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ABSTRACT 

Nanoscale memristive devices have been dubbed as one of the main 

contenders for the next generation nonvolatile memories (NVM) and alternative 

logic architectures. Passive two-terminal metal-insulator-metal (MIM) 

memristive crossbar configurations based on functional transition metal-oxides 

(e.g. TiO2, SrTiO3) offer great potential for ultimate integration in contemporary 

electronic industry. The bipolar resistive switching behavior in these devices is 

attributed to a combination of electronic effects at the metal/oxide interfaces and 

reversible redox reactions and nanoionics transport in transition metal-oxide 

layers. However, the underlying microscopic conduction and switching 

mechanisms are not yet fully understood. 

Complex transition metal oxides with Perovskite crystal structure are among the 

most technologically relevant classes of electronic materials. A plethora of 

functional properties such as ferro/piezoelectricity, ferromagnetism, 

superconductivity and memristivity can be engineered through the 

compositional and structural modification of the perovskite structure.  

This thesis focuses on the realization and nanoscale characterization of high 

performance CMOS-compatible memristive devices utilizing functional 

perovskite oxides. A PVD based synthesis route for the realization of functional 

perovskite oxides with control over their composition and structure has been 
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established. Utilizing the synthesis approach, first realization of memristive 

devices based on oxygen deficient amorphous SrTiO3 (a-STO) oxides has been 

demonstrated and their resistive switching performance has been studied in 

detail utilizing micro-scale crossbar MIM arrays and a sophisticated conductive 

nano-contact technique based on in situ electrical nanoindentation. 

RF magnetron sputtering has been used in this work to synthesis perovskite 

oxide thin films on conventional silicon substrates. Firstly, a lead-free 

ferro/piezoelectric perovskite oxide (KxNa1-xNbO3) was chosen to study the 

effects of sputtering parameters and post-deposition treatments on the 

composition and the structure of sputtered thin films. This study demonstrates 

that the crystal orientation, thickness and the elemental composition of the thin 

films sputtered from the same ceramic target can be effectively and reliably 

controlled via tuning the sputtering parameters (process gas, substrate 

temperature, etc.) and the oxide structure and secondary phases can be 

engineered through post-annealing treatments. The same procedure was 

employed for the synthesis of SrTiO3 thin films as a reliable resistive switching 

perovskite oxide. A low temperature synthesis of amorphous SrTiO3 (a-STO) 

thin films with precise control over the thickness, oxygen deficiency and 

A-site/B-site dopants has been demonstrated for the first time.  

The switching characteristics of a-STO cross-point devices suggest the 

possibility of fine tuning the memristive performance through tailoring the oxide 

composition and device structure. Outstanding switching performance (high 

switching ratios, excellent endurance and retention) is demonstrated in oxygen 

deficient a-STO devices. Also, it is shown that niobium doping through low 
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temperature co-sputtering of Nb: a-STO result in significant improvements in 

device energy requirements. 

Furthermore, nanoscale conduction and resistive switching mechanisms of 

these devices have been studied in detail utilizing a sophisticated in situ 

electrical nanoindentation technique, capable of forming nano-contacts with 

controlled size and mechanical force. To this end, a unique empirical model has 

been developed that allows for a complete characterization of the electrical 

properties of the load controlled nano-contact and therefore yields quantified 

insights into the conduction and switching mechanisms of a-STO based 

memristive device at nanoscale. The results exhibit ultimately scalable and 

isolatedly controllable switching characteristics in these devices and also 

suggest the possibility of mechanically modulated nanoscale resistive switching 

in a-STO based devices.  

Overall, this thesis highlights a-STO based devices as strong candidates for the 

ongoing development of the alternative memory technologies as well as 

applications in MEMS/NEMS devices. 
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CHAPTER 1  

INTRODUCTION 

1.1. Context and Objectives 

The emerging field of oxide nano-electronics is expanding in scientific 

discoveries and technological relevance at a fascinating pace [1.1-4]. The exotic 

properties of complex oxide structures and interfaces arise from interactions 

between charged species in the strongly correlated complex oxide systems. 

These properties are the gateway to new electronic devices capable of 

surpassing their semiconductor-based predecessors both in scale and 

performance. Two-dimensional electron gases, superconductivity and colossal 

magnetoresistivity at correlated oxide interfaces, ultrafast metal-insulator 

transitions (MIT) actuated by a variety of external stimuli (thermal, mechanical, 

electrical, optical, etc.) in complex transition metal oxides, and ultrafast highly 

nonlinear resistive switching in metal-oxide-metal cells are just a few examples 

of the potential of complex oxide systems for novel electronic devices and 

applications. The ongoing research efforts are aimed at developing a 

comprehensive understanding of the physical phenomena in complex correlated 

oxide systems and the ultimate realization of advanced oxide-based electronic 
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devices through controlling the properties of complex oxides and oxide 

interfaces.  

Information processing and data storage capabilities of conventional 

semiconductor-based devices are almost at their limits as the industry is 

reaching the scaling and performance limits of such devices. Among several 

candidates for alternative memory and information processing devices, 

solid-state resistive random access memories (RRAMs) and memristive devices 

have proven to be a viable option due to their scalability potential and reliable 

performance characteristics. Research in the relatively advanced RRAM field is 

now focused on realizing large scale integration of memristive devices in hybrid 

CMOS compatible systems, optimizing the performance of RRAM device 

through material and structural engineering, and developing physical and circuit 

element based analysis and simulation models for the ultimate integration of 

these devices in contemporary electronic industry.   

The rapid progress in the realm of complex functional oxides and 

nanostructures and the consistent pursuit of miniaturization of electronic 

devices, relies heavily on the capabilities of characterization and analysis tools 

available to materials scientists. Of particular interest, are multi-sensory and 

in situ characterization tools that can provide valuable information about 

nanoscale phenomena and correlated properties and enable scientists to 

develop ever more accurate pictures of the physical nature of the properties of 

complex functional oxides. 

The motivation behind this thesis aligns with the demands of the expanding field 

of oxide nanoelectronics. The control of the physical and functional properties of 
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complex oxides through control of their structure and composition is a topic of 

immense importance. The PhD research project outlined in this thesis starts 

with exploring the relationship between the synthesis conditions of complex 

perovskite oxides and their compositional and structural characteristics with the 

aim to establish a synthesis protocol for functional perovskite oxides. The oxide 

systems chosen for these investigation include a ferro/piezoelectric complex 

perovskite oxide system (potassium sodium niobate, KxNa1-xNbO3: KNN) and a 

prototypical perovskite oxide system (strontium titanate, SrTiO3: STO) with the 

potential to be used as the functional layer in solid-state memristive devices. 

The research project then focuses on exploring the memristive properties of 

engineered perovskite oxides to attain high-performance memristive devices. 

The project uses an advanced electromechanical characterization tool (in situ 

electrical nanoindentation) to gain fundamental nanoscale insights into the 

mechanisms of the memristivity and resistive switching in perovskite oxides.  

1.2. Original Contributions 

The primary achievements and original contributions through the course of this 

PhD research project are listed below: 

• A PVD synthesis and post-synthesis treatment protocol has been 

developed to achieve monolithic perovskite oxide thin films on CMOS 

compatible substrates (platinized Si and SiO2/Si) with thicknesses 

controllable to less than 10 nm. In the context of perovskite oxides 

systems studied in this PhD research project: 
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� Ferro/piezoelectric potassium sodium niobate (KNN) thin films with 

controllable alkali ratio and crystal orientation were synthesized 

through high temperature RF magnetron sputtering using a single 

ceramic target and post-annealing treatments. The facile synthesis 

and post-treatment route allows for the effective control of the 

ferro/piezoelectric properties of KNN thin films through compositional 

and structural engineering. 

� Pristine and co-doped amorphous strontium titanate (a-STO) thin films 

were synthesized using a single stoichiometric ceramic target via 

room temperature RF magnetron sputtering. The control over 

synthesis parameters allow for precise control over thickness, oxygen 

deficiency content, and external dopants. These tuning procedures 

allow for effective control over the electronic band structure of a-STO. 

As such, the technique can serve as an efficient enabler for 

engineering the physical properties of STO oxides. 

• First realization of CMOS compatible, high performance micro-scale 

a-STO based metal-insulator-metal (MIM) memristive cells was achieved. 

The composition of the amorphous oxide and the MIM cell were 

engineered to attain optimal memristive performance in a-STO based 

cells. In-depth compositional, electrical and nanoscale studies reveals the 

underlying mechanisms of the switching performance of a-STO based 

devices and suggests their scaling potential for high density electronic 

devices. 
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• In situ electrical nanoindentation tool was utilized to study the 

nano-electromechanical coupling effects in a-STO oxides. To attain 

fundamental quantitative insights, an empirical model has been developed 

to isolate and eliminate the role of nanoindentation probe contact 

geometry and resistance in the in situ electrical results.  

� The effect of machine compliance, surface roughness, thermal drift 

and friction, and probe geometry on the nano-electromechanical 

response data of the indented materials has been investigated and 

correction methods have been developed to increase the accuracy of 

data analysis to a large degree. The effectiveness of the correction 

procedure has been tested and demonstrated in a study on 

nano-crystalline platinum thin films. 

� An empirical model developed to map and analyse the contact 

resistance versus the contact depth which can be utilized to study the 

nano-electromechanical response of a large variety of material 

systems. This quantitative approach also allows for the utilization of 

in situ electrical nanoindentation method as a stable and precisely 

controllable conductive SPM tool, whereby SPM nano-contacts are 

electrically grounded, their diameters and contact areas are verifiable 

and controllable, and their position can be precisely defined and kept 

stationary for extended periods of time. This will prove as a very 

powerful toolbox for the investigation of nanoscale functional systems. 

• Using the aforementioned in situ electrical nanoindentation and conductive 

nano-contact analysis technique the conduction and switching 
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mechanisms in a-STO cells and oxides has been investigated. Several 

significant insights have been achieved including the multi-filamentary 

nature of redox-based switching mechanisms in a-STO memristive cells. It 

has also been highlighted that these filamentary pathways with sub 100 

nm dimensions can be individually and reliably switched which hints at the 

ultimate scalability and reliability of a-STO based devices.  

• Direct in situ electrical nanoindentation experiments on a-STO oxide 

layers of different thicknesses provide further valuable insights into the 

nanoscale nature of conduction mechanisms and the possibilities of 

multi-stimuli modulation of physical properties of complex perovskite oxide 

systems. 

1.3. Thesis Outline 

This thesis has been segmented into chapters as individual entities of research. 

The major chapters of this thesis are as follows: 

Chapter 2 provides a brief background on the research into perovskite oxide 

systems and complex oxide structures, memristive devices and systems and 

in situ electrical nanoindentation technique. 

Chapter 3 presents the optimized PVD synthesis technique for the realization of 

perovskite oxide thin films (KNN and STO perovskite oxide systems) with 

controlled composition, crystal structure and defect chemistry.  

Chapter 4 presents the results of investigations of the switching performance of 

a-STO based MIM cells, highlighting their memristive performance and linking 
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their characteristics to the composition and defect chemistry of a-STO oxide 

layers. 

Chapter 5 details nanoscale investigations of conduction and switching 

mechanisms in a-STO oxides. In this chapter, the methodology for using in situ 

electrical nanoindentation technique as an accurate probing technique for 

electromechanical coupling effects as well as a displacement and contact size 

controlled conductive SPM has been detailed. The method has then been used 

to study the nanoscale conduction mechanisms in a-STO MIM cells and 

ultrathin oxide-metal stacks. 

This thesis has three appendices: (i) Appendix A details the experimental 

methods and technique used throughout this thesis. (ii) Appendix B details the 

use of in situ electrical nanoindentation technique in accurate 

nano-electromechanical characterization of nanocrystalline platinum thin films. 

(iii) Appendix C provides an abstract of the use of in situ electrical 

nanoindentation technique in the investigations of electromechanical couplings 

in quasi-2D MoS2 and MoO3 layers. 

1.4. Publications 

Following is a list of peer-reviewed publications during the course of this PhD 

program. All publications relate to the synthesis and characterization of complex 

oxide thin films and in situ nanoscale investigations of functional materials and 

structures. 



INTRODUCTION                                     11 

 

 

1.4.1. First-authored papers 

1. H. Nili, S. Walia, M. Bhaskaran, S. Sriram, “Nanoscale Electro-

Mechanical Dynamics of Nano Crystalline Platinum Thin Films: An In Situ 

Electrical Nanoindentation Study”, Journal of Applied Physics in press 

(2014). 

2. H. Nili, S. Walia, S. Balendhran, D. B. Strukov, M. Bhaskaran, S. Sriram, 

“Nanoscale Resistive Switching in Amorphous Perovskite Oxide 

(a-SrTiO3) Memristors”, Advanced Functional Materials DOI: 

10.1002/adfm.201401278 (2014). 

3. H. Nili, A. Esmaielzadeh Kandjani, J. Du Plessis, V. Bansal, K. Kalantar-

zadeh, S. Sriram and M. Bhaskaran, “Alkali Ratio Control for Lead-Free 

Piezoelectric Thin Films utilizing Elemental Diffusivities in RF Plasma”, 

CrystEngComm 15 7222 (2013). 

4. H. Nili, G. Cheng, T. A. Venkatesh, S. Sriram, and M. Bhaskaran, 

“Correlation between Nano-Mechanical and Piezoelectric Properties of 

Thin Films: An Experimental and Finite Element Study”, Materials 

Letters 90 148 (2013). 

5. H. Nili, K. Kalantar-zadeh, M. Bhaskaran, and S. Sriram, “In situ 

nanoindentation: Probing nanoscale multifunctionality”, Progress in 

Materials Science 58 1 (2013). 



INTRODUCTION                                     12 

 

 

1.4.2. Co-authored papers 

6. S. Balendhran, S. Walia, H. Nili, S. Sriram, M. Bhaskaran, “Elemental 

Analogues of Graphene: Silicene, Germanene, Stanene and 

Phosphorene”, Small DOI: smll.201402041 (2014). 

7. S. Balendhran, S. Walia, H. Nili, J. Z. Ou, S. Zhuiykov, R. B. Kaner, S. 

Sriram, M. Bhaskaran, and K. Kalantar-zadeh, “Two-dimensional 

molybdenum trioxide and dichalcogenides,” Advanced Functional 

Materials 23 3952 (2013). 

8. S. Walia, S. Balendhran, H. Nili, S. Zhuiykov, G. Rosengarten, Q. H. 

Wang, M. Bhaskaran, S. Sriram, M. S. Strano, K. Kalantar-zadeh, 

“Thermoelectric properties of transition metal oxides”, Progress in 

Materials Science 58 1443 (2013). 

9. P. Gutruf, C. M. Shah, S. Walia, H. Nili, A. S. Zoolfakar, C. Karnutsch, K. 

Kalantar-zadeh, S. Sriram, M. Bhaskaran, “Transparent functional oxide 

stretchable electronics: micro-tectonics enabled high strain electrodes’, 

NPG Asia Materials 5 e62 (2013).  

10.  R. Abdul Rani, A. Zoolfakar, J. Z. Ou, R. Ab. Kadir, H. Nili, K. Latham, 

S. Sriram, M. Bhaskaran, S. Zhuiykov, R. Kaner, K. Kalantar-zadeh, 

“Impurity-Driven Defect States in Nanoporous Anodized Nb2O5 

Photoanodes” Chemical Communications 49 6349 (2013)



LITERATURE REVIEW                          13 

 

 

CHAPTER 2  

LITERATURE REVIEW 

2.1. Perovskite Oxides: Technological Relevance 

The research into oxide nano-electronics has recently gained traction as a 

serious contender for enabling ongoing advancement in information processing 

and data storage capabilities beyond conventional CMOS scaling. The 

advances in understanding the fundamental principles of complex electronic 

structure, phase transitions and interfacial properties of correlated oxide 

systems can enable novel electronics and photonics devices relying on the 

plethora of functional properties embedded in such systems [2.1-8].  

Transition metal oxides are a fascinating class of functional oxides exhibiting a 

large range of functional properties as well as an intrinsic flexibility for structural 

and compositional engineering [2.3,5,7,9-12].  Multiple stable oxidization states 

of the transition metal oxides and the drastic changes in the crystal and 

electronic band structures as a result of local or distributed changes in the 

valence states, provide a vast materials design and engineering landscape for 

direct manipulation of the transition metal-oxygen functional units [2.3,4,9,10]. 

Among these, perovskite oxides of the ABO3 crystal structure (Figure 2.1) 

possess a unique functional unit, the BO6 oxygen octahedral structure [2.3,13], 
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which provides a large degree of freedom for application specific materials 

engineering. Functional properties of perovskite oxides range from 

superconductivity [2.14,15] and ferro/piezoelectricity [2.16-20], to novel 

oxide-based ultrafast memories and low-power electronics and optical devices 

[2.7,21-25]. 

 

Figure 2.1. Schematic of a typical cubic perovskite oxide structure  

As such, perovskite oxides have been the topic of rigorous research in the past 

couple of decades. With the emergence of novel oxide electronics, intensified 

research focus on perovskite oxides has made great strides in understanding 

the physical principles governing their structural properties and materials 

engineering for high performance nanoscale devices and systems [2.4,5,8-

10,13]. 

2.1.1. Potassium sodium niobate (KxNa1-xNbO3: KNN) perovskite 

oxide system: lead-free ferro/piezoelectrics 

Potassium sodium niobate (KNN) is one of the most promising candidates for 

substituting lead-based ferro/piezoelectrics [2.19,26-28]. Besides having a high 
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electromechanical coupling factor [2.29] (comparable to commercially available 

lead-based PZT4), its high Curie temperature, high chemical inertness and 

biocompatibility, make it a promising candidate for environmentally friendly and 

bio-compatible sensor/actuator and energy harvesting applications [2.30-34]. 

The complex perovskite structure of KNN is a mixed system of ferroelectric 

potassium niobate (KNbO3: KN) and anti-ferroelectric sodium niobate (NaNbO3: 

NN) both with orthorhombic crystal structures (Figure 2.2) [2.35-38]. 

 

Figure 2.2. (a) Crystal structure and (b) phase diagram of KxNa1-xNbO3 complex perovskite 

system. Regions labelled Q, K, and L are monoclinic ferroelectric, M, G are orthorhombic 

ferroelectric; F, H and J are tetragonal ferroelectric. Region P is orthorhombic antiferroelectric 

[2.39] 

The anti-ferroelectric NN transitions to a ferroelectric phase (region Q in Figure 

2.2b) with a small percentage of KN substitution. Besides several thermally 

induced phase transitions [2.35,36], several phase transitions and morphotropic 

phase boundaries (MPBs) exist at room temperature (at 17.5%, 32.5% and 

47.5% NN content) [2.37]. Of particular interest is the MPB at 47.5%, where 

KNN exhibits its highest electromechanical coupling coefficients [2.17,40-42]. 

The main setback in commercializing KNN-based ferro/piezoelectrics is the 
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volatility of alkali metal compounds which results in poor quality of KNN 

ceramics and thin films [2.40,43]. A brief review on the status of synthesis and 

fabrication of KNN-based oxides is presented in Chapter 3. 

2.1.2. Strontium titanate (SrTiO3: STO): the archetypical 

perovskite oxide 

Strontium titanate (SrTiO3: STO) is the prototypical perovskite oxide with a 

cubic crystal unit at room temperature [2.44]. In its pristine single crystal form, 

STO is a high-k dielectric with superior temperature stability, commonly used as 

a gate oxide or the template substrate for oxide electronics applications. 

Relatively facile manipulations of structural and compositional characteristics of 

STO structure on the other hand, reveal its true promise. STO ceramics, thin 

films and interfaces can be engineered to exhibit a wide range of functional 

properties, from colossal magnetoresistance [2.45-47], metal-insulator 

transitions [2.48] and superconductivity [2.49,50] to two-dimensional electron 

gases [2.8], ferroelectricity [2.51], photoluminescence [2.52] and resistive 

switching [2.7,25,44,47,53]. As such, STO is sometimes compared to silicon as 

the foundation of oxide electronics [2.8].   From an interface engineering point of 

view, the distortion in the perovskite lattice via strain and phase engineering, 

layer thickness and defect structure control can be effectively used as a means 

to control the interfacial properties of STO [2.3]. Moreover, the compositional 

control of the STO structure enables direct control over the electronic structure 

as well as the defect chemistry of the material. Small scale donor (e.g niobium) 

[2.54,55] or acceptor (e.g. iron) [2.47] doping of STO is known to drastically 

change its electronic and energy band structures. STO also has a tendency of 

oxygen vacancy self-doping (i.e. oxygen exchange reaction) subject to external 
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stimuli (e.g. ion irradiation [2.52], electric field [2.56] and temperature), acting as 

native n-type dopants. The control over the concentration and equilibrium 

arrangement of these native dopants enables the control over 

electrical/electronic transport characteristics and optoelectronic properties of 

STO. Overviews of the functionalization techniques for the STO system are 

presented in Chapters 3, 4 and 5 in relevant sections. 

2.2. Memristive Devices and Systems 

The term “memristor” refers to circuit components capable of retaining an 

internal resistance state subject to the history of applied electrical field [2.1,57]. 

Memristors have been initially proposed by Chua et al. based on circuit 

symmetry arguments [2.58,59] as the fourth fundamental circuit component 

linking the charge (q) and flux (φ), namely: 

dφ = Mdq  (1) 
In 2008 Strukov et al. [2.60] used a simple phenomenological model to 

demonstrate that memristivity can be described naturally, in nanoscale systems 

with coupled ionic-electronic carrier transport characteristics. They defined a 

charge-dependent state variable, w, which is subject to the history of charge-

carrier distribution in the solid-state device, for the resistance of a memristive 

element: 

M(q) = R��� �1 − ������ ! q(t) (2) 
Where M(q) is the charge-dependent memristance, R��� and R�$ are the 

resistance values in the device’s ON and OFF states (namely, the charge 



LITERATURE REVIEW                          18 

 

 
carrier distributions that contribute to an either higher or lower resistance), D is 

the length of the solid-state device and μ' is the average ionic mobility. The 

ionic mobility is an inherently field-dependent property in solid-state coupled 

ionic-electronic conductors such as metal-oxide-metal two terminal devices 

[2.61]. Moreover, this field dependency at extreme electrical fields (>1 MV/cm) 

commonplace in devices with thicknesses of a few tens of nanometers is 

proven to have a non-linear exponential-type characteristics [2.61,62]. This 

essentially means that coupled ionic-electronic devices operating under such 

conditions have the potential to exhibit extremely small memristive response 

times (< 10 ns) and large memristive state retention times (in the scale of 

years). This is signified by the equation [2.61]: 

τ)*+,- τ.,/*-⁄ ~ L 2a⁄ × exp (E E9⁄ )  (3) 
Where τ)*+,- and τ.,/*- are the retention and response time respectively, L is 

the active device region (in other words, the ionic diffusion length), a is the 

periodicity in an ideal ionic crystal, E is the applied electrical field and E9 =
2k<T qa⁄  is the characteristic field for a particular mobile atom in the crystal. 

