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Abstract

Given a finite group G and a set S ⊂ G, we consider the different cosets of each
cyclic group 〈s〉 with s ∈ S. Then the G-graph Φ(G,S) associated with G and S can
be defined as the intersection graph of all these cosets. These graphs were introduced
in [4] as an alternative to Cayley graphs: they still have strong regular properties
but a more flexible structure. We investigate here some of their robustness prop-
erties (connectivity and vertex/edge-transitivity) recognized as important issues in
the domain of network design. In particular, we exhibit some cases where G-graphs
are optimally connected, i.e. their edge and vertex-connectivity are both equal to
the minimum degree. Our main result concerns the case of a G-graph associated
with an abelian group and its canonical base S̃, which is shown to be optimally
connected. We also provide a combinatorial characterization for this class as clique
graphs of Cartesian products of complete graphs and we show that it can be rec-
ognized in polynomial time. These results motivate future researches in two main
directions: revealing new classes of optimally connected G-graphs and investigating
the complexity of their recognition.

Key words: Graphs and groups, G-graphs, orbit graphs, optimal connectivity,
vertex and edge-transitivity, robustness, network, Hamming graphs, clique graphs
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1 Introduction

Designers of communication infrastructure must assume that networks will
continue to function despite failures (up to some level of damage); in other
terms, they must assume that the communication network has the highest
possible degree of robustness. Robustness of a network is given by the exis-
tence of alternate paths, enabling the communication even if the network is
damaged [11]. Then there are two aspects in studying a network robustness,
each one corresponding to the two main threats: inside threats (link failures)
and outside threats (node destruction). In the topological model of a com-
munications network as an (undirected) graph, the two aspects of network
robustness correspond to two types of connectivity of the associated graph:
vertex-connectivity and edge-connectivity.

Regarding network robustness, a particular interesting property is given by
vertex (resp. edge)-transitivity which represents that every node (resp. link)
is similar to others. In this kind of network, any damage produced does not
depend on its location. Graphs generated from finite groups generally satisfy
such property as they have a high regularity due to their underlying alge-
braic structure [10]. The most famous examples are Cayley graphs which have
highly symmetric properties. In [11] it is shown that they are vertex-transitive
and thus regular and optimally connected (notions defined later). Still not
all networks are regular and symmetric. For example, they can also be semi-
symmetric (edge-transitive but not vertex-transitive). To overcome this limit,
another family of graphs constructed from groups was introduced and first
studied in [4], [5] and [6]. They are called G-graphs (or also Orbit graphs [22]).
These graphs still have high-regular and symmetric properties but with more
flexibility than Cayley graphs. In particular, they can be semi-symmetric.
With the help of G-graphs, many symmetric and semi-symmetric graphs have
been computed in [5] up to 800 vertices.

In this paper, 2 we motivate further studies on this class of graphs by in-
vestigating some of its connectivity properties and revealing good robustness
properties in some particular cases. For possible applications complexity re-
sults are also investigated. A natural question is the complexity of recognizing
these graphs. We give a first answer in this direction by exhibiting a polyno-
mial case.

The paper is organized as follows: in Section 2, we first give the main definitions

∗ Corresponding author: tanasescu@essec.edu
1 This research was supported by Grant 2012-10 of GDR-RO - CNRS whose support
is greatly acknowledged.
2 Some preliminary earlier results were presented in the Proc. of CMCGS (Com-
putational Mathematics, Computational Geometry & Statistics), Singapore, 2012.
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needed from group and graph theories and present the class of G-graphs with
some of its basic properties. In Section 3, we discuss some important notions
for the study of network architectures: vertex-transitivity, edge-transitivity
and optimal connectivity. We present some optimally connected families of
G-graphs, in particular when the group has a symmetric presentation and in
the bipartite case. The main result of the section is that G-graphs associated
with abelian (commutative) finite groups (called canonical abelian G-graphs -
defined later) are optimally connected. Finally, in Section 4 we investigate the
structure of canonical abelian G-graphs and show that they are clique graphs
(intersection graph of maximal cliques) of Cartesian products of complete
graphs (also called Generalized Hamming Graphs). For these purposes, we
revisit some results of [7] and [22] and precise the links between some G-
graphs and some Cayley graphs. We deduce a polynomial time algorithm for
the recognition of this class.

2 Definitions and preliminary results

In this section we give the main definitions and notations from group and
graph theories needed in the sequel. For further definitions not given here, the
reader is referred to [20] and [24].

2.1 Finite groups

Groups and Cyclic Groups: In this paper, we only consider finite groups, usu-
ally denoted by G. We adopt a multiplicative notation: ”·” denoting a canon-
ical operation (sometimes omitted in expressions, g · h being denoted by gh).
gk denotes g · . . . · g︸ ︷︷ ︸

k

and g−1 the inverse of g ∈ G. e is the neutral element.

For every g in G, the order of g, denoted by o(g), is the smallest positive
integer k such that gk = e. The set {e, g, g2, . . . , go(g)−1} forms a subgroup of
G, called the cyclic group generated by g and denoted by 〈g〉. Sn will denote
the permutation group on n elements.

Generating Set: A set S ⊂ G is a generating set of a group G, if every element
g in G can be written as a finite combination of the elements of S, g =
sa11 s

a2
2 · · · sapp with si ∈ S not necessary distinct and a1, . . . , ap ∈ Z. Here we

can assume that si 6= si+1, i = 1, . . . , p − 1. If G is finite we can assume that
a1, . . . , ap ∈ N. Such an expression is called a word on S.
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Group Presentation: Another way for describing a group G is by defining a
generating set S and a set of relations R = {r1, r2, . . . , rm}, called relators.
r1, . . . , rm are words on S, each equal to e. Moreover every word whose value
in G is equal to e can be written as g1r

b1
1 g
−1
1 g2r

b2
2 g
−1
2 · · · gzrbzz g−1

z with gi ∈
G, ri ∈ R, bi ∈ Z, i = 1, . . . , z and ri 6= ri+1, i = 1, . . . , z − 1. This kind of
description is called a presentation of G, denoted by G = 〈S|R〉. Every group
has a presentation and it is not unique (see [20] for a formal definition and
more details about groups presentations). For instance, the cyclic group of
order n has Cn = 〈a|an〉 as one of its presentations.

