 weeks of age.  Nakashima et al.(248) noted that in ApoE-/-  mice on the 

western type diet, early fibrous plaques developed after 15 weeks of age and atherogenesis 

was accelerated compared to mice on the chow diet.  These mice presented with lesions 

containing necrotic cores and stable fibrous caps formed by SMCs, collagen and elastic 

fibres that were larger than lesions in chow fed mice.(248) 

 

The ApoE-/- atherosclerosis murine model is a known and established gold standard that is 

frequently used for the study of atherosclerosis today.(185)  CD151 on the other hand 

although studied extensively in metastasis, renal failure and recently platelet thrombus 

development and stability, its influence in atherosclerosis is unknown.  As mentioned 

previously, a singular somewhat introductory study by Yang et al. (128) into the potential of 

CD151 as a therapeutic target for atherosclerosis disease, was carried out by scientists in 

China.  They reported the significantly increased expression of CD151 in human 

atherosclerotic arteries compared to healthy arteries through histology studies.  Western 

blotting studies conducted by this group also observed increased CD151 protein expression 

in atherosclerotic arteries which overall is suggestive of CD151 involvement in progression 

of this disease.(128)  As briefly discussed earlier, increased CD151 expression has also 
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been observed to correlate with tumours of the lung, liver, breast, oesophagus, pangreas, 

colon, kidney, prostate and glioblastoma.(36,255,260,280,281,311,363-368)  

 

The Aperio pixel positive algorithm v9.1 categorises positive staining into three categories 

being weak positive, positive and strong positive. Immunohistochemistry staining with 

antibodies against type I collagen, macrophages and smooth muscle actin in the plaques of 

ApoE-/- and ApoE-/-.CD151-/- mice demonstrated predominantly weak positive staining 

collectively.  These elements stained consistently between ApoE-/- and ApoE-/-.CD151-/- mice 

with no significant difference observed in plaques in the absence of CD151 compared to the 

ApoE-/- group (unpaired Student’s t-test, P > 0.05 n= 10). In reference to the literature, the 

ApoE-/- control in the current study was consistent in showing early plaques characterised by 

primarily the absence of large necrotic cores and well formed fibrous caps.  Although mice 

fed a western type diet may at 15 weeks already begin demonstrating fibrous plaques, the 

ApoE-/- and ApoE-/-.CD151-/- mice in this study were fed a chow diet ad libitum for 16 weeks 

which mirrored the types of lesions observed in the aortic valve cusps.(248)   

 

Antibody staining against macrophages revealed 18.1 ± 2.2 % and 16.5 ± 1.3 % weak 

positive staining in ApoE-/- and ApoE-/-. CD151-/-  plaque lesions.  Strong positive and positive 

staining was present but showed less than 3 % staining for macrophages (Table 5.4). The 

results demonstrated previously in Chapter 4 are not consistent with the amount of positive 

macrophage staining observed here.  It was previously demonstrated that plaque lesion 

development in the ApoE-/- model was present however only minimal staining is observed 

through IHC studies as shown in Table 5.4 and Figure 5.8. The differences in lesion sizes is 

likely to be influenced by factors other than just macrophage composition.  As the lesions 

observed in this study are those of early and intermediate types, it is acceptable to have 

observed very minimal changes in the macrophage distribution in the plaques.  In the 

instance of advanced plaques, it is likely that macrophage staining would have been 

observed within the necrotic area of the lesion though studies have also reported higher 

macrophage presence in initial and intermediate plaque lesions as a result of infiltrated 

macrophage presence.(284,351,369)  It is important to note also that Oil Red O staining 

would supplement the current results and assist in quantification of lesions. In addition, as a 

means of results validation, it would be recommendable to repeat IHC studies staining for 

F4/80.  In having said that, we must take into consideration the altered Mendelian 

inheritance frequencies observed and restraints on mouse study population.(284,369)  

Similarly, the present study showed 36.0 ± 2.8 % and 39.7 ± 4.2% weak positive staining for 



 
 

118 
 

antibody staining against smooth muscle actin in the ApoE-/- and ApoE-/-.CD151-/- mouse 

groups.  Plaque composition was not altered and is characteristic of early and intermediate 

lesions evidenced by the weak staining of smooth muscle actin and lack of positive staining 

in the developing fibrous cap.  Advanced lesions would demonstrate more fibrous smooth 

muscle cell presence in the perimeter and thus show increased staining. Anti type I collagen 

immunohistochemical antibody staining demonstrated weak positive staining in lesions with 

19.4 ± 1.7 % staining seen in ApoE-/- and 18.0 ± 1.6 % staining in ApoE-/-.CD151-/- lesions 

with no significant difference observed between the mouse genotypes investigated (Table 

5.2).  Early plaque lesions are typically collagen rich as opposed to advanced unstable 

atherosclerotic plaques which are collagen poor.(370,371)  The Masson’s trichrome and 

Verhoeff Van Gieson stains identified the prevalent presence of collagen.  It is important to 

take note that these staining techniques do not discriminate between types of collagen in 

comparison to the anti type I collagen rabbit polyclonal primary antibody and peroxidase 

conjugated affini-pure goat anti rabbit secondary antibody used in immunohistochemistry 

staining which stain specific for type I collagen.  Furthermore, as IHC staining for type I 

collagen, macrophages and smooth muscle actin did not present significant data to identify 

the component responsible for an increased plaque size in the ApoE-/- strain, it is suggested 

that the increased presence of fatty streaks, lipid deposits and ongoing intimal thickening to 

be associated in the larger plaque size and burden in the ApoE-/- strain.     

 

Immunohistochemical staining for CD151 demonstrated CD151 expression in the lesions of 

ApoE-/- mice.  The absence of CD151 in the ApoE-/-.CD151-/- mouse model was void of 

significant positive staining though did show unspecific staining which was negligible as 

shown in Table 5.1. As it is a broadly expressed tetraspanin, its precise area in which it is 

most highly expressed was not isolated however is known to be associated with plaque 

lesions.  This data suggests the involvement of CD151 in atherosclerosis plaque 

development and its expression in early and intermediate stages of the disease.  On the 

contrary, macrophages, collagen and smooth muscle actin composition were unaffected in 

the absence of CD151 as demonstrated by the insignificant alterations to the plaque 

composition between ApoE-/- and ApoE-/-.CD151-/-  mouse strains.  
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5.4 Conclusion 

This chapter has demonstrated that at 16 weeks of age, ApoE-/- and ApoE-/-.CD151-/- mice  

developed plaque lesions that had similar type I collagen, F4/80 macrophages and smooth 

muscle actin composition.  The absence of CD151 absence does not appear to influence 

type I collagen, F4/80 macrophages and smooth muscle actin presence in plaque lesions. 

CD151 expression was significantly in higher in ApoE-/-.CD151-/- mice and demonstrates the 

presence of CD151 in atherosclerotic plaque lesions at 16 weeks.   

 

5.5 Limitations 

As discussed in section 5.5 on the limitations in the examination of plaque burden, similarly it 

is important to examine plaque composition in intermediate to advanced lesions, as well as 

in vulnerable plaques that are prone to rupture, to observe whether CD151 absence may 

provide protection in advanced atherosclerosis in mice older than 16 weeks.  Due to 

antibody incompatibility, T lymphocytes were unable to be examined in ApoE-/- and ApoE-/-

.CD151-/- plaque lesions thus it justifies examination of plaques with an effective antibody.   
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6 CHAPTER 6:  INVESTIGATION OF THROMBUS GROWTH STABILITY AND 

DEVELOPMENT IN THE ApoE-/-.CD151-/- STRAIN 

 

 
6.1 Introduction 

Platelets are implicated in the strict regulation of haemostasis by managing thrombosis and 

the integrity of the vascular system.  Platelet responses are regulated by positive feedback 

loops, which rapidly amplify initial activation signals to facilitate the recruitment of platelets 

and thrombus stability.(372)  The rapid contact adhesion of platelets to proteins such as 

vWF, or collagen through GP Ib-IX-V complex and GPVI/FcR γ-chain induces platelet 

activation, spreading and platelet aggregation.(373, 374) 

   

This can also occur in the presence of soluble agonists released from platelets such as ADP, 

thrombin and thromboxane A2. Platelet shape change and secretion of granules occur in 

response to receptor-specific platelet activation signalling events.  This leads to induction of 

the inside-out signalling pathway and transformation of integrin αIIbβ3 from its low-affinity 

inactive state to a high-affinity activated state.(375,376)  Binding of integrin αIIbβ3 to its 

ligands in turn activates the outside-in signalling pathway which ultimately leads to the stable 

adhesion and aggregation of platelets, secretion of granules, thrombus formation as well as 

clot retraction.(376)  The stability of thrombus formed is influenced not only by the active 

confirmation of integrin αIIbβ3  and induction of outside-in signalling events but also the 

involvement of Src family kinases, protein tyrosine phosphatase 1B, α2-adrenergic receptor 

as well as secondary wave mediators such as ADP, thrombin and thromboxane A2.(138, 

377) 

 

Increasing evidence points towards the influence of CD151 in atherothrombosis and plaque 

stability. Previous in vivo studies reveal that CD151-/- mice have an unstable haemostasis 

phenotype shown by an increased tendency to re-bleeds and prolonged tail bleeding 

times.(102)  CD151-/- platelets displayed an abnormality in haemostasis in vitro with delayed 

kinetics of clot retraction, impaired cytoskeletal reorganisation in platelet spreading on 

fibrinogen and decreased platelet aggregation, which are all integrin αIIbβ3 dependent 

events.(4)  These studies highlighted that integrin αIIbβ3 requires CD151 for optimal 

stabilisation of platelet-platelet interactions.   
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As activated platelets are a feature in the development and progression of atherosclerosis, 

there is potential for a prothrombotic state.  This is particularly evident in plaque rupture 

where type I collagen is exposed potentiating ECM platelet interactions.  Being a novel 

genotype it is unknown as to whether the ApoE-/-.CD151-/- atherosclerotic mouse exhibits a 

prothrombotic phenotype compared to the ApoE-/-  or  CD151-/- mouse.  To investigate this, in 

vivo and in vitro platelet thrombus formation studies comparing ApoE-/-
 and ApoE-/-.CD151-/- 

were performed.  Specifically, FeCl3 was used in vivo to induce oxidative injury to the carotid 

arteries and mesenteric arterioles.  This caused endothelial cell denudation and exposure of 

resting circulating platelets to the sub endothelium, allowing for the examination of arteriolar 

and microvascular thrombosis.(378, 379) 

 

Also, agonists such as ADP, collagen and PAR-4 were used in platelet aggregation studies 

to prompt the formation of platelet aggregates to compare ApoE-/-
 and ApoE-/-.CD151-/- PRP 

responses to agonists.  PAR-4 is one of four isoforms of PARs expressed on platelets which 

is common in both human and mouse species, and is the major PAR receptor in mice.  It is a 

thrombin receptor wherein thrombin is a very effective activator of platelets.(380,381)  ADP 

release from the dense granules of platelets results in platelet cytoskeletal shape change, 

further granule secretion, aggregation of platelets and in addition, the generation of TXA2.  