As such, memristive devices have the potential for integration in novel ultra 

high-density computing technologies. The immediate application for memristive 

devices is resistive random access memories (RRAMs) [2.1,6,63]. However the 

dynamic non-linear hysteretic behavior of these devices suggests applications 

in alternative computer logic architectures, multi-state logic and neuromorphic 

computational systems [2.1,57]. The typical device configuration for memristive 

devices in such applications, is a two terminal capacitive-type 
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metal-insulator (ion conductor)-metal (MIM) structure (Figure 2.3). This 

configuration is ideal for the high-density integration of memristive devices in 

cross-bar arrays in hybrid CMOS-based circuits. The device operates as an 

electronic switch in one of the two main resistance states (ON/OFF states) 

based on the history of the applied electrical field.  These MIM structures are 

the focus of the investigation carried out throughout the course of the PhD 

project. 

 

Figure 2.3. (a) Schematic representation of a cross-bar structure for memory and logic 

applications (the arrow points to the structure of a single memristive device). (b) Typical bipolar 

I-V characteristic of a memristive device as a resistive switch.  

2.2.1. Resistive switching mechanisms and memristive 

materials 

Memristive devices can be categorized based on the switching mechanism, 

switching materials and switching behavior. With regards to switching 

mechanisms, a large variety of physical effects can induce non-volatile resistive 

switching in a variety of functional materials [2.1,7]. Waser et al. have 
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summarized the physical mechanism known to cause non-volatile resistive 

switching effects (Figure 2.4) in their excellent review [2.7]. As for the switching 

materials, although many materials including solid amorphous electrolytes are 

known to exhibit variations of non-volatile resistive switching, the focus of this 

thesis is on the switching performance of transition metal oxides, in particular 

STO-based perovskite oxides. As a result, this brief overview is focused on the 

switching mechanisms in transition metal oxides.  

 

 

Figure 2.4. Classification of the physical resistive switching phenomena. Reproduced with 

permission from [2.7]. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

The resistive switching phenomena in most binary and complex transition metal 

oxides in MIM structures are largely considered to be originating from anionic 
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transport mechanisms [2.1,7]. From a defect chemistry point of view, the 

movement of anions through the defect structure of transition metal oxides can 

be described as a valence change mechanism [2.7]. In many transition metal 

oxides, these anionic species are oxygen ion related defects, i.e. oxygen 

vacancies, which exhibit high mobilities subject to extreme electrical fields. 

Local enrichment or depletion of mobile oxygen vacancies changes the current 

transport characteristics of the oxide layer. The switching behavior in this 

category of devices is a bipolar I-V switching characteristics (Figure 2.3b) 

resulting from field-dependent distribution of anionic species (oxygen 

vacancies). Since the movement of oxygen vacancies along the oxide network 

will lead to local changes in the valence states of the metallic cations, the 

resulting switching mechanism is regarded to as the valence change 

mechanism (VCM).   

Other types of switching dynamics and mechanisms are highlighted in a recent 

comprehensive review by Yang et al. [2.1]. 

2.2.2. Resistive switching in SrTiO3 and STO-based devices 

Strontium titanate (STO) has been widely studied for its electronic and resistive 

switching properties [2.7,24,44,47,64-68]. It is a model perovskite system for the 

study of oxygen vacancy related defect structures and lattice disorders in 

transition metal oxides [2.56,66,69-74]. The crystal structure of STO be viewed 

as two inter-connected SrO and TiO2 sublattices, where TiO2 sublattice can be 

easily reduced and distorted in order to change the electronic band structure 

and electrical conductivity of the perovskite structure [2.7,75].  
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Because of its ability to harbor large concentrations of mobile oxygen vacancy 

charge carrier species, STO is considered to be a potent material system for 

resistive switching devices. The order and configuration of the vacancy related 

point and line defect structures are such that even in its un-doped single 

crystalline form, STO is capable of exhibiting resistive switching behavior. Such 

behavior can happen at very small scales upon introduction of oxygen vacancy 

related defect structures via temperature or electrical stress. In 2006, Szot et al. 

demonstrated resistive switching in thermally or electrically reduced individual 

dislocations in a STO single crystal [2.44]. The oxygen vacancy related 

extended defect structures in STO, act as filamentary pathways for current 

transport and enable the fast transport of electronic charge carriers (Figure 2.5).  

These filamentary pathways typically consist of a partially reduced network in 

the TiO2 sublattice along which the valance change mechanisms takes place 

[2.7,44,76].  

In the MIM configuration, STO-based thin films of thicknesses around 100 nm 

are usually highly insulating in the virgin state and typically require a 

current-limited electroforming step to exhibit resistive switching [2.24,67,76,77]. 

The electroforming step creates extended oxygen vacancy defect structures 

along the thickness of the perovskite oxide, acting as switchable conductive 

filamentary pathways between the two metal electrodes. A simplified picture of 

the electroforming process can be described as follows. In a virgin MIM cell, the 

distribution of vacancy point defects is equilibrated over time. 
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Figure 2.5. Electroformation and metallic conductance of individual dislocations. (a) A 

conductivity map of the surface of a SrTiO3 single crystal as recorded by the LC-AFM. 

Filamentary paths with enhanced conductance are present on the surface after thermal 

reduction and re-oxidation under ambient conditions. Inset: spot with a dimension of 1–2 nm, 

where the main current is concentrated in a region corresponding to the size of the core of a 

typical edge-type dislocation. (b) Line scan across the selected spot (D denoting distance along 

AB) showing the dynamic range of the resistance change as a result of the application of a 

negative tip voltage bias, that is, selective electroformation. Right: Conductivity maps of the 

selected spot before (n1) and after electroformation (n15) with an increase in diameter at the 

surface from 5 to 10 nm. (c) I-V characteristics of a selected spot by sweeping the applied tip 

bias voltage between −5 and 0 V (0.3 s per cycle). The electroforming process during cycles 1-7 

and 15 gives rise to a change from a nonlinear (n1–n7) to a linear (n15) behavior, which drives 

the filament from non-metallic to metallic conductance. Reproduced with permission form [2.44]. 

Copyright © 2006 Nature Publishing Group. 
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Since there is no conceivable direct conductive path between the two metal 

electrodes, the current transport characteristics of the MIM cell is governed by 

the interfaces between the metal electrodes and highly insulating oxide thin film 

[2.64,78,79]. If the metal electrodes are transparent to ionic partial current (i.e. 

they have a sufficiently low work function and are capable of exchanging 

oxygen bonds with STO oxide via localized redox reactions) the distribution of 

oxygen vacancies will not dramatically change upon applying small voltages 

[2.7,76]. On the other hand, if one or both electrodes are blocking to the ionic 

current, a pseudo-linear concentration gradient builds up based on the polarity 

of the applied bias and the disparity between the work functions of the metal 

electrodes (if the metal electrodes are of the same material or have a similar 

work function, then the gradient only depends on the polarity of the bias) [2.76]. 

The situation in higher biases changes dramatically based on the MIM structure 

and interfaces involved. Here for simplicity, a case of a simple MIM cell with 

dissimilar metal-oxide interfaces is considered (Figure 2.6). The concentration 

gradient is crucial for an ionic based resistive switching process to take place. 

This can be imposed during the electroforming process using the disparity 

between the metal-oxide interfaces or can be pre-existing in the oxide layer(s) 

(e.g. using double stacked layers of SrTiO3-x
 and SrTiO3). Metal electrodes with 

different work functions can enhance the in-built vacancy concentration gradient 

and assist with the electroforming process. In the example structure of Figure 

2.6a, a nominally stoichiometric STO oxide layer is sandwiched between a 

blocking Pt electrode with a high work function and a reactive Ti electrode with 

a lower comparative work function. The dissimilarity of electrodes work 

functions causes free carriers to flow from one material to the other until an 
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equilibrium state is established. Assuming that the charge-carrier concentration 

is low in the virgin STO thin film (i.e. the depletion-layer width exceeds the film 

thickness) the equilibrium Fermi level is determined only by the two metal 

electrodes and a simple flat band model can be proposed for the structure 

(assuming that the amount of trapped space charge is too low to cause band 

bendings) [2.64,78]. The mechanism of electroforming involves applying a high 

electrical stress by forward biasing one of the electrodes (the blocking electrode 

or anode of electroforming) to alter the concentration distribution of charged 

species (i.e. oxygen vacancies). Upon positive biasing the bottom electrode, the 

oxygen vacancies flow towards the opposite electrode (Transparent Ti electrode 

or cathode of electroforming) [2.7,76]. The increased concentration of the 

charge carriers at the cathode creates a strongly n-doped region at the vicinity 

of the cathode. The metal-oxide interface at the cathode ultimately breaks down 

at a critical concentration of oxygen vacancies thereby allowing the oxygen 

exchange reactions [2.80]. These reactions increase the width of the vacancy 

enhanced region creating a virtual cathodic region that propagates along the 

extended defect structures towards the anode [2.76]. The propagation stops in 

the vicinity of the forward biased blocking anode through limiting the current 

compliance. After the electroforming step is completed the width of the virtual 

cathode region can be controlled via applying biases of opposite polarities 

resulting in the bipolar switching behavior in electroformed STO-based cells 

[2.7,76]. Although the simplified electroforming and switching picture described 

for STO-based device is accurate to a large degree, the atomistic mechanisms 

and inter-correlations of the lattice defect structure, as well as optimization of 

the switching performance and ultimate compatibility and scalability of 
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STO-based devices are still not very well established and are subject to 

ongoing research.  

 

Figure 2.6. (a) The configuration and band structure of a STO-based MIM cell. (b) The 

electroforming procedure by applying a bias to the blocking (anode) electrode. (c) An 

electroformed STO-based MIM cell. (d) Switching the cell to ON (Low Resistance State) and 

OFF (High Resistance State) by extending and shrinking the virtual cathode region. 

2.3. In situ Nanoindentation: Characterization of  

Nanoscale Multifunctionality 

Nanoscale characterization techniques are continuously challenged by the rapid 

progress in nanostructures and functional materials demanding higher 

resolutions and advanced measurement techniques for mechanical, chemical, 

electrical, and thermal characterization. Numerous techniques have been 

developed over the years for the characterization of materials at nanoscale, the 

most notable of which are electron microscopy [2.81-86], scanning probe or 
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atomic force microscopy [2.87-95], X-ray imaging [2.83,85,96-101], and 

nanoindentation [2.102,103].  

Amongst the wide variety of characterization techniques, nanoindentation is the 

most rigorous approach for quantitative characterization of nanoscale 

mechanical properties of materials (bulk and thin film form) [2.102,103]. The 

information gained from nanoindentation experiment is typically used to 

determine the Young’s modulus and hardness of a material in the most basic 

form; however, this information can also be used to understand formation and 

propagation of mechanically-induced dislocations and defects. The study of the 

nanoindentation response of materials in combination with real-time imaging, 

heating, and/or electrical measurements in situ can create a broader 

understanding of the behavior of materials at the nanoscale. This understanding 

will be valuable in supporting the impetus to harness multifunctionality of 

materials to realize smart nano- and micro-devices. 

2.3.1. In situ electrical nanoindentation 

In the case of semiconductors, piezoelectrics, and other materials used in 

microelectromechanical systems (MEMS) and semiconductors industry, 

electrical properties and responses during stress and/or strain are of particular 

interest. Ex situ and post-mortem characterization techniques cannot provide 

real-time insight into the deformation mechanisms of materials, and more 

importantly, they cannot be employed to evaluate the electrical response of the 

materials to the applied force, which is of particular interest. To this end, 

nanoindentation combined with in situ electrical characterization has proven to 

be a powerful tool. Moreover, it can also provide additional detail during 
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indentation experiments. For instance, Fang et al. [2.104] reported an in situ 

electrical characterization technique to continuously measure the contact area 

between the indenter and sample using the absolute area between I–V curves 

continuously recorded during nanoindentation experiments. 

In general, the electrical characterization during nanoindentation is performed 

using a conductive nanoindenter tip and a current/voltage source. Various 

techniques have been developed allowing a time-based correlation between 

load–displacement and electrical characterization data [2.105].  

(i) Semiconductor transformations and properties 

Silicon is the workhorse of the immense semiconductor industry, and its 

mechanical and electrical properties are of great interest. While the electrical 

and chemical properties of silicon are relatively well understood, its mechanical 

properties and dependence of electrical properties on mechanical stimuli are 

not well known, especially at the nanoscale. This has motivated extensive 

research in this area over the last decade and various in situ electrical 

characterization techniques have been developed to address the deformation 

mechanisms, phase transformations, and electrical response of silicon (and 

other semiconductors) under an applied force. Other semiconductors which 

have been studied using this technique include germanium and gallium 

arsenide (GaAs). 

Clarke et al. [2.106] reported on the nanoindentation-induced amorphization of 

single crystal silicon and germanium. The current was monitored as a function 

of the applied voltage during indentation and behavioral changes from Schottky 

(diode-like) through to ohmic (resistor-like) and reversal to Schottky was studied 
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during loading and unloading. Pharr et al. [2.107] investigated phase 

transformations in silicon and germanium by studying the electrical resistance of 

metal contacts on these substrates during nanoindentation. It was indicated that 

changes in resistance observed were due to the interface of the metal to 

semiconductor rather contributions from the bulk semiconductor. 

 

Figure 2.7. Schematic of experimental setup for in situ electrical nanoindentation of silicon. The 

silicon structure consists of an epilayer on low resistance silicon. Aluminum was evaporated 

onto both sides and a closed circuit for current measurement was created. (Figure reproduced 

from Ref. [2.108].) 

Bradby et al. [2.108] introduced a quantifiable and highly sensitive in situ 

electrical characterization technique to investigate the deformation behavior and 

phase transformations of crystalline silicon during nanoindentation. In this study, 

a silicon epilayer was probed during nanoindentation, allowing the 

measurement of the current through a reverse-biased Schottky diode formed by 

the configuration which would turn to an ohmic contact following the formation 

of a pressure-induced metallic Si-II phase under the indenter (Figure 2.7). As 

this configuration was particularly sensitive to the Si-I to Si-II phase 

transformation, it proved useful in detecting such changes and correlating them 

with load–displacement data acquired from nanoindentation tests. Further, 
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phase transformations to either low pressure Si-III/Si-XII or amorphous-Si 

phases were identified from the current measurements during unloading, with 

the formation or nucleation of such phases depending on the unloading rate. 

Given the sensitivity of this in situ electrical nanoindentation technique in 

detecting silicon phase transformations, the same group developed methods for 

in situ electrical measurements using a doped diamond indenter tip. The doped 

diamond tips utilize the hardness to diamond to expand the range of materials 

that electrical nanoindentation can be applied to. This was utilized to further 

investigate phase transformations of crystalline silicon under high pressure 

[2.109,110]. In Ruffell et al. [2.109], information from post-indent I–V curves and 

previous TEM and Raman spectroscopy measurements were correlated with 

the electrical behavior and phase transformations during nano indentation. 

Measurements of current flowing through the nanoindenter tip and sample 

during an indentation cycle was carried out (associated with load/unload curve), 

with a constant voltage applied [2.110]. This allows the system to be extremely 

sensitive to conductivity changes in the material below the indenter tip and also 

allows voltage monitoring throughout the loading and unloading cycle 

(Figure 2.8). A further development to this technique was reported by Fujisawa 

et al. [2.111] which consisted of combining cyclic loading with electrical 

measurements to monitor phase transformations during unloading. Changes in 

mechanical behavior and electrical conductivity were monitored and the phase 

transformation changes were verified using TEM data. Another novel approach 

to investigate the evolution of metastable Si-II metallic phase of crystalline Si 

during nanoindentation with a high spatial resolution employed in situ scanning 

spreading resistance microscopy (SSRM). 
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Figure 2.8. Current–voltage curves extracted during nanoindentation unloading highlighting 

sensitivity of in situ electrical nanoindentation in determining pressure-induced phase 

transformations. (Figure reproduced from Ref. [2.109].) 

In this work [2.112], a diamond AFM probe was used for nanoindentation while 

a direct current (DC) bias was applied between a back contact on the back 

surface of the sample and AFM tip to realize a stable electrical contact. The 

resulting current was measured using a logarithmic current amplifier enabling 

the monitoring of electrical conductivity vs. applied force, and the detection of 

phase transformation by detecting a fall in resistivity. The experimental results 

were correlated with molecular dynamics simulation which predicted a new 

metastable phase of silicon Si-XIII when using a larger indenter tip. The 

relationship between indenter tip size, contact area, and phase transformations 

in silicon are also discussed [2.112]. 

An in situ electrical contact resistance measurement was introduced to monitor 

delamination of conductor–semiconductor specimens [2.113]. Measurements 

were carried out in quasi-static and oscillating loading modes on TiN thin films 

on steel. A pop-in event together with a current drop was identified as the 

detection signal for delamination occurring in both loading regimes. 
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In a nanoindentation study on GaAs, Nowak et al. [2.114] employed in situ 

electrical probing to simultaneously record mechanical and electrical response 

of an uncoated sample during the experiment. This study examined the pop-in 

events previously reported for GaAs, which were indicated by discontinuities in 

the load-displacement curves. During the experiments, an electrical current 

spike was generated in direct relation to the mechanical pop-in event in the 

load–displacement curve. This sharp increase in current suggested the 

occurrence of a pressure-induced phase transformation in GaAs, in contrast 

with previous assumptions about the onset of plasticity in GaAs. 

(ii) Piezoelectric properties and energy harvesting 

The need to characterize the electromechanical properties of piezoelectric and 

ferroelectric materials has served as a driving force in developing nanoscale 

probing techniques that combine mechanical stimuli with electrical 

measurements, and vice versa. Nanoindentation has been used to characterize 

both piezoelectric bulk materials and thin films, with the early in situ electrical 

experiments relying on significant modification of instrumentation. 

The initial studies provided a theoretical background for employing indentation 

techniques with electrical measurements for the characterization of piezoelectric 

materials [2.115,116]. Sridhar et al. [2.116] also carried out experimental 

characterization with in situ electrical measurements to study mechanical and 

electrical responses of piezoelectric bulk materials (commercial lead zirconate 

titanate PZT-4 and barium titanate BaTiO3). This study was performed using a 

conductive and electrically grounded spherical indenter tip, with an electrometer 

connected between the indenter and ground to measure the quasi-static current 
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induced in the sample. It was found that increasing indentation velocity (loading 

rate) increased the current magnitude and switching the poling direction in the 

films under study reversed the polarity of the measured current. Indentation 

velocities up to 50 µm min-1 and a maximum load of 300 N were used. Similar 

experiments were carried out using a conical indenter tip by the same group 

which showed that after a certain load, inelastic deformation sets in and 

analytical predictions based on linear models no longer apply [2.117]. 

Algueró et al. [2.118] studied stress-induced depolarization in lanthanum-

modified lead titanate thin films. The nanoindenter tip was used as the top 

electrode to pole the thin films by applying a field of 150 kV cm-1. The 

depolarization current density under indentation was measured, and correlated 

with the movements of 90° domain walls. In another study by the same group, 

this force induced domain wall motion and ferroelectric switching was 

investigated further, this time for calcium-modified lead titanate thin films 

[2.119]. Ferroelectric hysteresis loops under indentation force were obtained 

using a tungsten carbide and cobalt (WC-Co) spherical indenter, also acting as 

an electrode to enable electrical measurements. Under applied mechanical 

force and voltage, the resulting current density and electric charge were 

evaluated using Hertzian theory. Their study revealed that mechanical stress 

prevents the ferroelectric hysteresis loops from becoming saturated. This 

hinders the ferroelectric switching process and results in large coercive fields 

(up to 400 kV cm-1). 

Koval et al. [2.120] investigated the electromechanical response of pure and 

Mn-doped PZT films of 700 and 70 nm thicknesses during nanoindentation. 

Stress-induced electrical current transients were measured in situ via the use of 
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an electrometer under a mechanical load applied by a spherical indenter. The 

conductive indenter tip was used as the top electrode while a Pt layer served as 

the bottom electrode as shown in Figure 2.9. Under the nanoindentation load, 

an electrical current which is the aggregate of intrinsic response and force-

dependent extrinsic contribution of domain walls was measured. Their results 

showed a non-linear behavior in the electromechanical response of the thin 

films within the sub-coercive stress range. 

A new approach for quantitative characterization of piezoelectric materials, 

referred to as piezoelectric nanoindentation (PNI), was reported with the use of 

an oscillating voltage applied across the sample under study [2.121]. In PNI, 

utilizing the oscillating voltage applied between the indenter and sample in a 

standard nanoindentation system with continuous stiffness measurement, the 

first harmonic of bias-induced surface area at the contact area is detected. Lead 

zirconate titanate (PZT) and barium titanate (BaTiO3) ceramics were examined, 

and their piezoelectric constants were measured under the converse 

piezoelectric effect (applying a voltage and measuring resulting strain-induced 

displacement). These results provided a quantitative insight into the 

electromechanical response of piezoelectrics. Drawing on the developments 

reported by Koval et al. [2.120] and Rar et al. [2.121], quantitative measurement 

of the longitudinal piezoelectric coefficient of strontium-doped PZT (PSZT) thin 

films were carried out by Sriram et al. [2.122] by combining the accuracy of the 

nanoindenter for displacement measurement and the converse piezoelectric 

effect. The change in the thickness of thin films was monitored while applying 

an electric potential across the thickness of the film. Utilizing the mapping 

capabilities of the nanoindenter, the piezoelectric response of the thin films has 
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been studied over large areas to determine uniformity and possible correlation 

with microstructure [2.122,123]. This enabled the determination of the average 

piezoelectric response of the material, along with identifying maxima and 

minima. 

 

 

Figure 2.9. Schematic drawing of in situ electrical nanoindentation setup used to study 

electromechanical response of piezoelectric thin films. (Figure reproduced from Ref. [2.120].) 

The piezoelectric response characterization was extended to the direct 

piezoelectric effect using a commercial in situ electrical nanoindentation 

instrument (Hysitron Triboindenter with NanoECR). In this work, controlled 

forces were applied to piezoelectric thin films and electron beam lithography 

defined piezoelectric nanoislands, as shown in Figure 2.10a and 2.10b [2.124]. 