Symmetric Presentation: Let G be a group with the presentation 〈S|R〉 and
|S| = n. For a permutation π ∈ Sn and a relator r = sa11 s

a2
2 · · · sapp with

si ∈ S, we set π(r) = sa1π(1)s
a2
π(2) · · · s

ap
π(p). We say that R is invariant under

π if for every r ∈ R we have π(r) ∈ R. If R is invariant under the action
of the full symmetric permutation group Sn, then the presentation 〈S|R〉 is
called a symmetric presentation [1]. A group with a symmetric presentation
〈S|R〉 is called symmetrically generated by S. One example is the Cartesian
product of cyclic groups of the same order G = 〈s1〉×· · ·×〈sk〉 with o(si) = `,
i = 1, . . . , k. Then G = 〈s1, . . . , sk|s`1, . . . , s`k〉. Also the Alternating group A4

of permutations on {1, 2, 3, 4} with signature 1 has the symmetric presentation
A4 = 〈a, b|a3, b3, (ab)2, (ba)2〉. Here, a and b correspond for instance to the 3-
cycles a = (1, 2, 3) and b = (2, 3, 4). Other examples can be found in [19] and
[23].

Independence: A set S ⊂ G is independent, if for any {s1, . . . , sp} ⊆ S, ai ∈
Z, i = 1, . . . , p such that sa11 · · · sapp = e we have sa11 = · · · = sapp = e, which
is equivalent to ai ≡ 0 mod o(si), i = 1, . . . , p. Elements s1, ..., sk are pairwise
independent in G if any pair {si, sj} is independent. Similarly we can define
independence by triples. Independence implies independence by triples that
implies pairwise independence. Note that in this definition elements s1, . . . , sp
are supposed to be distinct. In the abelian (commutative) case this notion
corresponds to the usual linear independence [20].

Group Isomorphism: Given two groups G and G′, we denote by G ' G′ that G
is isomorphic to G′. Aut(G) denotes the group of automorphisms of G under
composition law.

Finite Abelian Groups Fundamental Theorem: The fundamental theorem of
finite abelian groups [20] states that in a finite abelian group G, we have G '
〈s1〉×〈s2〉×· · ·×〈sk〉, where S = {s1, . . . , sk} is an independent set of elements
of G. An important consequence is that S induces for every element g ∈ G
a unique decomposition g = sa11 s

a2
2 · · · sakk with ai ∈ Z/o(gi)Z, i = 1, . . . , k).

Hence the set

S̃ = {(s1, e, . . . , e︸ ︷︷ ︸
k

), (e, s2, e . . . , e︸ ︷︷ ︸
k

), . . . , (e, . . . , e, sk︸ ︷︷ ︸
k

)}
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in 〈s1〉×〈s2〉×· · ·×〈sk〉 is an independent generating set, called the canonical
base.

Subgroups and Cosets: We will use the notation H ≤ G if H is a subgroup of
G. If H is a fixed subgroup of a group G and x ∈ G, the subset Hx = {hx|h ∈
H} ⊂ G is called right coset of H containing x. The key property of cosets is
that, for any x, y ∈ G, either Hx = Hy or Hx ∩Hy = ∅. Thus the collection
of all cosets of H yields a partition of G.

2.2 Graphs

We limit ourselves to simple graphs (undirected, with no multi-edge and no
loop), denoted by Γ = (V,E). N(v) will denote the neighborhood of the vertex
v and δ(Γ) the minimum vertex degree in Γ.

Connectivity: For a connected graph Γ, the vertex-connectivity κ(Γ) is the
smallest number of vertices whose removal induces a disconnected or single-
vertex graph. Similarly edge-connectivity λ(Γ) is the smallest number of edges
whose removal induces a disconnected graph. Γ is k-(vertex)-connected if κ(Γ) ≥
k and k-edge-connected if λ(Γ) ≥ k.

Disjoint Paths: We remind that two paths in a graph are internally disjoint
or internally vertex-disjoint if they have no common internal vertex. Two
paths are called edge-disjoint if they have no common edge. It is well known
(Menger’s Theorem) [25] that a graph is k-(vertex)-connected (resp. k-edge-
connected) if and only if any two vertices u, v are linked by k internally vertex
(resp. edge)-disjoint paths.

Theorem 1 [25] For any graph Γ we have

κ(Γ) ≤ λ(Γ) ≤ δ(Γ)

Optimal Connectivity: Consequently δ(Γ) corresponds to the best possible
(highest) connectivity. A graph Γ satisfying λ(Γ) = δ(Γ) is called optimally
edge-connected and a graph with κ(Γ) = δ(Γ) is called optimally connected.

Graph Isomorphism: Let Γ1 = (V1, E1) and Γ2 = (V2, E2) be two graphs, we
denote by Γ1 ' Γ2 that Γ1 and Γ2 are isomorphic and by Aut(Γ) the group of
automorphisms of Γ under composition law.

Transitivity: A graph Γ = (V,E) is vertex-transitive if for any two vertices
u, v ∈ V there exists an automorphism h ∈ Aut(Γ) such that h(u) = v. It is
edge-transitive if for any two edges uv, u′v′ ∈ E, there exists an automorphism
h ∈ Aut(Γ) such that h(u)h(v) = u′v′. Using usual group terminology [20]
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vertex (resp. edge)-transitivity means that the group of automorphismsAut(Γ)
acts transitively upon vertices (resp. edges).

Orbit in a Graph: For a graph Γ = (V,E), let H ≤ Aut(Γ) be a subgroup
of automorphisms. We define an equivalence relation on V regarding H as
follows: for any u and v in V , u is in relation with v if and only if there exists
h ∈ H such as h(u) = v. An orbit is an equivalence class. The orbit partition
of V regarding H is the partition of V associated with this relation.

Cartesian Product of Graphs: The Cartesian product of k graphs Γi = (Vi, Ei),
i = 1, . . . , k is defined by: Γ1× · · ·×Γk = (V1× · · ·×Vk, E) where (v1, . . . , vk)
(v′1, . . . , v

′
k) ∈ E ⇔ [∃i ∈ {1, . . . , k}, (viv′i ∈ Ei) ∧ (vj = v′j,∀j 6= i)]

Generalized Hamming Graphs: A complete graph (or clique) on p vertices is
denoted by Kp. We will call Generalized Hamming Graph the Cartesian prod-
uct of complete graphs Kn1×· · ·×Knk

. We can equivalently define this graph
by its edge set using the Hamming distance dH : (v1, . . . , vk) and (v′1, . . . , v

′
k) are

linked if dH((v1, . . . , vk), (v
′
1, . . . , v

′
k)) = 1 = |{i, ui 6= vi}| = 1. In some refer-

ences, in particular in [14], these graphs are called Hamming Graphs. However
we chose to keep the terminology Generalized Hamming since in most cases
Hamming Graphs correspond to the case n1 = · · · = nk.

Cayley Graphs: For a group G and S ⊆ G a set we denote C(G,S) the Cayley
graph associated with G and S.

2.3 A short introduction to G-graphs

G-graphs have been introduced in [4] as an alternative way to associate a
graph to a group.

Definition 1 Consider G a finite group. Let S = {s1, s2, . . . , sk} be a nonempty
subset of G. The (right) G-graph Φ(G,S), is the intersection graph of the right
cosets of cyclic groups 〈si〉 for all i ∈ {1, 2, . . . , k}.

