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Abstract—Test case prioritization aims to schedule test cases in a 

certain order such that the effectiveness of regression testing can 

be improved. Prioritization using random sequence is a basic and 

simple technique, and normally acts as a benchmark to evaluate 

other prioritization techniques. Adaptive Random Sequence 

(ARS) makes use of extra information to improve the diversity of 

random sequence. Some researchers have proposed prioritization 

techniques using ARS with white-box code coverage information 

that is normally related to the test execution history of previous 

versions. In this paper, we propose several ARS-based 

prioritization techniques using black-box information. The 

proposed techniques schedule test cases based on the string 

distances of the input data, without referring to the execution 

history. Our experimental studies show that these new techniques 

deliver higher fault-detection effectiveness than random 

prioritization. In addition, as compared with an existing black-

box prioritization technique, the new techniques have similar 

fault-detection effectiveness but much lower computation 

overhead, and thus are more cost-effective. 

Keywords – test case prioritization; adaptive random sequence; 

random sequence; random testing; adaptive random testing  

I.  INTRODUCTION  

Regression testing is used to ensure that changes to the 
program do not negatively impact its correctness. A main task 
in regression testing is the prioritization of test cases, which 
reorders the existing test cases to meet some performance goal, 
such as detecting the faults as early as possible. Previous 
studies on test case prioritization aim at providing earlier 
feedback to testers, and allow them to begin debugging earlier.  

Various test case prioritization techniques have been 
developed, which are designed to achieve different objectives. 
Most of the test case prioritization techniques require white-
box information or test history to facilitate their prioritization 
operations. Essentially, they use the information derived from 
the previous versions, such as program source code coverage or 
fault detection history. However, the white-box information 
and test history are not always available, and sometimes such a 
kind of information is incomplete or inaccurate, or even costly 
or difficult to obtain. 

To address this problem, Ledru et al. [1] propose a 
prioritization technique based on string distances between test 
cases, which does not depend on the availability of white-box 

information or test history. Their technique is based on the 
concept of test case diversity in terms of four classic string 
distance metrics. However, their prioritization technique needs 
to calculate the distances for each pair of test cases in the given 
test suite. As a consequence, the computation overhead is 
considerably expensive.  

Our study aims to reduce the high computation overhead 
while preserving the test case diversity in the prioritized 
sequence. We investigate a more cost-effective test case 
prioritization methodology using the black-box information of 
the program under test. Our prioritization techniques make use 
of the concept of adaptive random sequence to achieve 
diversity of test cases through the notion of evenly spreading 
across the input domain.  

The rest of the paper is organized as follows. Section II 
introduces the background information of test case 
prioritization and adaptive random sequence. The previous 
work related to our study is discussed in Section III. Section IV 
gives the details of our new prioritization techniques. Section V 
reports our empirical study for evaluating the new techniques. 
The paper is finally summarized in Section VI. 

II. BACKGROUND 

A. Test Case Prioritization Strategies 

Test case prioritization schedules test cases so that those 
with the higher priority, according to some criterion, are 
executed earlier in the regression testing process. Given a test 
suite, test case prioritization will find a permutation of the 
original test suite, aiming to maximize the objective function. 
There are various strategies based on different intuitions. For 
example, history-based prioritization techniques use 
information from previous executions to determine test 
priorities; knowledge-based techniques use human knowledge 
to determine test priorities and model-based techniques use a 
model of the system to determine test priorities.  

To measure the performance of different prioritization 
strategies, APFD has been proposed to measure the weighted 
average of the percentage of faults detected during the 
execution of the test suite. Let T be a test suite which contains n 
test cases, and let F be a set of m faults revealed by T. Let T′ be 
the prioritized test sequence for T. Let TFi be the sequence 



index of the first test case in T′ which reveals fault i. The APFD 
for test suite T′ could be given by the following equation: 
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Among all prioritization strategies, random sequence is the 
most simple and basic strategy. It is simple in concept and is 
easy to apply even when source code, specification or test 
history is unavailable or incomplete. Therefore, random 
sequence has been used as a benchmark for evaluating other 
prioritization strategies. 