ADP induced platelet activation involves purinergic G-coupled receptors, P2Y1 and 

P2Y12.(382-385)  The complementary activation of both receptors are required for platelet 

aggregation.(385)  In humans, the formation of platelet aggregates on exposed lesions in a 

vessel may lead to the occlusion of the arterial lumen with the development of a large 

occlusive thrombi.(386)  Meanwhile, collagen has also been established to be a potent 

thrombogenic component in the subendothelium of vessels and is an agonist with 

capabilities in platelet adhesion and triggering both platelet activation and aggregation.(387)  

In vitro studies involved the perfusion of ApoE-/-
 and ApoE-/-.CD151-/- platelets at high shear 

rates resembling arterial blood flow to type I fibrillar collagen immobilised in a flow chamber.  

Collagen has been established to be a potent thrombogenic component in the 

subendothelium of vessels and is an agonist with capabilities in platelet adhesion and 

triggering both platelet activation and aggregation.(387) 

 

Studying thrombus formation in vivo and in vitro would permit observations into the influence 

of the absence of CD151 has in atherosclerosis and whether the unstable phenotype it 
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exhibits as observed in previous studies imparts a protective effect in an atherosclerosis 

setting.  In the 16 week old ApoE-/-
 and ApoE-/-.CD151-/- mouse, the atherosclerotic plaques 

formed are early in nature and thus is unclear if platelet activaton and thrombus formation 

would be potentiated under these conditions.  In addition, as CD151 is polygenic and 

broadly expressed in a variety of cell types, its involvement in the development and 

progression of atherosclerosis is not clear.  Likewise the features of atherothrombosis in 

ApoE-/-
 and ApoE-/-.CD151-/- in mice have not been investigated.   
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6.2 Results 

 

6.2.1 Influence of agonist induced platelet aggregation on ApoE-/- and ApoE-/-.CD151-

/- mice 

Platelet activation involves a series of events of which one is the remodelling of the 

cytoskeletal structure of platelets.  This is followed by the formation of platelet aggregates 

and subsequent formation of a stable platelet plug.  Outside-in integrin αIIbβ3 signalling 

events leads to this cytoskeletal reorganisation and is hence paramount in the eventuation of 

platelet aggregation.(4)  Previous studies have also established that integrin αIIbβ3 to be 

associated both physically and functionally with CD151.(4)  As such, investigating platelet 

aggregation in the  absence of CD151 is important. 

 

Furthermore, platelet function is also influenced by lipoprotein interactions with platelets, 

where in humans, hypercholesterolaemic subjects are observed to have increased platelet 

aggregability in vitro  and simultaneously also having increased activity in vivo.(218,221, 

388)  Therefore, as platelet activation and aggregation pathways play a pivotal role in 

cardiovascular development, new therapies to target platelets is warranted.  Platelet 

adhesion and aggregation is initiated upon plaque disruption and triggers the coagulation 

clotting pathways as well as the atherothrombotic process.  It is thus of value to investigate 

CD151 as a potential target in managing hyperaggregability in an atherosclerotic setting as 

previous studies have  indicated its importance and key role in platelet aggregation.  Lau et 

al. (4) observed impaired outside in integrin signalling and defective platelet aggregation 

responses to PAR-4, collagen and ADP in CD151 deficient mice. 

 

We have assessed this in an atherosclerotic diseased setting by using the novel ApoE-/-

.CD151-/-  mouse genotype strain and compared it to the ApoE-/- mouse strain examining 

platelet aggregation responses to selected agonists.   ADP and PAR-4 agonists were used 

as these are G-protein coupled agonists.  Type I collagen was also used as an agonist.   A 

significant difference was observed between ApoE-/- and ApoE-/-.CD151-/- mouse PRP in 

response to 3.75 µg/ml type I collagen where inhibition of aggregation occurred minimally in 

the ApoE-/-.CD151-/- group.  In addition, a significant difference in platelet aggregation was 

observed in response to PAR-4 300 µM with the ApoE-/-.CD151-/-
 mice displaying a 

heightened response and increased aggregation compared to the ApoE-/- strain (Figure 6.1).  

Platelet response to other respective agonists in an atherosclerotic setting was unchanged in 
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the absence of CD151.  Representative images of the responses to PRP agonists is 

observed in Figure 6.2 and Figure 6.3. 

 

 

Figure 6.1.    ApoE-/- and ApoE-/-.CD151-/- platelet aggregation responses of platelet rich plasma (platelet count 

adjusted to 100 x 109/L) to agonists: ADP (5 µm and 10 µm), PAR-4 (200 µm and 300 µm), collagen (3.75 µg/ml 

and 7.50 µg/ml) and CRP (1.25 µg/ml and 2.50 µg/ml).  Aggregation response to PAR-4 at 300 µm ApoE-/-

.CD151-/- was significantly higher compared to the ApoE-/-  mouse group (* P < 0.05), whilst the ApoE-/-.CD151-/- 

platelet aggregation response was significantly decreased (* P < 0.05). No significant differences were observed 

in aggregation responses between the strains for the remaining agonists (P > 0.05, unpaired Student’s t-test; n=3  

per group).       
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Figure 6.2    Representative images of ApoE-/- and ApoE-/-.CD151-/- platelet aggregation responses of platelet rich 

plasma (platelet count adjusted to 100 x 109/L) to 5 µm ADP and 10 µm ADP; 200 µm PAR-4 and 300 µm PAR-

4. Only platelet aggregation response to PAR-4 300 µm showed significant differences (P < 0.05, unpaired 

Student’s t-test, n=3 per group).  No significant differences were observed in the amplitude and maximal platelet 

aggregation responses (%) between the strains for 5 µm ADP and 10 µm ADP (P > 0.05, unpaired Student’s t-

test; n=3 per group). 
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Figure 6.3.    Representative images of ApoE-/- and ApoE-/-.CD151-/- platelet aggregation responses of platelet 

rich plasma (platelet count adjusted to 100 x 109/L) to type I fibrillar collagen; 1.25 µg/ml CRP and 2.50 µg/ml  

CRP.  Only platelet aggregation response to collagen at 3.75 µg/ml showed significant differences (P < 0.05, 

unpaired Student’s t-test, n=3 per group).  No statistical significance was observed in other respective agonists 

and concentrations in the amplitude and maximal platelet aggregation responses (%) between the strains (P > 

0.05, unpaired Student’s t-test, n=3 per group). 
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6.2.2 Shear induced platelet activation and collagen adhesion in vitro monitored via 
IVM 

In normal circulation, platelets flow freely in a resting state and do not interact with vessel 

walls however in atherosclerotic arteries, thrombus formation can lead to myocardial 

infarction (MI) and stroke.  The rupturing of plaque caps in atherosclerotic arteries exposes 

collagen in the sub-endothelium in areas of the vessel where blood shear rates are 

high.(389)  Under these conditions, platelet adhesion to type I collagen is dependent on 

vWF.  The stable adhesion of platelets to collagen also requires GPVI and integrin α2β1.  

These receptors are also known to be involved in signalling pathways intracellularly which 

promotes platelet activation and for improved stability of platelet aggregates.(390) 

 

In order to examine the formation of platelet aggregates and growth of a thrombus upon 

exposure to type I collagen we developed an in vitro model to mimic human pathology and 

high shear rates within an arterial vessel.  The CD151-/- mouse phenotype has been shown 

in vivo to generate smaller and less stable thrombi.(197)  In our investigation, we have 

adapted this into an atherosclerotic setting with the use of ApoE-/- and ApoE-/-.CD151-/- 

mouse blood in vitro. 

 

The procedure is as described in Section 2.1.14.  Briefly, citrated whole blood from ApoE-/- 

and ApoE-/-. CD151-/- mice was labeled with 0.05% (w/v) rhodamine  and perfused through a 

three channel µ-slide III flow chamber (0.1×1.0×45 mm, IBIDI, Martinsried, Germany) coated 

with type I collagen.  A wall shear rate of 1800 seconds-1 was induced using a Harvard 

Apparatus syringe pump.  Six cycles of real time images were recorded per minute and 

analysed via deconvolution of z-stack images to obtain thrombus area, height and volume 

over time. 
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Figure 6.4.  Representative images of thrombus formation in the presence of type I collagen in vitro under arterial 

shear rates.  The left column displays thrombus development in the ApoE-/- mouse strain over time versus the 

right column which is representative of the ApoE-/-. CD151-/-  mouse strain.  The citrated whole blood samples 

were subjected to a high shear rate of 1800s-1 induced by a Harvard syringe pump.     The real time images were 

captured over 6 cycles of 1 minute duration each with a digital Axiocam mRm camera (Carl Zeiss) with a 1280 x 

1024 pixel array using Axiovision Rel4.6 version software attached to an Axiovert 135 M1 microscope (Carl 

Zeiss). The images above highlight the significantly larger thrombi forming in the ApoE-/- mouse strain in 

comparison to the ApoE-/-.CD151-/- mouse strain.   

2 min 

4 min 

6 min 

    ApoE-/-     ApoE-/-. CD151-/- 
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Figure 6.5.  The kinetics of thrombus area, height and volume were determined for thrombi formed in type I 

fibrillar collagen immobilised flow chambers perfused with ApoE-/- and ApoE-/-.CD151-/- citrated whole blood.  The 

kinetics of thrombus height is unchanged between ApoE-/- and ApoE-/-.CD151-/- mouse strains.  In comparison, 

the kinetics of thrombus area and volume in ApoE-/-. CD151-/- mice is significantly lower at each time point over 6 

minutes compared to ApoE-/- mice (n= 7 in each group).  Results represent the mean ± SEM. * P < 0.05; ** P < 

0.005 ; *** P < 0.0005, unpaired Student’s t-test. 
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Figure 6.6.  Defective thrombus formation and adhesion to type I collagen is observed in ApoE-/-. CD151-/- mice.  