In other way:

(1) The vertices of Φ(G,S) are V =
⋃
si∈S Vsi where Vsi = {〈si〉x|x ∈ G}.

(2) For 〈si〉x, 〈sj〉y ∈ V (i 6= j), there exists an edge between 〈si〉x and 〈sj〉y
if and only if |〈si〉x ∩ 〈sj〉y| ≥ 1.

Left G-graphs are similarly defined. As left and right G-graphs are isomorphic
[21], we will only consider right G-graphs and call it simply G-graphs.

Remark 2 In [4], G-graphs are defined as multi-graphs with one edge between
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〈si〉x and 〈sj〉y for every element of 〈si〉x ∩ 〈sj〉y. The definition we choose
replaces a multi-edge by a single edge. This gives a natural labeling of edges
by associating the edge 〈si〉x〈sj〉y with 〈si〉x ∩ 〈sj〉y . It also gives a natural
weight system by associating the edge 〈s〉x〈t〉y with the weight |〈s〉x ∩ 〈t〉y|.
Thus the degree of the vertex 〈si〉x in the multi-graph is equal to the weighted
degree dw(〈si〉x), defined as the sum of weights of edges incident to 〈si〉x.

Let us give a few examples illustrating the definition.

For G = Z/12Z and S = {1, 4, 6}, the associated G-graph is given in Figure 1.

1: of order 12 0,1,…,11 

6: of order 2 0,6 4,10 1,7 2,8 3,9 5,11 

4: of order 3 0,4,8 1,5,9 2,6,10 3,7,11 

Fig. 1. The G-graph Φ(Z/12Z, {1, 4, 6}).

A complete bipartite graph Kp,q with parts of size p and q can be seen as a
G-graph by considering G = Z/pZ× Z/qZ and S = {(1, 0), (0, 1)}.

Consider now A4 with the symmetric presentation 〈a, b|a3, b3, (ab)2, (ba)2〉 and
S = {a, b}. The associated G-graph is a cube [5]. Similarly a hypercube is a
G-graph and more generally, in [8] it is shown that Hamming graphs can be
identified as G-graphs.

Remark 3 If si and sj are independent, we have |〈si〉x ∩ 〈sj〉y| ≤ 1. So,
if elements of S are pairwise independent, then the related G-graph Φ(G,S),
defined as a multi-graph, is a simple graph. For example in Fig.1 the edges
connecting the top vertices to medium and bottom rows have weight 3 and 2
respectively, while edges between medium and bottom row have weight 1.

Lemma 4 [6] Φ(G,S) is connected if and only if S is a generating set of G.

Lemma 5 [6,21] Φ(G,S) is a |S|-partite graph with Vsi si ∈ S as parts (in-
dependent sets). Every vertex of Vsihas the weighted degree (|S| − 1)o(si).

7



The partition V =
k⋃
i=1

Vsi is called the canonical partition of the G-graph.

Vsi corresponds to the collection of all cosets associated with the cyclic groups
〈si〉x with x ∈ G. These cosets induce a partition of the group G (see Section 2)
and consequently every element of G is associated with exactly one vertex
in Vsi for every si ∈ S. Moreover Vsi is a stable set and for every element
x ∈ G, the set of all cosets containing x induces a clique of size k in the
graph. Consequently Φ(G,S) is of chromatic number k = |S| and the canonical
partition is an optimal coloring.

Remark 6 The notion of equitable partition of a graph is introduced in [13].
Given a graph Γ = (V,E) a partition P of its vertex set P =

⋃
1≤i≤r Vi is

equitable if for all 1 ≤ i, j ≤ r (not necessarily distinct) there exists bij,
such that each vertex v ∈ Vi has exactly bij neighbors in Vj, regardless of the
choice of v. Such a partition describes a nice regularity of the graph, especially
when the number of parts is limited. G-graphs give a good example of such
partition. Indeed, Lemma 5 states that in the G-graph, seen as a multi-graph
(see Remark 2), the canonical partition is an equitable partition into stable
sets. However it is easy to see that for all x, y ∈ G and ∀i, j ∈ {1, . . . , k}, i 6=
j, |〈si〉x ∩ 〈sj〉y| = bij. As a consequence, the canonical partition into stable
sets is also an equitable partition in the G-graph, seen as a simple graph.

Given several partitions of a fixed finite set, the related partition intersection
graph [18] is defined as the intersection graph of all parts of these partitions.
Each partition is associated with a stable set and each element with a clique
intersecting all these stable sets. G-graphs correspond to the particular case
where the considered partitions are induced by cosets of cyclic groups in a
given finite group G.

Let Φ(G,S) = (V,E) be a G-graph. To any g ∈ G we associate the mapping
δg : V −→ V , defined by δg(〈s〉x) = 〈s〉xg. Using this notion we have:

Theorem 7 [21] Let Φ(G,S) = (V,E) be a G-graph.

(1) δg ∈ Aut(Φ(G,S)).
(2) δG = {δg, g ∈ G} forms a group under the composition law, and Vsi for

an si fixed is a fixed orbit regarding to δG.
(3) Let si and sj be two distinct elements of S. Then, for every u, u′ ∈ Vsi,

v, v′ ∈ Vsj with uv, u′v′ ∈ E, there exists g ∈ G such that δg(u) = u′ and
δg(v) = v′.

In this paper we will assume that S is a generating set, thus dealing only with
connected graphs. In some cases we will also restrict ourselves to the case where
S is independent, independent by triples or by pairs. We also study the G-
graph Φ(G, S̃), called canonical abelian G-graph, issued from an abelian group
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G = 〈s1〉 × · · · × 〈sk〉, with k ≥ 1 and o(si) ≥ 2 for every i ∈ {1, 2, . . . , k} and
its canonical base

S̃ = {(s1, e, . . . , e︸ ︷︷ ︸
k

), (e, s2, e . . . , e︸ ︷︷ ︸
k

), . . . , (e, . . . , e, sk︸ ︷︷ ︸
k

)}

3 G-graphs Network Robustness

As mentioned in Section 1, vertex and edge-connectivity of graphs are two
key aspects of network robustness; the best case corresponds to optimally
connected networks for which κ(Γ) = δ(Γ). We also have mentioned vertex
and edge-transitivity as desirable properties for networks. These notions are
also interesting for their close link with connectivity illustrated by the following
result.

Theorem 8 [11] A connected vertex-transitive graph is optimally edge-connected.
Moreover if it is also edge-transitive, then it is optimally connected.

In this section we first investigate some transitivity and connectivity proper-
ties of G-graphs (Subsection 3.1) and several optimally connected cases (Sub-
section 3.2) with a particular focus on the abelian case. These first results
motivate to further study the class of G-graphs and to obtain more general
optimal connected classes of graphs that can be easily computed from a group.

