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Abstract—Cooperative and non-cooperative Sense-and-Avoid 

(SAA) systems are key enablers for Unmanned Aircraft (UA) to 

routinely access non-segregated airspace. In this paper the state-

of-the-art cooperative and non-cooperative SAA technologies for 

small size UA are presented and the associated multisensor data 

fusion techniques are discussed. The non-cooperative sensors 

including both passive and active Forward Looking Sensors 

(FLS) and the cooperative systems including Traffic Collision 

Avoidance System (TCAS), Automatic Dependent Surveillance – 

Broadcast (ADS-B) system and/or Mode C transponders form 

part of the SAA holistic architecture. After introducing the SAA 

system processes, the key mathematical models are presented. 

The Interacting Multiple Model (IMM) algorithm is used to 

estimate the state vector of the intruders and this is propagated 

to predict the future trajectories using a probabilistic model. 

Adopting these mathematical models, conflict detection and 

resolution strategies for both cooperative and un-cooperative 

intruders are identified. Additionally, a detailed error analysis is 

performed to determine the overall uncertainty volume in the 

airspace surrounding the intruder tracks. This is accomplished 

by considering both the navigation and the tracking errors 

affecting the measurements and translating them to unified range 

and bearing uncertainty descriptors, which apply both to 

cooperative and non-cooperative scenarios. Detailed simulation 

case studies are carried out to evaluate the performance of the 

proposed SAA approach on a representative host platform 

(AEROSONDE UA) and various intruder platforms, including 

large transport aircraft and other UA. Results show that the 

required safe separation distance is always maintained when the 

SAA process is performed from ranges in excess of 500 metres. 

Keywords—sense-and-avoid; non-coopertive sensors; 

cooperative systems; sensor fusion; collision avoidance; conflict 

detection and resolution 

I.  INTRODUCTION 

Unmanned Aircraft (UA) are increasingly used for a 
number of civil and military applications. In particular, small 
size UA are employed for their ability of performing tasks with 
higher manoeuvrability, longer endurance and pose less risk to 
human lives. To carry out a variety of tasks, it necessitates the 
UA’s safe integration into the non-segregated airspace [1]. 
Both cooperative and non-cooperative Sense-and-Avoid (SAA) 
systems are being developed to address these integration 
aspects [2]. The SAA capability is defined as the automatic 
detection of possible conflicts by the UA platform under 
consideration and performing avoidance manoeuvre tasks to 
prevent the identified collisions. An analysis of the available 
SAA candidate technologies and the associated sensors for 

both cooperative and non-cooperative SAA systems are 
presented in [3]. Non-cooperative Collision Detection and 
Resolution (CD&R) for UA is considered as one of the major 
challenges that needs to be addressed [4]. As a result, a number 
of non-cooperative sensors for the SAA system have been 
adopted. Light Detection and Ranging (LIDAR) is used for 
detecting, warning and avoiding obstacles for low-level flying 
[5]. Multi-Sensor data fusion becomes an integral element 
when considering a variety of sensor candidates. Multi-sensor 
platform for obstacle detection by using Millimetre Wave 
(MMW) radar, Forward Looking Infra-Red (FLIR), LIDAR 
and an Electronic Surveillance Module (ESM) is adopted in 
[6]. A non-cooperative collision avoidance system for UA by 
utilising pulsed Ka-band radar and optical sensors is proposed 
in [7]. An approach to the definition of encounter models and 
their applications on the SAA strategies is presented in [8] 
considering both cooperative and non-cooperative scenarios. 
Ground-Based SAA (GBSAA) systems using electronic 
sensors are also currently being developed. These ground based 
systems provide information for manoeuvre decisions for 
terminal-area operations [1].  To obtain the states of the tracked 
obstacles, Extended Kalman Filter (EKF) is used in order to 
predict the trajectory in a given time horizon [9]. On-board 
trajectory re-planning with dynamically updated constraints 
based on the intruder and the host dynamics is at present used 
to generate obstacle avoidance trajectories [10]. A coarse-
resolution radar based SAA solution is developed for small size 
UA [11] and its information is fused with data from Automatic 
Dependent Surveillance – Broadcast (ADS-B) system [12]. As 
part of this research, the possible synergies attainable with the 
adoption of different detection, tracking and trajectory 
generation algorithms are studied and as a fundamental 
objective, the errors propagation from different sources and the 
impacts of host and intruders dynamics on the ultimate SAA 
solution are also addressed. 

