
Thank

Citatio

See th

Version

Copyri

Link to

you for do

on:

is record i

n:

ght Statem

o Published

wnloading

in the RMI

ment: ©

d Version:

 this docum

IT Researc

ment from

ch Reposit

the RMIT R

ory at:

Research RRepository

PLEASE DO NOT REMOVE THIS PAGE

 Zhang, X, Chen, T and Liu, H 2014, 'An application of adaptive random sequence in test
case prioritization', in Marek Reformat (ed.) Proceedings of the Twenty-Sixth International
Conference on Software Engineering and Knowledge Engineering (SEKE 2014), Skokie, IL,
United States, 1-3 July 2014, pp. 126-131.

https://researchbank.rmit.edu.au/view/rmit:28311

Accepted Manuscript

2014 Knowledge Systems Institute Graduate School

http://www.ksi.edu/seke/seke14.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RMIT Research Repository

https://core.ac.uk/display/32232519?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchbank.rmit.edu.au/

An Application of Adaptive Random Sequence

in Test Case Prioritization

Xiaofang Zhang

School of Computer Science and

Technology

Soochow University

Suzhou, China

xfzhang@suda.edu.cn

Tsong Yueh Chen

Department of Computer Science

and Software Engineering

Swinburne University of Technology

Hawthorn, Australia

tychen@swin.edu.au

Huai Liu

Australia-India Research Centre for

Automation Software Engineering

RMIT University

Melbourne, Australia

huai.liu@rmit.edu.au

Abstract—Test case prioritization aims to schedule test cases in a

certain order such that the effectiveness of regression testing can

be improved. Prioritization using random sequence is a basic and

simple technique, and normally acts as a benchmark to evaluate

other prioritization techniques. Adaptive Random Sequence

(ARS) makes use of extra information to improve the diversity of

random sequence. Some researchers have proposed prioritization

techniques using ARS with white-box code coverage information

that is normally related to the test execution history of previous

versions. In this paper, we propose several ARS-based

prioritization techniques using black-box information. The

proposed techniques schedule test cases based on the string

distances of the input data, without referring to the execution

history. Our experimental studies show that these new techniques

deliver higher fault-detection effectiveness than random

prioritization. In addition, as compared with an existing black-

box prioritization technique, the new techniques have similar

fault-detection effectiveness but much lower computation

overhead, and thus are more cost-effective.

Keywords – test case prioritization; adaptive random sequence;

random sequence; random testing; adaptive random testing

I. INTRODUCTION

Regression testing is used to ensure that changes to the
program do not negatively impact its correctness. A main task
in regression testing is the prioritization of test cases, which
reorders the existing test cases to meet some performance goal,
such as detecting the faults as early as possible. Previous
studies on test case prioritization aim at providing earlier
feedback to testers, and allow them to begin debugging earlier.

Various test case prioritization techniques have been
developed, which are designed to achieve different objectives.
Most of the test case prioritization techniques require white-
box information or test history to facilitate their prioritization
operations. Essentially, they use the information derived from
the previous versions, such as program source code coverage or
fault detection history. However, the white-box information
and test history are not always available, and sometimes such a
kind of information is incomplete or inaccurate, or even costly
or difficult to obtain.

To address this problem, Ledru et al. [1] propose a
prioritization technique based on string distances between test
cases, which does not depend on the availability of white-box

information or test history. Their technique is based on the
concept of test case diversity in terms of four classic string
distance metrics. However, their prioritization technique needs
to calculate the distances for each pair of test cases in the given
test suite. As a consequence, the computation overhead is
considerably expensive.

Our study aims to reduce the high computation overhead
while preserving the test case diversity in the prioritized
sequence. We investigate a more cost-effective test case
prioritization methodology using the black-box information of
the program under test. Our prioritization techniques make use
of the concept of adaptive random sequence to achieve
diversity of test cases through the notion of evenly spreading
across the input domain.

The rest of the paper is organized as follows. Section II
introduces the background information of test case
prioritization and adaptive random sequence. The previous
work related to our study is discussed in Section III. Section IV
gives the details of our new prioritization techniques. Section V
reports our empirical study for evaluating the new techniques.
The paper is finally summarized in Section VI.