(a-c) The static end point of thrombi area, height and volume at 6 minutes was determined in ApoE-/- and ApoE-/-. 

CD151-/- mice (n=7).  (a) and (c)  The thrombi formed at 6 minutes were significantly smaller in area and volume 

in ApoE-/-. CD151-/- mice compared to ApoE-/- mice (*** P < 0.0005, unpaired Student’s t-test).  Thrombus height 

at 6 min was unchanged between the strains.  Results represent mean ± standard error of the mean.  

 

We have established through this specific investigation that thrombus area and volume in 

atherosclerotic mice is reduced significantly in the absence of CD151.  At each time point 

over the 6 minutes in which the kinetics of thrombus formation was recorded, we observed 

the development of smaller thrombi in the ApoE-/-.CD151-/- mice in contrast to ApoE-/- mice 

(Figure 6.5).  Static end point data shown in Figure 6.6 demonstrates significantly smaller 

thrombi formed in the ApoE-/-.CD151-/- mouse strain compared to ApoE-/- mice at the 

conclusion of testing at 6 minutes. Representative real time images at time points 2, 4 and 6 

min as shown in Figure 6.4 supports this in illustrating a clear distinction in the size as well 

as the number of thrombi formed over time at high shear rates in the presence of type I 

collagen.  These results are consistent with previous findings where CD151-/- is reported to 

produce smaller and less stable thrombi.(197) 
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6.2.3 Assessment of microvascular thrombosis in ApoE-/- and ApoE-/-.CD151-/- mice 
via FeCl3 induced vascular injury of mesenteric arterioles 

Atherosclerotic plaques differ in their composition compared to that of a normal healthy 

arterial wall.  Upon disruption or rupture to an atherosclerotic plaque, the thrombogenic sub 

endothelial matrix components which have potent thrombogenic potential is exposed.(391, 

392)  These platelet activating components include type I collagen, vWF, fibrinogen, 

thrombospondin, vitronectin, fibronectin, oxidised low density lipoproteins, cholesterols and 

stromal cell derived factor-1.(392)   Platelet tethering and activation occurs subsequently 

leading to the formation of an arterial thrombus which could be occlusive and thus lead to 

acute myocardial infarction and/or cerebral ischaemic stroke.(391,392)  CD151 is necessary 

in thrombus formation and regulation in vivo.  Intravital microscope studies inducing injury 

with ferric chloride have shown that CD151+/- and CD151-/-  mice form smaller and less stable 

thrombi than CD151+/+ mice. 

 

In order to assess if the ApoE-/-.CD151-/- genotype carries the same characteristics as the 

CD151-/-  mouse genotype, we have used the ferric chloride injury model to induce oxidative 

damage to the vascular wall and endothelium of mesenteric arterioles.(379)  As CD151-/-  

mice form smaller thrombi in vivo, we hypothesised that in an atherosclerotic diseased 

setting, the absence of CD151 may have a protective effect in reducing the incidence in the 

formation of occlusive thrombi.  Thrombus formation was examined and compared between 

ApoE-/- and ApoE-/-.CD151-/- mice that are 4 – 6 weeks old in real time in vivo via intravital 

microscopy.  Z-stack images were deconvolved to allow for three dimensional analysis and 

determination of thrombus characteristics such as area, height and volume.   
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Figure 6.7. Observation of microvascular thrombosis via intravital microscopy of the mesenteric arterioles of 

ApoE-/- and ApoE-/-.CD151-/- mice at 4 weeks of age.  Preliminary data on C57BL/6 WT and CD151-/-  was 

previously generated and included here for background data.  Injury was induced with 7.5% (w/v) FeCl3 

immersed grade 1 Whatman filter paper which was placed on the exposed mesenteric artery of 80-100 µm for 4 

minutes.    Z-stack images were captured in 2 minute intervals over 5 cycles with a digital Axiocam mRm camera 

(Carl Zeiss) with a 1280 x 1024 pixel array using Axiovision Rel4.6 version software attached to an Axiovert 135 

M1 microscope (Carl Zeiss).  Rhodamine 6G dye was infused through a cannula inserted into the jugular vein for 

visualisation of thrombi. No significant difference is observed in (a) Thrombus Area and  (b) Thrombus height 

developed in the arterioles between ApoE-/- and ApoE-/-.CD151-/- mice.  (a)  Thrombus area was significantly 

higher in ApoE-/- and ApoE-/-.CD151-/-  in comparison to CD151-/- mice (*** P < 0.0005); Thrombus area was also 

significantly higher in the C57BL/6WT mice group compared to CD151-/- (*** P < 0.0005). (b)  Thrombus height 

was significantly lower in CD151-/-, ApoE-/- and ApoE-/-.CD151-/- mice in comparison to C57BL/6 WT mice (*  P < 

0.05, *** P < 0.0005 and *** P < 0.0005) whilst thrombus height in CD151-/- mice was raised compared to ApoE-/- 

(* P < 0.05).  Each data point represents an average of 3 vessels per mouse (P < 0.05, ANOVA post test; n=5 

examined).   
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Figure 6.8. Observation of microvascular thrombosis via intravital microscopy of the mesenteric arterioles of 

ApoE-/- and ApoE-/-.CD151-/- mice at 4 weeks of age. Preliminary data on C57BL/6 WT and CD151-/-  was 

previously generated in our laboratory and included here for background data.    Injury was induced with 7.5% 

(w/v) FeCl3 immersed grade 1 Whatman filter paper which was placed on the exposed mesenteric artery of 80-

100 µm for 4 minutes.    Z-stack images were captured in 2 minute intervals over 5 cycles with a digital Axiocam 

mRm camera (Carl Zeiss) with a 1280 x 1024 pixel array using Axiovision Rel4.6 version software attached to an 

Axiovert 135 M1 microscope (Carl Zeiss).  Rhodamine 6G dye was infused through a cannula inserted in to the 

jugular vein for visualisation of thrombi.  The thrombus volume (c) is unchanged and does not seem to have been 

affected by the absence of CD151-/- in atherosclerosis.  ApoE-/- and ApoE-/-.CD151-/-  mice both demonstrated 

significantly larger thrombus volumes compared to CD151-/- mice (* P < 0.05 and *** P < 0.0005).  C57BL6/WT 

mice developed thrombi with significantly greater volumes than CD151-/-, ApoE-/- and ApoE-/-.CD151-/-  mice (all 

*** P < 0.0005).  Each data point represents an average of 3 vessels per mouse (P < 0.05, ANOVA post test; n=5 

examined). 
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The thrombus area, thrombus height and thrombus volume does not appear to be influenced 

by the absence of CD151 in atherosclerotic disease as no statistically significant differences 

are observed within these parameters.  When comparing our findings with previous studies, 

there are inconsistencies.  Note however the previous studies by Orlowski et al. (197) 

observed the absence of CD151 in a normal C57BL6 mouse and not in a diseased 

atherosclerotic mouse.   At 10 minutes, we report a thrombus area for ApoE-/- and ApoE-/-

.CD151-/- of 4272 ± 318.1 µm2 versus 4870 ± 379.7 µm2  which is approximately four fold 

compared to the thrombus area produced in CD151-/-  arterioles. ApoE-/- and ApoE-/-.CD151-/- 

produced thrombi with similar height (12.2 ± 1.1 µm2 versus 13.6 ± 1.3 µm2) when compared 

with each other, however is slightly reduced when compared to Orlowski et al.(197) and their 

findings for thrombus heights in CD151-/- mice.  As for thrombus volume no significant 

differences are observed between ApoE-/- and ApoE-/-.CD151-/- genotypes.  In contrast to 

Orlowski et al. (197), the authors reported that the thrombus volume generated in both ApoE-

/- and ApoE-/-.CD151-/- were approximately 3-4 fold larger in area.  Our observed thrombus 

volumes however were almost half of their reported values for C57BL/6 WT mice.  

 

6.2.4 Thrombus stability in ApoE-/- and ApoE-/-.CD151-/- mice following FeCl3 induced 

injury of the mesenteric arterioles 
 

For the examination of thrombus stability, 4 – 6 week old ApoE-/- and ApoE-/-.CD151-/- mice 

mesenteric arterioles were compared.  7.5% (w/v) Ferric chloride injury was induced on 

mesenteric arterioles of 80 – 100 µm in length to trigger thrombus formation in vivo.  This 

was recorded over time with a digital Axiocam mRm camera (Carl Zeiss) with a 1280 x 1024 

pixel array using Axiovision Rel4.6 version software attached to an Axiovert 135 M1 

microscope (Carl Zeiss).  The percentage of the vessel occupied by the thrombus was first 

calculated and later scored from 1 – 10 with 1 being 1-10% occupancy or occlusion and 10 

being 91-100% occupancy or complete occlusion.  Our findings show that the ApoE-/-

.CD151-/- mouse has increased thrombus stability compared to the ApoE-/- mouse (Figure 

6.9).  Preliminary data from the Jackson laboratory reported a less stable thrombi phenotype 

for mice lacking the CD151 tetraspanin which corresponds to reduced occupancy of the 

vessel or less occlusion.  We report a stability score of 2.9 ± 0.2 for ApoE-/-  and 3.4 ± 0.2 for 

ApoE-/-.CD151-/- mice.  Although not statisically significantly higher the latter does indicate 

and suggest more stability which is directly conflicting previous preliminary data as well as 

findings by Orlowski et al. which is indicative of the ApoE-/- and ApoE-/-.CD151-/- mouse strain 
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possessing a similar phenotype to a CD151+/+ mouse and not that of a CD151-/- mouse.(197)  

Increasing the study population and furthering this investigation will help confirm if there is in 

fact more or less stability in the absence of CD151 in atherosclerosis.  Figure 6.10 illustrates 

the presence of FeCl3 deposits on mesenteric arterioles and provides visual confirmation of 

effective oxidative injury to the arterioles to induce platelet activation.  