II. REQUIREMENTS AND SAA CANDIDATE TECHNOLOGIES 

In an operational perspective, guidelines and regulations are 
required to support the SAA system requirements development 
[13]. The requirements for designing and developing an 
effective SAA system are derived from the current regulations 
applicable for the see-and-avoid capability of manned aircraft. 
Table 1 summarises the proposed range and Field of Regard 
(FOR) requirements for the SAA system [2, 14, 15]. The 
proposed detection range and FOR have to be adequate to 
ensure separation from the intruder to prevent a probable near 
mid-air collision. This criterion is also naturally applicable in 
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the case of small UA since the vast majority of mid-air 
collision events occur below 3000 ft [14]. 

TABLE I.  RANGE AND FOR REQUIREMENTS FOR SAA SYSTEM 

                  Detection range requirements (NM) 

Altitude 

Manned UAS 

Nominal 
pilot 

Autono-
mous 

Line-of-sight 
Beyond 
line-of-

sight 

Low 2.6 1.1 1.8 1.9 

Medium 4.2 1.8 2.9 3.1 

High 5.7 2.8 4.1 4.3 

                    FOR requirements (º) 

Azimuth  110 

Elevation  15 

 

The essential criteria for designing an effective SAA 
system are: 

 The Field of View (FOV) has to be equivalent or 

superior to that of a pilot in the cockpit and it 

corresponds to primary FOV - 60˚ in vertical and 70˚ 

in horizontal and secondary FOV - 100˚ in vertical 

and 120˚ in horizontal [16]. 

 Common FOV/FOR for visual and thermal cameras. 

 Accurate and precise intruder detection (static and 

dynamic), recognition and trajectory prediction 

(dynamic). 

 Prior obstacle detection for allowing time for 

executing the trajectory avoidance manoeuvres. 

 Effective fusion schemes for Multi-Sensor data 

augmentation, especially by tight coupling [12]. 

 Identification of the primary means of cooperative and 

non-cooperative SAA system for integrity 

requirements.  

 

Developing and evaluating sensors and the associated data 

fusion algorithms will be a key constituent of the SAA system 

design [17]. A number of cooperative systems and non-

cooperative sensors can be employed for obtaining a holistic 

SAA system solution. The cooperative systems used are TCAS 

(Traffic Collision Avoidance System) / ACAS (Airborne 

Collision Avoidance System), ADS-B system and/or Mode C 

transponders. The inclusion of ADS-B redefines the paradigm 

of Communication, Navigation and Surveillance (CNS) in Air 

Traffic Management (ATM) today by providing trajectory 

information. The non-cooperative SAA sensors are employed 

to detect intruders or other obstacles in the UA FOR when 

cooperative systems are unavailable in the intruders [4]. 

Optical, thermal, LIDAR, MMW Radar and acoustic sensors 

are used as part of non-cooperative SAA system. The SAA 

technologies are listed in Table II representing C for 

cooperative and NC for non-cooperative (both active and 

passive) sensors [18]. Based on the identified technologies, 

Boolean logics based decision tree architecture for SAA system 

(consisting of a number of AND gates) is illustrated in Fig. 1. 