II. BACKGROUND

A. Test Case Prioritization Strategies

Test case prioritization schedules test cases so that those
with the higher priority, according to some criterion, are
executed earlier in the regression testing process. Given a test
suite, test case prioritization will find a permutation of the
original test suite, aiming to maximize the objective function.
There are various strategies based on different intuitions. For
example, history-based prioritization techniques use
information from previous executions to determine test
priorities; knowledge-based techniques use human knowledge
to determine test priorities and model-based techniques use a
model of the system to determine test priorities.

To measure the performance of different prioritization
strategies, APFD has been proposed to measure the weighted
average of the percentage of faults detected during the
execution of the test suite. Let T be a test suite which contains n
test cases, and let F be a set of m faults revealed by T. Let T′ be
the prioritized test sequence for T. Let TFi be the sequence

index of the first test case in T′ which reveals fault i. The APFD
for test suite T′ could be given by the following equation:

1 2
1

1
2

m
TF TF TF

APFD
nm n

+ + +
= − +

�

 (1)

Among all prioritization strategies, random sequence is the
most simple and basic strategy. It is simple in concept and is
easy to apply even when source code, specification or test
history is unavailable or incomplete. Therefore, random
sequence has been used as a benchmark for evaluating other
prioritization strategies.

B. Adaptive Random Sequence

Adaptive Random Sequence (ARS), originated from the
concept of Adaptive Random Testing (ART) [2], is basically a
random sequence embedding the notion of diversity. ARS has
been argued as a possible alternative to random sequence.

ART is aimed to improve the fault-detection effectiveness
of random testing through the concept of even spreading of test
cases in the input domain [2]. It is motivated by the empirical
observation that failure-causing inputs are frequently clustered
into contiguous failure regions. In other words, if a test case is
found to be non-failure-causing, it is very likely that its
neighbors will not reveal any failures. Thus, preference should
be given to select the input far away from the non-failure-
causing inputs as the next test case. ART can be implemented
using various notions of even spread, such as Fixed Size
Candidate Set ART(FSCS-ART) [2], restricted random testing
[3], ART by dynamic partitioning [4], lattice-based ART [5],
and so on. In order to reduce the generation overhead for these
algorithms, some general reduction techniques have been
developed, such as clustering [6], mirroring [7], and forgetting
[8]. Since its inception, ART has been applied into many
different types of programs [6, 9].

There is a close relationship between ARS and ART. In the
context of test case generation, ART is a test case generator to
select test cases from the pool of possible inputs. However, if
ART exhausts the whole pool of possible inputs, the generated
order can be treated as a prioritized order. It means that ART
can be used as a test suite “prioritizor” to deliver a prioritized
sequence. Technically speaking, the test sequence generated by
ART is an adaptive random sequence (ARS), which embeds
the concept of even spread across the input domain. Moreover,
ART is based on random testing with the objective of revealing
the failures as early as possible, which is consistent with the
objective of prioritization. As a consequence, ARS can be
applied in test case prioritization.

III. RALATED WORK

Test case prioritization schedules test cases with an
intention to achieve some performance goal. Various test case
prioritization techniques have been proposed using different
intuitions.

Among these techniques, Rothermel et al. [10] emphasized
using execution information acquired in previous test runs to
define test case priority and they defined various techniques.
Their techniques are shown to be effective at achieving higher
values for APFD. Furthermore, Li et al. [11] proposed several

non-greedy algorithms, including hill climbing algorithm and
genetic algorithm. Evidently, all of these prioritizations require
the test history information of the previous versions.

Similar to our investigation of test case prioritization by
ARS, Jiang et al. [12] and Zhou et al. [13] proposed the family
of adaptive random test case prioritization using code coverage.
They used Jaccard distance and Manhattan distance
respectively, to measure the difference of code coverage. The
empirical results showed that they are statistically superior to
the random sequence in detecting faults. Furthermore, Zhou et
al. [14] applied ART to prioritize test cases based on execution
frequency profiles using frequency Manhattan distance.
Recently, Fang et al. [15] proposed a similarity-based test case
prioritization technique based on farthest-first ordered sequence,
which is similar to adaptive random sequence. However, these
white-box methods assume the availability of certain coverage
information or execution frequency profiles.