 

 

Figure 6.9. Observation of microvascular thrombosis via intravital microscopy of the mesenteric arterioles of 

ApoE-/- and ApoE-/-.CD151-/- mice at 4 weeks of age. Preliminary data on C57BL/6 WT and CD151-/-  was 

previously generated and included here for background data.  Injury was induced with 7.5% (w/v) FeCl3 

immersed grade 1 Whatman filter paper which was placed on the exposed mesenteric artery of 80-100 µm for 4 

minutes.    Z-stack images were captured in 2 minute intervals over 5 cycles with a digital Axiocam mRm camera 

(Carl Zeiss) with a 1280 x 1024 pixel array using Axiovision Rel4.6 version software attached to an Axiovert 135 

M1 microscope (Carl Zeiss).  Rhodamine G6 dye was infused through a cannula inserted in to the jugular vein for 

visualisation of thrombi.  The percentage of vessel occlusion (a) ApoE-/- and ApoE-/-.CD151-/- mice is unchanged 

between strains and does not seem to have been affected by the absence of CD151 
 in atheroscelrosis.  Both 

ApoE-/- and ApoE-/-.CD151-/- mice display  increased percentages of Vessel occlusion in comparison to CD151-/-  

mice (** P < 0.005 and *** P < 0.0005); C57BL/6 WT mice also are observed to have raised vessel occlusion in 

the mesenteric arteries compared to CD151-/- , ApoE-/- and ApoE-/-.CD151-/- mice (all *** P < 0.0005). (b) ApoE-/- 

and ApoE-/-.CD151-/- mice appeared to have greater stability compared to CD151-/- mice (*** P < 0.0005).  

C57BL/6 WT mice were also observed to have a significantly greater stability score compared to CD151-/- mice 

(*** P < 0.0005), demonstrating increased occupancy of the vessel by the thrombi developed in C57BL/6 and 

C
57

B
L/

6 
W

T

C
D

15
1-/-

A
po

E-/-

A
po

E-/-
.C

D
15

1-/-

0

2

4

6

8

10

Strain

St
ab

ili
ty

 S
co

re

C57BL/6 WT  3.500 ± 0.27 Mean ± SEM
CD151-/-  1.132 ± 0.08 Mean ± SEM
ApoE-/-  2.950 ± 0.24 Mean ± SEM
ApoE-/-.CD151-/-  3.400 ± 0.24 Mean ± SEM

*** P <0.0005 

*** P <0.0005 

*** P <0.0005 

(a)

C
57

B
L/

6 
W

T

C
D

15
1-/-

A
po

E-/-

A
po

E-/-
.C

D
15

1-/-

0

20

40

60

80

100

Strain

Ve
ss

el
 O

cc
lu

si
on

 (%
)

C57BL/6 WT  64.48 ± 5.14 Mean ± SEM %
CD151-/-  8.403 ± 1.54 Mean ± SEM %
ApoE-/-  27.11 ± 2.81 Mean ± SEM %
ApoE-/-.CD151-/-  30.39 ± 1.90 Mean ± SEM %

*** P <0.0005 

*** P <0.0005 

*** P <0.0005 

** P <0.005 

*** P <0.0005 

Percentage Vessel Occlusion Stability Score(b)



 
 

136 
 

thus increased stability.  Each data point represents an average of 3 vessels per mouse. (P < 0.05, ANOVA post 

test; n=5 examined). 

 

Figure 6.10. Type I Collagen exposure upon FeCl3 injury. The phase contrast images shows the presence of FeCl3 

deposits whilst Alexa 488 Fluorescence images demonstrates for Type I Collagen exposure and staining after being 

subjected to effective FeCl3 injury.  

 

6.2.5 Examination of arteriolar thrombosis and time to vessel occlusion with FeCl3 

induced injury of the carotid arteries  

Previous studies report a significant prolongation in time to > 95% occlusion of carotid 

arteries in CD151-/- mice compared to CD151+/+ mice (*** P < 0.001, 835.80 ± 57.10 s versus 

477.20 ± 39.15 s).(197)  To investigate whether this defect in thrombus formation is also 

applicable in an atherosclerosis diseased setting, we monitored the blood flow and time to > 

95 % occlusion in 16 week old ApoE-/- and ApoE-/-.CD151-/- mice.  The carotid arteries were 

subjected to 7.5% (w/v) FeCl3 injury which induces redox endothelial damage and exposes 

the sub endothelial components that are thrombogenic to the blood.  Recent studies found 

that FeCl3 induced vascular injury is erythrocyte dependent and requires both haemolysis 

and oxidation of haemoglobin for endothelial denudation to occur.(378, 393) 
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This experiment allows us to observe rapid platelet recruitment and adhesion to the site of 

injury in response to type 1 collagen exposure and the formation of a thrombus with the use 

of a laser doppler perfusion monitor and probe.   

Figure 6.11. Folts Carotid Artery Injury Model for time to > 95% Vessel Occlusion (minutes).  The time to > 95% 

vessel occlusion was observed in ApoE-/- and ApoE-/-.CD151-/- mice of 16 weeks of age.  Injury was induced with 

20% (w/v) FeCl3 immersed grade 1 Whatman filter paper which was placed on the exposed carotid artery for 4 

minutes.    No significant difference was observed in the time to > 95% occlusion between C57BL/6 wild-type 

(WT) and ApoE-/- mice.  In contrast, a significantly prolonged time to occlusion is observed between C57BL/6 WT 

and ApoE-/-.CD151-/- mice (*** P < 0.0005).  A significant prolongation in time to 95% blood vessel occlusion 

between ApoE-/- and ApoE-/-.CD151-/- mouse genotypes was also observed (* P < 0.05)  (P < 0.05, ANOVA post 

test; n=10 examined). 

A defect in thrombus formation following FeCl3 induced injury in the carotid artery is also 

observed in our study (Figure 6.11) where a significantly prolonged time to > 95% occlusion 

is observed between C57BL/6 wild-type and ApoE-/-.CD151-/- mice (*** P < 0.0005, 9.83 ± 

0.36 minutes versus 14.02 ± 0.76 minutes), as well as between ApoE-/- and ApoE-/-.CD151-/- 

mice (* P < 0.05, 10.4 ± 1.0 minutes versus 14.02 ± 0.76 minutes).  Figure 6.12 illustrates a 

significantly prolonged time to occlusion in the ApoE-/-.CD151-/- versue ApoE-/- and C57BL/6 

WT mice.   
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Figure 6.12. Representative graphs of blood flow occlusion in mouse carotid arteries subjected to 20% w/v FeCl3 

injury. (a) C57BL/6 WT 9.83 min (b) CD151-/- 13.93 min (c) ApoE-/- 10.36 mins and (b) ApoE-/-.CD151-/- 14.02 

mins.  (b) and (c)  A prolongation in the time to > 95% blood vessel occlusion suggests a defect in thrombus 

formation in the injured carotid arteries in atherosclerosis.  Results are represented as mean ± SEM and are 

representative of n=10 replicates for each genotype. 



 
 

139 
 

6.2.6 Investigation of haemostasis through an in vivo mouse tail bleeding assay 
conducted in ApoE-/- and ApoE-/-.CD151-/-

 mice. 

 

The tail bleeding assay was conducted on ApoE-/- and ApoE-/-.CD151-/- mice to investigate for 

abnormalities in platelet or endothelial function and thus as a measure of haemostasis 

stability. The tail bleeding time in Figure 6.13 (a) in the ApoE-/-.CD151-/- model showed 

prolonged periods of bleeding compared to the ApoE-/- group (11.70 ± 0.10 mins versus  7.20 

± 0.31 mins, ** P < 0.005, unpaired Student’s t-test).  A similar pattern was observed in the 

volume of blood lost, which was significantly higher in ApoE-/-.CD151-/- mice versus blood lost 

in the ApoE-/- mice group examined (81.75 ± 5.19 µl versus 58.50 ± 4.03 µl, * P < 0.05, 

unpaired Student’s t-test).  Haemostasis was quantitated by calculating the occurrence of 

positive rebleeds as a percentage of the specific genotype group tested.    Rebleeds were 

significantly more pronounced in the ApoE-/-.CD151-/- mouse group examined (*** P < 0.0005 

n=4, unpaired Student’s t-test).  These findings show that the absence of CD151 in 

atherosclerosis through examination of the ApoE-/-.CD151-/-  model versus the ApoE-/- model 

has an in vivo platelet or vascular defect and thus indicating unstable haemostasis.  This 

abnormality and state of unstable haemostasis observed in the absence of CD151 may be a 

result of defects associated with platelet to platelet interactions or platelet with the 

endothelium as CD151 is expressed on platelet surface as well as on endothelial cells.(102)   
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Figure 6.13.  (a) – (c)  A tail bleeding assay conducted on 6-8 week old ApoE-/- and ApoE-/-.CD151-/- mice showed 
an in vivo bleeding defect present in ApoE-/-.CD151-/- mice.  (a)  The time taken for initial cessation of bleeding to 
occur was significantly prolonged in ApoE-/-.CD151-/- mice compared to ApoE-/- mice.  (b) The volume of blood lost 
(µl) in the ApoE-/-.CD151-/- mice group showed an in vivo bleeding defect present with a significantly higher 
volume of blood lost compared to the ApoE-/- group.  (c)  Unstable haemostasis was demonstated with 
significantly occurrence of rebleeds in the ApoE-/-.CD151-/- group compared to the ApoE-/- group (n=4 in each 
group, * P < 0.05, unpaired Student’s t-test).   
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6.3 Discussion 

In this study, a variety of techniques were employed to examine the formation and stability of 

platelet thrombi generated between ApoE-/- and ApoE-/-.CD151-/- mice.  Whilst  CD151-/- mice 

have been studied and shown to possess an unstable phenotype in haemostasis in vivo and 

in vitro, the lack of the CD151 gene and knowledge of its clinical implications specifically in 

atherosclerosis is rare.(4,197)  All but one study has been found in the literature to have 

investigated protein expression and distribution of the tetraspanin in atherosclerotic tissues 

in humans.(128)  This however was performed strictly in vitro and only gives a brief review  

seeing the complexities in the processes of haemostasis and thrombosis.(394-396) Given 

the insight into the involvement of CD151 in atherosclerosis, we were interested into 

furthering this investigation with our ApoE-/-.CD151-/- novel strain.   

 

The eventual formation of platelet aggregates follows the events accompanying platelet 

activation such as reorganisation of the platelet cytoskeleton, granule release and integrin 

clustering.  We examined the platelet aggregation response to various platelet agonists as 

the processes involved in the formation of platelet aggregates require integrin αIIbβ3 

involvement.  Representative platelet aggregation responses to the agonists for ApoE-/- and 

ApoE-/-.CD151-/- are shown in Figure 6.2 and 6.3.  The absence of CD151 caused selective 

but significant perturbations to agonist induced platelet aggregation.  Figure 6.1 shows the 

maximal aggregation percentages between the mouse genotypes for each agonist (P > 0.05, 

unpaired student’s t-test).  The PAR-4 (300 µM) agonist induced greater aggregation in 

ApoE-/-.CD151-/- mice compared to ApoE-/- mice.  A significant difference in aggregation was 

also observed between ApoE-/- and ApoE-/-.CD151-/- mouse PRP in response to 3.75 µg/ml 

type I collagen where inhibition of aggregation was impeded in the ApoE-/-.CD151-/- group.  

