
Framer: Planning Models from Natural Language Action Descriptions

Alan Lindsay1, Jonathon Read2, João F. Ferreira1,3, Thomas Hayton1, Julie Porteous1, Peter Gregory1
1Digital Futures Institute, School of Computing, Teesside University, UK.

2Ocado Technology, Hatfield, UK.
3HASLab/INESC TEC, Universidade do Minho, 4704-553 Braga, Portugal.

firstinitial.lastname@tees.ac.uk | jonathon.read@ocado.com

Abstract

In this paper, we describe an approach for learning planning
domain models directly from natural language (NL) descrip-
tions of activity sequences. The modelling problem has been
identified as a bottleneck for the widespread exploitation of
various technologies in Artificial Intelligence, including auto-
mated planners. There have been great advances in modelling
assisting and model generation tools, including a wide range
of domain model acquisition tools. However, for modelling
tools, there is the underlying assumption that the user can for-
mulate the problem using some formal language. And even
in the case of the domain model acquisition tools, there is
still a requirement to specify input plans in an easily machine
readable format. Providing this type of input is impractical
for many potential users. This motivates us to generate plan-
ning domain models directly from NL descriptions, as this
would provide an important step in extending the widespread
adoption of planning techniques. We start from NL descrip-
tions of actions and use NL analysis to construct structured
representations, from which we construct formal representa-
tions of the action sequences. The generated action sequences
provide the necessary structured input for inducing a PDDL
domain, using domain model acquisition technology. In or-
der to capture a concise planning model, we use an estimate
of functional similarity, so sentences that describe similar be-
haviours are represented by the same planning operator. We
validate our approach with a user study, where participants
are tasked with describing the activities occurring in several
videos. Then our system is used to learn planning domain
models using the participants’ NL input. We demonstrate that
our approach is effective at learning models on these tasks.

Introduction
Modelling problems appropriately for use by a computer
program has been identified as a key bottleneck in the ex-
ploitation of various AI technologies. In Automated Plan-
ning, this has inspired a growing body of work that aims
to support the modelling process including domain acqui-
sition tools, which learn a formal domain model of a sys-
tem from some form of input data. There is interest in ap-
plying domain model acquisition across a range of research
and application areas. For example within the business pro-
cess community (Hoffmann, Weber, and Kraft 2012) and

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

space applications (Frank et al. 2011). An extended version
of the LOCM domain model acquisition system (Cresswell,
McCluskey, and West 2009) has also been used to help in
the development of a puzzle game (Ersen and Sariel 2015)
based on spatio-temporal reasoning. Web Service Com-
position is another area in which domain model acquisi-
tion techniques have been used (Walsh and Littman 2008).
These tools vary in the specifics of the input language,
such as example action sequences (Cresswell, McCluskey,
and West 2009; Cresswell and Gregory 2011), or action se-
quences and a partial domain model (McCluskey et al. 2009;
Richardson 2008); the query system by which they ac-
quire the input data, which is typically static training sets,
although there are examples working with an interactive
querying system (Walsh and Littman 2008; Mehta, Tade-
palli, and Fern 2011); and the target model language, includ-
ing STRIPS (Cresswell, McCluskey, and West 2009; Cress-
well and Gregory 2011), probabilistic (Mourão, Petrick, and
Steedman 2010), and numeric (Gregory and Lindsay 2016;
Hayton et al. 2016). However, in each case the user is left
the responsibility of defining a formal representation for the
solution.

Defining these logical formalisms and applying them con-
sistently requires time and experience in both the target
domain and in the representation language, which many
potential users will not have. It is therefore important to
consider alternative input languages, such as Natural Lan-
guage (Goldwasser and Roth 2011). Natural Language (NL)
input is the most natural way for humans to interact and it is
no surprise that there is much interest in using NL as in-
put for computer systems. In day-to-day life, Siri and its
competitors are controlled by simple spoken word input,
but can activate complex procedures on our phones. In the
RoboCup@Home competitions robots are controlled by task
descriptions and are automatically translated into a series
of simple actions that can be performed on the robot. And
NL lessons have been used to learn partial representations
of the world dynamics for game-like environments (Gold-
wasser and Roth 2011). A key aspect of these systems is an
underlying language, which the NL input is mapped onto.
For example, in the case of RoboCup@Home, an input of
‘go to the living room’ might be mapped onto quite a differ-
ent representation, using the action name ‘move’ and requir-
ing a set of parameters that break the movement into smaller

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Teeside University's Research Repository

https://core.ac.uk/display/322329049?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NL Input

Action Templates

Induced Domain Model

a

S1: Drive the red truck from location A to location B

S2: Move the Parcel1 from location B into the red truck

S3: Drive the red truck from location B to location C

S4: Move the Parcel1 from the red truck to location C

 S1action: drive {
 object: red truck,
 from: location a,
 to: location b
}

 S3action: drive {
 object: red truck,
 from: location b,
 to: location c
}

 S2action: move {
 object: parcel1,
 from: location b,
 into: red truck
}

 S4action: move {
 object: parcel1,
 from: red truck,
 to: location c
}

 S1
action: drive {

 object: red truck,

 from: location a,

 to: location b

}

 S1
action: drive {

 object: red truck,

 from: location a,

 to: location b

}

 S2
action: move {

 object: parcel1,

 from: location b,

 into: red truck

}

 S3
action: drive {

 object: red truck,

 from: location b,

 to: location c

}

 S3
action: drive {

 object: red truck,

 from: location b,

 to: location c

}

 S4
action: move {

 object: parcel1,

 from: red truck,

 to: location c

}

 S4
action: move {

 object: parcel1,

 from: red truck,

 to: location c

}

C
lu

s
te

r
A

C
lu

s
te

r
B

C
lu

s
te

r
C

Representative

Actions

(domain inferreddomain)

 (:requirements :typing)

 (:types blue location parcel)

 (:predicates

 (blue_state_1_1 ?v1 - blue ?v2 - location)

 (location_state_1_1 ?v1 - location ?v2 - blue)