3.1 Vertex and edge-transitivity

We exhibit a close link between vertex and edge-transitivity of G-graphs and
the group presentation. The following lemma will be used for proving Theo-
rem 10.

Lemma 9 Let 〈S|R〉 be a presentation of group G and π a permutation on
the set S (k = |S|). If R is invariant under π, then π can be associated with
a group automorphism fπ ∈ Aut(G), with fπ(si) = sπ(i) for every si ∈ S.

PROOF.

It is shown in [15] that given a presentation G = 〈S|R〉 of a group G, a group
H and a mapping θ : S −→ H, θ extends to a homomorphism θ̃ : G −→ H if
and only if for all r ∈ R the result of substituting in r every s ∈ S with θ(s)
yields the identity of H.

9



We directly apply this theorem to π and G = H since R is invariant by π
and we get an extended homomorphism fπ. Note that, since G is finite, R is
also invariant by π−1. Hence we can similarly define fπ−1 . We have fπ ◦ fπ−1 =
fπ−1 ◦ fπ = id, where id denotes the identity automorphism. So, fπ and fπ−1

are automorphisms of G. 2

Under the hypothesis of Lemma 9 we associate to π a graph automorphism
τπ ∈ Aut(Φ(G,S)) defined by:

τπ(〈si〉x) = 〈fπ(si)〉fπ(x) = 〈sπ(i)〉fπ(x) (1)

We similarly define τπ−1 . Since fπ and fπ−1 are group automorphisms of G, we
have τπ, τπ−1 ∈ Aut(Φ(G,S)) and are inverse one of the other.

We are now ready to state the main result of this section:

Theorem 10 If G is a finite group with symmetric presentation 〈S|R〉, then
Φ(G,S) is vertex-transitive and edge-transitive.

PROOF.

Vertex-transitivity:

Let us consider two vertices u, v ∈
k⋃
i=1

Vsi . We prove that there is an (graph)

automorphism h ∈ Aut(Φ(G,S)) such that h(u) = v.

Theorem 7-(1) allows to conclude that, given two vertices u = 〈si〉x, v = 〈si〉y
in Vsi for i fixed, δx−1y is the required automorphism. Suppose now that u ∈ Vsi
and v ∈ Vsj , i 6= j and consider the transposition π = (i, j). By Lemma 9,
there exists a group automorphism fπ ∈ Aut(G) and a graph automorphism
τπ ∈ Aut(Φ(G,S)) such that fπ(si) = sπ(i) = sj and τπ(u) = v′ ∈ Vsj . From
above, there exists δg′ ∈ Aut(Φ(G,S)) such that δg′(v

′) = v. By composition
we obtain δg′(τπ(u)) = v. Hence the automorphism h = δg′ ◦τπ satisfies h(u) =
v. This concludes vertex-transitivity.

Edge-transitivity:
Considering two edges uv and u′v′ of Φ(G,S) we show that there is a (graph)
automorphism h ∈ Aut(Φ(G,S)) such that h(uv) = (u′v′).

We distinguish two cases:

Case 1. Let u, u′ ∈ Vsi and v, v′ ∈ Vsj , for i, j fixed, the result immediately
follows from Theorem 7-(3).
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Case 2. In the general case, suppose we have i1, i2, i3, i4 with i1 6= i2, and let
u ∈ Vsi1 , u′ ∈ Vsi2 , v ∈ Vsi3 , v′ ∈ Vsi4 . Let π be a permutation on the set S
such that π(si1) = si2 and π(si3) = si4 . Hence, as the hypothesis of Lemma 9
is verified, we can consider the graph automorphism τπ ∈ Aut(Φ(G,S)) given
by Expression 1. Then we have τπ(u) = u′′ ∈ Vsi2 and τπ(v) = v′′ ∈ Vsi4
with u′′v′′ ∈ E. From Case 1 there exists an automorphism δg′′ such that
δg′′(u

′′) = u′ and δg′′(v
′′) = v′. By composition the automorphism h = δg′′ ◦ τπ

satisfies h(u) = u′ and h(v) = v′, which concludes the proof. 2

The two following remarks are immediately deduced from the proof:

Remark 11 If R is invariant under the transposition π = (i, j), then for all
u ∈ Vsi and v ∈ Vsj there is an automorphism hπ ∈ Aut(Φ(G,S)) such that
hπ(u) = v.

Remark 12 The proof of Theorem 10 reveals in fact that, for any two edges
uv and u′v′, there is an automorphism h with h ∈ Aut(Φ(G,S)) such that
h(u) = u′ and h(v) = v′. A graph with this property is sometimes called
symmetric.

3.2 Optimal connectivity

Using the previous results, we exhibit some interesting connectivity properties
for G-graphs.

Theorem 13 If G is a finite group with symmetric presentation 〈S|R〉, then
Φ(G,S) is optimally connected.

PROOF. By Theorem 10, Φ(G,S) is vertex-transitive and edge-transitive.
Also, by Lemma 4, Φ(G,S) is connected. Using Theorem 8, the result fol-
lows. 2

Another interesting case is the bipartite case, useful in particular for intercon-
necting two separated networks. For this case, a sufficient condition is already
known in terms of orbits:

Theorem 14 [17] If Γ = (V,E) is a connected bipartite graph with two orbits
regarding Aut(Γ), then κ(Γ) = δ(Γ).

Lemma 15 Let G be a finite group and S = {s1, s2} ⊆ G. Then Φ(G,S) is
edge-transitive.

11



PROOF. The result follows from Theorem 7. 2

Theorem 16 Any connected bipartite G-graph is optimally connected.

PROOF. Let Φ(G,S) = (V,E) where S = {s1, s2} is a generating set and
V = Vs1∪Vs2 . Φ(G,S) is connected (Lemma 4), bipartite (Lemma 5) and edge-
transitive (Lemma 15). From Theorem 7-(2), Φ(G,S) has at most two orbits
regarding Aut(Φ(G,S)). If Φ(G,S) has a single orbit regarding Aut(Φ(G,S)),
then Φ(G,S) is vertex-transitive and Φ(G,S) is optimally connected by The-
orem 8. If Φ(G,S) has two orbits regarding Aut(Φ(G,S)), then Φ(G,S) is
optimally connected (Theorem 14). 2

The sequel of this subsection is dedicated to canonical abelian G-graphs: let
G = 〈s1〉×〈s2〉× . . .×〈sk〉, with k ≥ 1 and o(si) ≥ 2 for every i ∈ {1, 2, . . . , k}
and let S̃ ⊆ G denote the canonical base.

The order of an element (e, . . . , e, si, e, . . . , e︸ ︷︷ ︸
k

) ∈ S̃ is o(si), for 1 ≤ i ≤ k. Since

S̃ is independent, Φ(G, S̃) is a simple graph.