These materials were tested with varying levels of force and loading rates to 

determine the open circuit voltage and short circuit current generation during 

nanoindentation (Fig. 2.10c). Measurements were done using impulse, 
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sustained, and staircase forces to investigate the response under the direct 

piezoelectric effect, with typical measurement results shown in Figs. 2.10d 

and 2,10e. 

 

Figure 2.10. In situ electrical nanoindentation to characterize energy generation from 

piezoelectric materials. Electron micrographs of thin films and nanoislands are shown in (a) and 

(b), respectively. Schematic of the electrical measurement arrangement is shown in (c). Typical 

results for (d) voltage generation, (e) current generation, and (f) mapping voltage generation at 

different forces. (Figure adapted from Ref. [2.124].) 

The programmable mapping capabilities of the nanoindenter again enabled the 

study of uniformity of voltage generation for different levels of force Figure 2.10f. 

Voltages of up to 40 mV and current transients of 200 pA were measured under 

a load of 5 mN, with estimated direct piezoelectric response coefficient in 

agreement with those measured under the converse effect. This study 

demonstrated the nanoscale electromechanical scientific insight that can be 

gained from in situ electrical nanoindentation, and provided quantitative 
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characterization of the energy generation capabilities of piezoelectric materials 

at the nanoscale. 
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CHAPTER 3  

CONTROLLED PVD SYNTHESIS OF 

PEROVSKITE OXIDES 

3.1. Composition, Phase and Structure Control of 

Lead-Free Piezoelectric KxNa1-xNbO3 Perovskite Oxide 

Thin Films 

Alkali-based potassium sodium niobate, KxNa1-xNbO3 (KNN), material system is 

one of the most promising lead-free substitutes for the dominant ferroelectric 

lead zirconate titanate (PZT) system owing to its good piezoelectric properties, 

high Curie temperature, and modifiability by various dopants [3.1-4]. 

KNN-based thin films have been investigated extensively during the past ten 

years for applications ranging from optical waveguides [3.5,6] and FRAMs [3.7] 

to piezoelectric-based devices for energy harvesting applications [3.8-10]. 

KNN-based thin films have been processed by a variety of techniques 

encompassing chemical deposition such as sol-gel [3.11,12] and chemical 

solution deposition (CSD) [3.13,14], and physical deposition such as pulsed 

laser deposition (PLD) [3.3,15,16] and RF magnetron sputtering [3.5,7-10,17-
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22]. Among these, RF magnetron sputtering is promising due to its capability for 

large area deposition with lower growth temperatures that makes it viable for 

integration with fabrication processes. Major challenges in RF magnetron 

sputtering of KNN-based thin films are non-stoichiometry due to volatility of 

alkali metals [3.18,23], formation of secondary phases [3.24], and high leakage 

current density [3.17,18]. 

The loss of alkali metals during KNN thin film synthesis was noted in early 

attempts of PLD and RF magnetron sputtering [3.17,23,25]. Further studies on 

the effects of different sputtering parameters on the composition, crystal 

structure, and growth rate of KNN thin films revealed that while crystalline 

phases and growth rates are largely dependent on sputtering pressure and 

growth temperature, alkali loss cannot be controlled by varying sputtering 

parameters [3.17,18,24]. It was suggested then that the alkali volatility can be 

addressed by excess amount of K and Na species (usually in the ratio of 

1.5:1.5:1 for K:Na:Nb) in sputtering targets [3.23]. Most recently, Kim et al. 

[3.22] have studied the effect of post-annealing treatment on the crystal 

structure and electrical properties of KNN thin films grown on Pt/Ti/SiO2/Si 

substrates at a substrate temperature of 300 °C utilizing a stoichiometric target, 

in different annealing atmospheres. A detailed study of the alkali loss and the 

compositional homogeneity of KNN thin films as a function of oxygen partial 

pressure during the sputtering process, offers the potential to control elemental 

diffusivity during deposition to tailor alkali content and composition ratios. This 

creates the opportunity to attain different alkali ratios from a single target and 

also create tailored deficiencies in films for ionic conduction for memristive 

applications. 
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In this section, the correlation between varying oxygen partial pressure during 

synthesis, and post-annealing treatment conditions on alkali loss and crystal 

structure of KNN thin films is studied. These insights are used to create a 

physical vapor deposition and post-annealing treatment protocol to control the 

stoichiometry and crystal structure of KNN thin films. The results of this 

investigation have been published in the journal of CrystEngComm [3.26]  

3.1.1. Controlled RF-magnetron sputtering of KNN thin films 

KNN thin films were deposited by RF-magnetron sputtering on platinized silicon 

substrates with a 200 nm thick platinum layer and a 20 nm thick titanium dioxide 

adhesion layer. A 100 mm diameter KNN target with the composition 

(K0.3Na0.7)NbO3 was used for all depositions. The composition of the target was 

verified using energy dispersive X-ray analysis (EDX) in a scanning electron 

microscope (SEM). To determine the role of elemental diffusivities on the 

resulting alkali ratio, the role of oxygen partial pressure during deposition and 

the effect of post-annealing in vacuum and gaseous atmosphere were 

investigated. The oxygen partial pressure in argon for the process gas during 

sputtering was varied from 0 to 40% in steps of 10% for each sputtering run. 

KNN thin films were subsequently post-annealed at 700 °C for 1 and 3 hours in 

vacuum and in oxygen atmosphere to study the effects of post-annealing on 

their composition, surface chemistry, and crystal structure. Table 3.1 

summarizes sputtering and post-annealing conditions. 
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Table 3.1. Sputtering and post-annealing conditions for KNN thin films 

Substrate Pt/TiO2/Si 

Target (K0.3Na0.7)NbO3 [KNN30] 

Process Gas  0, 10, 20, 40% oxygen in argon 

Base pressure 1 × 10-7 Torr 

Sputtering Pressure 5 × 10-3 Torr 

Substrate Temperature 700 °C 

RF Power 200 W 

Sputtering Duration 3 h 

Post-Annealing Treatment (at 700 °C) 
1 and 3 h in vacuum 
1 and 3 h in oxygen 

 

3.1.2. Impact of the synthesis and post-annealing treatment 

conditions on the composition and crystal structure of KNN 

thin films 

The composition and crystal structure of as-grown and post-annealed KNN thin 

films were studied using X-ray diffractometry (XRD) and X-ray photoelectron 

spectroscopy (XPS) depth profile analysis to identify the effects of synthesis 

parameters on the microstructure of KNN thin films. Figure 3.1 shows the X-ray 

diffractograms for as-deposited KNN thin films under different oxygen partial 

pressures. Peaks have been indexed using powder diffraction files for 

orthorhombic platinum silicide (PtSi – ICDD Card No. 07-0251) [3.27] and KNN 

monoclinic (ICDD Card No. 74-2025) [3.28] and tetragonal (ICDD Card No. 

77-0037) [3.29] structures. At the high temperature range of KNN thin films 

deposition, the TiO2 adhesion layer forms islands [3.30,31] providing contact 

between the substrate and the platinum layers and allowing the diffusion of the 

platinum layer into the silicon substrate [3.30]. The formation of TiO2 islands 

and the contact between platinum and silicon layers during high temperature 

oxide sputtering deposition on Pt/TiO2/Si substrates have been previously 
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verified through TEM analysis [3.32]. Due to the high deposition temperature, 

the platinum bottom electrode has been morphed into a polycrystalline platinum 

silicide layer with a strong (200) orientation. Strong (200) orientation of the 

platinum silicide layer has resulted in the formation of (002) oriented KNN 

structure (peak at 2θ of 46.1°) [3.11]. Also, the KNN (101) peak at around 32.5° 

is observed. The differences in the relative intensity of the peak at around 32.5° 

between as-grown thin films deposited at different oxygen partial pressures is 

evidence of the existence of KNN (101) orientation in the films, which becomes 

more evident with results comparing the as-grown and post-annealed samples 

(discussed later). 

 

Figure 3.1. X-ray diffractograms for as-deposited KNN thin films. Depositions were performed at 

a substrate temperature of 700 °C, with varying oxygen partial pressure. 

The appearance of secondary niobium oxide peaks in XRD can be primarily 

attributed to excess niobium compared to alkali metals in the films, resulting 

from the alkali loss during the RF magnetron sputtering with a stoichiometric 

target. To confirm niobium species indexed in the X-ray diffractograms and 
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study the effect of oxygen partial pressure and post-annealing treatments on the 

composition of the thin films, XPS depth profile analysis was conducted on the 

samples. 

XPS elemental and depth profile analysis were carried out through the 

thickness of thin films to characterize elemental ratios variation of sodium, 

potassium, niobium, and oxygen as a function of oxygen partial pressure and 

post-annealing treatments, and to determine the compositional homogeneity of 

the KNN thin films. The elemental ratios for different species are uniform within 

tolerance levels throughout the thickness of all thin films, excluding the data 

acquired from the exposed surface of the films as it is subject to ambient 

contamination. Table 3.2 shows K/(K+Na) ratio for KNN thin films grown under 

different oxygen partial pressure conditions and subjected to various 

post-deposition treatments, highlighting the impact of process gas and 

post-annealing treatment on the alkali loss and ratio.  

Table 3.2. K/(K+Na) ratio for KNN thin films grown under different oxygen partial pressure and 

subjected to various post-annealing treatments at 700 °C. The K/(K+Na) ratio of the sputtering 

target used is 30% 

Oxygen Partial 
Pressure (%) 

K/(K+Na) Ratio (%) 

As-Grown 1 h Vacuum 3 h Vacuum 1 h Oxygen 3 h Oxygen 

0 89 78 73 83 78 

10 32 39 17 42 43 

20 41 44 44 42 44 

40 41 40 50 43 42 

A lack of oxygen in the sputtering atmosphere results in a dramatic loss of alkali 

species due to collisions with the argon ions in the RF plasma and thermal 

evaporation at the substrate end at high temperature. As a lighter element, 

sodium is more prone to the scattering mechanisms than potassium [3.33-35]. 
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Thus, KNN phase was not observed in the XRD pattern of KNN films deposited 

in a pure argon atmosphere. The introduction of oxygen minimizes sodium loss, 

with the elemental ratios ranging from 31.7-41.3% (compared to the 30.0% for 

the target). Upon introduction of oxygen into the sputtering atmosphere, 

negative oxygen ions formed at the target surface get accelerated into the 

plasma towards the substrate. The highly-energetic oxygen ions enhance the 

scattering of the ablated perovskite species of the oxide target [3.36,37] which 

in turn leads to a decrease in the kinetic energy of the perovskite species. Since 

the sputtering species reach the substrate with a lower kinetic energy and 

surface mobility this leads to the formation of preferentially ordered grains with 

smaller sizes. Further, oxygen pressure helps the oxidization of the sputtered 

species into higher oxidization states leading to the formation of Nb5+ species 

for the perovskite crystal structure. Post-annealing treatments in most cases do 

not cause a significant change in the as-grown alkali ratio; however, slight 

increases observed in most cases indicate further sodium loss. 

Table 3.3. (K+Na)/Nb ratio for KNN thin films grown under different oxygen partial pressure and 

subjected to various post-annealing treatments at 700 °C. The (K+Na)/Nb ratio of the sputtering 

target used is 100% 

Oxygen Partial 
Pressure (%) 

(K+Na)/Nb Ratio (%) 

As-Grown 1 h Vacuum 3 h Vacuum 1 h Oxygen 3 h Oxygen 

0 10 9 14 15 20 

10 45 27 56 50 53 

20 37 33 39 52 44 

40 28 25 33 43 40 

The ratio of alkali to niobium concentration (K+Na)/Nb, which is expected to be 

1 (or 100%), was also analyzed (see Table 3.3). The elevated loss of alkali 

metals in the sputtering process is observed in all films leading to alkali-to-
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niobium ratios of 0.1-0.5 in the KNN thin films. This result supports reports 

[3.23] that a potential mechanism to compensate for alkali loss is to have 

excess alkali concentration in KNN oxide sputtering targets. 

3.1.3. Stabilization of perovskite KNN chemical phase and 

crystal orientation through post-annealing treatments 

In order to understand the underlying mechanism and chemical–

crystallographic phase changes resulting from such alkali loss, detailed analysis 

of the XPS spectra for sodium, potassium, niobium and oxygen species in the 

KNN30 thin films was carried out.  

 

Figure 3.2. XPS spectra for (a) K2p, (b) Na1s, (c) Nb3d, and (d) O1s core levels for 

as-deposited KNN thin film grown under 20% oxygen partial pressure. 
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Figure 3.2 presents XPS spectra for these elements in the as-grown sample 

deposited under 20% oxygen partial pressure (chosen based on its preferential 

orientation, Fig. 3.1)  

The results have been obtained after background correcting the as-obtained 

XPS spectra using Shirley algorithm [3.38], aligning the elemental binding 

energies to adventitious carbon (C1s) binding energy of 285 eV and resolving 

chemically distinct species using a non-linear least square fitting procedure 

[3.39].  

Both potassium and sodium spectra were found to consist of a single 

component spectrum that can be correlated to KNN structure. Notably, as 

expected, K2p spectrum showed the spin orbital pair corresponding to 2p3/2 and 

2p1/2. XPS spectrum for Nb3d shows three different spin orbital pairs, 

corresponding to three different niobium species: (i) NbOδ where 1<δ<2 at 

204.3 eV; (ii) NbO2 at 205.8 eV; and (iii) Nb2O5 phase present in KNN 

(henceforth called Nb-KNN) at 207.7 eV [3.40,41]. Moreover, O1s spectrum 

could be de-convoluted into two components with binding energies at 530.7 eV 

and 532.5 eV [3.42], which correspond to O2- ions in the structure of different 

niobium oxides, and the adventitious C–O bonds adsorbed on to the sample 

surface, respectively. Further, the effect of different post-annealing treatments 

on the composition of the thin films was examined by de-convoluting the Nb3d 

core level XPS spectra in corresponding spin orbital pairs. In as-grown samples 

and those post-annealed in vacuum for 1 h, NbOδ, NbO2, and Nb-KNN related 

peaks were all present. However, in the thin films annealed for 1 h in oxygen, 

the NbOδ peak completely vanished and the peak related to KNN became 
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significantly more prominent than that of NbO2 (based on the integrated peak 

area).  

 

Figure 3.3. Nb3d spectra of the films grown under 20% oxygen partial pressure: (a) 

as-deposited, (b) post-annealed for 1 h in vacuum, and (c) post-annealed for 1 h in oxygen. 

 

Figure 3.4. Relative percentage concentrations of the NbOδ, NbO2, and Nb-KNN species at 

consecutive etching levels of the KNN thin films studied (a,b,c) as-deposited and subjected to 

post-annealing treatment in (d,e,f) vacuum for 1 h and (g,h,i) oxygen for 1 h and grown with 

(a,d,g) 10%, (b,e,h) 20%, and (c,f,i) 40% oxygen partial pressure. 
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This indicates that the annealing in an oxygen environment for a sufficient 

amount of time increases the tendency of Nb to oxidize towards higher 

oxidation states, desirable for attaining the Nb2O5 state required for KNN. 

Figure 3.3 shows the evolution of Nb3d peak for the film grown under 20% 

oxygen partial pressure as a result of post-annealing treatments. XPS spectra 

of Nb3d through the thickness of films were also used to determine the 

uniformity of oxidation levels at different thickness levels of the sample. The 

films deposited under 10%, 20%, and 40% oxygen partial pressures were 

studied. Figure 3.4 shows the relative concentration of the three different Nb 

species at four different depths within the film (based on four consecutive etch 

cycles). 

The concentration of the Nb-KNN species (as opposed to Nb species in oxides) 

decreases through the depth of films post-annealed in vacuum irrespective of 

the oxygen partial pressure during the sputter deposition process. This 

phenomenon can be attributed to the lack of oxygen during annealing which 

prevents Nb from attaining a more stable higher oxidation state, as desirable for 

KNN. Also, the amount of NbO2 is relatively uniform (about 20%) at different 

etch levels. This indicates that limited oxygen was available at greater depths in 

the film, resulting in the dominance of the sub-stoichiometric NbOδ species. On 

the other hand, films post-annealed for 1 h in oxygen exhibit considerably 

higher Nb5+ species almost uniformly throughout the thickness. This indicates 

that post-annealing in oxygen atmosphere enables oxygen diffusion through the 

film thickness, promoting Nb5+ oxidation states (Nb-KNN) desirable for KNN thin 

films. 
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To study the effects of post-annealing treatments on the crystal structure of thin 

films, powder diffraction XRD was conducted on the post-annealed samples.  

 

Figure 3.5. X-ray diffractograms for KNN thin films as-deposited at 700 °C and further annealed 

in oxygen at 700 °C for 1 h. Thin film deposition was carried out at oxygen partial pressures of 

(a) 10% and (b) 20%. 
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Figure 5 presents and compares X-ray diffractograms of as-deposited and 

post-annealed samples for the films grown under oxygen partial pressures of 

10% and 20%. For thin films grown under 10% oxygen partial pressure at 

700 °C, post-deposition annealing in an oxygen atmosphere for 1 h at 700 °C 

results in considerable growth of KNN (002) and KNN (101) orientations, and 

the suppression of NbO2 as observed in the XRD results (Fig. 3.5(a)) [3.28,29]. 

The KNN (111) peak intensity also decreases, indicating the re-orientation of 

KNN crystal structure in (002) and (101) directions. Films grown under 20% 

oxygen partial pressure however, exhibit the growth of KNN crystal structure in 

(111) direction following post-deposition annealing in oxygen atmosphere 

(Fig. 3.5(b)).  

Secondary niobium oxide peaks are reduced in intensity in these samples as 

well indicating the formation and growth of higher order Nb5+ oxidization states, 

as a result of the annealing treatment, complementary to the results of the XPS 

analysis (Figure 3.3 and 3.4).  

These XRD results, considered in combination with the XPS outcomes, allude 

to the possibility of engineering the crystalline orientation and alkali ratio in KNN 

thin films through varying the oxygen partial pressure during the sputtering 

process coupled with specific post-annealing treatments. 

3.1.4. Optimization of the synthesis parameters and 

post-annealing conditions for KNN thin films 

Previous studies on the RF magnetron sputtering of KNN thin films have shown 

that the composition and the growth rate of KNN thin films are not influenced by 

growth temperature [3.17,18,24]. Further, the crystalline orientation of KNN thin 
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films was proven to be dependent on the growth temperature. To substantiate 

this hypothesis and to test the primary premise that the RF plasma can 

determine alkali ratios (and thereby, film composition), depositions were carried 

out on a modified substrate and at a lower temperature. KNN thin films were 

deposited on Pt/Ti/SiO2/Si substrates at the growth temperature of 600 °C and 

post-annealed at 600 °C in oxygen atmosphere for 1 h. Figure 3.6 shows the 

X-ray diffractograms for as-deposited and post-annealed thin films grown under 

20% oxygen partial pressure at 600 °C. 

The SiO2 barrier layer utilized on silicon substrates prior to deposition of 

platinum thin film prevents the formation of the PtSi layer during deposition at 

high substrate temperature [3.43]. As a result, the as-deposited nano-crystalline 

platinum crystallizes into the thermodynamically stable (111) configuration on 

exposure to higher temperatures. The resulting KNN thin films show strong 

c-axis (001) orientation with the absence of the KNN (101) peak. Strong 

preferential orientation of platinum layer as opposed to the polycrystalline Pt–Si 

layer also prevents the formation of crystalline phases for secondary niobium 

oxide species. The composition of KNN thin films deposited at 600 °C was 

examined after post-annealing treatment in oxygen via XPS, revealing its 

K/(K+Na) ratio to be 44.2%, almost identical to the film grown under 20% 

oxygen partial pressure at 700 °C and post-annealed in oxygen for 1 h. The 

(K+Na)/Nb ratio was 43.9%, slightly lower than the ratio at 700 °C. These XPS 

results highlight that the changes in the deposition temperature and the 

substrate do not significantly influence the RF plasma diffusivity which 

determines alkali loss and alkali-niobium ratio. 
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Figure 3.6. X-ray diffractograms for KNN thin films as-deposited at 600 °C and annealed in 

oxygen at 600 °C for 1 h. 

In summary, the ability to control alkali concentration and ratio in lead-free KNN 

thin films has been examined. It has been shown that the lighter alkali species 

(sodium) experiences greater scattering in the deposition atmosphere; while 

both alkali species are significantly scattered in comparison to niobium. These 

results highlight the need to account for such loss in species during the RF 

sputtering process by tailoring the initial sputtering target composition. Such 

alkali ratio control by varying oxygen partial pressure, independent of substrate 

temperature and configuration, also provides a mechanism to vary dopant 

concentrations in thin film samples using just one sputtering target of fixed 

composition. Further, the stabilization of the KNN phase has been achieved 

through the elimination of secondary phases using a facile high-temperature 

post annealing process in oxygen atmosphere. Moreover, the effect of substrate 

orientation and crystallinity on the crystal structure of high temperature RF-

sputtered KNN thin films was highlighted. Results for thin films sputtered at 



CONTROLLED PVD SYNTHESIS OF PEROVSKITE OXIDES                      53 

600 °C on platinized silicon substrates with thermally grown SiO2 barriers signal 

the formation of a strongly (111) textured platinum layer which in turn leads to a 

strong orientation in the KNN thin films. This further highlights the significance 

of temperature control during the RF deposition which allows for the effective 

control of the orientation in metallic substrate layer and in turn the preferential 

orientation in KNN perovskite oxide thin films. 

3.2. Compositional and Oxygen Deficiency Control in 

SrTiO3 Perovskite Oxide Thin Films for RRAM 

Applications 

Strontium titanate (SrTiO3: STO), the archetypical perovskite oxide with a vast 

majority of functional properties and an incredible flexibility for functionalization 

through compositional and structural engineering [3.44-48], has shown great 

potential for nanoscale resistive switching applications [3.49-55]. This is due to 

the inherent tendency of the stable perovskite structure of STO to harbor 

oxygen vacancy point defects and the pronounced redox activity along 

dislocations in TiO2 sub-lattice [3.49,56]. Oxygen vacancy induced defect 

structures induced by electroforming play a decisive role in determining the 

resistive switching performance of metal-oxide-based devices. Therefore, 

synthesizing the oxide layer with a controlled concentration of oxygen vacancies 

can enhance the switching performance via the introduction of a network of 

point defects. Moreover, a built-in oxygen vacancy network provides greater 

flexibility and control over the electroforming process and partially eases high 

energy requirements for the creation of defect-rich, conductive filamentary 

pathways. 
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In this section, a facile low temperature synthesis route based on controlled 

RF-magnetron sputtering is introduced, to attain amorphous SrTiO3 (a-STO) thin 

films with precise control over thickness, oxygen deficiency and external dopant 

concentration.  The results of this investigation have been partly published in 

the journal of Advanced Functional Materials [3.57]. 