 

From these results, it appears the absence of CD151 in an atherosclerosis setting differs to 

the observed responses in healthy non-atherosclerotic mice also deficient in CD151.(4)   

CD151-/- mice display a 50% to 70% reduction in platelet aggregation in response to ADP, 

PAR-4 and collagen, compared to wild-type mice.(4)  If we compare the ApoE-/- and ApoE-/-

.CD151-/- agonist induced aggregation responses to the response observed by CD151-/- 

mice, it appears that although no difference is seen in response to ADP (5 µm and 10 µm) 

agonist induced aggregation responses in atherosclerosis, but compared to the CD151-/- 

profile, there is a marked reduction in aggregation responses in the ApoE-/- and ApoE-/-

.CD151-/- mouse strains.  CD151 in this instance may not be as integral in platelet 
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aggregation as compared to a non-atherosclerotic setting and perhaps the similarities seen 

in aggregation profiles between our current study for ADP response and previous wild-type 

responses are in part contributed by atherosclerosis influence possibly on the outside-in 

and/or inside-out integrin αIIbβ3 signalling pathways.    The results expected in PAR-4 agonist 

induced aggregation would to some degree be similar to ADP response as both are G 

protein coupled receptors.  Our findings however showed that PAR-4 (300 µm) agonist 

induced aggregation displayed an aggregation response between 60% - 70% maximal 

platelet aggregation which is similar to a wild-type aggregation response to PAR-4 (500 

µm).(4)  For PAR-4, neither CD151 absence and/or atherosclerosis has had an effect as 

shown in Figure 61.  Likewise collagen induced aggregation response was similar to a wild-

type aggregation profile when compared to the literature (Figure 6.3).(4)  Note that in these 

previous studies, higher concentrations of collagen were used.  At 3.75 µg/ml and 7.50 µg/ml 

type I fibrillar collagen concentrations in our study, we observed approximately 60% maximal 

aggregation whilst the Lau et al.(4) reported an aggregation response of approximately 80%.  

For all three agonists used, our results suggest that the amplitude and slope of platelet 

aggregation responses specifically in atherosclerosis is not affected by the deficiency of 

CD151 and thus not influencing the inside out and/or outside in integrin αIIbβ3 signalling 

pathways. 

 

In vitro platelet adhesion under high shear conditions (1800 s-1) was examined by perfusing 

rhodamine labelled whole blood from ApoE-/- and ApoE-/-.CD151-/- 
 mice over a type I fibrillar 

collagen coated flow chamber  in independent experiments.  This was performed to question 

if CD151 absence in atherosclerosis alters thrombus formation under flow on type I collagen.  

After deconvolution of the images captured over the 6 minute recording period, platelet 

adhesion and thrombi which formed appeared smaller in size and number in the ApoE-/-

.CD151-/- platelets compared to the ApoE-/- platelets (Figure 6.4). Static end point results of 

thrombus area and volume at 6 minutes supports this with significantly smaller area and 

volume observed for thrombi formed (Figure 6.6).  This suggests that the absence of CD151 

has an effect on platelet adhesive properties and the collagen receptors namely integrin α2β1 

and GPVI to its ligand, type I fibrillar collagen which was immobilised and coated on the flow 

chamber.  

 

For our in vivo study, ferric chloride was used to induce oxidative damage and denudation of 

the endothelium to the mesenteric arterioles, exposing circulating platelets to sub-

endothelium collagen.  Real time imaging and analysis revealed a similar and unchanged 
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platelet response between ApoE-/-  and ApoE-/-.CD151-/-  mice whereby thrombus area, height 

and volume were unchanged between the strains.  These preliminary findings suggest the 

absence of CD151 in atherosclerosis does not affect the development of thrombi for the 

parameters measured.  Compared to previous findings in the literature, thrombus height 

(Figure 6.7) of ApoE-/-  and ApoE-/-.CD151-/- mice were lower than the thrombus heights 

measured at 8-10 minutes in CD151-/- mice (12.16 ± 1.12 µm and 13.62 ± 1.32 µm versus 

18.56 ± 1.03 µm).(197)   Secondly, thrombus area were approximately four fold larger in 

ApoE-/-  and ApoE-/-.CD151-/- compared to CD151-/-  mice (4272 ± 318.10 µm2 and 4870 ± 

379.70 µm2 versus 1101 ± 81.24 µm2).  Figure 6.8 similarly shows thrombus volumes were 

larger by approximately three fold in ApoE-/-  and ApoE-/-.CD151-/- mice compared to CD151-/- 

(50660 ± 5293 µm3 and 63460 ± 2998 µm3 versus 21680 ± 2363 µm3) and was closer in 

volume to the CD151+/- and wild type phenotypes (38740 ±3815 and 10800 ± 5554 µm3).  

These parameters were used to calculate the percentage of the vessel, which was occupied 

by a thrombus and subsequently to determine the stability score of the thrombi formed. 

Figure 6.9 showed that the stability of the thrombus was similar between ApoE-/- and ApoE-/-

.CD151-/- mice with no significant difference between the genotypes (2.95 ± 0.24 and 3.40 ± 

0.24).   Compared to preliminary data from our laboratory on the stability scores for CD151+/-

, CD151-/- and CD151+/+ (2.57 ± 0.21, 1.12 ± 0.06 and 3.60 ± 0.21), our latest findings report 

higher stability scores than expected in a CD151-/- phenotype and is more comparable to the 

stability score of a CD151+/- mouse.    

 

Our study has examined the effect of the absence of CD151 in an atherosclerotic setting on 

thrombus formation.  Whilst previous studies show that CD151 presence is essential in 

thrombus formation in vivo, where in its absence thrombi are smaller and less stable, we 

have not observed this in our study.(197)  Our reported findings are more similar to that of a 

CD151+/+ or wild-type phenotype and appears that the hypothesised protective effect of 

CD151 absence on healthy mice and thrombosis does not carry over in an atherosclerotic 

setting or that the data obtained in FeCl3 induced injury of mesenteric arterioles in the 

presence of fat tissue may obscure the phenotype.  

Lau et al. (4) specifically highlighted the critical role of CD151 in modulating integrin αIIbβ3 

outside in signalling and its involvement in transmembrane signalling pathways.  Adhesion 

strengthening in platelets is influenced by this signalling pathway and is critical in 

maintaining platelet to platelet interactions and thrombus stability. The authors also suggest 

that the recruitment of cytoskeletal proteins or signalling molecules may occur with 

phosphorylation or non-phosphorylation events as the amino acid sequences do not 
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demonstrate enzymatic activity.(4)  As discussed before, like CD151, integrin α3β1 and α6β1 

is associated functionally with protein kinase C.  Phosphorylation of α3 and α6 is protein 

kinase C dependent however it has not been confirmed if this occurs with the N or C 

terminus of CD151. α6β1 adhesion strengthening though, is modulated by the C-terminus of 

CD151.   In the context of mice with a β3 deficiency, which in humans manifests as 

Glanzmann thrombasthenia, platelet function is defective with the occurrence of 

spontaneous bleeding.(397,398)  This manifests differently with the CD151 deficient 

phenotype.  There appears to be a compensatory effect as the CD151 deficient mouse does 

not present with bleeding problems and is only partially affected by this deficiency as the 

outside-in integrin αIIbβ3  signalling pathway is only selectively impaired.   It is not possible at 

this stage to attribute the differences observed in thrombus formation between the 

phenotype of the CD151 deficient mouse to the ApoE-/-.CD151-/- observed.  We cannot 

conclude and pinpoint a particular pathway responsible in reverting the CD151 deficient 

phenotype in an atherosclerotic model to manifest to that of a wild-type mouse.  There 

certainly are limitations with the ApoE-/-.CD151-/- model as these mice present with more fat 

deposition on their mesenteric arteries and potentially obscuring the accurate acquisition of 

Z-stack images.  Given the close physical and functional associations of tetraspanins, a 

compensatory mechanism occurring in the outside-in integrin αIIbβ3 signalling pathway 

cannot be excluded. Despite this insignificant finding, our study investigates the functional 

importance of tetraspanin CD151 in atherosclerosis and thrombus formation in vivo in that in 

its absence, thrombus formation is not any different in an atherosclerotic mouse.  

 

For our second in vivo experimental model, we examined the time to vessel occlusion in 

ApoE-/- and ApoE-/-.CD151-/- mice by isolating the carotid arteries and inducing injury with 

ferric chloride as detailed in Section 2.1.12. The time to taken to reach > 95% vessel 

occlusion was monitored with a laser doppler probe which revealed a significantly prolonged 

time to occlusion in the ApoE-/-.CD151-/- compared to the ApoE-/- and wild-type mice 

genotype (14.02 ± 0.76 min versus 10.36 ± 0.99 min and 9.83 ± 0.36 min) (Figure 6.11 and 

Figure 6.12).   These results suggest the presence of a defect in arterial thrombus formation 

in ApoE-/-.CD151-/-.   Furthermore, these observations are consistent with previous studies 

which have reported defects in outside-in integrin αIIbβ3 signalling and thus resulting in 

defective platelet aggregation.(4,197)  Recruitment of platelets to the site of ferric chloride 

injury was delayed in atherosclerosis and is likely to be dependant on this signalling pathway 

and CD151.   
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To further support these findings, a tail bleeding assay was performed on ApoE-/- and ApoE-/-

.CD151-/- mice in vivo to investigate for abnormalities in platelet or endothelial function. 

CD151 has been shown in the literature to be expressed on platelets as well as on the 

vascular endothelium in humans.  Studies have also shown platelet agonist activity in 

studies on monoclonal antibodies on CD151.(6, 399) Across all parameters being tested, tail 

bleeding time, volume of blood lost and percentage of rebleeds, the ApoE-/-.CD151-/- model 

demonstrated statistically significant results which suggested an impairment in haemostasis 

in atherosclerotic disease (Figure 6.13).  The prolonged bleeding times and higher volumes 

of blood lost (11.70 ± 0.10 mins versus  7.20 ± 0.31 mins, ** P < 0.005 and 81.75 ± 5.19 µl 

versus 58.50 ± 4.03 µl, * P < 0.05) as well as increased tendency to rebleeds (100% versus 

25%, *** P < 0.0005) in the absence of CD151 proposes the presence of an in vivo bleeding 

defect in either platelet to platelet interactions or platelet to endothelium interactions. 