Ledru’s prioritization technique used string distances to
measure the test case diversity, and hence solely depended on
the black-box information [1]. However, their algorithm
computes the distances for each pair of test cases to find the
first test case with the maximum distance, and then it
repeatedly chooses a test case which is most distant from the
set of already ordered test cases. Therefore, their prioritized test
sequence is deterministic but incurs expensive overhead.

IV. ARS-BASED TEST CASE PRIORITIZATION

In this section, we present our offline ARS-based test case
prioritization algorithm, denoted as ARS-all, and online ARS-
based test case prioritization algorithm, denoted as ARS-pass,
respectively.

Before presenting our prioritization algorithms, we first
give some definitions. Suppose T = {t1, t2,…, tn} is a regression
test suite with n test cases. A test sequence PT is an ordered list
of test cases. If t is a test case, and PT = <p1, p2,…, pk>, we

define PT
∧
t to be < p1, p2, …, pk, t>.

A. Offline Prioritization Algorithm: ARS-all

Majority of the existing test case prioritization techniques
are applied offline. That is, after the prioritization is completed,
the test case sequence is finalized, and then the regression
testing is conducted according to the prioritized test cases until
testing resources exhaust.

Our offline prioritization algorithm ARS-all can be done in
a batch-mode as other existing test case prioritization
techniques. During the prioritization, two sets of test cases are
maintained. One set is the already prioritized set P, the other

set is the not-yet-prioritized set NP. Obviously, T =NP ∪ P.

Our algorithm ARS-all aims at selecting a test case farthest
away from all already prioritized test cases, which is
summarized in Fig. 1: Initially, we randomly select a test case
from T. Then, we use FSCS-ART algorithm to decide the next
test case. The algorithm constructs the candidate set CS by
randomly select k test cases from NP, and then a candidate
from CS will be selected as the next test case if it has the
longest distance to its nearest neighbor in P. The process is
repeated until all the test cases are ordered in sequence. In this
paper, let k=10 according to the previous studies [2].

Figure 1. The prioritization algorithm: ARS-all

B. Online Prioritization Algorithm: ARS-pass

Different from most existing prioritization techniques that
are applied in a batch mode, ARS-pass requires online
feedback information. Technically speaking, the next
prioritized test case depends on the previous execution results
of the current version. Hence, the prioritization must be
conducted interleaving with program execution.

Suppose that previously prioritized and executed test cases
have not revealed any failures. The next prioritized test case
should be far away from them, aiming at revealing failures
more quickly. Thus, the prioritized test case sequence is
generated according to the results of executed test cases.

Our prioritization algorithm ARS-pass can be easily
implemented using the concept of forgetting, which is also
referred to as ART with selective memory [16]. The subset of
P will only memorize the non-failure-causing test cases using
the online feedback information of program execution. By
forgetting the failure-causing test cases and only focusing on
the passed test cases, ARS-pass not only reduces the distance
computation overhead, but also ensures that each new test case
is far away from all already executed but non-failure-causing
test cases. As a consequence, the probability of failure
detection will be increased.

Note that we have proposed ARS-all and ARS-pass to
reduce the prioritization overhead, and they can be applied in
different execution modes. Particularly, ARS-pass will further
reduce the computation overhead and improve the diversity of
test cases by using the online feedback execution information
of the program version under test.

V. EMPIRICAL STUDY

In this section, empirical evaluations of real-life program
are presented to assess the performance of our algorithms.

A. Peer Techniques for Comparison

Besides random sequence, we compare our prioritization
techniques with the technique proposed by Ledru et al. [1],
denoted as Ledru.