 (location_state_2_1 ?v1 - location)

 (location_state_2_2 ?v1 - location)

 (parcel_state_1_1 ?v1 - parcel ?v2 - location)

 (parcel_state_1_2 ?v1 - parcel ?v2 - blue))

(:action move_2

 :parameters (?Parcel1 – parcel

 ?Location2 – location ?Blue3 - blue)

 :precondition

 (and

 (blue_state_1_1 ?Blue3 ?Location2)

 (location_state_2_1 ?Location2)

 (location_state_1_1 ?Location2 ?Blue3)

 (parcel_state_1_1 ?Parcel1 ?Location2))

 :effect

 (and

 (location_state_2_2 ?Location2)

 (not (location_state_2_1 ?Location2))

 (parcel_state_1_2 ?Parcel1 ?Blue3)

 (not (parcel_state_1_1 ?Parcel1 ?Location2))))

(:action drive_1

 :parameters (?Blue1 - blue ?Location2 – location

 ?Location3 - location)

 :precondition

 (and

 (location_state_1_1 ?Location3 ?Blue1)

 (location_state_1_1 ?Location2 ?Blue1)

 (blue_state_1_1 ?Blue1 ?Location2))

 :effect

 (and

 (blue_state_1_1 ?Blue1 ?Location3)

 (not (blue_state_1_1 ?Blue1 ?Location2))))

(:action move_3

 :parameters (?Parcel1 - parcel ?Blue2 – blue

 ?Location3 - location)

 :precondition

 (and

 (location_state_1_1 ?Location3 ?Blue2)

 (blue_state_1_1 ?Blue2 ?Location3)

 (parcel_state_1_2 ?Parcel1 ?Blue2))

 :effect

 (and

 (parcel_state_1_1 ?Parcel1 ?Location3)

 (not (parcel_state_1_2 ?Parcel1 ?Blue2))))

Consistent Formulation of Sentences

S1: Drive_1 red_truck location_A location_B

S2: Move_2 Parcel1 location_B red_truck

S3: Drive_1 red_truck location_B location_C

S4: Move_3 Parcel1 red_truck location_C

Sentence Clusters

b c

d

LOCM-based

Figure 1: System overview: NL sentences are transformed into reduced representations (action templates) (a) that are clustered
based on similarity (b). Consistent formulations of the original sentences are then extracted (c) and a PDDL domain model is
induced using the domain model acquisition tool LOCM (d).

steps between connected rooms. Therefore in these domains
there is still a requirement for a domain engineer to develop
the formal representation.

In this work we consider the problem of generating plan-
ning action representations automatically from a collection
of NL sentences that are descriptions of actions. The ben-
efit of this is that we can target domain model acquisition
systems, but do not have to manually define a formal repre-
sentation for the solution. The key challenge is to generate
an appropriate formal representation, from which a general
and concise model can be induced, and that best represents
the input sentences. Our approach, illustrated in Figure 1,
can be summarised as follows. The first step (a) generates a
reduced representation of each sentence, an action template,
which captures the main action as well as the objects that are
mentioned and an indication of their roles in the sentence.
The second step (b) uses a measure of functional similarity,
based on the reduced representations, in order to cluster sen-
tences into operator sets. A consistent action representation
is then established by defining a mapping between the mem-
bers of each cluster. The action sequences are then rewritten
(c) using these action representations and used to induce a
PDDL domain model (d) using the domain model acquisi-
tion tool, LOCM2 (Cresswell and Gregory 2011).

In our implemented system user interaction is allowed
during the development of the representation, although it
is not required at any step. There are three key aspects
where the user can influence the representation: the user
can rephrase sentences where an action was not detected;
they can modify the automatically selected sentence clusters
(operator sets); and finally they can correct or fill-in miss-
ing action roles (parameters). In the evaluation, we demon-
strate that our approach can accurately identify behaviour
groups in NL sentences describing actions, rewrite related
sentences using a single representation and be robust to cer-
tain inconsistencies. These sentences were used to induce a
PDDL model in three domains: Towers of Hanoi, Logistics
and Tyreworld.

Background
Here we present relevant background in planning, domain
model acquisition and NLP approaches.

The description of a planning problem in PDDL (McDer-
mott et al. 1998) is separated into two parts: the domain
model, a definition of the problem domain that defines the
world and its behaviours; and an explanation of the spe-
cific problem to be solved within that world. It is the domain
model which is the target output of our approach. A domain
model is a tuple, D = 〈O,P〉, defining the sets of operators,
O, and predicates, P. An operator, O ∈ O, is represented by
an operator header: a unique symbol (operator name) and a
list of typed variables (parameters). The operator body con-
sists of three sets of predicates: the preconditions, and the
add and delete effects. An action, A, is a planning operator,
O, that has been instantiated with problem constants (pa-
rameters, preconditions and effects) and an action header is
a name and a list of constants (the instantiated parameters).

Our approach builds over work in domain model acqui-
sition, which exploits assumptions in the structure of the
input to learn planning models using a minimal input lan-
guage (Cresswell and Gregory 2011). LOCM (Cresswell,
McCluskey, and West 2009; Cresswell and Gregory 2011;
Gregory and Cresswell 2015; Gregory and Lindsay 2016)
is a family of domain model acquisition systems that oper-
ate from a set of example plans and generates a planning
domain in the standard Planning Domain Definition Lan-
guage (PDDL). The LOCM procedure uncovers the structure
embedded in the action sequences in order to identify FSM
descriptions for each object type. In order to do this, the sys-
tem observes the transitions that an individual world object
makes and then generalises these behaviours to types based
on the parameter position that the objects take in each action.
The structures captured by the FSMs are then used to define
a domain model and from this and the input sequences, prob-
lem descriptions can be generated.