3.2.1. Controlled RF-magnetron sputtering of amorphous SrTiO3 

(a-STO) thin films 

STO thin films were deposited by room temperature RF-magnetron sputtering 

on Pt/TiO2/SiO2/Si (50:10:300 nm) substrates. A 100 mm diameter ceramic STO 

target stoichiometric composition was used for all depositions. Further, a 

metallic niobium (Nb) target was used at the DC source for co-sputtering of Nb 

species during the RF sputtering of STO thin films.  

Table 3.4. Sputtering and co-sputtering parameters for STO thin films 

Substrate Pt/TiO2/SiO2/Si (50:10:300 nm) 

Target SrTiO3 

Process Gas  0, 5% oxygen in argon 

Base pressure 1 × 10-7 Torr 

Sputtering Pressure 5 × 10-3 Torr 

Substrate Temperature Room Temperature 

RF Power 100-200 W 

DC Power 0-40W 

Oxygen partial pressure as well as the sputtering power on both RF (STO) and 

DC (Nb) sources were systematically varied and the sputtered thin films were 

analyzed for their thickness, composition and crystal structure to obtain the 

optimum synthesis parameters for STO thin films. Table 3.4 summarizes the 

sputtering conditions. 
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Figure 3.7. X-ray diffractograms for Pt/TiO2/SiO2/Si substrate and STO thin films deposited in 

0% and 5% oxygen partial pressure at room temperature. 

RF sputtering power and sputtering time were varied between 100 to 200 W 

and 1 to 3 hours, respectively to obtain the optimal growth rate for STO thin 

films. The optimal growth conditions for precise thickness control were achieved 

at an RF power of 200 W, where the growth rates where 1.12 nm/min and 0.55 

nm/min for 0% and 5% oxygen partial pressures, respectively. Figure 3.7 

illustrates the XRD diffractograms for 100 nm STO thin films sputtered at room 

temperature, under 0 and 5% oxygen partial pressures.  

No XRD peak pertaining to one of the preferential perovskite orientations was 

observed in STO thin films. Therefore, it is concluded that similar to previous 

reports [3.57-60], RF sputtering of STO at room temperature results in the 

formation of amorphous SrTiO3 (a-STO) thin films.  
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X-ray photoelectron spectroscopy (XPS) elemental and depth profile analysis 

was carried out through the thickness of the as-deposited thin films to establish 

the optimum sputtering parameters for tuning the composition of a-STO oxide 

layers. The composition of the thin films was found to be uniform through the 

thickness with the exception of the surface layer as it is subject to oxidization 

and ambient contamination (Figure 3.8 and 3.9). Oxygen partial pressure of 5% 

during the sputtering process results in stoichiometric oxygen a-STO thin films 

with a Sr/Ti ratio of 80%. On the other hand, a-STO films sputtered in pure 

argon atmosphere are slightly Sr-rich and have a uniform oxygen deficiency of 

~3% throughout the thickness. Co-sputtering of niobium was carried out during 

the deposition of oxygen deficient a-STO to obtain niobium-doped oxygen 

deficient a-STO thin films (Figure 3.10). For the optimal sputtering conditions, 

the growth rate of Nb:a-STO thin films was found to be ~1.20 nm/min.  

 

Figure 3.8. Atomic concentrations of the principal elements in as-grown a-STO thin films 

deposited under 5% oxygen partial pressure.  
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Figure 3.9. Atomic concentrations of the principal elements in as-grown a-STO thin films 

deposited under 0% oxygen partial pressure.  

 

Figure 3.10. X-ray diffractograms of Nb:a-STO (DC/RF power: 5/200 W) thin films deposited in 

0% oxygen partial pressure at room temperature, confirming their amorphous nature. 
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Figure 3.11. Atomic concentrations of the principal elements in as-grown Nb doped a-STO thin 

films deposited under 0% oxygen partial pressure at room temperature (DC/RF power: 5/200 

W). 

Table 3.5. Sputtering parameters and elemental ratios of sputtered a-STO thin films 

 
Stoichiometric 
oxygen a-STO 

Oxygen-Deficient 
a-STO 

Nb-doped Oxygen-
Deficient a-STO 

Sputtering Parameters 

Process Gas Ar:O2 (95:5) Ar Ar 

Sputtering Pressure (Torr) 5×10-3 5×10-3 5×10-3 

RF Source Power (W) 200 200 200 

DC Source Power (W) N/A N/A 5 

Growth Rate (nm/min) 0.55 1.12 1.20 

Principal Elements Concentration (at%) 

Sr 17.8 22.1 22.2 

Ti 22.3 20.7 20.1 

O 59.9 57.2 57.2 

Nb N/A N/A 0.46 

The low growth rate of the a-STO thin films combined with a direct non-linear 

dependence on oxygen partial pressure and plasma power density, allows for 

the synthesis of monolithic oxide layers (Ra = 0.45-0.55 nm as characterized by 
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tapping mode AFM and in situ SPM) with thicknesses down to 10 nm. Table 3.5 

denotes the sputtering parameters and the composition of a-STO thin films. 

In summary, the demonstrated low temperature deposition technique for oxygen 

deficient and doped a-STO thin films, provides a facile, CMOS-compatible 

synthesis route for the realization of functional oxide layers with as-synthesized 

oxygen deficiencies.  
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CHAPTER 4  

TWO-TERMINAL AMORPHOUS SrTiO3 (a-STO) 

BASED METAL-OXIDE-METAL (MIM) 

MEMRISTORS 

4.1. Two-Terminal Metal-Oxide-Metal Based Memristors 

Memory technologies were traditionally utilized to store digital data in the form 

of “1”s and “0”s. Current interest lies in technologies which enable analog 

memories that have multiple states. This enables unprecedented high density 

memories and most significantly neuromorphic computing [4.1,2]. These rely on 

the electronic state of memories being highly non-volatile, with durable and 

cyclic switching, and easy differentiation of ON/OFF states. Nanoscale resistive 

memories (or ‘memristors’) satisfy many of these requirements, and are reliant 

on functional oxides. They are normally configured as passive two terminal 

metal-insulator-metal (MIM) devices based on functional binary and ternary 

metal-oxides (e.g. TiO2, SrTiO3). These offer a scalable, fast, non-volatile and 

low energy “memristive” performance [4.3-8]. Their dynamic non-linear current–

voltage characteristics also suggest applications in non-linear circuit design and 

alternative logic architectures.  
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The bipolar resistive switching behaviour in these devices is attributed to a 

combination of electronic effects at the metal/oxide interfaces and reversible 

redox reactions and nanoionics transport in transition metal-oxide layers 

[4.3,4,7,8]. These processes are triggered in the oxide upon the creation of 

extended defect structures during an electroforming process, under high 

electrical gradients. Complex transition metal oxides with perovskite crystal 

structure are among the most technologically relevant classes of electronic 

materials. A plethora of functional properties such as ferro/piezoelectricity, 

ferromagnetism, superconductivity and memristivity can be engineered through 

the compositional and structural modification of the perovskite structure [4.9-

12]. 

In this chapter CMOS-compatible resistive switching devices based on 

amorphous STO (a-STO) thin films synthesized at room temperature are 

demonstrated. Compositional analysis of the virgin (as-grown) and 

electroformed devices underpin the nanoionics-based processes responsible for 

the conduction mechanisms in a-STO switches. Further, the role of defect 

chemistry, as-gown oxygen deficiency and external dopants in the switching 

performance of a-STO switches is investigated. The results of these 

investigations have been partly published in the journal of Advanced 

Functional Materials [4.13]. 

4.1.1. MIM memristors based on oxygen deficient a-STO oxide 

layers 

To investigate the process of electroforming and subsequent electroresistive 

switching in oxygen deficient a-STO oxide layers, micrometre scale (20-100 µm 
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electrode dimensions) asymmetric MIM switching cells using a 100 nm oxide 

layer were fabricated in Pt/Ti/a-STO/Pt configuration. Microscale a-STO 

crossbar arrays were fabricated on SiO2/Si substrates using a three-step 

photolithography/lift-off process. In the first lift-off step, 50 nm bottom platinum 

electrodes with 10 nm TiO2 adhesion layers were deposited on pre-patterned 

SiO2/Si substrates by electron beam evaporation at room temperature. Oxygen 

deficient a-STO thin films of 100 nm thickness were then RF sputtered through 

a shadow mask. Lastly, Pt/Ti (50:10 nm) top electrodes were patterned using 

photolithography and deposited by electron beam evaporation at room 

temperature to complete the crossbar structure (Figure 4.1). 

 

Figure 4.1. (a) Large-view SEM micrograph of a 20 µm × 20 µm Pt/Ti/a-STO/Pt crossbar 

device. (b) SEM micrograph of the surface of Pt top electrode and a-STO oxide demonstrating 

the dense, smooth surface of the oxide 

As discussed in Chapter 3, X-ray photoelectron spectroscopy (XPS) depth 

profile results on as grown a-STO thin films reveal a uniform oxygen deficiency 

distribution throughout the thickness of the films. As such, the controlled 

physical vapour deposition process eliminates the need for the high 
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temperature reducing steps commonly required for the creation of oxygen 

vacancies in STO [4.4,14-16]. 

As previously reported, the dissimilar metal oxide interfaces facilitate robust 

redox process and the subsequent creation of nano filamentary extended defect 

structures. Particularly, a-STO forms an Ohmic interface with a shallow work 

function (4.3 eV) Ti which acts as the cathode (transparent to the ionic current) 

for redox reactions in the oxide layer. Even prior to the creation of the extended 

defect structures, the Ti is partially oxidized at the vicinity of the interface with 

a-STO according to the reaction Ti + SrTiO3 � TiOx + SrTiO3-x.The top Pt layer 

prevents further oxidization of the Ti layer which can occur due to exposure to 

ambient oxygen. 

The electrical characteristics of a-STO metal-insulator-metal MIM cells were 

probed using either the bottom or top electrode as the drive electrode with the 

opposite electrode connected to the system ground. The initial current–voltage 

(I–V) curves of MIM devices in virgin state exhibited an area dependent, 

Schottky-like rectifying characteristic correlated with the choice of bias electrode 

and voltage polarity (Figure 4.2a). The I–V characteristics confirm the expected 

formation of dissimilar Schottky barriers at the Ti/a-STO and a-STO/Pt 

interfaces. A single irreversible electroforming (or forming) step, in form of a 

voltage sweep with maximum voltages in the range of |8-10| V, was required to 

trigger the electroresistive switching behaviour in a-STO MIM devices (Figure 

4.2b). 

The switching polarity of formed devices is governed by the relative voltage bias 

polarity between top and bottom electrodes during the electroforming step. 
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a-STO MIM cells biased from the top electrode were electroformed through a 

single current limited voltage sweep with a negative polarity and typically higher 

(~20%) maximum voltages during the electroforming step (Figure 4.3a). Upon 

electroforming, a-STO MIM cells biased from the top electrode show a bipolar 

switching behavior with a reversed polarity compared to the cells biased from 

the bottom electrode (Figure 4.3b). The average OFF/ON switching ratios for 

these devices is found to be around 70. Although top and bottom electrode 

biased devices were successfully electroformed with both bias polarities, 

devices formed with an effective positive polarity at the bottom a-STO/Pt 

interface (either through applying a positive bias to the bottom electrode or a 

negative bias to the top electrode) exhibited greater yield with superior and 

stable switching performance, and therefore, are the focus of this study.  
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Figure 4.2. Electrical characterization of a-STO MIM cells. (a) I–V characteristics of virgin 

a-STO MIM cells biased from the bottom platinum electrode. (b) Typical electroforming sweep in 

positive polarity for a-STO MIM cells biased from the bottom electrode. 

Post-electroforming, these devices exhibit stable non-volatile bipolar switching 

characteristics (Figure 4.4b, c) with OFF/ON ratios that exceed 103 over a wide 

range of READ voltages highlighting their operational flexibility (Figure 4.4c). 

Individual devices were successfully operated for more than 106 I–V sweep 

WRITE/ERASE cycles with less than 10% deviation in the switching voltages 

(Figure 4.4c). No appreciable change in the high resistance state (HRS) and 

low resistance state (LRS) properties was observed at a read voltage of 

±250 mV in either polarity over repeated reading cycles of 105 seconds (<1% 

over the total READ period). 

 

Figure 4.3. Electrical characterization of a-STO MIM cells biased from the top electrode. (a) 

Typical electroforming sweep in negative polarity for a-STO MIM cells biased from the top 

electrode. (b) Typical bipolar switching behavior of electroformed a-STO MIM cells biased from 

the top electrode. 

Pulsed WRITE/READ/ERASE cycles were carried out using pulse widths of 

10-100 µs. Table 4.1 outlines the switching performance of a-STO cells from 
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over a hundred tested devices. Both READ and WRITE operations can be 

carried out at very low current density (considering the cell sizes) in micro-meter 

scale a-STO devices.  

The bipolar switching behavior of transition metal oxide layers in MIM 

configuration is generally perceived to be originating from inhomogeneous 

conduction mechanisms through localized filamentary channels [4.1,17-19]. As 

such, the current transport in HRS and LRS regimes is expected to be 

independent of the geometric area of the MIM device.  Figure 4.4d presents the 

resistance-area product vs. the device area for micron-sized a-STO MIM cells of  
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Figure 4.4. Resistive switching performance of electroformed a-STO MIM cells. (a) Typical 

electroforming sweep in positive polarity for a-STO MIM cells biased from the bottom electrode. 

(b) Typical bipolar switching behaviour of a-STO MIM cells. (c) Bipolar switching performance of 

a single cell over 106 consecutive I–V sweep. (d) Resistance-area products for a-STO MIM cells 

of various sizes in OFF and ON states. The resistance values were extracted through a linear fit 

to the I–V curves in the range of designated READ voltages of ±250 mV. (e) High and (f) low 

resistance states (HRS and LRS, respectively) of a-STO cells as function of READ voltage. 
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various sizes. The increase in the R×A product with increasing the device size 

clearly indicates a local conduction mechanism in both HRS and LRS regimes. 

Further, No appreciable size-dependency was observed for either the ON/OFF 

ratios or the READ/WRITE current densities in either state.  

Table 4.1. Performance characteristics of a-STO memory cells 

WRITE Voltage / Current (V / µA) -1.35 / 200 

READ Voltage / Current at LRS (mV / µA) ±250 / 85 

ERASE Voltage / Current (V / µA) 1.9 / 600 

READ Voltage / Current at HRS (mV / µA) ±250 / 0.6 

Retention (s) >105 

Number of Cycles >106 

ON Switch Voltage Drift 8.6±1% 

OFF Switch Voltage Drift 4.5±1% 

The size-independency calls for a detailed investigation into the nature of 

resistive switching mechanisms in a-STO devices which will be addressed in 

the following sections, as this is an invaluable trait for scaling devices down to 

the nanoscale. The switching performance of a-STO devices is comparable to 

the best reported STO and TiO2 based devices [4.17,19]. Such switching 

performance has not been previously demonstrated in STO-based devices on 

CMOS-compatible substrates (most reported devices have been fabricated on 

single crystal STO substrates [4.4,20-22]) or with a low temperature 

CMOS-compatible process. The facile fabrication of high performance resistive 

switching devices based on a single a-STO oxide layer can open new horizons 

in design and fabrication of resistive memory devices complementary to planar, 

semiconductor technology in the form of biocompatible and flexible devices 

[4.23]. 
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4.1.2. The electroforming mechanism in a-STO MIM memristive 

cells 

The electroforming process facilitates the electroresistive switching in 

intrinsically insulating metal oxides by permanently altering their stoichiometry 

and oxygen vacancy distribution via redox processes [4.7,8,14]. In order to 

characterize the impact of electroforming on the defect chemistry of a-STO thin 

films, XPS depth profile was performed on 100 µm ⨯ 100 µm junctions before 

and after electroforming The devices size was chosen to comply with the lowest 

X-ray spot-size (100 µm) available in the XPS system (Figure 4.5).  

 

Figure 4.5. Atomic concentrations of the principal elements in a-STO devices. (a) Relative 

elemental ratios in virgin a-STO MIM cells. (b) Relative elemental ratios in electroformed a-STO 

MIM cells. Values are calculated from XPS depth profile analysis on 100 µm × 100 µm devices. 

While virgin a-STO devices show a uniform oxygen deficiency of around 3% throughout the 

oxide thickness, there is an enhanced deficiency gradient in formed cells with oxygen deficiency 

level being highest at the electroforming cathode (Ti/a-STO) interface. 

Virgin devices exhibit a largely uniform atomic concentration with an oxygen 

deficiency of ~3% indicating a weak n-type doping (Figure 4.6a). On the other 

hand, electroformed devices show an overall enhancement in oxygen deficiency 
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concentration (~5%), in particular a sharp increase at the top interface with the 

titanium layer (Figure 4.6a). However, due to the averaging nature of the 

technique, an increase in the oxygen deficiency in the formed relative to the 

virgin devices implies that a large area of device has undergone redox 

processes upon electroforming. This is in contrast to common observations of 

highly localized filamentary pathways (usually around the edges) in MIM 

resistive switching devices based on redox processes in metal oxides (for 

example, in TiO2 and Fe-SrTiO3) [4.19,24-26]. This instigated further 

investigation into the impact of electroforming on the structure and switching 

mechanisms of a-STO devices using in-situ nanoscale probing experiments in 

Chapter 5. 

 

Figure 4.6. Electroforming and switching mechanisms in a-STO MIM cells. (a) Relative oxygen 

concentration throughout the thickness of the oxide layer calculated based on XPS depth profile 

results on 100 µm × 100 µm cells. (b) Schematic of electroforming and subsequent switching 

mechanisms in a-STO cells. The electroforming step results in an enhanced oxygen deficiency 

in the MIM cell. Subsequent motion of oxygen ions along the extended defect structure is 

responsible for bi-stable, cyclic switching behaviour. 
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Since the oxygen deficiency distribution is uniform in the virgin oxide layer, the 

metal/oxide interfaces dominate the conduction mechanisms in virgin devices 

and therefore largely govern the electroforming process. At a sufficiently high 

voltage bias, an abrupt jump in current is observed. A current compliance limit 

of 100 µA ensures that the bias voltage is compensated (i.e., scaled back) to 

prevent further breakdown of the device. Following this process, the devices 

exhibit repeatable bipolar switching behaviour between a highly conductive ON 

and a highly resistive rectifying OFF state.  This denotes electrically induced 

redox processes taking place at the Ti/a-STO which create a locally high 

concentration of oxygen vacancies in the vicinity of metal/oxide interface [4.8]. 

During the electroforming process with the a-STO/Pt interface as the drive 

(anode) electrode, oxygen vacancies drift away from the forward biased bottom 

interface through the most favorable paths in the amorphous oxide structure 

towards the top Ti/a-STO interface, resulting in a strongly n-type doped region 

with a high concentration of oxygen vacancies in the vicinity of the top interface. 

This in turn lowers the electronic barrier at the top interface, facilitating the 

redox processes under the high electrical stress. As such, the electrical barrier 

at top Ti/a-STO interface irreversibly collapses, and conductive channels 

propagate towards the bottom a-STO/Pt interface, creating a virtual cathode 

which is limited by the current compliance limit and the forward bias on the 

anode [4.8,18]. 

4.1.3. Ionic migration based switching mechanisms in a-STO 

MIM memristive cells 

Figure 4.6b depicts a schematic for the switching behaviour of a-STO cells after 

the electroforming step. The electroformed STO MIM devices are pre-set to ON 
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state. The switching behaviour of electroformed a-STO MIM cells can be 

described by a simplistic memristor plus rectifier equivalent circuit [4.18]. In the 

OFF state, the conduction mechanism of the device is governed by the low 

oxygen vacancy concentration region at the bottom a-STO/Pt interface (the 

current limiting anode) as indicated by the rectifying Schottky-like transport 

characteristics of the I–V curves (Figure 4.2a). On applying a negative bias to 

the bottom interface, oxygen vacancies drift from the Ohmic virtual cathode 

region (vacancy enriched Ti/a-STO interface) towards the bottom through the 

pre-formed conduction channels, thinning the depletion layer at the a-STO/Pt 

interface and switching the device to ON state where the electron tunnelling 

through a thin residual barrier manifests itself as a symmetrical I–V 

characteristic (Figure 4.4), similar toTiO2 devices (reported by Yang et al. 

[4.18,19]). A reversal of bias polarity at the bottom interface repels the oxygen 

vacancies in the conduction channel(s) further away from the a-STO/Pt 

interface resulting in the recovery of the electronic barrier and switching the 

device back to OFF state. 

4.2. The Role of Defect Chemistry in the Switching 

Performance of a-STO MIM Devices 

4.2.1. Switching performance of a-STO MIM cells with different 

stoichiometry 

In order to investigate the effect of oxide layer stoichiometry on the switching 

performance of a-STO MIM cells, identical micrometre scale (20-100 µm 

dimensions) were fabricated using 100 nm oxide layers with the compositional 

values discussed in Chapter 3 (i.e. Stoichiometric oxygen, Oxygen-deficient and 
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Nb-Doped oxygen-deficient a-STO). The metal electrodes thickness and 

structure were kept the same for all MIM cells. 

All a-STO MIM devices were highly insulating in their virgin state and showed 

Schottky-like transport characteristics. The bipolar resistive switching is 

achieved following an electroforming procedure for STO-based MIM devices 

[4.3,4,8,21,27]. In order to create an oxygen vacancy gradient in STO-based 

memristive devices, an ohmic contact permissible to ionic current (e.g. a contact 

with a low work function metal), and a blocking contact (e.g. a high work 

function metal) should be engineered in MIM devices. [4.8,20,22].  