The following intermediary results are useful for proving Theorem 19.

Lemma 17 (Expansion Lemma) [24] If Γ is a k-connected graph and Γ′ is
obtained from Γ by adding a new vertex y, with at least k neighbors in Γ, then
Γ′ is k-connected.

We immediately deduce:

Lemma 18 Let Γ be k-connected graph and S, T ⊆ V (Γ) two subsets of ver-
tices such that |S| = |T | = p ≤ k. Then there exist p disjoint paths from S to
T .

PROOF. Γ is k-connected and since p ≤ k, Γ is also p-connected. Let Γ′ be
the graph obtained from Γ by adding a vertex x adjacent to all vertices of S
and a vertex y adjacent to all vertices of T . Using Expansion Lemma 17 for
Γ′, the result follows. 2

Theorem 19 Canonical abelian G-graphs Φ(G, S̃) are optimally connected.

PROOF.

12



We can assume w.l.o.g. that 2 ≤ o(s1) ≤ o(s2) ≤ · · · ≤ o(sk), since the product
of groups is commutative. Denote p = o(s1) ≥ 2 and q = o(sk) ≥ p. Based on
the results before we consider two cases:

Case 1. p = q, hence, o(s1) = o(s2) = · · · = o(sk) = p. Then G has a
symmetric presentation. By Theorem 13, Φ(G,S) is optimally connected.

Case 2. p < q. As the elements of S̃ are pairwise independent, we can easily
see from Lemma 5 that the minimum degree of Φ(G,S) is p(k − 1) and the
degree of any vertex 〈si〉x is o(si)(k − 1).

We prove by induction that κ(Φ(G, S̃)) = p(k − 1), which corresponds to
optimal connectivity.

For k = 1, Φ(G, S̃) is a graph with one vertex. For k = 2, Theorem 16 allows
to conclude.

Assume that the affirmation is true for a k ≥ 2. Consider the group G = 〈s1〉×
· · ·×〈sk+1〉 and its canonical base S̃ = {(s1, e, . . . , e︸ ︷︷ ︸

k+1

), . . . , (e, . . . , e, sk+1︸ ︷︷ ︸
k+1

)}. We

prove that Φ(G, S̃) is pk-connected.

Let G = 〈s1〉× 〈s2〉× · · · × 〈sk〉. We denote by x an element of G (e being the

neutral element) and S̃ = {s1, . . . , sk} its canonical base. We have G ' G ×
〈sk+1〉. Hence, any element of G can be written as (x, stk+1), with 0 ≤ t ≤ q−1,
for example, (e, ..., e, si, e, . . . , e︸ ︷︷ ︸

k+1

) = (si, e).

Note that, for any fixed t, 0 ≤ t ≤ q − 1, the subgraph Φt of Φ(G, S̃) induced
by the set of vertices Vt = {〈(si, e)〉(x, stk+1), 1 ≤ i ≤ k, x ∈ G} is isomorphic

to Φ(G, S̃). Note also that for t 6= u, Φt and Φu are not linked by any edge
in Φ(G, S̃), since all elements of G belonging to cosets in Vt have stk+1 as last

component. More formally, Φ(G, S̃) has the following structure (see Figure 2):

• q vertex-disjoint copies of Φ(G, S̃), Φt, 0 ≤ t ≤ q − 1, where V (Φt) =⋃k
i=1 Vsi(Φt) with Vsi(Φt) = {〈(si, e)〉(x, stk+1)|x ∈ G}

• a set of vertices Vsk+1
= {〈(e, sk+1)〉(x, e)|x ∈ G} which is a stable set in

Φ(G, S̃).
• each vertex 〈(e, sk+1)〉(x, e) ∈ Vsk+1

is adjacent to a clique of k vertices in
each copy Φt: 〈(si, e)〉(x, stk+1) ∈ Vsi(Φt), with 1 ≤ i ≤ k.

Note also that ∀a ∈ Vsi(Φt), |N(a) ∩ Vsk+1
| = o(si).

By induction hypothesis, each subgraph Φt is p(k − 1)-connected. We prove
below that for any pair a, b of vertices in Φ(G, S̃), there exist pk internally

13
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Fig. 2. The structure of Φ(G, S̃)

disjoint paths between a and b.

We consider four cases:

Case 2.1. a and b are in the same subgraph Φt with t ∈ {0, . . . , q − 1}.
Assume w.l.o.g. that t = 0. Hence, a = 〈(si, e)〉(x, e), b = 〈(sj, e)〉(y, e), with
x, y ∈ G and 1 ≤ i, j ≤ k. Since Φ0 is p(k − 1)-connected, there are p(k − 1)
internally disjoint paths from a to b in Φ0.

Consider now Ak+1 = {〈(e, sk+1)〉(sihx, e)|0 ≤ h ≤ p − 1} ⊆ N(a) ∩ Vsk+1

a selection of p neighbors of a in Vsk+1
(recall that p ≤ o(si)). We similarly

consider Bk+1 = {((e, sk+1))(sj
hy, e)|0 ≤ h ≤ p− 1} ⊆ N(b) ∩ Vsk+1

. We have
|Ak+1| = |Bk+1| = p.

Let C = Ak+1 ∩ Bk+1. Each vertex c ∈ C corresponds to a path from a to b,
having only c as internal vertex. There are |C| such paths from a to b. We then
associate to each vertex in Ak+1\C a neighbor in a distinct subgraph Φh, with
1 ≤ h ≤ p − |C| ≤ q − 1, as follows. For each ah = 〈(e, sk+1)〉(si(h−1)x, e) ∈
Ak+1 \ C, we consider the neighbor a′h = 〈(si, e)〉(x, shk+1) ∈ V (Φh) with 1 ≤
h ≤ p. Similarly, consider the set B = {b′h = 〈(sj, e)〉(y, shk+1)|1 ≤ h ≤ p} of
distinct neighbors of vertices in Bk+1\C in different Φh. Since Φh is connected,
for every 1 ≤ h ≤ p, there exists a path from a′h to b′h in Φh. Moreover as all Φh

are disjoint, we can extend these paths in p−|C| disjoint paths from Ak+1 \C
to Bk+1\C, leading to p−|C| internally disjoint paths from a to b. Since these
paths do not contain any vertex of C ∪ V (Φ0) \ {a, b}, all the obtained paths
from a to b are internally disjoint. There are p(k − 1) + |C| + p − |C| = pk
such paths, which concludes the Case 2.1.

Case 2.2. a and b are both in Vsk+1
.

14



Let a = 〈(e, sk+1)〉(x, e) and b = 〈(e, sk+1)〉(y, e), with x, y ∈ G and a 6= b. We
will prove that for every Φt, 0 ≤ t ≤ q − 1, there exist k internally disjoint
paths from a to b having internal vertices only in V (Φt). It will follow that
Φ(G, S̃) contains at least qk > pk internally disjoint paths from a to b.