We use Stanford CoreNLP (Manning et al. 2014), a
publicly-available and widely-used annotation pipeline for

NL Pick up Parcel1 from location B and put in the red truck
C

or
eN

L
P

A
nn

ot
at

io
n

[Pick/VB
compound:prt>up/RP

dobj>Parcel1/NN
nmod:from>[B/NN case>from/IN compound>location/NN]
cc>and/CC

conj:and>[put/VB nmod:in>

[truck/NN case>in/IN det>the/DT amod>red/JJ]]]

A
ct

io
n

Te
m

pl
at

e action : pick and put {
object : parcel1
from : location b
in : red truck }

Figure 2: Example NL sentence input, with its CoreNLP
annotation and resulting action template after rewrite rules:
from CoreNLP annotation, verb, subject and object of the
sentence form the action name and arguments (see text).

natural language analysis. Of most relevance to the current
work are the syntactic parsing annotations CoreNLP pro-
duces. Syntactic analysis in CoreNLP is a two-stage process.
Firstly, phrase structure trees are generated using statistical
analysis of datasets containing many examples of manually
annotated sentence parses (Klein and Manning 2003). Sec-
ondly, these phrase structure trees are converted to depen-
dency parse graphs using a series of manually-curated rules
based on patterns observed in the phrase structure trees (de
Marneffe, MacCartney, and Manning 2006).

Extracting action templates from NL input
The first step in our approach (see Figure 1(a)) is generation
of action templates: reduced representations of input sen-
tences, which capture the main action, objects that are men-
tioned and an indication of their roles in the sentence. For
this we utilise the dependency graphs output by CoreNLP,
illustrated in Figure 2. The structure of this middle represen-
tation must be further simplified to move closer to a predi-
cate logic representation. This is achieved through a recur-
sive set of rules that crawl the dependency graph, transform-
ing the relations based on their types. Most importantly, the
root verb of the sentence forms the basis of the action name,
while the verb’s subject and objects form the arguments.
Conjunctions introduce new clauses of the sentence, which
form further predicates. Other relation types such as mod-
ifiers and compounds are used to transform the names of
the predicates and arguments. The input of this process is
a sentence and the output is a collection of slot label (e.g.,
in) and slot filler (e.g., red truck) pairs. Where an action is
detected, one or more of the slot fillers will identify action
name elements. The other slot labels indicate the associated
slot filler’s role in the sentence.

There are many possible ways that users could formulate
sentences to describe what happens during a single action.
This structure therefore provides a reduced representation
that identifies the main actors in an action and the roles that
they play in the sentence. It should be noted that our ap-
proach relies on consistent object references (e.g., ‘the red
truck’ in Figure 1) throughout the action sequence. In order

to maintain the same level of granularity as the input descrip-
tions, internal action predicates are merged to join a single
action template. In Figure 2 the internal put predicate is
merged into the pick action, creating a single action tem-
plate for pick and put. It is important to notice that this
structure is similar to the one generated for S2 in Figure 1
for quite a different sentence structure.

Partitioning sentences into operator sets
The next step is to identify an appropriate partitioning of
the reduced sentences that best represent them, in order to
derive a set of consistent and general operator descriptions
(as shown in Figure 1(b)). Our approach is to define a dis-
tance measure between sentence pairs and use it to identify
clusters. As each cluster represents a planning operator in
the final domain model, we also consider, in the following
discussion, how the clustering can be controlled in order to
effect the generality of the generated domain model.

Functional distance between sentences
The ideal distance measure would estimate the difference
between the underlying functional process described in the
sentences. This would require a rich description of the un-
derlying process, whereas we consider how this can be es-
timated using the sentences in isolation. However, we do
not want to directly estimate the distance between the sen-
tences. Instead we want to estimate the structural difference
between the sentences, with specific focus on the key action
of the sentence. In particular, we want to exploit the structure
of the generated templates (previous section), which identi-
fies the main action of the sentence and provides a context
for the purpose (or role) of each object in the sentence.

For example, consider these sentences:

S5 The truck has moved from Aberdeen to Dundee
S6 A green box was put onto the truck in Dundee
S7 The truck was driven from Dundee to Stirling

Sentences S5 and S7 are very similar in structure and prob-
ably describe a similar underlying behaviour. In particular,
we observe that the words moved and driven are in fact of-
ten used interchangeably and that representing them with a
single operator would lead to a more concise and general
model. In contrast, sentence S6 differs in the specific verb as
well as the structure of the sentence and therefore we would
expect it to be represented in a planning model with a differ-
ent planning operator. In general then we would expect that
those templates that are similar to each other might be rep-
resented by a single operator. However, it is not as simple as
collecting similar verbs. For example in Figure 1, S2 and S4
share the same verb, however, describe different behaviours,
which can only be distinguished by the roles of the objects
in the sentences.

We first describe our approach for estimating the similar-
ity of individual symbols (i.e., the distance between them)
and then build from this to a complete similarity measure.

Distance between terms In this application, we are
specifically interested in whether words can be used in place
of each other and are therefore synonymous with each other.

We use a collection of online lexical resources1 in order to
generate a set of weighted synonyms (a similar approach
was used to find antonyms for action and predicate names
in (Porteous et al. 2015; Lindsay et al. 2015)). Online lexical
resources provide a source of typical synonyms without re-
lying on the user to identify similar terms; however, the qual-
ity of output can be inconsistent and therefore it is prudent
to combine several sources. Each source, Si, can be seen as
a function providing a vote and its score for each word pair
can be normalised to a value between 0 and 1 (higher scores
for higher correspondence). The sources can also be param-
eterised by the parts of speech (POS) of the generated syn-
onyms, which is useful in the case of estimating action type
similarity, as these tend to be verbs. We define the similarity
function, SIM(w0, w1, POS), which estimates the similarity
between words w0 and w1, with the set of accepted POS, as:

SIM(w0, w1, POS) =
1
n

∑n
i=1 Si(w0, w1, POS)

In the case of multiple word terms, the above function is gen-
eralised using the Levenshtein distance (Levenshtein 1966)
of the two word sequences (using a symbol for each word)
and using the complement of the similarity scores (distance
measure) as a partial match cost. This provides a measure of
correspondence between the sequences, while also respect-
ing ordering.