 

Overall, our in vivo and in vitro studies have presented us with some conflicting findings 

within our own study as well as compared with the literature. Our in vitro studies which 

examined agonist induced platelet aggregation and platelet adhesion to type I fibrillar 

collagen under high shear were also opposing in its validation of CD151 contribution to 

thrombus adhesion and aggregation.  The latter experiment supports our in vivo carotid 

artery results in confirming that CD151 deficiency in atherosclerosis provides a protective 

effect as thrombi formed are smaller and less stable, thus suggesting a defect in the outside-

in integrin αIIbβ3 signalling pathway.  As mentioned before, the discrepancy in results from 

our study for the mesenteric model and aggregation studies versus the literature may also 

be influenced by atherosclerosis and the accompanying clinical presentations such as 

hypercholesterolaemia and insulin sensitivity.  Orlowski et al. (197) have determined that 

CD151 functioning is unlikely to be compensated by other tetraspanins and as such in the 

context of the mesenteric model and aggregation studies, there could also be an underlying 

involvement of other tetraspanins with platelet glycoproteins with an influence in thrombus 

formation which has not been established. The in vivo models of the carotid arteries and 

mesenteric arteries were used to examine microvascular and arterial thrombosis involving 

the recruitment of platelets and formation of thrombus at areas of arterial vessel injury in 

ApoE-/- and ApoE-/-.CD151-/- mouse strains.  In the carotid model, the prolongation in time to 

vessel occlusion highlights the fundamental influence that CD151 has for thrombus growth 

and stability.  This however was not observed in the mesenteric model. Furthermore, in vivo  

tail bleeding assays performed also showed unstable haemostasis in the ApoE-/-.CD151-/- 

mouse characterised by the increased tendency to rebleeds, volume of blood lost and time 

to cessation of bleeding. This suggests that although CD151 is required and important in the 
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positive regulation of platelet to platelet interactions and ultimately primary haemostasis and 

thrombosis in the carotid arteries, its involvement may not apply in other vascular beds and 

injury models as a critical regulator for outside-in integrin αIIbβ3 signalling.  As such, it is 

imperative that this experimental model be applied to the cremaster arterioles of ApoE-/- and 

ApoE-/-.CD151-/- mice to confirm these findings.  The data supports that overall CD151 

absence in atherosclerosis, may confer a protective role in the development of this disease 

through its regulation of thrombus growth and stability.    

 

6.4 Conclusion 

The absence of CD151 in the setting of atherosclerotic disease in this chapter has shown to 

provide a protective effect.  Prolongation to 95% vessel occlusion promotes improved arterial 

blood flow in the ApoE-/-.CD151-/-  compared to ApoE-/- mice.  A decrease in platelet 

adhesion to immobilised type I collagen under high shear rates as well as reduced 

haemostasis stability in the ApoE-/-.CD151-/- model further supports the working hypothesis 

as thrombi formed are smaller, less stable and are thus less likely to propagate and result in 

an occlusive thrombus.   

 

6.5 Limitations 

Results generated from the in vivo study of arterial thrombosis in the mesenteric arterioles 

did not provide conclusive data.  It is likely that the presence of fat on the mesenteric 

arterioles obscured results, and may have influenced the effectiveness of oxidative injury 

induced by application of FeCl3 to the arterioles.  As such, further studies are warranted to 

investigate arterial thrombosis in a different vascular bed.  It is imperative that these studies 

be applied to the cremaster arterioles with injury induced by laser, as there is less fat present 

on the cremaster arterioles.  PRP aggregation responses may differ if fasting conditions are 

implemented prior to cardiac puncture. Therefore, it would be appropriate to investigate 

platelet aggregation responses in these conditions using washed platelets.   
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7 CHAPTER 7:  GENERAL DISCUSSION 

 
7.1 General Discussion 

A complex interplay of endothelial, haematopoietic and stromal cells are involved in the 

pathogenesis of atherosclerotic disease.(400)    Platelets are known to circulate in the blood 

in a quiescent state within close proximity to the endothelium under physiological conditions, 

exerting their haemostatic and prothrombotic functions in the advent of vascular injury. (18, 

134,401-404)  Platelets are also now acknowledged to be a key player in the propagation of 

atherosclerosis with its ability to facilitate the recruitment of inflammatory cells to sites of 

inflammation and vascular injury.(144,381)  Studies have also noted that vascular injury or 

disruption to the endothelium is not essential to elicit platelet activation and adherence to 

arterial walls.(405)  A myriad of cytokines and chemokines are released from the α granules 

upon platelet activation establishing a localised inflammatory response.  These include 

interleukin-1β (IL-1β), CD40L, platelet factor 4, and RANTES (regulated upon activation 

normal T-cell expressed and secreted, also known as chemokine CC motif ligand 5). (144, 

406)  Increasing lines of evidence supports this where findings have shown that the 

deposition of RANTES and platelet factor 4 for instance induces monocyte adhesion and 

leads to the infiltration of macrophages in the vascular wall (35,407,408)  whilst secretion of 

CD40L and IL-1β can activate endothelial nuclear factor-B and subsequent transmigration 

and attachment of monocytes.(409,410)  Platelet-leukocyte interactions are involved in 

plaque formation and occur through the adhesion of leukocytes to the endothelium or 

platelets attached to the endothelium.  These interactions are made possible by the binding 

of fibrinogen with αIIbβ3, P-selectin with P-selectin glycoprotein-1 and/or Mac-1 with 

glycoprotein 1β.(411-414)  The release of platelet derived growth factors from platelets are 

reported to also have a stimulatory role in the proliferation of cells, particularly smooth 

muscle cells, as well as in promoting angiogenesis within an atherosclerotic plaque.(147)   

 

Platelets are integral in the development of cardiovascular diseases.(415)  In its active 

conformation, integrin αIIbβ3 binds to fibrinogen and vWF thus allowing for outside-in integrin 

αIIbβ3 signalling events to occur, followed by the reorganisation of the platelet cytoskeleton 

and postoccupancy events such as platelet tethering and aggregation and clot retraction.  

Studies have demonstrated the distinct association both functionally as well as physically of 

CD151 with αIIbβ3.  This is further supported by studies performed in murine models which 

have demonstrated defective platelet outside-in integrin αIIbβ3 signalling in CD151 deficiency 

which ultimately manifests as dysregulation in platelet thrombus formation.(4,197)  The 
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development in vivo of smaller and unstable thrombi in the absence of CD151 postulates a 

protective role of CD151 deletion in atherosclerosis.   

 

The focus of this thesis was to investigate the effect of CD151 deficiency in the context of 

atherosclerosis, atherothrombosis and plaque stability, and ultimately to identify tetraspanin 

CD151 as a target for therapeutic strategies in this disease.  The main findings of this thesis 

have improved the understanding of CD151 influence in atherosclerotic disease and have 

validated its critical role as a regulator for outside-in integrin αIIbβ3 signalling of which events 

occurring downstream involve platelet growth and stability.  Having developed a novel ApoE-

/-.CD151-/- model it was critical to characterise this model and the effect of CD151 deficiency 

on Mendelian inheritance, haematological parameters, lipid profiles, non-fasting glucose 

levels and mouse body weights.  This study is the first to identify altered Mendelian 

inheritance frequencies in murine models lacking tetraspanin CD151 in an atherosclerotic 

setting (Section 3.2.2, Table 3.1). Platelet counts in the ApoE-/-.CD151-/- model were 

significantly higher than ApoE-/- as well as C57BL/6 WT mice (Section 3.2.5, Table 3.3), 

whilst lipid profiles (Section 3.2.7, Figure 3.8) were altered though postulated to be more 

likely a consequence of lipid metabolism associated with ApoE-/- deficiency rather than the 

lack of CD151. 

 

Histological analysis on the liver, lungs and kidneys of mice did not identify any remarkable 

changes in the absence of CD151-/-.  Analysis of plaque burden through histology studies 

presented the first evidence of reduced plaque burden in the ApoE-/-.CD151-/- model 

compared to ApoE-/-, suggesting a protective role of CD151 deficiency on atherosclerotic 

plaque lesion progression (Section 4.2.6, Figure 4.6 and Figure 4.7).  More significantly, 

plaque burden in females was found to be significantly reduced compared to males of the 

ApoE-/-.CD151-/-  genotype postulating that CD151 absence has a greater protective potential 

in females whilst male mice may be more resistant.  As alluded to earlier in Chapter 4 

(Section 4.3), male humans are reported to have a predisposition to atherosclerosis.(292)  

Females develop atherosclerosis later in life compared to males which is said to be reflective 

of their hormonal state where a lack of oestrogen in menopause contributes to this 

development of atherosclerosis.(295)  Furthermore, mice studies have also shown that 

oestrogen supplementation in female mice has a protective effect on the progression of 

atherosclerosis.(306)  Immune states have also been suggested to have an effect on 

atherosclerosis development, however no significant differences between male and female 

mice were observed in atherosclerosis progression.(309)  The mechanism in which CD151 
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absence attenuates the development of atherosclerosis in females is unknown, however 

given the statistical significant results observed in the reduction of plaque burden incidence 

compared to males it raises CD151 as a valuable tetraspanin to consider as a therapeutic 

target for atherosclerosis.   

 

The composition of atherosclerotic plaque lesions between the ApoE-/- and ApoE-/-.CD151-/- 

mice were unchanged and together with plaque burden analysis reported that at 16 weeks, 

the plaques developed were that of early to intermediate lesion types (Section 5.2).  

Furthermore, immunohistochemical staining shown in Section 5.2.1 for CD151 expression 

demonstrated the presence and expression of CD151 in atherosclerotic plaques as 

statistical significance was observed for negative, positive, strong positive staining (Table 

5.1).  In support of this, in vitro and in vivo platelet function studies performed in this thesis 

proposes the protective role of CD151 deficiency in atherosclerotic disease. Firstly, in vitro 

studies investigating platelet adhesion to immobilised type I collagen found platelet 

aggregates formed were smaller in size and fewer in number as shown in Section 6.2.2, 

Figure 6.4 to Figure 6.6.  In vivo examination of time to vessel occlusion showed significantly 

prolonged times in carotid artery occlusion in the ApoE-/-.CD151-/- mouse (Section 6.2.5, 

Figure 6.11 and Figure 6.12) and increased haemostasis instability determined through 

mouse tail bleed assays demonstrated in Figure 6.13.  These results suggest the 

antithrombotic therapeutic potential of CD151 deficiency in atherosclerosis, a disease of 

which its etiology is multifactorial involving genetic and environmental risk factors. 