B. Adaptive Random Sequence 

Adaptive Random Sequence (ARS), originated from the 
concept of Adaptive Random Testing (ART) [2], is basically a 
random sequence embedding the notion of diversity. ARS has 
been argued as a possible alternative to random sequence.  

ART is aimed to improve the fault-detection effectiveness 
of random testing through the concept of even spreading of test 
cases in the input domain [2]. It is motivated by the empirical 
observation that failure-causing inputs are frequently clustered 
into contiguous failure regions. In other words, if a test case is 
found to be non-failure-causing, it is very likely that its 
neighbors will not reveal any failures. Thus, preference should 
be given to select the input far away from the non-failure-
causing inputs as the next test case. ART can be implemented 
using various notions of even spread, such as Fixed Size 
Candidate Set ART(FSCS-ART) [2], restricted random testing 
[3], ART by dynamic partitioning [4], lattice-based ART [5], 
and so on. In order to reduce the generation overhead for these 
algorithms, some general reduction techniques have been 
developed, such as clustering [6], mirroring [7], and forgetting 
[8]. Since its inception, ART has been applied into many 
different types of programs [6, 9]. 

There is a close relationship between ARS and ART. In the 
context of test case generation, ART is a test case generator to 
select test cases from the pool of possible inputs. However, if 
ART exhausts the whole pool of possible inputs, the generated 
order can be treated as a prioritized order. It means that ART 
can be used as a test suite “prioritizor” to deliver a prioritized 
sequence. Technically speaking, the test sequence generated by 
ART is an adaptive random sequence (ARS), which embeds 
the concept of even spread across the input domain. Moreover, 
ART is based on random testing with the objective of revealing 
the failures as early as possible, which is consistent with the 
objective of prioritization. As a consequence, ARS can be 
applied in test case prioritization. 

III. RALATED WORK 

Test case prioritization schedules test cases with an 
intention to achieve some performance goal. Various test case 
prioritization techniques have been proposed using different 
intuitions. 

Among these techniques, Rothermel et al. [10] emphasized 
using execution information acquired in previous test runs to 
define test case priority and they defined various techniques. 
Their techniques are shown to be effective at achieving higher 
values for APFD. Furthermore, Li et al. [11] proposed several 

non-greedy algorithms, including hill climbing algorithm and 
genetic algorithm. Evidently, all of these prioritizations require 
the test history information of the previous versions. 

Similar to our investigation of test case prioritization by 
ARS, Jiang et al. [12] and Zhou et al. [13] proposed the family 
of adaptive random test case prioritization using code coverage. 
They used Jaccard distance and Manhattan distance 
respectively, to measure the difference of code coverage. The 
empirical results showed that they are statistically superior to 
the random sequence in detecting faults. Furthermore, Zhou et 
al. [14] applied ART to prioritize test cases based on execution 
frequency profiles using frequency Manhattan distance. 
Recently, Fang et al. [15] proposed a similarity-based test case 
prioritization technique based on farthest-first ordered sequence, 
which is similar to adaptive random sequence. However, these 
white-box methods assume the availability of certain coverage 
information or execution frequency profiles. 

Ledru’s prioritization technique used string distances to 
measure the test case diversity, and hence solely depended on 
the black-box information [1]. However, their algorithm 
computes the distances for each pair of test cases to find the 
first test case with the maximum distance, and then it 
repeatedly chooses a test case which is most distant from the 
set of already ordered test cases. Therefore, their prioritized test 
sequence is deterministic but incurs expensive overhead.  

IV. ARS-BASED TEST CASE PRIORITIZATION 

In this section, we present our offline ARS-based test case 
prioritization algorithm, denoted as ARS-all, and online ARS-
based test case prioritization algorithm, denoted as ARS-pass, 
respectively.  

Before presenting our prioritization algorithms, we first 
give some definitions. Suppose T = {t1, t2,…, tn} is a regression 
test suite with n test cases. A test sequence PT is an ordered list 
of test cases. If t is a test case, and PT = <p1, p2,…, pk>, we 

define PT
∧
t to be < p1, p2, …, pk, t>. 