Similarity measure The similarity measure is based on
the idea that if the actions involved in a pair of sentences
are similar and the roles of the objects are similar then we
expect that the function that the sentences are describing is
similar.

The similarity measure for templates τ0 and τ1, denoted
by δ(τ0, τ1), is computed from two values:

• SAN(τ0, τ1) : The similarity of the action names (entries
in slots with label action) of τ0 and τ1;

• SSL(τ0, τ1): The average similarity for each non-action
slot label (each role) from τ0 to τ1, where for each role of
τ0 the closest matching role of τ1 is selected.

These values rely on the similarity SIM(w0, w1, POS), de-
fined above, which is used with action names with the ar-
gument, POS=verb and for roles with argument, POS=∗
(any part of speech).

The similarity measure can be computed as:

δ(τ0, τ1) = γ × SAN(τ0, τ1) + (1−γ)× SSL(τ0, τ1)

The parameter γ controls the importance in similarity be-
tween roles and action names.

Cluster-based approach to operator sets selection
Clustering identifies groups of elements, which are similar
(or close) to the elements in their own group, while being
dissimilar (or far away from) elements in other groups. It is
a hard problem in general, especially in domains where the
number of clusters cannot be guessed. However, it is a very
well studied area and many off-the-shelf toolkits exist. In

1Merriam-Webster http://www.dictionaryapi.com;
Big Huge Thesaurus http://words.bighugelabs.com;
Power Thesaurus http://www.powerthesaurus.org

this specific problem we want to cluster the action templates
into similar groups. We can use the distance matrix for the
distance between templates pairs for clustering, which saves
defining a projection of a template into a space.

We adopt the Partitioning Around Medoids (PAM) im-
plementation of the k-medoids method (Kaufmann and
Rousseeuw 1987). This approach partitions the data into k
clusters, each associated with a representative data point,
considered the most central in the cluster. The specific bene-
fits for this work are that the algorithm partitions the objects
and operates from the dissimilarity matrix of the data points,
allowing us to use an arbitrary distance score.

Model generality Selecting an appropriate clustering is
an interesting problem and one that will effect the gener-
ality of the final representation. There may be more than
one correct partitioning of the sentences into correct be-
haviour groups. For example, consider the various encod-
ings of stacking behaviours in PDDL: Depots, Towers of
Hanoi, and multiple representations of Blocksworld. Our de-
fault approach is to calculate the average silhouette score for
the clusters (Rousseeuw 1987), which evaluates the clusters
by averaging the similarity within clusters and dissimilarity
between clusters, with respect to the distance measure. This
can only be evaluated accurately for at least 2 clusters, so we
first test to determine whether more than 1 cluster is appro-
priate (Duda, Hart, and others 1973). The optimal average
silhouette score indicates a good trade-off between the size
of k and the amount of dissimilarity in each cluster.

Our system supports interaction at this stage, allowing the
user to pick between different values of k, but also changing
the clusters. It is interesting to notice that the user organises
(their own) NL sentences into behaviour groups and there-
fore does not need to interpret any abstracted representation.

Generating a domain model
We have presented our approach for selecting the operator
sets that determine the main language for the generated do-
main model. In this section we construct a planning model
that represents the dynamics captured in the NL action de-
scriptions. The first step is to define the action language of
the planning model and this is achieved by demonstrating a
consistent formalisation within each group of templates that
have been partitioned into a single operator set (as shown in
Figure 1, step (c)). This supports the rewriting of the sen-
tences as sequences of action headers, which is a sufficient
input for domain model acquisition (Figure 1, step (d)). We
conclude the section by considering how missing values (pa-
rameters) can be addressed.

Formalised representation of the sentences
We use the centre most element (the medoid and therefore
a natural output from the clustering algorithm) as the basis
for the operator description. For the associated template we
define an operator header as follows: the name is the con-
catenation of the terms with action slot labels (joined with a
symbol, e.g., ‘-’); and the parameter list is represented by the
(non-action) slot labels (i.e., the slot fillers represent instan-
tiations of those parameters). The translation of the medoid

(a) Blocksworld (training) (b) Towers of Hanoi

(c) Logistics (d) Tyreworld

Figure 3: Screenshots from the videos used in the evaluation.

sentence into the language of the action model is a space-
separated concatenation of the name and the slot filler (mul-
tiple words joined with a symbol, e.g., ‘-’), for each of the
slot labels in order.

To translate one of the other templates τ ′ of the cluster, we
establish a mapping between the slot labels of the medoid
template, τM, and those of τ ′. This is done by establish-
ing a best match between the slot labels of the templates, by
maximising the overall similarity of labels, using the (pre-
viously defined) function: SIM(slot-labelτM , slot-labelτ ′ , ∗).
The sentence is then constructed in a similar way, except for
a specific slot label, the mapping is used to identify the cor-
responding slot label in τ ′ and use its entry instead of τM.
In the case that a mapping is not found for a tag in y% of
the members of a cluster then the tag is pruned. As in some
cases a description will have more information than is nec-
essary, this filtering process aims to identify the important
parameters for the operator.

The output of this process are sequences of action headers
that each instantiate one of the operator headers implied by
the behaviour groups. It has been shown that, within certain
restrictions, sequences of action headers provide sufficient
evidence of the dynamic structure of planning domains and
can be used directly to induce a domain model (Cresswell
and Gregory 2011). It is presenting the key objects in con-
sistent orderings (achieved through our mapping approach)
that allows LOCM to uncover the inherent structures. It is
then the job of LOCM to identify the key relationships be-
tween the parameters of actions, which it then encodes as
predicates in the induced domain model.

Missing parameter values
In practice, a user may not always mention all of the objects
involved in an action, or may not be consistent with the ob-
jects mentioned. There is no guaranteed method of inferring
the missing parameters as the correct dynamics of the sys-
tem (even if they can be expressed in STRIPS) are unknown.
Thus the system supports user interaction at this stage, al-
lowing the user to both fill in missing parameters and correct
incorrect parameters. The representative sentence for each
cluster is used as a template to rewrite each of the sentences
of the cluster. The slot fillers of the representative sentence

are replaced with the relevant fillers from the member sen-
tence (see the discussion for plan rewriting in the evalua-
tion). Missing values are indicated and can be filled in by
the user. The main benefit of this approach is that the user
can interact with the system using only NL.