 

 

TABLE II.  SAA CANDIDATE TECHNOLOGIES 

Sensor/System Type Range Bearing Trajectory 

Visual camera NC, Passive - Accurate Extracted 

Thermal camera NC, Passive - Accurate Extracted 

LIDAR NC, Active Accurate Narrow Extracted 

MMW Radar NC, Active Accurate Narrow Extracted 

Acoustic NC, Active Accurate 360º  Extracted 

Transponder 

(Mode C) 
C Accurate Calculated Extracted 

ADS-B C Accurate Calculated Provided 

TCAS/ACAS C Accurate Accurate Extracted 

Non-
cooperative 

sensors

Cooperative 
systems

Visual 
Camera

Thermal 
Camera

Acoustic

LIDAR

MMW 
RADAR

ADS-B
Transpo-

nder
TCAS/
ACAS

SAA 
Processor

 
Fig. 1. Avionics sensors and systems decision tree architecture. 

III. SAA SYSTEM 

The sequential steps involved in the SAA process for 

executing an efficient Tracking, Deciding and Avoiding 

(TDA) loop are illustrated in Fig. 2. 

Cooperative 
Systems

Non-Cooperative 
Sensors

Data fusion after obstacle tracking 

Intruder trajectory determination 

Criticality analysis – Prioritizing and 
action determination

Avoidance trajectory / Separation 
commands generation

 

Fig. 2. SAA system process. 

After performing multisensor data fusion, the trajectory of 

the intruders is determined. Criticality analysis is carried out 
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to prioritize (i.e. to determine if a collision risk threshold is 

exceeded for all the tracked intruders) and to determine the 

action commands. If an avoidance action is required, the SAA 

system generates and optimises an avoidance trajectory 

according to a cost function defined by {minimum distance, 

fuel, time and closure rate} with the aid of differential 

geometry algorithms [14] to generate a smooth trajectory. 

A. Non-Cooperative sensors 

Gimballed visual and thermal cameras are used for 
determining position and velocity estimates of the intruders. To 
obtain all-weather operation, thermal imaging is used in 
conjunction with the visual one. The proposed hardware for the 
camera provides an approximate FOV of 70º with a resolution 
of 2.0 MP. The fusion of optical sensors with other non-
cooperatives sensors increases the angular accuracy. LIDAR 
sensor, scaled from [6], is proposed for extracting range 
measurements and provides a FOV of 40º in azimuth and 15º in 
elevation. It allows the operator to select the azimuth 
orientation of the FOV among three possible directions: 
aligned with the platform heading (normal flight envelope) or 
20º left/right with respect the platform heading. This option 
provides an optimized coverage for turning manoeuvres at high 
angular speed. For stabilised obstacle detection, after image 
acquisition, the noise caused by the platform motion is 
removed [14]. Bottom-hat morphology is performed to detect 
negative contrast features that correspond to the threats. Low-
level tracking is achieved by utilising Ad-hoc Viterbi filtering 

method by employing a bank of filters. Let   
       be the filter 

output at time step,   of pixel       for the filter bank branch  , 
and         be the greyscale level of pixel         the Ad-hoc 
Viterbi filter steps, for             and all  , are 
carried out. The statistical test criterion for evaluation to 
determine the actual presence of a collision threat is given by: 

                  [       ]                    (1) 

where    is the comparison parameter and is equivalent to 

0.75 [14]. An illustration of the acquired, stabilised and 

tracked visual image is shown in Fig. 3 and 4. 

  

Fig. 3. Acquired and stabilised visual image. 

 

Fig. 4. Tracked target. 

An example of an acquired thermal image [19], which is 
subjected to segmentation and tracking is illustrated in Fig. 5.  

  

Fig. 5. Acquired thermal image and tracked target. 

A low-cost navigation and guidance system is adopted for 
position estimates, which includes Global Navigation Satellite 
System (GNSS), Micro-Electromechanical System (MEMS) 
Inertial Measurement Unit (IMU) and Vision Based Navigation 
(VBN) sensors [20, 21]. When the set threshold is exceeded 
and the detection is continuous, high level tracking detection is 
performed by using a Kalman Filter. The predicted state, 
  ̂    at time   is given by:  

  ̂    
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where         is the position in the   and   directions 

respectively as a function of time,  .         is the velocity in 

the   and   direction respectively,         is the acceleration 

and      is the prediction Gaussian noise. The Kalman Filter 
equations are: 