A. Offline Prioritization Algorithm: ARS-all 

Majority of the existing test case prioritization techniques 
are applied offline. That is, after the prioritization is completed, 
the test case sequence is finalized, and then the regression 
testing is conducted according to the prioritized test cases until 
testing resources exhaust.  

Our offline prioritization algorithm ARS-all can be done in 
a batch-mode as other existing test case prioritization 
techniques. During the prioritization, two sets of test cases are 
maintained. One set is the already prioritized set P, the other 

set is the not-yet-prioritized set NP. Obviously, T =NP ∪ P. 

Our algorithm ARS-all aims at selecting a test case farthest 
away from all already prioritized test cases, which is 
summarized in Fig. 1: Initially, we randomly select a test case 
from T. Then, we use FSCS-ART algorithm to decide the next 
test case. The algorithm constructs the candidate set CS by 
randomly select k test cases from NP, and then a candidate 
from CS will be selected as the next test case if it has the 
longest distance to its nearest neighbor in P. The process is 
repeated until all the test cases are ordered in sequence. In this 
paper, let k=10 according to the previous studies [2]. 



 

 

Figure 1.  The prioritization algorithm: ARS-all 

 

B. Online Prioritization Algorithm: ARS-pass 

Different from most existing prioritization techniques that 
are applied in a batch mode, ARS-pass requires online 
feedback information. Technically speaking, the next 
prioritized test case depends on the previous execution results 
of the current version. Hence, the prioritization must be 
conducted interleaving with program execution.  

Suppose that previously prioritized and executed test cases 
have not revealed any failures. The next prioritized test case 
should be far away from them, aiming at revealing failures 
more quickly. Thus, the prioritized test case sequence is 
generated according to the results of executed test cases. 

Our prioritization algorithm ARS-pass can be easily 
implemented using the concept of forgetting, which is also 
referred to as ART with selective memory [16]. The subset of 
P will only memorize the non-failure-causing test cases using 
the online feedback information of program execution. By 
forgetting the failure-causing test cases and only focusing on 
the passed test cases, ARS-pass not only reduces the distance 
computation overhead, but also ensures that each new test case 
is far away from all already executed but non-failure-causing 
test cases. As a consequence, the probability of failure 
detection will be increased.  

Note that we have proposed ARS-all and ARS-pass to 
reduce the prioritization overhead, and they can be applied in 
different execution modes. Particularly, ARS-pass will further 
reduce the computation overhead and improve the diversity of 
test cases by using the online feedback execution information 
of the program version under test. 

V. EMPIRICAL STUDY 

In this section, empirical evaluations of real-life program 
are presented to assess the performance of our algorithms. 

A. Peer Techniques for Comparison 

Besides random sequence, we compare our prioritization 
techniques with the technique proposed by Ledru et al. [1], 
denoted as Ledru.  

In this study, two classic distance metrics, namely 
Manhattan and Hamming distances, are used to measure the 
diversity of test cases. Given two test cases represented by 
strings A and B, the Manhattan distance between them is 

calculated as ∑ |�� − ��|
�
��	 , where αi and βi denote the ASCII 

code for each character in A and B, respectively, and n is the 
longer length of A and B. When A and B have different lengths, 
the shorter one will be filled with NULL characters, whose 
ASCII code value is 0. For example, given A = “ac” and B = 
“abd”, the Manhattan distance between A and B is |97–97| + 
|99–98| + |0–100| = 101. Manhattan distance was recommended 
as the best choice for the Ledru prioritization technique [1]. 
Hamming distance is the simplest distance metric. Given two 
test cases A and B, the Hamming distance between them is 
calculated as the number of characters different in these strings. 
When A and B have different lengths, the shorter string will be 
completed by a list of NULL characters in order to have the 
same length of the longer string. For the previous example A = 
“ac” and B = “abd”, their Hamming distance is 2. 

Combining different prioritization algorithms and distance 
metrics, we have seven prioritization strategies as follows, 
summarized in Table I. 