The default behaviour in this case is to break the plan
into two action sequences by removing the partially speci-
fied action. That is, for a plan π = a0, . . . , ai, . . . , an, and
partially specified action, ai, we create two plan fragments:
πF1 = a0, . . . , ai−1 and πF2 = ai+1, . . . , an. These frag-
ments can then be used as input to the domain acquisition
system instead of the complete plan descriptions.

Evaluation
In this section we present a case study examining the ap-
proach developed in this paper. This is split into two sec-
tions: the first examines the viability of acquiring suitable in-
put sentences from users; the second examines whether op-
erator sets can be synthesised that generalise user sentences
and planning models induced.

Acquiring action descriptions
In order to obtain the action descriptions we asked naive
users to explain animations that depicted action sequences
from a collection of typical planning benchmark domains.
The users were provided with recommendations for con-
structing the sentences and were provided guidance when
their sentences did not meet these recommendations. In each
case we noted the type of deviation that was made and we
are therefore able to provide an indication of the areas where
training is required, or opportunities for supporting similar
approaches with inference. The specific descriptions made
by each user still provide a wide variety of inputs.

We gathered sentences from 10 participants with a mix-
ture of backgrounds and no experience of PDDL or related
languages. In each session we collected 39 action descrip-
tions between 3 domains. The session started by reading an
introduction to the study and several recommendations for
the sentences, including general properties of the sentences,
e.g., that it was a stand-alone sentence without co-reference
(not enforced). The key recommendations were: that the sen-
tence should always include an explicit description of the
starting situation of the main object before the action (e.g.,
pick up the blue block from the red block); and to use con-
sistent referencing for objects; for example if you refer to an
object as ‘the red block’ to always use this name. The partici-
pants were then shown an example video and sentence in the
Blocksworld domain (Figure 3a). The participants described
actions for animated videos in the following domains:

• Towers of Hanoi: The benchmark domain, visualised
with cards and not pegs (Figure 3b). A card can only be
placed on top of a card with a lower rank. The player must
move the cards so that all 4 cards are piled on the right-
most stack. We used the first 8 moves of a solution.

• Logistics: A standard logistics domain with misplaced
packages that must be relocated using trucks (Figure 3c).
The goal indicates the final configuration of the packages.

Ref. Variation More info. Action detection Others
Hanoi 3 5 1 2
Logistics 0 7 3 4
Tyres 0 4 4 0

Table 1: The number of instances for each category of
guidance required by participants during sentence collection
(from a total of 390 action descriptions collected). The cate-
gories are: referential variation, more required information,
no action detected in the sentence, and others (concentration
and participant instigated querying of verb use).

Open the boot of the red car

Take out the jack from the boot of the red car

Put the jack underneath the front of the red car

Lift the front of the red car with the jack

Remove the front wheel of the red car

Replace the front wheel of the red car

Let down the front of the red car with the jack

Take the jack from underneath the front of the red car

Put the jack into the boot of the red car

Close the boot of the red car

Figure 4: An example of the input NL sentences (from par-
ticipant p5) describing the actions in the Tyreworld scenario.

The videos presented one small (4 step) and one longer
(15 step) scenario.

• Tyreworld: A subset of the benchmark domain. The sce-
nario involves jacking a car up by opening the boot, re-
moving the jack, raising the car and removing the wheel
(Figure 3d), before reversing the process. An example of
a participants sentences are presented in Figure 4.

Table 1 presents a coding of the guidance that was required
during participant construction of input sentences. These can
be largely divided into two areas: parsing the inputs and
guidance on specific content of the inputs. The main pars-
ing issue involved a failure of the parser to extract actions
from the sentences. We were able to test the user sentences
as they were constructed and therefore discover an alterna-
tive quickly. In these cases (e.g., ‘load’ or ‘lower’ at the be-
ginning of a sentence) we asked the participant to consider
using an alternative verb.

The main limitation observed in the user sentences was
missing out one of the key actors in the action. It is perhaps
unsurprising that in the first sentences for Logistics and Tow-
ers of Hanoi the participants often did not mention the start-
ing location when describing moving a card, truck or pack-
age. Although it should be noted that the participants had
been explicitly asked to do so using the Blocksworld exam-
ple. Missing information was less of a problem in the Tyre-
world domain. The most common omission was not men-
tioning the jack’s role in lowering the car.

In Towers of Hanoi, some of the participants described the
cards moving between columns, or an enumeration of the
cards in the involved stacks. Use of alternative referencing
encodings (referential variation) was not observed in other
domains. Of course these alternative descriptions are valid
and more importantly might be appropriate for alternative
model acquisition target languages.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
Hanoi 0(1) 0(3)∗ 0(2)∗ 0(1) 0(1)∗ 0(1) 0(2)∗ 0(2)∗ 0(4)∗ 0(2)∗
Log. 0(3) 0(3) 1(4)∗ 0(3) 0(3) 1(3) 0(3) 1(4)∗ 0(3) 0(3)
Tyres 2(6) 2(6)∗ 2(6) 0(5) 3(5)∗ 1(5) 1(5)∗ 1(5)∗ 2(6)∗ 1(5)∗

Table 2: Number of errors and clusters (in parenthesis) for
the sentences for each participant (p1–p10) in the three do-
mains. Each cell records the number of wrongly allocated
sentences and the cluster count in parenthesis. The symbol
∗ indicates at least one k (not selected by silhouettes) parti-
tions the sentences into distinct behaviours.