In this study, two classic distance metrics, namely
Manhattan and Hamming distances, are used to measure the
diversity of test cases. Given two test cases represented by
strings A and B, the Manhattan distance between them is

calculated as ∑ |�� − ��|
�
��	 , where αi and βi denote the ASCII

code for each character in A and B, respectively, and n is the
longer length of A and B. When A and B have different lengths,
the shorter one will be filled with NULL characters, whose
ASCII code value is 0. For example, given A = “ac” and B =
“abd”, the Manhattan distance between A and B is |97–97| +
|99–98| + |0–100| = 101. Manhattan distance was recommended
as the best choice for the Ledru prioritization technique [1].
Hamming distance is the simplest distance metric. Given two
test cases A and B, the Hamming distance between them is
calculated as the number of characters different in these strings.
When A and B have different lengths, the shorter string will be
completed by a list of NULL characters in order to have the
same length of the longer string. For the previous example A =
“ac” and B = “abd”, their Hamming distance is 2.

Combining different prioritization algorithms and distance
metrics, we have seven prioritization strategies as follows,
summarized in Table I.

B. Research Questions

We study the following research questions in the empirical
study.

RQ1: Do ARS-based techniques perform better than
prioritization using random sequence?

RQ2: Are ARS-based techniques more cost-effective than
Ledru technique?

C. Subject Program and Test Suites

TABLE I. PRIORITIZAION TECHNIQUES

Ref. Name Algorithm Distance

T1 Random Random --

T2 Ledru-M Ledru Manhattan

T3 Ledru-H Ledru Hamming

T4 ARS-all-M ARS-all Manhattan

T5 ARS-all-H ARS-all Hamming

T6 ARS-pass-M ARS-pass Manhattan

T7 ARS-pass-H ARS-pass Hamming

Algorithm: ARS-all

Inputs: T: {t1, t2, …,} is a set of test cases
k: the number of candidates

Output: PT: <p1, p2, …,> is a sequence of test cases

1. Initialize: PT ← φ, P ← φ, NP ← φ, CS ← φ

2. t ← a test case randomly selected from T

3. do

4. Initialize: CS ← φ

5. CS ← randomly select k test cases from NP

6. for each candidate test cases tj, where j=1,2,…,k

7. calculate its distance dj to its nearest neighbor in P

8. end for

9. find tb∈ CS such that ∀ j=1,2,…, k, db ≥ dj

10. t ← tb

11. PT ← PT ∧ t

12. P ← P ∪ {t}

13. NP ← T – P

14. while (NP ≠ φ)

15. return PT

Ref. Name Algorithm Distance

T1 Random Random --

T2 Ledru-M Ledru Manhattan

T3 Ledru-H Ledru Hamming

T4 ARS-all-M ARS-all Manhattan

T5 ARS-all-H ARS-all Hamming

T6 ARS-pass-M ARS-pass Manhattan

T7 ARS-pass-H ARS-pass Hamming

We use a GUI application Crossword Sage as subject
program. This subject program is free and open source in
SourceForge. It presents unambiguous graphical user interfaces
for testers to design the test cases. This application, written in
Java, was widely used in some other studies [17-19].

Furthermore, this subject program contains real-life faults and
exceptions.

Yang et al. [17] conducted an empirical study to compare
random testing and functional testing in GUI testing.
Thousands of random and functional test cases, in the form of
Java scripts, had been created for this GUI application. With
some necessary transformations, these existing test suites will
be used for our prioritization. The basic information of our
subject program and test suites is shown in Table II, and the
details can be found in [17].

D. Experiment Design

For each prioritization strategy, we prioritize the existing
two test suites, that is, Crossword Sage Random test suite and
Crossword Sage Functional test suite, denoted as CSR and
CSF, respectively. Thus, there are two sets of results for each
prioritization strategy. The results include the prioritized
sequence, the APFD value, the prioritization time cost, the
detected faults report and so on. Since some of the
prioritization strategies involve random selection, we repeat
each of the prioritization strategies 100 times to obtain the
averages.

TABLE II. INFORMATION OF SUBJECT PROGRAM AND TEST SUITES

Application Crossword Sage

Version 0.3.3

#Widgets 80

#Faults 14

#Test cases
RT 738

FT 1278

#Detected faults
RT 12

FT 14

 Note: RT refers to Random Testing;

FT refers to Functional Testing.