 
 

 

B. Research Questions 

We study the following research questions in the empirical 
study. 

RQ1: Do ARS-based techniques perform better than 
prioritization using random sequence? 

RQ2: Are ARS-based techniques more cost-effective than 
Ledru technique?  

C. Subject Program and Test Suites 

 

TABLE I.        PRIORITIZAION TECHNIQUES 

Ref. Name Algorithm Distance 

T1 Random Random -- 

T2 Ledru-M Ledru Manhattan 

T3 Ledru-H Ledru Hamming 

T4 ARS-all-M ARS-all Manhattan 

T5 ARS-all-H ARS-all Hamming 

T6 ARS-pass-M ARS-pass Manhattan 

T7 ARS-pass-H ARS-pass Hamming 

 

Algorithm: ARS-all 

Inputs: T: {t1, t2, …,} is a set of test cases 
k: the number of candidates 

Output: PT: <p1, p2, …,> is a sequence of test cases 

1.  Initialize: PT ← φ, P ← φ, NP ← φ, CS ← φ  

2.  t ← a test case randomly selected from T 

3.  do 

4. Initialize: CS ← φ 

5.    CS ← randomly select k test cases from NP 

6.    for each candidate test cases tj, where j=1,2,…,k 

7.       calculate its distance dj to its nearest neighbor in P 

8.    end for 

9.    find tb∈ CS such that ∀ j=1,2,…, k, db ≥ dj 

10.    t ← tb 

11.    PT ← PT ∧ t 

12.  P ← P ∪ {t}     

13. NP ← T – P    

14.    while ( NP ≠ φ ) 

15.    return PT 

Ref. Name Algorithm Distance 

T1 Random Random -- 

T2 Ledru-M Ledru Manhattan 

T3 Ledru-H Ledru Hamming 

T4 ARS-all-M ARS-all Manhattan 

T5 ARS-all-H ARS-all Hamming 

T6 ARS-pass-M ARS-pass Manhattan 

T7 ARS-pass-H ARS-pass Hamming 

 



 

 

 

We use a GUI application Crossword Sage as subject 
program. This subject program is free and open source in 
SourceForge. It presents unambiguous graphical user interfaces 
for testers to design the test cases. This application, written in 
Java, was widely used in some other studies [17-19]. 

Furthermore, this subject program contains real-life faults and 
exceptions.  

Yang et al. [17] conducted an empirical study to compare 
random testing and functional testing in GUI testing. 
Thousands of random and functional test cases, in the form of 
Java scripts, had been created for this GUI application. With 
some necessary transformations, these existing test suites will 
be used for our prioritization. The basic information of our 
subject program and test suites is shown in Table II, and the 
details can be found in [17]. 

D. Experiment Design 

For each prioritization strategy, we prioritize the existing 
two test suites, that is, Crossword Sage Random test suite and 
Crossword Sage Functional test suite, denoted as CSR and 
CSF, respectively. Thus, there are two sets of results for each 
prioritization strategy. The results include the prioritized 
sequence, the APFD value, the prioritization time cost, the 
detected faults report and so on. Since some of the 
prioritization strategies involve random selection, we repeat 
each of the prioritization strategies 100 times to obtain the 
averages. 

TABLE II.        INFORMATION OF SUBJECT PROGRAM AND TEST SUITES 

Application Crossword Sage 

Version 0.3.3 

#Widgets 80 

#Faults 14 

#Test cases 
RT 738 

FT 1278 

#Detected faults 
RT 12 

FT 14 

 

    Note:  RT refers to Random Testing; 

FT refers to Functional Testing. 

 

Figure 3.   APFD values for test suite CSF 

 

Figure 2.   APFD values for test suite CSR 



E. Analysis of the Results 

In this section, we analyze the experiment results to answer 
the research questions. As shown in Fig. 2 and Fig. 3, we 
calculate the APFD values for each strategy and draw box-and-
whisker plots for the two test suites, respectively. For each box-
and-whisker plot, the x-axis represents prioritization strategies 
and the y-axis represents their APFD values. The horizontal 
lines in the boxes indicate the lower quartile, median and upper 
quartile values. Furthermore, we present the average 
prioritization time cost (in milliseconds) of 100 trials for each 
strategy, summarized in Table III. 