There were certain aspects of the participants’ sentences
that were surprisingly good. There were relatively few typos
and only one occurrence of entering the wrong event. There
was only one occasion where a participant changed the way
they were recording a behaviour during a scenario in such a
way that the following sentence did not include enough in-
formation (from a lack of concentration). Although we had
to request more information on several occasions, the par-
ticipants typically continued to provide this in subsequent
descriptions (within that scenario).

In a final step, we normalised user references, e.g., ‘point
A’ and ‘A’ were both mapped to ‘location A’. This was in
order to assist with reference disambiguation and parsing,
e.g., ‘A’ is a word and parsed differently from ‘B’ or ‘C’.

In general, the main limitation of the sentences was spe-
cific missing information. Therefore, considering how this
information can be recovered from alternative sources, in-
cluding additional user input is key future work in extending
the applicability of this approach.

Inducing planning models
In this part we take each participant’s input separately and
learn a domain model using the process as presented.

Identifying behaviour groups The first stage is clustering
the sentences into individual behaviour groupings. Table 2
shows the number of errors in splitting the sentences into
behaviours. In Logistics there are three main behaviours and
the clustering approach typically divides the sentences ac-
cordingly. There were several cases (p6, p7, p8, p10) where
the same verb was used for distinct behaviours, e.g., using
‘moved’ for driving, loading and unloading. However, the
clustering was robust to this, although in some of these cases
other causes impacted on the performance. This demon-
strates the importance of using the roles as part of the sim-
ilarity measure. In fact the only source of error in Logistics
was inconsistency in the sentences. This happened both in
verb use (p3) and different role identifiers (p6, p8, p10).

Whereas in Logistics there seem to be clear distinct be-
haviours, there is more ambiguity in the other domains. In
the Towers of Hanoi examples there are 4 behaviours that
can be distinguished: from empty, to empty; from empty, to
card; from card, to empty; and from card, to card. In some
cases the participants made consistent distinctions and some
of these behaviours were isolated. In Table 3 we present the
number of behaviours that were correctly isolated using dif-
ferent values of k in the clustering algorithm. In some cases,

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
1 cluster 3 3 3 3 3 3 3 3 3 3
2 clusters 7 3 3 7 3 7 3 3 3 3
3 clusters 7 3 3 7 7 7 1 7 3 3
4 clusters 7 3 1 7 7 7 7 7 3 1

Table 3: Tower of Hanoi results for participants (p1-p10).
For the 4 possible behaviours (i.e. clusters k = 1 to max.
4.): 3 indicates the participant correctly distinguished the
behaviour; 3 the number of clusters selected by the average
silhouette score; ‘1’ indicates a single change was required;
and 7 failure to distinguish behaviour (see text).

2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

k

A
vg

. S
ilh

ou
et

te

Figure 5: Plot of average silhouette scores for different val-
ues of k in Tyreworld (participant p5).

no distinction in language was made and only a single be-
haviour was identified (e.g., p1, p4 and p6). The ‘to empty’
and ‘empty to empty’ behaviours were the most commonly
distinguished.

The performance of the silhouette selection is not as effec-
tive in Tyreworld. The number of samples from each partic-
ipant is small and this is particularly relevant in Tyreworld
where there can be 10 different behaviours (depending on
participant encoding). It is important to note that there are 7
out of 10 cases where the distance measure distinguished be-
haviours for some value of k. The silhouette plot presented
in Figure 5 illustrates how close the silhouette scores were
for p5 to a correct partitioning at k=8.

In Logistics and Hanoi, the γ (the bias between action
name and roles in the distance measure) values: 0.33, 0.5
and 0.66, generated the same clusters. In Tyreworld there are
small differences in the order the sentences break into sep-
arate clusters as k is increased. However, there is only one
change in silhouette score (p2) and by k = 8 (approximately
the number of behaviours) all clusters are the same.

In general over the 3 domains there are only 4 instances
where there is not a valid partitioning for some value of k.
This provides support that the selected distance measure is
an effective approach for identifying behaviours. However,
choosing amongst correct partitionings is still an interesting
problem, as it can influence the generality of the induced
model. However, pragmatically selecting one that has least
missing values could be considered.

Formalising the behaviour representations In this part
we assume that the behaviours have been correctly identi-
fied and split into different clusters (i.e., not necessarily the
one selected by silhouettes). A representative was selected

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
Hanoi 3 R 1R 3 3 3 3 3 R∗ R
Logistics 3 3 3 3 3 3 3 1∗ 3 1
Tyres 3 3 3 3 3 3 3 3 3 3

Table 4: Whether the correctly clustered sentences induced
a model. 3: a PDDL model was induced; n: some fixes were
required and then a model was induced; ∗: a partial model
was induced before fixes; R: a correct representation was
constructed.

for each cluster and then a mapping was made onto each
member of the cluster to identify the best match for each of
the (unfiltered) representative’s roles. We set the parameter
for tag filtering at y = 20%.

As we have seen above (e.g., Table 3) in Towers of Hanoi,
the participants varied in their chosen description strategy.
When selecting a single cluster, the action headers for partic-
ipants p1, p4, p5, p6, p7 and p8 are equivalent to the PDDL
benchmark model. Participants: p2, p3, p9, p10, made dis-
tinctions between the different behaviours. In these cases
the short action sequence that they were asked to describe
was insufficient to provide enough examples for LOCM to
induce a model properly. However, for participants, p2, p3
and p10, the final operator headers correctly described the
actions. For p9, the rewriting rules used during parsing re-
moved some of the important content and so the resulting
operator headers, while correct for the information, did not
contain all the important objects. In each case except 9, if
additional sentences are added (we added 15 sentences) us-
ing a consistent method of description and the sentences are
separated into four clusters then a PDDL similar to the 4-
operator Blocksworld model is induced.

In Logistics the participants used predominantly consis-
tent sentences within each of the three behaviour groups.
Out of four inconsistencies, there were two cases (p8 and
p10) that prevented the correct slot fillers to be identified.
For example, one participant mixed ‘onto’ and ‘into’ and
these words are not identified as synonyms by the selected
sources. However, p3 changed their explanation of taking a
package out of a truck from: ‘The Parcel1 has been taken
out of the red truck at location C’ to ‘The Parcel2 has been
removed from the blue truck at location E’. The sources
matched both ‘taken’ and ‘removed’ as synonyms, as well
as the roles ‘from’ and ‘out’. This highlights how the use of
synonyms help to generalise over some of the variation in
descriptions.