Figure 3. APFD values for test suite CSF

Figure 2. APFD values for test suite CSR

E. Analysis of the Results

In this section, we analyze the experiment results to answer
the research questions. As shown in Fig. 2 and Fig. 3, we
calculate the APFD values for each strategy and draw box-and-
whisker plots for the two test suites, respectively. For each box-
and-whisker plot, the x-axis represents prioritization strategies
and the y-axis represents their APFD values. The horizontal
lines in the boxes indicate the lower quartile, median and upper
quartile values. Furthermore, we present the average
prioritization time cost (in milliseconds) of 100 trials for each
strategy, summarized in Table III.

To address RQ1, we compare the APFD values between
our ARS-based strategies and random sequence.

From Fig. 2 and Fig. 3, we observe that, for test suites CSR
and CSF, all of our ARS-based strategies outperform the
random sequence. We further conduct binomial t-tests for the
APFD values for our ARS-based strategies and random
sequence respectively. As shown in Table IV, all p-values are
smaller than the significant level of 0.05. It means that all the
null hypotheses (H0: ARS-all-M/ ARS-all-H/ ARS-pass-M/
ARS-pass-H does not outperform Random) are rejected.

As a result, it is statistically significant that all of our ARS-
based techniques perform better than random prioritization
with respect to the APFD values.

To address RQ2, we compare the APFD values and
prioritization time cost between ARS-based strategies and
Ledru technique using these two test suites.

From Fig. 2, for test suite CSR, we observe that, with
Manhattan distance, both ARS-all and ARS-pass significantly
outperform Ledru. Whereas, for Hamming distance, Ledru-H
has the best APFD value. Similar results also exist for CSF, as
shown in Fig. 3. However, the differences between their APFD
values are less than 5%. In other words, the performance of
ARS-all, ARS-pass, and Ledru technique can be said to be
comparable with respect to the APFD values.

For prioritization time cost (refer to Table III), it is obvious
that all of ARS-based strategies use much less time than Ledru
technique. In the best case, the computation time for ARS-
based technique is about 1.23% of that for Ledru's technique
(ARS-pass-M: 122.88 vs. Ledru-M: 10014.33 in CSF), while in

the worst case the computation time for ARS-based technique
is about 3.72% of that for Ledru's technique (ARS-pass-H:
58.76 vs. Ledru-H: 1581.33 in CSR). The reason for the
dramatic cost reduction by our prioritization is that Ledru
technique has to calculate all the distances of each pair of test
cases before selecting next test case but not our ARS-based
strategies.

Briefly speaking, given that our ARS-based techniques and
Ledru technique have comparable APFD values, the former’s
lower overhead suggests that our ARS-based techniques are
more cost-effective than Ledru technique.

We further compare the APFD values and prioritization
time cost between ARS-all and ARS-pass. As shown in Fig. 2
and Fig. 3, ARS-all-M/H and ARS-pass-M/H have the similar
APFD values. We conduct binomial t-tests of the APFD values
for ARS-all and ARS-pass respectively, as shown in Table V.
The online ARS-based algorithm, namely, ARS-pass, has
comparable performance to the offline ARS-based algorithm,
namely, ARS-all, in terms of the APFD values.

Next, we discuss their prioritization time cost. From Table
III, we observe that, by making use of online feedback
information of execution results and only focusing on the
passed test cases, ARS-pass uses much less computation time.
The computation time for ARS-pass is about 48% and 60% of
that for ARS-all in CSR and CSF, respectively. Please note that,
there are 302 passed test cases and 436 failed test cases in CSR
while 749 passed test cases versus 529 failed test cases in CSF.
In fact, the ratios of the time cost are consistent with the ratios
of passed test cases in these two test suites.

In conclusion, ARS-pass has the comparable APFD values
with ARS-all while using less computation time.

As explained in the above discussions, our adaptive random
sequence outperforms random sequence and furthermore is
cost-effective to apply in practice.