 ̂   |    ̂   |          [               |    ]    (3) 

    |       |                 
               (4) 

where: 

          |      
      

                       (5) 

      [         |      
          ]            (6) 

where       represents the design matrix and       is the 
measurement noise covariance matrix and   is the sample time. 
The Track-To-Track (T

3
) algorithm is employed for sensor 

fusion. The primary advantage of adopting this method is to 
combine the estimates instead of combining the observations 
from different sensors. The track fusion algorithm is defined as 
the weighted average variance of all the tracks and is given by: 

 ̂   |       |   ∑   
    |    ̂ 

 
     |           (7) 

    |   [∑   
    |   

   ]                    (8) 

Once the tracks are fused and the states are estimated, the 
imminent trajectory is predicted. The errors in predicted 
trajectory can be derived from the quality of the measurements, 
reflected in the prediction error, which are expressed as: 

       |      [        ̂     |  ]           (9) 
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where        is the exhibited (modelled) trajectory and 

 ̂     |   is the predicted optimal trajectory at sample time 
   . For trajectory prediction, the obstacle centre of mass, 
the target orientation and the geometric shape of the 
uncertainty volume are determined. Once the trajectory is 
predicted, the Risk of Collision (ROC) is determined by 
calculating the probability of a near mid-air event for the 
predicted trajectory over the time horizon by employing Monte 
Carlo approximations. 

B. Cooperative systems 

ADS-B system is used to obtain the state of the intruders. 

The future position of the intruders is projected based on the 

estimate of the current state vector and the flight profile. The 

ADS-B measurement model adopted for intruder position and 

velocity estimates in   and   cardinal directions is given as: 
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Assuming the velocity components,      ,   ̇   ,       

and   ̇    as being affected only by Gaussian noise with zero 

mean, the standard deviation is defined by the covariance 

matrix given by: 
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              (11) 

where  [ ] represents the mean. An Interacting Multiple 

Model (IMM) algorithm is adopted for data fusion. The IMM 

model is a state-of-the-art tracking algorithm when multiple 

kinematics behaviour are to be considered [12]. Using this 

model, the state vector of the intruders is determined and this 

is propagated to predict the future trajectories using a 

probabilistic model. After computing the mixing probability, 

the combination of the state estimate is given by: 

 ̂   |   ∑   ̂   |   
                       (12) 

where       is the mode probability update. For conflict 

detection, the resultant covariance matrix,   after 

transformation is defined as: 

                                    (13) 

where S is the diagonal covariance matrix and R represents the 

transformation matrix between the heading aligned frame to 

that of the UA host platform frame. The probability of conflict 

is defined as the volume below the surface of the probability 

density function,        representing the conflict zone. The 

conflict probability,    is expressed as: 

    ∫ ∫       
  

  

       

       
                     (14) 

where        represents the conflict separation distance 

and         correspond to the rows of the conflict boundary 

matrix. The conflict probability is simplified as: 

               -                       (15) 

IV. ERROR MODELLING 

Error analysis is performed to determine the overall 

uncertainty volume in the airspace surrounding the intruder 

tracks. This is accomplished by considering both the 

navigation and the tracking errors affecting the measurements 

and translating them to unified range and bearing uncertainty 

descriptors. In order to quantify the errors, let    ,     and     

represent the standard deviation of the navigation error  (   , 

       ) or the tracking error (   ,        ) in the  ,   and   

cardinal directions respectively. Using a spherical coordinates 

frame with origin at the host UA centre of mass, the range and 

bearing errors associated with the intruder tracking process is 

transformed into a local Cartesian coordinate frame (either host 

or intruder body frame). The error ellipsoid is defined as [22]:  

  

   
  

  

   
   

  

   
                              (16) 

With respect to the obtained navigation and tracking error 

ellipsoids, spherical hormonics coefficients are determined. Let 

       represent the smooth function defined on the ellipsoid 

and the parameterisation is given by: 

       ∑ ∑     
 
    

 
                        (17) 

 

The function        is limited to a number of N finite 

coefficients.     is a factor and the function          is the 

spherical hormonic function and is given by:  
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where     represents the Legendre functions. Expanding      

as                        , we have     and     

defined as the spherical hormonic coefficients. The spherical 

hormonic coefficients are obtained as [23]: 
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and for all other l, m: 
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where     is the Kronecker symbol and (a, b, c) represents the 

semi-major radius of the navigation or tracking error ellipsoid.  