In Tyreworld the main structure is in sequential applica-
bility of operators. One participant captured a more factored
model, representing the jack moving out from the car boot to
the ground, round the car and then to a position underneath
the car (with its return journey). This provided a traversal
structure, whereas most of the other descriptions used dis-
tinguishing language between the behaviours, e.g., putting
the jack in and taking it out of the boot.

The learnt PDDL model Once consistent formulations of
the input NL sentences had been extracted, the resulting ac-
tion sequences were formatted, as action headers, and input

in-boot

[]

on-ground

[]

raised

[]

in-boot-again

[]

take_2.1

jack-1

Figure 6: Induced FSM for a jack in Tyreworld. The states
have been labelled for presentation.

to LOCM. LOCM generates a collection of FSMs that char-
acterise the dynamics of the problem domain. For example,
Figure 6 presents the structure identified for the jack object
for a participant’s sequences for Tyreworld. These FSMs can
be used to induce a planning domain model (e.g., the Logis-
tics domain for the sentences of p6 is presented in Figure 1)
and in combination with an action sequence, to generate a
problem model. For example, a planning problem was gen-
erated using p6’s descriptions of the Logistics scenario (a
larger example of sentences S1-S4) and Figure 7 presents a
plan generated to solve that problem.

During processing, the mapping from the original sen-
tence to the action template is retained and the parameter
positions of the operator are identified in each sentence. This
provides us with a template for rewriting a generated plan by
fitting the arguments into the sentence. For example, in Fig-
ure 7, we present a plan generated using the learnt model.
Using the template for the move 2 operator, plan step two
can be rewritten as ‘move the Parcel1 from location B into
the red truck’ (underscores retained for clarity). The devel-
opment of this would be to modify the sentence using a lan-
guage model, e.g., selecting determiners.

This system presents a step towards a general interface for
exploiting planning technologies using only NL.

Related work
The majority of related work has aimed at mapping NL input
onto an existing formal representation.

In RoboCup@Home various approaches have been
adopted to define the mapping onto the grounded domain
representation. For example Kollar et al. (2013) present a
probabilistic approach to learning the referring expressions
for robot primitives and physical locations in a region. And
Mokhtari, Lopes, and Pinho (2016) present an approach to
learning action schemata for high-level robot control.

In (Goldwasser and Roth 2011) the authors present an
alternative approach to learning the dynamics of the world
where the NL input provides a direct lesson about part of
the dynamics of the environment. For example, the lesson:
‘You can move any of the top cards to an empty free-cell’ is a
general rule that applies across several grounded situations.
Each lesson is supported by a small training data set (e.g.,
20 examples) to support learning from the lessons. In con-
trast to our approach, their system relies on a representation
of the states and actions, which means their NLP approach
can target an existing language.

More closely related to our work are attempts to learn
planning models in the absence of a target representation.

drive_1 red_truck location_A location_B

move_2 Parcel1 location_B red_truck

drive_1 red_truck location_B location_E

move_3 Parcel1 red_truck location_E

drive_1 red_truck location_E location_C

move_2 Parcel2 location_C red_truck

drive_1 red_truck location_C location_A

move_3 Parcel2 red_truck location_A

move_2 Parcel1 location_E blue_truck

move_3 Parcel1 blue_truck location_E

drive_1 blue_truck location_E location_C

Figure 7: Logistics domain: plan generated from a larger
example including sentences S1-S4 (participant p6).

These include (Sil and Yates 2011) who used text mining
via a search engine to identify documents that contain words
that represent target verbs or events and then uses inductive
learning techniques to identify appropriate action pre- and
post-conditions. Their system was able to learn action rep-
resentations, although with certain restrictions such as the
number of predicate arguments. Branavan et al. (2012) in-
troduce a reinforcement learning approach which uses sur-
face linguistic cues to learn pre-condition relation pairs from
text for use during planning. The success of the learnt model
relies on use of feedback automatically obtained from plan
execution attempts. Yordanova (2016) presents an approach
which works with input text solution plans, as a proxy for in-
structions, and aims to learn pre- and post-condition action
representations. However this approach uses hand-coded
representations of the initial and goal state for input plans.

Conclusion and future work
We believe this is the first approach that generates PDDL
models directly from NL without an existing target model.
Our approach harnesses a selection of existing technolo-
gies, including Standford CoreNLP, several online lexical
resources, PAM, and LOCM. In our evaluation we demon-
strated that the system can create formalisms from a variety
of different NL representations. Although improving the ro-
bustness of the approach will be important future work, it
should be noted that once a model is generated then it can
be combined with the large body of existing work that looks
at mapping NL onto existing formalisms. In the current ap-
proach, separating the sentences into appropriate behaviours
plays an important role in determining the quality of the
generated PDDL model. Important future work will explore
generating models with various granularities and identify-
ing whether they can be supported by the information con-
tent of the input sentences. Another avenue of future work
is considering more intelligent ways of dealing with miss-
ing information. Our approach relies heavily on a sufficient
number and length of fully specified sequences in the input.
An interesting approach would be to use a predictive model
to estimate the parameter selections; perhaps taking inspira-
tion from the recommendation system approach presented in
(Krivic et al. 2016) for predicting initial world object proper-
ties. Alternatively, we could target other domain acquisition
systems, such as (Mourão, Petrick, and Steedman 2010) that
handle noisy data.

Acknowledgements
This work is supported by EPSRC Grant EP/N017447/1.