A single electroforming voltage sweep from the bottom Pt/a-STO interface was 

necessary to induce resistive switching behavior in a-STO devices. A current 

compliance limit of 100 µA was set to prevent the complete breakdown of the 

oxide layer. Figure 4.7c shows the electroforming procedure of devices utilizing 

a-STO thin films with different compositions. a-STO thin films with stoichiometric 

oxygen content are electroformed though voltage sweeps in the range of 11-

13 V (Figure 4.7c). Following the electroforming, the a-STO devices show 

bipolar switching characteristics with switching ratios of the order of 50-70 at a 

READ voltage of ±250 mV (Figure 4.7d). On the other hand, oxygen deficient 

a-STO thin films require peak voltage sweep range of 8-10 V during the 

electroforming step. The bipolar switching behavior of oxygen-deficient a-STO 

thin films is more stable and the switching ratios are significantly enhanced to 

103-104 (compared to <102 for the stoichiometric oxygen a-STO devices) at 

similar READ voltages. For niobium-doped oxygen-deficient a-STO thin films, 

maximum required sweep voltages for electroforming drops significantly (5-6 V).  
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Figure 4.7. (a) Schematic of the cross-bar structure. (b) Cross-sectional schematic of a-STO 

MIM cells. (c) Typical electroforming sweeps and (d) representative bipolar switching behavior 

over 104 cycles for a-STO MIM cells utilizing different oxide layers. 

Table 4.2. Performance characteristics of a-STO MIM devices. 

 
Stoichiometric 
Oxygen a-STO 

Oxygen-
Deficient a-STO 

Nb-Doped 
Oxygen-

Deficient a-STO 

Electroforming Voltage (V) 11-13 8-10 5-6 

Switching Ratios 50-100 103-104 ~103 

WRITE Voltage / Current 
(V / µA) 

-1.3 / 710 -1.35 / 200 -1.6 / 55 

READ Voltage / Current at LRS 
(mV / µA) 

±250 / 160 ±250 / 85 ±250 / 23 

ERASE Voltage / Current 
(V / µA) 

2.0 / 1100 1.9 / 600 1.78 / 446 

READ Voltage / Current at HRS 
(mV / µA) 

±250 / 0.3 ±250 / 0.046 ±250 / 0.021 

Retention (s) >105 >105 >105 

Number of Cycles ~104 >106 >106 
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The electroformed devices retain high switching ratios of ~103 that are 

comparable to those observed for the oxygen-deficient films while showing 

reduced requirements for WRITE/ERASE and READ currents in both low and 

high resistance states. More than fifty devices of each oxide composition with 

electrode sizes ranging from 20×20 to 100×100 µm2 were tested in sweep 

WRITE/ERASE and pulsed WRITE/READ/ERASE cycles (pulse widths of 

10-100 µs). Table 4.2 details the switching performance of a-STO devices.  

4.2.2. Role of the defect chemistry in the switching performance 

of a-STO cells 

It is well known that the defect structure in transition metal oxides resulting from 

intermediate chemical phases and oxygen vacancy induced point and line 

defects, largely determine the memristive behavior of metal oxide based MIM 

devices [4.2,5,7,8,18,21,27-30]. In order to investigate the chemical states in 

a-STO thin films and the impact of the compositional changes on the memristive 

behavior of a-STO MIM devices, a detailed analysis of the XPS binding energy 

spectra of principal elements was carried out throughout the thickness of oxide 

layers. Chemically distinct species were resolved using a non-linear least-

square fitting procedure [4.31] after correcting the background of as-obtained 

XPS spectra using the Shirley algorithm [4.32] and aligning the elemental 

binding energies to adventitious carbon (C1s) binding energy of 285 eV. Figure 

4.8 illustrates the de-convolution of the core level spectra of for O1s and Sr3d in 

different a-STO oxide layers. The chemical phases of Sr and O showed 

negligible change through the thickness of the oxides indicating a uniform 

perovskite oxide phase. 
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Sr3d core level spectra through the thickness of all a-STO oxides consist of a 

single component that can be correlated to Sr2+ species in amorphous STO 

structure [4.33,34].  

 

Figure 4.8. De-convolution of binding energy spectra for (a) oxygen and (b) strontium in virgin 

a-STO oxide layers. O1s spectra can be de-convoluted to two into two components with binding 

energies at 529.9 (O2- ions in a-STO structure) and 531.5 eV (adventitious C–O bonds 

adsorbed onto the sample) for all three oxides. Sr3d spectra consists of a single component that 

can be correlated to Sr2+ species in amorphous STO structure. The binding energies for Sr3d5/2 

spin orbital pairs are 133.4, 133.1, and 133.2 `eV for stoichiometric oxygen, oxygen-deficient, 

and Nb-doped oxygen-deficient a-STO oxides, respectively. 

The binding energies for Sr3d5/2 spin orbital pairs are 133.4, 133.1, and 133.2 

`eV for stoichiometric oxygen, oxygen-deficient, and Nb-doped oxygen-deficient 

a-STO oxides, respectively. The shift to lower binding energies in 

oxygen-deficient oxides can be interpreted as a shift in the Fermi energy level 

due to the as-grown oxygen vacancy sites in the a-STO structure [4.33]. 

Moreover, O1s spectra in all oxides can be de-convoluted into two components 
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with binding energies at 529.9 and 531.5 eV, corresponding to O2- ions in the 

a-STO structure [4.35] and the adventitious C–O bonds adsorbed onto the 

sample surface, respectively. 

 

Figure 4.9. De-convolution of binding energy spectra for B-site components in virgin a-STO 

oxides. Ti2p spectrum of (a) stoichiometric oxygen a-STO, (b) oxygen-deficient a-STO and (c) 

Nb-doped oxygen-deficient a-STO oxides. (d) Nb3d spectrum of Nb-doped oxygen-deficient 

a-STO oxide. 

The analysis of the core level binding energy spectra of B-site components in 

a-STO oxides, provides invaluable insights into the conduction and switching 

mechanisms of a-STO MIM cells. At the top Ti/a-STO interface in virgin a-STO 

MIM cells, the Ti2p spectra of all a-STO devices consist only of Ti4+ (Ti2p3/2 

peak at 458.5 eV) [4.35-37] species indicating a TiO2 surface finish in a-STO 
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oxides. Except for the top interface, Ti2p spectra of a-STO oxides exhibit strong 

dependence on the synthesis conditions. Figure 4.9 illustrates the 

de-convoluted binding energy spectra for B-site components of a-STO oxides. 

These spectra did not show any appreciable change throughout the thickness of 

oxides. Fractional analysis of Ti2p spectrum for stoichiometric a-STO virgin MIM 

cells indicates the presence of Ti4+, Ti3+, and Ti2+ oxidation states with reference 

binding energies of Ti2p3/2 peaks [4.35-37] at 458.5, 456.7, and 455.3 eV and 

relative concentrations of 67.7%, 23.8%, and 8.5% respectively. For pristine 

and Nb-doped oxygen-deficient a-STO cells, Ti2p spectra consist only of Ti4+ 

and Ti3+ sub-oxides (no Ti2+) with relative concentrations of 60.2%:39.8% and 

65.6%:34.4%, respectively. 

The bipolar switching behavior of STO-based MIM devices is largely attributed 

[4.13] to the nanoionics transport mechanisms and reversible redox reactions 

along the oxygen vacancy induced defect structure in TiO2 sub-lattice 

[4.3,4,8,29]. Ti3+ species are the signature of charge transfer from oxygen 

vacancies to neighboring Ti atoms [4.38,39], and therefore, the nanoionics 

transport processes largely take place along the Ti3+ sub-oxide network 

[4.7,8,40,41]. The relative concentrations of as-grown Ti3+ species in oxygen 

deficient a-STO cells is 45-65% higher than that of oxygen-rich cells. a-STO 

oxides sputtered in pure argon atmosphere develop inherent oxygen vacancies 

due to heavy Ar+ ion bombardment and preferential removal of oxygen atoms in 

the vacuum system [4.41,42]. The pre-existing vacancy defect network 

accounts for their low electroforming energy requirements through reduction of 

activation energies for the drift diffusion of oxygen vacancies [4.39] and their 

superior switching characteristics. Moreover, the presence of oxygen during the 
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sputtering of oxygen-rich a-STO oxides facilitates negative ion creation and 

re-sputtering processes [4.42,43] that lead to the creation of misfit Ti2+ metallic 

sub-oxide species [4.38,44]. These frozen-in misfit species contribute to the 

formation of pseudo-Ohmic conduction pathways during the high energy 

electroforming process; thereby, reducing the overall resistance and further 

hindering the switching performance of oxygen-rich a-STO MIM cells. 

Nb3d spectrum in Nb-doped oxygen-deficient a-STO devices consists solely of 

Nb5+ (Nb3d5/2 peak at 206.86 eV) [4.45,46] species with Nb/Ti ratio of 0.023, 

throughout the thickness of the oxide. Nb5+ species substitutes Ti4+ site in 

a-STO structure [4.34,44]. As the ionic radius of Nb5+ (0.069 nm) is very close 

to that of Ti4+ (0.068 nm), substitutional doping at such low concentrations is not 

expected to induce a transition in the electronic structure of the oxide [4.34]. 

However, the mismatch in the ionization of B-site species is likely to introduce 

additional bands and contribute to an overall reduction of the bandgap. The 

reduced bandgap results in an overall reduction of the energy requirements 

during the electroforming procedure while additional electronic energy states 

render an assistive role to the bipolar switching behavior through non-linear 

electron trapping/de-trapping and hopping mechanisms reported in published 

literature [4.2,6,29]. 

To ascertain the effect of niobium doping on the electronic band energies of 

oxygen-deficient a-STO oxides, photoluminescence (PL) measurements were 

carried out on virgin MIM cells at room temperature. Under 4.5 eV (275 nm) 

excitation, two broad emissions were observed for oxygen-deficient a-STO, 

while Nb-doped a-STO showed three broad emissions. To obtain further 

insights into the electronic energy states, these broad spectra were 
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de-convoluted into individual components. Figure 4.10 shows the de-convoluted 

PL spectra obtained under 4.5 eV (275 nm) excitation. Pristine oxygen-deficient 

a-STO oxide shows three distinct emission energies (3.3 eV, 3.2 eV, and 2.7 

eV). As expected, substitutional niobium doping shifts the two main high 

bandgap states towards lower energies (to 3.0 eV and 2.9 eV). Further, 

additional energy states (at 3.9 eV and 3.7 eV) with a difference of ~1.2 eV 

between the lowest and the highest energy states appear as a result of niobium 

doping.  

 

Figure 4.10. Photoluminescence (PL) spectra of (a) oxygen-deficient and (b) Nb-doped 

oxygen-deficient a-STO oxides under 4.5 eV (275 nm) excitation energies. 

Hence, the dynamic evolution of the resistance of the Nb-doped MIM cells can 

be described by a time evolving state function, which relies on the variability of 

the carrier hopping through multiple energy states [4.29]. The presence of such 

energy states creates a non-linear drift of electrons and ions through the 

conducting channel [4.29]. The relatively lower activation energies needed for 

carrier hopping reduces the energy requirements for the electroforming process 

as well as the operating current densities in Nb-doped MIM switching devices.  
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4.2.3. Defect and oxygen vacancy distribution in a-STO 

switching cells 

The evolution of defect structures under high electrical gradients during 

electroforming is largely believed to be the major contributor to the bipolar 

electroresistive switching in STO-based MIM devices [4.7,8]. In a typical 

electroforming step, the defect structure is extended from a pseudo-Ohmic 

electroforming cathode (grounded electrode) towards the blocking anode 

(positively-biased inert electrode) via the migration of positively charged oxygen 

vacancies along the pre-existing defect structure. This results in the formation of 

a virtual cathode that can be expanded (during SET) or abridged (during 

RESET) depending on the polarity of electrical field [4.8].  To investigate the 

impact of electroforming on the defect structure of a-STO MIM cells and 

ascertain the dynamics of their memristive behavior, XPS analysis was carried 

out throughout the thickness of active oxygen-deficient a-STO memristive cells. 

The interface between the TiO2 finished surface of a-STO oxide and the Ti layer 

(which forms an Ohmic contact) is kept as the electroforming and switching 

cathode (grounded electrode) throughout all experiments. O1s spectra 

averaged over the whole area at the interfacial region of a-STO MIM cells 

(Figure 4.11c) indicate a sharp decrease of oxygen content in the electroformed 

a-STO oxide at the interfacial region. The oxygen concentration increases to 

almost the same level as in the virgin oxide (~57%), beyond 30 nm from the 

interface. The large oxygen vacancy gradient in a-STO switching cells indicates 

the formation of virtual cathode regions at the top Ti/a-STO interface during the 

electroforming step. Moreover, such large systematic variations in the oxygen 

concentrations over the whole switching cell area, hint to distributed 
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multi-filamentary conduction mechanisms similar to those reported in STO 

single crystals [4.20], rather than highly localized filamentary conductive 

channels typically observed in STO- and TiO2-based MIM switching cells 

[4.19,24,26,27,47]. As such, it appears that the electroforming and subsequent 

bipolar switching takes place across the entire a-STO MIM cell area. The 

evolution of Ti2p binding energy spectra in active a-STO MIM cells near the 

interfacial region (Figure 4.11d-f) complement the evidence for multi-filamentary 

redox-based switching process in a-STO memristive cells.  

At the top Ti/a-STO interface, Ti2p spectra of active a-STO cells indicate the 

presence of a third, metallic Ti phase with a reference Ti2p3/2 binding energy of 

453.3 eV. The peaks for Ti3+ and Ti4+ species appear at the same binding 

energies as in the virgin oxide, albeit with the relative Ti3+/Ti4+ concentration 

dropping to 46% (from 65% for the virgin oxide).  

The appearance of a strong metallic phase is most likely due to the presence of 

Ti layer residue at the top interface, possible diffusion of Ti atoms into the 

a-STO structure during the deposition process, and oxygen exchange reactions 

during the electroforming step. Further from the interface, relative Ti3+/Ti4+ 

concentration is around the same level as the virgin oxide (65%). Moreover, the 

third Ti2p3/2 peaks shift towards higher energy states (453.8 and 454.4 eV at 

15 nm and 30 nm away from the interface, respectively) which signals the 

formation of partially oxidized Ti(2-δ)+ phases during the electroforming step. 

Beyond 30 nm from the interface, the peak disappears and the configuration of 

Ti2p spectra is similar to that of the virgin devices.  
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Figure 4.11. De-convolution of binding energy spectra of TiO2 sub-lattice components 

throughout the thickness of a-STO cells. (a) Schematic of an a-STO switching cell highlighting 

the relative depths of the analyzed spectra, (b) atomic concentrations of principal elements 

through the thickness of an active 100 µm2 a-STO cell (c) O1s spectra of an active a-STO cell 

at different depths (corresponding to the horizontal lines in the schematic) relative to the top 

Ti/a-STO interface, (d-f) Ti2p spectrum of the active a-STO cell at the same relative depths. 
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As such, the appearance of a metallic Ti sub-oxide network as a result of the 

electroforming step points to the creation of oxygen vacancy networks at the 

vicinity of top Ti/a-STO interface and adds more weight to the argument that the 

resistive switching originates from the migration of oxygen vacancies. The 

distributed area nature of the XPS signal indicates that the vacancy networks 

are created across the device near the ohmic interface. However the observed 

area-independency of the resistive switching hints to a filamentary-type 

switching at the active (a-STO/Pt) interface. Therefore an assumption of the 

existence of multiple conductive filaments seems viable and will be investigated 

through conductive nano-contact experiments in Chapter 5. 
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CHAPTER 5  

INVESTIGATION OF NANOSCALE CONDUCTION 

AND SWITCHING MECHANISMS IN a-STO 

OXIDES 

5.1. Probing Nano-Electromechanical Coupling Effect 

Using in situ Electrical Nanoindentation 

The phenomena arising from the electromechanical coupling in perovskite 

oxides at low dimensions can facilitate novel approaches that can overcome 

current technological bottlenecks [5.1] to realize the next generation of non-

volatile memories and logic devices based on nanoionics enabled resistive 

switching effect [5.2,3]. Nanoscale electromechanical phenomena in functional 

oxide layers, ranging from flexoelectricity to mechanically-induced insulator-

metal transitions (IMTs), have been a subject of rigorous research effort in 

recent years [5.2,4,5]. In case of STO, strain-induced effects (such as 

ferroelectricity) have been previously reported and investigated in detail [5.6-9]. 

Recent theoretical studies have also indicated the role of mechanical stress in 

enhancing in-plane oxygen vacancy migration [5.10,11]. In situ electrical 
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nanoindentation provides a powerful tool to investigate such phenomena in 

complex electronic material systems through providing a direct time-based 

coupling between nano-mechanical and electrical response [5.12-14]. 

This chapter details the use of quantified in situ electrical nanoindentation 

measurements for investigating nanoscale conduction and switching 

mechanisms and electromechanical couplings in oxygen deficient a-STO oxides 

as an oxide template for high performance memristive devices. The results 

presented in this chapter are partly published in the journal of Advanced 

Functional Materials and the details of quantified in situ electrical 

measurements are published in the Journal of Applied Physics.  

5.2. Quantitative in situ Electrical Nanoindentation: 

Nano-Contact Properties 

The ability to quantify the in situ electrical response, coupled with the unrivaled 

mechanical control of the nanoindentation experiments will create an 

irreplaceable toolbox to investigate electromechanical coupling effects in novel 

complex electronic material systems. This goal is however hampered by the 

difficulties of an accurate theoretical and/or ex situ assessment of the 

nanoindenter probe’s inherent electrical properties and geometric factors, and 

the electrical transport properties of nanoscale contacts. The inaccuracies in 

determining the true electrical nano-contact area during an in situ electrical 

nanoindentation experiments have to be addressed prior to quantifying the 

nano-electromechanical response.  
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Accurate characterization of nanoscale electro-mechanical properties through 

in situ electrical nanoindentation experiments [5.12,14] is dependent on a 

precise evaluation of the true electrical contact area as well as the resistance 

profile of the conductive indenter subject to indentation load/depth. This allows 

to underpin distinct phenomena modifying the transport behavior of the material 

at the nanoscale contact during nanoindentation [5.15-19]. 

An empirical model has been developed to characterize the evolution of contact 

resistance subject to contact load/depth which precisely includes the dynamics 

of the true electrical contact area. The model is developed and verified using 

in situ electrical indentation data on standard bulk gold samples (ρ@AB = 2.8 

µΩ.cm) and FTO coated glass slides (ρ@AB = 290 µΩ.cm) to widen the validity of 

the predicted values across the range of samples’ mechanical properties, 

surface topography and electrical resistivity. The empirical model relies on the 

conductive tip’s area profile, characterized on standard fused quartz samples. 

Appendix B details the methodology of the tip area calibration and describes the 

use of the empirical relations for detailed analysis of nano-electromechanical 

properties of nano-crystalline platinum thin films. 

5.2.1. Nano-contacts in elastic and elasto-plastic regimes 

Where penetration depths are sufficiently larger (~5 times) than the surface 

roughness of the sample, calculations based on the tip area functions provide 

an accurate estimate of the nominal electrical contact diameters. For the 

purpose of a preliminary estimation of the nano-contact’s resistance profile, the 

nominal contact diameter (d) at a given penetration depth (h) can be explained 

in terms of a geometric contact [5.20,21]: 
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d = 2 × D2R-h − hE  (1) 

 

Figure 5.1. Tip radius estimation based on shallow (100 µN) indents. (a) In situ SPM scan of a 

100 µN indent contact. (b) Contact depth profile of the 100 µN indent. (c) Spherical contact 

fitted to the 100 µN indetns. 
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where the effective radius of the probe (Re) is calculated as the average 

between the radii of indenter’s rounding sphere and the radius of the circle 

circumventing  the projected contact area. The radius of the indenter’s rounding 

sphere can be calculated through fitting a spherical contact to very shallow 

residual plastic deformations. Fitting the residual contact area for 100 µN 

indents (Figure 5.1), this radius is estimated to be 186±4 nm. 

For extremely small penetration depths (corresponding to very low indentations 

loads) where the deformation behavior of platinum films is mainly elastic, the 

nominal electrical contact diameter can be described as the elastic contact 

between two bodies [5.22,23]:  

d = 2 × �FG H�∗
J∗ !K/F

  (2) 

where R∗ is the reduced radius of the two contacting spheres (1 R∗⁄ = 1 RK⁄ +
1 RE⁄ ), P is the mechanical load and E∗ is the reduced modulus. As for the 

electrical resistance at the nanoscale contact area (Rc), where the contact 

diameter is sufficiently larger than the electrons’ mean free path (l), it can be 

described as the constriction resistance between the indenter and the platinum 

film in the diffusive regime, and can be related to the resistivity values (ρ/ and ρ) 

for the indenter and the thin films, respectively) of contacting bodies by the 

Holm’s equation [5.24]: 

RN = OPQORES = OPQORE×DE�TUVU   (3) 

Equation (3) assumes a perfect contact between two nominally smooth surfaces 

which, as mentioned before, results in an over-estimation of the true electrical 
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contact area in nanoindentation experiments. Therefore, to ascertain the true 

resistivity values of the indenter and platinum thin films, further modifications 

based on empirical data are required.  

Where the contact diameter is comparable to the electron’s mean free-path 

(estimated value of ~17.1 nm for nano-crystalline platinum films) [5.25], the 

constriction resistance falls into the quasi-ballistic regime. At this limit, the 

resistance can be described using the Wexler correction for nanoscale contacts 

[5.22]: 

R. = G(OPQOR)FWS K + OPQORES Γ(K)  (4) 

where K = 2 l d⁄  and Γ(K) is a gamma function of unity order. 

   

Figure 5.2. Different penetration regime in in situ electrical nanoindentation measurements. The 

measurement technique in very low-load regimes can be utilized as a conductive SPM probing 

technique where the SPM contact diameter and properties can be ascertained with a large 

degree of confidence. 
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Figure 5.2 summarizes the three different probe penetration regimes and 

highlights the appropriate contact estimation method in each of these regimes. 

In order to accurately assess the nano-electromechanical response of the 

nano-crystalline platinum films using Equations (1) to (4), the resistivity imposed 

by the indenter at the nanoscale contact has to be accurately assessed. 

The conductive ceramic Berkovich tip used in this study has a self-similar and 

self-limiting three-sided pyramidal geometry. The ceramic material is vanadium 

carbide which has a Young’s modulus of 470-500 GPa, a hardness of ~30 GPa, 

an average electrical resistance of 2–5 × 10-4 Ω.cm, and a work function of 

~5.1 eV. The dynamics of the formation of the nano indentation contacts at 

different load/displacement points would help provide a better perspective 

regarding the creation of conductive paths. The conductive ceramic Berkovich 

tip used in this study has an average resistivity of 247.6 × 10-4 Ω.cm. However 

the resistance imposed by the tip contact at the nanoindentation contact is 

strongly dependent on the mechanical load and the penetration depth. The tip’s 

geometry at small to moderate penetration depths (purely elastic and 

elasto-plastic contacts) cannot be assumed to be ideal. Moreover the true 

electrical contact area in such experiments is usually far smaller than the 

nominal contact area even when the contact areas are calculated using a non-

ideal geometry profile. 