 

Tetraspanins are described to have the ability to form lateral associations with other 

tetraspanins and membrane proteins, resulting in the subsequent formation of tetraspanin 

enriched microdomains.  These microdomains mediate cell and membrane 

compartmentalisation and are involved in numerous cellular processes such as fusion, 

adhesion, and trafficking.(416-418)   The interactions of tetraspanins with specific proteins 

maintains the effective function and trafficking of these proteins in their pathological 

processes, such as CD151 in its lateral associations with integrin αIIbβ3.   Tetraspanin CD151 

is highly expressed in numerous cell types as discussed and associates with many proteins, 

primarily the laminin binding integrins, α3β1 and α6β4.(258)  Characterisation of the novel 

ApoE-/-.CD151-/- model in Chapter 3 of this thesis found Mendelian inheritance frequencies to 

be severely altered with deletion of tetraspanin CD151.  
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It was previously found that the deficiency of CD151 generated mice of normal Mendelian 

inheritance, that were healthy and fertile.(102)  The present study found CD151-/-  mice to 

breed poorly, generating less than half the percentage of expected values as detailed in 

Table 3.1.  Impairment to Mendelian inheritance frequencies also affected the ApoE-/-

.CD151-/- model in similar proportions, severely limiting the number of mice available for 

experimental investigation. 

 

The close physical associations of CD151 with laminin binding integrins led to previous 

speculation that CD151-/- would generate mice with impairments in kidney and lung 

development.(102)  Macroscopic examinations of the kidneys, lungs and liver of ApoE-/- and 

ApoE-/-.CD151-/-  mice in Chapter 3 and histological analysis of the tissue structure and 

morphology in Chapter 4 did not reveal any remarkable findings to suggest that the 

deficiency of CD151 in the context of atherosclerosis affects the development of the kidney, 

lung, or liver.  CD151 deletion and its implication on disease is discussed extensively in the 

literature.  CD151-/- mice on a C57BL/6 WT background have been reported by Sachs et 

al.(270) to present with renal pathologies, however is observed to vary extensively between 

litters.  Proteinuria, which is indicative of kidney dysfunction, varied considerably in the time 

of onset and extent of the condition.(270)  On a similar note, Wright and colleagues 

predicted that based on the strong associations of α3 and α6 with CD151, deletion of the 

tetraspanin would result in neonatal lethality which is observed in mice lacking these 

subunits.(102)  In humans, binding of α3 and α6 with CD151 is essential for integrity of the 

epithelium where mutations result in hereditary nephritis manifesting as blistering of the skin, 

sensorineural deafness and β-thalassaemia minor.(93,124,125,240,261, 265,271,272,419)   

Mutations to the YRSL sequence in the  C terminal cytoplasmic domain of CD151 disrupts 

trafficking of CD151 highlighting the importance of CD151 for the regulation of cell motility 

and integrin trafficking.(175)  CD151 has also been reported to regulate the glycosylation of 

α3 where alterations to glycosylation patterns influences cell migration towards laminin.(420)  

In vitro studies have similarly noted of the involvement of CD151 in adhesion strengthening 

and consequently proposing the importance of the α3β1 and CD151 for in vivo function.(272)  

With extensive variability known to occur between litters, in firstly the reduced Mendelian 

inheritance frequencies and secondly, the absence of disease apart from atherosclerosis, it 

can be proposed that there are underlying genetic conditions, not exclusive to CD151 

deletion, that are contributing to the ApoE-/-.CD151-/-  phenotype displayed.    It is important 

to note that differences in the genetic background of CD151 deficient mice used by other 
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research groups may explain why conditions such as renal failure and associated proteinuria 

were not observed in the present study.(102,270)  

 

Lipid profiles in humans differ to the murine species as humans predominantly carry their 

plasma cholesterols in LDL form whereas mice carry plasma cholesterols in HDL form.(245, 

246)  It appears that the absence of CD151 has had a beneficial influence on cholesterol 

levels as total cholesterol and HDL is significantly decreased in the ApoE-/-.CD151-/- model 

as demonstrated in Figure 3.8.  This reduction may also be a result of the natural 

atheroprotective role which mice are proposed to have, given the reversed lipid profiles 

observed compared to human.(225)  Furthermore, mice in this study were fed ad libitum 

chow diets which may account for the altered lipid profiles as diets were not controlled prior 

to time of culling and experimentation at 16 weeks.  In saying that, the absence of changes 

in plaque composition in the ApoE-/- and the ApoE-/-.CD151-/- model may likely be associated 

with the reduced cholesterol levels observed.  Despite being a mouse model prone to the 

development of atherosclerosis, the lipid profiles we observed were substantially lower than 

typically observed in the literature (Chapter 3).   Studies have reported cholesterol levels in 

mice to reach 400mg/dl even on a low fat diet.(225)  In characterising the ApoE-/- and ApoE-/-

.CD151-/- lipid profiles, we observed cholesterol levels to be near that of wild type mice 

values in both strains, and were less than half of the expected total cholesterol levels in 

ApoE deficient mice observed in the literature.(225)  It is likely that the lack of 

hypercholesterolaemia contributed to the delay in atherosclerosis progression as depicted by 

the lack of positive staining for F4/80 macrophages, collagen, and smooth muscle actin in 

ApoE-/- as well as ApoE-/-.CD151-/- mice investigated detailed in Chapter 5. 

 

The internalisation of LDLs by macrophages and formation of foam cells would thus be 

hampered, also resulting in a lesser pro-inflammatory state.  The proliferation of smooth 

muscle cells and plaque development, followed by the production of extracellular matrix 

molecules namely collagen and elastin would similarly be impeded and thus a delay in the 

formation of a necrotic core.(421,422)   In humans, the expression of CD151 in 

atherosclerotic arteries was up-regulated versus expression in normal healthy arteries.  

Expression of CD151 was most abundant in endothelial cells and vascular smooth muscle 

cells (VSMCs), more so in the former cell type.(128)  The authors believed that CD151 

complexed with integrins α3β1, α5β1 and α7β1 were necessary for the regulation and 

proliferation of vascular smooth cells to potentiate the progression of atherosclerosis.(128)  

Chapter 5 of this thesis discusses CD151 expression identified through 
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immunohistochemical antibody staining in ApoE-/- mice, highlighting the presence and 

expression of CD151 in early atherosclerotic plaque lesions.  The absence of staining in 

ApoE-/-. CD151-/- plaque lesions validate these results acting as a negative control and in 

demonstrating specificity of CD151 H80 antibody staining (Figure 5.2, Table 5.1).  Given 

only early to intermediate lesion types were observed in ApoE-/- and ApoE-/-. CD151-/- mice 

examined in Chapter 4 and Chapter 5 of this thesis, it further elucidates the lack of smooth 

muscle proliferation and subsequent changes in plaque composition observed between 

ApoE-/- and ApoE-/-. CD151-/-  mice.  Further investigations are warranted to extend the study 

and observing the progression of atherosclerosis in intermediate to advanced plaques in 

ApoE-/- and ApoE-/-. CD151-/-  so as to identify if in fact CD151 expression is upregulated in 

atherosclerotic plaques versus healthy arteries.  This would also allow observations into 

plaque composition and assess if in an atherosclerotic model, CD151 has a protective role 

inhibiting progression towards advanced lesion types.  As discussed a limiting factor in this 

thesis was the age of mice studied, in that prolonging the age at which mice were culled 

would potentially raise issues pertaining to animal welfare that needed to be considered as 

cutaneous xanthomas and skin lesions are known to develop in ApoE-/- mice.  Feeding a 

high fat diet for prolonged periods similarly increases this risk and would as such require 

close monitoring, however it is a valid consideration for advanced studies in the future.(228)   

 

On the contrary, the haematological parameters demonstrated that ApoE-/-.CD151-/-  mice 

had significantly higher platelet counts than C57BL/6 WT and ApoE-/- mice (Table 3.3).  As it 

is a novel model, the influence of atherosclerosis on CD151 deficiency is unknown in its 

effect if any on platelet counts.  At least in humans, a high platelet count is associated with 

coronary disease.  This is based on an assumption that the authors have made whereby an 

increase in platelet number represents an increased tendency in non resolving platelet 

thrombi or presence of reactive platelets resulting in an increase in vulnerable plaques.(423)  

Note however the authors did not conduct an investigation on atherosclerotic lesions to 

observe this but drew the conclusion based on associations.(423)  To corroborate this, 

mouse studies reported hypercholesterolaemia to result in increased neutrophil and 

monocyte circulation, as well as platelet counts.  Increased production of these cells were 

stimulated by ABC4G, a cholesterol efflux transporter on megakaryocyte progenitors and 

subsequently thrompoietin receptor c-mpl signalling.(424)  Although a raised platelet count 

was observed in the ApoE-/-.CD151-/-, this was not observed to occur in conjunction with 

hypercholesterolaemia.  Note also, the literature reports that in ApoE-/- mice, the 

predominant lipoprotein fractions are VLDL/LDL with HDL lipoprotein fractions approximating 

8 mg/dl only.(230)  The HDL profile of ApoE-/- mice in this study was comparable more so to 
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a wild-type mouse HDL lipoprotein profile instead of an ApoE-/- mouse lipoprotein profile, 

which has in the past been found to be consistently ranging 8 mg/dl.(230)  Triglycerides, LDL 

levels were also observed to have discrepancies compared to published references with the 

current study reporting low ranges compared to said previous findings.(230)  Factors such 

as blood collection and fasting modes, as well as specimen handling needs to be re-

evaluated to overcome errors that may be influential in determining an accurate lipoprotein 

profile.  Again however, as the ApoE-/-.CD151-/- mouse strain is a novel model, there are no 

references in the literature which one may compare results to and this proves novel and an 

advantage for the current study.   