To address RQ1, we compare the APFD values between 
our ARS-based strategies and random sequence. 

From Fig. 2 and Fig. 3, we observe that, for test suites CSR 
and CSF, all of our ARS-based strategies outperform the 
random sequence. We further conduct binomial t-tests for the 
APFD values for our ARS-based strategies and random 
sequence respectively. As shown in Table IV, all p-values are 
smaller than the significant level of 0.05. It means that all the 
null hypotheses (H0: ARS-all-M/ ARS-all-H/ ARS-pass-M/ 
ARS-pass-H does not outperform Random) are rejected.  

As a result, it is statistically significant that all of our ARS-
based techniques perform better than random prioritization 
with respect to the APFD values. 

 

 

To address RQ2, we compare the APFD values and 
prioritization time cost between ARS-based strategies and 
Ledru technique using these two test suites. 

From Fig. 2, for test suite CSR, we observe that, with 
Manhattan distance, both ARS-all and ARS-pass significantly 
outperform Ledru. Whereas, for Hamming distance, Ledru-H 
has the best APFD value. Similar results also exist for CSF, as 
shown in Fig. 3. However, the differences between their APFD 
values are less than 5%. In other words, the performance of 
ARS-all, ARS-pass, and Ledru technique can be said to be 
comparable with respect to the APFD values. 

For prioritization time cost (refer to Table III), it is obvious 
that all of ARS-based strategies use much less time than Ledru 
technique. In the best case, the computation time for ARS-
based technique is about 1.23% of that for Ledru's technique 
(ARS-pass-M: 122.88 vs. Ledru-M: 10014.33 in CSF), while in 

the worst case the computation time for ARS-based technique 
is about 3.72% of that for Ledru's technique (ARS-pass-H: 
58.76 vs. Ledru-H: 1581.33 in CSR). The reason for the 
dramatic cost reduction by our prioritization is that Ledru 
technique has to calculate all the distances of each pair of test 
cases before selecting next test case but not our ARS-based 
strategies. 

Briefly speaking, given that our ARS-based techniques and 
Ledru technique have comparable APFD values, the former’s 
lower overhead suggests that our ARS-based techniques are 
more cost-effective than Ledru technique.  

 

We further compare the APFD values and prioritization 
time cost between ARS-all and ARS-pass. As shown in Fig. 2 
and Fig. 3, ARS-all-M/H and ARS-pass-M/H have the similar 
APFD values. We conduct binomial t-tests of the APFD values 
for ARS-all and ARS-pass respectively, as shown in Table V. 
The online ARS-based algorithm, namely, ARS-pass, has 
comparable performance to the offline ARS-based algorithm, 
namely, ARS-all, in terms of the APFD values.  

Next, we discuss their prioritization time cost. From Table 
III, we observe that, by making use of online feedback 
information of execution results and only focusing on the 
passed test cases, ARS-pass uses much less computation time. 
The computation time for ARS-pass is about 48% and 60% of 
that for ARS-all in CSR and CSF, respectively. Please note that, 
there are 302 passed test cases and 436 failed test cases in CSR 
while 749 passed test cases versus 529 failed test cases in CSF. 
In fact, the ratios of the time cost are consistent with the ratios 
of passed test cases in these two test suites.  

In conclusion, ARS-pass has the comparable APFD values 
with ARS-all while using less computation time.  

As explained in the above discussions, our adaptive random 
sequence outperforms random sequence and furthermore is 
cost-effective to apply in practice. 

TABLE IV.    APFD COMPARISONS BETWEEN RANDOM SEQUENCE AND FOUR 
ARS-BASED TECHNIQUES 

Algorithm(x) Algorithm(y) 

CSR CSF 

Mean 

Diff.(x-y) 
Sig. 

Mean 

Diff.(x-y) 
Sig. 