5.2.2. Calibrations of nano-contacts resistivity profiles 

For nanoindentation experiments in the elastic regime, the electrical contact can 

be defined as the contact between the indenter’s rounding sphere and the 

conductive a-spot(s) on the sample surface. The imposed resistivity on the 
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nano-contacts engaging only the indenter’s rounding sphere (933.4 µΩ.cm) is 

considerably higher than the average resistivity of the indenter (247.6 µΩ.cm) 

and is found to be uniform from the measured contact resistances at 2 µN load 

holding segments at the beginning and the end of the loading profile (Fig. 7 in 

the manuscript) and fully elastic indentation experiments (peak loads <50 µN). 

The value represents the maximum resistivity value for the conductive 

indenter’s contacts and it includes the effects of imperfect contacts and 

drift/friction as it is derived from average contact resistances on all samples. 

The case of plastic contacts is more complex due to several reasons: (i) direct 

estimation of the true electrical contact area is not possible as the details of the 

arrangement and deformation of contacting asperities are unknown; (ii) 

mechanical loads induce a significant drop in the contact resistance at constant 

penetration depths as they improve the contact between the asperities at the 

two sides of the contact.  

Here, the real-time correlation between the mechanical and electrical response 

during the nanoindentation experiments have been utilized to isolate the 

contributions of such effects to the measured nanoscale contact resistance. The 

derivation of the empirical model relies on the assumption that the resistivity 

values of bulk gold sample and FTO coated glass do not deviate significantly 

from their average bulk value in the designated indentation depth/load. As such, 

the changes in the contact resistance subject to contact depth/load are 

characterized based on Holm’s equation in the diffusive regime. The resistivity 

imposed by the conductive indenter at the nanoscale contact is then modelled 

based on empirical data assuming a non-uniform resistivity profile for the 
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conductive indenter. A further correction factor is added to account for the load 

effect on the imposed nano-contact resistance. 

(i) Conductive probe’s resistivity profile vs. indentation depth 

If the nano-contact’s resistivity at a given penetration depth is known, the 

nanoscale resistivity of the sample can be reliably assessed independent of the 

contact area. To address this issue, in situ electrical indentation experiments 

with loads ranging from 100-5000 µN (with multiple loading rates of 

10-100 µN/s) were performed on a standard bulk gold sample with an average 

resistivity of 2.8 µΩ.cm. The experiments were performed in both load-

controlled and depth-controlled modes to identify outliers and anomalous data 

resulting from surface irregularities and impurities. Aggregate contact resistivity 

values (ρ/ + ρ)) were calculated based on Holm’s equation from contact 

resistance values measured at different penetration depths in the unloading 

curves, where the contact loads were 10-20% of the maximum indentation load. 

Hence, these values can be regarded as the contact resistivity at a designated 

depth where the effect of mechanical load is uniformly minimal, and therefore 

can be neglected. Figure 5.3 illustrates average resistivity values of the indenter 

contact vs. penetration depth on the bulk gold sample. These values are found 

to be uniform and independent of the maximum indentation loads. While the 

true aggregate resistivity of the nano-contact has to be constant across all 

penetration depths (assuming no change in the inherent electrical properties of 

the contacting materials), the variable modeled resistivity accounts for the 

evolution of the true electrical contact area as a function of nominal contact 

depth/area. 
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The aggregate resistivity settles to a constant value of 291.9 µΩ.cm at 

moderate penetration depths (>50 nm), where the effect of surface 

topography/roughness has ceased. The empirical data can be fitted to a 

function of logistic form to acquire the resistivity profile of the indenter versus 

the true penetration depth: 

ρ/ = �ρ/,\/] + OP,^_`VOP.^PbKQ(U Uc⁄ )^ ! (5) 

Where ρ/,\@d and ρ/.\/] are the maximum and minimum bounds of the 

calculated indenter resistivity, h9 is the weighted center of the depth scale, h is 

the penetration depth and m is the fitting constant. FTO glass slides (ρ@AB = 290 

µΩ.cm) were used as control samples. While the accuracy of the model for FTO 

indents remained intact in the moderate penetration regimes, the calculations 

for lower penetration depths showed a higher error margin (±10%) which can be 

ascribed to the significantly higher surface roughness of FTO coated glass 

slides (~30 nm) compared to the gold samples. As such, the function provides a 

very accurate real-time estimation of the resistivity imposed by the indenter at 

the nanoscale contact for a given contact depth.  

(ii) The effect of indentation load on the nanoscale contact resistance 

The mechanical pressure increases both the nominal and the true electrical 

contact area as the increase in the number of contact asperities and their plastic 

deformation (i.e. flattening) result in a net drop of constriction resistance [5.26]. 

On the other hand, large mechanical strain/stress has the ability to significantly 

modify the band structure and electrical transport properties of the material. 
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Therefore, the decreases in contact resistance due to the increase of electrical 

contact area have to be accurately isolated. 

 

 

Figure 5.3. Average modeled resistivity of the indenter contact vs. penetration depth. The 

values were calculated from the contact resistivity values in the unloading curves where the 

contact load was 10-20% of the maximum indentation loads. The red line shows the Logistic fit 

of empirical data. 

As such, aggregate resistivity values obtained from contact resistances of 

standard bulk gold sample at constant penetration depths at varying mechanical 

loads were used. Additionally, a set of partial load-unload experiments were 

performed at constant penetration depths subject to different indentation loads. 

Figure 5.4 shows the ratio between the resistivity calculated at higher forces to 

those at lower forces, at constant contact depths. As expected, calculated 

resistivity values at high and low loads become closer as the corresponding 

indentation depths are increased. This data can be used to obtain a correction 

component that accounts for the contact load effect on the resistivity value of 
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the indenter. A generalized hyperbolic function would provide a reasonable fit 

with the exception of loads less than 300 µN. This is mainly because of the fact 

that resistivity values calculated for lower load limits at a range below 300 µN 

are impacted by surface roughness and friction effects. Therefore, the values 

deviate from the trend followed by resistivity at higher loads where a reasonably 

large contact diameter mitigates such effects. As such, the calculated resistivity 

of the indenter at a constant contact diameter can be expressed in the following 

form after correcting for the mechanical load effect: 

OP,eOP,f = �a − g(KQNH)(h i⁄ )!  (6) 

where ρ/,j and ρ/,k correspond to the calculated indenter resistivities at low and 

high loads at a constant contact depth, P is the maximum load on the contact 

and a, b, c, and d are fitting constants for the function.  

 

Figure 5.4. The ratio of the resistivity values calculated at high contact load to those calculated 

at low contact loads for constant contact depths. 
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Based on these analyses, an empirical based relationship between the 

measured contact resistance and the aggregate resistivity of the nanoscale 

probe and the sample can be achieved: 

RN = OPQORE×DE�TUVU = l KEDE�TUVU m n �ρ/,\/] + OP,^_`VOP.^PbKQ(U Uc⁄ )^ !
× �a − g(KQNH^_`)(h i⁄ )! + ρ)o  (7) 

It should be noted that the inherent resistivity of the conductive ceramic 

Berkovich probe is not expected to change subject to nanoindentation loads. 

However, a direct estimation of the real contact area is not possible as the 

current only passes through contacting asperities (conductive a-spots) on the 

two surfaces [5.26] and thus the true electrical contact area is only a fraction of 

the nominal contact area. Moreover, it is well known that a higher mechanical 

load increases the effective electrical contact area at the nanoscale contact by 

enhancing both the number and the size of contacting asperities [5.26].  

Table 5.1. Fitting parameters for the generalized nano-contact resistance function 

Fit Parameter Value ρ/,\/] 933.4 µΩ.cm 

ρ/,\@d 291.9 µΩ.cm 

h9 34.1549 nm 

m 10.8416 

a 0.8884 

b 4.948 

c 0.0257 

d 1.04867 

Therefore, assuming a variable resistivity profile for the nanoindenter tip subject 

to indentation load and depth, allows for an accurate assessment of the impact 
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of contact area and indentation load on the true electrical nano-contact area. 

Equation (7) accounts for the evolution of true contact area subject to 

indentation load/depth. Moreover, the resistivity imposed by the indenter in the 

elastic contact regime (ultra-low load/penetration) is found to be uniform and is 

well predicted by the upper bound of the indenter’s resistivity profile in Equation 

(7).  

Therefore, the resistivity imposed by the nanoscale indenter contact is known at 

any indentation load/depth and the resistivity of the sample can be quantifiably 

assessed from the contact resistance values using Equation (7). Table 5.1 

denotes the values of fitting parameters for the conductive Berkovich indenter 

used in this study. 

5.3. Nano-Contact Electromechanical Investigations of 

a-STO Thin Films  

The evolution of conductive channels due to field-dependant non-linear ionic 

migration along the network of point defects in a-STO thin films appears to play 

a decisive role in the switching behaviour of a-STO-based cells. However, it is 

difficult to isolate the individual contributions of the oxide layer and the electrode 

interfaces towards the overall conduction mechanisms that occur during the 

electroforming and bipolar switching events in MIM structures. To this end, in 

situ electrical nanoindentation can be employed as a powerful characterization 

tool as it provides stable nanoscale contacts with extremely accurate real-time 

control over the contact size (<5 nm in both axial and lateral dimensions) and 

pressure [5.12-14,18,27]. Moreover, the unrivalled mechanical load control in 

nanoindentation experiments and precise time-based correlation between 
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mechanical and electrical responses make it the premium tool to study 

strain-induced phenomena at the nanoscale. 

In situ electrical nanoindentation technique was employed to acquire 

fundamental insights into the nanoionics-based conduction mechanisms in a-

STO based devices. Throughout these in situ measurements, the underlying 

platinum substrate was uniformly forward-biased while the progressively 

increasing nanoscale contact area (as a function of applied mechanical force) at 

the surface of thin film was grounded (Figure 5.5). 

 

Figure 5.5. Schematic of the setup for in situ electrical nanoindentation experiments. 

The empirical relations for the nano-contact resistance derived in the previous 

sections, allow to characterize and separate the effects of probe’s resistance, 

surface adsorbates and contaminations and surface roughness effects on the 

contact resistance in elastic and elasto-plastic nanoindentation contacts. This 

allows for an accurate assessment of the in situ electrical nanoindentation data 

by eliminating the role of nano-contacts in the measured data. 

5.3.1. Nano-contact studies of the conduction mechanisms in 

a-STO MIM cells 

Virgin and formed a-STO device were investigated using nanoscale contacts 

with the conductive indentation probe to clarify their switching behaviour. Top 
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metal electrodes (50/10 nm Pt/Ti layer) were removed from 2 µm × 2 µm areas 

of different-sized devices via a precise depth limited scanning wear step. 

Figure 5.6a, b show the in situ SPM scans on the surface of virgin and formed 

a-STO devices under the top electrode. The cluster-like nano-grains (average 

diameter of ~80 nm) are distributed uniformly under the electrode in the formed 

devices (in both switching states). 

Nanoscale probing of the electroformed devices was carried out using an 

indentation force of 100 µN with a ±250 mV voltage sweep at the maximum load 

(equivalent contact diameter d ~80 nm). Figure 5.6b, c illustrate a device area 

before and after indentation experiments. The nano-mechanical response of the 

non-deformed regions under a 100 µN indentation load is almost fully elastic. In 

contrast, the large plastic deformation of the nano-grains under identical loads 

indicate a weak mechanical structure for the nano-grains (Figure 5.6d). Further, 

the non-deformed regions show an insulating behaviour upon sweeps at 

maximum load, similar to that of the virgin devices (Figure 5.6e), whereas a 

bi-stable switching current transport (with an average current density of 50 

A/cm2) is observed for the nano-grains (Figure 5.6f). As such, structurally weak 

nano-grains with a bi-stable switching behaviour can in fact be regarded as the 

filamentary pathways throughout the oxide layer in a-STO devices. These 

“nano-filaments” are distributed uniformly over the device area, contributing to 

the bipolar switching behaviour as a parallel network. Hence, the overall 

increase in the oxygen vacancy concentration throughout the thickness of 

switching devices as characterized by XPS depth profile results denotes the 

formation of uniformly distributed nano-filaments upon electroforming. Previous 

studies into the nature of conductive filaments in redox based resistive 
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switching devices have typically identified localized filamentary pathways in 

electroformed devices [5.28-31]. 

 

Figure 5.6. In situ SPM scans (1 µm × 1 µm) and electrical nanoindentation on a-STO MIM 

cells after removing the top Pt/Ti electrodes (top Ti/a-STO interface). (a) In situ a-STO oxide 

interface in a virgin cell. (b, c) In situ SPM scan of electroformed a-STO oxide before and after 

in situ electrical indentation with a 100 µN force (equivalent contact diameters of 80 nm), 

respectively.  (d) Load-displacement curves of the non-deformed surface and nano-grains in 

electroformed a-STO cells. (e) Insulating current transport behaviour of non-deformed regions (I 

and II). (f) The repeatable bi-stable switching of individual nano-grains (III to VI). 
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Some researchers have reported evidence of homogenous conductivity in the 

ON state in Fe-STO thin films [5.32,33] as well as individually switchable 

localized point defects at single dislocations on the surface of STO single 

crystals [5.34-36]. However, such highly localized individually switchable nano-

filaments or “nano-switches” have not been previously reported in metal–oxide 

MIM cells.  

To further ascertain dynamics of the isolated resistive switching in 

nano-switches in a-STO MIM cells, additional ultra low-load in situ electrical 

nanoindentation measurements were carried out. Nano-contacts with an 

estimated diameter of ~35-40 nm were held constant on the top interface of an 

active a-STO cell in the ON state for a fixed time period (10 seconds) during 

ultra low-load (25 µN peak load) in situ electrical nanoindentation experiments. 

The contact load was chosen to ensure that no mechanical deformations occur 

upon forming the nano-contacts and in situ electrical measurements at peak 

load, in either the virgin cells or the nano-switches. During the hold period at the 

peak mechanical load, cyclic switching step voltages were applied and the 

current response and tip contact (i.e. nano-contact) displacements were 

recorded. This setup was used to accurately map the current transport of 2 µm 

× 2 µm a-STO cell regions through a large number (40×40 point arrays) of 

successive ultra low-load experiments. While the non-deformed areas in 

electroformed a-STO cells preserved their insulating properties, the 

nano-switches exhibited a repeatable bipolar switching behavior (Figure 5.7a). 

A close examination of the time correlated evolution of current transport upon 

applying SET and RESET voltage at the constant peak load provides further 

insights into the dynamical evolution of current transport in the nano-switches.  
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Figure 5.7. (a) in situ SPM image of the surface (left) and compiled area conductivity map form 

nano-contact probing experiments (right) of an active a-STO cell after removing the top metal 

electrode layers exhibiting distributed nano-switches and their conductivity profile compared to 

the non-deformed regions. (b,c) Time-based current evolution of a single nano-switch upon 

applying SET/RESET step voltages (±300 mV) at 25 µN nano-contact load. The insets show the 

current derivatives in for each case. The schematics show the resistive states and current 

directions. (d) Cyclic resistive switching of a single nano-switch the time-based correlation of 

nano-contact displacements. 

Upon applying a step RESET voltage (300 mV) on the platinum electrode, 

diffusive charge carrier species (i.e. oxygen vacancies) move away from the 

bottom electrode rendering the nano-switch OFF. The current flow through the 

grounded top nano-contact (Figure 5.7b) strongly resembles a capacitive 
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discharge current where 
SpS* < 0 with an almost purely exponential decay 

characteristics as in the simple Equation (1):  

I = I9eV* tu⁄   (1) 

Assuming a capacitive current discharge process, the combined time constant 

of the nano-switch and the nano-contact probing system is calculated to be 

τN =  0.21 s. In considering the capacitive decay time constant for 

nano-switches, the resistance imposed by nano-contact at 25 µN peak load has 

to be taken into account. At such low contact forces the nano-contact resistance 

is in the range of 0.15–0.25 MΩ, depending on the surface roughness and 

average grain size of the sample. As such, assuming a low resistance ohmic 

top contact, as is the case for a-STO MIM cells, would result in significantly 

reduced estimated time constants for nano-switches according to τN = RC. It 

can therefore be concluded that these nano-switches are highly localized fast 

charge transport channels capable of fast resistive switching. 

On applying a step SET voltage (-300 mV) to a nano-switch in OFF state form 

the platinum bottom electrode, the memristive mechanisms (the motion of 

oxygen vacancies towards the residual barrier at a-STO/Pt interface) become 

activated and the nano-switch switches back to ON state. The memristive 

regime is exemplified by a positive and decaying current derivative (
SpS* ≥ 0). 

Messerschmitt et al. have recently proposed a chronoamperometry technique 

[5.37] for memristors through which bias dependent memristive time-constant 

(τ\) charge carrier diffusion coefficients can be experimentally extracted. The 
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memristive time-constant is defined as the time at which I√t has its maximum 

subject to constant bias: 

t(τ\) = 〈|I{/\ − I(t)|√t〉\@d (2) 

The time constant can be extracted from the maximum value position on 

I√t vs. 1/√t  plot (Figure 5.8). 

 

Figure 5.8. The |Id(t)|t0.5 vs. t0.5 plot to derive the memristive time constant subject to full SET 

voltage (-300 mV). 

The memristive time constant derived for nano-switches is significantly lower 

than the lowest time constants derived for 25 × 25 µm Pt/SrTiO3-δ/Pt memristive 

with a 600 nm oxide layer investigated by Messerschmitt et al. [5.37]. Besides 

the thickness difference, the significantly smaller active area of a nano-switch 

results in an extremely localized electrical field which inhibit faster switching and 

settling times. Moreover, PLD grown crystalline thin films used in this study did 

not undergo a high energy electroforming step. Nano-switches in a-STO 
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memristive cells on the other hand, are the aftermath of a high voltage 

electroforming step in the originally insulating devices. As a result, the 

presumed locally high carrier (oxygen vacancy) density confined in the 

extended defect structure of nano-switches results in a fast switching 

mechanism. 

A memristive-based Cottrelll equation accounting for the vacancy movement 

mechanisms has been proposed by Messerschmitt et al. to evaluate the 

diffusion coefficient, Dm, based on the differential transient current data 

[5.37,38]: 

D\ = �(pi√*)^_`√W]��∆N !E
  (3) 

Where n is the number of electrons transferred per redox process, F the 

Faraday constant, A the geometric electrode area and ∆c is the difference 

between the equilibrium concentrations of diffusive species at the start and the 

end of the switching process. For the single direction motion of oxygen 

vacancies (for the maximum length, L, of the oxide thickness, between two 

electrodes) the charge transfer can be related to the volume (AL) as: 

∆Q = nF∆c(AL)  (4) 

where the total charge transfer (until a limiting current is reached in the 

memristive regime) can be described as: 

∆Q = � I(t)dt�*�9   (5) 

Hence, it follows form Equation (3)-(5) that [5.38]: 
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D\ = �(pi√*)^_`√Wj∆� !E = l(pi√*)^_`√Wj� p(*)S*���c mE
  (6) 

As the nano-contact cannot be held on top of the nano-switch for an extended 

period of time due to thermal drift and surface friction effects, the transient 

memristive current data obtained for a period of 1.5 s, was extrapolated over 

time using a coupled exponential decay function to reach a self-limiting current 

where    
SpS* < 10VKK. The extrapolated data was then used to estimate ∆Q for a 

full switching period. Further, the role of the series nano-contact resistance 

(~200 KΩ ± 10%) has been eliminated by substituting an area-corrected 

resistance proportional to the overall resistance of a full MIM cell in the ON 

state. Assuming a diffusion length of 100 nm (the thickness of the oxide) for the 

nano-switch, a diffusion constant of 5.27 × 10-15 m2s-1 was calculated for the 

nano-switches. The anomalously high calculated diffusion constant likely 

originates from an overestimation of the diffusion length; i.e., the migration 

length of oxygen vacancies along the nano-switches for a switching transition is 

likely to be only a small fraction of the oxide length. Nonetheless, this 

demonstrates that extremely localized charge transport along the extended 

defect structure of nano-switches facilitates higher directional mobilities for the 

diffusive oxygen vacancy species. The abrupt changes in the current transport 

regimes can also be correlated with unique bursts in the time vs. displacement 

data observed upon switching the voltage to ±300 mV (ERASE/WRITE) values 

(Figure 5.7e). As evident, the structure of the grains is not altered by such low 

load nano-contacts (i.e. the grains are not deformed or flattened). These 

observed displacement bursts appear to be due to the instantaneous shift of 

charged species upon switching, which drastically changes the charge 
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equilibrium and adhesion forces at the contact area, thereby, displacing the 

contact [5.18,19]. These results support further experimental evidence for the 

oxygen vacancy related nature of memristive behavior in a-STO cells and 

nano-switches.  

The formation of isolated nano-switches has to do with the amorphous nature of 

the functional metal oxide. While a pre-existing point-defect structure in the 

amorphous network facilitates the formation of filamentary pathways during the 

electroforming, lack of crystalline order results in a non-preferential expansion 

of isolated defects and effectively limits the extended defect structures to a 

close neighbourhood of the initial point defects. These observations signal the 

great potential of a-STO cells in terms of scalability and energy requirements for 

switching operations. The small dimensions and the uniform distribution of 

individual nano-switches indicate the ultimate scalability of these devices and 

their fast carrier transport mechanisms qualify them further for large area 

integration of memory devices. 

5.3.2. Formation of conductive channels at nano-contacts: 

strain effect 

In situ electrical nanoindentation is used to investigate in detail the nanoscale 

dynamics of conduction mechanisms in virgin a-STO/Pt stacks. As-grown a-

STO thin films (100, 60, and 12 nm) were found to be completely insulating 

when probed using ultra low load nano-contacts (equivalent contact diameter 

d = 80 nm). 100 and 60 nm thin films were then subjected to a series of high 

voltage sweeps at progressively increasing (from 0.1 to 5 mN) indentation 

loads. Throughout these experiments, the nano-mechanical response of a-STO 
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thin films was monitored to ensure the ultimate nano-contact depth does not 

breach the film’s thickness and the ultimate contact depths (upon full unloading) 

are kept to less than half of the thickness of the oxide layer (Figure 5.9).  

 

Figure 5.9. Typical load-displacement curves of 100 and 60 nm a-STO/Pt stacks under different 

maximum loads during in situ electrical nanoindentation experiments. 