Therefore, both navigation and tracking error ellipsoids are 

generated as illustrated in Fig. 6. Finally, the overall 

uncertainty volume is obtained by combining the two error 
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ellipsoids, which must be avoided by the host UA. The 

uncertainty volume is determined for the two cases of 

correlated and uncorrelated errors. A notional example of the 

two combined navigation and tracking error ellipsoids and the 

resulting uncertainty volume for uncorrelated measurements 

(obtained by inflating the navigation ellipsoid with the tracking 

error components) is illustrated in Fig. 7. 

 

 
 

Fig. 6. Navigation and tracking error ellipsoids. 

 

                     

Fig. 7. Uncertainty volume for uncorrelated errors. 

V. SIMULATION CASE STUDY 

Simulations were performed utilising an AEROSONDE 

UA six degrees of freedom (6-DoF) model as the host 

platform. The simulation considers a complex scenario where 

the host UA is equipped with cooperative and non-cooperative 

SAA system capable of achieving collision avoidance and 

conflict resolution. Three intruders are considered as part of 

the simulation assuming intruder 1 without any cooperative 

SAA system (AEROSONDE UA), intruder 2 equipped with 

ADS-B system (large commercial aircraft) and intruder 3 is 

equipped with cooperative SAA system capable of achieving 

collision avoidance and conflict resolution (AEROSONDE 

UA). The scenario is illustrated in Fig. 8. The intruder 1 states 

are derived using non-cooperative FLS of the host UA. The 

other two intruders are tracked with the aid of ADS-B 

messages. Required separation distance is achieved with 

respect to all the intruders after resolution is performed (both 

horizontal and vertical). As an illustration, the horizontal 

separation achieved with respect to the first intruder is shown 

in Fig. 9. 

 

 
 

Fig. 8. Simulation scenario. 

 

Fig. 9. Achieved horizontal separation of intruder 1. 

After the obstacles are detected and tracked, an avoidance 

trajectory is generated and the corresponding action 

commands are executed. As a result, the intruder is evaded and 

the trajectory of the host UA is restored to its original intended 

path after performing step climb and level off phases as 

illustrated in Fig. 10. Results show that the required safe 

separation distance is always maintained when the SAA 

process is performed from ranges in excess of 500 metres. 

 

 

 

Fig. 10. Achieved vertical resolution. 

VI. CONCLUSIONS 

The proposed SAA system for small UA is in accordance 
with the established requirements in order to avoid the detected 
obstacles. The available state-of-the-art SAA technologies were 
identified and a holistic architecture was proposed. The 
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sequential process required to design an effective SAA system 
was presented. The analytical models for both non-cooperative 
sensors and cooperative sensors were discussed. Error 
modelling was performed to obtain an overall uncertainty 
volume associated with the intruder track. The results 
pertaining to image processing algorithms adopted for non-
cooperative SAA system design were presented. A detailed 
simulation case study was presented and it is inferred that the 
SAA process is performed from ranges in excess of 500 metres 
demonstrating the effectiveness of the proposed SAA system. 
In future research, integration of the SAA system with other 
avionic and ground-based systems for Intent Based Operations 
[24,  25] will be performed. In particular, in order to meet the 
Communication, Navigation and Surveillance (CNS) integrity 
requirements, Avionics-Based Integrity Augmentation (ABIA) 
system will be adopted [26, 27]. Additionally, analytical 
models developed for laser obstacle warning and avoidance 
system will be incorporated [28]. Current research activities are 
focusing on adopting the proposed SAA system for other UA 
platforms such as the JAVELIN UA [29]. 
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