TABLE IV. APFD COMPARISONS BETWEEN RANDOM SEQUENCE AND FOUR
ARS-BASED TECHNIQUES

Algorithm(x) Algorithm(y)

CSR CSF

Mean

Diff.(x-y)
Sig.

Mean

Diff.(x-y)
Sig.

Random ARS-all-M -0.0611 0.0000 -0.0298 0.0000

Random ARS-all-H -0.0676 0.0000 -0.0367 0.0000

Random ARS-pass-M -0.0588 0.0000 -0.0285 0.0000

Random ARS-pass-H -0.0668 0.0000 -0.0356 0.0000

TABLE V. APFD COMPARISONS BETWEEN ARS-ALL AND ARS-PASS

Algorithm(x) Algorithm(y)

CSR CSF

Mean

Diff.(x-y)
Sig.

Mean

Diff.(x-y)
Sig.

ARS-all-M ARS-pass-M 0.0016 0.2090 0.0013 0.3805

ARS-all-H ARS-pass-H 0.0008 0.5531 0.0011 0.4136

TABLE III. INFORMATION OF PRIORITIZATION TIME

 (IN MILLISECONDS)

Technique CSR CSF

Random 0.20 0.34

Ledru-M 1632.67 10014.33

Ledru-H 1581.33 9480.00

ARS-all-M 56.90 194.51

ARS-all-H 58.76 194.67

ARS-pass-M 26.97 122.88

ARS-pass-H 29.08 120.14

F. Threats to Validity

The major threat to internal validity is the potential faults in
our tools. We use Java to implement the tools for GUI test case
transformation, distance calculation, prioritization algorithm,
and results calculation. Actually, we have carefully tested our
tools on small examples to assure correctness.

Threats to external validity correspond to the subject
programs and test suites. For the space limit, although we have
carried out some other case studies, we just present the
empirical study results of one GUI application, which is open
source and widely used in several research works. Moreover,
the used two test suites cannot sufficiently represent the real-
life situations. Further experiments on other subject programs
and test suites in different types and languages may help
generalize our findings.

The threat to construct validity involves the measurement.
In this paper, we just use the most commonly adopted
effectiveness metric in prioritization, namely, APFD to
measure the effectiveness of a prioritized test suite. Other
measures should probably be considered in further work.

There is little threat to conclusion validity. A large number
of experimental runs have been executed to get reliable average
APFD values for the prioritization strategies involving
(adaptive) random sequences. Statistical tests were conducted
to validate the statistical significance of our experimental
results.

VI. CONCLUSION AND FUTURE WORK

This paper reported the first attempt to use adaptive random
sequence and black-box information in test case prioritization.
It is easy to implement, and it just requires the information
about inputs. We carried out the experiments on an open source
GUI application. The results of experiments and statistical
analyses provided clear evidence that our ARS-based
techniques are cost-effective in prioritizing test suites. Their
performances of APFD are better than that of the random
sequence, which was used as a baseline. Moreover, our
techniques are much more cost-effective than Ledru technique.
The ARS-pass algorithm achieves a good balance between
APFD effectiveness and efficiency by using the online
feedback information.

In future, we will conduct more experiments on various
subject programs and test suites with different types, sizes,
languages and other attributes. Furthermore, other efficiency
improvement techniques for ART and other types of distance
calculation will be considered. Finally, adaptive random
sequence with different objectives to conduct prioritization is a
promising research topic.

ACKNOWLEDGMENT

This work is partially supported by the National Natural
Science Foundation of China (61103045), China Scholarship
Council and Australian Research Council (DP 120104773). We
would like to thank the authors of reference [17] to provide the
test suites for our experiments.

REFERENCES

[1] Y. Ledru, A. Petrenko, S. Boroday and N. Mandran. “Prioritizing test
cases with string distances,” Automated Software Engineering, 19(1):
65-95, 2012.

[2] T. Y. Chen, F.-C. Kuo, R. Merkel, and T. H. Tse. “Adaptive random
testing: The ART of test case diversity,” Journal of Systems and
Software, 83(1): 60-66, 2010.