A stable Schottky transport behaviour was observed for a-STO/Pt stacks at 

stable contacts loads up to 1 mN. A dramatic non-linear increase in current 

density is observed at higher indentation loads (>1 mN) after accounting for the 

increased contact area and the non-uniform resistivity of the indenter tip (Figure 

5.10a). Moreover, scanning probe microscope (SPM) scans of high-load 

nanoscale contact areas revealed deformations around the contact area for 

contact loads ≥1 mN as a direct consequence of the voltage sweep cycles 

(Figure 5.10b-d). Low-load nano-contact probing of the deformed regions 

reveals a significant uniform enhancement in electrical conductivity 

(Figure 5.10e) indicating the creation of conductive paths inside the oxide layer. 



INVESTIGATION OF NANOSCALE CONDUCTION AND SWITCHING MECHANISMS IN a-STO OXIDES      110 

Based on these observations, two principal strain-related phenomena can be 

identified.  

 

Figure 5.10.  (a) Current transport behaviour of 60 nm a-STO films under increasing 

nanoindentation loads. (b-d) SPM scans of deformations around the electrical nano-contact 

area in 60 nm a-STO films under different loads after 10 cycles of high voltage sweeps under 

increasing maximum indentation loads. The scan area is 1 µm × 1 µm in (b) and 5 µm × 5 µm in 
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both (c) and (d). (e) Current transport of virgin and deformed regions (around the 5 mN contact 

area, after sweep cycles) in 60 nm a-STO thin films. (f) Schematic of formed filaments as a 

result of oxygen vacancies migration around the nano-contact area.  

Firstly, increasing the contact load results in a corresponding decrease in the 

width of the depletion layer at the a-STO/Pt interface. This is presumably the 

result of enhanced carrier concentration due to increased defect density. More 

importantly, the application of mechanical force enhances the drift-diffusion of 

oxygen vacancies in the STO network [5.10,11]. Due to the geometry of the 

nano-contact (defined by the non-ideal geometry of the Berkovich probe and the 

nano-mechanical deformation of a-STO thin films), the majority of the electrical 

contact area is concentrated at the peripheral nano-contact area (rather than its 

center) where the number of contact asperities is larger and the topographical 

profiles of the contacting sides are smoother. Therefore, oxygen vacancies 

diffuse towards the peripheral electrical contacts in the nano-contact area 

through the network of pre-existing point defects, forming conductive 

filamentary channels via the creation of extended defect structures 

(Figure 5.10f). 

5.3.3. Direct electroforming at a-STO/Pt interface 

Nano-contact investigations were conducted on ultra-thin (12 nm) a-STO films 

to investigate the role of oxide/metal interfaces in the electroforming and 

switching behaviours. At such small thicknesses the short range electronic 

effects at the a-STO/Pt anode interface can be closely mimicked. Moreover, at 

such low dimensions the higher local densities of the point defects augment the 

impact of electromechanical stimuli on the interfacial electronic properties as 

well as the non-linear ionic transport in a-STO layers. Probed with ultra low-load 
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(50-100 µN) nano-contacts, these ultra-thin films exhibited a fully elastic 

mechanical behaviour and consistently maintained their highly insulating virgin 

characteristics (Figure 5.11) which are governed by the Schottky effect that 

arises due to the depletion region at the a-STO/Pt interface. The effect of the 

mechanical pressure on the transport characteristics of the interface were 

observed even at such small loads (Figure 5.11b).   

 

Figure 5.11. Ultra low-load nano-contact characterization of 12 nm a-STO/Pt stacks. (a) The 

load-displacement behavior of a-STO films subject to indentation loads up to 100 µN. Voltage 

sweeps are performed at 50 and 100 µN constant load segments (corresponding contact 

diameters of 40 and 80 nm respectively). (b) I–V characteristics of the stacks at 50 and 100 µN 

nano-contacts. 

On the other hand, high voltage (up to 10 V) sweeps at 250 and 500 µN contact 

loads (corresponding contact diameters of  100 of 130 nm respectively) result in 

an abrupt deviation from the Schottky behaviour of the transport characteristics 

of the metal-oxide interface (Figure 5.11a,b). The critical threshold voltage is 

found to be proportional to the contact load. Moreover, the change in the current 

transport characteristics is accompanied by large displacement of the 

nano-contact and chaotic deformations in a large area around the contact area. 
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(Figure 5c,d). At voltages above the threshold value, the current transport 

characteristics resemble space charge limited conduction (SCLC) at the 

a-STO/Pt interface. 

Such transport mechanisms require low barrier heights (e.g. a metal-n+ oxide 

interface) for easy charge carrier injections into the conduction band of the 

oxide [5.39,40].  

 

Figure 5.12. Current transport at the 12 nm a-STO/Pt interface at 250 and 500 µN contact 

loads. (a, b) The time/voltage correlation of abrupt change of the I–V characteristics and contact 

displacement at constant contact loads upon 10 V voltage sweeps. (c) Load-displacement 

curves of the 250 and 500 µN nano-contacts highlighting the lateral displacement of the 

nano-contact at constant loads upon high voltage sweeps. (d) Zoomed-in and large-area SPM 

scan of the deformed regions around the 500 µN nano-contact as a result of the high voltage 

sweeps. 
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Conductive mappings of the deformed regions utilizing low load nano-contacts 

(100 µN contact loads) reveal a full spectrum of conduction behaviours at 

localized areas in the deformed region (Figure 5.12).  

 

Figure 5.13. Conduction and switching characteristics of 12 nm a-STO/Pt stacks after direct 

electroforming with nanoindentation contacts. (a) Contour map of areas with distinct conduction 

characteristics in deformed 12 nm a-STO thin films. (b) Individual I–V characteristics of different 

regions in the deformed area (colours correspond to those of the contours map for deformed 

regions). Non-deformed regions retain their highly insulating properties. In the deformed region, 

the partial formations of strong and weak conductive channels result in distinct resistive states. 

Ohmic regions with high current densities are the result of a complete breakdown of electronic 

barrier and the formation of strong conductive filaments 

This pattern indicates the localized changes in the interfacial electronic barrier 

and the formation of conductive pathways through the oxide layer. These 

observations help complete the picture of the electroforming process dynamics 

and subsequent switching mechanisms in a-STO resistive switches and further 

signify the assistive role of mechanical pressure in such mechanisms. The 
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mechanical pressure reduces the thermodynamical requirements for the 

drift-diffusion of frozen-in vacancy point defects in the oxide layer. As a result, 

subject to a sufficiently high field gradient, mechanically assisted local redox 

processes render the oxide layer around the nano-contact area into a highly n-

type conducting state which in effect changes the electronic nature of the metal-

oxide interface. Moreover, redox processes induce locally formed conductive 

filaments with distinct current transport characteristics. 

To summarize, Nano-contact studies of a-STO MIM devices reveal that the 

electroforming step results in the formation of uniformly distributed conductive 

nano-filaments in the oxide layer where each of these filaments are switchable 

in isolation and thus act as individual resistive nano-switches. The in situ 

electrical nanoindentation experiments on a-STO/Pt stacks confirm the 

underlying electronic and ionic transport phenomena that take place during the 

electroforming and highlight the impact of mechanical stress on the modulation 

of non-linear ionic transport mechanisms in a-STO films. Ultra-thin a-STO films 

were directly electroformed using nanoscale contacts with controlled 

mechanical load. The resulting conductive filamentary regions exhibited distinct 

current transport and switching characteristics. These insights promise that 

perovskite memristors hold the key for high performance memristive systems.
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CHAPTER 6  

CONCLUSIONS AND FUTURE WORK 

6.1. Conclusions 

The PhD research project detailed in this thesis aimed to establish a 

comprehensive synthesis and characterization methodology for functional 

perovskite oxides and complex oxide based devices, specifically 

metal-oxide-metal (MIM) memristive devices. The research program has 

resulted in several significant scientific achievements, encompassing facile 

synthesis techniques for functional perovskite oxides on conventional 

substrates, realization of high performance MIM memristive devices and 

development of detailed experimental techniques to study nanoscale 

electromechanical correlations in a wide range of novel electronic materials and 

structures including perovskite oxides and quasi-two dimensional layers.  

The results obtained during this PhD program indicate that there is still much 

more to be investigated with respect to the fundamental principles of functional 

complex oxides, correlated oxide structures and interfaces, and the use of 

state-of-the-art nanoscale characterization techniques to investigate 

thermodynamical couplings in complex oxide interfaces. 
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This chapter provides a brief summary of the highlights and significant 

outcomes of this PhD research project and outlines the scope of future work in 

the field. 

6.1.1. Controlled synthesis of perovskite oxides 

A detailed methodology for facile synthesis of functional perovskite oxides, 

ferro/piezoelectric potassium sodium niobate (KNN) and archetypical strontium 

titanate (STO), with control over their crystal structure (in case of KNN thin 

films), stoichiometry and sub-oxide species is established. This was achieved 

through characterization of perovskite oxide thin films synthesized and 

post-treated at different conditions.  

In case of KNN, the ability to vary the concentration of alkali species and control 

the sub-oxide concentration through RF magnetron sputtering using a single 

ceramic oxide target, serves as a valuable tool to tailor the composition and in 

turn, tune the ferroelectric polarization and piezoelectric response of KNN thin 

films. Also, the ability to tailor the preferential orientation of KNN thin films adds 

a degree of freedom in the design of MEMS/NEMS piezo-based devices subject 

to multi-directional stress/strain fields. 

In case of STO, the ability to tailor the as-grown oxygen deficiency, A-site/B-site 

dopant concentration allows for further exploration of immense potentials of 

STO-based functional oxides. Further, through the controlled PVD synthesis, 

monolithic amorphous STO thin films with thickness down to ~10 nm are 

realized. These oxide layers can be utilized as the functional oxide layers in 

facile low temperature fabrication of nanoscale devices. Distinctly dense 
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structure of a-STO oxide layers also suggest the possibility of the realization of 

multi-layered oxide structures with distinct oxide-oxide interfaces. 

Moreover, because of the low synthesis temperature, a-STO thin films can be 

readily deposited on bio-compatible and flexible polymer substrates. 

6.1.2. Realization of high performance a-STO based MIM 

memristors 

Amorphous STO (a-STO) thin films (100 nm) with controllable as-grown oxygen 

deficiency induced defect structures and external dopant concentrations were 

synthesized as the functional layers in Pt/Ti/a-STO/Pt MIM cross-point devices 

for the first time. Devices utilizing oxygen deficient oxide layers exhibited 

exceptional bipolar switching performance subsequent to a single 

electroforming step the polarity of which can govern the switching polarity of 

a-STO cells. Consistently high switching ratios of the order of 103-104
 were 

observed at small READ voltage/current. The conduction and switching 

mechanisms in a-STO MIM devices were investigated utilizing a large set of 

characterization tools. Compositional analysis on a-STO based devices 

highlight the potential of stoichiometry and defect structure control over the 

non-linear resistive switching performance of a-STO cells to attain 

high-performance memristive devices. Evidence of multi-filamentary non-linear 

ionic drift and valence exchange along a mixed valence defect structure in the 

TiO2 sub-lattice are presented as the major contributors to bipolar resistive 

switching behavior in a-STO devices. Further, room temperature co-doping with 

donor species are shown to introduce additional energy states in the oxide band 
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structure, which play a significant assistive role in the electroforming and the 

subsequent nanoionics-based switching processes. 

6.1.3. Experimental technique for nano-contact electrical and 

nano-electromechanical characterizations 

In situ electrical nanoindentation has been utilized as a powerful tool to study 

the electrometrical coupling effects in ultra-thin oxide metal stacks, as well as a 

stable nano-contact probing technique for the investigation of nanoscale 

conduction mechanisms in electronic materials. To this end, an empirical 

relationship between the measured contact resistance and the modeled 

resistivity profile of the conductive indenter versus contact load/depth. This has 

enabled precise assessment of the nanoscale electrical properties of different 

material systems, encompassing nano-crystalline platinum films, a-STO oxide 

layers and quasi-two dimensional MoS2 and MoO3 layers at elastic and plastic 

nano-contacts across a wide range of contact sizes and loads. 

As such, the model provides an adaptable empirical approach to gain precise 

quantitative insights from in situ electrical nanoindentation data. The 

experimental procedure is readily applicable for quantified in situ electrical 

measurements in material systems and complex nanostructures that exhibit a 

Hertzian or continuous load-displacement behavior under nanoindentation 

loads. As for the characteristic discontinuities in the load-displacement behavior 

for materials systems that undergo phase change or structural break-down, the 

empirical model can underpin such deviations and characterize the changes in 

material’s resistivity solely on the basis of the contact depth. Therefore, it is an 
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invaluable tool for scientific investigations of nano-electromechanical properties 

of complex material systems. 

6.1.4. Investigations of nanoscale conduction mechanisms and 

nano-electromechanical effects in a-STO oxides and devices 

The in situ electrical nanoindentation experimental methodology and empirical 

relations developed as part of this PhD research project, were utilized to 

conduct a detailed investigation of nanoscale conduction and switching 

mechanisms in a-STO oxides. Nano-contact studies of a-STO MIM devices in 

virgin and switching states reveals that the electroforming step results in the 

formation of uniformly distributed conductive nano-filaments in the oxide layer 

where each of these filaments is switchable in isolation and thus acts as an 

individual resistive nano-switch. The in situ electrical nanoindentation 

experiments on a-STO/Pt stacks confirm the underlying electronic and ionic 

transport phenomena that take place during the electroforming and highlight the 

impact of mechanical stress on the modulation of non-linear ionic transport 

mechanisms in a-STO films. Ultra-thin a-STO films were directly electroformed 

using nano-scale contacts with controlled mechanical load. The resulting 

conductive filamentary regions exhibited distinct current transport and switching 

characteristics. 

As such, these results highlight the multi-filamentary switching phenomena 

which takes place in a-STO MIM cells and hold the promise that a-STO 

perovskite oxides can be utilized to realize ultra-dense high performance 

memory and logic architectures.  
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6.2. Future Work 

The PhD research project detailed in this thesis has provided significant insights 

into the novel electronics devices based on complex oxides. However, there 

remain numerous opportunities for continued investigations in the field of 

functional oxide electronics and nanoscale memristive devices and systems. 

Following, is a list of few significant research topics that can contribute to the 

advancement of the field. 

6.2.1. Realization of high performance nanoscale a-STO based 

memristive arrays 

Although micro-scale a-STO based MIM memristors demonstrated in this work 

show promising resistive switching performance and scaling potential, the 

realization of working memory and logic arrays based on nanoscale a-STO 

devices (device sizes < 200 nm) requires further refinement of the oxide defect 

chemistry and composition, as well as the MIM cell structure. The 

multi-filamentary switching phenomena in a-STO oxides and their high 

switching ratios hint at the ultimate scalability of a-STO based devices. Further 

downscaling of the device size (both in oxide dimensions and device size) is 

also an opportunity to investigate physical phenomena arising due to extreme 

electrical gradients and confined metal-oxide interfaces.  

6.2.2. Development of physical and electronic circuit-based 

models for a-STO MIM memristors 

The development of a comprehensive physical-based behavioral model for 

a-STO MIM memristors will serve as a stepping stone to better understanding 

the underlying device mechanisms. It will also allow for tailored design of 
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memristive cells with specific performance characteristics. To achieve such a 

physical model, the conduction and switching mechanisms as well as structural 

and physical parameters of a-STO oxide layers and interfaces need to be fully 

investigated. A detailed physical model will allow for the development of 

equivalent circuit models of a-STO memristive cells and the eventual integration 

of these devices into the conventional electronic circuit design process. 

6.2.3. Design and optimization of multi-layered complex oxide 

structures and interfaces 

The facile PVD synthesis process introduced in this project can be readily 

utilized to achieve optimal conditions for the realization of sub 100 nm multi-

layered oxide structures. Such structures are rife with interesting and, once 

mastered, extremely potent physical phenomena arising from strongly 

correlated oxide interfaces. In case of memristive devices, multilayered a-STO 

oxide structures with disparate electronic structures and activation energies can 

serve as rectifier-memory building blocks in large-scale memory arrays. Further, 

metal-insulator transitions (IMTs) are already reported at dissimilar oxide 

interfaces, suggesting possibilities for the realization of different types of 

memristive behavior. 
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APPENDIX A  

MATERIALS AND METHODS 

A.1. PVD Synthesis and Post-Synthesis Treatments 

A.1.1. Magnetron sputtering 

All RF magnetron sputtering and RF/DC magnetron co-sputtering of co-doped 

of perovskite oxide thin films were carried out using a Kurt Lesker PVD 75 PVD 

Magnetron Sputtering deposition system with DC and . The system has two 

sputtering power sources, a DC source for the deposition of metallic species 

and a RF source for the deposition of oxide species from ceramic targets. The 

deposition orientation is sputter up with a target to substrate distance of 50 cm. 

A substrate rotation speed of 20 rpm was used to ensure optimal coverage 

uniformity. For all oxide deposition runs the vacuum chamber was pumped 

down overnight to reach a base pressure of < 4 × 10-7 Torr. The substrate 

temperature during the deposition was controlled using a precision Eurotherm 

controller. These parameters ensure the deposition of monolithic thin films with 

low sputtering yield which allows for precise control of their thickness and 

orientation. 
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A.1.2. Electron beam evaporation 

The deposition of all metallic and adhesion layers (Pt, Ti, TiO2) was carried in a 

Kurt Lesker PVD 75 electron beam evaporation system using metallic and oxide 

targets. No substrate heating or rotation was used during these depositions. 

A.1.3. Post-annealing treatments 

The post annealing treatments were carried out in an MTI vacuum furnace. For 

vacuum annealing, the furnace was pumped down to a base pressure of <2×10-

6 Torr. For annealing in oxygen atmospheres, the furnace was first pumped 

down to a base pressure of < 1 × 10-5 Torr. Afterward the oxygen was flown into 

the chamber (10 ppm pressure) using mas flow controlled gauges. 

A.2. Materials Characterization 

A.2.1. X-Ray diffractometry (XRD) 

The crystallography of the thin films was studied by X-ray diffraction (XRD) 

using a Bruker D4 Endeavour diffractometer with a copper Kα source (with a 

wavelength of 0.154056 nm). The patterns were collected with a stage rotation 

of 15 rpm in the 2θ range between 20° and 60° in 0.02° steps, with a collection 

time of 4 s at each step, in the Bragg-Brentano geometry to account for all 

possible crystal orientations in the thin films. 

A.2.2. X-Ray photoelectron spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS) surface and depth profile analyses 

were carried out using a Thermo Scientific K-Alpha instrument with a base 

vacuum pressure of < 10-8 Torr. The surface composition analysis was 



APPENDIX A                                     151 

 

 
performed in the central area of the samples with a 400-100 µm spot size. An 

aluminum Kα radiation source with energy of 1485 eV was used, with the carbon 

peaks on the sample surface used as reference for calibration. The composition 

of the film was determined utilizing the area under the curves, fitted and 

corrected with sensitivity factors using the Avantage data system.  

Depth profiling was performed by successive, repeated argon-ion etch and 

spectrometry processes. This was performed in consecutive etching steps for 

10 s each with a 3 kV source voltage low ion beam intensity. Ion beam raster 

sizes and etching times were varied from 1 to 2 mm and 5 to 20 s respectively 

for patterned thin films and of know thickness to establish the etching depth for 

each thin film composition with the current ion beam intensity. The etching 

depth was determined ex situ using an Ambios XP-2 surface profilometer. 

Core-level XPS spectra of distinct elements were background corrected using 

Shirley algorithm, and distinct chemical species were resolved using a 

non-linear least square fitting procedure, after aligning the elemental binding 

energies to adventitious carbon (C1s) binding energy of 285 eV. The fitting 

procedure involved an estimation of the chemically distinct species based on 

their reported peak positions and the general shape of the shift-corrected 

spectrum. Gaussian functions were used to find the best fits for s, d and p 

orbitals in the vicinity of the estimated peak position with the least square fitting 

procedure with a targeted fitting goodness measure of > 0.995. 

The fitted spectra and calculated atomic concentration for various STO thin 

films were compared with the reference spectra and concentration data 

acquired from stoichiometric thin films and single crystal STO samples to 
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determine the relative change in the concentration and distinct changes in the 

oxidation states. The relative approach allowed for a tentative assessment and 

separation of ion beam etching effects on the concentration and oxidation 

states. 

A.2.3. Electrical characterization 

The electrical characterization of a-STO MIM cells was performed using Agilent 

2900A series sourcemeter and pulse generator for two-probe and four-probe 

direct current and pulse transient measurements. Characterizations were 

performed using either the bottom or top electrode as the drive electrode with 

the opposite electrode connected to the system ground. 

For voltage sweep measurements, a step trigger time between 10 ms and 100 

µs was used and the measurement time constant was varied with accordingly 

with a minimum of 10 µs. For pulse measurements, pulse widths of 10-100 µs 

were employed with a fixed measurement time constant of 10 µs. Long duration 

constant bias measurements were carried out  in Source & Sampling mode 

were a constant bias was held between the two electrodes and current was 

measured periodically at defined intervals (10 to 100 s).  

A.2.4. In situ electrical nanoindentation 

Nanoindentation experiments with in situ electrical measurements were carried 

out using Hysitron’s NanoECR system on a TI 950 Triboindenter. A conductive 

PulsarTM Berkovich tip was used, with the nanoindentation technique enabling 

the in situ measurement of electrical contact resistance between the indenter tip 

and the specimen. 
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A.2.5. Surface morphology and roughness measurements 

The surface morphology and the roughness of thin film samples were measured 

using two methods.  

Atomic Force Microscopy (AFM) scans were performed in the tapping mode 

with scan sizes of 2×2 µm of 5×5 µm, using a Digital Instruments Dimension 

3100 scanning probe microscope with a Nanoscope IIIa controller. Scan rates 

of 0.5 Hz were used to ensure a high signal to noise ratio. The average 

roughness of the samples was calculated with Nanoscope analysis software 

and Gwyddion software package. 

In situ Scanning Probe Microscopy (SPM) scan were performed using Hysitron 

TI950 Triboindenter’s in situ SPM tool with scan sizes identical to AFM scans. 

Contact forces in the range of 2 to 0.5 µN and scan rates of 1 to 0.5 Hz were 

used for all samples. The average roughness of the samples was calculated 

using Hysitron’s Triboscan software and Gwyddion software package. 