Random ARS-all-M -0.0611 0.0000 -0.0298 0.0000 

Random ARS-all-H -0.0676 0.0000 -0.0367 0.0000 

Random ARS-pass-M -0.0588 0.0000 -0.0285 0.0000 

Random ARS-pass-H -0.0668 0.0000 -0.0356 0.0000 

 

TABLE V.     APFD COMPARISONS BETWEEN ARS-ALL AND ARS-PASS 

Algorithm(x) Algorithm(y) 

CSR CSF 

Mean 

Diff.(x-y) 
Sig. 

Mean 

Diff.(x-y) 
Sig. 

ARS-all-M ARS-pass-M 0.0016 0.2090 0.0013 0.3805 

ARS-all-H ARS-pass-H 0.0008 0.5531 0.0011 0.4136 

 

TABLE III.    INFORMATION OF PRIORITIZATION TIME 

 (IN MILLISECONDS) 

Technique CSR CSF 

Random 0.20 0.34 

Ledru-M 1632.67 10014.33 

Ledru-H 1581.33 9480.00 

ARS-all-M 56.90 194.51 

ARS-all-H 58.76 194.67 

ARS-pass-M 26.97 122.88 

ARS-pass-H 29.08 120.14 

 



F. Threats to Validity 

The major threat to internal validity is the potential faults in 
our tools. We use Java to implement the tools for GUI test case 
transformation, distance calculation, prioritization algorithm, 
and results calculation. Actually, we have carefully tested our 
tools on small examples to assure correctness. 

Threats to external validity correspond to the subject 
programs and test suites. For the space limit, although we have 
carried out some other case studies, we just present the 
empirical study results of one GUI application, which is open 
source and widely used in several research works. Moreover, 
the used two test suites cannot sufficiently represent the real-
life situations. Further experiments on other subject programs 
and test suites in different types and languages may help 
generalize our findings. 

The threat to construct validity involves the measurement. 
In this paper, we just use the most commonly adopted 
effectiveness metric in prioritization, namely, APFD to 
measure the effectiveness of a prioritized test suite. Other 
measures should probably be considered in further work.  

There is little threat to conclusion validity. A large number 
of experimental runs have been executed to get reliable average 
APFD values for the prioritization strategies involving 
(adaptive) random sequences. Statistical tests were conducted 
to validate the statistical significance of our experimental 
results. 

VI. CONCLUSION AND FUTURE WORK 

This paper reported the first attempt to use adaptive random 
sequence and black-box information in test case prioritization. 
It is easy to implement, and it just requires the information 
about inputs. We carried out the experiments on an open source 
GUI application. The results of experiments and statistical 
analyses provided clear evidence that our ARS-based 
techniques are cost-effective in prioritizing test suites. Their 
performances of APFD are better than that of the random 
sequence, which was used as a baseline. Moreover, our 
techniques are much more cost-effective than Ledru technique. 
The ARS-pass algorithm achieves a good balance between 
APFD effectiveness and efficiency by using the online 
feedback information. 

In future, we will conduct more experiments on various 
subject programs and test suites with different types, sizes, 
languages and other attributes. Furthermore, other efficiency 
improvement techniques for ART and other types of distance 
calculation will be considered. Finally, adaptive random 
sequence with different objectives to conduct prioritization is a 
promising research topic. 

ACKNOWLEDGMENT  

This work is partially supported by the National Natural 
Science Foundation of China (61103045), China Scholarship 
Council and Australian Research Council (DP 120104773). We 
would like to thank the authors of reference [17] to provide the 
test suites for our experiments. 

REFERENCES 

[1] Y. Ledru, A. Petrenko, S. Boroday and N. Mandran. “Prioritizing test 
cases with string distances,” Automated Software Engineering, 19(1): 
65-95, 2012. 

[2] T. Y. Chen, F.-C. Kuo, R. Merkel, and T. H. Tse. “Adaptive random 
testing: The ART of test case diversity,” Journal of Systems and 
Software, 83(1): 60-66, 2010. 

[3] K. Chan, T. Y. Chen, and D. Towey. “Restricted random testing: 
Adaptive random testing by exclusion,” International Journal of 
Software Engineering and Knowledge Engineering, 16(4):553–584, 
2006. 