 

Chapter 6 of this thesis investigates the role of CD151 as a master regulator of laminin 

binding integrins specifically in platelet thrombus formation in vitro and in vivo. The functional 

and physical association of αIIbβ3 with CD151 reported by Wright et al. (102) provided a 

foundation for this thesis to investigate the outcome of CD151 absence in the context of 

atherosclerosis disease.(102)  CD151 deficiency as discussed extensively throughout this 

thesis results in an in vivo bleeding defect, impaired outside-in αIIbβ3 signalling, and the 

formation of smaller and unstable thrombi.  Reiterating the strong associations and 

complementary roles of CD151 with αIIbβ3 for effective cellular functioning, it is crucial to note 

studies which have similarly investigated the effects of αIIbβ3 deficiencies.  Whilst studies 

have not been performed to investigate CD151 absence in atherosclerosis, the literature has 

found that the adhesion of platelets to damaged or activated endothelium in mice lacking 

αIIbβ3 in an ApoE-/- model of atherosclerosis, is void.  Either a genetic deficiency or inhibition 

of αIIbβ3 has been found to result in significant decreases in atherosclerosis progression 

marked by a reduction in the recruitment of monocytes.(145,425)  Conflicting findings have 

been reported in the literature as to whether the use of αIIbβ3 inhibitors can decrease platelet 

leukocyte complexes involved in propagation of atherosclerotic plaque formation.(426)  

Human studies of Glanzmann thrombasthenia characterised by a deficiency of αIIbβ3 did not 

demonstrate complete reduction of atherosclerosis as plaque lesions persisted in the carotid 

bifurcations of patients.(427)  The authors proposed that it is likely atherosclerosis 

development in this case may not require integrin αIIbβ3 for platelet to endothelium adhesion 

and is compensated for by other platelet receptors.(427) 

 

The results in Chapter 6 presented some conflicting findings where in vitro aggregation 

studies showed aggregation responses to be unchanged in the absence of CD151 in 

atherosclerosis in ApoE-/-.CD151-/- mice compared to ApoE-/- mice tested.  Aggregation 
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response to CRP and ADP did not demonstrate significant reductions in the amplitude and 

slope of aggregation responses.  Minimal reduction was observed in ApoE-/-.CD151-/-  

aggregation response to collagen 3.75µg/ml whilst the aggregation response to PAR 4-300 

µM was heightened significantly compared to ApoE-/- mouse PRP (Figure 6.1).  Previous 

studies reported CD151-/- mice with defective outside in integrin αIIbβ3 signalling to 

demonstrate a defective aggregation response to PAR-4, collagen and ADP which translates 

as reduced aggregability and thus a reduction in the formation of platelet aggregates and 

ultimately formation of a stable thrombus.(4)  Another negative result we observed in this 

chapter was in the in vivo studies examining thrombus formation in the mesenteric arterioles 

which induced oxidative injury to arterioles mimicking human atherosclerotic plaque rupture 

and exposure of type I collagen leading to platelet activation and adherence of platelets to 

the localised area of vascular injury (Figure 6.7).  As previously discussed, fat accumulation 

on mesenteric arterioles was likely to be the reason results were unfavourable which thus 

suggests the need to conduct further studies into monitoring thrombus formation in other 

vascular beds such as the cremaster arterioles.  Unlike the literature which reported CD151-/- 
 

deficient mice develop smaller thrombi, display increased thrombus instability and tendency 

to embolise, the current findings found the thrombi developed were larger, more stable and 

occupied a larger area of the vessel in the ApoE-/-.CD151-/- compared to thrombi formed in 

ApoE-/- and CD151-/- mice (Figure 6.9).  Despite these negative findings which are in 

disagreement with the literature, the extensive positive results detailed in Chapter 6 as well 

as the significantly reduced plaque burden in ApoE-/-.CD151-/- mice documented in Chapter 4  

supports the hypothesis that CD151 absence in atherosclerosis promotes a protective effect.  

In vitro platelet adhesion of ApoE-/-.CD151-/- mice blood to immobilised type I collagen under 

high shear rates shown in Figure 6.4 to Figure 6.6 developed significantly smaller and fewer 

thrombi compared to ApoE-/- mice.  Furthermore, time to 95% vessel occlusion in the carotid 

arteries of ApoE-/-.CD151-/- mice were prolonged and haemostatic instability characterised by 

increased volumes of blood lost, prolonged bleeding times and tendency to rebleed in the 

ApoE-/-.CD151-/- 
 mice compared to ApoE-/- mice (Section 6.2.5, Figure 6.12). Plaque burden 

was significantly reduced in ApoE-/-.CD151-/- mice and provides further support of the 

protective effect of CD151 in atherosclerosis (Figure 4.7).  Collectively these in vitro and in 

vivo results demonstrates improved carotid artery blood flow in the ApoE-/-.CD151-/- mice and 

both a delay in thrombus formation as well as smaller and few thrombi were formed. 

 

The formation of atherosclerotic plaques on endothelium at high shear rates increases 

platelet recruitment and tethering to these areas of inflammation and injury. GPIbα 

interaction with vWF mediates tethering and exposure of binding sites on GPIbα for 
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leukocytes and macrophages.(428)  GPVI and integrin α2β1 maintains stable platelet 

adhesion, potentiating the activation and aggregation of platelets.  Calcium mobilisation by 

phospholipase C activation leads to αIIbβ3 activation, secretion of granules, stimulating 

increased activation and aggregation.(392, 428) Integrin α2β1 interacts with collagen binding 

sites to maintain platelet adhesion.  Deletion of CD151 affects the integrins which the 

tetraspanin complexes with as it as been suggested to be involved in transmembrane 

signalling pathways, and therefore altering integrin function in vivo. The β1 subunit has 

recently been associated with renal pathologies as discussed in Chapter 3 and Chapter 4 in 

comparison to earlier studies, which focussed primarily on CD151 associations with the α3 

and α6 subunits. Platelet adhesive ligand interactions together with defective outside-in αIIbβ3 

signalling retards the development of platelet thrombi formation and occlusion which puts 

forward that CD151 absence confers a protective role in Chapter 4.    Plaque burden may 

have benefited from this where defective platelet thrombus formation and instability has 

contributed significantly in conferring a reduced plaque burden in the ApoE-/-.CD151-/- mouse 

model.  As mentioned previously, platelet activation and tethering to arterial walls does not 

always require vascular injury and exposure of the sub endothelial matrix as cytokine and 

chemokine release from platelets encourages a localised inflammatory response.(405) The 

involvement of platelets in the earlier stages of atherosclerosis is now more widely 

acknowledged where interaction of platelets with leucocytes as well as endothelial cells are 

capable of initating autocrine and paracrine pathways encouraging leucocyte infiltration 

towards vascular walls.(162)  The release of inflammatory mediators stimulates endothelial 

cells which promotes inflammation and consequently increasing the proatherogenic nature of 

the endothelium.(162)   Smaller and instable thrombi reduces the risk of luminal obstructions 

which culminate in debilitating cardiovascular ischaemic events.  Cosemans et al. (429) 

proposed that clinically, the presence of smaller thrombi with a greater propensity to 

disintegration are clinically silent in comparison to large emboli which when it sheds may be 

more damaging in leading to increased vessel occlusion.(429)   

 

 

 

 

 

 



 
 

156 
 

7.2 Conclusion 

This thesis has been successful in developing a novel ApoE-/-.CD151-/- mouse model which 

allowed for advances in the investigation of CD151 deficiency and its influence in 

atherosclerotic disease.  It has provided insight into the anti-thrombotic potential of CD151 in 

this disease in that the absence of CD151 conferred a protective role demonstrated by the 

reduction in size of thrombi formed, the delay in time to thrombus formation, improved 

carotid blood flow and significant reduction in plaque burden.  The results have further 

demonstrated the critical role of tetraspanin CD151 in stable platelet aggregates involving 

integrin αIIbβ3 outside-in signalling and unstable thrombi in murine platelets.  The significance 

of the results obtained in this thesis on the essential role of CD151 in thrombus formation 

and progression of an atherosclerotic plaque has improved our understanding of CD151 in 

the mechanisms of atherothrombosis and atherosclerosis which poses as a valuable 

therapeutic target for cardiovascular disease.   

 

 

 

7.3 Future directions  

The studies carried out in this thesis demonstrate that deletion of CD151 confers a protective 

role by delaying time to 95% vessel occlusion, reduced platelet adhesion to immobilised type 

I collagen, unstable haemostasis and reduced plaque burden.  Hypercholesterolaemia is 

known to influence the progression of atherosclerosis and thus influence the efficiency of 

CD151 protection in the advent of disease.    Thus, further studies are warranted involving 

the controlled feeding of ApoE-/- and ApoE-/-.CD151-/-  mice to ensure variables pertaining to 

fat and caloric intake are excluded and verify the protective effect of CD151 deficiency on 

plaque burden, haematological profiles, thrombus formation and platelet aggregation.  

 

As fat accumulation on the mesenteric arterioles limited the efficacy of in vivo intravital 

microscopy experiments which simulated human rupture of atherosclerotic plaques and 

exposure of type I collagen, studying thrombus formation in a different vascular bed is 

imperative.  In vivo intravital microscopy studies on the cremaster arterioles of male mice, 

induced with thermal laser injury will allow for better visual quantitative analysis and 

thrombus formation as there is less fat present on these arterioles.  P-selectin is known to 
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promote atherosclerosis and plaque lesion formation through the recruitment of monocytes 

and leukocytes in forming platelet leukocyte aggregates.  This therefore warrants further 

studies to investigate circulating P-selectin positive platelet levels in ApoE-/- and ApoE-/-

.CD151-/-  through flow cytometry and the quantification of soluble P-selectin levels by ELISA.  

Lastly, although Haematoxylin and Eosin staining of aortic valve cusps were sufficient in 

identifying plaques and quantitating plaque burden, the gold standard of lesion size 

quantification is reported to be with Oil Red O or Sudan Dye staining.  These methods 

however are not without limitations where they both lack specificity.  Being a broadly 

expressed protein and found not just in platelets but also on endothelial cells, smooth 

muscles, megakaryocytes, cardiac muscle, the immune system and epithelia, it would be 

insightful to conduct studies to further investigate whether the deficiency of CD151 in cells 

other than platelets have an influence on the size of thrombi, formation of thrombi and 

carotid blood flow in vivo.  Studying the cardiovascular physiology and haemodynamics by 

using the Doppler ultrasound to monitor aortic and mitral blood velocities and aortic pulse-

waves of CD151 deficient mice may supplement our understanding of CD151 absence in 

cardiac muscle, smooth muscle and its influence on changes in haemodynamics and its 

influence on atherosclerosis.  Furthermore, as atherosclerosis is also known to be influenced 

by inflammation, studying proinflammatory cytokines, inflammatory phospholipids, heat 

shock proteins for instance, will widen our understanding of inflammation and its contribution 

to the results we have observed in the current study in vivo and the plaque rupture and 

thrombosis which ensues.     
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