Consider, w.l.o.g. that t = 0. As already mentioned (see Figure 2) |N(a) ∩
V (Φ0)| = k and |N(b) ∩ V (Φ0)| = k. Since Φ0 is p(k − 1)-connected and k ≤
p(k− 1), by Lemma 18, there exist, in Φ0, k disjoint paths from N(a)∩V (Φ0)
to N(b)∩V (Φ0), corresponding to k internally disjoint paths from a to b with
internal vertices in V (Φ0). This concludes the Case 2.2.

Case 2.3. a ∈ V (Φt) and b ∈ Vsk+1
.

Assume for sake of simplicity that a ∈ Vs1(Φ0), the other cases being similar.
Let a = 〈(s1, e)〉(x, e) and b = 〈(e, sk+1)〉(y, e). For every l ∈ {0, . . . , p − 1},
we denote by Nl(a) = {ali = 〈(si, e)〉(s1

lx, e)|2 ≤ i ≤ k}. We have N(a) ∩
V (Φ0) = ∪l=1,...,pNl(a). Since |Nl(a)| = k − 1 and ∀l, t ∈ {0, . . . , p − 1}, l 6=
t, Nl(a) ∩Nt(a) = ∅, we have |N(a) ∩ V (Φ0)| = p(k − 1).

We then define an application pak+1 : N(a) ∩ V (Φ0) −→ Vsk+1
as follows:

for every vertex ali = 〈(si, e)〉(s1
lx, e) ∈ N(a) ∩ V (Φ0) we set pak+1(ali) =

〈(e, sk+1)〉(sis1
lx, e). Since S̃ is independent, pak+1 is injective. Moreover ∀ali ∈

N(a) ∩ V (Φ0), we have pak+1(ali) /∈ N(a) and pak+1(ali) ∈ N(ali). Similarly, for
any vertex c ∈ V (Φt), t = 0, . . . , q − 1, we can define pck+1 : N(c) ∩ V (Φt) −→
Vsk+1

.

Using the same notations as in Case 2.1., we set Ak+1 = (N(a) ∩ Vsk+1
) with

a ∈ Vs1(Φ0). We also denote A′k+1 = pak+1(N(a) ∩ V (Φ0)), where pak+1(U) =
∪u∈U{pak+1(u)}. Let A′′k+1 = Ak+1 ∪A′k+1, we have |A′′k+1| = |N(a)∩ V (Φ0))|+
|N(a) ∩ Vsk+1

| = pk.

Suppose first that b /∈ A′′k+1. We partition A′′k+1 in p sets A1
k+1, . . . , A

p
k+1,

each of size k. For every t ∈ {1, . . . , p} (recall that p ≤ q − 1), we denote
Atk+1 = {atk+1,1, . . . , a

t
k+1,k} and we define, for every i ∈ {1, . . . , k}, ati as the

neighbor of atk+1,i in Vsi(Φt). We set At = {at1, . . . , atk} ⊂ V (Φt). We similarly
define Bt as the k distinct neighbors of b in V (Φt), t = 1, . . . , p. Each Φt,
t = 1, . . . , p, is p(k − 1)-connected and p(k − 1) ≥ k, since p ≥ 2 and k ≥ 2.
Hence, by Lemma 18, there are k disjoint paths in Φt between At and Bt.

Adding to these paths edges from b to Bt, t = 1, . . . , p, edges atia
t
k+1,i with t =

1, . . . , p, i = 1, . . . , k, edges aaj, aj ∈ N(a) ∩ Vsk+1
and paths (a, ali, p

a
k+1(ali))

with ali ∈ N(a)∩ V (Φ0), we get pk internally disjoint paths between a and b.

Suppose now that b ∈ A′′k+1. Using the same method we construct pk−1 paths
passing through vertices in A′′k+1 \ {b}. We add either the edge ab if b ∈ N(a)
or the path (a, ali, b) with b = pak+1(ali) to devise the last path. This concludes
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Case 2.3.

Case 2.4. a ∈ V (Φt1), b ∈ V (Φt2) with t1 6= t2 ∈ {0, 1, . . . , q − 1}.

Assume w.l.o.g. a ∈ V (Φ0), b ∈ V (Φ1) with a = 〈(si0 , e)〉(x, e) and b =
〈(sj0 , e)〉(y, sk+1).

Using same notations as previously, we first consider A′k+1 = pak+1(N(a) ∩
V (Φ0)) with |A′k+1| ≥ p(k − 1). For every element ali = 〈(si, e)〉(si0 lx, e),
i 6= i0, 1 ≤ i ≤ k, 0 ≤ l ≤ o(si0), we set pak+1(ali) = 〈(e, sk+1)〉(sisi0 lx, e) in
A′k+1. We then consider ail = 〈(si, e)〉(si0 lx, sk+1) ∈ V (Φ1). By independence,
all these elements are distinct; we denote by A1 ⊂ V (Φ1) this set. Moreover
A′k+1 and A1 are linked by a matching. Φ1 being p(k − 1)-connected and
|A1| ≥ p(k − 1), we have p(k − 1) paths in Φ1 from b to p(k − 1) vertices in
A1 with only b in common. Eventually one of these paths could be reduced to
b. Adding some edges of the matching between A′k+1 and A1 and some paths
(a, ali, p

a
k+1(ali)), we get p(k − 1) internally disjoint paths between a and b

visiting only vertices in V (Φ1)∪A′k+1∪(N(a)∩V (Φ0)). Moreover we can assume
that these paths contain exactly p(k−1) neighbors of b in V (Φ1)∪Vsk+1

(else we
could reduce some of them). b has at least p other neighbors in V (Φ1)∪Vk+1, all
distinct from these p(k−1) paths. Using the function pbk+1 we get p additional
paths from b to a set B̄k+1 ⊂ Vk+1, with only b in common regarding the
other constructed paths. We consider Ak+1 ⊂ (N(a) ∩ Vk+1) of size p, as in
Case 2.1. Ak+1 ∩ B̄k+1 leads to paths of two edges between a and b and using
similar arguments as previously. We can find two sets A2 and B2 in V (Φ2),
|A2| = |B2| = p − |Ak+1 ∩ B̄k+1| (q − 1 ≥ p ≥ 2) with a matching between
Ak+1 \ Ak+1 ∩ B̄k+1 and A2 and a matching between B̄k+1 \ Ak+1 ∩ B̄k+1 and
B2. Since p ≤ p(k − 1) and using that Φ2 is p(k − 1)-connected, we can find
p − |Ak+1 ∩ B̄k+1| internally disjoint additional paths between a and b in Φ2

with only a and b in common regarding the other constructed paths. This
concludes the proof of the last case. 2

4 Structure and recognition of abelian G-graphs

Generally, graphs issued from groups have high regular properties. As for Cay-
ley graphs, within G-graphs case the graph can be derived efficiently from the
group table. Indeed, given the group table, for each s ∈ S, the cosets asso-
ciated with s can be computed in linear time with respect to the number of
elements in the group. Moreover the intersections between two cosets can be
also checked in linear time. However an important question deals with com-
plexity issues within graphs defined from groups in general and G-graphs in
particular. As for Cayley graphs (see [2]), the complexity of deciding whether
a given graph is a G-graph is still unknown. This motivates considering this
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question even for restricted classes of G-graphs. In this section, we give a first
complexity result for the case of canonical abelian G-graphs. We first give a
combinatorial characterization of this class and show that it can be recognized
in O(|E|2). The combinatorial characterization uses close links between some
G-graphs and some Cayley graphs that have been shown in [7] and [22].