[3] K. Chan, T. Y. Chen, and D. Towey. “Restricted random testing:
Adaptive random testing by exclusion,” International Journal of
Software Engineering and Knowledge Engineering, 16(4):553–584,
2006.

[4] T. Y. Chen, G. Eddy, R. Merkel, and P. Wong. “Adaptive random
testing through dynamic partitioning,” In Proceedings of the 4th
International Conference on Quality Software, pp. 79–86, 2004.

[5] J. Mayer. “Lattice-based adaptive random testing,” In Proceedings of the
20th International Conference on Automated Software Engineering, pp.
333–336, 2005.

[6] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. “ARTOO: Adaptive
random testing for object-oriented software,” In Proceedings of the 30th
International Conference on Software Engineering, pp. 71–80, 2008.

[7] T. Y. Chen, F. Kuo, R. Merkel, and S. Ng. “Mirror adaptive random
testing,” Information and Software Technology, 46(15): 1001–1010,
2004.

[8] K. Chan, T. Y. Chen, and D. Towey. “Forgetting test cases,” In
Proceedings of the 30th Annual International Computer Software and
Applications Conference, pp. 485–492, 2006

[9] Y. Lin, X. Tang, Y. Chen, and J. Zhao. “A divergence-oriented approach
to adaptive random testing of Java programs,” In Proceedings of the
24th International Conference on Automated Software Engineering, pp.
221–232, 2009.

[10] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. “Prioritizing Test
Cases for Regression Testing,” IEEE Transactions on Software
Engineering, 27(10): 929-948, 2001.

[11] Z. Li, M. Harman, and R. Hierons, “Search Algorithms for Regression
Test Case Prioritization,” IEEE Transactions on Software Engineering,
33(4): 225-237, 2007.

[12] B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse. “Adaptive random test
case prioritization,” In Proceedings of the 24th IEEE/ACM International
Conference on Automated Software Engineering, pp. 233–244, 2009.

[13] Z. Zhou. “Using coverage information to guide test case selection in
adaptive random testing,” In Proceedings of the 34th Annual
International Computer Software and Applications Conference, 7th
International Workshop on Software Cybernetics, pp. 208–213, 2010.

[14] Z. Zhou, A. Sinaga, and W. Susilo. “On the Fault-Detection Capabilities
of Adaptive Random Test Case Prioritization Case Studies with Large
Test Suites,” In Proceedings of the 45th Hawaii International
Conference on System Sciences, pp. 5584-5593, 2012.

[15] C. Fang, Z. Chen, K. Wu, and Z. Zhao. “Similarity-based test case
prioritization using ordered sequences of program entities,” accepted by
Software Quality Journal, published online Nov. 2013. DOI:
10.1007/s11219-013-9224-0.

[16] H. Liu, F. Kuo, and T. Y. Chen. “Comparison of adaptive random testing
and random testing under various testing and debugging scenarios,”
Software: Practice and Experience, 42(8):1055–1074, 2012.

[17] W. Yang, Z. Chen, Z. Gao, Y. Zou, and X. Xu. “GUI testing assisted by
human knowledge: Random vs. functional,” Journal of Systems and
Software, 89(3):76-86, 2014.

[18] A. Memon, M. Pollack, and M. Soffa. “Hierarchical GUI test case
generation using automated planning,” IEEE Transactions on Software
Engineering, 27 (2):144–155, 2001.

[19] A. Memon. “Automatically repairing event sequence-based GUI test
suites for regression testing,” ACM Transactions on Software
Engineering and Methodology, 18 (2), 4:1–4:36, 2008.

	sent 20161005 n2006048078 Liu, Huai- An Application.pdf
	Due Diligence Record LogKeely.pdf
	Iyer-Raniga, Usha- n2006046404- A greenhouse gas.pdf
	Abstract
	Introduction
	Method
	Unit of assessment and system boundary
	Inventory
	Impact assessment

	Results
	Discussion
	Limitations
	Exclusion of travel
	Partition methodology
	Stadium life time and attendance
	Exclusion of upstream construction processes

	Conclusion
	Acknowledgement
	Funding
	References