A.2.6. Depth limited scanning wear 

The top electrode of MIM devices were removed through a scanning wear step 

using Hysitron TI950 Triboindenter’s scanning wear tool. 3×3 µm areas of the 

top electrodes were scanned consecutively in SPM mode with a blunt Berkovich 

tip (tip radius of ~ 500 nm) and contact forces ranging from 15 to 40 µN. This 

allowed for the gradual removal of 60 nm Pt/Ti electrode. The wear depth was 

measured in situ after each consecutive scanning pass utilizing in situ SPM with 

2 µm contact force. The complete removal of the electrode was confirmed by 

the wear depth as well as in situ electrical nanoindentation measurements 

biasing the top electrode line, to ensure an open circuit inside the wear area. 
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Considering the metal pile up around the wear region, an effective 2×2 µm area 

was cleared of the top electrode following the depth limited scanning wear step. 
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APPENDIX B  

NANOSCALE ELECTRO-MECHANICAL 

DYNAMICS OF NANO-CRYSTALLINE PLATINUM 

THIN FILMS 

Platinum thin films are prevalent as contact electrodes in a variety of 

MEMS/NEMS applications for devices operating under high temperature, 

mechanical stress and harsh environments due to their high temperature 

stability, excellent mechanical properties and high temperature coefficient for 

resistance. Moreover, platinum thin films are routinely employed as contact 

electrodes in the high temperature synthesis of complex oxides for emerging 

oxide electronics applications. As such, it is necessary to understand and 

accurately quantify the nano-electromechanical properties of these metallic 

films. Performing nanoindentation (where an ultra-fine hard tip probes 

mechanical properties) with in situ electrical measurements has the capability to 

provide an unprecedented amount of valuable information [B.1]. The technique 

has been widely used to investigate nano-electromechanical phenomena in a 

wide range of complex material systems [B.1-8]. 

Although there have been a few studies investigating the nanoscale mechanical 

and electrical characteristics of Pt thin films, they have always reported atypical 

elastic modulus values [B.9-12]. These studies neglect basic parameters such 
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as surface roughness of the films that can generate anomalous data. In 

addition, factors such as substrate effects, film texture, grain morphology and 

pile-up regions that form as a result of mechanical force need to be considered 

and their effect eliminated to reveal an error-free depiction of the true 

characteristics of these thin films. Additionally, a limited number of 

nanoindentation studies such as the one conducted by Hyun et al. [B.10] have 

been carried out at extremely shallow indent depths (<20 nm) where the surface 

roughness of the films and abnormalities in indenter’s shape have a profound 

impact.   

This Appendix details the use of in situ electrical nanoindentation technique 

using a conductive ceramic Berkovich tip [B.13] to obtain the 

nano-electromechanical properties of <111> oriented nano-crystalline Pt thin 

films. The results of this appendix are currently in press for publication in 

Journal of Applied Physics. 

B.1. Experimental Details 

Platinum films of 200 nm thickness, with a 20 nm thick TiO2 adhesion layer, 

were deposited on thermally oxidized silicon substrates (300 nm SiO2/Si) using 

electron beam evaporation at room temperature. The use of 20 nm TiO2 layer 

ensures reliable adhesion between the platinum thin film and the underlying 

substrate which is critical for the reliability of electrical contacts. Furthermore, 

we have previously reported that the presence of a TiO2 adhesion layer 

prevents the structural breakdown of the platinum thin film during the high 

temperature deposition of perovskite oxides [B.14]. This makes the structure a 

viable substrate for oxide electronics. Additionally, the presence of an insulating 
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TiO2 layer would mean that electrical measurements using in situ electrical 

nanoindentation technique yield the inherent properties of the platinum thin films 

in the multi-layer structure. As-deposited platinum thin films had an average 

roughness (Ra) of 0.51 nm and an average grain size of 17.1 nm. As-deposited 

platinum thin films had an average roughness (Ra) of 0.51 nm and an average 

grain size of 17.1 nm. The as-deposited thin films were post-annealed in 

vacuum at 600⁰C to acquire nano-crystalline platinum films with a nominal 

roughness (Ra) of 2.9 nm and average grain size of 29.6 nm, confirmed by 

atomic force microscopy (Figure B.1).  

 

Figure B.1. High resolution AFM scans of (a) as-grown and (b) nano-crystalline platinum thin 

films. Post-annealing treatments at 600 °C in vacuum were employed to obtain the 

nano-crystalline films. Post-annealing treatment results in the formation of highly oriented 

nano-grains with an average diameter of 29.6 nm. 

The films were characterized by X-ray diffraction (XRD). Figure B.2 shows the 

XRD patterns for as-grown and post-annealed Pt/TiO2/SiO2/Si structures. The 

average resistivity of the nano-crystalline platinum thin films was found to be 

16.3 µΩ.cm. 
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Figure B.2. X-ray diffractograms for as-grown and post-annealed Pt/TiO2/SiO2/Si thin films. 

Post-annealing at 600 °C in vacuum results in a strongly <111> oriented nano-crystalline 

platinum layer. 

B.2. Nanomechanical properties of Nano-Crystalline 

Platinum Thin Film Structure 

B.2.1. Quantified evaluation of the mechanical properties of 

nano-crystalline platinum films 

Nanomechanical properties of nano-crystalline platinum thin films were obtained 

from the nanoindentation experiments. The tip drift rate was negligible 

(<0.08 nm/s) at varying loading rates (10 to 100 µN/s). The total penetration 

depths were confined to within 15% of the films’ thicknesses [B.15] (load 

controlled indents with a maximum force of 500 µN). The acquired data was 

corrected for artefacts such as pile-up heights and machine compliance to 

obtain an accurate assessment of the inherent nanomechanical properties of 

the thin films. Using the traditional Oliver-Pharr method [B.16,17] the hardness 

of the films (H) and the contact plane elastic modulus (E*) can be calculated as: 
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 � = ������   (1) 

�∗ = KE �� ���  (2) 

where Pmax, Ac and S are the maximum indentation force, projected contact 

area and contact stiffness, respectively. Subsequently, the elastic modulus of 

the thin films (Ef) can be calculated from E* as:  

K�∗ = �KV�� ��� − �KV�� ���   (3) 

where ν is the Poisson’s ratio, with subscripts i and f referring to the indenter 

and the film, respectively. 

In the Oliver-Pharr method, an accurate estimation of projected contact area is 

critical to the accuracy of calculated hardness and elastic modulus. Hence, it is 

essential to accurately characterize the contact area function of the indenter 

probe. The relationship between the penetration depth (hc) and the contact area 

for an ideal Berkovich indenter (Ac) is given by �  = 24.5ℎ E. In case of a non-

ideal probe, the deviations of the contact area profile from the ideal case can be 

expressed in form of a fitting function as shown below:  

�  = ¤9ℎ E + ¤Kℎ  + ¤Eℎ K/E + ¤Fℎ K/G + ¤Gℎ K/¥ + ¤¦ℎ K/K§
  (4) 

where Cn represents the fitting constants calculated based on the measured 

contact areas on a standard sample of known elastic modulus and hardness 

(e.g. quartz) in a range of incremental contact depths. 
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Tip area functions in the form of Equation (4) were calculated using the 

penetration depth data on a standard fused quartz sample with an elastic 

modulus of 72.1 GPa. An area function fitted to sufficiently high penetration 

depths (hc >100 nm) will provide an accurate estimation of Ac for evaluation of 

hardness and modulus in a similar penetration depth range. However, for 

penetration depths outside this designated range, using the same area function 

leads to an erroneous estimation of the projected contact area due to an often 

non-uniform profile of the indenter. In particular, the error margin becomes 

specifically large in the shallow indentation depth regime, where the plastic 

deformation in the material is minimal, and deviations from an ideal pyramidal 

shape become more pronounced at the probe’s tip. To address this issue, 

separate tip area functions were fitted to low (3-28.3 nm), moderate 

(28.3-53.2 nm) and high (53.2-132 nm) penetration depth ranges. Table B.1 

includes the fitted constants for area functions in the form of Equation (4) in 

each penetration depth regime. Area vs. depth graphs of these area functions in 

penetration depths from 3-200 nm are illustrated in Figure B.3. The use of 

separate area functions for different ranges of penetration depths results in a 

significant improvement in the accuracy of contact area estimations. Area 

measurements on the in situ SPM images of the residual contact areas on 

platinum thin films agree very well with the contact areas estimated from the 

area functions, indicating the accuracy of these functions. The hardness and 

elastic modulus of nano-crystalline platinum thin films with strong  <111> 

orientations was calculated from load-displacement data at 5×5 indentation 

arrays at different regions of the thin films using the shallow depth tip area 

function. 
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Table B.1. Fitting constants for the area functions in different penetration depth regimes. 

Calculated from indents with depths on standard fused quartz sample with an average elastic 

modulus of 72.1 GPa. 

 

 

 

Figure B.3. Contact area vs. depth as determined by different tip area functions. Area functions 

are most accurate in their designated depth range. This is especially true in case of the shallow 

depth indents where estimations based on moderate and large depth area functions are 

completely invalid. 

The use of the designated tip area function for the shallow depth indentations 

ensures a greater accuracy in the analysis of the nanoindentation data since it 

allows correcting for the geometrical non-ideality of the indenter profile which 

becomes excessively important in the shallow depth regime.  A hardness value 

 Ideal Berkovich Shallow Depth Moderate Depth Large Depth 

C0 24.5 24.16396 24.5 24.5 

C1 0 927.0421 -252.9766 2273.36 

C2 0 729.377 154481.2 473745.3 

C3 0 0.58313 -1.23457×106 -4.75978×106 

C4 0 368.8878 2.14228×106 5.74874×106 

C5 0 0 -964513.8 169.5305 
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of 8.5 GPa (±2.6%) and an elastic modulus of 177 GPa (±1.9%) was obtained 

for nano-crystalline platinum thin films which is in good agreement with the 

theoretical values for <111> textured platinum thin films [B.9,18]. Whereas 

similar hardness values are measured for <111> textured platinum thin films 

[B.9], the reported measured elastic moduli are usually in the range 150-160 

GPa [B.9-11]. This variation is due to the fact that calculations of the plane 

strain modulus are extremely sensitive to the estimated contact depth and area 

as described before. An inaccurate estimation of the residual contact area can 

result in an underestimation of elastic modulus. 

B.2.2. Substrate and loading rate effects 

Upon further increase of the nanoindentation load, substrate effects on the 

mechanical response begin to appear where out-of plane stresses due to the 

structural inhomogeneity are likely to cause pile-up formations. Figure B.4 

shows the P-h response of the Pt/TiO2/SiO2/Si structure under loads of up to 

5000 µN.  

 

Figure B.4. Load-displacement curves of nano-crystalline platinum thin films in 100-5000 µN 

load range. 
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Investigations on the in situ SPM images at high-load indent spots reveal 

noticeable pile-ups around the contact area at loads higher than 1000 µN 

(Figure B.5), with height only dependent on the maximum load (variations in 

loading rate did not affect the measured pile-up heights). 

The contact depth readings at higher loads include the pile-up height as an 

added factor which needs to be eliminated to obtain the true indentation depth 

values [B.19]: 

ℎ  = ℎ¨©ª − «¬̈ ©ª�VK − ℎ­®  (5) 

where ℎ­® corresponds to the pile-up height and « is the geometrical factor of 

the indenter (0.72 in case of Berkovich indenter) [B.19]. 

 

Figure B.5. Pile-up deformations around the nanoindentation contact area in nano-crystalline 

platinum films. (a) 1000-6000 µN contact profiles determined from in situ SPM scans after 

backgrond corrections. (b) High resolution in situ SPM scan of the nanoindetnation contacts. 

As such, the hardness and elastic modulus values of the structure were 

evaluated after correcting for the pile-up heights at higher loads. Upon 

increasing the penetration depths to more than 15% of the film’s thickness 
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(>500 µN loads), the substrate effects become noticeable and both hardness 

and modulus values begin to drop (Figure B.6). The values eventually settle to 

an average of 7.76 (±2.1%) GPa and 152.43(± 1.9%) GPa for hardness and 

elastic modulus at loads higher than 1000 µN. Together with revealing the 

formation of pile-ups, the results also highlight the effect of substrate on the 

mechanical behavior of nano-crystalline platinum thin films structure.  

  

Figure B.6. Mechanical properties of nano-crystalline platinum films subject to increasing 

indentation load/depth. Black dots denote the nanomechanical response of platinum films 

(penetration depths <15% of the film thickness). Upon further increase of the indentation 

load/depth, substrate effects start to appear (red dots). 

 

Figure B.7. Mechanical properites of nano-crystalline platinum films at constant indentation 

loads with variable loading rates for maximum loads of 500, 1000 and 2000 µN. 
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To verify the accuracy of the results, multiple load-controlled indentation 

experiments were carried out with constant loads of 500 µN (maximum load to 

avoid the substrate effect, ℎ  ≤ 15% film thickness), 2000 and 1000 µN with 

incremental loading rates (10 to 100 µN/s). Figure B.7 illustrates the mechanical 

properties calculated for each maximum load along with the standard deviations 

in each of the calculated parameters. Loading rates appear to have no 

significant effect on the mechanical response of the structure. 

B.3. In situ Electrical Nanoindentation 

In situ electrical measurements were performed using the loading profile 

depicted in Figure B.8 to characterize the properties of platinum thin films’ 

nanoscale contacts at different loads and penetration depths. The experiments 

were carried out at indentation loads ranging from 50 to 5000 µN with constant 

voltage bias and loading rates.  

A constant bias of 1 mV and a loading rate of 10 µN/s were used for loads up to 

500 µN. For larger loads the voltage bias and the loading rate were set to 

0.5 mV and 100 µN/s, respectively, to minimize the drift value and prevent 

excessive heating of the nanoscale contact. One second holding periods at the 

beginning and the end of the loading profile were used to characterize the 

contact resistance at zero approach and retract points. A long holding segment 

at maximum load was used to measure the minimum contact resistance at 

different penetration depths under constant bias as well as with ±1 mV voltage 

sweeps to evaluate the contact behavior. Figure B.9 show the representative 

in situ current vs. depth and contact resistance vs. load graphs in low (<500 µN) 
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and high load (>1000 µN) regimes, respectively, after correcting for the drift rate 

and displacement offsets. 

 

Figure B.8. Load-profile for in situ electrical nanoindentation experiments. A constant bias is 

apped to the platinum at low-load hold and load/unload segments. Sweep experiments are 

carried out during hold segments at maximum load. 

The sweep tests reveal that the contact is ohmic even at indentation loads as 

low as 50 µN, which confirms the metallic nature of the contact between the 

indenter and platinum films (Figure B.10). For very small contact areas 

(maximum contact depth <8 nm and load <50 µN) the contact resistance 

remains high, possibly due to a higher surface resistivity at the indenter’s tip as 

well as friction, and scattering effects due to the platinum film’s roughness 

[B.20-23] (Figure B.9c, d). After this initial stage, the contact resistance 

decreases abruptly subject to progressively increasing indentation loads, which 

can be correlated with the onset of plastic deformation of the platinum films. The 

discontinuity disappears when the loading rate is increased ten-folds to 

100 µN/s for higher peak loads (>1000 µN), as the plastic deformation starts 
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rapidly, before a full integration cycle (0.5 s) of the current measurement 

system.  

The methodology detailed in Chapter 5, together with depth-specific tip area 

functions obtained in section B.1 were used to accurately assess the electrical 

response of nano-crystalline platinum thin films during the in situ electrical 

nanoindentation experiments. 

 

Figure B.9. In situ electrical response of nano-crystalline platinum films in low and high load 

regimes. (a,b) In situ electrical current at the nano-contact subject to indentation load/depth. 

(c,d) Measured nano-contact resistance vs. contact load. 
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Figure B.10. In situ voltage-current characteristics of indentation nano-contact on platinum 

films. Voltage sweeps are performed at constant maximum loads from 50 to 5000 µN. 

B.3.1. Elastic nano-contacts 

At penetration depths smaller than ~8 nm (indentation loads <50 µN), the 

nanoscale contact resistance is 3-5 orders of magnitude higher than at larger 

penetration depths (Figure 5.9a,c) and decreases at a faster rate with 

indentation load/depth. The abrupt change in the contact resistance beyond this 

point likely denotes the onset of plastic deformation in the nano-crystalline 

platinum film beyond which the contact area increases rapidly. A series of 

50 µN indentation experiments confirm the elastic nature of the contact (Figure 

B.11). At this load range, the mechanical response of the nano-contact remains 

in a purely elastic regime. In the loading segments, the nano-contact current 

increases in line with the progressively increasing nano-contact area. However, 

the nano-contact current in the unloading segments typically does not follow the 

same trace as the loading current. This behavior likely stems from friction 

effects and inelastic slipping of the nano-contact at grain boundaries due to 

thermal drift which becomes more pronounced as larger currents pass through 

the nano-contact area. During these experiments, the contact resistance 
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remains in the high resistance regime where it’s mainly limited by the high 

resistivity of the indenter contact at its rounding sphere (±²,¨©ª = 933.4 µΩ.cm). 

The diameter of the electrical contacts in the elastic regime was calculated to  

be 17.2 nm < d < 44.3 nm which i comparable with the estimated electron mean 

free path for the platinum films and therefore the contact can be categorized to 

be in the quasi-ballistic regime. 

 

Figure B.11. Nano-electromechanical response of the platinum films under ultra low indentation 

loads (45 µN). The mechanical response is fully elastic and the contact resistivity is constant. 

Assuming a constant resistivity at the indenter’s rounding sphere, the resistivity 

of nano-crystalline platinum films is uniform and is calculated to be 31.1 µΩ.cm. 

This higher resistivity compared to the average value (16.3 µΩ.cm) mostly 

stems from the electron scattering at the grain boundaries and roughness 

effects [B.23-25]. 

B.3.2. Nano-contacts in the elasto-plastic regime  

The abrupt decrease in the contact resistance between the conductive indenter 

and nano-crystalline platinum films at the onset of plastic deformation is 

ascribed to a sharp drop of the modeled indenter’s resistivity profile at higher 
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penetration depths as well as the increase in the true electrical contact area 

subject to increasing contact loads. The electrical contact area increases at 

higher indentation depths/loads partly as a result of the plastic deformation (i.e. 

flattening) of individual grains that form the conductive spots at the contact. 

Moreover, the friction and drift rate effects become negligible at higher loads 

and penetration depths which results in the progressive decrease of contact 

resistance at increased load/penetration (Figure B.9b,d). The resistivity of the 

platinum films in this regime is characterized from measured contact 

resistances. Figure B.12 illustrates the platinum film’s resistivity vs. penetration 

depth averaged from the values in loading and unloading segments with contact 

loads less than 20% of the peak indentation load. The average resistivity for 

penetration depths larger than 25 nm is calculated to be 17.6 (± 2%) µΩ.cm 

which is only slightly higher than the average resistivity (16.5 µΩ.cm). The 

initially higher resistivity is mainly due to the surface roughness effects. As 

illustrated in Figure 9 and 11, a stable ohmic nano contact is formed during in 

situ electrical nanoindentation experiment for all elastic and elasto-plastic 

nano-contacts, regardless of the maximum indentation force and the loading 

rate. The empirical relationship between the inherent resistivity of the sample 

and the evolution of the nano-contact load/depth described by Equation (7) in 

Chapter 5, does not directly account for the surface roughness effects and 

electron scattering at the grain boundaries in the largely elastic shallow depth 

nano contacts. As such, resistivity values calculated from the contact resistance 

of shallow depth nano-contacts (with contact depths < 15 nm) are expected to 

be higher than the actual inherent resistivity, since the contact resistance values 

include the added surface resistance due to such effects. However, since the 
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geometrical irregularities and the initial high resistivity of the indenter tip are 

accounted for, the higher calculated resistivity values are a good indicator of the 

presence and the impact of such surficial effects. 

 

 

Figure B.12. Nanoscale resistivity of platinum films vs. nano-contact depth. Resistivtiy at 

moderate to large depth nano-contacts, is almost identical to the average resistivity value of the 

films. 

Figure B.13a depicts the resistivity of the platinum subject to indentation load. 

These values are calculated from I-V sweeps at peak indentation loads. At low 

peak loads, the resistivity values are identical to those in Figure B.12. However, 

at higher loads the resistivity of the platinum films start to increase, despite an 

increase in contact area and an overall decrease of measured contact 

resistances. As such, the increase is possibly indicative of an increase in 

dislocation density of platinum at the nanoscale contact due to severe plastic 

deformation. Interestingly, the indentation load/depth threshold for the resistivity 

increase corresponds closely to the load/depth threshold at which the pile-up 

deformation around the contact area begins to appear (Figure B.13b). This may 
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help reveal the origin of pile-up deformations which can be ascribed to the 

structural deformations and shear-plane movements in the platinum films at the 

nanoscale contact area when subjected to high mechanical stress. 

 

Figure B.13. The effect of mechanical load on the nanoscale resistivity of platinum films. At 

high contact loads, where pile-up deformations start to appear around the contact, the resistivity 

of the films start to rise. 

To conclude, the nanomechanical and the nanoscale electrical properties of 

nano-crystalline platinum thin films have been precisely characterized utilizing 

in situ electrical nanoindentation. The influence of substrate structure as well as 

the effect of indenter’s geometry profile, loading rate and pile-up formation have 

been considered to accurately characterize the nanomechanical properties of 

platinum films. Moreover, the nanoscale electrical properties of platinum films 

have been assessed via the use of an empirical relationship between the 

measured contact resistances and the modeled resistivity profile of the 

conductive indenter versus contact load/depth. Precise assessments of the 

nanoscale electrical properties of nano-crystalline platinum films at elastic and 

plastic nano-contacts have been achieved across a wide range of contact sizes 

and loads. 
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APPENDIX C  

IN SITU CHARACTERIZATION OF NANOSCALE 

ELECTROMECHANICAL PROPERTIES OF 

QUASI-TWO-DIMENSIONAL MOS2 AND MOO3 

Precise manipulation of electronic band structures of two-dimensional (2D) 

transition metal dichalcogenides and oxides (TMD&Os) via localized strain 

engineering is an exciting avenue for exploiting their unique characteristics for 

electronics, optoelectronics, and nano-electromechanical systems (NEMS) 

applications. Engineered mechanically-induced electrical transitions in quasi-2D 

molybdenum disulphide (MoS2) and molybdenum trioxide (MoO3) using an in 

situ electrical nanoindentation technique have been demonstrated. It is shown 

that localized strains on such quasi-2D layers can induce carrier transport 

alterations, thereby changing their electrical conduction behavior. Such strain 

effects offer a potential tool for precisely manipulating the electronic transport 

properties of 2D TMD&Os, and understanding the interactions of the atomic 

electronic states in such layered materials. 

The report detailing the methods and the results of this investigation can be 

found on the publication archive system arXiv (arXiv:1409.4949). 