[4] T. Y. Chen, G. Eddy, R. Merkel, and P. Wong. “Adaptive random 
testing through dynamic partitioning,” In Proceedings of the 4th 
International Conference on Quality Software, pp. 79–86, 2004. 

[5] J. Mayer. “Lattice-based adaptive random testing,” In Proceedings of the 
20th International Conference on Automated Software Engineering, pp. 
333–336, 2005. 

[6] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. “ARTOO: Adaptive 
random testing for object-oriented software,” In Proceedings of the 30th 
International Conference on Software Engineering, pp. 71–80, 2008. 

[7] T. Y. Chen, F. Kuo, R. Merkel, and S. Ng. “Mirror adaptive random 
testing,” Information and Software Technology, 46(15): 1001–1010, 
2004. 

[8] K. Chan, T. Y. Chen, and D. Towey. “Forgetting test cases,” In 
Proceedings of the 30th Annual International Computer Software and 
Applications Conference, pp. 485–492, 2006 

[9] Y. Lin, X. Tang, Y. Chen, and J. Zhao. “A divergence-oriented approach 
to adaptive random testing of Java programs,” In Proceedings of the 
24th International Conference on Automated Software Engineering, pp. 
221–232, 2009. 

[10] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. “Prioritizing Test 
Cases for Regression Testing,” IEEE Transactions on Software 
Engineering, 27(10): 929-948, 2001.  

[11] Z. Li, M. Harman, and R. Hierons, “Search Algorithms for Regression 
Test Case Prioritization,” IEEE Transactions on Software Engineering, 
33(4): 225-237, 2007. 

[12] B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse. “Adaptive random test 
case prioritization,” In Proceedings of the 24th IEEE/ACM International 
Conference on Automated Software Engineering, pp. 233–244, 2009. 

[13] Z. Zhou. “Using coverage information to guide test case selection in 
adaptive random testing,” In Proceedings of the 34th Annual 
International Computer Software and Applications Conference, 7th 
International Workshop on Software Cybernetics, pp. 208–213, 2010. 

[14] Z. Zhou, A. Sinaga, and W. Susilo. “On the Fault-Detection Capabilities 
of Adaptive Random Test Case Prioritization Case Studies with Large 
Test Suites,” In Proceedings of the 45th Hawaii International 
Conference on System Sciences, pp. 5584-5593, 2012. 

[15] C. Fang, Z. Chen, K. Wu, and Z. Zhao. “Similarity-based test case 
prioritization using ordered sequences of program entities,” accepted by 
Software Quality Journal, published online Nov. 2013. DOI: 
10.1007/s11219-013-9224-0. 

[16] H. Liu, F. Kuo, and T. Y. Chen. “Comparison of adaptive random testing 
and random testing under various testing and debugging scenarios,” 
Software: Practice and Experience, 42(8):1055–1074, 2012. 

[17] W. Yang, Z. Chen, Z. Gao, Y. Zou, and X. Xu. “GUI testing assisted by 
human knowledge: Random vs. functional,” Journal of Systems and 
Software, 89(3):76-86, 2014. 

[18] A. Memon, M. Pollack, and M. Soffa. “Hierarchical GUI test case 
generation using automated planning,” IEEE Transactions on Software 
Engineering, 27 (2):144–155, 2001. 

[19] A. Memon. “Automatically repairing event sequence-based GUI test 
suites for regression testing,” ACM Transactions on Software 
Engineering and Methodology, 18 (2), 4:1–4:36, 2008. 

 


	sent 20161005 n2006048078 Liu, Huai- An Application.pdf
	Due Diligence Record LogKeely.pdf
	Iyer-Raniga, Usha- n2006046404- A greenhouse gas.pdf
	Abstract
	Introduction
	Method
	Unit of assessment and system boundary
	Inventory
	Impact assessment

	Results
	Discussion
	Limitations
	Exclusion of travel
	Partition methodology
	Stadium life time and attendance
	Exclusion of upstream construction processes

	Conclusion
	Acknowledgement
	Funding
	References