We have already mentioned in Remark 2 that any simple G-graph Φ(G,S),
with elements in S pairwise independent, has a natural edge-labeling with
labels in G. Similarly a Cayley graph C(G,S), with s ∈ S ⇔ s−1 ∈ S, has also
a natural labeling, associating to an edge uv the label {uv−1; vu−1} ∈ S×S. We
denote both labeling natural labeling of a simple G-graph and a Cayley graph,
respectively. Using such labelings, a color-clique (see [22]) in a G-graph is a
maximal clique containing edges of the same label. A similar notion is defined
for a particular family of Cayley graphs C(G,S∗), where S∗ = ∪s∈S〈s〉\{e} (if
s ∈ S∗, then for any integer p ≥ 1, sp ∈ S∗). In such Cayley graphs, using the
same definition as for G-graphs (see [22]), a color-clique contains edges with
labels of the form {sp, s−p} with sp ∈ 〈s〉 \ {e} for a fixed s ∈ S∗. Note that in
a G-graph, there is a single clique for a given label while, in the Cayley case,
color-cliques associated to s ∈ S∗ are exactly the cosets of the form 〈s〉x.

Theorem 20 Consider a group G and S ⊂ G a set of pairwise independent
elements. We denote by S∗ = ∪s∈S〈s〉 \ {e}.

(1) [7] The intersection graph of color-cliques of Φ(G,S) is isomorphic to
C(G,S∗).

(2) [22] Conversely if e /∈ S, The intersection graph of color-cliques of C(G,S∗)
is Φ(G,S).

Note that for item 2, pairwise independence allows to define S from S∗ without
ambiguity.

This correspondence allows in particular to link the recognition of some G-
graphs to the recognition of some Cayley graphs. In general, a difficulty will
be to identify color-cliques while labels are not known. In the case of canonical
abelian G-graphs, as stated below, this problem will not hold since all maximal
cliques are color-cliques.

Clique-helly: A graph Γ is called clique-helly if its set of maximal cliques
satisfies the Helly property, i.e. any set of pairwise intersecting maximal cliques
has a common vertex. It is hereditary clique-helly if Γ and all its subgraphs are
clique-helly. Given a graph Γ, we denote by c(Γ) the clique graph associated
to Γ, defined as the intersection graph of all maximal cliques. A graph is
diamond-free if it has no induced diamond, where a diamond is a K4 minus
one edge.

A vertex v in a graph is called simplicial if N(v) is a clique: v belongs to a
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single maximal clique.

The following results are well-known:

Proposition 21 If Γ is diamond-free, then:

(1) for any edge uv, there is a unique maximal clique containing u and v.
(2) c(Γ) is diamond-free [9].
(3) Γ is hereditary clique-helly (see e.g. [3]).
(4) If furthermore Γ has no simplicial vertex, then c(c(Γ)) ' Γ.

PROOF.

Item 1 is immediately deduced from the definition, so we only need to prove
item 4. For any vertex v of Γ, we denote by u1, . . . , ud(v) the neighbors of
v, where d(v) is the degree of v. For any i ∈ {1, . . . , d(v)} we denote by
Ki the unique maximal clique containing v and ui (see Item 1). The maximal
cliques K1, . . . , Kd(v) of Γ are not all distinct but there are at least two distinct
maximal cliques among them since v is not simplicial. Hence, using the Helly
property, no other maximal clique can intersect all of them. Consequently
these cliques constitute a maximal clique Kc(Γ)

v in c(Γ), hence correspond to
a vertex in c(c(Γ)). Conversely a maximal clique in c(Γ), denoted by Kc(Γ),
corresponds to a bundle of cliques in Γ sharing a single vertex v(Kc(Γ)). The
composition of both transformations leads to the identity, which means that
the application v 7→ Kc(Γ)

v is a bijection from V (Γ) to V (c(c(Γ))). Note that
Kc(Γ)
v and Kc(Γ)

u are linked in c(c(Γ)) if and only if the two related bundles
of cliques in c(Γ) share a common clique that contains both u and v. This is
equivalent to u and v are linked in Γ. So, this bijection is also an isomorphism
from Γ to c(c(Γ)). 2

Note that a single clique can be aG-graph and does not satisfy item 4. However
if e /∈ S and |S| ≥ 2, then Φ(G,S) does not have any simplicial vertex. On
the other hand, if |S| = 1, then Φ(G,S) is a stable set and satisfies all items
of Proposition 21. So we have:

Proposition 22 Let Γ = (V,E) be a G-graph Φ(G,S), where S is indepen-
dent by triples and e /∈ S, then:

(1) Γ is diamond-free and all maximal cliques are color-cliques and maximum
cliques.

(2) Γ is hereditary clique-helly.
(3) c(Γ) ' C(G,S∗)
(4) Γ ' c(C(G,S∗))
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This holds in particular for canonical abelian G-graphs.

PROOF. Let Γ = (V,E) be a G-graph Φ(G,S), where S is independent by
triples. We first show that every triangle in Γ is constituted by edges of the
same label. Let three vertices 〈si〉x, 〈sj〉y and 〈sl〉z of Γ inducing a triangle.
Hence i, j, l are pairwise distinct. As there is an edge between any two of
these vertices, there exist integers a, a′, b, b′, c, c′ such that α = sai x = sa

′
j y,

β = sbjy = sb
′
l z and γ = scl z = sc

′
i x. Taking into account the structure of a

G-graph, we have the following identities:

sai x = sa−c
′

i sc
′

i x = sa−c
′

i scl z = sa−c
′

i sc−b
′

l sb
′

j z = sa−c
′

i sc−b
′

l sb−a
′

j sai x. (2)

Hence sa−c
′

i sc−b
′

l sb−a
′

j = e. Based on the fact that S is independent by triples,
we deduce a ≡ c′ mod o(si), c ≡ b′ mod o(sl), b ≡ a′ mod o(sj), thus α = β =
γ. So, every edge uv ∈ E belongs to a unique maximal clique obtained by
{u, v}∪ (N(u)∩N(v)). Since any edge also belongs to a color-clique, maximal
cliques are color-cliques and are all of size k, this concludes the proof of Item 1.
Items 2, 3, and 4 immediately follow from Propositions 21 and Theorem 20
(independence by triples implies pairwise independence). 2

As a consequence, for the case where S is independent, c(Γ) can be computed in
polynomial time and the recognition of Φ(G,S) is polynomially equivalent to
the recognition of C(G,S∗). Unfortunately, to our knowledge this last problem
remains open in general (see [2]).