References
Branavan, S. R. K.; Kushman, N.; Lei, T.; and Barzilay, R.
2012. Learning High-level Planning from Text. In Proceedings
of the 50th Annual Meeting of the Association for Computa-
tional Linguistics, ACL ’12, 126–135. Stroudsburg, PA, USA:
Association for Computational Linguistics.
Cresswell, S., and Gregory, P. 2011. Generalised domain model
acquisition from action traces. In Proc. of the 21st Int. Conf. on
Automated Planning and Scheduling (ICAPS).
Cresswell, S. N.; McCluskey, T. L.; and West, M. M. 2009.
Acquisition of Object-Centred Domain Models from Planning
Examples. In Proc. of 19th Int. Conf. on Automated Planning
and Scheduling (ICAPS).
de Marneffe, M.-C.; MacCartney, B.; and Manning, C. D.
2006. Generating typed dependency parses from phrase struc-
ture parses. In Proceedings of the Conference on Language
Resources and Evaluation, 449–454.
Duda, R. O.; Hart, P. E.; et al. 1973. Pattern classification and
scene analysis, volume 3. Wiley New York.
Ersen, M., and Sariel, S. 2015. Learning behaviors of and
interactions among objects through spatio-temporal reasoning.
Computational Intelligence and AI in Games, IEEE Transac-
tions on 7(1):75–87.
Frank, J. D.; Clement, B. J.; Chachere, J. M.; Smith, T. B.; and
Swanson, K. J. 2011. The Challenge of Configuring Model-
Based Space Mission Planners. In International Workshop on
Planning and Scheduling for Space.
Goldwasser, D., and Roth, D. 2011. Learning from natural
instructions. In Proc. of the 22nd Int. Joint Conf. on Artifical
Intelligence (IJCAI).
Gregory, P., and Cresswell, S. 2015. Domain Model Acquisi-
tion in the Presence of Static Relations in the LOP System. In
Proc. of 25th Int. Conf. on Automated Planning and Scheduling
(ICAPS), 97–105.
Gregory, P., and Lindsay, A. 2016. Domain Model Acquisition
in Domains with Action Costs. In Proc. of the 26th Int. Conf.
on Automated Planning and Scheduling (ICAPS).
Hayton, T.; Gregory, P.; Lindsay, A.; and Porteous, J. 2016.
Best-fit action-cost domain model acquisition and its applica-
tion to authorship in interactive narrative. In AAAI Conf. on AI
and Interactive Digital Entertainment (AIIDE).
Hoffmann, J.; Weber, I.; and Kraft, F. M. 2012. SAP speaks
PDDL: Exploiting a software-engineering model for planning
in business process management. Journal of Artificial Intelli-
gence Research 44:587–632.
Kaufmann, L., and Rousseeuw, P. J. 1987. Clustering by means
of medoids. Journal of Machine Learning Research.
Klein, D., and Manning, C. D. 2003. Fast exact inference with
a factored model for natural language parsing. In Advances in
Neural Information Processing Systems, volume 15. 3–10.
Kollar, T.; Perera, V.; Nardi, D.; ; and Veloso, M. 2013. Learn-
ing Environmental Knowledge from Task-based Human-robot
Dialog. In Proceedings of IEEE International Conference on
Robotics and Automation (ICRA).

Krivic, S.; Cashmore, M.; Ridder, B.; and Piater, J. 2016. Initial
State Prediction in Planning. In Proc. 31st Workshop of the UK
Planning and Scheduling SIG (PlanSIG).
Levenshtein, V. I. 1966. Binary codes capable of correcting
deletions, insertions and reversals. Cybernetics and Control
Theory 10:707–710.
Lindsay, A.; Charles, F.; Read, J.; Porteous, J.; Cavazza, M.;
and Georg, G. 2015. Generation of non-compliant behaviour
in virtual medical narratives. In Proc. of the 15th International
Conference on Intelligent Virtual Agents (IVA).
Manning, C. D.; Surdeanu, M.; Bauer, J.; Finkel, J. R.; Bethard,
S.; and McClosky, D. 2014. The stanford corenlp natural lan-
guage processing toolkit. In The Annual Meeting of the Associ-
ation for Computational Linguistics (System Demonstrations),
55–60.
McCluskey, T. L.; Cresswell, S. N.; Richardson, N. E.; and
West, M. M. 2009. Automated acquisition of action knowl-
edge. In International Conference on Agents and Artificial In-
telligence (ICAART), 93–100.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL-the
planning domain definition language. Technical report, Yale
University.
Mehta, N.; Tadepalli, P.; and Fern, A. 2011. Efficient Learn-
ing of Action Models for Planning. In ICAPS Planning and
Learning Workshop (PAL),.
Mokhtari, V.; Lopes, L. S.; and Pinho, A. J. 2016. Experience-
Based Robot Task Learning and Planning with Goal Inference.
In Proc. of the 26th International Conference on Automated
Planning and Scheduling (ICAPS).
Mourão, K.; Petrick, R. P. A.; and Steedman, M. 2010. Learn-
ing action effects in partially observable domains. In Proc. 19th
European Conference on AI (ECAI). IOS Press.
Porteous, J.; Lindsay, A.; Read, J.; Truran, M.; and Cavazza, M.
2015. Automated extension of narrative planning domains with
antonymic operators. In Proc. of the Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS).
Richardson, N. E. 2008. An Operator Induction Tool Support-
ing Knowledge Engineering in Planning. Ph.D. Dissertation,
School of Computing and Engineering, University of Hudders-
field, UK.
Rousseeuw, P. J. 1987. Silhouettes: a graphical aid to the inter-
pretation and validation of cluster analysis. Journal of compu-
tational and applied mathematics 20:53–65.
Sil, A., and Yates, A. 2011. Extracting strips representations of
actions and events. In Recent Advances in Natural Language
Processing (RANLP).
Walsh, T. J., and Littman, M. L. 2008. Efficient Learning of Ac-
tion Schemas and Web-Service Descriptions. In Proc. of 23rd
AAAI Conference on Artificial Intelligence.
Yordanova, K. 2016. From Textual Instructions to Sensor-based
Recognition of User Behaviour. In Proc. of 21st Int. Conf. on
Intelligent User Interfaces, IUI Companion. ACM.