We immediately deduce the following combinatorial characterization of canon-
ical abelian G-graphs:

Theorem 23 Given a diamond-free graph Γ, the following statements are
equivalent:

(1) Γ is an abelian canonical G-graph Φ(〈s1〉 × · · · × 〈sk〉, S̃).
(2) c(Γ) ' Ko(s1) × · · · ×Ko(sk) (Generalized Hamming).
(3) Γ ' c(Ko(s1) × · · · ×Ko(sk)) (clique graphs of a generalized Hamming).

PROOF. This immediately follows from Proposition 22, more precisely C(〈s1〉×
· · · × 〈sk〉, S∗) ' Ko(s1) × · · · ×Ko(sk). 2

Remark 24 Note that the Generalized Hamming Graph Kn1 × · · · × Knk
is

also diamond-free. We immediately deduce from Proposition 21 that maximal
cliques in c(Kn1×· · ·×Knk

) correspond to bundles of maximal cliques sharing
a single vertex (x1, . . . , xk) in Kn1×· · ·×Knk

. There are exactly k such cliques,
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which shows that all maximal cliques in c(Kn1 × · · · × Knk
) are of the same

size.

Remark 25 In [8], it is shown that Hamming graphs are (diamond-free) G-
graphs and consequently regular canonical abelian G-graphs Φ(〈s1〉 × · · · ×
〈sk〉, S̃), with o(s1) = · · · = o(sk). Using Theorem 20 we can see that they are
also Cayley graphs. This does not hold for general canonical abelian G-graphs
that are not necessary regular.

In [14], a O(|E|) algorithm is proposed for deciding whether a given graph Γ =
(V,E) is isomorphic to a Cartesian product of k complete graphs (Generalized
Hamming). Moreover the algorithm computes a Hamming labeling associating
to any vertex its representation as a k-vector. We can immediately use it to
recognize canonical abelian G-graphs.

Theorem 26 It can be decided in O(|E|2) whether a given graph is a canon-
ical abelian G-graph.

Algorithm 1 Deciding whether a fixed graph is canonical abelian

Require: A graph Γ = (V,E) with |V | = n and |E| = m.
1: if Γ is diamond-free then
2: Compute c(Γ)
3: if c(Γ) ' Kn1 × · · · ×Knk

then
4: Γ is a canonical abelian G-graph
5: else
6: Γ is not a canonical abelian G-graph
7: end if
8: else
9: Γ is not a canonical abelian G-graph

10: end if

PROOF.

Using Theorem 23, Algorithm 1 decides whether a given graph Γ = (V,E)
is a canonical abelian G-graph. From [16], we know that it can be decided
in O(|V |2.376 + |E|1.5) whether Γ is diamond-free. Moreover the number of
maximal cliques in Γ is O(|E|) and the graph c(Γ) can be computed in O(|E|2).
Then using the algorithm of [14] one can decide whether c(Γ) is a Generalized
Hamming Graph.

Note that if the graph is a canonical abelian G-graph, then we can use the
isomorphism of Theorem 23 (Item 3) to compute the labeling associating 〈si〉g
with any vertex in Γ. 2
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5 Concluding remarks

We already emphasized in Section 1 the importance of graphs issued from
groups, like Cayley graphs, for generating networks with regular topologies
and good connectivity properties. In this paper, we studied the connectivity
properties of one of this type of graphs, the G-graphs. These graphs constitute
a more flexible class than Cayley graphs and in particular they may be not
regular. However we have shown that, in some cases, they still have interesting
transitivity and connectivity properties. In particular, we showed that clique
graphs of Cartesian products of cliques (e.g. canonical abelian G-graphs) are
optimally connected. The originality of our proof consists in using the struc-
ture of the G-graph. It gives some ideas how we could handle more general
classes of optimally connected G-graphs. Moreover it also illustrates whether
it would be possible to deduce the connectivity of the clique graph c(Γ) from
the connectivity of the initial graph Γ.

Another major issue is the complexity of recognizing G-graphs. To our knowl-
edge, this has not been done before. Moreover their close links with Cayley
graphs make this question close to the recognition of Cayley graphs, which is
still open. The polynomial case studied here motivates further works in this
direction.

As a last remark in this direction, let us show that recognizing partition inter-
section graphs (see Section 2.3), a class containing G-graphs, is NP-complete.
The following characterization is given in [18]:

Theorem 27 [18] A graph Γ = (V,E) is a partition intersection graph if
and only if:

• It has no isolated vertex.
• E can be covered by cliques of size χ(Γ), where χ(Γ) is the chromatic number

of Γ.

Note that if Γ is a partition intersection graph, then χ(Γ) is exactly the number
k of partitions used to construct it. Theorem 27 allows immediately to show
that recognizing a partition intersection graph is NP-complete, even if the
number of partitions is fixed to 3:

Proposition 28 The following problems are NP-complete:

(1) Deciding whether a graph Γ is a partition intersection graph.
(2) For any fixed k ≥ 3, deciding whether a fixed graph Γ is a partition

intersection graph over k partitions.
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PROOF. Both problems are clearly in NP. Item 1 can be easily shown by
reducing 3-colorability, the NP-complete problem of deciding whether a fixed
graph is 3-colorable [12]. Let Γ be a graph instance of 3-colorability, without
loss of generality we can suppose that χ(Γ) ≥ 3. Then for every edge uv we
add a vertex xuv and edges xuvu, xuvv. Let us denote by Γ′ the new graph.
Since χ(Γ) ≥ 3 and the added vertices are all of degree 2 in Γ′, we have
χ(Γ′) = χ(Γ) and moreover edges of χ(Γ′) can be covered by triangles. So,
using Theorem 27, Γ′ is a partition intersection graph if and only if Γ is 3-
colorable, which concludes the proof of Item 1. Item 2, for k = 3 and k > 3
can be shown in a very similar way by using a reduction from k-colorability
and adding, for any edge uv, a clique Kk−2 completely connected to u and
v. 2

An interesting further work could be to narrow the boundary line between hard
and easy cases for recognizing partition intersection graphs and investigating
the complexity of recognizing G-graphs.
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